Science.gov

Sample records for cerium oxides

  1. Cerium Oxide and Cerium Compounds

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 08 / 002F www.epa.gov / iris TOXICOLOGICAL REVIEW OF Cerium Oxide and Cerium Compounds ( CAS No . 1306 - 38 - 3 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) September 2009 U.S . Environmental Protection Agency Washington , DC ii DISCLAIMER Th

  2. IRIS Toxicological Review of Cerium Oxide and Cerium ...

    EPA Pesticide Factsheets

    EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of cerium oxide and cerium compounds that will appear on the Integrated Risk Information System (IRIS) database. The draft Toxicological Review of cerium oxide and cerium compounds provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to cerium oxide and cerium compounds.

  3. IRIS Toxicological Review of Cerium Oxide and Cerium ...

    EPA Pesticide Factsheets

    On September 29, 2009, the IRIS Summary and Toxicological Review of Cerium Oxide and Cerium Compounds was finalized and loaded onto the IRIS database. The Toxicological Review of Cerium Oxide and Cerium Compounds was reviewed internally by EPA, by other federal agencies and White House Offices, by expert external peer reviewers, and by the public. In the new IRIS process, introduced by the EPA Administrator, all written comments on IRIS assessments submitted by other federal agencies and White House Offices will be made publicly available. Accordingly, interagency comments and the interagency draft of the Cerium Oxide and Cerium Compounds IRIS assessment are posted on this site. The draft Toxicological Review of Cerium Oxide and Cerium Compounds provides scientific support and rationale for the hazard identification and dose-response assessment pertaining to chronic exposure to cerium oxide and cerium compounds.

  4. Nanoparticle cerium oxide and mixed cerium oxides for improved fuel cell lifetime

    NASA Astrophysics Data System (ADS)

    Stewart, Stephen Michael

    While there is a rich body of literature concerning of properties of bulk cerium oxide and cerium cations in solution, the discussion has been inappropriately applied to nanoscale cerium oxide resulting in many unexpected or unexplained results. In particular, there is very limited understanding about the properties of cerium oxide and its potential use as a radical scavenger, and how the catalytic properties of cerium oxide change as the particle size approaches the nanoscale. For example, the involvement of Ce+4 and Ce+3 cations in reactions such as hydrogen peroxide decomposition have been investigated for both cerium cations and bulk cerium oxide. However, while both are assumed to decompose hydrogen peroxide through the same mechanism, whereby Ce+4 is involved in peroxide decomposition while Ce +3 is involved in radical scavenging, there has been very little done to address how the selectivity and activity of these reactions are affected by changing the majority cation population, as cerium cations in solution are predominantly in the +3 oxidation state while cerium cations are predominantly in the +4 oxidation state in cerium oxide. This matter is further complicated in cerium oxide nanoparticles where the surface concentration of Ce +3 cations is increased due to particle curvature effects. Due to the potential of controlling the surface cerium oxidation state using particle size and using this control to change the catalytic properties, this project investigated the effect of particle size and composition and the activity and selectivity of cerium oxide nanoparticles, and has served to expand the understanding of the properties of pure and mixed nanoparticle cerium oxide. This work explains the metric developed for measuring the catalytic properties of pure and mixed cerium oxide nanoparticles, which is also good at predicting the immediate and long-term behavior of nanoparticles in hydrogen fuel cells. This work also directly demonstrates praseodymium

  5. Cerium oxide for sunscreen cosmetics

    NASA Astrophysics Data System (ADS)

    Yabe, Shinryo; Sato, Tsugio

    2003-02-01

    Ultrafine particles of Mn+ -doped ceria ( Mn+ =Mg 2+, Ca 2+, Sr 2+, Ba 2+, Y 3+, La 3+, Nd 3+, Sm 3+, Eu 3+, Tb 3+) for UV filter were prepared via soft solution chemical routes at 40°C. X-ray diffraction revealed that the prepared doped particles had the cubic fluorite structures although peak positions changed depending on the kind and amount of doped metal ion. Doping with 20 mol% Ca 2+ and 20 mol% Zn 2+ resulted in extremely decreasing the particle size (2-4 nm) and the catalytic activity of ceria for oxidation of castor oil. Ca 2+-doped cerium dioxide showed excellent UV absorbing effect and transparency in the visible ray region compared with undoped cerium dioxide.

  6. Formulation and method for preparing gels comprising hydrous cerium oxide

    SciTech Connect

    Collins, Jack L; Chi, Anthony

    2013-05-07

    Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.

  7. IRIS Toxicological Review of Cerium Oxide and Cerium Compounds (External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of cerium oxide and cerium compounds that will appear on the Integrated Risk Information System (IRIS) database.

  8. IRIS Toxicological Review of Cerium Oxide and Cerium Compounds (External Review Draft)

    EPA Science Inventory

    EPA conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of cerium oxide and cerium compounds that will appear on the Integrated Risk Information System (IRIS) database.

  9. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  10. Cerium and yttrium oxide nanoparticles are neuroprotective.

    PubMed

    Schubert, David; Dargusch, Richard; Raitano, Joan; Chan, Siu-Wai

    2006-03-31

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems.

  11. Photodissociation of Cerium Oxide Nanocluster Cations.

    PubMed

    Akin, S T; Ard, S G; Dye, B E; Schaefer, H F; Duncan, M A

    2016-04-21

    Cerium oxide cluster cations, CexOy(+), are produced via laser vaporization in a pulsed nozzle source and detected with time-of-flight mass spectrometry. The mass spectrum displays a strongly preferred oxide stoichiometry for each cluster with a specific number of metal atoms x, with x ≤ y. Specifically, the most prominent clusters correspond to the formula CeO(CeO2)n(+). The cluster cations are mass selected and photodissociated with a Nd:YAG laser at either 532 or 355 nm. The prominent clusters dissociate to produce smaller species also having a similar CeO(CeO2)n(+) formula, always with apparent leaving groups of (CeO2). The production of CeO(CeO2)n(+) from the dissociation of many cluster sizes establishes the relative stability of these clusters. Furthermore, the consistent loss of neutral CeO2 shows that the smallest neutral clusters adopt the same oxidation state (IV) as the most common form of bulk cerium oxide. Clusters with higher oxygen content than the CeO(CeO2)n(+) masses are present with much lower abundance. These species dissociate by the loss of O2, leaving surviving clusters with the CeO(CeO2)n(+) formula. Density functional theory calculations on these clusters suggest structures composed of stable CeO(CeO2)n(+) cores with excess oxygen bound to the surface as a superoxide unit (O2(-)).

  12. The formation of light emitting cerium silicates in cerium-doped silicon oxides

    SciTech Connect

    Li Jing; Zalloum, Othman; Roschuk, Tyler; Heng Chenglin; Wojcik, Jacek; Mascher, Peter

    2009-01-05

    Cerium-doped silicon oxides with cerium concentrations of up to 0.9 at. % were deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition. Bright cerium related photoluminescence, easily seen even under room lighting conditions, was observed from the films and found to be sensitive to film composition and annealing temperature. The film containing 0.9 at. % Ce subjected to anneal in N{sub 2} at 1200 deg. C for 3 h showed the most intense cerium-related emission, easily visible under bright room lighting conditions. This is attributed to the formation of cerium silicate [Ce{sub 2}Si{sub 2}O{sub 7} or Ce{sub 4.667} (SiO{sub 4}){sub 3}O], the presence of which was confirmed by high resolution transmission electron microscopy.

  13. The surface chemistry of cerium oxide

    NASA Astrophysics Data System (ADS)

    Mullins, David R.

    2015-03-01

    This review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water-gas shift reaction. Ceria's acid-base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focus of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. Most surface science studies have been conducted on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.

  14. The surface chemistry of cerium oxide

    SciTech Connect

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focus of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.

  15. The surface chemistry of cerium oxide

    DOE PAGES

    Mullins, David R.

    2015-01-29

    Our review covers the structure of, and chemical reactions on, well-defined cerium oxide surfaces. Ceria, or mixed oxides containing ceria, are critical components in automotive three-way catalysts due to their well-known oxygen storage capacity. Ceria is also emerging as an important material in a number of other catalytic processes, particularly those involving organic oxygenates and the water–gas shift reaction. Ceria's acid–base properties, and thus its catalytic behavior, are closely related to its surface structure where different oxygen anion and cerium cation environments are present on the low-index structural faces. The actual structure of these various faces has been the focusmore » of a number of theoretical and experimental investigations. Ceria is also easily reducible from CeO2 to CeO2-X. The presence of oxygen vacancies on the surface often dramatically alters the adsorption and subsequent reactions of various adsorbates, either on a clean surface or on metal particles supported on the surface. We conducted surface science studies on the surfaces of thin-films rather than on the surfaces of bulk single crystal oxides. The growth, characterization and properties of these thin-films are also examined.« less

  16. A Comparison of Bulk Precipitated Cerium Oxide Powders and Cerium Conversion Coatings and the Influence of Hydrogen Peroxide on Their Formation (Preprint)

    DTIC Science & Technology

    2006-03-01

    AFRL-ML-WP-TP-2006-422 A COMPARISON OF BULK PRECIPITATED CERIUM OXIDE POWDERS AND CERIUM CONVERSION COATINGS AND THE INFLUENCE OF HYDROGEN...TITLE AND SUBTITLE A COMPARISON OF BULK PRECIPITATED CERIUM OXIDE POWDERS AND CERIUM CONVERSION COATINGS AND THE INFLUENCE OF HYDROGEN PEROXIDE ON...ABSTRACT To better understand the role of hydrogen peroxide in the formation of cerium conversion coatings and precipitates , hydrated cerium oxide

  17. Liquid-phase oxidation of cyclohexanone over cerium oxide catalyst

    SciTech Connect

    Shen, H.C. ); Weng, H.S. )

    1990-05-01

    Catalytic oxidation of cyclohexanone in the liquid phase with glacial acetic acid as the solvent over cerium oxide was studied between 5 and 15 atm and 98 and 118 {degrees} C in a batch reactor. The products were adipic acid, glutaric acid, succinic acid, caprolactone, carbon oxides, etc. The reaction undergoes a short induction period prior to a rapid reaction regime. In both regimes, the reaction is independent of oxygen pressure when the system pressure is above 10 atm. The induction period is inversely proportional to both of the catalyst weight and cyclohexanone concentration.During the rapid reaction regime, the reaction rate was found to be proportional to the 0.5 power of the catalyst weight and to the 1.5 power of the cyclohexanone concentration. Reaction mechanisms and rate expressions are proposed. The carbon oxides produced in this study were much lower than those previously reported. The cerium oxide catalyst is stable during the reaction.

  18. Selective cytotoxicity effect of cerium oxide nanoparticles under UV irradiation.

    PubMed

    Zhang, Li; Jiang, Hui; Selke, Matthias; Wang, Xuemei

    2014-02-01

    During photodynamic therapy (PDT) of cancers, there are numerous side effects, accompanied by damage to normal cells/tissues caused by the abnormal elevation of reactive oxygen species (ROS). In this paper, we aim to provide an effective method to reduce the relevant side effects of PDT by using cerium oxide nanoparticles. The well-dispersed poly(vinyl pyrrolidone) stabilized cerium oxide nanoparticles were successfully synthesized by using a one-pot method at 60 degrees C in slightly alkaline environment. The morphological and structural characterizations clearly illustrate the excellent lattice structures of cerium oxide, nanoparticles. The MTT assay indicates that these cerium oxide nanoparticles show no intrinsic cytotoxicity even at a concentration up to 300 micro g/mL. More importantly, the results demonstrate that these nanoparticles can selectively protect human normal cells but not the cancer cells from ROS damage after exposure to UV-radiation, suggesting their potential applications for PDT treatment. The rationale behind the selective protection effect can be attributed to the hindrance of the Ce (III)/Ce (IV) redox reaction cycle on the surface of cerium oxide nanoparticles due to the abnormal intracellular pH in cancer cells. Furthermore, these cerium oxide nanoparticles can be used as effective drug carriers for enhancing drug delivery efficiency to target cancer cells like hepatoma HepG2 cells. This raises the possibility of applying cerium oxide nanoparticles for multifunctional therapeutic applications, i.e., combination of efficient PDT and chemotherapy.

  19. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass

    USDA-ARS?s Scientific Manuscript database

    Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...

  20. An efficient method for dephosphorylation of phosphopeptides by cerium oxide.

    PubMed

    Tan, Feng; Zhang, Yangjun; Wang, Jinglan; Wei, Junying; Cai, Yun; Qian, Xiaohong

    2008-05-01

    In this article, an effective method for dephosphorylation of phosphopeptides by cerium oxide is described. The dephosphorylation activity of cerium oxide was evaluated by two standard phosphopeptides and the phosphopeptides in digests of phosphoprotein alpha-casein and beta-casein. Results showed that the dephosphorylation of all the phosphopeptides was completed in 10 min, and temperature had little effect on the dephosphorylation, the dephosphorylation could be carried out at 0 degrees C, room temperature and 37 degrees C. The dephosphorylation mediated by cerium oxide can be attributed to Lewis acid and nucleophile activations. Advantages of using cerium oxide as catalyst for the dephosphorylation include: safe, simple, high catalytic activity, and no precise control of the treatment temperature. The method is valid for the phosphorylation of Ser, Thr and Tyr, and can be used for phosphoprotein analysis.

  1. Characterization of cerium oxide nanoparticles-part 2: nonsize measurements.

    PubMed

    Baalousha, Mohammed; Ju-Nam, Yon; Cole, Paula A; Hriljac, Joseph A; Jones, Ian P; Tyler, Charles R; Stone, Vicki; Fernandes, Teresa F; Jepson, Mark A; Lead, Jamie R

    2012-05-01

    Part 1 (see companion paper) of the present study discussed the application of a multimethod approach in characterizing the size of cerium oxide nanoparticles (NPs). However, other properties less routinely investigated, such as shape and morphology, structure, chemical composition, and surface properties, are likely to play an important role in determining the behavior, reactivity, and potential toxicity of these NPs. The present study describes the measurement of the aforementioned physicochemical properties of NPs (applied also to nanomaterials [NMs]) compared with micrometer particles (MPs). The authors use a wide range of techniques, including high resolution-transmission electron microscopy, scanning electron microscopy, atomic force microscopy, X-ray diffraction, X-ray energy dispersive spectroscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy, and electrophoresis, and compare these techniques, their advantages, and their limitations, along with recommendations about how best to approach NM characterization, using an application to commercial cerium oxide NPs and MPs. Results show that both cerium oxide NPs and MPs are formed of single polyhedron or truncated polyhedron crystals. Cerium oxide NPs contain a mixture of Ce(3+) and Ce(4+) cations, whereas the MPs contain mainly Ce(4+) , which is potentially important in understanding the toxicity of cerium oxide NPs. The isoelectric point of cerium oxide NPs was approximately pH 8, which explains their propensity to aggregate in aqueous media (see companion paper).

  2. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans.

    PubMed

    Arnold, M C; Badireddy, A R; Wiesner, M R; Di Giulio, R T; Meyer, J N

    2013-08-01

    Engineered cerium oxide nanoparticles (CeO2 NPs) are widely used in biomedical and engineering manufacturing industries. Previous research has shown the ability of CeO2 NPs to act as a redox catalyst, suggesting potential to both induce and alleviate oxidative stress in organisms. In this study, Caenorhabditis elegans and zebrafish (Danio rerio) were dosed with commercially available CeO2 NPs. Non-nano cerium oxide powder (CeO2) was used as a positive control for cerium toxicity. CeO2 NPs suspended in standard United States Environmental Protection Agency reconstituted moderately hard water, used to culture the C. elegans, quickly formed large polydisperse aggregates. Dosing solutions were renewed daily for 3 days. Exposure of wild-type nematodes resulted in dose-dependent growth inhibition detected for all 3 days (p < 0.0001). Non-nano CeO2 also caused significant growth inhibition (p < 0.0001), but the scale of inhibition was less at equivalent mass exposures compared with CeO2 NP exposure. Some metal and oxidative stress-sensitive mutant nematode strains showed mildly altered growth relative to the wild-type when dosed with 5 mg/L CeO2 NPs on days 2 and 3, thus providing weak evidence for a role for oxidative stress or metal sensitivity in CeO2 NP toxicity. Zebrafish microinjected with CeO2 NPs or CeO2 did not exhibit increased gross developmental defects compared with controls. Hyperspectral imaging showed that CeO2 NPs were ingested but not detectable inside the cells of C. elegans. Growth inhibition observed in C. elegans may be explained at least in part by a non-specific inhibition of feeding caused by CeO2 NPs aggregating around bacterial food and/or inside the gut tract.

  3. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.).

    PubMed

    Zhang, Weilan; Ebbs, Stephen D; Musante, Craig; White, Jason C; Gao, Cunmei; Ma, Xingmao

    2015-01-21

    The potential toxicity and accumulation of engineered nanomaterials (ENMs) in agricultural crops has become an area of great concern and intense investigation. Interestingly, although below-ground vegetables are most likely to accumulate the highest concentrations of ENMs, little work has been done investigating the potential uptake and accumulation of ENMs for this plant group. The overall objective of this study was to evaluate how different forms of cerium (bulk cerium oxide, cerium oxide nanoparticles, and the cerium ion) affected the growth of radish (Raphanus sativus L.) and accumulation of cerium in radish tissues. Ionic cerium (Ce(3+)) had a negative effect on radish growth at 10 mg CeCl3/L, whereas bulk cerium oxide (CeO2) enhanced plant biomass at the same concentration. Treatment with 10 mg/L cerium oxide nanoparticles (CeO2 NPs) had no significant effect on radish growth. Exposure to all forms of cerium resulted in the accumulation of this element in radish tissues, including the edible storage root. However, the accumulation patterns and their effect on plant growth and physiological processes varied with the characteristics of cerium. This study provides a critical frame of reference on the effects of CeO2 NPs versus their bulk and ionic counterparts on radish growth.

  4. Control of cerium oxidation state through metal complex secondary structures

    SciTech Connect

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; Schelter, Eric J.

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observed when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.

  5. Control of cerium oxidation state through metal complex secondary structures

    DOE PAGES

    Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; ...

    2015-08-11

    A series of alkali metal cerium diphenylhydrazido complexes, Mx(py)y[Ce(PhNNPh)4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li+ or Na+, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reduction of 1,2-diphenylhydrazine was not observedmore » when M = K+, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce(IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less

  6. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  7. Optical and electrical studies of cerium mixed oxides

    SciTech Connect

    Sherly, T. R.; Raveendran, R.

    2014-10-15

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  8. Optical and electrical studies of cerium mixed oxides

    NASA Astrophysics Data System (ADS)

    Sherly, T. R.; Raveendran, R.

    2014-10-01

    The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.

  9. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  10. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    SciTech Connect

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen Kumar, Dinesh

    2016-05-06

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO{sub 2} was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  11. The effective thermal conductivity of an adsorbent - Praseodymium cerium oxide

    NASA Technical Reports Server (NTRS)

    Secary, J. J.; Tong, T. W.

    1992-01-01

    The results of an experimental study to determine the effective thermal conductivity of praseodymium cerium oxide are reported. Praseodymium cerium oxide is an adsorbent used in the development of adsorption compressors for spaceborne refrigeration systems. A guarded-hot-plate apparatus was built for this study. Measurements were carried out for mean temperatures ranging from 300 to 600 C under a vacuum of 10 exp -5 torr. For the temperature range studied, the effective thermal conductivity increased from 0.14 to 0.76 W/m per C with increasing temperature, while displaying a cubic temperature dependency.

  12. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CERIUM OXIDE (STABLE) AND COMPOUNDS

    EPA Science Inventory

    Cerium is a member of the lanthanoid series of rare earth metals. It is also the most abundant and most reactive of the rare earth metals. Cerium oxidizes at room temperature and forms a variety of salt compounds including oxides, hydroxides, sulfates and chlorides. Cerium is ...

  13. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CERIUM OXIDE (STABLE) AND COMPOUNDS

    EPA Science Inventory

    Cerium is a member of the lanthanoid series of rare earth metals. It is also the most abundant and most reactive of the rare earth metals. Cerium oxidizes at room temperature and forms a variety of salt compounds including oxides, hydroxides, sulfates and chlorides. Cerium is ...

  14. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in arabidopsis

    EPA Science Inventory

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  15. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in arabidopsis

    EPA Science Inventory

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that e...

  16. Cerium fluoride nanoparticles protect cells against oxidative stress.

    PubMed

    Shcherbakov, Alexander B; Zholobak, Nadezhda M; Baranchikov, Alexander E; Ryabova, Anastasia V; Ivanov, Vladimir K

    2015-05-01

    A novel facile method of non-doped and fluorescent terbium-doped cerium fluoride stable aqueous sols synthesis is proposed. Intense green luminescence of CeF3:Tb nanoparticles can be used to visualize these nanoparticles' accumulation in cells using confocal laser scanning microscopy. Cerium fluoride nanoparticles are shown for the first time to protect both organic molecules and living cells from the oxidative action of hydrogen peroxide. Both non-doped and terbium-doped CeF3 nanoparticles are shown to provide noteworthy protection to cells against the vesicular stomatitis virus. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells.

    PubMed

    Kumari, Monika; Singh, Shailendra Pratap; Chinde, Srinivas; Rahman, Mohammed Fazlur; Mahboob, Mohammed; Grover, Paramjit

    2014-01-01

    The present study consisted of cytotoxic, genotoxic, and oxidative stress responses of human neuroblastoma cell line (IMR32) following exposure to different doses of cerium oxide nanoparticles (CeO2 NPs; nanoceria) and its microparticles (MPs) for 24 hours. Cytotoxicity was evaluated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase assays whereas genotoxicity was assessed using the cytokinesis-block micronucleus and comet assays. A battery of assays including lipid peroxidation, reactive oxygen species (ROS), hydrogen peroxide, reduced glutathione, nitric oxide, glutathione reductase, glutathione peroxidase, superoxide dismutase, catalase, and glutathione S-transferase were performed to test the hypothesis that ROS was responsible for the toxicity of nanoceria. The results showed that nanosized CeO2 was more toxic than cerium oxide MPs. Hence, further study on safety evaluation of CeO2 NPs on other models is recommended.

  18. Processing and Characterization of Sol-Gel Cerium Oxide Microspheres

    SciTech Connect

    McClure, Zachary D.; Padilla Cintron, Cristina

    2016-09-27

    Of interest to space exploration and power generation, Radioisotope Thermoelectric Generators (RTGs) can provide long-term power to remote electronic systems without the need for refueling or replacement. Plutonium-238 (Pu-238) remains one of the more promising materials for thermoelectric power generation due to its high power density, long half-life, and low gamma emissions. Traditional methods for processing Pu-238 include ball milling irregular precipitated powders before pressing and sintering into a dense pellet. The resulting submicron particulates of Pu-238 quickly accumulate and contaminate glove boxes. An alternative and dust-free method for Pu-238 processing is internal gelation via sol-gel techniques. Sol-gel methodology creates monodisperse and uniform microspheres that can be packed and pressed into a pellet. For this study cerium oxide microspheres were produced as a surrogate to Pu-238. The similar electronic orbitals between cerium and plutonium make cerium an ideal choice for non-radioactive work. Before the microspheres can be sintered and pressed they must be washed to remove the processing oil and any unreacted substituents. An investigation was performed on the washing step to find an appropriate wash solution that reduced waste and flammable risk. Cerium oxide microspheres were processed, washed, and characterized to determine the effectiveness of the new wash solution.

  19. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles

    SciTech Connect

    Khan, Shadab Ali; Ahmad, Absar

    2013-10-15

    Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO{sub 2} nanoparticles. • Biosynthesized CeO{sub 2} nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods for the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO{sub 2}) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN{sub 3}O{sub 9}·6H{sub 2}O) results in the extracellular formation of CeO{sub 2} nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy

  20. Fundamental aspects of regenerative cerium oxide nanoparticles and their applications in nanobiotechnology

    NASA Astrophysics Data System (ADS)

    Patil, Swanand D.

    Cerium oxide has been used extensively for various applications over the past two decades. The use of cerium oxide nanoparticles is beneficial in present applications and can open avenues for future applications. The present study utilizes the microemulsion technique to synthesize uniformly distributed cerium oxide nanoparticles. The same technique was also used to synthesize cerium oxide nanoparticles doped with trivalent elements (La and Nd). The fundamental study of cerium oxide nanoparticles identified variations in properties as a function of particle size and also due to doping with trivalent elements (La and Nd). It was found that the lattice parameter of cerium oxide nanoparticles increases with decrease in particle size. Also Raman allowed mode shift to lower energies and the peak at 464 cm-1 becomes broader and asymmetric. The size dependent changes in cerium oxide were correlated to increase in oxygen vacancy concentration in the cerium oxide lattice. The doping of cerium oxide nanoparticles with trivalent elements introduces more oxygen vacancies and expands the cerium oxide lattice further (in addition to the lattice expansion due to the size effect). The lattice expansion is greater for La-doped cerium oxide nanoparticles compared to Nd-doping due to the larger ionic radius of La compared to Nd, the lattice expansion is directly proportional to the dopant concentration. The synthesized cerium oxide nanoparticles were used to develop an electrochemical biosensor of hydrogen peroxide (H2O2). The sensor was useful to detect H2O2 concentrations as low as 1muM in water. Also the preliminary testing of the sensor on tomato stem and leaf extracts indicated that the sensor can be used in practical applications such as plant physiological studies etc. The nanomolar concentrations of cerium oxide nanoparticles were also found to be useful in decreasing ROS (reactive oxygen species) mediated cellular damages in various in vitro cell cultures. Cerium oxide

  1. Engineered cerium oxide nanoparticles: Effects on bacterial growth and viability

    SciTech Connect

    Pelletier, Dale A; Suresh, Anil K; Holton, Gregory A; McKeown, Catherine K; Wang, Wei; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David Charles; Allison, Martin R; Brown, Steven D; Phelps, Tommy Joe; Doktycz, Mitchel John

    2010-01-01

    Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear. Further, standardized methods for assessing such interactions are lacking. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. In this study the effects of cerium oxide nanoparticles on the growth and viability of Gram-negative Escherichia coli and Shewanella oneidensis, a metal-reducing bacteria, and Gram-positive Bacillus subtilis were examined relative to particle size, growth media, pH, and dosage. A hydrothermal based synthesis procedure was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined by minimum inhibitory concentration, colony forming units, disc diffusion tests and Live/Dead assays. In growth inhibition experiments involving E. coli and B. subtilis, a clear strain and size-dependent inhibition was observed. S. oneidensis appeared to be unaffected by the cerium oxide nanoparticles. Transmission electron microscopy along with microarray-based transcriptional profiling have been used to understand the response mechanism of the bacteria. The use of multiple analytical approaches adds confidence to toxicity assessments while the use of different bacterial systems highlights the potential wide-ranging effects of

  2. Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles

    PubMed Central

    Shah, Vishal; Shah, Shreya; Shah, Hirsh; Rispoli, Fred J.; McDonnell, Kevin T.; Workeneh, Selam; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta

    2012-01-01

    Cerium oxide nanoparticles have found numerous applications in the biomedical industry due to their strong antioxidant properties. In the current study, we report the influence of nine different physical and chemical parameters: pH, aeration and, concentrations of MgSO4, CaCl2, KCl, natural organic matter, fructose, nanoparticles and Escherichia coli, on the antibacterial activity of dextran coated cerium oxide nanoparticles. A least-squares quadratic regression model was developed to understand the collective influence of the tested parameters on the anti-bacterial activity and subsequently a computer-based, interactive visualization tool was developed. The visualization allows us to elucidate the effect of each of the parameters in combination with other parameters, on the antibacterial activity of nanoparticles. The results indicate that the toxicity of CeO2 NPs depend on the physical and chemical environment; and in a majority of the possible combinations of the nine parameters, non-lethal to the bacteria. In fact, the cerium oxide nanoparticles can decrease the anti-bacterial activity exerted by magnesium and potassium salts. PMID:23110109

  3. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    SciTech Connect

    Ma, Jane Y.; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James; Ma, Joseph K.; Castranova, Vincent

    2012-08-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO{sub 2}) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO{sub 2}-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO{sub 2} in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO{sub 2} by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO{sub 2} exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO{sub 2} induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO{sub 2} and euthanized at 28 days post-exposure. Collectively, our studies show that CeO{sub 2} induced fibrotic lung injury in rats, suggesting it may cause potential health effects. -- Highlights: ► Cerium oxide exposure significantly affected the following parameters in the lung. ► Induced fibrotic cytokine OPN and TGF-β1 production and phospholipidosis. ► Caused imbalance of the MMP-9/ TIMP-1 ratio that favors fibrosis

  4. Environmental Geochemistry of Cerium: Applications and Toxicology of Cerium Oxide Nanoparticles

    PubMed Central

    Dahle, Jessica T.; Arai, Yuji

    2015-01-01

    Cerium is the most abundant of rare-earth metals found in the Earth’s crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment. PMID:25625406

  5. Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles.

    PubMed

    Dahle, Jessica T; Arai, Yuji

    2015-01-23

    Cerium is the most abundant of rare-earth metals found in the Earth's crust. Several Ce-carbonate, -phosphate, -silicate, and -(hydr)oxide minerals have been historically mined and processed for pharmaceutical uses and industrial applications. Of all Ce minerals, cerium dioxide has received much attention in the global nanotechnology market due to their useful applications for catalysts, fuel cells, and fuel additives. A recent mass flow modeling study predicted that a major source of CeO2 nanoparticles from industrial processing plants (e.g., electronics and optics manufactures) is likely to reach the terrestrial environment such as landfills and soils. The environmental fate of CeO2 nanoparticles is highly dependent on its physcochemical properties in low temperature geochemical environment. Though there are needs in improving the analytical method in detecting/quantifying CeO2 nanoparticles in different environmental media, it is clear that aquatic and terrestrial organisms have been exposed to CeO2 NPs, potentially yielding in negative impact on human and ecosystem health. Interestingly, there has been contradicting reports about the toxicological effects of CeO2 nanoparticles, acting as either an antioxidant or reactive oxygen species production-inducing agent). This poses a challenge in future regulations for the CeO2 nanoparticle application and the risk assessment in the environment.

  6. Functionalization of nanostructured cerium oxide films with histidine.

    PubMed

    Tsud, Nataliya; Bercha, Sofiia; Acres, Robert G; Vorokhta, Mykhailo; Khalakhan, Ivan; Prince, Kevin C; Matolín, Vladimír

    2015-01-28

    The surfaces of polycrystalline cerium oxide films were modified by histidine adsorption under vacuum and characterized by the synchrotron based techniques of core and valence level photoemission, resonant photoemission and near edge X-ray absorption spectroscopy, as well as atomic force microscopy. Histidine is strongly bound to the oxide surface in the anionic form through the deprotonated carboxylate group, and forms a disordered molecular adlayer. The imidazole ring and the amino side group do not form bonds with the substrate but are involved in the intermolecular hydrogen bonding which stabilizes the molecular adlayer. The surface reaction with histidine results in water desorption accompanied by oxide reduction, which is propagated into the bulk of the film. Previously studied, well-characterized surfaces are a guide to the chemistry of the present polycrystalline surface and histidine bonds via the carboxylate group in both cases. In contrast, bonding via the imidazole group occurs on the well-ordered surface but not in the present case. The morphology and structure of the cerium oxide are decisive factors which define the adsorption geometry of the histidine adlayer.

  7. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  8. Modelling the structure of disordered cerium oxide thin films

    NASA Astrophysics Data System (ADS)

    Peña Leal, José Juan; Barrio, Rafael A.

    2017-10-01

    Cerium oxide is an interesting mixed valence compound of great technological importance. We model the growth of thin films of this substance by describing the statistical nucleation of atomic units containing Ce3+ and Ce4+. The theoretical results are compared with available experimental values of the magnetic susceptibility of the material, which is related to the proportion of magnetic atoms in the solid. The model is able to predict the composition of the final solid under different preparation conditions, namely the oxygen content of the precursor and the temperature of the substrate.

  9. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-11-16

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure. 7 figures.

  10. Role of nanocrystalline cerium oxide coatings on austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying

    Protective nanocrystalline cerium oxide coating has been applied to ASTM grade 304L and 304 austenitic stainless steels to improve its oxidation resistance at elevated temperatures. Experimentally, the selected alloy was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. It was found that the oxidation resistances of 304L and 304 stainless steels were significantly improved. A comparison of the oxidation rates indicated that the nanocrystalline cerium oxide coating reduced the rate of oxidation by more than two orders of magnitude. Nevertheless, a comprehensive understanding of the mechanisms responsible for the reduction in the oxidation rate is not clear. Consequently, this work is aimed at investigating the mechanisms involved during scale growth in the presence or absence of nanocrystalline coatings. For this purpose, density functional theory was carried out in order to predict oxygen and iron diffusion microscopic activation energies and reveal the intrinsic characteristics of nanocrystalline coatings. A numerical simulation of corrosion process has also been conducted to predict the corrosion rates of alloys with and without coatings. Hence, the results from simulations are compared with the experimental outcome, and possible explanations are given to account for the reduction in the exhibited oxidation rates. The simulation results will provide a highly valuable tool for the realization of functional nanostructures and architectures "by design", particularly in the development of novel coatings, and a new approach of life assessment.

  11. Design better cerium-based oxidation catalysts

    SciTech Connect

    Trovarelli, A.; Leitenburg, C. de; Dolcetti, G.

    1997-06-01

    Structural and energetic factors play an important role in the development of a new generation of automobile exhaust catalysts containing CeO{sub 2} doped with ZrO{sub 2} and/or other rare earth oxides such as PrO{sub x}, Y{sub 2}O{sub 3}, and La{sub 2}O{sub 3}. These new catalysts possess high oxygen storage capacity, improved thermal stability, and enhanced catalytic properties. These properties are discussed.

  12. Fabrication of Cerium Oxide and Uranium Oxide Microspheres for Space Nuclear Power Applications

    SciTech Connect

    Jeffrey A. Katalenich; Michael R. Hartman; Robert C. O'Brien

    2013-02-01

    Cerium oxide and uranium oxide microspheres are being produced via an internal gelation sol-gel method to investigate alternative fabrication routes for space nuclear fuels. Depleted uranium and non-radioactive cerium are being utilized as surrogates for plutonium-238 (Pu-238) used in radioisotope thermoelectric generators and for enriched uranium required by nuclear thermal rockets. While current methods used to produce Pu-238 fuels at Los Alamos National Laboratory (LANL) involve the generation of fine powders that pose a respiratory hazard and have a propensity to contaminate glove boxes, the sol-gel route allows for the generation of oxide microsphere fuels through an aqueous route. The sol-gel method does not generate fine powders and may require fewer processing steps than the LANL method with less operator handling. High-quality cerium dioxide microspheres have been fabricated in the desired size range and equipment is being prepared to establish a uranium dioxide microsphere production capability.

  13. Green synthesized cerium oxide nanoparticle: A prospective drug against oxidative harm.

    PubMed

    Dutta, Debanjan; Mukherjee, Riya; Patra, Mousumi; Banik, Milon; Dasgupta, Rakhi; Mukherjee, Manabendra; Basu, Tarakdas

    2016-11-01

    Cerium oxide nanoparticle (CeONP) of size 2-3nm was synthesized by a new, simple and green method at ambient temperature, using cerium nitrate as prime precursor and Aloe vera leaf extract as stabilizing agent. Of the two oxidation states (+3) and (+4) of cerium, it was dominantly present in (+3) state in CeONP and cyclic conversion of Ce(III)O→Ce(IV)O→Ce(III)O by reaction with H2O2 implied uninterrupted antioxidant property of CeONP. Moreover, the higher oxygen defect in the crystal lattice produced particles with higher antioxidant activity. CeONP was found to neutralize the deleterious effects of H2O2 viz., cell death, generation of intracellular reactive oxygen species and loss of connectivity in mouse neural cells. Therefore, CeONP might have potential use in future as an anti-oxidant drug.

  14. Interactional effect of cerium and manganese on NO catalytic oxidation.

    PubMed

    Liang, Yanli; Huang, Yufen; Zhang, Hailong; Lan, Li; Zhao, Ming; Gong, Maochu; Chen, Yaoqiang; Wang, Jianli

    2017-04-01

    To preferably catalyze the oxidation of NO to NO2 in diesel after-treatment system, a series of CeO2-MnO x composite oxides was supported on silica-alumina material by the co-impregnation method. The maximum conversion of NO of the catalyst with a Ce/Mn weight ratio of 5:5 was improved by around 40%, compared to the supported manganese-only or cerium-only sample. And its maximum reaction rate was 0.056 μmol g(-1) s(-1) at 250 °C at the gas hourly space velocity of 30,000 h(-1). The experimental results suggested that Ce-Mn solid solution was formed, which could modulate the valence state of cerium and manganese and exhibit great redox properties. Moreover, the strong interaction between ceria and manganese resulted in the largest desorption amount of strong chemical oxygen and oxygen vacancies, leading to the maximum O α area ratio of 62.26% from the O 1s result. These effective oxygen species could be continually transferred to the surface, leading to the best NO catalytic activity of 5Ce5Mn/SA catalyst. Graphical abstract.

  15. Altering properties of cerium oxide thin films by Rh doping

    SciTech Connect

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír; and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  16. Pilot demonstration of cerium oxide coated anodes

    SciTech Connect

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ([approximately]1.5) and low current density (0.5 A/cm[sup 2]), a [ge]1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  17. Effects of cerium oxide nanoparticles on the proliferation, differentiation, and mineralization function of primary osteoblasts in vitro.

    PubMed

    Zhou, Guoqiang; Gu, Guangqi; Li, Yang; Zhang, Qun; Wang, Wenying; Wang, Shuxiang; Zhang, Jinchao

    2013-06-01

    The effects of cerium oxide nanoparticles on the proliferation, differentiation, and mineralization function of primary osteoblasts in vitro were evaluated. The results showed that the cell biological effects of cerium oxide nanoparticles varied with different diameters. The cytotoxicity of cerium oxide nanoparticles on primary osteoblasts varies with the size and incubation time. Sixty-nanometer cerium oxide nanoparticles show significant cytotoxicity on primary osteoblasts at 48 h exposure. Cerium oxide nanoparticles with diameters of 40 nm promoted the differentiation of osteoblasts and the promotion rate was enhanced with increasing concentration. Cerium oxide nanoparticles with diameters of 60 nm promoted the differentiation of osteoblasts at lower concentrations, but turned to inhibit the differentiation at higher concentrations. Cerium oxide nanoparticles promoted the adipogenic transdifferentiation of osteoblasts at all tested concentrations. Moreover, the effects of 60-nm cerium oxide nanoparticles were stronger than that of 40-nm cerium oxide nanoparticles. Cerium oxide nanoparticles promoted the formation of mineralized matrix nodules of osteoblasts at all tested concentrations in a dose-dependent manner and the promotion rate increased with decreasing size. The results showed that cerium oxide nanoparticles had no acute cytotoxic effects on osteoblasts and could promote the osteogenic differentiation and mineralization of osteoblasts. Moreover, the size, concentration, and culture time of nanoparticles have significant influence on the proliferation, differentiation, and mineralization of osteoblasts.

  18. Enhanced electrochromism in cerium doped molybdenum oxide thin films

    SciTech Connect

    Dhanasankar, M.; Purushothaman, K.K.; Muralidharan, G.

    2010-12-15

    Cerium (5-15% by weight) doped molybdenum oxide thin films have been prepared on FTO coated glass substrate at 250 {sup o}C using sol-gel dip coating method. The structural and morphological changes were observed with the help of XRD, SEM and EDS analysis. The amorphous structure of the Ce doped samples, favours easy intercalation and deintercalation processes. Mo oxide films with 10 wt.% of Ce exhibit maximum anodic diffusion coefficient of 24.99 x 10{sup -11} cm{sup 2}/s and the change in optical transmittance of ({Delta}T at 550 nm) of 79.28% between coloured and bleached state with the optical density of ({Delta}OD) 1.15.

  19. Cerium oxide nanoparticles accelerate the decay of peroxynitrite (ONOO(-)).

    PubMed

    Dowding, Janet M; Seal, Sudipta; Self, William T

    2013-08-01

    Cerium oxide nanoparticles (CeO2 NPs) have been shown to possess a substantial oxygen storage capacity via the interchangeable surface reduction and oxidation of cerium atoms, cycling between the Ce(4+) and Ce(3+) redox states. It has been well established in many studies that depending on their reactivity and surface chemistry, CeO2 NPs can effectively convert both reactive oxygen species (superoxide, O2 (•-), and hydrogen peroxide) into more inert species and scavenge reactive nitrogen species (RNS)(nitric oxide, •NO), both in vitro and in vivo. Since much of damage attributed to •NO and O2 (•-) is actually the result of oxidation or nitration by peroxynitrite or its breakdown products and due to the multiple species that these nanoparticles target in vivo, it was logical to test their interaction with the highly reactive molecule peroxynitrite (ONOO(-)). Here, we report that CeO2 NPs significantly accelerated the decay of ONOO(-) by three independent methods. Additionally, our data suggest the ability of CeO2 NPs to interact with ONOO(-) is independent of the Ce(3+)/Ce(4+) ratio on the surface of the CeO2 NPs. The accelerated decay was not observed when reactions were carried out in an inert gas (argon), suggesting strongly that the decay of peroxynitrite is being accelerated due to a reaction of CeNPs with the carbonate radical anion. These results suggest that one of the protective effects of CeO2 NPs during RNS is likely due to reduction in peroxynitrite or its reactive breakdown products.

  20. Fast synthesis of cerium oxide nanoparticles and nanorods.

    PubMed

    Gao, Feng; Lu, Qingyi; Komarneni, Sridhar

    2006-12-01

    The microwave-hydrothermal method has been investigated for the fast synthesis of rare earth cerium oxide (CeO2) nanoparticles and nanorods. This approach combines the advantages of both hydrothermal and microwave heating techniques. It is facile, rapid, energy-saving, and environmentally-benign and leads to high-yields. The average sizes of the obtained CeO2 nanoparticles could be adjusted from approximatrly 1.6 nm to approximately 20 nm. Moreover, by changing cerium source and adjusting the amount of the added ammonia water, CeO2 nanorods could be synthesized under microwave-assisted conditions for the first time. No calcination process or surfactant is required in our experiments for both CeO2 nanoparticles and nanorods. The ultraviolet and visible (UV-vis) spectra show the obvious size-dependence of the position of the absorbance peak. The Brunaur Emmett Teller (BET) nitrogen adsorption indicates that these nanoparticles and nanorods have high specific surface areas, which are needed for potential applications in many fields. Compared with conventional hydrothermal method, microwave-assisted hydrothermal method shows its advantages of rapidity, convenience and perhaps cost-effectiveness and could be extended to the synthesis of other nanoparticles and nanorods.

  1. Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides

    DOE PAGES

    Li, Yuanyuan; Kraynis, Olga; Kas, Joshua; ...

    2016-05-20

    Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. In this study, we used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorptionmore » spectra in CGO in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.« less

  2. Geometry of electromechanically active structures in Gadolinium - doped Cerium oxides

    SciTech Connect

    Li, Yuanyuan; Zacharowicz, Renee; Frenkel, Anatoly I. E-mail: anatoly.frenkel@yu.edu; Kraynis, Olga; Lubomirsky, Igor E-mail: anatoly.frenkel@yu.edu; Kas, Joshua; Weng, Tsu-Chien; Sokaras, Dimosthenis

    2016-05-15

    Local distortions from average structure are important in many functional materials, such as electrostrictors or piezoelectrics, and contain clues about their mechanism of work. However, the geometric attributes of these distortions are exceedingly difficult to measure, leading to a gap in knowledge regarding their roles in electromechanical response. This task is particularly challenging in the case of recently reported non-classical electrostriction in Cerium-Gadolinium oxides (CGO), where only a small population of Ce-O bonds that are located near oxygen ion vacancies responds to external electric field. We used high-energy resolution fluorescence detection (HERFD) technique to collect X-ray absorption spectra in CGO in situ, with and without an external electric field, coupled with theoretical modeling to characterize three-dimensional geometry of electromechanically active units.

  3. Cerium oxide nanoparticles: a 'radical' approach to neurodegenerative disease treatment.

    PubMed

    Naz, Shuguftha; Beach, James; Heckert, Blaze; Tummala, Tanuja; Pashchenko, Oleksandra; Banerjee, Tuhina; Santra, Santimukul

    2017-03-01

    Despite advances in understanding the factors that cause many neurodegenerative diseases (NDs), no current therapies have yielded significant results. Cerium oxide nanoparticles (CeONPs) have recently emerged as therapeutics for the treatment of NDs due to their antioxidant properties. This report summarizes the recent findings regarding CeONPs in treatment of various NDs, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, ischemic stroke and amyotrophic lateral sclerosis. Interest in CeONPs as a potential nanomedicine for NDs has increased due to: their ability to alter signaling pathways, small diameter allowing passage through the blood-brain barrier and scavenging of reactive oxygen species. Due to these properties, CeONPs could eventually revolutionize existing treatments for NDs.

  4. Toxicity of Cerium Oxide Nanoparticles in Human Lung Cancer Cells

    SciTech Connect

    Weisheng, Lin; Huang, Yue-wern; Zhou, Xiao Dong; Ma, Yinfa

    2006-12-31

    With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 μg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, α-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and α-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

  5. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  6. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  7. Recent advances (2010-2015) in studies of cerium oxide nanoparticles' health effects.

    PubMed

    Li, Yan; Li, Peng; Yu, Hua; Bian, Ying

    2016-06-01

    Cerium oxide nanoparticles, widespread applied in our life, have attracted much concern for their human health effects. However, most of the works addressing cerium oxide nanoparticles toxicity have only used in vitro models or in vivo intratracheal instillation methods. The toxicity studies have varied results and not all are conclusive. The information about risk assessments derived from epidemiology studies is severely lacking. The knowledge of occupational safety and health (OSH) for exposed workers is very little. Thus this review focuses on recent advances in studies of toxicokinetics, antioxidant activity and toxicity. Additionally, aim to extend previous health effects assessments of cerium oxide nanoparticles, we summarize the epidemiology studies of engineered cerium oxide nanoparticles used as automotive diesel fuel additive, aerosol particulate matter in air pollution, other industrial ultrafine and nanoparticles (e.g., fumes particles generated in welding and flame cutting processes).

  8. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  9. The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation

    SciTech Connect

    Jung, Heejung; Kittelson, David B.; Zachariah, Michael R.

    2005-08-01

    The influence of a cerium additive on the kinetics of oxidation and size distribution of ultrafine diesel particles was studied using a high-temperature oxidation-tandem differential mobility analysis method over the temperature range 300-700|{sup o}C. The addition of cerium to the diesel fuel was observed to cause significant changes in number-weighted size distributions, light-off temperature, and kinetics of oxidation. The peak number concentration in the accumulation mode decreased 50 and 65%, respectively, for 25 and 100 ppm dosing levels under 1400 rpm and 75% engine load. The light-off temperature was reduced by 250 and 300|{sup o}C, respectively, for 25 and 100 ppm dosing levels. The oxidation rate increased significantly (x20) with the addition of cerium to the fuel; however, the rate was relatively insensitive to dosing level. The activation energy for cerium-dosed oxidation was, within experimental error, equivalent to that for undosed fuel (E{sub a}=100-110 kJmol{sup -1}). From a phenomenological kinetic rate perspective, the increase in oxidation rate was attributed solely to an increase in the preexponential factor. These results suggested that diesel particles using regular, undosed diesel fuels were already metal-catalyzed to some extent, most likely from metals in the lube oil. The addition of cerium likely increased the number of catalytic sites but had no effect on the overall activation energy due to the presence of other metals in the diesel particulate matter coming from lube oil. The characteristics of cerium-laden diesel particles were also investigated. Two principal types of aggregates were found using transmission electron microscopy and energy-dispersive spectrometry analysis. The first was composed mainly of agglomerates of carbonaceous spherules and a few, considerably smaller cerium oxide nanoparticles. The second consisted of metallic aggregates composed mainly of cerium oxide nanoparticles and some carbon.

  10. Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine.

    PubMed

    Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F

    2017-02-21

    Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO2, standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.

  11. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants.

    PubMed

    Barrios, Ana Cecilia; Rico, Cyren M; Trujillo-Reyes, Jesica; Medina-Velo, Illya A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2016-09-01

    Little is known about the physiological and biochemical responses of plants exposed to surface modified nanomaterials. In this study, tomato (Solanum lycopersicum L.) plants were cultivated for 210days in potting soil amended with uncoated and citric acid coated cerium oxide nanoparticles (nCeO2, CA+nCeO2) bulk cerium oxide (bCeO2), and cerium acetate (CeAc). Millipore water (MPW), and citric acid (CA) were used as controls. Physiological and biochemical parameters were measured. At 500mg/kg, both the uncoated and CA+nCeO2 increased shoot length by ~9 and ~13%, respectively, while bCeO2 and CeAc decreased shoot length by ~48 and ~26%, respectively, compared with MPW (p≤0.05). Total chlorophyll, chlo-a, and chlo-b were significantly increased by CA+nCeO2 at 250mg/kg, but reduced by bCeO2 at 62.5mg/kg, compared with MPW. At 250 and 500mg/kg, nCeO2 increased Ce in roots by 10 and 7 times, compared to CA+nCeO2, but none of the treatments affected the Ce concentration in above ground tissues. Neither nCeO2 nor CA+nCeO2 affected the homeostasis of nutrient elements in roots, stems, and leaves or catalase and ascorbate peroxidase in leaves. CeAc at 62.5 and 125mg/kg increased B (81%) and Fe (174%) in roots, while at 250 and 500mg/kg, increased Ca in stems (84% and 86%, respectively). On the other hand, bCeO2 at 62.5 increased Zn (152%) but reduced P (80%) in stems. Only nCeO2 at 62.5mg/kg produced higher total number of tomatoes, compared with control and the rest of the treatments. The surface coating reduced Ce uptake by roots but did not affect its translocation to the aboveground organs. In addition, there was no clear effect of surface coating on fruit production. To our knowledge, this is the first study comparing the effects of coated and uncoated nCeO2 on tomato plants. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Induction of pulmonary fibrosis by cerium oxide nanoparticles

    PubMed Central

    Ma, Jane Y.; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Scabilloni, James; Ma, Joseph K.; Castranova, Vincent

    2015-01-01

    Cerium compounds have been used as a diesel engine catalyst to lower the mass of diesel exhaust particles, but are emitted as cerium oxide (CeO2) nanoparticles in the diesel exhaust. In a previous study, we have demonstrated a wide range of CeO2-induced lung responses including sustained pulmonary inflammation and cellular signaling that could lead to pulmonary fibrosis. In this study, we investigated the fibrogenic responses induced by CeO2 in a rat model at various time points up to 84 days post-exposure. Male Sprague Dawley rats were exposed to CeO2 by a single intratracheal instillation. Alveolar macrophages (AM) were isolated by bronchial alveolar lavage (BAL). AM-mediated cellular responses, osteopontin (OPN) and transform growth factor (TGF)-β1 in the fibrotic process were investigated. The results showed that CeO2 exposure significantly increased fibrotic cytokine TGF-β1 and OPN production by AM above controls. The collagen degradation enzymes, matrix metalloproteinase (MMP)-2 and -9 and the tissue inhibitor of MMP were markedly increased in the BAL fluid at 1 day- and subsequently declined at 28 days after exposure, but remained much higher than the controls. CeO2 induced elevated phospholipids in BAL fluid and increased hydroxyproline content in lung tissue in a dose- and time-dependent manner. Immunohistochemical analysis showed MMP-2, MMP-9 and MMP-10 expressions in fibrotic regions. Morphological analysis noted increased collagen fibers in the lungs exposed to a single dose of 3.5 mg/kg CeO2 and euthanized at 28 days post-exposure. Collectively, our studies show that CeO2 induced fibrotic lung injury in rats, suggesting it may cause potential health effects. PMID:22613087

  13. Pits confined in ultrathin cerium(IV) oxide for studying catalytic centers in carbon monoxide oxidation

    NASA Astrophysics Data System (ADS)

    Sun, Yongfu; Liu, Qinghua; Gao, Shan; Cheng, Hao; Lei, Fengcai; Sun, Zhihu; Jiang, Yong; Su, Haibin; Wei, Shiqiang; Xie, Yi

    2013-11-01

    Finding ideal material models for studying the role of catalytic active sites remains a great challenge. Here we propose pits confined in an atomically thin sheet as a platform to evaluate carbon monoxide catalytic oxidation at various sites. The artificial three-atomic-layer thin cerium(IV) oxide sheet with approximately 20% pits occupancy possesses abundant pit-surrounding cerium sites having average coordination numbers of 4.6 as revealed by X-ray absorption spectroscopy. Density-functional calculations disclose that the four- and five-fold coordinated pit-surrounding cerium sites assume their respective role in carbon monoxide adsorption and oxygen activation, which lowers the activation barrier and avoids catalytic poisoning. Moreover, the presence of coordination-unsaturated cerium sites increases the carrier density and facilitates carbon monoxide diffusion along the two-dimensional conducting channels of surface pits. The atomically thin sheet with surface-confined pits exhibits lower apparent activation energy than the bulk material (61.7 versus 122.9 kJ mol-1), leading to reduced conversion temperature and enhanced carbon monoxide catalytic ability.

  14. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    PubMed Central

    Nelson, Bryant C.; Johnson, Monique E.; Walker, Marlon L.; Riley, Kathryn R.; Sims, Christopher M.

    2016-01-01

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine. PMID:27196936

  15. Solar hydrogen production with cerium oxides thermochemical cycle

    NASA Astrophysics Data System (ADS)

    Binotti, Marco; Di Marcoberardino, Gioele; Biassoni, Mauro; Manzolini, Giampaolo

    2017-06-01

    This paper discusses the hydrogen production using a solar driven thermochemical cycle. The thermochemical cycle is based on nonstoichiometric cerium oxides redox and the solar concentration system is a solar dish. Detailed optical and redox models were developed to optimize the hydrogen production performance as function of several design parameters (i.e. concentration ratio, reactor pressures and temperatures) The efficiency of the considered technology is compared against two commercially available technologies namely PV + electrolyzer and Dish Stirling + electrolyzer. Results show that solar-to-fuel efficiency of 21.2% can be achieved at design condition assuming a concentration ratio around 5000, reduction and oxidation temperatures of 1500°C and 1275 °C. When moving to annual performance, the annual yield of the considered approach can be as high as 16.7% which is about 43% higher than the best competitive technology. The higher performance implies that higher installation costs around 40% can be accepted for the innovative concept to achieve the same cost of hydrogen.

  16. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine.

    PubMed

    Nelson, Bryant C; Johnson, Monique E; Walker, Marlon L; Riley, Kathryn R; Sims, Christopher M

    2016-05-17

    Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs) have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1) To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS) and to act as antioxidant enzyme-like mimetics in solution; (2) To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3) To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

  17. Contraction, cation oxidation state and size effects in cerium oxide nanoparticles.

    PubMed

    Pelli Cresi, Jacopo Stefano; Spadaro, Maria Chiara; D'Addato, Sergio; Valeri, Sergio; Amidani, Lucia; Boscherini, Federico; Bertoni, Giovanni; Deiana, Davide; Luches, Paola

    2017-10-10

    An accurate description of the structural and chemical modifications of cerium oxide nanoparticles is mandatory for understanding their functionality in the applications. In this work we investigate the relation between local atomic structure, oxidation state, defectivity and size in cerium oxide nanoparticles with variable diameter below 10 nm, using X-ray absorption fine structure analysis in the near and extended energy range. The nanoparticles are prepared by physical methods under controlled conditions by physical methods and analyzed in morphology and crystalline quality by high resolution transmission electron microscopy. We resolve here an important question on the local structure of cerium oxide nanoparticles: we demonstrate a progressive contraction in the Ce-O interatomic distance with decreasing nanoparticle diameter and we relate the observed effect to the reduced dimensionality. The contraction is not significantly modified by inducing a 4-6% higher Ce3+ concentration through thermal annealing in high vacuum. The consequences of the observed average cation-anion distance contraction on the properties of the nanoparticles are discussed. © 2017 IOP Publishing Ltd.

  18. Growth and composition of nanostructured and nanoporous cerium oxide thin films on a graphite foil.

    PubMed

    Lavkova, Jaroslava; Khalakhan, Ivan; Chundak, Mykhailo; Vorokhta, Mykhailo; Potin, Valerie; Matolin, Vladimir; Matolinova, Iva

    2015-03-07

    The morphology and composition of CeOx films prepared by r.f. magnetron sputtering on a graphite foil have been investigated mainly by using microscopy methods. This study presents the formation of nanocrystalline layers with porous structure due to the modification of a carbon support and the formation of cerium carbide crystallites as a result of the deposition process. Chemical analyses of the layers with different thicknesses performed by energy dispersive X-ray spectroscopy, electron energy loss spectroscopy and X-ray photoelectron spectroscopy have pointed to the reduction of the cerium oxide layers. In the deposited layers, cerium was present in mixed Ce(3+) and Ce(4+) valence. Ce(3+) species were located mainly at the graphite foil-CeOx interface and the chemical state of cerium was gradually changing to Ce(4+) going to the layer surface. It became more stoichiometric in the case of thicker layers except for the surface region, where the presence of Ce(3+) was associated with oxygen vacancies on the surface of cerium oxide grains. The degree of cerium oxide reduction is discussed in the context of particle size.

  19. Samarium Doped Cerium Oxide Clusters: a Study on the Modulation of Electronic Structure

    NASA Astrophysics Data System (ADS)

    Topolski, Josey E.; Kafader, Jared O.; Marrero-Colon, Vicmarie; Chick Jarrold, Caroline

    2017-06-01

    Cerium oxide is known for its use in solid oxide fuel cells due to its high ionic conductivity. The doping of trivalent samarium atoms into cerium oxide is known to enhance the ionic conductivity through the generation of additional oxygen vacancies. This study probes the electronic structure of Sm_{x}Ce_{y}O_{z} (x+y=3, z=2-4) anion and neutral clusters. Anion photoelectron spectra of these mixed metal clusters exhibit additional spectral features not present in the previously studied cerium oxide clusters. Density functional theory calculations have been used to aid interpretation of collected spectra. The results of this work can be used to inform the design of materials used for solid oxide fuel cells.

  20. Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating.

    PubMed

    Lee, Seung Soo; Song, Wensi; Cho, Minjung; Puppala, Hema L; Nguyen, Phuc; Zhu, Huiguang; Segatori, Laura; Colvin, Vicki L

    2013-11-26

    This work examines the effect of nanocrystal diameter and surface coating on the reactivity of cerium oxide nanocrystals with H2O2 both in chemical solutions and in cells. Monodisperse nanocrystals were formed in organic solvents from the decomposition of cerium precursors, and subsequently phase transferred into water using amphiphiles as nanoparticle coatings. Quantitative analysis of the antioxidant capacity of CeO2-x using gas chromatography and a luminol test revealed that 2 mol of H2O2 reacted with every mole of cerium(III), suggesting that the reaction proceeds via a Fenton-type mechanism. Smaller diameter nanocrystals containing more cerium(III) were found to be more reactive toward H2O2. Additionally, the presence of a surface coating did not preclude the reaction between the nanocrystal surface cerium(III) and hydrogen peroxide. Taken together, the most reactive nanoparticles were the smallest (e.g., 3.8 nm diameter) with the thinnest surface coating (e.g., oleic acid). Moreover, a benchmark test of their antioxidant capacity revealed these materials were 9 times more reactive than commercial antioxidants such as Trolox. A unique feature of these antioxidant nanocrystals is that they can be applied multiple times: over weeks, cerium(IV) rich particles slowly return to their starting cerium(III) content. In nearly all cases, the particles remain colloidally stable (e.g., nonaggregated) and could be applied multiple times as antioxidants. These chemical properties were also observed in cell culture, where the materials were able to reduce oxidative stress in human dermal fibroblasts exposed to H2O2 with efficiency comparable to their solution phase reactivity. These data suggest that organic coatings on cerium oxide nanocrystals do not limit the antioxidant behavior of the nanocrystals, and that their redox cycling behavior can be preserved even when stabilized.

  1. Cerium oxide nanoparticles inhibit differentiation of neural stem cells.

    PubMed

    Gliga, Anda R; Edoff, Karin; Caputo, Fanny; Källman, Thomas; Blom, Hans; Karlsson, Hanna L; Ghibelli, Lina; Traversa, Enrico; Ceccatelli, Sandra; Fadeel, Bengt

    2017-08-24

    Cerium oxide nanoparticles (nanoceria) display antioxidant properties and have shown cytoprotective effects both in vitro and in vivo. Here, we explored the effects of nanoceria on neural progenitor cells using the C17.2 murine cell line as a model. First, we assessed the effects of nanoceria versus samarium (Sm) doped nanoceria on cell viability in the presence of the prooxidant, DMNQ. Both particles were taken up by cells and nanoceria, but not Sm-doped nanoceria, elicited a temporary cytoprotective effect upon exposure to DMNQ. Next, we employed RNA sequencing to explore the transcriptional responses induced by nanoceria or Sm-doped nanoceria during neuronal differentiation. Detailed computational analyses showed that nanoceria altered pathways and networks relevant for neuronal development, leading us to hypothesize that nanoceria inhibits neuronal differentiation, and that nanoceria and Sm-doped nanoceria both interfere with cytoskeletal organization. We confirmed that nanoceria reduced neuron specific β3-tubulin expression, a marker of neuronal differentiation, and GFAP, a neuroglial marker. Furthermore, using super-resolution microscopy approaches, we could show that both particles interfered with cytoskeletal organization and altered the structure of neural growth cones. Taken together, these results reveal that nanoceria may impact on neuronal differentiation, suggesting that nanoceria could pose a developmental neurotoxicity hazard.

  2. Catalytic Properties and Biomedical Applications of Cerium Oxide Nanoparticles

    PubMed Central

    Walkey, Carl; Das, Soumen; Seal, Sudipta; Erlichman, Joseph; Heckman, Karin; Ghibelli, Lina; Traversa, Enrico; McGinnis, James F.; Self, William T.

    2014-01-01

    Cerium oxide nanoparticles (Nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of Nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of Nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of Nanoceria in animal studies? 2) What are the considerations to develop Nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials? PMID:26207185

  3. Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles.

    PubMed

    Lord, Megan S; Tsoi, Bonny; Gunawan, Cindy; Teoh, Wey Yang; Amal, Rose; Whitelock, John M

    2013-11-01

    Cerium oxide nanoparticles (nanoceria) are widely reported to be non-cytotoxic and modulate intracellular reactive oxygen species (ROS). In this study, nanoceria (dxRD = 12 nm) were functionalised with either 130 or 880 molecules of unfractionated heparin using the organosilane linker, 3-aminopropyltriethoxysilane. Nanoceria with a low level of heparin functionalisation were found to scavenge intracellular ROS to the same extent as unfunctionalised nanoceria and significantly more than cells exposed to medium only. In contrast, nanoceria with the highest level of heparin functionalisation were not as effective at scavenging intracellular ROS. Nanoceria were localised predominantly in the cytoplasm, while heparin-nanoceria were localised in both the cytoplasm and lysosomes. Together these data demonstrated that the level of nanoceria surface functionalisation with heparin determined the intracellular localisation and ROS scavenging ability of these particles. Additionally, heparin-nanoceria were effective in reducing endothelial cell proliferation indicating that they may find application in the control of angiogenesis in cancer in the future.

  4. Diffuse vacuum arc with cerium oxide hot cathode

    NASA Astrophysics Data System (ADS)

    Amirov, R. Kh; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.; Ivanov, A. S.

    2016-11-01

    Diffuse vacuum arc with hot cathode is one of the perspective plasma sources for the development of spent nuclear fuel plasma reprocessing technology. Experimental data is known for such type of discharges on metal cathodes. In this work discharge with cerium dioxide hot cathode was studied. Cerium dioxide properties are similar to uranium dioxide. Its feature as dielectric is that it becomes conductive in oxygen-free atmosphere. Vacuum arc was studied at following parameters: cathode temperatures were between 2.0 and 2.2 kK, discharge currents was between 30 and 65 A and voltages was in range from 15 to 25 V. Power flows from plasma to cathode were estimated in achieved regimes. Analysis of generated plasma component composition was made by radiation spectrum diagnostics. These results were compared with calculations of equilibrium gaseous phase above solid sample of cerium dioxide in close to experimental conditions. Cerium dioxide vacuum evaporation rate and evaporation rate in arc were measured.

  5. Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide

    SciTech Connect

    Mullins, David R; Albrecht, Peter M; Calaza, Florencia C

    2013-01-01

    Cerium oxide is a principal component in many heterogeneous catalytic processes. One of its key characteristics is the ability to provide or remove oxygen in chemical reactions. The different crystallographic faces of ceria present significantly different surface structures and compositions that may alter the catalytic reactivity. The structure and composition determine the number of coordination vacancies surrounding surface atoms, the availability of adsorption sites, the spacing between adsorption sites and the ability to remove O from the surface. To investigate the role of surface orientation on reactivity, CeO2 films were grown with two different orientations. CeO2(100) films were grown ex situ by pulsed laser deposition on Nb-doped SrTiO3(100). CeO2(111) films were grown in situ by thermal deposition of Ce metal onto Ru(0001) in an oxygen atmosphere. The chemical reactivity was characterized by the adsorption and decomposition of various molecules such as alcohols, aldehydes and organic acids. In general the CeO2(100) surface was found to be more active, i.e. molecules adsorbed more readily and reacted to form new products, especially on a fully oxidized substrate. However the CeO2(100) surface was less selective with a greater propensity to produce CO, CO2 and water as products. The differences in chemical reactivity are discussed in light of possible structural terminations of the two surfaces. Recently nanocubes and nano-octahedra have been synthesized that display CeO2(100) and CeO2(111) faces, respectively. These nanoparticles enable us to correlate reactions on high surface area model catalysts at atmospheric pressure with model single crystal films in a UHV environment.

  6. Nutritional quality assessment of tomato fruits after exposure to uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate and citric acid.

    PubMed

    Barrios, Ana Cecilia; Medina-Velo, Illya A; Zuverza-Mena, Nubia; Dominguez, Osvaldo E; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2017-01-01

    Little is known about the effects of surface modification on the interaction of nanoparticles (NPs) with plants. Tomato (Solanum lycopersicum L.) plants were cultivated in potting soil amended with bare and citric acid coated nanoceria (nCeO2, nCeO2+CA), cerium acetate (CeAc), bulk cerium oxide (bCeO2) and citric acid (CA) at 0-500 mg kg(-1). Fruits were collected year-round until the harvesting time (210 days). Results showed that nCeO2+CA at 62.5, 250 and 500 mg kg(-1) reduced dry weight by 54, 57, and 64% and total sugar by 84, 78, and 81%. At 62.5, 125, and 500 mg kg(-1) nCeO2+CA decreased reducing sugar by 63, 75, and 52%, respectively and at 125 mg kg(-1) reduced starch by 78%, compared to control. The bCeO2 at 250 and 500 mg kg(-1), increased reducing sugar by 67 and 58%. In addition, when compared to controls, nCeO2 at 500 mg kg(-1) reduced B (28%), Fe (78%), Mn (33%), and Ca (59%). At 125 mg kg(-1) decreased Al by 24%; while nCeO2+CA at 125 and 500 mg kg(-1) increased B by 33%. On the other hand, bCeO2 at 62.5 mg kg(-1) increased Ca (267%), but at 250 mg kg(-1) reduced Cu (52%), Mn (33%), and Mg (58%). Fruit macromolecules were mainly affected by nCeO2+CA, while nutritional elements by nCeO2; however, all Ce treatments altered, in some way, the nutritional quality of tomato fruit. To our knowledge, this is the first study comparing effects of uncoated and coated nanoceria on tomato fruit quality. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Trujillo-Reyes, Jesica; Sun, Youping; Barrios, Ana C; Niu, Genhua; Margez, Juan P Flores-; Gardea-Torresdey, Jorge L

    2016-11-01

    Soil organic matter plays a major role in determining the fate of the engineered nanomaterials (ENMs) in the soil matrix and effects on the residing plants. In this study, kidney bean plants were grown in soils varying in organic matter content and amended with 0-500mg/kg cerium oxide nanoparticles (nano-CeO2) under greenhouse condition. After 52days of exposure, cerium accumulation in tissues, plant growth and physiological parameters including photosynthetic pigments (chlorophylls and carotenoids), net photosynthesis rate, transpiration rate, and stomatal conductance were recorded. Additionally, catalase and ascorbate peroxidase activities were measured to evaluate oxidative stress in the tissues. The translocation factor of cerium in the nano-CeO2 exposed plants grown in organic matter enriched soil (OMES) was twice as the plants grown in low organic matter soil (LOMS). Although the leaf cover area increased by 65-111% with increasing nano-CeO2 concentration in LOMS, the effect on the physiological processes were inconsequential. In OMES leaves, exposure to 62.5-250mg/kg nano-CeO2 led to an enhancement in the transpiration rate and stomatal conductance, but to a simultaneous decrease in carotenoid contents by 25-28%. Chlorophyll a in the OMES leaves also decreased by 27 and 18% on exposure to 125 and 250mg/kg nano-CeO2. In addition, catalase activity increased in LOMS stems, and ascorbate peroxidase increased in OMES leaves of nano-CeO2 exposed plants, with respect to control. Thus, this study provides clear evidence that the properties of the complex soil matrix play decisive roles in determining the fate, bioavailability, and biological transport of ENMs in the environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Electrooxidation of nitrite on a silica-cerium mixed oxide carbon paste electrode.

    PubMed

    Silveira, Gustavo; de Morais, Andréia; Villis, Paulo César Mendes; Maroneze, Camila Marchetti; Gushikem, Yoshitaka; Lucho, Alzira Maria Serpa; Pissetti, Fábio Luiz

    2012-03-01

    A silica-cerium mixed oxide (SiCe) was prepared by the sol-gel process, using tetraethylorthosilicate and cerium nitrate as precursors and obtained as an amorphous solid possessing a specific surface area of 459 m(2) g(-1). Infrared spectroscopy of the SiCe material showed the formation of the Si-O-Ce linkage in the mixed oxide. Scanning electron microscopy/energy dispersive spectroscopy indicated that the cerium oxide particles were homogenously dispersed on the matrix surface. X-ray diffraction and (29)Si solid-state nuclear magnetic resonance implied non-crystalline silica matrices with chemical environments that are typical for silica-based mixed oxides. X-ray photoelectron spectroscopy showed that Ce was present in approximately equal amounts of both the 3+ and 4+ oxidation states. Cyclic voltammetry data of electrode prepared from the silica-cerium mixed oxide showed a peak for oxidation of Ce(3+)/Ce(4+) at 0.76 V and electrochemical impedance spectroscopy equivalent circuit indicated a porous structure with low charge transfer resistance. In the presence of nitrite, the SiCe electrode shows an anodic oxidation peak at 0.76 V with a linear response as the concentration of the analyte increases from 3×10(-5) at 3.9×10(-3) mol L(-1).

  9. Mesoporous cerium oxide nanospheres for the visible-light driven photocatalytic degradation of dyes

    PubMed Central

    Chen, Shi; Ng, Chin Fan; Huan, Cheng Hon Alfred

    2014-01-01

    Summary A facile, solvothermal synthesis of mesoporous cerium oxide nanospheres is reported for the purpose of the photocatalytic degradation of organic dyes and future applications in sustainable energy research. The earth-abundant, relatively affordable, mixed valence cerium oxide sample, which consists of predominantly Ce7O12, has been characterized by powder X-ray diffraction, X-ray photoelectron and UV–vis spectroscopy, and transmission electron microscopy. Together with N2 sorption experiments, the data confirms that the new cerium oxide material is mesoporous and absorbs visible light. The photocatalytic degradation of rhodamin B is investigated with a series of radical scavengers, suggesting that the mechanism of photocatalytic activity under visible-light irradiation involves predominantly hydroxyl radicals as the active species. PMID:24991486

  10. THERMAL EFFECTS ON MASS AND SPATIAL RESOLUTION DURING LASER PULSE ATOM PROBE TOMOGRAPHY OF CERIUM OXIDE

    SciTech Connect

    Rita Kirchhofer; Melissa C. Teague; Brian P. Gorman

    2013-05-01

    Cerium oxide (CeO2) is an ideal surrogate material for trans-uranic elements and fission products found in nuclear fuels due to similarities in their thermal properties; therefore, cerium oxide was used to determine the best run condition for atom probe tomography (APT). Laser pulse APT is a technique that allows for spatial resolution in the nm scale and isotopic/elemental chemical identification. A systematic study of the impact of laser pulse energy and specimen base temperature on the mass resolution, measurement of stoichiometry, multiples, and evaporation mechanisms are reported in this paper. It was demonstrated that using laser pulse APT stoichiometric field evaporation of cerium oxide was achieved at 1 pJ laser pulse energy and 20 K specimen base temperature.

  11. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles

    SciTech Connect

    Kockrick, Emanuel; Schrage, Christian; Grigas, Anett; Geiger, Dorin; Kaskel, Stefan

    2008-07-15

    The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated. Cerium hydroxide nanoparticles were synthesized by adding diluted ammonia to n-heptane-surfactant-cerium nitrate system. The micelle and particle size in the range of 5-12 nm were controlled by varying the molar water to surfactant ratio and analyzed by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM). Cerium hydroxide nanoparticles were isolated and subsequently treated at 100-600 deg. C to obtain nanoscale ceria. Crystallite sizes of cerium dioxide in the range of 6-16 nm were estimated by Scherrer analysis by X-ray diffraction (XRD) and HRTEM. The catalytic activity of particles annealed at 400 and 600 deg. C in soot combustion reactions was characterized by temperature-programmed oxidation (TPO) indicating a size-dependant activity. Crystallite sizes and catalytic stability of elevated ceria systems were tested in second combustion cycles. - Graphical abstract: The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated using small angle X-ray scattering, dynamic light scattering and high-resolution transmission electron microscopy. Catalytic activity of ceria nanoparticles was tested in soot combustion reaction indicating size-dependent reactivity.

  12. Effects of Cerium Oxide Nanoparticles on Sorghum Plant Traits

    NASA Astrophysics Data System (ADS)

    Mu, L.; Chen, Y.; Darnault, C. J. G.; Rauh, B.; Kresovich, S.; Korte, C.

    2015-12-01

    Nanotechnology and nanomaterials are considered as the development of the modern science. However, besides with that wide application, nanoparticles arouse to the side effects on the environment and human health. As the catalyst of ceramics and fuel industry, Cerium (IV) oxide nanoparticles (CeO2 NPs) can be found in the environment following their use and life-cycle. Therefore, it is critical to assess the potential effects that CeO2 NPs found in soils may have on plants. In this study, CeO2 NPs were analyzed for the potential influence on the sorghum [Sorghum bicolor (L.) Moench] (Reg. no. 126) (PI 154844) growth and traits. The objectives of this research were to determine whether CeO2 NPs impact the sorghum germination and growth characteristics. The sorghum was grown in the greenhouse located at Biosystems Research Complex, Clemson University under different CeO2 NPs treatments (0mg; 100mg; 500mg; 1000mg CeO2 NPs/Kg soil) and harvested around each month. At the end of the each growing period, above ground vegetative tissue was air-dried, ground to 2mm particle size and compositional traits estimated using near-infrared spectroscopy. Also, the NPK value of the sorghum tissue was tested by Clemson Agriculture Center. After the first harvest, the result showed that the height of above ground biomass under the nanoparticles stress was higher than that of control group. This difference between the control and the nanoparticles treatments was significant (F>F0.05; LSD). Our results also indicated that some of the compositional traits were impacted by the different treatments, including the presence and/or concentrations of the nanoparticles.

  13. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction.

    PubMed

    Asano, Shinichi; Arvapalli, Ravikumar; Manne, Nandini D P K; Maheshwari, Mani; Ma, Bing; Rice, Kevin M; Selvaraj, Vellaisamy; Blough, Eric R

    2015-01-01

    The severe inflammation observed during sepsis is thought to cause diaphragm dysfunction, which is associated with poor patient prognosis. Cerium oxide (CeO2) nanoparticles have been posited to exhibit anti-inflammatory and antioxidative activities suggesting that these particles may be of potential use for the treatment of inflammatory disorders. To investigate this possibility, Sprague Dawley rats were randomly assigned to the following groups: sham control, CeO2 nanoparticle treatment only (0.5 mg/kg iv), sepsis, and sepsis+CeO2 nanoparticles. Sepsis was induced by the introduction of cecal material (600 mg/kg) directly into the peritoneal cavity. Nanoparticle treatment decreased sepsis-associated impairments in diaphragmatic contractile (P(o)) function (sham: 25.6±1.6 N/cm(2) vs CeO2: 23.4±0.8 N/cm(2) vs Sep: 15.9±1.0 N/cm(2) vs Sep+CeO2: 20.0±1.0 N/cm(2), P<0.05). These improvements in diaphragm contractile function were accompanied by a normalization of protein translation signaling (Akt, FOXO-1, and 4EBP1), diminished proteolysis (caspase 8 and ubiquitin levels), and decreased inflammatory signaling (Stat3 and iNOS). Histological analysis suggested that nanoparticle treatment was associated with diminished sarcolemma damage and diminished inflammatory cell infiltration. These data indicate CeO2 nanoparticles may improve diaphragmatic function in the septic laboratory rat.

  14. Cerium Oxide Nanoparticles and Bulk Cerium Oxide Leading to Different Physiological and Biochemical Responses in Brassica rapa.

    PubMed

    Ma, Xingmao; Wang, Qiang; Rossi, Lorenzo; Zhang, Weilan

    2016-07-05

    Cerium oxide nanoparticles (CeO2NPs) have been incorporated into many commercial products, and their potential release into the environment through the use and disposal of these products has caused serious concerns. Despite the previous efforts and rapid progress on elucidating the environmental impact of CeO2NPs, the long-term impact of CeO2NPs to plants, a key component of the ecosystem, is still not well understood. The potentially different impact of CeO2NPs and their bulk counterparts to plants is also unclear. The main objectives of this study were (1) to investigate whether continued irrigation with solutions containing different concentrations of CeO2NPs (0, 10, and 100 mg/L) would induce physiological and biochemical adjustments in Brassica rapa in soil growing conditions and (2) to determine whether CeO2NPs and bulk CeO2 particles exert different impacts on plants. The results indicated that bulk CeO2 at 10 and 100 mg/L enhanced plant biomass by 28% and 35%, respectively, while CeO2NPs at equivalent concentrations did not. While the bulk CeO2 treatment resulted in significantly higher concentrations of hydrogen peroxide (H2O2) in plant tissues at the vegetative stage, CeO2NPs led to significantly higher H2O2 levels in plant tissues at the floral stage. The activity of superoxide dismutase (SOD) in Brassica rapa also displayed a growth-stage dependent response to different sizes of CeO2 while catalase (CAT) activity was not affected by either size of CeO2 throughout the life cycle of Brassica rapa. Altogether, the results demonstrated that plant responses to CeO2 exposure varied with the particle sizes and the growth stages of plants.

  15. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    EPA Science Inventory

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  16. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants

    EPA Science Inventory

    The effects of exposure to two nanoparticles (NPs) -titanium dioxide (nano-titania) and cerium oxide (nano-ceria) at 500 mg NPs L-1 on gene expression and growth in Arabidopsis thaliana germinants were studied using microarrays and phenotype studies. After 12 days post treatment,...

  17. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure

    EPA Science Inventory

    The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds f...

  18. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure

    EPA Science Inventory

    The intergenerational impact of engineered nanomaterials in plants is a key knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO2-NPs). Seeds f...

  19. Cerium oxide nanoparticles inhibit lipopolysaccharide induced MAP kinase/NF-kB mediated severe sepsis.

    PubMed

    Selvaraj, Vellaisamy; Nepal, Niraj; Rogers, Steven; Manne, Nandini D P K; Arvapalli, Ravikumar; Rice, Kevin M; Asano, Shinichi; Fankenhanel, Erin; Ma, J Y; Shokuhfar, Tolou; Maheshwari, Mani; Blough, Eric R

    2015-09-01

    The life threatening disease of sepsis is associated with high mortality. Septic patient survivability with currently available treatments has failed to improve. The purpose of this study was to evaluate whether lipopolysaccharide (LPS) induced sepsis mortality and associated hepatic dysfunction can be prevented by cerium oxide nanoparticles (CeO2NPs) treatment in male Sprague Dawley rats. Here we provide the information about the methods processing of raw data related to our study published in Biomaterials (Selvaraj et al., Biomaterials, 2015, In press) and Data in Brief (Selvaraj et al., Data in Brief, 2015, In Press). The data present here provides confirmation of cerium oxide nanoparticle treatments ability to prevent the LPS induced sepsis associated changes in physiological, blood cell count, inflammatory protein and growth factors in vivo. In vitro assays investigation the treated of macrophages cells with different concentrations of cerium oxide nanoparticle demonstrate that concentration of cerium oxide nanoparticles below 1 µg/ml did not significantly influence cell survival as determined by the MTT assay.

  20. Pre-eminence of the Indirect Channel in the Resonant Inverse Photoelectron Spectroscopy of Cerium Oxide

    SciTech Connect

    Tobin, J. G.; Yu, S. -W.; Chung, B. W.; Waddill, G. D.

    2012-04-01

    We recently reported a strong resonance in the inverse photoelectron spectroscopy (IPES) of cerium oxide. Here, we showed that dominance of the indirect channel of the resonant inverse photoelectron spectroscopy (RIPES) is so complete that the photon energy dependence can be explained in terms of emission associated with a single photon energy.

  1. Influences of the main anodic electroplating parameters on cerium oxide films

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Yang, Yumeng; Du, Xiaoqing; Chen, Yu; Zhang, Zhao; Zhang, Jianqing

    2014-06-01

    Cerium oxide thin films were fabricated onto 316 L stainless steel via a potentiostatically anodic electrodeposition approach in the solutions containing cerium(III) nitrate (0.05 M), ammonia acetate (0.1 M) and ethanol (10% V/V). The electrochemical behaviors and deposition parameters (applied potential, bath temperature, dissolving O2 and bath pH) have been investigated. Results show that, the electrochemical oxidation of Ce3+ goes through one electrochemical step, which is under charge transfer control. The optimum applied potential for film deposition is 0.8 V. Bath temperature plays a significant effect on the deposition rate, composition (different colors of the film) and surface morphology of the deposits. Due to the hydrolysis of Ce3+, cerous hydroxide is facility to form when the bath temperature is higher than 60 °C. The electroplating bath pH is another key role for the anodic deposition of cerium oxide thin films, and the best bath pH is around 6.20. N2 or O2 purged into the bath will result in film porosities and O2 favors cerium oxide particles and film generation.

  2. Multicolored redox active upconverter cerium oxide nanoparticle for bio-imaging and therapeutics†

    PubMed Central

    Babu, Suresh; Cho, Jung-Hyun; Dowding, Janet M.; Heckert, Eric; Komanski, Chris; Das, Soumen; Colon, Jimmie; Baker, Cheryl H.; Bass, Michael; Self, William T.; Seal, Sudipta

    2011-01-01

    Cytocompatible, co-doped cerium oxide nanoparticles exhibited strong upconversion properties that were found to kill lung cancer cells by inducing apoptosis thereby demonstrating the potential to be used as clinical contrast agents for imaging and as therapeutic agents for treatment of cancer. PMID:20683524

  3. Photocatalytic action of cerium molybdate and iron-titanium oxide hollow nanospheres on Escherichia coli

    NASA Astrophysics Data System (ADS)

    Kartsonakis, I. A.; Kontogiani, P.; Pappas, G. S.; Kordas, G.

    2013-06-01

    This study is focused on the production of hollow nanospheres that reveal antibacterial action. Cerium molybdate and iron-titanium oxide hollow nanospheres with a diameter of 175 ± 15 and 221 ± 10 nm, respectively, were synthesized using emulsion polymerization and the sol-gel process. Their morphology characterization was accomplished using scanning electron microscopy. Their antibacterial action was examined on pure culture of Escherichia coli considering the loss of their viability. Both hollow nanospheres presented photocatalytic action after illumination with blue-black light, but those of cerium molybdate also demonstrated photocatalytic action in the dark. Therefore, the produced nanospheres can be used for antibacterial applications.

  4. Synthesis and catalytic properties of microemulsion-derived cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Kockrick, Emanuel; Schrage, Christian; Grigas, Anett; Geiger, Dorin; Kaskel, Stefan

    2008-07-01

    The synthesis of cerium dioxide nanoparticles using an inverse microemulsion technique and precipitation method was investigated. Cerium hydroxide nanoparticles were synthesized by adding diluted ammonia to n-heptane-surfactant-cerium nitrate system. The micelle and particle size in the range of 5-12 nm were controlled by varying the molar water to surfactant ratio and analyzed by dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM). Cerium hydroxide nanoparticles were isolated and subsequently treated at 100-600 °C to obtain nanoscale ceria. Crystallite sizes of cerium dioxide in the range of 6-16 nm were estimated by Scherrer analysis by X-ray diffraction (XRD) and HRTEM. The catalytic activity of particles annealed at 400 and 600 °C in soot combustion reactions was characterized by temperature-programmed oxidation (TPO) indicating a size-dependant activity. Crystallite sizes and catalytic stability of elevated ceria systems were tested in second combustion cycles.

  5. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms.

    PubMed

    Majumdar, Sanghamitra; Peralta-Videa, Jose R; Bandyopadhyay, Susmita; Castillo-Michel, Hiram; Hernandez-Viezcas, Jose-Angel; Sahi, Shivendra; Gardea-Torresdey, Jorge L

    2014-08-15

    Overwhelming use of engineered nanoparticles demands rapid assessment of their environmental impacts. The transport of cerium oxide nanoparticles (nCeO2) in plants and their impact on cellular homeostasis as a function of exposure duration is not well understood. In this study, kidney bean plants were exposed to suspensions of ∼ 8 ± 1 nm nCeO2 (62.5 to 500 mg/L) for 15 days in hydroponic conditions. Plant parts were analyzed for cerium accumulation after one, seven, and 15 days of nCeO2 exposure. The primary indicators of stress like lipid peroxidation, antioxidant enzyme activities, total soluble protein and chlorophyll contents were studied. Cerium in tissues was localized using scanning electron microscopy and synchrotron μ-XRF mapping, and the chemical forms were identified using μ-XANES. In the root epidermis, cerium was primarily shown to exist as nCeO2, although a small fraction (12%) was biotransformed to Ce(III) compound. Cerium was found to reach the root vascular tissues and translocate to aerial parts with time. Upon prolonged exposure to 500 mg nCeO2/L, the root antioxidant enzyme activities were significantly reduced, simultaneously increasing the root soluble protein by 204%. In addition, leaf's guaiacol peroxidase activity was enhanced with nCeO2 exposure in order to maintain cellular homeostasis.

  6. Reactive removal of 2-chloroethyl ethyl sulfide vapors under visible light irradiation by cerium oxide modified highly porous zirconium (hydr) oxide

    NASA Astrophysics Data System (ADS)

    Mitchell, Joshua K.; Arcibar-Orozco, Javier A.; Bandosz, Teresa J.

    2016-12-01

    Highly porous cerium oxide modified Zr(OH)4 samples were synthesized using a simple one stage urea precipitation method. The amorphicity level of zirconium hydroxide did not change upon addition of cerium oxide particles. A unique aspect of the cerium oxide-modified materials is the presence of both the oxide (CeO2) and hydroxide (Zr(OH)4) phases resulting in a unique microporous structure of the final material. Extensive characterization using various chemical and physical methods revealed significant differences in the surface features. All synthesized materials were microporous and small additions of cerium oxide affected the surface chemistry. These samples were found as effective catalysts for a decontamination of mustard gas surrogate, 2-chloroethyl ethyl sulfide (CEES). Cerium oxide addition significantly decreased the band gap of zirconium hydroxide. Ethyl vinyl sulfide and 1,2-bis (Ethyl thio) ethane were identified as surface reaction products.

  7. Solid Oxide Fuel Cell with Anodes using Proton Conductor (Barium-Cerium/Yttrium Oxide)

    NASA Astrophysics Data System (ADS)

    Yano, Shinichi; Nakamura, Shiko; Hasegawa, Shinichi; Ihara, Manabu; Hanamura, Katsunori

    A new anode with a proton conductor (Barium-Cerium/Yttrium oxide (BCY): BaCe0.8Y0.2O3-δ) was proposed for a high-power, solid-oxide fuel cell. In the new anode, the proton-conducting material was included in a conventional anode made of nickel (Ni) and Gd-doped Ceria (GDC) in the ratio of GDC:BCY=0:100, 50:50, 90:10, 100:0 vol.%. With 3% humidity hydrogen fuel, the overpotential of the BCY anode became smaller compared with that of the conventional Ni/GDC anode. The most striking feature is that the anode with the 10%-BCY has the lowest overpotential among all anodes due to the high oxide-ion conductivity by the 90%-GDC and the reaction enhancement and/or the high hydrogen-adsorption ratio by the 10%-BCY.

  8. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  9. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  10. Effects of cerium oxide supplementation to laying hen diets on performance, egg quality, some antioxidant enzymes in serum and lipid oxidation in egg yolk.

    PubMed

    Bölükbaşı, S C; Al-Sagan, A A; Ürüşan, H; Erhan, M K; Durmuş, O; Kurt, N

    2016-08-01

    This study was conducted to determine the effects of dietary cerium oxide levels (0, 100, 200, 300 or 400 mg/kg) on the laying performance, egg quality, some blood serum parameters and egg lipid peroxidation of laying hen. In total, one hundred and twenty 22-week-old brown Lohman LSL laying hens were randomly assigned to five groups equally (n = 24). Each treatment was replicated six times. Dietary supplementation of cerium oxide had no significant effect on feed intake and egg weight. The addition of cerium oxide to the laying hens' feed improved feed conversion ratio and increased (p < 0.05) egg production. Quality criteria of egg for except shell breaking strength were not affected by supplementing cerium oxide. In particular, supplementation of 200 and 300 mg/kg cerium oxide to the laying hens feed led to a significant (p < 0. 01) increase in egg shell breaking strength. Calcium and phosphorus concentration of serum increased significantly (p < 0.05) with supplementation of 100 mg/kg cerium oxide to laying hen diets. It was also observed that serum superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration decreased significantly with supplementation of cerium oxide in diets. Inclusion of cerium oxide resulted in a significant reduction in thiobarbituric acid reactive substance (TBARS) values in egg yolk in this study. It can be concluded that the addition of cerium oxide had positive effects on egg production, feed conversion ratio and egg shelf life. Based on the results of this study, it could be advised to supplement laying hens feed with cerium oxide as feed additives.

  11. Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets.

    PubMed

    Hosseini, A; Baeeri, M; Rahimifard, M; Navaei-Nigjeh, M; Mohammadirad, A; Pourkhalili, N; Hassani, S; Kamali, M; Abdollahi, M

    2013-05-01

    Type I diabetes mellitus is a metabolic disease caused by the impairment of pancreatic β-cells mainly mediated through oxidative stress and related apoptosis. Islets transplantation seems a promising treatment for these patients, but during islets transplant, various types of stresses related to the isolation and transplantation procedure compromise the function and viability of islets. We recently hypothesized that the combination of cerium oxide (CeO2) and yttrium oxide (Y2O3) nanoparticles with a potential free radical scavenger behavior should be useful to make isolated islets survive until transplanted. In the present study, oxidative stress-induced apoptosis in isolated rat pancreatic islets exposed to hydrogen peroxide (H2O2) and the protective effects of CeO2 and Y2O3 nanoparticles were investigated. Exposure of islets to H2O2 (50 µm, 2 h) increased intracellular oxidant formation such as reactive oxygen species and subsequently apoptosis and decreased viability, glucose-induced adenosine triphosphate (ATP) production and glucose-stimulated insulin secretion. Pretreatment with CeO2 and/or Y2O3 nanoparticles reduced the oxidant formation and apoptosis and increased viability, glucose-induced ATP production and glucose-stimulated insulin secretion. These results suggest that this combination may protect β-cell apoptosis by improving the oxidative stress-mediated apoptotic pathway.

  12. Improvement of isolated rat pancreatic islets function by combination of cerium oxide nanoparticles/sodium selenite through reduction of oxidative stress.

    PubMed

    Pourkhalili, Nazila; Hosseini, Asieh; Nili-Ahmadabadi, Amir; Rahimifard, Mahban; Navaei-Nigjeh, Mona; Hassani, Shokoufeh; Baeeri, Maryam; Abdollahi, Mohammad

    2012-07-01

    Insulin Dependent Diabetes Mellitus (IDDM) is a disease with high incidence with no pure cure therapy yet. In most of cases, these patients need pancreatic islets transplantation that is not completely successful because of oxidative stress happening during isolation and transplantation procedures. In the present study, effective factors in transplantation procedure such as viability, insulin secretion, production of reactive oxygen molecules (ROM), and mitochondrial energy as ATP/ADP ratio were examined in the isolated islets exposed to sodium selenite (Na₂SeO₃; 0 30 nmol/L), metal form of cerium oxide (100 nm), cerium oxide nanoparticles (100 nm) and combination of Na₂SeO₃ (30 nmol/L)/cerium oxide nanoparticles (100 nm) in a time course (1, 2, 4 and 6 days posttreatment) manner. The results showed a significant increase of cells viability, secretion of insulin, and ATP/ADP ratio and a reduction in ROM by use of sodium selenite, cerium oxide nanoparticles, and especially combination of cerium oxide nanoparticles/sodium selenite. Interestingly, not only no improvement was found with metal form of cerium oxide but also deterioration occurred in tested markers. Results suggest that pretreatment with combination of cerium oxide nanoparticles/sodium selenite can improve transplantation outcome and graft function by control of oxidative stress damage.

  13. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    PubMed Central

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Mary K.; Tyliszczak, Tolek; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-01-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells. PMID:26056725

  14. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles.

    PubMed

    Szymanski, Craig J; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Mary K; Tyliszczak, Tolek; Thevuthasan, Suntharampillai; Baer, Donald R; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce(3+)/Ce(4+) ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce(3+)/Ce(4+) ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of the cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    SciTech Connect

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  16. Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles.

    PubMed

    Kuchma, Melissa Hirsch; Komanski, Christopher B; Colon, Jimmie; Teblum, Andrew; Masunov, Artëm E; Alvarado, Beatrice; Babu, Suresh; Seal, Sudipta; Summy, Justin; Baker, Cheryl H

    2010-12-01

    In an effort to characterize the interaction of cerium oxide nanoparticles (CNPs) in biological systems, we explored the reactivity of CNPs with the phosphate ester bonds of p-nitrophenylphosphate (pNPP), ATP, o-phospho-l-tyrosine, and DNA. The activity of the bond cleavage for pNPP at pH 7 is calculated to be 0.860 ± 0.010 nmol p-nitrophenol/min/μg CNPs. Interestingly, when CNPs bind to plasmid DNA, no cleavage products are detected. While cerium(IV) complexes generally exhibit the ability to break phosphorus-oxygen bonds, the reactions we report appear to be dependent on the availability of cerium(III) sites, not cerium(IV) sites. We investigated the dephosphorylation mechanism from the first principles and find the reaction proceeds through inversion of the phosphate group similar to an S(N)2 mechanism. The ability of CNPs to interact with phosphate ester bonds of biologically relevant molecules has important implications for their use as potential therapeutics.

  17. Aqueous Co-precipitation of Pd-doped Cerium Oxide Nanoparticles: Chemistry Structure and Particle Growth

    SciTech Connect

    Liang H.; Zhang L.; Raitano J.M.; He G.; Akey A.J.; Herman I.P.; Chan S.-W.

    2012-01-01

    Nanoparticles of palladium-doped cerium oxide (Pd-CeO{sub 2}) have been prepared by aqueous co-precipitation resulting in a single phase cubic structure after calcination according to X-ray diffraction (XRD). Inhomogeneous strain, calculated using the Williamson-Hall method, was found to increase with palladium content, and the lattice contracts slightly, relative to nano-cerium oxide, as palladium content is increased. Moreover, high resolution transmission electron microscopy reveals some instances of defective microstructure. These factors combined imply that palladium is in solid solution with CeO{sub 2} in these nanoparticles, but palladium (II) oxide (PdO) peaks in the Raman spectra indicate that solid solution formation is partial and that highly dispersed PdO is present as well as the solid solution. Nevertheless, the addition of palladium to the CeO{sub 2} lattice inhibits the growth of the 6% Pd-CeO{sub 2} particles compared to pure CeO{sub 2} between 600 and 850 C. Activation energies for grain growth of 54 {+-} 7 and 79 {+-} 8 kJ/mol were determined for 6% Pd-CeO{sub 2} and pure CeO{sub 2}, respectively, along with pre-exponential Arrhenius factors of 10 for the doped sample and 600 for pure cerium oxide.

  18. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina

    PubMed Central

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and “hot spot” extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes. PMID:26469804

  19. Synthesis, physico-chemical characterization, and antioxidant effect of PEGylated cerium oxide nanoparticles.

    PubMed

    Xue, Yingfei; Balmuri, Sricharani Rao; Patel, Akhil; Sant, Vinayak; Sant, Shilpa

    2017-06-06

    Cerium oxide nanoparticles (CNPs) represent a promising class of antioxidant nanoparticles with potential therapeutic value. Due to the easily reversible oxidation states of cerium (Ce(3+) and Ce(4+)) at the nanoscale, CNPs scavenge excessive reactive oxygen and nitrogen species in a self-regenerative manner. In this study, we have demonstrated a simple method to functionalize shape-specific CNPs (i.e., rod- and cube-shaped) with polyethylene glycol (PEG) and studied the effect of PEGylation on the physico-chemical properties, antioxidant activity, and biocompatibility of rod- and cube-shaped CNPs. The chemical conjugation of PEG onto the CNP surface was confirmed by a series of physico-chemical characterizations ((1)H-NMR, FTIR, and surface zeta potential). Rod-shaped CNPs demonstrated greater reactive oxygen species scavenging ability compared to cube-shaped CNPs. PEGylation of CNPs did not affect shape, cerium oxidation state, and cytocompatibility. Importantly, PEGylation significantly reduced the amount of proteins adsorbed onto the CNPs. The antioxidant effects of CNPs were maintained in PEGylated CNPs. We envision that PEGylated rod-shaped CNPs synthesized in this study have the potential to be biocompatible nanoparticles that can combat oxidative stress-related diseases.

  20. Cerium Oxide Nanoparticles Reduce Microglial Activation and Neurodegenerative Events in Light Damaged Retina.

    PubMed

    Fiorani, Lavinia; Passacantando, Maurizio; Santucci, Sandro; Di Marco, Stefano; Bisti, Silvia; Maccarone, Rita

    2015-01-01

    The first target of any therapy for retinal neurodegeneration is to slow down the progression of the disease and to maintain visual function. Cerium oxide or ceria nanoparticles reduce oxidative stress, which is known to play a pivotal role in neurodegeneration. Our aim was to investigate whether cerium oxide nanoparticles were able to mitigate neurodegeneration including microglial activation and related inflammatory processes induced by exposure to high intensity light. Cerium oxide nanoparticles were injected intravitreally or intraveinously in albino Sprague-Dawley rats three weeks before exposing them to light damage of 1000 lux for 24 h. Electroretinographic recordings were performed a week after light damage. The progression of retinal degeneration was evaluated by measuring outer nuclear layer thickness and TUNEL staining to quantify photoreceptors death. Immunohistochemical analysis was used to evaluate retinal stress, neuroinflammatory cytokines and microglial activation. Only intravitreally injected ceria nanoparticles were detected at the level of photoreceptor outer segments 3 weeks after the light damage and electoretinographic recordings showed that ceria nanoparticles maintained visual response. Moreover, this treatment reduced neuronal death and "hot spot" extension preserving the outer nuclear layer morphology. It is noteworthy that in this work we demonstrated, for the first time, the ability of ceria nanoparticles to reduce microglial activation and their migration toward outer nuclear layer. All these evidences support ceria nanoparticles as a powerful therapeutic agent in retinal neurodegenerative processes.

  1. Crystallization kinetics of cerium oxide nanoparticles formed by spontaneous, room-temperature hydrolysis of cerium(iv) ammonium nitrate in light and heavy water.

    PubMed

    Pettinger, Natasha W; Williams, Robert E A; Chen, Jinquan; Kohler, Bern

    2017-02-01

    A stable sol of cerium oxide nanoparticles forms spontaneously when cerium(iv) ammonium nitrate (CAN) is dissolved in room-temperature water at mM concentrations. Electron microscopy experiments reveal the formation of highly crystalline cerium oxide particles several nm in diameter and suggest that they are formed from amorphous particles that are similar in size. Under the low pH conditions of the experiments, the nanoparticles form a stable dispersion and show no evidence of aggregation, even many months after synthesis. The absence of particles large enough to scatter light significantly makes it possible to observe the crystallization kinetics through dramatic changes in the UV-visible absorption spectra that occur during solution aging. Measurements show that the cerium oxide nanocrystals are formed roughly an order of magnitude more slowly in D2O than in H2O solution. This large solvent kinetic isotope effect (kH/kD ∼ 10), which is reported here for the first time for the crystallization of a solid metal oxide phase, indicates a rate-determining proton transfer reaction, which is assigned to the conversion of hydroxy to oxo bridges. In D2O solution, the absorption per mole of cerium ions increases by over 400% at 290 nm as the weakly absorbing precursor phase is transformed into nanocrystalline cerium oxide. An isosbestic point is detected at 368 nm, and the absorption spectra can be modeled throughout aging by the sum of spectra of just two interconverting species. Preliminary ultrafast transient absorption experiments confirm that the optical properties of the amorphous precursors differ greatly from those of the final, nanocrystalline phase. Crystallization of CeO2 from CAN in water has much in common with the crystallization of iron oxides from iron(iii) salts, including the importance of non-classical nucleation and growth pathways. It is an outstanding system for studying the poorly understood events that cause molecularly solvated ions to self

  2. A Green Approach for the Synthesis of a Cerium Oxide Nanoparticle: Characterization and Antibacterial Activity

    NASA Astrophysics Data System (ADS)

    Kannan, S. K.; Sundrarajan, M.

    2014-07-01

    In this study, the synthesis of a cerium oxide nanoparticle was carried out from Acalypha indica leaf extract. The synthesized nanoparticle was characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX) and Transmission Electron Microscope (TEM) for structural confirmation. The studies clearly indicate that the synthesized CeO2 nanoparticle is a crystalline material with particle size between 25-30 nm. Further analysis was carried out by Fourier Transform infrared spectroscopy (FT-IR), to provide evidence for the presence of Ce-O-Ce asymmetry stretching of the CeO2 nanoparticle. Thermo Gravimetric and Differential Scanning Calorimetry analyses gave the thermal properties of cerium oxide nanoparticles. Antibacterial studies were conducted using the synthesized CeO2. This result showed increasing rate of antibacterial behavior with gram positive and gram negative bacteria.

  3. High temperature stability of a 316 austenitic stainless steel coated with cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mendoza Del Angel, Humberto

    Cerium oxide (CeO2-x) nanoparticles were used for coating protection on a 316 Austenitic Stainless Steel (Aust. SS) to enhance the thermal stability of the oxide films formed at high temperatures. Three simple coating methods were used, dipping, spraying and spinning in order to explore the coating film morphology, nanoparticle distribution and its effect on thermal stability of the steel substrates. Experimentally, the selected steel was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. The cerium oxide nanoparticles used on the three methods were synthesized in the laboratory obtaining nanoparticles in the range of 3.5 to 6.2 nanometers. It was found that cerium oxide particle size is affected by temperature. In this case, the activation energy for particle growth was estimated to be around 21,1 kJ/mol. Characterization of the film morphologies before and after oxidation were carried out using Atomic Force Microscopy (AFM), Surface Profilometry, Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). A comparison of the three coating methods was carried out for the particular case of the 316 Aust. SS coupons. In addition, the oxidation kinetics was experimentally investigated for the coated samples. For this purpose thermal gravimetric determinations were made at 800°C, 900°C, and 1000°C and oxidation rate constants were calculated at each temperature.

  4. Cerium and yttrium oxide nanoparticles against lead-induced oxidative stress and apoptosis in rat hippocampus.

    PubMed

    Hosseini, Asieh; Sharifi, Ali Mohammad; Abdollahi, Mohammad; Najafi, Rezvan; Baeeri, Maryam; Rayegan, Samira; Cheshmehnour, Jamshid; Hassani, Shokoufeh; Bayrami, Zahra; Safa, Majid

    2015-03-01

    Due to numerous industrial applications, lead has caused widespread pollution in the environment; it seems that the central nervous system (CNS) is the main target for lead in the human body. Oxidative stress and programmed cell death in the CNS have been assumed as two mechanisms related to neurotoxicity of lead. Cerium oxide (CeO2) and yttrium oxide (Y2O3) nanoparticles have recently shown antioxidant effects, particularly when used together, through scavenging the amount of reactive oxygen species (ROS) required for cell apoptosis. We looked into the neuroprotective effects of the combinations of these nanoparticles against acute lead-induced neurotoxicity in rat hippocampus. We used five groups in this study: control, lead, CeO2 nanoparticles + lead, Y2O3 nanoparticles + lead, and CeO2 and Y2O3 nanoparticles + lead. Nanoparticles of CeO2 (1000 mg/kg) and Y2O3 (230 mg/kg) were administered intraperitoneally during 2 days prior to intraperitoneal injection of the lead (25 mg/kg for 3 days). At the end of the treatments, oxidative stress markers, antioxidant enzymes activity, and apoptosis indexes were investigated. The results demonstrated that pretreatments with CeO2 and/or Y2O3 nanoparticles recovered lead-caused oxidative stress markers (ROS, lipid peroxidation, and total thiol molecules) and apoptosis indexes (Bax/Bcl-2 and caspase-3 protein expression). Besides, these nanoparticles reduced the activities of lead-induced superoxide dismutase and catalase as well as the ADP/ATP ratio. Interestingly, the best recovery resulted from the compound of these nanoparticles. Based on these outcomes, it appears that this combination may potentially be beneficial for protection against lead-caused acute toxicity in the brain through improving the oxidative stress-mediated programmed cell death pathway.

  5. Microstructural characteristics of cerium oxide conversion coatings obtained by various aqueous deposition methods

    SciTech Connect

    Johnson, B.Y.; Edington, J.; Williams, A.; O'Keefe, M.J. . E-mail: mjokeefe@umr.edu

    2005-01-15

    Microstructural characteristics of cerium oxide conversion coatings obtained by electrolytic, dip-immersion and spray deposition methods from aqueous solutions were studied by transmission electron microscopy and electron diffraction analysis. The coatings were applied to aluminum alloy 7075-T6 panels and the pretreatment conditions were the same for all coating methods. The results indicated that the as-deposited coatings were all composed of nanocrystalline particles with narrow size distributions. Electron diffraction analysis revealed that the electrolytic and the spray coatings developed the same crystal structure, possibly Ce{sub 7}O{sub 12}, while the dip-immersion coating had a different structure that has not been reported in the literature. After post-treatment in phosphate solution, all three as-deposited coatings were converted to hydrated cerium phosphate.

  6. Modification of solid oxide fuel cell anodes with cerium oxide coatings

    NASA Astrophysics Data System (ADS)

    Tang, Ling

    A priority for research in solid oxide fuel cells (SOFCs) is to develop cells that can maintain adequate performance in sulfur-containing fuel streams. There has been evidence that cerium oxide in the anode or electrolyte is associated with sulfur tolerance of the cell, but the mechanism underlying this effect is not well understood. The objective of the present research is to show that the porous cermet SOFC anodes can be coated with cerium oxide films, so that the cell performance can be evaluated as a function of the anode structure and the microstructure of the film. Three types of anodes---Ni/yttria-stabilized zirconia (YSZ), Ni/gadolinia-doped ceria (GDC), and Ni/GDC with GDC interlayer were infiltrated with an aqueous solution to deposit nanocrystalline ceria films. The cells were then tested in hydrogen/nitrogen fuel containing hydrogen sulfide at levels up to 500 ppm. Modification of the anodes with thiol-terminated and trichlorosilane-terminated surfactants was explored. Different ceria film morphology was achieved for each surface treatment. In the cells that underwent performance testing, the thiol treatment promoted ceria film deposition, while the sulfonate treatment suppressed ceria deposition. Uniform ceria films up to 100 nm thick could be deposited in 48 h. Results on cell testing conditions, e.g. current, time, and H2S exposure were related to different anode structures and ceria coating morphologies. In general, the Ni/GDC anodes showed better performance than the Ni/YSZ anode. The introduction of ceria films often resulted in higher cell current and longer testing time, including operation under H2S exposure. Post-testing characterization revealed that, for some anodes, microstructure changes such as coarsening of Ni in the anode, migration of Ni to the anode surface, and depletion of Ni occurred. These changes in microstructure were irreversible and might account for permanent loss of cell performance. The presence of ceria films delayed these

  7. Redox-active cerium oxide nanoparticles protect human dermal fibroblasts from PQ-induced damage.

    PubMed

    von Montfort, Claudia; Alili, Lirija; Teuber-Hanselmann, Sarah; Brenneisen, Peter

    2015-01-01

    Recently, it has been published that cerium (Ce) oxide nanoparticles (CNP; nanoceria) are able to downregulate tumor invasion in cancer cell lines. Redox-active CNP exhibit both selective pro-oxidative and antioxidative properties, the first being responsible for impairment of tumor growth and invasion. A non-toxic and even protective effect of CNP in human dermal fibroblasts (HDF) has already been observed. However, the effect on important parameters such as cell death, proliferation and redox state of the cells needs further clarification. Here, we present that nanoceria prevent HDF from reactive oxygen species (ROS)-induced cell death and stimulate proliferation due to the antioxidative property of these particles.

  8. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.

    PubMed

    Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael

    2015-10-14

    Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts.

  9. Cerium oxide nanoparticles protect rodent lungs from hypobaric hypoxia-induced oxidative stress and inflammation.

    PubMed

    Arya, Aditya; Sethy, Niroj Kumar; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2013-01-01

    Cerium oxide nanoparticles (nanoceria) are effective at quenching reactive oxygen species (ROS) in cell culture and animal models. Although nanoceria reportedly deposit in lungs, their efficacy in conferring lung protection during oxidative stress remains unexplored. Thus, the study evaluated the protective efficacy of nanoceria in rat lung tissue during hypobaric hypoxia. A total of 48 animals were randomly divided into four equal groups (control [C], nanoceria treated [T], hypoxia [H], and nanoceria treated plus hypoxia [T+H]). Animals were injected intraperitoneally with either a dose of 0.5 μg/kg body weight/week of nanoceria (T and T+H groups) or vehicle (C and H groups) for 5 weeks. After the final dose, H and T+H animals were challenged with hypobaric hypoxia, while C and T animals were maintained at normoxia. Lungs were isolated and homogenate was obtained for analysis of ROS, lipid peroxidation, glutathione, protein carbonylation, and 4-hydroxynonenal-adduct formation. Plasma was used for estimating major inflammatory cytokines using enzyme-linked immunosorbent assay. Intact lung tissues were fixed and both transmission electron microscopy and histopathological examinations were carried out separately for detecting internalization of nanoparticles as well as altered lung morphology. Spherical nanoceria of 7-10 nm diameter were synthesized using a microemulsion method, and the lung protective efficacy of the nanoceria evaluated during hypobaric hypoxia. With repeated intraperitoneal injections of low micromole concentration, we successfully localized the nanoceria in rodent lung without any inflammatory response. The lung-deposited nanoceria limited ROS formation, lipid peroxidation, and glutathione oxidation, and prevented oxidative protein modifications like nitration and carbonyl formation during hypobaric hypoxia. We also observed reduced lung inflammation in the nanoceria-injected lungs, supporting the anti-inflammatory properties of nanoceria

  10. Growth of nanostructured polycrystalline cerium oxide through a solvothermal precipitation using near-supercritical fluids.

    PubMed

    Lee, Jongmin; Ahn, Jae-Pyoung; Kim, Sang Woo

    2010-01-01

    Well-crystallized cerium dioxide with cubic phase were formed and self-assembly grown to nanofibers or nanosheets via a solvothermal precipitation from near-supercritical fluids without any help of metal catalysts or capping agents. The self-assembly attachment process without any preferred or selective orientation dominated the growth of the polycrystalline nanofibers or nanosheets consisting of grains of approximately 3 nm to which are formed by the coalescence of the single crystalline cerium oxide seeds. The growth is attributed to be driven by phase separation due to partial compatibility between ethyl alcohol and supercritical carbon dioxide fluid during the precipitation reaction, not by different surface energies or defects. With increasing temperature, the nanofibers with a weblike network structure were formed and then fused to large spherical particles. As a result, the polycrystalline fibers or sheets consisting of pure cerium dioxide phase were produced by the solvothermal reaction with an aid of the supercritical carbon dioxide from the alcoholic metal salt solution.

  11. Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils.

    PubMed

    Zhang, Weilan; Musante, Craig; White, Jason C; Schwab, Paul; Wang, Qiang; Ebbs, Stephen D; Ma, Xingmao

    2017-01-01

    Cerium oxide nanoparticles (CeO2 NP) are a common component of many commercial products. Due to the general concerns over the potential toxicity of engineered nanoparticles (ENPs), the phytotoxicity and in planta accumulation of CeO2 NPs have been broadly investigated. However, most previous studies were conducted in hydroponic systems and with grain crops. For a few studies performed with soil grown plants, the impact of soil properties on the fate and transport of CeO2 NPs was generally ignored even though numerous previous studies indicate that soil properties play a critical role in the fate and transport of environmental pollutants. The objectives of this study were to evaluate the soil fractionation and bioavailability of CeO2 NPs to Raphanus sativus L (radish) in two soil types. Our results showed that the silty loam contained slightly higher exchangeable fraction (F1) of cerium element than did loamy sand soil, but significantly lower reducible (F2) and oxidizable (F3) fractions as CeO2 NPs concentration increased. CeO2 NPs associated with silicate minerals or the residue fraction (F4) dominated in both soils. The cerium concentration in radish storage root showed linear correlation with the sum of the first three fractions (r(2) = 0.98 and 0.78 for loamy sand and silty loam respectively). However, the cerium content in radish shoots only exhibited strong correlations with F1 (r(2) = 0.97 and 0.89 for loamy sand and silty loam respectively). Overall, the results demonstrated that soil properties are important factors governing the distribution of CeO2 NPs in soil and subsequent bioavailability to plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. The effect of lanthanum(III) and cerium(III) ions between layers of manganese oxide on water oxidation.

    PubMed

    Najafpour, Mohammad Mahdi; Isaloo, Mohsen Abbasi; Hołyńska, Małgorzata; Shen, Jian-Ren; Allakhverdiev, Suleyman I; Allakhverdiev, Suleyman

    2015-12-01

    Manganese oxide structure with lanthanum(III) or cerium(III) ions between the layers was synthesized by a simple method. The ratio of Mn to Ce or La in samples was 0.00, 0.04, 0.08, 0.16, 0.32, 0.5, 0.82, or 1.62. The compounds were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction studies, and atomic absorption spectroscopy. The compounds show efficient catalytic activity of water oxidation in the presence of cerium(IV) ammonium nitrate with a turnover frequency of 1.6 mmol O2/mol Mn.s. In contrast to the water-oxidizing complex in Photosystem II, calcium(II) has no specific role to enhance the water-oxidizing activity of the layered manganese oxides and other cations can be replaced without any significant decrease in water-oxidizing activities of these layered Mn oxides. Based on this and previously reported results from oxygen evolution in the presence of H 2 (18) O, we discuss the mechanism and the important factors influencing the water-oxidizing activities of the manganese oxides.

  13. Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator.

    PubMed

    Dogra, Yuktee; Arkill, Kenton P; Elgy, Christine; Stolpe, Bjorn; Lead, Jamie; Valsami-Jones, Eugenia; Tyler, Charles R; Galloway, Tamara S

    2016-01-01

    Cerium oxide nanoparticles (CeO2 NPs) exhibit fast valence exchange between Ce(IV) and Ce(III) associated with oxygen storage and both pro and antioxidant activities have been reported in laboratory models. The reactivity of CeO2 NPs once they are released into the aquatic environment is virtually unknown, but this is important to determine for assessing their environmental risk. Here, we show that amphipods (Corophium volutator) grown in marine sediments containing CeO2 NPs showed a significant increase in oxidative damage compared to those grown in sediments without NPs and those containing large-sized (bulk) CeO2 particles. There was no exposure effect on survival, but significant increases in single-strand DNA breaks, lipid peroxidation and superoxide dismutase activity were observed after a 10-day exposure to 12.5 mg L(-1) CeO2. Characterisation of the CeO2 NPs dispersed in deionised or saline exposure waters revealed that more radicals were produced by CeO2 NPs compared with bulk CeO2. Electron energy loss spectroscopy (EELS) analysis revealed that both CeO2 NPs were predominantly Ce(III) in saline waters compared to deionised waters where they were predominantly Ce(IV). In both types of medium, the bulk CeO2 consisted mainly of Ce(IV). These results support a model whereby redox cycling of CeO2 NPs between Ce(III) and Ce(IV) is enhanced in saline waters, leading to sublethal oxidative damage to tissues in our test organism.

  14. Therapeutic Potential of Cerium Oxide Nanoparticles for the Treatment of Peritonitis Induced by Polymicrobial Insult in Sprague-Dawley Rats.

    PubMed

    Manne, Nandini D P K; Arvapalli, Ravikumar; Nepal, Niraj; Thulluri, Srinivasarao; Selvaraj, Vellaisamy; Shokuhfar, Tolou; He, Kun; Rice, Kevin M; Asano, Shinichi; Maheshwari, Mani; Blough, Eric R

    2015-11-01

    Peritonitis is a life-threatening disease that is associated with high mortality. The purpose of this study was to determine if cerium oxide nanoparticles can be used to diminish intra-abdominal infection-induced mortality and systemic inflammatory response syndrome in the laboratory rat. Randomized, controlled animal study and cell culture study. University research laboratory. Male Sprague-Dawley rats aged 12 weeks, RAW 246.7 macrophage cell line. Intra-abdominal infection or peritonitis was induced by intraperitoneal injection of cecal material (600 mg/kg in 5% sterile dextrose water at a dosage of 5 mL/kg) obtained from healthy donors. Rats in control and peritonitis groups received 200 μL of sterile deionized water IV via the tail vein, whereas rats in cerium oxide-only group and peritonitis+cerium oxide group received cerium oxide nanoparticles (0.5 mg/kg) IV at the time of polymicrobial injection. Survival rate was monitored for 14 days, while in other experiments, animals were killed at 3 and 18 hours after induction of peritonitis for biochemical analysis. Administration of a single dose (0.5 mg/kg) of cerium oxide nanoparticles IV to rats in the peritonitis group significantly improved survival rates and functioned to restore core body temperature toward baseline. Treatment-induced increases in animal survivability were associated with reduced systemic and hepatic oxidative stress, diminished serum cytokines, and chemokine levels. Changes in serum inflammatory markers with treatment were accompanied by decreased monocyte and lymphocyte extravasation into the peritoneal cavity along with decreased infiltration of macrophages into liver. In the heart, treatment diminished extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase-Stat-3 signaling and attenuated endothelial expression of P-selectin and vascular cell adhesion molecule-1. Cerium oxide nanoparticles attenuate the systemic inflammatory response associated with peritonitis

  15. Cerium oxide nanoparticles protect primary mouse bone marrow stromal cells from apoptosis induced by oxidative stress

    NASA Astrophysics Data System (ADS)

    Zhang, Qun; Ge, Kun; Duan, Jianlei; Chen, Shizhu; Zhang, Ran; Zhang, Cuimiao; Wang, Shuxiang; Zhang, Jinchao

    2014-11-01

    Cerium oxide nanoparticles (nanoceria) have been widely used in industries and biomedical fields due to its unique properties. Previous biodistribution studies of nanoceria in vivo have shown that they are accumulated in the bone of mice after intravenous administration, about 20 % of the total intake, however, the potential effect and the mechanism of nanoceria on bone metabolism are not well-understood. Our results showed that both 25 and 50 nm nanceria decreased the damage of cell viability induced by H2O2 in a dose-dependent manner. The apoptosis ratio of pre-incubated group with nanoceria was lower than the H2O2 group. The cellular uptake studies indicated that there was a dose-dependent accumulation of both two size nanoparticles in bone marrow stromal cells. Nanoceria could be uptaken by cells due to the synergistic effect of multiple endocytosis mechanisms, and then evenly distributed in the cytoplasm without entering the nucleus. Our results suggest that nanoceria could reduce intracellular ROS level induced by H2O2 in a dose-dependent manner, moreover, maintain the normal function of mitochondria, suggesting nanoceria may have potent applications for preventing or treating osteoporosis.

  16. Cerium Oxide Nanoparticles Induce Oxidative Stress and Genotoxicity in Human Skin Melanoma Cells.

    PubMed

    Ali, Daoud; Alarifi, Saud; Alkahtani, Saad; AlKahtane, Abdullah A; Almalik, Abdulaziz

    2015-04-01

    Extensive applications of cerium oxide (CeO2) nanoparticles require a better understanding of their possible effects on human health. However, data demonstrating the effect of CeO2 nanoparticles on the human skin melanoma cell remain scanty. In the current study, we determined the mechanism through which CeO2 nanoparticles (APS <25 nm) induce toxicity in human skin melanoma cells (A375). The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and neutral red uptake assays showed concentration and time-dependent cytotoxicity of CeO2 nanoparticles in A375 cells. CeO2 nanoparticles significantly induced the generation reactive oxygen species (ROS) and malondialdehyde, superoxide dismutase, and decreased glutathione levels in A375 cells. It was also observed that the CeO2 nanoparticles induced chromosomal condensation and caspase-3 activity. CeO2 nanoparticles exposed cells revealed the formation of DNA double-strand breakage as measured by percent tail DNA and olive tail moment through comet assay. The decline of cell viability, production of ROS, and DNA damage in A375 cells specifies that CeO2 nanoparticles have less capable to induce cyto and genotoxicity.

  17. Effects of Engineered Cerium Oxide Nanoparticles on Bacterial Growth and Viability▿†

    PubMed Central

    Pelletier, Dale A.; Suresh, Anil K.; Holton, Gregory A.; McKeown, Catherine K.; Wang, Wei; Gu, Baohua; Mortensen, Ninell P.; Allison, David P.; Joy, David C.; Allison, Martin R.; Brown, Steven D.; Phelps, Tommy J.; Doktycz, Mitchel J.

    2010-01-01

    Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear, due to a lack of standard methods for assessing such interactions. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. The growth and viability of the Gram-negative species Escherichia coli and Shewanella oneidensis, a metal-reducing bacterium, and the Gram-positive species Bacillus subtilis were examined relative to cerium oxide particle size, growth media, pH, and dosage. A hydrothermal synthesis approach was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined from MIC and CFU measurements, disk diffusion tests, and live/dead assays. For E. coli and B. subtilis, clear strain- and size-dependent inhibition was observed, whereas S. oneidensis appeared to be unaffected by the particles. Transmission electron microscopy along with microarray-based transcriptional profiling was used to understand the response mechanism of the bacteria. Use of multiple analytical approaches adds confidence to toxicity assessments, while the use of different bacterial systems highlights the potential wide-ranging effects of nanomaterial interactions in the environment. PMID:20952651

  18. Effects of engineered cerium oxide nanoparticles on bacterial growth and viability.

    PubMed

    Pelletier, Dale A; Suresh, Anil K; Holton, Gregory A; McKeown, Catherine K; Wang, Wei; Gu, Baohua; Mortensen, Ninell P; Allison, David P; Joy, David C; Allison, Martin R; Brown, Steven D; Phelps, Tommy J; Doktycz, Mitchel J

    2010-12-01

    Interest in engineered nanostructures has risen in recent years due to their use in energy conservation strategies and biomedicine. To ensure prudent development and use of nanomaterials, the fate and effects of such engineered structures on the environment should be understood. Interactions of nanomaterials with environmental microorganisms are inevitable, but the general consequences of such interactions remain unclear, due to a lack of standard methods for assessing such interactions. Therefore, we have initiated a multianalytical approach to understand the interactions of synthesized nanoparticles with bacterial systems. These efforts are focused initially on cerium oxide nanoparticles and model bacteria in order to evaluate characterization procedures and the possible fate of such materials in the environment. The growth and viability of the Gram-negative species Escherichia coli and Shewanella oneidensis, a metal-reducing bacterium, and the Gram-positive species Bacillus subtilis were examined relative to cerium oxide particle size, growth media, pH, and dosage. A hydrothermal synthesis approach was used to prepare cerium oxide nanoparticles of defined sizes in order to eliminate complications originating from the use of organic solvents and surfactants. Bactericidal effects were determined from MIC and CFU measurements, disk diffusion tests, and live/dead assays. For E. coli and B. subtilis, clear strain- and size-dependent inhibition was observed, whereas S. oneidensis appeared to be unaffected by the particles. Transmission electron microscopy along with microarray-based transcriptional profiling was used to understand the response mechanism of the bacteria. Use of multiple analytical approaches adds confidence to toxicity assessments, while the use of different bacterial systems highlights the potential wide-ranging effects of nanomaterial interactions in the environment.

  19. Anti-reflection coating of Cerium oxide on a plastic substrate

    NASA Astrophysics Data System (ADS)

    Kang, Hyunil; Choi, Wonseok; Kim, Doyoung

    2015-01-01

    Cerium oxide (CeO2) films are suitable for use as anti-reflective coatings for display panels, touch screens, and silicon solar cells. The CeO2 films grown by using a reactive radio frequency sputtering method under various deposition conditions was investigated. The CeO2 films were deposited at room temperature because the plastic substrate was too weak for use at higher temperatures. The films exhibited a strong (111) preferred orientation with properties varying as a function of the process conditions. We present the properties of CeO2 anti-reflective coatings on plastic substrates.

  20. Fabrication of condensate microdrop self-propelling porous films of cerium oxide nanoparticles on copper surfaces.

    PubMed

    Luo, Yuting; Li, Juan; Zhu, Jie; Zhao, Ye; Gao, Xuefeng

    2015-04-13

    Condensate microdrop self-propelling (CMDSP) surfaces have attracted intensive interest. However, it is still challenging to form metal-based CMDSP surfaces. We design and fabricate a type of copper-based CMDSP porous nanoparticle film. An electrodeposition method based on control over the preferential crystal growth of isotropic nanoparticles and synergistic utilization of tiny hydrogen bubbles as pore-making templates is adopted for the in situ growth of cerium oxide porous nanoparticle films on copper surfaces. After characterizing their microscopic morphology, crystal structure and surface chemistry, we explore their CMDSP properties. The nanostructure can realize the efficient ejection of condensate microdrops with sizes below 50 μm.

  1. Silicate-free growth of high-quality ultrathin cerium oxide films on Si(111)

    SciTech Connect

    Flege, Jan Ingo; Kaemena, Bjoern; Wilkens, Torsten; Schmidt, Thomas; Falta, Jens; Gevers, Sebastian; Bruns, Daniel; Wollschlaeger, Joachim; Bertram, Florian; Baetjer, Jan

    2011-12-15

    Ultrathin Ce{sub 2}O{sub 3} layers have been grown on Si(111) by reactive metal deposition in an oxygen background and characterized by x-ray standing waves, x-ray diffraction, x-ray photoelectron spectroscopy, and low-energy electron diffraction to elucidate and quantify both atomic structure and chemical composition. It is demonstrated that highly ordered, mostly B-oriented, epitaxial ceria films can be achieved by preadsorption of a monolayer of atomic chlorine, effectively passivating the substrate and thereby suppressing cerium silicate and silicon oxide formation at the interface.

  2. Silicate-free growth of high-quality ultrathin cerium oxide films on Si(111)

    NASA Astrophysics Data System (ADS)

    Flege, Jan Ingo; Kaemena, Björn; Gevers, Sebastian; Bertram, Florian; Wilkens, Torsten; Bruns, Daniel; Bätjer, Jan; Schmidt, Thomas; Wollschläger, Joachim; Falta, Jens

    2011-12-01

    Ultrathin Ce2O3 layers have been grown on Si(111) by reactive metal deposition in an oxygen background and characterized by x-ray standing waves, x-ray diffraction, x-ray photoelectron spectroscopy, and low-energy electron diffraction to elucidate and quantify both atomic structure and chemical composition. It is demonstrated that highly ordered, mostly B-oriented, epitaxial ceria films can be achieved by preadsorption of a monolayer of atomic chlorine, effectively passivating the substrate and thereby suppressing cerium silicate and silicon oxide formation at the interface.

  3. Negative cerium anomalies in manganese (hydr)oxide precipitates due to cerium oxidation in the presence of dissolved siderophores

    NASA Astrophysics Data System (ADS)

    Kraemer, Dennis; Tepe, Nathalie; Pourret, Olivier; Bau, Michael

    2017-01-01

    We present experimental results on the sorption behavior of rare earth elements and yttrium (REY) on precipitating manganese (hydr)oxide in the presence of the biogenic siderophore desferrioxamine B (DFOB). In marked contrast to inorganic systems, where preferential adsorption of HREY and depletion of LREY is commonly observed in manganese (hydr)oxide precipitates, sorption of REY in presence of the DFOB siderophore leads to HREY-depleted and LREY-enriched patterns in the precipitates. Moreover, our data indicate that surface oxidation of Ce(III) to Ce(IV) during sorption onto manganese (hydr)oxides and the resulting development of a positive Ce anomaly, which are commonly observed in inorganic experiments, are prevented in the presence of DFOB. Instead, Ce(III) is oxidized to Ce(IV) but associated with the dissolved desferrioxamine B which forms complexes with Ce(IV), that are at least twenty orders of magnitude more stable than those with Ce(III) and REY(III). The overall result is the formation of a positive Ce anomaly in the solution and a negative Ce anomaly in the Mn (hydr)oxides. The distribution of the strictly trivalent REY and Eu(III) between the manganese (hydr)oxide phase and the remaining ambient solution mimics the distribution of published stability constants for complexes of REY(III) with DFOB, i.e. the heavy REY form more stable complexes with the ligand and hence are better shielded from sorption than the LREY. Surface complexation modeling corroborates our experimental results. Negative Ce anomalies in Mn precipitates have been described from biogenic Mn oxides. Our results provide experimental evidence for the development of negative Ce anomalies in abiogenic Mn (hydr)oxide precipitates and show that the presence of the widespread siderophore desferrioxamine B during mineral precipitation results in HREY-depleted Mn (hydr)oxides with negative Ce anomalies.

  4. The evolution mechanism of the dislocation loops in irradiated lanthanum doped cerium oxide

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin; Aidhy, Dilpuneet; Chen, Wei-Ying; Mo, Kun; Oaks, Aaron; Wolf, Dieter; Stubbins, James F.

    2014-02-01

    Cerium dioxide, a non-radioactive surrogate of uranium dioxide, is useful for simulating the radiation responses of uranium dioxide and mixed oxide fuel (MOX). Controlled additions of lanthanum can also be used to form various levels of lattice oxide or anion vacancies. In previous transmission electron microscopy (TEM) experimental studies, the growth rate of dislocation loops in irradiated lanthanum doped ceria was reported to vary with lanthanum concentration. This work reports findings of the evolution mechanisms of the dislocation loops in cerium oxide with and without lanthanum dopants based on a combination of molecular statics and molecular dynamics simulations. These dislocation loops are found to be b = 1 / 3 < 1 1 1 > interstitial type Frank loops. Calculations of the defect energy profiles of the dislocation loops with different structural configurations and radii reveal the basis for preference of nucleation as well as the driving force of growth. Frenkel pair evolution simulations and displacement cascade overlaps simulations were conducted for a variety of lanthanum doping conditions. The nucleation and growth processes of the Frank loop were found to be controlled by the mobility of cation interstitials, which is significantly influenced by the lanthanum doping concentration. Competition mechanisms coupled with the mobility of cation point defects were discovered, and can be used to explain the lanthanum effects observed in experiments.

  5. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Cerium Oxide Microspheres via the Internal Gelation Process

    SciTech Connect

    Collins, Jack Lee; Chi, Anthony

    2009-02-01

    A simple test tube methodology was used to determine optimum process parameters for preparing hydrous cerium oxide microspheres via the internal gelation process.1 Broth formulations of cerium ammonium nitrate [(NH4)2Ce(NO3)6], hexamethylenetetramine, and urea were found that can be used to prepare hydrous cerium oxide gel spheres in the temperature range of 60 to 90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations to be able to equate the test-tube gelation times to actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broth formulations.

  6. Porous microspheres of manganese-cerium mixed oxides by a polyvinylpyrrolidone assisted solvothermal method

    NASA Astrophysics Data System (ADS)

    Schmit, F.; Bois, L.; Chiriac, R.; Toche, F.; Chassagneux, F.; Descorme, C.; Besson, M.; Khrouz, L.

    2017-04-01

    Mixed cerium manganese oxides were synthesized using a polyvinylpyrrolidone (PVP) assisted solvothermal method. Materials obtained after calcination at 400 °C were characterized by X-ray diffraction, scanning and transmission electron microscopies, electron paramagnetic resonance (EPR), Raman spectroscopy, thermal analysis and nitrogen adsorption/desorption isotherms. The influence of the synthesis parameters on the oxide structure, such as the Mn:Ce ratio or the amount of PVP, was discussed. Micrometric spheres of mixed Mn-Ce oxides, resulting from the aggregation of 100 nm porous snowflakes, were successfully synthesized. These snowflakes were formed from the aggregation of smaller oriented crystallites (size 4 nm). The hydrothermal stability of these materials was also investigated.

  7. Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection

    NASA Astrophysics Data System (ADS)

    Kaushik, Ajeet; Solanki, Pratima R.; Pandey, M. K.; Ahmad, Sharif; Malhotra, Bansi D.

    2009-10-01

    Cerium oxide nanoparticles (NanoCeO2) and chitosan (CH) based nanobiocomposite film deposited onto indium-tin-oxide coated glass substrate has been used to coimmobilize rabbit immunoglobin (r-IgGs) and bovine serum albumin (BSA) for food borne mycotoxin [ochratoxin-A (OTA)] detection. Electrochemical studies reveal that presence of NanoCeO2 increases effective electro-active surface area of CH-NanoCeO2/indium tin oxide (ITO) nanobiocomposite resulting in high loading of r-IgGs. BSA/r-IgGs/CH-NanoCeO2/ITO immunoelectrode exhibits improved linearity (0.25-6.0 ng/dl), detection limit (0.25 ng/dl), response time (25 s), sensitivity (18 μA/ng dl-1 cm-2), and regression coefficient (r2˜0.997).

  8. Cerium-based binary and ternary oxides in the transesterification of dimethylcarbonate with phenol.

    PubMed

    Dibenedetto, Angela; Angelini, Antonella; di Bitonto, Luigi; De Giglio, Elvira; Cometa, Stefania; Aresta, Michele

    2014-04-01

    Diphenyl carbonate (DPC) plays a key role in phosgene-free carbonylation processes. It can be produced by transesterification of dimethyl carbonate (DMC) with phenol in the presence of catalysts. Methyl phenyl carbonate (MPC) is first produced that is then converted into DPC by either disproportionation or further transesterification with phenol. Cerium-based bimetallic oxides (with the heterometal being niobium, iron, palladium, or aluminum) are used as catalysts in the transesterification of DMC to synthesize MPC. The catalytic activity is affected by the type and concentration of the heterometal. XPS, IR and elementary analyses are employed to characterize the new catalysts. Differently from pure oxides, the mixed oxides produce a significant increase of the conversion and selectivity towards MPC. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Oxidative modification of native protein residues using cerium(IV) ammonium nitrate.

    PubMed

    Seim, Kristen L; Obermeyer, Allie C; Francis, Matthew B

    2011-10-26

    A new protein modification strategy has been developed that is based on an oxidative coupling reaction that targets electron-rich amino acids. This strategy relies on cerium(IV) ammonium nitrate (CAN) as an oxidation reagent and results in the coupling of tyrosine and tryptophan residues to phenylene diamine and anisidine derivatives. The methodology was first identified and characterized on peptides and small molecules, and was subsequently adapted for protein modification by determining appropriate buffer conditions. Using the optimized procedure, native and introduced solvent-accessible residues on proteins were selectively modified with polyethylene glycol (PEG) and small peptides. This unprecedented bioconjugation strategy targets these under-utilized amino acids with excellent chemoselectivity and affords good-to-high yields using low concentrations of the oxidant and coupling partners, short reaction times, and mild conditions.

  10. Adsorption and Reaction of Methanol on Thin-film Cerium Oxide

    SciTech Connect

    Mullins,D.; Robbins, M.; Zhou, J.

    2006-01-01

    Formaldehyde adsorption and reaction have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The formaldehyde behavior was examined as a function of temperature, exposure and Ce oxidation state. Formaldehyde chemisorbs on fully oxidized CeO{sub 2} as dioxymethylene, CH{sub 2}O{sub 2}. The dioxymethylene decomposes and desorbs as formaldehyde between 200 K and 400 K. No other products are formed. On reduced ceria, formaldehyde also adsorbs as dioxymethylene. In addition to the formaldehyde desorption between 200 K and 400 K, a more strongly bound form of dioxymethylene is formed that produces formaldehyde at 440 K. Above 400 K, some of the dioxymethylene reacts to form formate and methoxy on the surface. These species decompose to produce H{sub 2}, CO and CH{sub 2}O above 500 K.

  11. Adsorption and Reaction of Formaldehyde on Thin-film Cerium Oxide

    SciTech Connect

    Zhou,J.; Mullins, D.

    2006-01-01

    Formaldehyde adsorption and reaction have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The formaldehyde behavior was examined as a function of temperature, exposure and Ce oxidation state. Formaldehyde chemisorbs on fully oxidized CeO{sub 2} as dioxymethylene, CH{sub 2}O{sub 2}. The dioxymethylene decomposes and desorbs as formaldehyde between 200 K and 400 K. No other products are formed. On reduced ceria, formaldehyde also adsorbs as dioxymethylene. In addition to the formaldehyde desorption between 200 K and 400 K, a more strongly bound form of dioxymethylene is formed that produces formaldehyde at 440 K. Above 400 K, some of the dioxymethylene reacts to form formate and methoxy on the surface. These species decompose to produce H{sub 2}, CO and CH{sub 2}O above 500 K.

  12. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    PubMed Central

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2014-01-01

    To develop new nanoparticle materials possessing anti-oxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had a mode diameter of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease. PMID:24791147

  13. Honeycomb nano cerium oxide fabricated by vacuum drying process with sodium alginate

    NASA Astrophysics Data System (ADS)

    Zhao, Guozheng; Li, Changbo; Zhang, Honglin

    2017-06-01

    Nano cerium oxide (CeO2) with honeycomb structure were synthesized simply and rapidly by vacuum drying method with sodium alginate as the biological template agent, Ce(NO3)3·6H2O as cerium source. The composition, aperture size, specific surface area and morphology of the prepared samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), N2 adsorption-desorption and scanning electron microscopy (SEM). Simultaneously, the effects on the morphology of the samples, which were caused by the drying method and the concentration of sodium alginate, were investigated. The results indicate that the prepared samples were nano CeO2 with high crystallinity and uniform dispersion, most of which had mesoporous, macroporous and honeycomb structure. The specific surface area of CeO2 is 210.0 m2/g, and the average aperture is 12.77 nm. The prepared samples can act as catalyst in the catalytic wet oxidation process for the treatment of high concentration organic wastewater, and the COD removal rate could exceed 90%.

  14. Nanocomposite cerium oxide polymer matching layers with adjustable acoustic impedance between 4 MRayl and 7 MRayl.

    PubMed

    Tiefensee, Frank; Becker-Willinger, Carsten; Heppe, Gisela; Herbeck-Engel, Petra; Jakob, Anette

    2010-03-01

    A new class of materials for ultrasonic matching layers is presented. The materials consist of nanoscale cerium oxide particles in an epoxy functionalized organic inorganic hybrid polymer matrix. The cerium oxide agglomerates to particles with 20 nm diameters. The content of particles in the polymer matrix could be increased to 75 wt.% which corresponds to 37 vol.%. The most technical important piezoelectrical ceramics have an acoustic impedance of about 30 MRayl, to improve coupling into water or biological tissue with an acoustic impedance of about 1.5 MRayl a matching layer should have an acoustic impedance of about 6.8 MRayl. With a filling degree of 75 wt.% the new composite material reaches an acoustic impedance of 7 MRayl. The materials are synthesized by a hydrolytic condensation combined with polymerization. This way of synthesis allows the use of organic solvents to adjust the viscosity of the sol and the application of different coating techniques. Ultrasound transducers (100 MHz) were built to test the new matching layers and an increase of the voltage signal amplitude of about 100% could be detected. 2009 Elsevier B.V. All rights reserved.

  15. Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants.

    PubMed

    Tumburu, Laxminath; Andersen, Christian P; Rygiewicz, Paul T; Reichman, Jay R

    2015-01-01

    The effects of exposure to nanoparticles of titanium dioxide (nano-titanium) and cerium oxide (nano-cerium) on gene expression and growth in Arabidopsis thaliana germinants were studied by using microarrays and quantitative real-time polymerase chain reaction (qPCR), and by evaluating germinant phenotypic plasticity. Exposure to 12 d of either nano-titania or nano-ceria altered the regulation of 204 and 142 genes, respectively. Genes induced by the nanoparticles mainly include ontology groups annotated as stimuli responsive, including both abiotic (oxidative stress, salt stress, water transport) and biotic (respiratory burst as a defense against pathogens) stimuli. Further analysis of the differentially expressed genes indicates that both nanoparticles affected a range of metabolic processes (deoxyribonucleic acid [DNA] metabolism, hormone metabolism, tetrapyrrole synthesis, and photosynthesis). Individual exposures to the nanoparticles increased percentages of seeds with emergent radicles, early development of hypocotyls and cotyledons, and those with fully grown leaves. Although there were distinct differences between the nanoparticles in their affect on molecular mechanisms attributable to enhancing germinant growth, both particles altered similar suites of genes related to various pathways and processes related to enhanced growth.

  16. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro.

    PubMed

    Popov, Anton L; Popova, Nelly R; Selezneva, Irina I; Akkizov, Azamat Y; Ivanov, Vladimir K

    2016-11-01

    The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10(-3)М-10(-9)M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing.

  17. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications

    SciTech Connect

    Nicholas, Jason Dale

    2007-01-01

    Cerium gadolinium oxide (CGO) has been identified as an acceptable solid oxide fuel cell (SOFC) electrolyte at temperatures (500-700 C) where cheap, rigid, stainless steel interconnect substrates can be used. Unfortunately, both the high sintering temperature of pure CGO, >1200 C, and the fact that constraint during sintering often results in cracked, low density ceramic films, have complicated development of metal supported CGO SOFCs. The aim of this work was to find new sintering aids for Ce0.9Gd0.1O1.95, and to evaluate whether they could be used to produce dense, constrained Ce0.9Gd0.1O1.95 films at temperatures below 1000 C. To find the optimal sintering aid, Ce0.9Gd0.1O1.95 was doped with a variety of elements, of which lithium was found to be the most effective. Dilatometric studies indicated that by doping CGO with 3mol% lithium nitrate, it was possible to sinter pellets to a relative density of 98.5% at 800 C--a full one hundred degrees below the previous low temperature sintering record for CGO. Further, it was also found that a sintering aid's effectiveness could be explained in terms of its size, charge and high temperature mobility. A closer examination of lithium doped Ce0.9Gd0.1O1.95 indicated that lithium affects sintering by producing a Li2O-Gd2O3-CeO2 liquid at the CGO grain boundaries. Due to this liquid phase sintering, it was possible to produce dense, crack-free constrained films of CGO at the record low temperature of 950 C using cheap, colloidal spray deposition processes. This is the first time dense constrained CGO films have been produced below 1000 C and could help commercialize metal supported ceria based solid oxide fuel cells.

  18. Atomic layer deposition of cerium oxide for potential use in diesel soot combustion

    SciTech Connect

    Ivanova, Tatiana V. E-mail: ivanova.tatyana.v@gmail.com; Toivonen, Jenni; Maydannik, Philipp S.; Kääriäinen, Tommi; Sillanpää, Mika; Homola, Tomáš; Cameron, David C.

    2016-05-15

    The particulate soot emission from diesel motors has a severe impact on the environment and people's health. The use of catalytic convertors is one of the ways to minimize the emission and decrease the hazard level. In this paper, the activity of cerium oxide for catalytic combustion of diesel soot was studied. Thin films of cerium dioxide were synthesized by atomic layer deposition using tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)cerium [Ce(thd){sub 4}] and ozone as precursors. The characteristics of the films were studied as a function of deposition conditions within the reaction temperature range of 180–350 °C. Thickness, crystallinity, elemental composition, and morphology of the CeO{sub 2} films deposited on Si (100) were characterized by ellipsometry, x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy, respectively. The growth rate of CeO{sub 2} was observed to be 0.30 Å/cycle at temperatures up to 250 °C with a slight increase to 0.37 Å/cycle at 300 °C. The effect of CeO{sub 2} films grown on stainless steel foil supports on soot combustion was measured with annealing tests. Based on the analysis of these, in catalytic applications, CeO{sub 2} has been shown to be effective in lowering the soot combustion temperature from 600 °C for the uncoated substrates to 370 °C for the CeO{sub 2} coated ones. It was found that the higher deposition temperatures had a positive effect on the catalyst performance.

  19. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    PubMed Central

    Snow, Samantha J.; McGee, John; Miller, Desinia B.; Bass, Virginia; Schladweiler, Mette C.; Thomas, Ronald F.; Krantz, Todd; King, Charly; Ledbetter, Allen D.; Richards, Judy; Weinstein, Jason P.; Conner, Teri; Willis, Robert; Linak, William P.; Nash, David; Wood, Charles E.; Elmore, Susan A.; Morrison, James P.; Johnson, Crystal L.; Gilmour, Matthew Ian; Kodavanti, Urmila P.

    2014-01-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe. PMID:25239632

  20. Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects.

    PubMed

    Snow, Samantha J; McGee, John; Miller, Desinia B; Bass, Virginia; Schladweiler, Mette C; Thomas, Ronald F; Krantz, Todd; King, Charly; Ledbetter, Allen D; Richards, Judy; Weinstein, Jason P; Conner, Teri; Willis, Robert; Linak, William P; Nash, David; Wood, Charles E; Elmore, Susan A; Morrison, James P; Johnson, Crystal L; Gilmour, Matthew Ian; Kodavanti, Urmila P

    2014-12-01

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe results in greater adverse pulmonary effects compared with DE. Male Sprague Dawley rats were exposed to filtered air, DE, or DECe for 5 h/day for 2 days. N-acetyl glucosaminidase activity was increased in bronchial alveolar lavage fluid (BALF) of rats exposed to DECe but not DE. There were also marginal but insignificant increases in several other lung injury biomarkers in both exposure groups (DECe > DE for all). To further characterize DECe toxicity, rats in a second study were exposed to filtered air or DECe for 5 h/day for 2 days or 4 weeks. Tissue analysis indicated a concentration- and time-dependent accumulation of lung and liver cerium followed by a delayed clearance. The gas-phase and high concentration of DECe increased lung inflammation at the 2-day time point, indicating that gas-phase components, in addition to particles, contribute to pulmonary toxicity. This effect was reduced at 4 weeks except for a sustained increase in BALF γ-glutamyl transferase activity. Histopathology and transmission electron microscopy revealed increased alveolar septa thickness due to edema and increased numbers of pigmented macrophages after DECe exposure. Collectively, these findings indicate that DECe induces more adverse pulmonary effects on a mass basis than DE. In addition, lung accumulation of cerium, systemic translocation to the liver, and delayed clearance are added concerns to existing health effects of DECe.

  1. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates

    NASA Astrophysics Data System (ADS)

    Naganuma, Tamaki; Traversa, Enrico

    2014-05-01

    Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce3+ and Ce4+ ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce3+ ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce3+ ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce3+ ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce3+ to Ce4+ occurred at 350 °C in air. Highly concentrated Ce3+ ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce3+ stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce3+ sites. This study also illuminates the potential interaction mechanisms of stable Ce3+ ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments.Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs

  2. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    SciTech Connect

    Marina, Olga A; Stevenson, Jeffry W

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  3. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  4. Cerium concentrate and mixed rare earth chloride by the oxidative decomposition of bastnaesite in molten sodium hydroxide

    SciTech Connect

    Iijima, Toshio; Kato, Kazuhiro; Kuno, Toyohiko; Okuwaki, Akitsugu; Umetsu, Yoshiaki; Okabe, Taijiro )

    1993-04-01

    Bastnaesite was treated in molten NaOH at 623-777 K for 10-60 min under atmosphere. Cerium-(III) in the ore was easily oxidized 95% or more within 30 min to give an oxidation product composed of solid solutions of CeO[sub 2]-rich and CeO[sub 2]-lean phases and Ce-free rare earth oxide phase. Simultaneously fluoride ion was removed 97% or more. Cerium concentrate was prepared from the oxidation product by leaching with 0.1-3 M HCl solution. The yield of cerium concentrate and the CeO[sub 2] content reached 55-57% and 70-72%, respectively. Mixed rare earth chloride is composed of about 90% rare earth chloride and 10% alkaline earth chloride, and the contents of CeCl[sub 3], LaCl[sub 3], NdCl[sub 3], and PrCl[sub 3] are 11.5, 58.5, 14.4, and 5.4%, respectively. The particle size of resulting cerium concentrate was fairly uniform and about 0.1 [mu]m.

  5. Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles

    EPA Science Inventory

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol develop...

  6. Evidence for an oxygen evolving iron-oxo-cerium intermediate in iron-catalysed water oxidation.

    PubMed

    Codolà, Zoel; Gómez, Laura; Kleespies, Scott T; Que, Lawrence; Costas, Miquel; Lloret-Fillol, Julio

    2015-01-22

    The non-haem iron complex α-[Fe(II)(CF3SO3)2(mcp)] (mcp=(N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)-1,2-cis-diaminocyclohexane) reacts with Ce(IV) to oxidize water to O2, representing an iron-based functional model for the oxygen evolving complex of photosystem II. Here we trap an intermediate, characterized by cryospray ionization high resolution mass spectrometry and resonance Raman spectroscopy, and formulated as [(mcp)Fe(IV)(O)(μ-O)Ce(IV)(NO3)3](+), the first example of a well-characterized inner-sphere complex to be formed in cerium(IV)-mediated water oxidation. The identification of this reactive Fe(IV)-O-Ce(IV) adduct may open new pathways to validate mechanistic notions of an analogous Mn(V)-O-Ca(II) unit in the oxygen evolving complex that is responsible for carrying out the key O-O bond forming step.

  7. Titanium-doped cerium oxide nanoparticles protect cells from hydrogen peroxide-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Clark, Andrea; Zhu, Aiping; Petty, Howard R.

    2013-12-01

    To develop new nanoparticle materials possessing antioxidative capacity with improved physical characteristics, we have studied titanium-doped cerium oxide (CeTiO2) nanoparticles. CeTiO2 nanoparticles had mode diameters in the range of 15-20 nm. These nanoparticles demonstrated catalase activity, and did not promote the activation of hemolytic or cytolytic pathways in living cells. Using surface plasmon resonance-enhanced microscopy, we find that these nanoparticles associate with cells. Transmission electron microscopy studies demonstrated that these nanoparticles accumulate within the vacuolar compartment of cells. Importantly, CeTiO2 nanoparticles decrease hydrogen peroxide-mediated apoptosis of cells as judged by the reduced cleavage of a caspase 3-sensitive label. CeTiO2 nanoparticles may contribute to deflecting tissue damage in a broad spectrum of oxidant-mediated diseases, such as macular degeneration and Alzheimer's disease.

  8. Corrosion resistance of flaky aluminum pigment coated with cerium oxides/hydroxides in chloride and acidic electrolytes

    NASA Astrophysics Data System (ADS)

    Niroumandrad, S.; Rostami, M.; Ramezanzadeh, B.

    2015-12-01

    The objective of this study was to enhance the corrosion resistance of lamellar aluminum pigment through surface treatment by cerium oxides/hydroxides. The surface composition of the pigments was studied by energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The corrosion resistance of the pigment was evaluated by conventional hydrogen evolution measurements in acidic solution and electrochemical impedance spectroscopy (EIS) in 3.5% NaCl solution. Results showed that the Ce-rich coating composed of Ce2O3 and CeO2 was precipitated on the pigment surface after immersion in the cerium solution. The corrosion resistance of pigment was significantly enhanced after modification with cerium layer.

  9. Computational and Experimental Study of the Thermodynamics of Uranium-Cerium Mixed Oxides

    NASA Astrophysics Data System (ADS)

    Hanken, Benjamin Edward

    The thermophysical properties of mixed oxide (MOX) fuels, and how they are influenced by the incorporation of fission products and other actinides, must be well understood for their safe use in an advanced fuel cycle. Cerium is a common plutonium surrogate in experimental studies of MOX, as it closely matches plutonium's ionic radii in the 3+ and 4+ oxidation states, and is soluble in fluorite-structured UO2. As a fission product, cerium's effects on properties of MOX are also of practical interest. To provide additional insights on structure-dependent behavior, urania solid solutions can be studied via density functional theory (DFT), although approaches beyond standard DFT are needed to properly account for the localized nature of the ƒ-electrons. In this work, DFT with Hubbard-U corrections (DFT+U) was employed to study the energetics of fluorite-structured U1-yCe yO2 mixtures. The employed computational approach makes use of a procedure which facilitates convergence of the calculations to multiple self-consistent DFT+U solutions for a given cation arrangement, corresponding to different charge states for the U and Ce ions in several prototypical cation arrangements. Results indicate a significant dependence of the structural and energetic properties of U1-yCeyO2 on the nature of both charge and cation ordering. With the effective Hubbard-U parameters that reproduce well the measured oxidation-reduction energies for urania and ceria, it was found that charge transfer between U4+ and Ce4+ ions, leading to the formation of U5+ and Ce3+, gives rise to an increase in the mixing energy in the range of 4-14 kJ/mol of the formula unit, depending on the nature of the cation ordering. In conjunction with the computational approach, high-temperature oxide-melt drop-solution calorimetry experiments were performed on eight samples spanning compositions of y = 0.119 to y = 0.815. Room temperature mixing enthalpies of U1-yCeyO2 determined from these experiments show near

  10. Epitaxial growth and structure of monolayer cerium oxide films on Rh(111)

    NASA Astrophysics Data System (ADS)

    Chan, Lap Hong; Yuhara, Junji

    2017-07-01

    We prepared monolayer cerium (Ce) oxide films on Rh(111) to investigate their growth and structure using scanning tunneling microscopy (STM), low-energy electron diffraction, X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) calculations. For quantitative analysis of Ce-oxide films, we used the combined techniques of XPS and Rutherford backscattering spectrometry to determine the concentration of Ce and O atoms. We prepared a monolayer (ML) Ce-oxide film by annealing a metallic Ce film at 0.3 ML coverage in an oxygen atmosphere. A well-ordered Ce-oxide phase with a (4×4) unit cell was obtained. The epitaxially grown Ce-oxide film aligned along the <110> azimuthal direction of Rh(111). The number of Ce and O atoms in the (4×4) unit cell was estimated. The STM images indicated that the two-dimensional island growth of the p(4×4) phase with p3m1 symmetry can be explained using the missing Ce atoms model. A simulated STM image of the p(4×4) structural model was in good agreement with the experimental STM image. The formation of Ce-oxide films on Rh(111) at submonolayer coverage was discussed on the basis of the results of DFT+U calculations.

  11. Antioxidation of Cerium Oxide Nanoparticles to Several Series of Oxidative Damage Related to Type II Diabetes Mellitus In Vitro

    PubMed Central

    Zhai, Jing-hui; Wu, Yi; Wang, Xiao-ying; Cao, Yue; Xu, Kan; Xu, Li; Guo, Yi

    2016-01-01

    Background It is well known that cerium oxide nanoparticles (CeNPs) have intense antioxidant activity. The antioxidant property of CeNPs are widely used in different areas of research, but little is known about the oxidative damage of Cu2+ associated with Type II diabetes mellitus (T2DM). Material/Methods In our research, the function of CeNPs was tested for its protection of β-cells from the damage of Cu2+ or H2O2. We detected hydroxyl radicals using terephthalic acid assay, hydrogen peroxide using Amplex Ultra Red assay, and cell viability using MTT reduction. Results We found that CeNPs can persistently inhibit Cu2+/H2O2 evoked hydroxyl radicals and hydrogen peroxide in oxidative stress of β-cells. Conclusions CeNPs will be useful in developing strategies for the prevention of T2DM. PMID:27752033

  12. Freshwater dispersion stability of PAA-stabilised cerium oxide nanoparticles and toxicity towards Pseudokirchneriella subcapitata.

    PubMed

    Booth, Andy; Størseth, Trond; Altin, Dag; Fornara, Andrea; Ahniyaz, Anwar; Jungnickel, Harald; Laux, Peter; Luch, Andreas; Sørensen, Lisbet

    2015-02-01

    An aqueous dispersion of poly (acrylic acid)-stabilised cerium oxide (CeO₂) nanoparticles (PAA-CeO₂) was evaluated for its stability in a range of freshwater ecotoxicity media (MHRW, TG 201 and M7), with and without natural organic matter (NOM). In a 15 day dispersion stability study, PAA-CeO₂ did not undergo significant aggregation in any media type. Zeta potential varied between media types and was influenced by PAA-CeO₂ concentration, but remained constant over 15 days. NOM had no influence on PAA-CeO₂ aggregation or zeta potential. The ecotoxicity of the PAA-CeO₂ dispersion was investigated in 72 h algal growth inhibition tests using the freshwater microalgae Pseudokirchneriella subcapitata. PAA-CeO₂ EC₅₀ values for growth inhibition (GI; 0.024 mg/L) were 2-3 orders of magnitude lower than pristine CeO₂ EC₅₀ values reported in the literature. The concentration of dissolved cerium (Ce(3+)/Ce(4+)) in PAA-CeO₂ exposure suspensions was very low, ranging between 0.5 and 5.6 μg/L. Free PAA concentration in the exposure solutions (0.0096-0.0384 mg/L) was significantly lower than the EC10 growth inhibition (47.7 mg/L) value of pure PAA, indicating that free PAA did not contribute to the observed toxicity. Elemental analysis indicated that up to 38% of the total Cerium becomes directly associated with the algal cells during the 72 h exposure. TOF-SIMS analysis of algal cell wall compounds indicated three different modes of action, including a significant oxidative stress response to PAA-CeO₂ exposure. In contrast to pristine CeO₂ nanoparticles, which rapidly aggregate in standard ecotoxicity media, PAA-stabilised CeO₂ nanoparticles remain dispersed and available to water column species. Interaction of PAA with cell wall components, which could be responsible for the observed biomarker alterations, could not be excluded. This study indicates that the increased dispersion stability of PAA-CeO₂ leads to an increase in toxicity compared to

  13. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments

    PubMed Central

    Das, Soumen; Singh, Sanjay; Dowding, Janet M.; Oommen, Saji; Kumar, Amit; Sayle, Thi X. T.; Saraf, Shashank; Patra, Chitta Ranjan; Vlahakis, Nicholas E.; Sayle, Dean C.; Self, William T.; Seal, Sudipta

    2012-01-01

    Angiogenesis is the formation of new blood vessels from existing blood vessels and is critical for many physiological and pathophysiological processes. In this study we have shown the unique property of cerium oxide nanoparticle (CNPs) to induce angiogenesis, observed using both in vitro and in vivo model systems. In particular, CNPs trigger angiogenesis by modulating the intracellular oxygen environment and stabilizing hypoxia inducing factor 1α endogenously. Furthermore, correlations between angiogenesis induction and CNPs physicochemical properties including: surface Ce3+/Ce4+ ratio, surface charge, size, and shape were also explored. High surface area and increased Ce3+/Ce4+ ratio make CNPs more catalytically active towards regulating intracellular oxygen, which in turn led to more robust induction of angiogenesis. Atomistic simulation was also used, in partnership with in vitro and in vivo experimentation, to reveal that the surface reactivity of CNPs and facile oxygen transport promotes pro-angiogenesis. PMID:22858004

  14. Brain suppression of AP-1 by inhaled diesel exhaust and reversal by cerium oxide nanoparticles.

    PubMed

    Lung, Shyang; Cassee, Flemming R; Gosens, Ilse; Campbell, Arezoo

    2014-08-01

    One of the uses of cerium oxide nanoparticles (nanoceria, CeO2) is as a diesel fuel additive to improve fuel efficiency. Gene/environment interactions are important determinants in the etiology of age-related disorders. Thus, it is possible that individuals on high-fat diet and genetic predisposition to vascular disease may be more vulnerable to the adverse health effects of particle exposure. The aim of this pilot study was to test the hypothesis that inhalation of diesel exhaust (DE) or diesel exhaust-containing cerium oxide nanoparticles (DCeE) induces stress in the brain of a susceptible animal model. Atherosclerotic prone, apolipoprotein E knockout (ApoE(-/-)) mice fed a high-fat diet, were exposed by inhalation to purified air (control), DE or DCeE. The stress-responsive transcription factor, activator protein-1 (AP-1), was significantly decreased in the cortical and subcortical fraction of the brain after DE exposure. The addition of nanoceria to the diesel fuel reversed this effect. The activation of another stress-related transcription factor (NF-κB) was not inhibited. AP-1 is composed of complexes of the Jun and/or Fos family of proteins. Exposure to DCeE caused c-Jun activation and this may be a mechanism by which addition of nanoceria to the fuel reversed the effect of DE exposure on AP-1 activation. This pilot study demonstrates that exposure to DE does impact the brain and addition of nanoceria may be protective. However, more extensive studies are necessary to determine how DE induced reduction of AP-1 activity and compensation by nanoceria impacts normal function of the brain.

  15. Destruction of commercial pesticides by cerium redox couple mediated electrochemical oxidation process in continuous feed mode.

    PubMed

    Balaji, Subramanian; Chung, Sang Joon; Ryu, Jae-Yong; Moon, Il Shik

    2009-12-30

    Mediated electrochemical oxidation was carried out for the destruction of commercial pesticide formulations using cerium(IV) in nitric acid as the mediator electrolyte solution in a bench scale set up. The mediator oxidant was regenerated in situ using an electrochemical cell. The real application of this sustainable process for toxic organic pollutant destruction lies in its ability for long term continuous operation with continuous organic feeding and oxidant regeneration with feed water removal. In this report we present the results of fully integrated MEO system. The task of operating the continuous feed MEO system for a long time was made possible by continuously removing the feed water using an evaporator set up. The rate of Ce(IV) regeneration in the electrochemical cell and the consumption for the pesticide destruction was matched based on carbon content of the pesticides. It was found that under the optimized experimental conditions for Ce(III) oxidation, organic addition and water removal destruction efficiency of ca. 99% was obtained for all pesticides studied. It was observed that the Ce(IV) concentration was maintained nearly the same throughout the experiment. The stable operation for 6h proved that the process can be used for real applications and for possible scale up for the destruction of larger volumes of toxic organic wastes.

  16. Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making

    DOEpatents

    Willigan, Rhonda R [Manchester, CT; Vanderspurt, Thomas Henry [Glastonbury, CT; Tulyani, Sonia [Manchester, CT; Radhakrishnan, Rakesh [Vernon, CT; Opalka, Susanne Marie [Glastonbury, CT; Emerson, Sean C [Broad Brook, CT

    2011-01-18

    A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.

  17. Reaction chemistry of cerium

    SciTech Connect

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  18. Potential of using cerium oxide nanoparticles for protecting healthy tissue during accelerated partial breast irradiation (APBI)

    PubMed Central

    Ouyang, Zi; Mainali, Madan Kumar; Sinha, Neeharika; Strack, Guinevere; Altundal, Yucel; Hao, Yao; Winningham, Thomas Andrew; Sajo, Erno; Celli, Jonathan; Ngwa, Wilfred

    2016-01-01

    The purpose of this study is to investigate the feasibility of using cerium oxide nanoparticles (CONPs) as radical scavengers during accelerated partial breast irradiation (APBI) to protect normal tissue. We hypothesize that CONPs can be slowly released from the routinely used APBI balloon applicators—via a degradable coating—and protect the normal tissue on the border of the lumpectomy cavity over the duration of APBI. To assess the feasibility of this approach, we analytically calculated the initial concentration of CONPs required to protect normal breast tissue from reactive oxygen species (ROS) and the time required for the particles to diffuse to various distances from the lumpectomy wall. Given that cerium has a high atomic number, we took into account the possible inadvertent dose enhancement that could occur due to the photoelectric interactions with radiotherapy photons. To protect against a typical MammoSite treatment fraction of 3.4 Gy, 5 ng-g−1 of CONPs is required to scavenge hydroxyl radicals and hydrogen peroxide. Using 2 nm sized NPs, with an initial concentration of 1 mg-g−1, we found that 2–10 days of diffusion is required to obtain desired concentrations of CONPs in regions 1–2 cm away from the lumpectomy wall. The resultant dose enhancement factor (DEF) is less than 1.01 under such conditions. Our results predict that CONPs can be employed for radioprotection during APBI using a new design in which balloon applicators are coated with the NPs for sustained/controlled in-situ release from within the lumpectomy cavity. PMID:27053452

  19. Effect of polyvinylpyrrolidone on cerium oxide nanoparticle characteristics prepared by a facile heat treatment technique

    NASA Astrophysics Data System (ADS)

    Baqer, Anwar Ali; Matori, Khamirul Amin; Al-Hada, Naif Mohammed; Shaari, Abdul Halim; Saion, Elias; Chyi, Josephine Liew Ying

    An aqueous medium composed of polyvinylpyrrolidone (PVP) and cerium nitrates at calcination temperature was utilised in the production of cerium oxide (CeO2) semiconductor nanoparticles. A variety of analytical approaches was utilized to examine the structural, morphological and optical characteristics of the resulting nanoparticles. Differential thermal (DTA) and thermogravimetric (TGA) analyses, indicated that the best calcination temperatures for achieving CeO2 nanoparticle production were more than 485 °C. The results from Fourier-transform infrared (FTIR) verified the formation of a crystalline structure after calcination procedures were performed to remove residual organic compounds. Additionally, results from X-ray diffraction (XRD) analysis confirmed the cubic fluorite structure of the CeO2 produced. Samples were also analysed by energy dispersive spectroscopy (EDXA) which indicated the existence of O and Ce in the samples. Field emission scanning electron microscopy (FESEM) was used in the characterisation of nanoparticle morphological features. Transmission electron microscopy (TEM) was employed to estimate typical nanoparticle and distribution within sample. This analysis indicated that mean particle sizes were inversely correlated with PVP concentration, with nanoparticle sizes ranging between 12 ± 7 nm at 0.03 g/mL PVP and 6 ± 2 nm at 0.05 g/mL PVP. These results corroborated those obtained by XRD analysis. A UV-vis spectrophotometer was utilised in the demonstration of optical properties and to examine the band gap energy of samples. The potential UV-shielding properties of the nanoparticles were demonstrated by the observed blue shift of the estimated optical energy band, i.e. from 3.35 to 3.43 eV, whilst PL spectra results indicated that decreasing particle size was associated with diminishing photoluminescence intensity.

  20. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis.

    PubMed

    Ma, Jane Y C; Young, Shih-Houng; Mercer, Robert R; Barger, Mark; Schwegler-Berry, Diane; Ma, Joseph K; Castranova, Vincent

    2014-07-15

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO2) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO2 on the pulmonary system in a rat model. Specific pathogen-free male Sprague-Dawley rats were exposed to CeO2 and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO2 induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO2 and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO2, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP+CeO2 were significantly larger than CeO2 or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP+CeO2 reflects the combination of DEP-exposure plus CeO2-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO2 induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO2 in the combined exposure. Using CeO2 as diesel fuel catalyst may cause health concerns.

  1. Potential of using cerium oxide nanoparticles for protecting healthy tissue during accelerated partial breast irradiation (APBI).

    PubMed

    Ouyang, Zi; Mainali, Madan Kumar; Sinha, Neeharika; Strack, Guinevere; Altundal, Yucel; Hao, Yao; Winningham, Thomas Andrew; Sajo, Erno; Celli, Jonathan; Ngwa, Wilfred

    2016-04-01

    The purpose of this study is to investigate the feasibility of using cerium oxide nanoparticles (CONPs) as radical scavengers during accelerated partial breast irradiation (APBI) to protect normal tissue. We hypothesize that CONPs can be slowly released from the routinely used APBI balloon applicators-via a degradable coating-and protect the normal tissue on the border of the lumpectomy cavity over the duration of APBI. To assess the feasibility of this approach, we analytically calculated the initial concentration of CONPs required to protect normal breast tissue from reactive oxygen species (ROS) and the time required for the particles to diffuse to various distances from the lumpectomy wall. Given that cerium has a high atomic number, we took into account the possible inadvertent dose enhancement that could occur due to the photoelectric interactions with radiotherapy photons. To protect against a typical MammoSite treatment fraction of 3.4Gy, 5ng·g(-1) of CONPs is required to scavenge hydroxyl radicals and hydrogen peroxide. Using 2nm sized NPs, with an initial concentration of 1mg·g(-1), we found that 2-10days of diffusion is required to obtain desired concentrations of CONPs in regions 1-2cm away from the lumpectomy wall. The resultant dose enhancement factor (DEF) is less than 1.01 under such conditions. Our results predict that CONPs can be employed for radioprotection during APBI using a new design in which balloon applicators are coated with the NPs for sustained/controlled in-situ release from within the lumpectomy cavity.

  2. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    PubMed Central

    Ma, Jane Y.C.; Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Ma, Joseph K.; Castranova, Vincent

    2015-01-01

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO2) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO2 on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO2 and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO2 induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO2 and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO2, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO2 were significantly larger than CeO2 or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO2 reflects the combination of DEP-exposure plus CeO2-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO2 induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO2 in the combined exposure. Using CeO2 as diesel fuel catalyst may cause health concerns. PMID:24793434

  3. Adsorption and Reaction of Methanethiol on Thin-Film Cerium Oxide

    SciTech Connect

    Mullins, David R; McDonald, Tom S

    2008-01-01

    The adsorption and reaction of methanethiol, CH{sub 3}SH, have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The behavior of the CH{sub 3}SH was examined as a function of the Ce oxidation state. CH{sub 3}SH weakly interacts with fully oxidized CeO{sub 2}(1 1 1) forming both chemisorbed CH{sub 3}SH and CH{sub 3}S + OH. OH forms through the reaction of the sulfhydrol H with the surface O. These species recombine and desorb near 180 K leaving the surface virtually clean. When the ceria is ca. 50% reduced, the chemisorbed CH{sub 3}SH desorbs near 150 K while the CH{sub 3}S + OH are stable to 400 K. These species react above 450 K to produce predominantly CH{sub 4} and CH{sub 3}SH. A small amount of CH{sub 2}O and water are also formed through reaction with the O in the ceria. Atomic S is left on the surface. S 2p, C 1s and O 1s soft X-ray photoelectron spectroscopy were used to identify the nature of the chemisorbed species and the adsorption site of the CH{sub 3}S or S.

  4. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states

    NASA Astrophysics Data System (ADS)

    Pulido-Reyes, Gerardo; Rodea-Palomares, Ismael; Das, Soumen; Sakthivel, Tamil Selvan; Leganes, Francisco; Rosal, Roberto; Seal, Sudipta; Fernández-Piñas, Francisca

    2015-10-01

    Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main driver of toxicity was found to be the percentage of surface content of Ce3+ sites: CNP1 (58%) and CNP5 (40%) were found to be toxic whereas CNP2 (28%), CNP3 (36%) and CNP4 (26%) were found to be non-toxic. The colloidal stability and redox chemistry of the most and least toxic CNPs, CNP1 and CNP2, respectively, were modified by incubation with iron and phosphate buffers. Blocking surface Ce3+ sites of the most toxic CNP, CNP1, with phosphate treatment reverted toxicity and stimulated growth. Colloidal destabilization with Fe treatment only increased toxicity of CNP1. The results of this study are relevant in the understanding of the main drivers of biological activity of nanoceria and to define global descriptors of engineered nanoparticles (ENPs) bioactivity which may be useful in safer-by-design strategies of nanomaterials.

  5. Cerium Oxide Nanoparticles Decorated Graphene Nanosheets for Selective Detection of Dopamine.

    PubMed

    Nayak, Pranati; Santhosh, P N; Ramaprabhu, S

    2015-07-01

    The fabrication of a novel amperometric biosensor based on selective determination of dopamine (DA) using nafion coated cerium oxide nanoparticles (NPs) decorated graphene nanosheets (CeO2-HEG-nafion) as a transducer candidate is reported. Graphene was synthesized by hydrogen exfoliation technique. Decoration of CeO2NPs over graphene nanosheets was done by chemical reduction method. The electrochemical impedance spectroscopy (EIS) study shows the enhanced electron transfer kinetics of the composite compared to HEG modified and bare glassy carbon electrode (GCE). The response of the composite towards dopamine displays a lower oxidation potential of 0.23 V and a high oxidation current. The sensor exhibits linearity from 10 µM to 780 µM with a detection limit of 1 µM. In the presence of nafion, it shows excellent selectivity for coexisting interference species like Ascorbic acid (AA) and Uric acid (UA). The excellent performance of the biosensor can be attributed to large active surface area, enhanced electron transfer kinetics and high catalytic activity of the composite.

  6. Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states

    PubMed Central

    Pulido-Reyes, Gerardo; Rodea-Palomares, Ismael; Das, Soumen; Sakthivel, Tamil Selvan; Leganes, Francisco; Rosal, Roberto; Seal, Sudipta; Fernández-Piñas, Francisca

    2015-01-01

    Cerium oxide nanoparticles (nanoceria; CNPs) have been found to have both pro-oxidant and anti-oxidant effects on different cell systems or organisms. In order to untangle the mechanisms which underlie the biological activity of nanoceria, we have studied the effect of five different CNPs on a model relevant aquatic microorganism. Neither shape, concentration, synthesis method, surface charge (ζ-potential), nor nominal size had any influence in the observed biological activity. The main driver of toxicity was found to be the percentage of surface content of Ce3+ sites: CNP1 (58%) and CNP5 (40%) were found to be toxic whereas CNP2 (28%), CNP3 (36%) and CNP4 (26%) were found to be non-toxic. The colloidal stability and redox chemistry of the most and least toxic CNPs, CNP1 and CNP2, respectively, were modified by incubation with iron and phosphate buffers. Blocking surface Ce3+ sites of the most toxic CNP, CNP1, with phosphate treatment reverted toxicity and stimulated growth. Colloidal destabilization with Fe treatment only increased toxicity of CNP1. The results of this study are relevant in the understanding of the main drivers of biological activity of nanoceria and to define global descriptors of engineered nanoparticles (ENPs) bioactivity which may be useful in safer-by-design strategies of nanomaterials. PMID:26489858

  7. Cerium oxide nanoparticles prevent apoptosis in primary cortical culture by stabilizing mitochondrial membrane potential.

    PubMed

    Arya, A; Sethy, N K; Das, M; Singh, S K; Das, A; Ujjain, S K; Sharma, R K; Sharma, M; Bhargava, K

    2014-07-01

    Cerium oxide nanoparticles (CNPs) of spherical shape have unique antioxidant capacity primarily due to alternating + 3 and + 4 oxidation states and crystal defects. Several studies revealed the protective efficacies of CNPs in cells and tissues against the oxidative damage. However, its effect on mitochondrial functioning, downstream effectors of radical burst and apoptosis remains unknown. In this study, we investigated whether CNPs treatment could protect the primary cortical cells from loss of mitochondrial membrane potential (Δψm) and Δψm-dependent cell death. CNPs with spherical morphology and size range 7-10 nm were synthesized and utilized at a concentration of 25 nM on primary neuronal culture challenged with 50 μM of hydrogen peroxide (H2O2). We showed that optimal dose of CNPs minimized ROS content of the cells and also curbed related surge in cellular calcium flux. Importantly, CNPs treatment prevented apoptotic loss of cell viability. Reduction in the apoptosis could be successfully attributed to the maintenance of Δψm and restoration of major redox equivalents NADH/NAD(+) ratio and cellular ATP. These findings, therefore, suggest possible route of CNPs protective efficacies in primary cortical culture.

  8. Effective medium approximation of the optical properties of electrochromic cerium-titanium oxide compounds

    SciTech Connect

    Rottkay, K. von; Richardson, T.; Rubin, M.; Slack, J.

    1997-07-01

    Cerium titanium oxide samples derived from a solution have been compared against sputtered films over a wide range of different compositions. X-ray diffraction was used to investigate the structural properties of the compound material existing in a two-phase mixture M{sub A}O{sub 2}-M{sub B}O{sub 2}. The optical properties were evaluated over the whole solar spectrum by variable angle spectroscopic ellipsometry combined with spectrophotometry. The spectral complex refractive index was determined for CeO{sub 2} and TiO{sub 2}, as well as for their compounds. To reduce the large number of permutations in composition of multi-component oxides it would be useful to be able to predict the properties of the mixtures from the pure oxide components. Therefore these results were compared to those obtained by effective medium theory utilizing the optical constants of CeO{sub 2} and TiO{sub 2}. In order to investigate the performance as passive counter-electrode in Li{sup +} based electrochromic devices the films were tested by cyclic voltammetry with in-situ transmission control. Chemical composition was measured by Rutherford backscattering spectrometry. Surface morphology was analyzed by atomic force microscopy.

  9. Adsorption and reaction of methanethiol on thin-film cerium oxide

    NASA Astrophysics Data System (ADS)

    Mullins, D. R.; McDonald, T. S.

    2008-03-01

    The adsorption and reaction of methanethiol, CH 3SH, have been studied on cerium oxide thin films that were vapor deposited on Ru(0 0 0 1). The behavior of the CH 3SH was examined as a function of the Ce oxidation state. CH 3SH weakly interacts with fully oxidized CeO 2(1 1 1) forming both chemisorbed CH 3SH and CH 3S + OH. OH forms through the reaction of the sulfhydrol H with the surface O. These species recombine and desorb near 180 K leaving the surface virtually clean. When the ceria is ca. 50% reduced, the chemisorbed CH 3SH desorbs near 150 K while the CH 3S + OH are stable to 400 K. These species react above 450 K to produce predominantly CH 4 and CH 3SH. A small amount of CH 2O and water are also formed through reaction with the O in the ceria. Atomic S is left on the surface. S 2p, C 1s and O 1s soft X-ray photoelectron spectroscopy were used to identify the nature of the chemisorbed species and the adsorption site of the CH 3S or S.

  10. An emulsifier-free RAFT-mediated process for the efficient synthesis of cerium oxide/polymer hybrid latexes.

    PubMed

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; Vanderveken, Yves; van Herk, Alex M

    2012-08-28

    Hybrid latexes based on cerium oxide nanoparticles are synthesized via an emulsifier-free process of emulsion polymerization employing amphiphatic macro-RAFT agents. Poly(butyl acrylate-co-acrylic acid) random oligomers of various compositions and chain lengths are first obtained by RAFT copolymerization in the presence of a trithiocarbonate as controlling agent. In a second step, the seeded emulsion copolymerization of styrene and methyl acrylate is carried out in the presence of nanoceria with macro-RAFT agents adsorbed at their surface, resulting in a high incorporation efficiency of cerium oxide nanoparticles in the final hybrid latexes, as evidenced by cryo-transmission electron microscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Real-time observation of dynamic process of oxygen vacancy migration in cerium oxides under electric field

    SciTech Connect

    Li, Xiaomin; Qi, Kuo; Sun, Muhua; Huang, Qianming; Xu, Zhi E-mail: xdbai@iphy.ac.cn; Wang, Wenlong; Bai, Xuedong E-mail: xdbai@iphy.ac.cn

    2015-11-23

    The dynamic process of oxygen vacancy migration driven by the external electric field is directly observed at atomic scale in the cerium oxides (CeO{sub 2}) thin film by in-situ transmission electron microscopy method. When a bias voltage of a proper value is applied across the CeO{sub 2} film, the oxygen vacancies are formed near the interface of CeO{sub 2}/anode, followed by their migration along the direction of the external electric field. The structural modulation occurs in the [110] zone axis due to the ordering of oxygen vacancies. The migration of oxygen vacancies results in the reversible structural transformation, i.e., releasing and storing oxygen processes in CeO{sub 2}, which is of great significance for the ionic and electronic applications of the cerium oxides materials, such as oxygen pump, gas sensor, resistive random access memory, etc.

  12. Enzyme-free Detection of Hydrogen Peroxide from Cerium Oxide Nanoparticles Immobilized on Poly(4-vinylpyridine) Self-Assembled Monolayers

    SciTech Connect

    Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Seal, Sudipta; Thevuthasan, Suntharampillai

    2013-05-02

    A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.

  13. Preparation and Defluorination Performance of Activated Cerium(IV) Oxide/SiMCM-41 Adsorbent in Water.

    PubMed

    Xu, Ying-Ming; Ning, An-Rong; Zhao, Jing

    2001-03-01

    By using the wetness impregnation-coprecipitation method, a new adsorbent, cerium(IV) oxide coated on SiMCM-41 ((Ce)SiMCM-41), was prepared for removal of fluoride ions from water. Factors investigated were number of impregnations, Ce/Si ratios, concentrations of F(-) ions, pH values, and calcination temperatures. The dynamics, isotherms, and mechanism of adsorption of F(-) ions were discussed. Copyright 2001 Academic Press.

  14. Getting the most out of your cerium oxide glass polishing slurry: reducing risk and improving performance with plasma produced particles

    NASA Astrophysics Data System (ADS)

    Murray, Patrick G.; Hooper, Abigail; Keleher, Jason; Kaiser, Jordan; Nichol, Meghan

    2013-09-01

    Recent dramatic price volatility and assurance of supply concerns with cerium oxide have left many users of this material in an uncertain and vulnerable position. Since few viable alternatives to ceria for precision glass polishing exist, and much of the supply is very concentrated geographically, technology which conserves ceria, improves absolute removal rate and promotes slurry longevity becomes extremely attractive under these circumstances. Using a plasma-based process to produce cerium oxide confers some unique attributes to the particles which make them particularly well suited for precision glass polishing operations. Many of those same particle characteristics, such as full crystallinity, near theoretical density, very high surface and bulk purity and extremely high zeta potentials in water can also be useful in mitigating the risks associated with a limited and costly ceria supply. This paper will explore how plasma-derived particles, in combination with a high performance chemistry package, can together constitute a fully formulated precision glass polishing slurry with very high activity, extended slurry lifetime, ability to recycle, and excellent overall process economics. Results showing the effect of particle longevity and chemical additives on removal rate and process stability will be discussed in detail, and selected examples which distinguish the benefits of a fully formulated, plasma-derived cerium oxide polishing slurry over conventional milled ceria will be shown.

  15. Evaluation of cerium oxide coated Cu cermets as inert anodes for aluminum electrowinning

    SciTech Connect

    Not Available

    1992-08-01

    Cu/NiFe{sub 2}O{sub 4} cermets were evaluated, with and without an in-situ deposited CEROX (TM; cerium oxide) coating, in 100 h laboratory A1 electrowinning tests. Bath ratio and current density were varied between tests and corrosion was determined by contamination of the aluminum and cryolite by cermet components (Cu, Fe, and Ni). Higher bath ratios of 1.5 to 1.6 led to less corrosion and thicker CEROX coatings. Lower current densities led to slightly less corrosion but much less oxidation of the Cu cermet substrate. At identical test conditions, the corrosion of the CEROX coated cermets was 1/7 that of an uncoated cermet. Corrosion was increased in CEROX coated cermets tested under unsaturated alumina conditions. The electrical conductivity of the CEROX coating was measured to be {approximately}0.2 ohm{sup {minus}1}cm{sup {minus}1}, resulting in a slight voltage penalty, depending on the thickness of the coating.

  16. A nanostructured cerium oxide film-based immunosensor for mycotoxin detection

    NASA Astrophysics Data System (ADS)

    Kaushik, Ajeet; Rathee Solanki, Pratima; Ansari, Anees Ahmad; Ahmad, Sharif; Dhar Malhotra, Bansi

    2009-02-01

    Rabbit-immunoglobulin antibodies (r-IgGs) and bovine serum albumin (BSA) have been immobilized onto sol-gel-derived nanostructured cerium oxide (nanoCeO2) film fabricated onto an indium-tin-oxide (ITO) coated glass plate to detect ochratoxin-A (OTA). Broad reflection planes obtained in x-ray diffraction (XRD) patterns reveal the formation of CeO2 nanostructures. Electrochemical studies reveal that nanoCeO2 particles provide an increased electroactive surface area for loading of r-IgGs with desired orientation, resulting in enhanced electron communication between r-IgGs and electrode. BSA/r-IgGs/nano CeO2/ITO immunoelectrode exhibits improved characteristics such as linear range (0.5-6 ng dl-1), low detection limit (0.25 ng dl-1), fast response time (30 s) and high sensitivity (1.27 µA ng-1 dl-1 cm-2). The high value of the association constant (Ka, 0.9 × 1011 l mol-1) indicates the high affinity of the BSA/r-IgGs/nanoCeO2/ITO immunoelectrode to OTA.

  17. Bio-therapeutic Potential and Cytotoxicity Assessment of Pectin-Mediated Synthesized Nanostructured Cerium Oxide.

    PubMed

    Patil, Sandeep N; Paradeshi, Jayasinh S; Chaudhari, Prapti B; Mishra, Satyendra J; Chaudhari, Bhushan L

    2016-10-01

    In the present studies, renewable and nontoxic biopolymer, pectin, was extracted from Indian red pomelo fruit peels and used for the synthesis of cerium oxide nanoparticles (CeO2-NPs) having bio-therapeutic potential. The structural information of extracted pectin was investigated by FTIR and NMR spectroscopic techniques. Physicochemical characteristics of this pectin suggested its application in the synthesis of metal oxide nanoparticles. Using this pectin as a template, CeO2-NPs were synthesized by simple, one step and eco-friendly approach. The UV-Vis spectrum of synthesized CeO2-NPs exhibited a characteristic absorption peak at wavelength 345 nm, which can be assigned to its intrinsic band gap (3.59 eV) absorption. Photoluminescence measurements of CeO2-NPs revealed that the broad emission was composed of seven different bands. FTIR analysis ensured involvement of pectin in the formation and stabilization of CeO2-NPs. FT-Raman spectra showed a sharp Raman active mode peak at 461.8 cm(-1) due to a symmetrical stretching mode of Ce-O vibration. DLS, FESEM, EDX, and XRD analysis showed that the CeO2-NPs prepared were polydispersed, spherical shaped with a cubic fluorite structure and average particle size ≤40 nm. These CeO2-NPs displayed broad spectrum antimicrobial activity, antioxidant potential, and non-cytotoxic nature.

  18. Gold-supported cerium-doped NiOx catalysts for water oxidation

    NASA Astrophysics Data System (ADS)

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; Chakthranont, Pongkarn; Kirk, Charlotte; Vojvodic, Aleksandra; Jaramillo, Thomas F.

    2016-05-01

    The development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiOx films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeOx-Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highly active under-coordinated sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeOx-Au catalyst is further demonstrated in a device context by pairing it with a nickel-molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.

  19. Evidence for an oxygen evolving iron–oxo–cerium intermediate in iron-catalysed water oxidation

    PubMed Central

    Codolà, Zoel; Gómez, Laura; Kleespies, Scott T.; Que, Lawrence; Costas, Miquel; Lloret-Fillol, Julio

    2016-01-01

    The non-haem iron complex α-[FeII(CF3SO3)2(mcp)] (mcp = (N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)-1,2-cis-diaminocyclohexane) reacts with CeIV to oxidize water to O2, representing an iron-based functional model for the oxygen evolving complex of photosystem II. Here we trap an intermediate, characterized by cryospray ionization high resolution mass spectrometry and resonance Raman spectroscopy, and formulated as [(mcp)FeIV(O) (μ-O)CeIV(NO3)3]+, the first example of a well-characterized inner-sphere complex to be formed in cerium(IV)-mediated water oxidation. The identification of this reactive FeIV–O–CeIV adduct may open new pathways to validate mechanistic notions of an analogous MnV–O–CaII unit in the oxygen evolving complex that is responsible for carrying out the key O–O bond forming step. PMID:25609387

  20. Gold-supported cerium-doped NiOx catalysts for water oxidation

    DOE PAGES

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; ...

    2016-04-29

    Here, the development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiOx films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeOx–Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highly active under-coordinatedmore » sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeOx–Au catalyst is further demonstrated in a device context by pairing it with a nickel–molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.« less

  1. A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity.

    PubMed

    Caputo, Fanny; Mameli, Marta; Sienkiewicz, Andrzej; Licoccia, Silvia; Stellacci, Francesco; Ghibelli, Lina; Traversa, Enrico

    2017-07-05

    Cerium oxide nanoparticles (CNPs) are novel synthetic antioxidant agents proposed for treating oxidative stress-related diseases. The synthesis of high-quality CNPs for biomedical applications remains a challenging task. A major concern for a safe use of CNPs as pharmacological agents is their tendency to agglomerate. Herein we present a simple direct precipitation approach, exploiting ethylene glycol as synthesis co-factor, to synthesize at room temperature nanocrystalline sub-10 nm CNPs, followed by a surface silanization approach to improve nanoparticle dispersibility in biological fluids. CNPs were characterized using transmission electron microscopy (TEM) observations, X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), Fourier-transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance ((1)H-NMR) spectroscopy, dynamic light scattering (DLS) and zeta potential measurements. CNP redox activity was studied in abiotic systems using electron spin resonance (ESR) measurements, and in vitro on human cell models. In-situ silanization improved CNP colloidal stability, in comparison with non-functionalized particles, and allowed at the same time improving their original biological activity, yielding thus functionalized CNPs suitable for biomedical applications.

  2. Hydrogen peroxide sensor based on horseradish peroxidase immobilized nanostructured cerium oxide film.

    PubMed

    Ansari, Anees A; Solanki, Pratima R; Malhotra, B D

    2009-06-15

    Nanostructured cerium oxide (NanoCeO(2)) film deposited onto indium-tin-oxide (ITO) glass substrate by solution casting has been used for immobilization of horseradish peroxidase (HRP) via physiosorption technique. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis and electrochemical techniques have been utilized for characterization of NanoCeO(2)/ITO electrode and HRP/NanoCeO(2)/ITO bioelectrode. The HRP/NanoCeO(2)/ITO electrode exhibits value of the apparent Michaelis-Menten constant (K(m)) as 2.21 microM, linear regression coefficient as 0.998 and linearity for hydrogen peroxide as 1.0-170 microM obtained using electrochemical response measurements. Besides this, HRP/NanoCeO(2)/ITO bioelectrode can be used about 20 times and is stable for 5 weeks at 4 degrees C. The results of photo-response studies carried out on HRP/NanoCeO(2)/ITO bioelectrode indicate reasonable agreement with those obtained using amperometric technique.

  3. Electrochemical Urea Biosensor Based on Sol-gel Derived Nanostructured Cerium Oxide

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Azahar, Md; Malhotra, B. D.

    2012-04-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been co-immobilized onto a nanostructured-cerium oxide (Nano-CeO2) film deposited onto a indium-tin-oxide (ITO) coated glass substrate by dip-coating via sol-gel process for urea detection. This nanostructured film has characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscope (SEM) and electrochemical techniques, respectively. The particle size of the Nano-CeO2 film has been found to be 23 nm. Electrochemcial response (CV) studies show that Ur-GLDH/Nano-CeO2/ITO bioelectrode is found to be sensitive in the 10-80 mg/dL urea concentration range and can detect urea concentration upto 0.1 mg/dL level. The value of Michaelis-Menten constant (Km) estimated using Lineweaver-Burke plot found as 6.09 mg/dL indicates enhancement in the affinity and/or activity of enzyme attached to their nanobiocomposite. This bioelectrode retained 95% of enzyme activity after 6 months at 4°C.

  4. Gold-supported cerium-doped NiOx catalysts for water oxidation

    SciTech Connect

    Ng, Jia Wei Desmond; García-Melchor, Max; Bajdich, Michal; Chakthranont, Pongkarn; Kirk, Charlotte; Vojvodic, Aleksandra; Jaramillo, Thomas F.

    2016-04-29

    Here, the development of high-performance catalysts for the oxygen-evolution reaction (OER) is paramount for cost-effective conversion of renewable electricity to fuels and chemicals. Here we report the significant enhancement of the OER activity of electrodeposited NiOx films resulting from the combined effects of using cerium as a dopant and gold as a metal support. This NiCeOx–Au catalyst delivers high OER activity in alkaline media, and is among the most active OER electrocatalysts yet reported. On the basis of experimental observations and theoretical modelling, we ascribe the activity to a combination of electronic, geometric and support effects, where highly active under-coordinated sites at the oxide support interface are modified by the local chemical binding environment and by doping the host Ni oxide with Ce. The NiCeOx–Au catalyst is further demonstrated in a device context by pairing it with a nickel–molybdenum hydrogen evolution catalyst in a water electrolyser, which delivers 50 mA consistently at 1.5 V over 24 h of continuous operation.

  5. Simultaneous oxidation and adsorption of As(III) from water by cerium modified chitosan ultrafine nanobiosorbent.

    PubMed

    Zhang, Lingfan; Zhu, Tianyi; Liu, Xin; Zhang, Wenqing

    2016-05-05

    Since most existing arsenic removal adsorbents are difficult to effectively remove arsenite (As(III)), an urgent need is to develop an efficient adsorbent for removing As(III) from contaminated water. In this study, a novel ultrafine nanobiosorbent of cerium modified chitosan (Ce-CNB) with simultaneous oxidation and adsorption As(III) performance has been successfully developed. The resulting Ce-CNB with or without As(III) adsorption was characterized by FTIR, XRD, SEM, EDS, TEM, EMI and XPS analysis. Batch of adsorption experiments were performed to investigate the effects of various conditions on the As(III) adsorption. The adsorption behaviors were well described by the Langmuir isotherm and the pseudo-second-order kinetic model, with the maximum adsorption capacities of 57.5 mg g(-1). The adsorption mechanisms for As(III) were (i) formed monodentate and bidentate complexes between hydroxyl groups and arsenite; and (ii) partial As(III) oxidized to As(V) followed by simultaneously adsorbed on the surface of Ce-CNB. This novel nanocomposite can be reused while maintaining a high removal efficiency and can be applied to treat 5.8L of As(III)-polluted water with the effluent concentration lower than the World Health Organization standard, which suggests its great potential to remove As(III) from contaminated water.

  6. Cerium Dioxide Nanoparticle Exposure Improves Microvascular Dysfunction and Reduces Oxidative Stress in Spontaneously Hypertensive Rats

    PubMed Central

    Minarchick, Valerie C.; Stapleton, Phoebe A.; Sabolsky, Edward M.; Nurkiewicz, Timothy R.

    2015-01-01

    The elevated production of reactive oxygen species (ROS) in the vascular wall is associated with cardiovascular diseases such as hypertension. This increase in oxidative stress contributes to various mechanisms of vascular dysfunction, such as decreased nitric oxide bioavailability. Therefore, anti-oxidants are being researched to decrease the high levels of ROS, which could improve the microvascular dysfunction associated with various cardiovascular diseases. From a therapeutic perspective, cerium dioxide nanoparticles (CeO2 NP) hold great anti-oxidant potential, but their in vivo activity is unclear. Due to this potential anti-oxidant action, we hypothesize that injected CeO2 NP would decrease microvascular dysfunction and oxidative stress associated with hypertension. In order to simulate a therapeutic application, spontaneously hypertensive (SH) and Wistar-Kyoto (WKY) rats were intravenously injected with either saline or CeO2 NP (100 μg suspended in saline). Twenty-four hours post-exposure mesenteric arteriolar reactivity was assessed via intravital microscopy. Endothelium-dependent and –independent function was assessed via acetylcholine and sodium nitroprusside. Microvascular oxidative stress was analyzed using fluorescent staining in isolated mesenteric arterioles. Finally, systemic inflammation was examined using a multiplex analysis and venular leukocyte flux was counted. Endothelium-dependent dilation was significantly decreased in the SH rats (29.68 ± 3.28%, maximal response) and this microvascular dysfunction was significantly improved following CeO2 NP exposure (43.76 ± 4.33%, maximal response). There was also an increase in oxidative stress in the SH rats, which was abolished following CeO2 NP treatment. These results provided evidence that CeO2 NP act as an anti-oxidant in vivo. There were also changes in the inflammatory profile in the WKY and SH rats. In WKY rats, IL-10 and TNF-α were increased following CeO2 NP treatment. Finally, leukocyte

  7. Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study.

    PubMed

    Geraets, Liesbeth; Oomen, Agnes G; Schroeter, Jeffry D; Coleman, Victoria A; Cassee, Flemming R

    2012-06-01

    In order to obtain more insight into the tissue distribution, accumulation, and elimination of cerium oxide nanoparticles after inhalation exposure, blood and tissue kinetics were investigated during and after a 28-day inhalation study in rats with micro- and nanocerium oxide particles (nominal primary particle size: < 5000, 40, and 5-10 nm). Powder aerosolization resulted in comparable mass median aerodynamic diameter (1.40, 1.17, and 1.02 μm). After single exposure, approximately 10% of the inhaled dose was measured in lung tissue, as was also estimated by a multiple path particle dosimetry model (MPPD). Though small differences in pulmonary deposition efficiencies of cerium oxide were observed, no consistent differences in pulmonary deposition between the micro- and nanoparticles were observed. Each cerium oxide sample was also distributed to tissues other than lung after a single 6-h exposure, such as liver, kidney, and spleen and also brain, testis, and epididymis. No clear particle size-dependent effect on extrapulmonary tissue distribution was observed. Repeated exposure to cerium oxide resulted in significant accumulation of the particles in the (extra)pulmonary tissues. In addition, tissue clearance was shown to be slow, and, overall, insignificant amounts of cerium oxide were eliminated from the body at 48- to 72-h post-exposure. In conclusion, no clear effect of the primary particle size or surface area on pulmonary deposition and extrapulmonary tissue distribution could be demonstrated. This is most likely explained by similar aerodynamic diameter of the cerium oxide particles in air because of the formation of aggregates and irrespective possible differences in surface characteristics. The implications of the accumulation of cerium oxide particles for systemic toxicological effects after repeated chronic exposure via ambient air are significant and require further exploration.

  8. Exposure, health and ecological effects review of engineered nanoscale cerium and cerium oxide associated with its use as a fuel additive.

    PubMed

    Cassee, Flemming R; van Balen, Erna C; Singh, Charanjeet; Green, David; Muijser, Hans; Weinstein, Jason; Dreher, Kevin

    2011-03-01

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coatings, electronics, biomedical, energy and fuel additives. Many applications of engineered CeO(2) nanoparticles are dispersive in nature increasing the risk of exposure and interactions with a variety of environmental media with unknown health, safety and environmental implications. As evident from a risk assessment perspective, the health effects of CeO(2) nanoparticles are not only dependent on their intrinsic toxicity but also on the level of exposure to these novel materials. Although this may seem logical, numerous studies have assessed the health effects of nanoparticles without this simple but critical risk assessment perspective. This review extends previous exposure and toxicological assessments for CeO(2) particles by summarizing the current state of micro and nano-scale cerium exposure and health risks derived from epidemiology, air quality monitoring, fuel combustion and toxicological studies to serve as a contemporary comprehensive and integrated toxicological assessment. Based on the new information presented in this review there is an ongoing exposure to a large population to new diesel emissions generated using fuel additives containing CeO2 nanoparticles for which the environmental (air quality and climate change) and public health impacts of this new technology are not known. Therefore, there is an absolute critical need for integrated exposure and toxicological studies in order to accurately assess the environmental, ecological and health implications of nanotechnology enabled diesel fuel additives with existing as well as new engine designs and fuel formulations.

  9. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii.

    PubMed

    Röhder, Lena A; Brandt, Tanja; Sigg, Laura; Behra, Renata

    2014-07-01

    Cerium oxide nanoparticles (CeO2 NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO2 NP and effects on algae are largely unknown. In this study, the short term effects of CeO2 NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO2 NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO2 NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO2 NP had a surface charge of ∼0mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO2 NP at pH 7.5 over 24h. This effect was exploited to test CeO2 NP dispersed in phosphate with a mean size of 140nm and agglomerated in absence of phosphate with a mean size of 2000nm. The level of dissolved cerium(III) in CeO2 NP suspensions was very low and between 0.1 and 27nM in all tested media. Exposure of C. reinhardtii to Ce(NO3)3 decreased the photosynthetic yield in a concentration dependent manner with EC50 of 7.5±0.84μM for wild type and EC50 of 6.3±0.53μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO3)3 with effective concentrations similar to those inhibiting photosynthesis. The agglomerated CeO2 NP caused a slight decrease of photosynthetic yield at the highest concentrations (100μM), while no effect was observed for dispersed CeO2 NP. The low toxicity of agglomerated CeO2 NP was attributed quantitatively to Ce(3+) ions co-occurring in the nanoparticle suspension whereas for dispersed CeO2 NP, dissolved Ce(3+) was precipitated with phosphate and not bioavailable. Furthermore CeO2 NP did not affect the intracellular ROS level. The cell wall free mutant and wild type of C

  10. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties

    PubMed Central

    Singh, Sanjay; Dosani, Talib; Karakoti, Ajay; Kumar, Amit; Seal, Sudipta; Self, William T.

    2011-01-01

    Cerium oxide nanoparticles (CeNPs) have shown promise as catalytic antioxidants in cell culture and animal models as both superoxide dismutase and catalase mimetics. The reactivity of the cerium (Ce) atoms at the surface of its oxide particle is critical to such therapeutic properties, yet little is known about the potential for a protein or small molecule corona to form on these materials in vivo. Moreover Ce atoms in these active sites have the potential to interact with small molecule anions, peptides, or sugars when administered in culture or animal models. Several nanomaterials have been shown to alter or aggregate under these conditions, rendering them less useful for biomedical applications. In this work we have studied the change in catalytic properties of CeNPs when exposed to various biologically relevant conditions in vitro. We have found that CeNPs are resistant to broad changes in pH and also not altered by incubation in cell culture medium. However to our surprise phosphate anions significantly altered the characteristics of these nanomaterials and shifted the catalytic behavior due to the binding of phosphate anions to cerium. Given the abundance of phosphate in biological systems in an inorganic form, it is likely that the action of CeNPs as a catalyst may be strongly influenced by the local concentration of phosphate in the cells and/or tissues in which it has been introduced. PMID:21704369

  11. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties

    SciTech Connect

    Singh, Sanjay; Dosani, Talib; Karakoti, Ajay S.; Kumar, Amit; Seal, Sudipta; Self, William

    2011-10-01

    Cerium oxide nanoparticles (CeNPs) have shown promise as catalytic antioxidants in cell culture and animal models as both superoxide dismutase and catalase mimetics. The reactivity of the cerium (Ce) atoms at the surface of its oxide particle is critical to such therapeutic properties, yet little is known about the potential for a protein or small molecule corona to form on these materials in vivo. Moreover Ce atoms in these active sites have the potential to interact with small molecule anions, peptides, or sugars when administered in culture or animal models. Several nanomaterials have been shown to alter or aggregate under these conditions, rendering them less useful for biomedical applications. In this work we have studied the change in catalytic properties of CeNPs when exposed to various biologically relevant conditions in vitro. We have found that CeNPs are resistant to broad changes in pH and also not altered by incubation in cell culture medium. However to our surprise phosphate anions significantly altered the characteristics of these nanomaterials and shifted the catalytic behavior due to the binding of phosphate anions to cerium. Given the abundance of phosphate in biological systems in an inorganic form, it is likely that the action of CeNPs as a catalyst may be strongly influenced by the local concentration of phosphate in the cells and/or tissues in which it has been introduced.

  12. The effect of cerium surface treated ferritic stainless steel current collectors on the performance of solid oxide fuel cells (SOFC)

    SciTech Connect

    Alman, D.E.; Johnson, C.D.; Collins, W.K.; Jablonski, P.D.

    2007-06-01

    Laboratory scale solid oxide fuel cells (“button” cells) were operated with untreated or cerium surface treated Fe–22Cr–0.5Mn composition by weight percent, wt%) ferritic stainless steel current collectors attached to the cathode. After a brief stabilization (or “burn-in”) period, the power density of a cell with the untreated current collector rapidly decreased. By contrast, there was little degradation in power density during testing of cells with the cerium surface treated current collectors. The difference in degradation was attributed to differences in Cr build-up within the cathode. It should be emphasized that the duration of the tests were quite short and longer duration testing is required, however, this initial assessment indicates the treatment may benefit the performance of SOFC with steel interconnects.

  13. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    SciTech Connect

    Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Krystek, Petra; Gosens, Ilse; Miller, Mark R.

    2012-05-15

    Background: Cerium oxide (CeO{sub 2}) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE{sup -/-}) mice were exposed by inhalation to diluted exhaust (1.7 mg/m{sup 3}, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results: Addition of CeO{sub 2} to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions: These results imply that addition of CeO{sub 2} nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.

  14. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice☆

    PubMed Central

    Cassee, Flemming R.; Campbell, Arezoo; Boere, A. John F.; McLean, Steven G.; Duffin, Rodger; Krystek, Petra; Gosens, Ilse; Miller, Mark R.

    2012-01-01

    Background Cerium oxide (CeO2) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods Atherosclerosis-prone apolipoprotein E knockout (ApoE−/−) mice were exposed by inhalation to diluted exhaust (1.7 mg/m3, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results Addition of CeO2 to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6–8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions These results imply that addition of CeO2 nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects. PMID:22507957

  15. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications.

    PubMed

    Gunduz, O; Gode, C; Ahmad, Z; Gökçe, H; Yetmez, M; Kalkandelen, C; Sahin, Y M; Oktar, F N

    2014-07-01

    The fabrication and characterization of bovine hydroxyapatite (BHA) and cerium oxide (CeO2) composites are presented. CeO2 (at varying concentrations 1, 5 and 10wt%) were added to calcinated BHA powder. The resulting mixtures were shaped into green cylindrical samples by powder pressing (350MPa) followed by sintering in air (1000-1300°C for 4h). Density, Vickers microhardness (HV), compression strength, scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies were performed on the products. The sintering behavior, microstructural characteristics and mechanical properties were evaluated. Differences in the sintering temperature (for 1wt% CeO2 composites) between 1200 and 1300°C, show a 3.3% increase in the microhardness (564 and 582.75HV, respectively). Composites prepared at 1300°C demonstrate the greatest compression strength with comparable results for 5 and 10wt% CeO2 content (106 and 107MPa) which are significantly better than those for 1wt% and those that do not include any CeO2 (90 and below 60MPa, respectively). The results obtained suggest optimal parameters to be used in preparation of BHA and CeO2 composites, while also highlighting the potential of such materials in several biomedical engineering applications.

  16. Grain size dependence of dielectric relaxation in cerium oxide as high-k layer

    PubMed Central

    2013-01-01

    Cerium oxide (CeO2) thin films used liquid injection atomic layer deposition (ALD) for deposition and ALD procedures were run at substrate temperatures of 150°C, 200°C, 250°C, 300°C, and 350°C, respectively. CeO2 were grown on n-Si(100) wafers. Variations in the grain sizes of the samples are governed by the deposition temperature and have been estimated using Scherrer analysis of the X-ray diffraction patterns. The changing grain size correlates with the changes seen in the Raman spectrum. Strong frequency dispersion is found in the capacitance-voltage measurement. Normalized dielectric constant measurement is quantitatively utilized to characterize the dielectric constant variation. The relationship extracted between grain size and dielectric relaxation for CeO2 suggests that tuning properties for improved frequency dispersion can be achieved by controlling the grain size, hence the strain at the nanoscale dimensions. PMID:23587419

  17. Photocurrent enhancement in nanocoatings of cerium oxide and platinum on black silicon

    NASA Astrophysics Data System (ADS)

    Dahal, Pabitra; Pereira, Dionisio; Elamurugu, Elangovan; Viegas, Jaime

    2017-02-01

    Black silicon is surface modification by reactive ion etching that creates a forest of silicon micro-spikes and increases surface area of the sample. When the spikes' height exceed an optical wavelength, light is trapped on the surface through multiple pathway scattering, increasing the optical absorption of visible and near infrared radiation. Cerium oxide (CeO2) is believed to have good photoactivity, and finds many applications including photoelectrolysis. However, the large band gap limits the efficiency of the water splitting process. We suggest black silicon surfaces as substrates for CeO2 sputter coating to increase photon-material interaction. An additional catalytic layer of platinum is deposited to create highly energetic electrons as a result of plasmonic resonance and enhances incident photon to current efficiency (IPCE). The difference of surface current for laser on and off condition is found to be 32 times higher in a nanolayered coated black silicon sample as compared to flat silicon. The resistance of flat silicon substrate was 11 Ω for laser-off state, decreasing to 9 Ω when the laser was turned on. On the other hand, the black silicon substrate sample had a higher resistance of 70 Ω in dark which decreased to 1.5 Ω for laser on state.

  18. Cerium oxide nanoparticle aggregates affect stress response and function in Caenorhabditis elegans.

    PubMed

    Rogers, Steven; Rice, Kevin M; Manne, Nandini Dpk; Shokuhfar, Tolou; He, Kun; Selvaraj, Vellaisamy; Blough, Eric R

    2015-01-01

    The continual increase in production and disposal of nanomaterials raises concerns regarding the safety of nanoparticles on the environmental and human health. Recent studies suggest that cerium oxide (CeO2) nanoparticles may possess both harmful and beneficial effects on biological processes. The primary objective of this study is to evaluate how exposure to different concentrations (0.17-17.21 µg/mL) of aggregated CeO2 nanoparticles affects indices of whole animal stress and survivability in Caenorhabditis elegans. Caenorhabditis elegans were exposed to different concentrations of CeO2 nanoparticles and evaluated. Our findings demonstrate that chronic exposure of CeO2 nanoparticle aggregates is associated with increased levels of reactive oxygen species and heat shock stress response (HSP-4) in Caenorhabditis elegans, but not mortality. Conversely, CeO2 aggregates promoted strain-dependent decreases in animal fertility, a decline in stress resistance as measured by thermotolerance, and shortened worm length. The data obtained from this study reveal the sublethal toxic effects of CeO2 nanoparticle aggregates in Caenorhabditis elegans and contribute to our understanding of how exposure to CeO2 may affect the environment.

  19. Impact of cerium oxide nanoparticles shape on their in vitro cellular toxicity.

    PubMed

    Forest, Valérie; Leclerc, Lara; Hochepied, Jean-François; Trouvé, Adeline; Sarry, Gwendoline; Pourchez, Jérémie

    2017-02-01

    Cerium oxides (CeO2) nanoparticles, also referred to as nanoceria, are extensively used with a wide range of applications. However, their impact on human health and on the environment is not fully elucidated. The aim of this study was to investigate the influence of the CeO2 nanoparticles morphology on their in vitro toxicity. CeO2 nanoparticles of similar chemical composition and crystallinity were synthesized, only the shape varied (rods or octahedrons/cubes). Macrophages from the RAW264.7 cell line were exposed to these different samples and the toxicity was evaluated in terms of lactate dehydrogenase (LDH) release, Tumor Necrosis Factor alpha (TNF-α) production and reactive oxygen species (ROS) generation. Results showed no ROS production, whatever the nanoparticle shape. The LDH release and the TNF-α production were significantly and dose-dependently enhanced by rod-like nanoparticles, whereas they did not vary with cubic/octahedral nanoparticles. In conclusion, a strong impact of CeO2 nanoparticle morphology on their in vitro toxicity was clearly demonstrated, underscoring that nanoceria shape should be carefully taken in consideration, especially in a "safer by design" context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles.

    PubMed

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-03-08

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors.

  1. CO Responses of Sensors Based on Cerium Oxide Thick Films Prepared from Clustered Spherical Nanoparticles

    PubMed Central

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors. PMID:23529123

  2. Spectrophotometric determination of H 2-receptor antagonists via their oxidation with cerium(IV)

    NASA Astrophysics Data System (ADS)

    Darwish, Ibrahim A.; Hussein, Samiha A.; Mahmoud, Ashraf M.; Hassan, Ahmed I.

    2008-01-01

    A simple, accurate and sensitive spectrophotometric method has been developed and validated for determination of H 2-receptor antagonists: cimetidine, famotidine, nizatidine and ranitidine hydrochloride. The method was based on the oxidation of these drugs with cerium(IV) in presence of perchloric acid and subsequent measurement of the excess Ce(IV) by its reaction with p-dimethylaminobenzaldehyde to give a red colored product ( λmax at 464 nm). The decrease in the absorption intensity of the colored product (Δ A), due to the presence of the drug was correlated with its concentration in the sample solution. Different variables affecting the reaction were carefully studied and optimized. Under the optimum conditions, linear relationships with good correlation coefficients (0.9990-0.9994) were found between Δ A values and the concentrations of the drugs in a concentration range of 1-20 μg ml -1. The assay limits of detection and quantitation were 0.18-0.60 and 0.54-1.53 μg ml -1, respectively. The method was validated, in terms of accuracy, precision, ruggedness and robustness; the results were satisfactory. The proposed method was successfully applied to the determination of the investigated drugs in pure and pharmaceutical dosage forms (recovery was 98.3-102.6 ± 0.57-1.90%) without interference from the common excipients. The results obtained by the proposed method were comparable with those obtained by the official methods.

  3. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke.

    PubMed

    Zhou, Da; Fang, Ting; Lu, Lin-Qing; Yi, Li

    2016-08-01

    During the previous years, with the emerging of nanotechnology, the enormous capabilities of nanoparticles have drawn great attention from researchers in terms of their potentials in various aspects of pharmacology. Cerium oxide nanoparticles (nanoceria), considered as one of the most widely used nanomaterials, due to its tempting catalytic antioxidant properties, show a promising potential in diverse disorders, such as cerebral ischemic stroke (CIS), cancer, neurodegenerative and inflammatory diseases. Overwhelming generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during cerebral ischemia and reperfusion periods is known to aggravate brain damage via sophisticated cellular and molecular mechanisms, and therefore exploration of the antioxidant capacities of nanoceria becomes a new approach in reducing cerebral ischemic injury. Furthermore, utilizing nanoceria as a drug carrier might display the propensity to overcome limitations or inefficacy of other conceivable neuroprotectants and exhibit synergistic effects. In this review, we emphasize on the principle features of nanoceria and current researches concerning nanoceria as a potential therapeutic agent or carrier in improving the prognosis of CIS.

  4. Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.).

    PubMed

    Rico, Cyren M; Lee, Sang Chul; Rubenecia, Rosnah; Mukherjee, Arnab; Hong, Jie; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2014-10-08

    The implications of engineered nanomaterials on crop productivity and food quality are not yet well understood. The impact of cerium oxide nanoparticles (nCeO2) on growth and yield attributes and nutritional composition in wheat (Triticum aestivum L.) was examined. Wheat was cultivated to grain production in soil amended with 0, 125, 250, and 500 mg of nCeO2/kg (control, nCeO2-L, nCeO2-M, and nCeO2-H, respectively). At harvest, grains and tissues were analyzed for mineral, fatty acid, and amino acid content. Results showed that, relative to the control, nCeO2-H improved plant growth, shoot biomass, and grain yield by 9.0%, 12.7%, and 36.6%, respectively. Ce accumulation in roots increased at increased nCeO2 concentration but did not change across treatments in leaves, hull, and grains, indicating a lack of Ce transport to the above-ground tissues. nCeO2 modified S and Mn storage in grains. nCeO2-L modified the amino acid composition and increased linolenic acid by up to 6.17% but decreased linoleic acid by up to 1.63%, compared to the other treatments. The findings suggest the potential of nanoceria to modify crop physiology and food quality with unknown consequences for living organisms.

  5. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression.

    PubMed

    Xiao, Yu-Feng; Li, Jian-Mei; Wang, Su-Min; Yong, Xin; Tang, Bo; Jie, Meng-Meng; Dong, Hui; Yang, Xiao-Chao; Yang, Shi-Ming

    2016-01-01

    Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs) have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823). Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL) of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15.

  6. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    PubMed

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate.

  7. Intrinsic and Extrinsic Properties Affecting Innate Immune Responses to Nanoparticles: The Case of Cerium Oxide

    PubMed Central

    Casals, Eudald; Gusta, Muriel F.; Piella, Jordi; Casals, Gregori; Jiménez, Wladimiro; Puntes, Victor

    2017-01-01

    We review the apparent discrepancies between studies that report anti-inflammatory effects of cerium oxide nanoparticles (CeO2 NPs) through their reactive oxygen species-chelating properties and immunological studies highlighting their toxicity. We observe that several underappreciated parameters, such as aggregation size and degree of impurity, are critical determinants that need to be carefully addressed to better understand the NP biological effects in order to unleash their potential clinical benefits. This is because NPs can evolve toward different states, depending on the environment where they have been dispersed and how they have been dispersed. As a consequence, final characteristics of NPs can be very different from what was initially designed and produced in the laboratory. Thus, aggregation, corrosion, and interaction with extracellular matrix proteins critically modify NP features and fate. These modifications depend to a large extent on the characteristics of the biological media in which the NPs are dispersed. As a consequence, when reviewing the scientific literature, it seems that the aggregation state of NPs, which depends on the characteristics of the dispersing media, may be more significant than the composition or original size of the NPs. In this work, we focus on CeO2 NPs, which are reported sometimes to be protective and anti-inflammatory, and sometimes toxic and pro-inflammatory. PMID:28855907

  8. Intrinsic and Extrinsic Properties Affecting Innate Immune Responses to Nanoparticles: The Case of Cerium Oxide.

    PubMed

    Casals, Eudald; Gusta, Muriel F; Piella, Jordi; Casals, Gregori; Jiménez, Wladimiro; Puntes, Victor

    2017-01-01

    We review the apparent discrepancies between studies that report anti-inflammatory effects of cerium oxide nanoparticles (CeO2 NPs) through their reactive oxygen species-chelating properties and immunological studies highlighting their toxicity. We observe that several underappreciated parameters, such as aggregation size and degree of impurity, are critical determinants that need to be carefully addressed to better understand the NP biological effects in order to unleash their potential clinical benefits. This is because NPs can evolve toward different states, depending on the environment where they have been dispersed and how they have been dispersed. As a consequence, final characteristics of NPs can be very different from what was initially designed and produced in the laboratory. Thus, aggregation, corrosion, and interaction with extracellular matrix proteins critically modify NP features and fate. These modifications depend to a large extent on the characteristics of the biological media in which the NPs are dispersed. As a consequence, when reviewing the scientific literature, it seems that the aggregation state of NPs, which depends on the characteristics of the dispersing media, may be more significant than the composition or original size of the NPs. In this work, we focus on CeO2 NPs, which are reported sometimes to be protective and anti-inflammatory, and sometimes toxic and pro-inflammatory.

  9. Effects of cerium oxide nanoparticles on soil enzymatic activities and wheat grass nutrients uptake

    NASA Astrophysics Data System (ADS)

    Li, Biting; Chen, Yirui; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    The US National Science Foundation estimated that the use of nanomaterials and nanotechnology would reach a global market value of 1 million this year. Concomitant with the wide applications of nanoparticles is an increasing risk of adverse effects to the environment and human health. As a common nanomaterial used as a fuel catalyst and polish material, cerium (IV) oxide nanoparticles (CeO2 NP) were tested for their potential impact on soil health and plant growth. Through exposure by air, water, and solid deposition, nanoparticles may accumulate in soils and impact agricultural systems. The objectives of this research were to determine whether CeO2 NPs affect the growth of wheat grass and selected soil enzyme activities chose as indicators of soil health. Wheat grass was grown in plant boxes containing CeO2 NPs mixed with agricultural soil at different concentrations. Two control groups were included: one consisting of soil with plants but no CeO2 NPs, and one containing only soil, i.e., no NP or wheat plants added. The plants were grown for 10 weeks and harvested every two weeks in a laboratory under sodium growth lights. At the end of the each growing period, two weeks, soils were assayed for phosphatase, β-glucosidase, and urease activities, and NPK values. Spectrophotometer analyses were used to assess enzyme activities, and NPK values were tested by Clemson Agricultural Center. Wheat yields were estimated by shoot and root lengths and weights.

  10. Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles.

    PubMed

    Rico, Cyren M; Barrios, Ana C; Tan, Wenjuan; Rubenecia, Rosnah; Lee, Sang Chul; Varela-Ramirez, Armando; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-07-01

    A soil microcosm study was performed to examine the impacts of cerium oxide nanoparticles (nCeO2) on the physiology, productivity, and macromolecular composition of barley (Hordeum vulgare L.). The plants were cultivated in soil treated with nCeO2 at 0, 125, 250, and 500 mg kg(-1) (control, nCeO2-L, nCeO2-M, and nCeO2-H, respectively). Accumulation of Ce in leaves/grains and its effects on plant stress and nutrient loading were analyzed. The data revealed that nCeO2-H promoted plant development resulting in 331 % increase in shoot biomass compared with the control. nCeO2 treatment modified the stress levels in leaves without apparent signs of toxicity. However, plants exposed to nCeO2-H treatment did not form grains. Compared with control, nCeO2-M enhanced grain Ce accumulation by as much as 294 % which was accompanied by remarkable increases in P, K, Ca, Mg, S, Fe, Zn, Cu, and Al. Likewise, nCeO2-M enhanced the methionine, aspartic acid, threonine, tyrosine, arginine, and linolenic acid contents in the grains by up to 617, 31, 58, 141, 378, and 2.47 % respectively, compared with the rest of the treatments. The findings illustrate the beneficial and harmful effects of nanoceria in barley.

  11. Trans-generational impact of cerium oxide nanoparticles on tomato plants.

    PubMed

    Wang, Qiang; Ebbs, Stephen D; Chen, Yongsheng; Ma, Xingmao

    2013-06-01

    Cerium oxide nanoparticles (CeO2-NPs) are increasingly used in polishing, engine enhancement agents and many other products. Even though the acute toxicity of CeO2-NPs to plants has been investigated, the long-term effects of CeO2-NPs in the environment are still unknown. The main objective of this study was to investigate whether the treatment of tomato plants with relatively low concentrations of CeO2-NPs (10 mg L(-1)) through their lifecycle would affect the seed quality and the development of second generation seedlings. The results indicated that second generation seedlings grown from seeds collected from treated parent plants with CeO2-NPs (treated second generation seedlings) were generally smaller and weaker, as indicated by their smaller biomass, lower water transpiration and slightly higher reactive oxygen species content. An interesting phenomenon noticed in the study was that the second generation seedlings grown from treated seeds developed extensive root hairs compared with the control second generation seedlings (seedlings grown from seeds collected from untreated parent plants) regardless of the treatment. Treated second generation seedlings also accumulate a higher amount of ceria than control second generation seedlings under the same treatment conditions even though such differences are not statistically significant.

  12. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses

    PubMed Central

    Ma, Jane; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M.; Demokritou, Philip; Castranova, Vincent

    2015-01-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague–Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15 mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1 day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5 mg/kg) treatment at 28 days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3 days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. PMID:26210349

  13. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses.

    PubMed

    Ma, Jane; Mercer, Robert R; Barger, Mark; Schwegler-Berry, Diane; Cohen, Joel M; Demokritou, Philip; Castranova, Vincent

    2015-10-01

    Recently cerium compounds have been used in a variety of consumer products, including diesel fuel additives, to increase fuel combustion efficiency and decrease diesel soot emissions. However, cerium oxide (CeO2) nanoparticles have been detected in the exhaust, which raises a health concern. Previous studies have shown that exposure of rats to nanoscale CeO2 by intratracheal instillation (IT) induces sustained pulmonary inflammation and fibrosis. In the present study, male Sprague-Dawley rats were exposed to CeO2 or CeO2 coated with a nano layer of amorphous SiO2 (aSiO2/CeO2) by a single IT and sacrificed at various times post-exposure to assess potential protective effects of the aSiO2 coating. The first acellular bronchoalveolar lavage (BAL) fluid and BAL cells were collected and analyzed from all exposed animals. At the low dose (0.15mg/kg), CeO2 but not aSiO2/CeO2 exposure induced inflammation. However, at the higher doses, both particles induced a dose-related inflammation, cytotoxicity, inflammatory cytokines, matrix metalloproteinase (MMP)-9, and tissue inhibitor of MMP at 1day post-exposure. Morphological analysis of lung showed an increased inflammation, surfactant and collagen fibers after CeO2 (high dose at 3.5mg/kg) treatment at 28days post-exposure. aSiO2 coating significantly reduced CeO2-induced inflammatory responses in the airspace and appeared to attenuate phospholipidosis and fibrosis. Energy dispersive X-ray spectroscopy analysis showed Ce and phosphorous (P) in all particle-exposed lungs, whereas Si was only detected in aSiO2/CeO2-exposed lungs up to 3days after exposure, suggesting that aSiO2 dissolved off the CeO2 core, and some of the CeO2 was transformed to CePO4 with time. These results demonstrate that aSiO2 coating reduce CeO2-induced inflammation, phospholipidosis and fibrosis. Published by Elsevier Inc.

  14. Interactive effects of cerium oxide and diesel exhaust nanoparticles on inducing pulmonary fibrosis

    SciTech Connect

    Ma, Jane Y.C.; Young, Shih-Houng; Mercer, Robert R.; Barger, Mark; Schwegler-Berry, Diane; Ma, Joseph K.; Castranova, Vincent

    2014-07-15

    Cerium compounds have been used as a fuel-borne catalyst to lower the generation of diesel exhaust particles (DEPs), but are emitted as cerium oxide nanoparticles (CeO{sub 2}) along with DEP in the diesel exhaust. The present study investigates the effects of the combined exposure to DEP and CeO{sub 2} on the pulmonary system in a rat model. Specific pathogen-free male Sprague–Dawley rats were exposed to CeO{sub 2} and/or DEP via a single intratracheal instillation and were sacrificed at various time points post-exposure. This investigation demonstrated that CeO{sub 2} induces a sustained inflammatory response, whereas DEP elicits a switch of the pulmonary immune response from Th1 to Th2. Both CeO{sub 2} and DEP activated AM and lymphocyte secretion of the proinflammatory cytokines IL-12 and IFN-γ, respectively. However, only DEP enhanced the anti-inflammatory cytokine IL-10 production in response to ex vivo LPS or Concanavalin A challenge that was not affected by the presence of CeO{sub 2}, suggesting that DEP suppresses host defense capability by inducing the Th2 immunity. The micrographs of lymph nodes show that the particle clumps in DEP + CeO{sub 2} were significantly larger than CeO{sub 2} or DEP, exhibiting dense clumps continuous throughout the lymph nodes. Morphometric analysis demonstrates that the localization of collagen in the lung tissue after DEP + CeO{sub 2} reflects the combination of DEP-exposure plus CeO{sub 2}-exposure. At 4 weeks post-exposure, the histological features demonstrated that CeO{sub 2} induced lung phospholipidosis and fibrosis. DEP induced lung granulomas that were not significantly affected by the presence of CeO{sub 2} in the combined exposure. Using CeO{sub 2} as diesel fuel catalyst may cause health concerns. - Highlights: • DEP induced acute lung inflammation and switched immune response from Th1 to Th2. • DEP induced lung granulomas were not affected by the presence of CeO{sub 2}. • CeO{sub 2} induced sustained lung

  15. Cerium oxide nanoparticles alleviate oxidative stress and decreases Nrf-2/HO-1 in D-GALN/LPS induced hepatotoxicity.

    PubMed

    Hashem, Reem M; Rashd, Laila A; Hashem, Khalid S; Soliman, Hatem M

    2015-07-01

    Translocation of the master regulator of antioxidant-response element-driven antioxidant gene, nuclear factor erythroid 2 (Nrf-2) from the cytoplasm into the nucleus and triggering the transcription of hemoxygenase-1 (HO-1) to counteract the oxidative stress is a key feature in D-galactoseamine and lipopolysaccharide (D-GALN/LPS) induced hepatotoxicity. We mainly aimed to study the effect of cerium oxide (CeO2) nanoparticles on Nrf-2/HO-1 pathway whereas; it has previously shown to have an antioxidant effect in liver models. Administration of CeO2 nanoparticles significantly decreased the translocation of the cytoplasmic Nrf-2 with a concomitant decrement in the gene expression of HO-1 as it reveals a powerful antioxidative effect as indicated by the significant increase in the levels of glutathione (GSH), glutathione peroxidase (GPX1), glutathione reductase (GR), superoxide dismutase (SOD) and catalase. In synchronization, a substantial decrement in the levels of inducible nitric oxide synthase (iNOS), TBARS and percentage of DNA fragmentation was established. These results were confirmed by histopathology examination which showed a severe degeneration, haemorrhages, widened sinusoids and focal leukocyte infiltration in D-GALN/LPS treatment and these features were alleviated with CeO2 administration. In conclusion, CeO2 is a potential antioxidant that can effectively decrease the translocation of the cytoplasmic Nrf-2 into the nucleus and decrease HO-1 in D-GALN/LPS induced hepatotoxicity.

  16. Influence of the surface pre-treatment of aluminum on the processes of formation of cerium oxides protective films

    NASA Astrophysics Data System (ADS)

    Andreeva, R.; Stoyanova, E.; Tsanev, A.; Stoychev, D.

    2016-03-01

    It is known that there is special interest in the contemporary investigations on conversion treatment of aluminum aimed at promoting its corrosion stability, which is focused on electrolytes on the basis of salts of metals belonging to the group of rare-earth elements. Their application is especially attractive, as it enables a successful substitution of the presently applied highly efficient, but at the same time toxic Cr6+-containing electrolytes. The present paper presents a study on the influence of the preliminary alkaline activation and acidic de-oxidation of the aluminum surface on the processes of immersion formation of protective cerium oxides films on Al 1050. The results obtained show that their deposition from simple electrolytes (containing only salts of Ce3+ ions) on the Al surface, treated only in alkaline solution, occurs at a higher rate, which leads to preparing thicker oxide films having a better protective ability. In the cases when the formation of oxide films is realized in a complex electrolyte (containing salts of Ce3+ and Cu2+ ions), better results are obtained with respect to the morphology and protective action of cerium oxides film on samples that have been consecutively activated in alkaline solution and deoxidized in acidic solution. Electrochemical investigations were carried out in a model corrosion medium (0.1 M NaCl); it was shown that the cerium protective films, deposited by immersion, have a cathodic character with regard to the aluminum support and inhibit the occurrence of the depolarizing corrosion process -- the reaction of oxygen reduction.

  17. Cerium oxide nanozyme modulate the ‘exercise’ redox biology of skeletal muscle

    NASA Astrophysics Data System (ADS)

    Arya, Aditya; Sethy, Niroj Kumar; Gangwar, Anamika; Bhargava, Neelima; Dubey, Amarish; Roy, Manas; Srivastava, Gaurav; Singh, Sushil Kumar; Das, Mainak; Bhargava, Kalpana

    2017-05-01

    ‘Exercise’ is a double-edged sword for the skeletal muscle. Small amount of ROS generated during mild exercise, is essential for normal force generation; whereas large quantity of ROS generated during intense exercise, may cause contractile dysfunction, resulting in muscle weakness and fatigue. One of the key question in skeletal muscle physiology is ‘could antioxidant therapy improve the skeletal muscle endurance? A question, which has resulted in contradictory experimental findings till this date. This work has addressed this ‘very question’ using a synthetic, inorganic, antioxidant nano-material viz., ‘cerium oxide nanozyme’ (CON). It has been introduced in the rat by intramuscular injection, and the skeletal muscle endurance has been evaluated. Intramuscular injections of CON, concurrent with exercise, enhanced muscle mass, glycogen and ATP content, type I fiber ratio, thus resulting in significantly higher muscle endurance. Electron microscope studies confirmed the presence of CON in the vicinity of muscle mitochondria. There was an increase in the number and size of the muscle mitochondria in the CON treated muscle, following exercise, as compared to the untreated group with only exercised muscle. Quantitative proteomics data and subsequent biological network analysis studies, identified higher levels of oxidative phosphorylation, TCA cycle output and glycolysis in CON supplemented exercised muscle over only exercised muscle. This was further associated with significant increase in the mitochondrial respiratory capacity and muscle contraction, primarily due to higher levels of electron transport chain proteins like NDUFA9, SDHA, ATP5B and ATP5D, which were validated by real-time PCR and western blotting. Along with this, persistence of CON in muscle was evaluated with ICP-MS analysis, which revealed clearance of the particles after 90 d, without exhibiting any inflammation or adverse affects on the health of the experimental animals. Thus a

  18. Cerium Oxide Nanoclusters on Graphene/Ru(0001): Intercalation of Oxygen via Spillover

    SciTech Connect

    Novotny, Zbynek; Netzer, Falko P.; Dohnálek, Zdenek

    2015-08-25

    Cerium oxide is an important catalytic material known for its ability to store and release oxygen, and as such, it has been used in a range of applications, both as an active catalyst and as a catalyst support. Using scanning tunneling microscopy and Auger electron spectroscopy, we investigated oxygen interactions with CeOx nanoclusters on a complete graphene monolayer-covered Ru(0001) surface at elevated temperatures (600 – 725 K). Under oxidizing conditions (P_(O_2 ) = 1 × 10-7 Torr), oxygen intercalation under the graphene layer is observed. Time dependent studies demonstrate that the intercalation proceeds via spillover of oxygen from CeOx nanoclusters through the graphene (Gr) layer onto the Ru(0001) substrate and extends until the Gr layer is completely intercalated. Atomically resolved images further show that oxygen forms a p(2×1) structure underneath the Gr monolayer. Temperature dependent studies yield an apparent kinetic barrier for the intercalation of 1.26 eV. This value correlates well with the theoretically determined value for the reduction of small CeO2 clusters reported previously. At higher temperatures, the intercalation is followed by a slower etching of the intercalated graphene (apparent barrier of 1.64 eV). Vacuum annealing of the intercalated Gr leads to the formation of carbon monoxide, causing etching of the graphene film, demonstrating that the spillover of oxygen is not reversible. In agreement with previous studies, no intercalation is observed on a complete graphene monolayer without CeOx clusters, even in the presence of a large number of point defects. These studies demonstrate that the easily reducible CeOx clusters act as intercalation gateways capable of efficiently delivering oxygen underneath the graphene layer.

  19. The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L.

    PubMed

    Rossi, Lorenzo; Zhang, Weilan; Lombardini, Leonardo; Ma, Xingmao

    2016-12-01

    Dwindling high quality water resources and growing population are forcing growers to irrigate crops with water of high salinity. It is well recognized that salinity negatively affects plant physiology and biochemistry, and represents one of the most serious threats to crop production and food security. Meanwhile, engineered nanoparticles (ENPs) are increasingly detected in irrigation water and agricultural soils due to the rapid advancement of nanotechnology. Previous research has demonstrated that ENPs such as cerium oxide nanoparticles (CeO2-NPs) exert significant impact on plant growth and production. However, almost all previous studies were conducted in well controlled environment. Knowledge on how ENPs affect plant development in a stressed condition is almost empty. The goal of the present study was to understand the physiological and biochemical changes in Brassica napus L. (canola) cv. 'Dwarf Essex' under synergistic salt stress and CeO2-NPs effects. Two salinity levels: 0 (control) and 100 mM NaCl, and three CeO2-NPs concentrations: 0 (control), 200 and 1000 mg kg(-1) dry sand and clay mixture, were employed. As expected, 100 mM of NaCl significantly hindered plant growth and negatively affected the physiological processes of canola. Plants treated with CeO2-NPs had higher plant biomass, exhibited higher efficiency of the photosynthetic apparatus and less stress in both fresh water and saline water irrigation conditions Overall, our results demonstrated that CeO2-NPs led to changes in canola growth and physiology which improved the plant salt stress response but did not completely alleviate the salt stress of canola. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Effect of Cerium Oxide Nanoparticle Valence State on Reactive Oxygen Species and Toxicity.

    PubMed

    Dunnick, Katherine M; Pillai, Rajalekshmi; Pisane, Kelly L; Stefaniak, Aleksandr B; Sabolsky, Edward M; Leonard, Stephen S

    2015-07-01

    Cerium oxide (CeO2) nanoparticles, which are used in a variety of products including solar cells, gas sensors, and catalysts, are expected to increase in industrial use. This will subsequently lead to additional occupational exposures, making toxicology screenings crucial. Previous toxicology studies have presented conflicting results as to the extent of CeO2 toxicity, which is hypothesized to be due to the ability of Ce to exist in both a +3 and +4 valence state. Thus, to study whether valence state and oxygen vacancy concentration are important in CeO2 toxicity, CeO2 nanoparticles were doped with gadolinium to adjust the cation (Ce, Gd) and anion (O) defect states. The hypothesis that doping would increase toxicity and decrease antioxidant abilities as a result of increased oxygen vacancies and inhibition of +3 to +4 transition was tested. Differences in toxicity and reactivity based on valence state were determined in RLE-6TN rat alveolar epithelial and NR8383 rat alveolar macrophage cells using enhanced dark field microscopy, electron paramagnetic resonance (EPR), and annexin V/propidium iodide cell viability stain. Results from EPR indicated that as doping increased, antioxidant potential decreased. Alternatively, doping had no effect on toxicity at 24 h. The present results imply that as doping increases, thus subsequently increasing the Ce(3+)/Ce(4+) ratio, antioxidant potential decreases, suggesting that differences in reactivity of CeO2 are due to the ability of Ce to transition between the two valence states and the presence of increased oxygen vacancies, rather than dependent on a specific valence state.

  1. Pulmonary toxicity of well-dispersed cerium oxide nanoparticles following intratracheal instillation and inhalation

    NASA Astrophysics Data System (ADS)

    Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Tomonaga, Taisuke; Oyabu, Takako; Myojo, Toshihiko; Kawai, Kazuaki; Yatera, Kazuhiro; Shimada, Manabu; Kubo, Masaru; Yamamoto, Kazuhiro; Kitajima, Shinichi; Kuroda, Etsushi; Kawaguchi, Kenji; Sasaki, Takeshi

    2015-11-01

    We performed inhalation and intratracheal instillation studies of cerium dioxide (CeO2) nanoparticles in order to investigate their pulmonary toxicity, and observed pulmonary inflammation not only in the acute and but also in the chronic phases. In the intratracheal instillation study, F344 rats were exposed to 0.2 mg or 1 mg of CeO2 nanoparticles. Cell analysis and chemokines in bronchoalveolar lavage fluid (BALF) were analyzed from 3 days to 6 months following the instillation. In the inhalation study, rats were exposed to the maximum concentration of inhaled CeO2 nanoparticles (2, 10 mg/m3, respectively) for 4 weeks (6 h/day, 5 days/week). The same endpoints as in the intratracheal instillation study were examined from 3 days to 3 months after the end of the exposure. The intratracheal instillation of CeO2 nanoparticles caused a persistent increase in the total and neutrophil number in BALF and in the concentration of cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2, chemokine for neutrophil, and heme oxygenase-1 (HO-1), an oxidative stress marker, in BALF during the observation time. The inhalation of CeO2 nanoparticles also induced a persistent influx of neutrophils and expression of CINC-1, CINC-2, and HO-1 in BALF. Pathological features revealed that inflammatory cells, including macrophages and neutrophils, invaded the alveolar space in both studies. Taken together, the CeO2 nanoparticles induced not only acute but also chronic inflammation in the lung, suggesting that CeO2 nanoparticles have a pulmonary toxicity that can lead to irreversible lesions.

  2. Molecular and physiological responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis.

    PubMed

    Tumburu, Laxminath; Andersen, Christian P; Rygiewicz, Paul T; Reichman, Jay R

    2017-01-01

    Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to 2 widely used engineered metal oxide nanoparticles, titanium dioxide (nano-titania) and cerium dioxide (nano-ceria). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes found under nano-titania exposure. Nano-titania induced more differentially expressed genes in rosette leaves, whereas roots had more differentially expressed genes under nano-ceria exposure. MapMan analyses indicated that although nano-titania up-regulated overall metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level, possibly because of functional and genomic redundancy in Arabidopsis, which may mask expression of morphological changes, despite discernable responses at the transcriptome level. In addition, transcriptomic changes often relate to transgenerational phenotypic development, and hence it may be productive to direct further experimental work to integrate high-throughput genomic results with longer term changes in subsequent generations. Environ Toxicol Chem 2017;36:71-82. Published 2016 Wiley

  3. Stability and spinodal decomposition of the solid-solution phase in the ruthenium-cerium-oxide electro-catalyst.

    PubMed

    Li, Yanmei; Wang, Xin; Shao, Yanqun; Tang, Dian; Wu, Bo; Tang, Zhongzhi; Lin, Wei

    2015-01-14

    The phase diagram of Ru-Ce-O was calculated by a combination of ab initio density functional theory and thermodynamic calculations. The phase diagram indicates that the solubility between ruthenium oxide and cerium oxide is very low at temperatures below 1100 K. Solid solution phases, if existing under normal experimental conditions, are metastable and subject to a quasi-spinodal decomposition to form a mixture of a Ru-rich rutile oxide phase and a Ce-rich fluorite oxide phase. To study the spinodal decomposition of Ru-Ce-O, Ru0.6Ce0.4O2 samples were prepared at 280 °C and 450 °C. XRD and in situ TEM characterization provide proof of the quasi-spinodal decomposition of Ru0.6Ce0.4O2. The present study provides a fundamental reference for the phase design of the Ru-Ce-O electro-catalyst.

  4. In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides.

    PubMed

    Gao, Peng; Wang, Zhenzhong; Fu, Wangyang; Liao, Zhaoliang; Liu, Kaihui; Wang, Wenlong; Bai, Xuedong; Wang, Enge

    2010-06-01

    Oxide materials with resistance hysteresis are very promising for next generation memory devices. However, the microscopic dynamic process of the resistance change is still elusive. Here, we use in situ transmission electron microscopy method to study the role of oxygen vacancies for the resistance switching effect in cerium oxides. The structure change during oxygen vacancy migration in CeO(2) induced by electric field was in situ imaged inside high-resolution transmission electron microscope, which gives a direct evidence for oxygen migration mechanism for the microscopic origin of resistance change effect in CeO(2). Our results have implications for understanding the nature of resistance change in metal oxides with mixed valence cations, such as fluorite, rutile and perovskite oxides. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. Radioprotective cerium oxide nanoparticles: Molecular imaging investigations of conps' pharmacokinetics, efficacy, and mechanisms of action

    NASA Astrophysics Data System (ADS)

    McDonagh, Philip Reed Wills, III

    Cerium oxide nanoparticles (CONPs) are being investigated for several anti-oxidant applications in medicine. One of their most promising applications is as a radioprotective drug, an area of research in need due to the severe side effects from radiation therapy. In this work, the potential of CONPs as a radioprotective drug is examined using four criteria: favorable biodistribution/pharmacokinetics, low toxicity, ability to protect normal tissue from radiation damage, and lack of protection of tumor. The mechanisms of action of CONPs are also studied. Biodistribution was determined in radiolabeled CONPs with surface coatings including citrate, dextran T10-amine (DT10-NH2), dextran T10-polyethylene glycol (DT10-PEG), dextran T10-sulfobetaine (DT10-SB) and poly(acrylic acid) (PAA), and compared to uncoated. 89Zr was incorporated into CONPs for positron emission tomography (PET) imaging and ex vivo tissue analysis in tumor bearing mice. Compared to uncoated [ 89Zr]CONPs, coated [89Zr]CONPs showed improved biodistribution, including significantly enhanced renal clearance of PAA- [89Zr]CONPs. The toxicity of CONPs was evaluated in vitro and in vivo, with low toxicity at therapeutic doses. After clinically mimetic radiation therapy, pre-treatment of mice with coated and uncoated CONPs showed greater than 50% reduction of cell death in normal colon tissue, comparable to the clinically available radioprotective drug amifostine. Tumor control after irradiation of spontaneous colon tumors was unchanged with PAA-CONP pre-treatment, while citrate, DT10-PEG, and uncoated CONP pre-treatment had slightly less tumor control. Xenograft tumors were irradiated after pH normalizing treatment with sodium bicarbonate and PAA-CONP pre-treatment. Treatment of these tumors showed slightly less tumor control than irradiation alone or PAA-CONP plus irradiation, demonstrating that the acidic pH of the tumor microenvironment may be the basis of preventing CONPs' radioprotective properties in

  6. Manganese-cerium oxide catalysts prepared by non-thermal plasma for NO oxidation: Effect of O2 in discharge atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zheng, Chenghang; Wu, Shenghao; Gao, Xiang; Ni, Mingjiang; Cen, Kefa

    2017-09-01

    Non-thermal plasma with different O2 concentration in discharge atmosphere was applied to synthesize manganese and cerium mixed-oxides catalysts, which were compared in NO oxidation activity. Discharge atmosphere displayed a crucial influence on the performance of the catalysts prepared by plasma. Relatively low O2 concentration in discharge atmosphere allows synthesizing manganese-cerium oxides catalysts in a moderate environment and therefore is favorable for better physicochemical properties which lead to superior catalytic behavior. The best catalyst was obtained by treatment with 10% O2/N2 plasma and presented over 80% NO conversion in the temperature range of 275-325 °C, whereas catalyst prepared in pure O2 discharge atmosphere had the same activity with a catalyst prepared by calcinations. A correlation between the surface properties of the plasma prepared catalysts and its catalytic activity in NO oxidation is proposed. The amount of the surface adsorbed oxygen has an obvious linear correlation with the amount of Ce3+, the H2 consumption at low temperatures and the catalytic performance. The superior catalytic performance is mainly attributed to the stronger interaction between manganese oxides and ceria, and the formation of poorly crystallized Mn-O-Ce phase in the catalyst which resulted from the slow decomposition of nitrates and organics during plasma treatment. Catalysts prepared in relatively low O2 concentration have large specific surface area and is abundant in Ce3+ species and active oxygen species. The study suggests that plasma treatment with proper discharge gas components is a promising method to prepare effective manganese- cerium oxides catalyst for NO oxidation.

  7. Cerium oxide coated anodes for aluminum electrowinning: Topical report, October 1, 1986-June 30, 1987

    SciTech Connect

    Walker, J. K.

    1987-12-01

    Because of the cost of building and maintaining a carbon anode plant and the energy penalties associated with the use of carbon anodes in the production of aluminum, the use of inert anodes has long been proposed. Various cermet anodes have been investigated. In this paper, tests on a material, cerium oxyfluoride (CEROX), deposited in situ as an anode, are reported. (JDH)

  8. Imaging nanostructural modifications induced by electronic metal-support interaction effects at Au||cerium-based oxide nanointerfaces.

    PubMed

    López-Haro, Miguel; Cíes, José M; Trasobares, Susana; Pérez-Omil, José A; Delgado, Juan J; Bernal, Serafín; Bayle-Guillemaud, Pascale; Stéphan, Odile; Yoshida, Kenta; Boyes, Edward D; Gai, Pratibha L; Calvino, José J

    2012-08-28

    A variety of advanced (scanning) transmission electron microscopy experiments, carried out in aberration-corrected equipment, provide direct evidence about subtle structural changes taking place at nanometer-sized Au||ceria oxide interfaces, which agrees with the occurrence of charge transfer effects between the reduced support and supported gold nanoparticles suggested by macroscopic techniques. Tighter binding of the gold nanoparticles onto the ceria oxide support when this is reduced is revealed by the structural analysis. This structural modification is accompanied by parallel deactivation of the CO chemisorption capacity of the gold nanoparticles, which is interpreted in exact quantitative terms as due to deactivation of the gold atoms at the perimeter of the Au||cerium oxide interface.

  9. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    EPA Science Inventory

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  10. Oxidative Stress, Inflammation, and DNA Damage Responses Elicited by Silver, Titanium Dioxide, and Cerium Oxide Nanomaterials

    EPA Science Inventory

    Previous literature on the biological effects of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. Here we examine time-sensitive biological response pathways affected by engineered nanoma...

  11. Complete oxidation of methane over Ag- and Cu-modified cerium and zirconium oxides

    NASA Astrophysics Data System (ADS)

    Kundakovic, Ljiljana

    Low temperature oxidation of methane is an area in catalysis that, despite the large number of catalytic systems studied, does not yet have an adequate solution. The exhaust gas from natural gas burning devices (gas turbines and natural gas vehicles), contains unconverted methane which is emitted into the atmosphere (currently unregulated). Methane is the most refractory of all hydrocarbons, and its activation requires temperatures higher than the typical exhaust temperatures (350-400sp°C). In this work, ceria- and zirconia-supported Ag and CuO catalysts were studied for the complete oxidation of methane. Catalysts were typically tested under excess oxygen and high space velocity (72,000 hsp{-1}). The reaction kinetics were measured over selected catalysts. Hsb2- and CHsb4- TPR and oxygen uptake measurements were used to characterize the catalyst reduction properties. XRD, STEM/EDX and HRTEM were used to characterize the catalyst structure. The oxidation state of various active species present was identified by XPS and UV-VIS DR spectrometry. Ceria- and zirconia-supported Ag and CuO catalysts are very active and stable catalysts for the complete oxidation of carbon monoxide and methane. When ceria is used as an active catalyst support, its activity depends strongly on its structure. Nanocrystalline ceria, stabilized by dopants such as La or Zr, is highly reducible and structurally defective. Our results indicate that surface oxygen species present under reaction conditions are the active sites for methane activation. Activity in the complete oxidation of methane is related to ceria crystal size and reducibility of surface oxygen species. The addition of a transition metal (Ag) or a metal oxide (CuO) in low amounts increases the low temperature reducibility of ceria and enhances the catalyst oxidation activity. On the other hand, both Ag and CuO are active catalysts for the complete oxidation of methane. These were studied separately on inert zirconia support. A

  12. Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.

    PubMed

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex

    2013-10-01

    Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Nafion-porous cerium oxide nanotubes composite membrane for polymer electrolyte fuel cells operated under dry conditions

    NASA Astrophysics Data System (ADS)

    Ketpang, Kriangsak; Oh, Kwangjin; Lim, Sung-Chul; Shanmugam, Sangaraju

    2016-10-01

    A composite membrane operated in polymer electrolyte fuel cells (PEFCs) under low relative humidity (RH) is developed by incorporating cerium oxide nanotubes (CeNT) into a perfluorosulfonic acid (Nafion®) membrane. Porous CeNT is synthesized by direct heating a precursor impregnated polymer fibers at 500 °C under an air atmosphere. Compared to recast Nafion and commercial Nafion (NRE-212) membranes, the Nafion-CeNT composite membrane generates 1.1 times higher power density at 0.6 V, operated at 80 °C under 100% RH. Compared to Nafion-cerium oxide nanoparticles (Nafion-CeNP) membrane, the Nafion-CeNT provides 1.2 and 1.7 times higher PEFC performance at 0.6 V when operated at 80 °C under 100% and 18% RH, respectively. Additionally, the Nafion-CeNT composite membrane exhibits a good fuel cell operation under 18% RH at 80 °C. Specifically, the fluoride emission rate of Nafion-CeNT composite membrane is 20 times lower than that of the commercial NRE-212 membrane when operated under 18% RH at 80 °C for 96 h. The outstanding PEFC performance and durability operated under dry conditions is mainly attributed to the facile water diffusion capability as well as the effective hydroxyl radical scavenging property of the CeNT filler, resulting in significantly mitigating both the ohmic resistance and Nafion membrane degradation.

  14. Catalytic wet oxidation of 2,4-dichlorophenol solutions: activity of the manganese-cerium composite catalyst and biodegradability of the effluent stream.

    PubMed

    Lee, Bing-Nan; Lou, Jie-Chung; Yen, Po-Chung

    2002-01-01

    Aqueous solutions containing 100 to 1000 mg/L of 2,4-dichlorophenol (2,4-DCP) were oxidized in an upflowing fixed-bed reactor in this study of manganese-cerium composite catalysts, which were prepared by the coprecipitation of both manganese nitrate and ceric nitrate at various molar concentrations. Results showed that 2,4-DCP conversion by wet oxidation in the presence of the manganese-cerium composite catalysts was a function of the molar ratio of the manganese-cerium catalyst. The kinetic behavior of 2,4-DCP oxidation with catalysis could be explained by using a zero-order rate expression. Total organic carbon (TOC) removal by wet oxidation in the absence of any catalyst was nil, while approximately 68% TOC reduction was achieved during wet oxidation over a manganese-cerium (7:3 mol/mol) catalyst at 160 degrees C and an oxygen partial pressure of 1.0 MPa. Moreover, the 5-day biochemical oxygen demand/chemical oxygen demand ratios of all the effluent streams were determined to be greater than 0.45 as the wet catalytic processes were carried out at a liquid hourly space velocity less than 24 h (-1), indicating that they could be made more amenable to further biological treatment.

  15. Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure

    DOE PAGES

    Rico, Cyren M.; Johnson, Mark G.; Marcus, Matthew A.; ...

    2017-02-06

    The intergenerational impact of engineered nanomaterials in plants is a major knowledge gap in the literature. A soil microcosm study was performed to assess the effects of multi-generational exposure of wheat (Triticum aestivum L.) to cerium oxide nanoparticles (CeO 2 -NPs). Seeds from plants that were exposed to 0, 125, and 500 mg CeO2-NPs kg-1 soil (Ce-0, Ce-125 or Ce-500, respectively) in first generation (S1) were cultivated in factorial combinations of Ce-0, Ce-125 or Ce-500 to produce second generation (S2) plants. The factorial combinations for first/second generation treatments in Ce-125 were S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-125, S1-Ce-125/S2-Ce-0 and S1-Ce-125/S2-Ce-125, and in Ce-500 weremore » S1-Ce-0/S2-Ce-0, S1-Ce-0/S2-Ce-500, S1-Ce-500/S2-Ce-0 and S1-Ce-500/S2-Ce-500. Agronomic, elemental, isotopic, and synchrotron X-ray fluorescence (XRF) and X-ray absorption near-edge spectroscopy (XANES) data were collected on second generation plants. Results showed that plants treated during the first generation only with either Ce-125 or Ce-500 (e.g. S1-Ce-125/S2-Ce-0 or S1-Ce-500/S2-Ce-0) had reduced accumulation of Ce (61 or 50%), Fe (49 or 58%) and Mn (34 or 41%) in roots, and δ15 N (11 or 8%) in grains compared to the plants not treated in both generations (i.e. S1-Ce-0/S2-Ce-0). Plants treated in both generations with Ce-125 (i.e. S1-Ce-125/S2-Ce-125) produced grains that had lower Mn, Ca, K, Mg and P relative to plants treated in the second generation only (i.e. S1-Ce-0/S2-Ce-125). In addition, synchrotron XRF elemental chemistry maps of soil/plant thin-sections revealed limited transformation of CeO2-NPs with no evidence of plant uptake or accumulation. The findings demonstrated that first generation exposure of wheat to CeO2-NPs affects the physiology and nutrient profile of the second generation plants. However, the lack of concentration-dependent responses indicate that complex physiological processes are involved which alter uptake and metabolism of

  16. Physicochemical and biological interactions between cerium oxide nanoparticles and a 1,8-naphthalimide derivative.

    PubMed

    Pulido-Reyes, Gerardo; Martín, Esperanza; Gu Coronado, J L; Leganes, Francisco; Rosal, Roberto; Fernández-Piñas, Francisca

    2017-07-01

    Cerium (Ce) oxide nanoparticles (CNPs) have attracted attention due to their high bioactivity and unique redox-chemistry. The oxygen vacancies at the surface of the nanoparticle explain the autocatalytic properties of CNPs in which the Ce(3+) atoms occupy the center of the oxygen vacancies surrounded by Ce(4+) atoms. Until now, CNPs have been associated with organic molecules at the synthesis stage to extend their applications or improve their stability. However, there is a lack of information regarding the post-synthesis interaction of CNPs and organic molecules that could enhance or induce new properties. Due to their unique optical properties and their many uses in different areas such as supramolecular chemistry or biomedicine, we have chosen a derivative from the family of naphthalimides (the 4-amino-1,8-naphthalimide-N-substituted; ANN) to study the interaction with different CNPs (CNP1-4) and their joint bioactivity compared to that of the same compounds alone. ANN-CNP complexes were formed as revealed by spectroscopic studies, but, the interaction was markedly different depending on the physicochemical properties of CNPs and their surface content of Ce(3+) sites. The ANN adsorption on all CNPs involved the amino group in the naphthalene moiety as shown by NMR spectroscopy, while the pyrrolidine ring was mainly involved in the specific interaction between ANN and CNP1. The biological effect of each CNP and ANN individually and forming complexes was assessed using a bioluminescent model bacterium. The results showed that ANN and CNP with the higher content of surface Ce(3+) (CNP1) when combined acted additively towards the used model organism. In the opposite, ANN-CNP2, ANN-CNP3 and ANN-CNP4 complexes were antagonistic when the nanoparticles dominated the mixture. The results of this study contribute to expand the knowledge of the interaction between nanoparticles and organic molecules which may be useful for understanding the behavior of nanoparticles in

  17. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity.

    PubMed

    Pešić, Milica; Podolski-Renić, Ana; Stojković, Sonja; Matović, Branko; Zmejkoski, Danica; Kojić, Vesna; Bogdanović, Gordana; Pavićević, Aleksandra; Mojović, Miloš; Savić, Aleksandar; Milenković, Ivana; Kalauzi, Aleksandar; Radotić, Ksenija

    2015-05-05

    Data on medical applications of cerium oxide nanoparticles CeO2 (CONP) are promising, yet information regarding their action in cells is incomplete and there are conflicting reports about in vitro toxicity. Herein, we have studied cytotoxic effect of CONP in several cancer and normal cell lines and their potential to change intracellular redox status. The IC50 was achieved only in two of eight tested cell lines, melanoma 518A2 and colorectal adenocarcinoma HT-29. Self-propagating room temperature method was applied to produce CONP with an average crystalline size of 4 nm. The results confirmed presence of Ce(3+) and O(2-) vacancies. The induction of cell death by CONP and the production of reactive oxygen species (ROS) were analyzed by flow-cytometry. Free radicals related antioxidant capacity of the cells was studied by the reduction of stable free radical TEMPONE using electron spin resonance spectroscopy. CONP showed low or moderate cytotoxicity in cancer cell lines: adenocarcinoma DLD1 and multi-drug resistant DLD1-TxR, non-small cell lung carcinoma NCI-H460 and multi-drug resistant NCI-H460/R, while normal cell lines (keratinocytes HaCaT, lung fetal fibroblasts MRC-5) were insensitive. The most sensitive were 518A2 melanoma and HT-29 colorectal adenocarcinoma cell lines, with the IC50 values being between 100 and 200 μM. Decreased rate of TEMPONE reduction and increased production of certain ROS species (peroxynitrite and hydrogen peroxide anion) indicates that free radical metabolism, thus redox status was changed, and antioxidant capacity damaged in the CONP treated 518A2 and HT-29 cells. In conclusion, changes in intracellular redox status induced by CONP are partly attributed to the prooxidant activity of the nanoparticles. Further, ROS induced cell damages might eventually lead to the cell death. However, low inhibitory potential of CONP in the other human cell lines tested indicates that CONP may be safe for human usage in industry and medicine.

  18. Genotoxicity assessment of cerium oxide nanoparticles in female Wistar rats after acute oral exposure.

    PubMed

    Kumari, Monika; Kumari, Srinivas Indu; Kamal, Sarika Srinivas Kalyan; Grover, Paramjit

    2014-12-01

    Cerium oxide nanoparticles (CeO2 NPs; nanoceria) have demonstrated excellent potential for commercial use in various arenas, such as in biomedical industry in cosmetics and as a fuel additive. However, limited knowledge exists regarding their potential toxicity. In this study, acute oral toxicity of CeO2 NPs and their microparticles (MPs; bulk) was carried out in female albino Wistar rats. The CeO2 NPs and CeO2 MPs were characterized utilizing transmission electron microscopy (TEM), dynamic light scattering (DLS) and laser Doppler velocimetry (LDV) for the size, distribution and surface charge respectively. The genotoxicity studies were conducted using micronucleus test (MNT), comet and chromosomal aberration (CA) assays. Results revealed that at high dose (1000mg/kg bw) CeO2 NPs induced significant DNA damage in peripheral blood leukocytes (PBL) and liver cells, micronucleus formation in bone marrow and blood cells and total cytogenetic changes in bone marrow. However, significant genotoxicity was not observed at 500 and 100mg/kg bw of CeO2 NPs. The findings from biochemical assays depicted significant alterations in ALP and LDH activity in serum and GSH content in liver, kidneys and brain only at the high dose of CeO2 NPs. Tissue biodistribution of both particles was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Bioaccumulation of nanoceria in all tissues was significant and dose-, time- and organ-dependent. Moreover, CeO2 NPs exhibited higher tissue distribution along with greater clearance in large fractions through urine and feces than CeO2 bulk, whereas, maximum amount of micro-sized CeO2 got excreted in feces. The histopathological examination documented alterations in the liver due to exposure with CeO2 NPs only. Hence, the results suggest that bioaccumulation of CeO2 NPs may induce genotoxic effects. However, further research on long term fate and adverse effects of CeO2 NPs is warranted.

  19. SU-E-T-279: Dose Enhancement Effect Due to Cerium Oxide Nanoparticles Employed as Radiation Protectants

    SciTech Connect

    Ouyang, Z; Altundal, Y; Sajo, E; Ngwa, W

    2015-06-15

    Purpose: The goal of radiotherapy is to maximize radiation dose to diseased cells while minimizing radiation damage to normal tissues. In order to minimize damage to normal tissues, cerium oxide nanoparticles (nanoceria) are currently considered as a radioprotectant. However, some studies have reported concerns that nanoceria can also lead to radiotherapy dose enhancement due to the high atomic number of cerium, especially when used in conjunction with kV energy and brachytherapy sources. In this study, this concern is investigated to determine if the concentrations of nanoceria employed in in-vivo studies to confer radioprotection can engender a significant dose enhancement. Methods: Radiation with energies ranging from 50kVp to 140kVp is investigated in this work along with brachytherapy sources Pd-103 and I-125. A previously established theoretical model is used to calculate the dose enhancement factor (DEF). In this model, each cell is assumed to be a voxel of size (10 µm, 10 µm, 10 µm) with nanoceria homogeneously distributed among them. Electron energy loss formula of Cole is used to calculate energy (and hence dose) deposited by photoelectrons and Auger electrons in each tissue voxel due to irradiation of nanoceria. The DEF is defined as the ratio of the dose with and without nanoparticles. Results: DEF calculation results are smaller than 1.02 with dosages of nanoceria smaller than 0.645 mg/g, which is shown to be sufficiently protective by some previous in-vitro and in-vivo experiments. The brachytherapy sources show higher DEF’s than kVp radiations. DEF peaks are consistent with K shell and L shell energies of cerium, 40 keV and 6 keV, respectively. Conclusion: The results show that for sufficiently radioprotective concentrations of nanoceria, there will be minimal DEF when used in conjunction with clinically applicable kV energy radiotherapy sources or brachytherapy sources.

  20. Gadolinium doped cerium oxide for soot oxidation: Influence of interfacial metal-support interactions

    NASA Astrophysics Data System (ADS)

    Durgasri, D. Naga; Vinodkumar, T.; Lin, Fangjian; Alxneit, Ivo; Reddy, Benjaram M.

    2014-09-01

    The aim of the present investigation was to ascertain the role of Al2O3, SiO2, and TiO2 supports in modulating the catalytic performance of ceria-based solid solutions. In this study, we prepared nanosized Ce-Gd/Al2O3, Ce-Gd/SiO2, and Ce-Gd/TiO2 catalysts by a deposition coprecipitation method and evaluated for soot oxidation. The synthesized catalysts were calcined at two different temperatures to assess their thermal stability and extensively characterized by various techniques, namely, XRD, Raman, BET surface area, TEM, H2-TPR, and UV-vis DRS. XRD and TEM results indicate that Ce-Gd-oxide nanoparticles are in highly dispersed form on the surface of the supports. Raman results show a prominent sharp peak and a broad peak corresponding to the F2g mode of ceria and the presence of oxygen vacancies, respectively. The presence of a significant number of oxygen vacancies in all samples is also confirmed from UV-vis DRS measurements. The H2-TPR results suggest that Gd-doping facilitates the reduction of the materials and decreases the onset temperature of reduction. Among the prepared samples, Ce-Gd/TiO2 catalyst exhibited the highest activity, suggesting the existence of strong interfacial metal support interaction between the active metal oxide and the support.

  1. Oxidation of SO2 to SO3 by Cerium Oxide Cluster Cations Ce2O4(+) and Ce3O6(.).

    PubMed

    Zhou, Zhen-Xun; Wang, Li Na; Li, Zi-Yu; He, Sheng-Gui; Ma, Tong-Mei

    2016-06-09

    Cerium oxide cationic clusters (CeO2)1-3(+) were generated through laser ablation and then reacted with sulfur dioxide (SO2) at ambient conditions in an ion trap reactor and those reactions were studied and characterized by combining the art of time-of-flight mass spectrometry (TOF-MS) with density functional theory (DFT) calculations. Molecule association and oxygen atom transfer (OAT) were observed for the CeO2(+) and (CeO2)2,3(+) reaction systems, respectively. The mechanistic analysis indicates that the weak Ce-O bond strength associated with the oxygen release capacity of cerium oxide clusters is considered as the key factor to achieve the oxidation of SO2. To our best knowledge, this research should be the first example to identify the OAT reactivity of metal oxide cluster ions toward sulfur dioxide under thermal collision conditions, and a fundamental understanding of the elementary oxidation of SO2 to SO3 is provided.

  2. The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes

    SciTech Connect

    Pearman, Benjamin P; Mohajeri, Nahid; Slattery, Darlene; Hampton, Michael; Seal, Sudipta; Cullen, David A

    2013-01-01

    Perfluorosulfonic acid membranes, the polymer of choice for polymer electrolyte hydrogen fuel cells, are susceptible to degradation due to attacks on polymer chains from radicals. Mitigation of this attack by cerium-based radical scavengers is an approach that has shown promise. In this work, two formulations of single-crystal cerium oxide nanoparticles, with an order of magnitude difference in particle size, are incorporated into said membranes and subjected to proton conductivity measurements and ex-situ durability tests. We found that ceria is reduced to Ce(III) ions in the acidic environment of a heated, humidified membrane which negatively impacts proton conductivity. In liquid and gas Fenton testing, fluoride emission is reduced by an order of magnitude, drastically increasing membrane longevity. Side-product analysis demonstrated that in the liquid Fenton test, the main point of attack are weak polymer end groups, while in the gas Fenton test, there is additional side-chain attack. Both mechanisms are mitigated by the addition of the ceria nanoparticles, whereby the extent of the durability improvement is found to be independent of particle size.

  3. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety.

    PubMed

    Wang, Qiang; Ma, Xingmao; Zhang, Wen; Pei, Haochun; Chen, Yongsheng

    2012-10-01

    Sustainable development of nanotechnology requires an understanding of the long term ecotoxicological impact of engineered nanomaterials on the environment. Cerium oxide nanoparticles (CeO₂-NPs) have great potential to accumulate and adversely affect the environment owing to their widespread applications in commercial products. This study documented the chronic phenotypic response of tomato plants to CeO₂-NPs (0.1-10 mg L⁻¹) and determined the effect of CeO₂-NPs on tomato yield. The results indicated that CeO₂-NPs at the concentrations applied in this study had either an inconsequential or a slightly positive effect on plant growth and tomato production. However, elevated cerium content was detected in plant tissues exposed to CeO₂-NPs, suggesting that CeO₂-NPs were taken up by tomato roots and translocated to shoots and edible tissues. In particular, substantially higher Ce concentrations were detected in the fruits exposed to 10 mg L⁻¹ CeO₂-NPs, compared with controls. This study sheds light on the long term impact of CeO₂-NPs on plant health and its implications for our food safety and security.

  4. Structural analysis of nickel doped cerium oxide catalysts for fuel reforming in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cavendish, Rio

    As world energy demands increase, research into more efficient energy production methods has become imperative. Heterogeneous catalysis and nanoscience are used to promote chemical transformations important for energy production. These concepts are important in solid oxide fuel cells (SOFCs) which have attracted attention because of their potential to provide an efficient and environmentally favorable power generation system. The SOFC is also fuel-flexible with the ability to run directly on many fuels other than hydrogen. Internal fuel reforming directly in the anode of the SOFC would greatly reduce the cost and complexity of the device. Methane is the simplest hydrocarbon and a main component in natural gas, making it useful when testing catalysts on the laboratory scale. Nickel (Ni) and gadolinium (Gd) doped ceria (CeO 2) catalysts for potential use in the SOFC anode were synthesized with a spray drying method and tested for catalytic performance using partial oxidation of methane and steam reforming. The relationships between catalytic performance and structure were then investigated using X-ray diffraction, transmission electron microscopy, and environmental transmission electron microscopy. The possibility of solid solutions, segregated phases, and surface layers of Ni were explored. Results for a 10 at.% Ni in CeO2 catalyst reveal a poor catalytic behavior while a 20 at.% Ni in CeO2 catalyst is shown to have superior activity. The inclusion of both 10 at.% Gd and 10 at.% Ni in CeO2 enhances the catalytic performance. Analysis of the presence of Ni in all 3 samples reveals Ni heterogeneity and little evidence for extensive solid solution doping. Ni is found in small domains throughout CeO2 particles. In the 20 at.% Ni sample a segregated, catalytically active NiO phase is observed. Overall, it is found that significant interaction between Ni and CeO2 occurs that could affect the synthesis and functionality of the SOFC anode.

  5. Laser induced densification of cerium gadolinium oxide: Application to single-chamber solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Mariño, Mariana; Rieu, Mathilde; Viricelle, Jean-Paul; Garrelie, Florence

    2016-06-01

    In single-chamber solid oxide fuel cells (SC-SOFC), anode and cathode are placed in a gas chamber where they are exposed to a fuel/air mixture. Similarly to conventional dual-chamber SOFC, the anode and the cathode are separated by an electrolyte. However, as in the SC-SOFC configuration the electrolyte does not play tightness role between compartments, this one can be a porous layer. Nevertheless, it is necessary to have a diffusion barrier to prevent the transportation of hydrogen produced locally at the anode to the cathode that reduces fuel cell performances. This study aims to obtain directly a diffusion barrier through the surface densification of the electrolyte Ce0.9Gd0.1O1.95 (CGO) by a laser treatment. KrF excimer laser and Yb fiber laser irradiations were used at different fluences and number of pulses to modify the density of the electrolyte coating. Microstructural characterizations confirmed the modifications on the surface of the electrolyte for appropriate experimental conditions showing either grain growth or densified but cracked surfaces. Gas permeation and electrical conductivities of the modified electrolyte were evaluated. Finally SC-SOFC performances were improved for the cells presenting grain growth at the electrolyte surface.

  6. Preliminary study of phosphate adsorption onto cerium oxide nanoparticles for use in water purification; nanoparticles synthesis and characterization.

    PubMed

    Recillas, Sonia; García, Ana; González, Edgar; Casals, Eudald; Puntes, Victor; Sánchez, Antoni; Font, Xavier

    2012-01-01

    In this study, the synthesis and characterization of cerium oxide nanoparticles (CeO(2)-NPs) and their adsorption potential for removing phosphate from water was evaluated using a multi-factor experimental design to explore the effect of various factors on adsorption. The objective function selected was the percentage of phosphate removed from water, in which the phosphate concentration and the CeO(2)-NP concentration are quantitative variables (factors in the experimental design). A lineal polynomial fitted the experimental results well (R(2) = 0.9803). The nanostructure was studied by transmission electron microscopy (TEM) and high-resolution TEM techniques before and after the adsorption process. During the adsorption and desorption processes several changes in the morphology and surface chemistry of the CeO(2)-NPs were observed.

  7. Stability and mobility of cerium oxide nanoparticles in soils: effects of humic substances, pH and ionic strength

    NASA Astrophysics Data System (ADS)

    Chen, Yirui; Mu, Linlin; Li, Chunyan; Bai, Lingyun; Jacobson, Astrid; Darnault, Christophe

    2015-04-01

    Among the large number of types of nanomaterials used in the field of nanotechnology, cerium oxide nanoparticles (CeO2 NPs) are among the top five most commonly utilized by industry, agriculture and nanomedicine for their unique physico-chemical properties. They are used, for example, in the production of catalysts, as fuel additives, and as polishing agents. Therefore, the release and encounter of CeO2 NPs in the environment following their application, waste disposal, life-cycle and accidents is inevitable. It is critical to examine the behavior of CeO2 NPs released in the environment to assess the risk they pose to the environmental and public health. In particular, little is known about the fate and transport of CeO2 NPs in soils and groundwater. To assess the behavior of CeO2 NPs, it is important to investigate the factors that affect their stability and mobility. Humic substances are a major component of soils and have been shown to have the potential to impact the transport and retention of nanoparticles in soils. Consequently, our study characterizes the impacts of humic and fulvic acids on the stability and mobility of cerium oxides in model porous media under various pH and ionic strength conditions. Batch experiments conducted at various concentrations of humic and fulvic acids coupled with a wide range of pHs and ionic strengths were investigated. Selected parameters from these batch studies were then used as experimental conditions representative of environmental systems to perform column transport experiments to assess of the mobility of CeO2 NPs in saturated porous media, which is the first step in simulating their behavior in soil and groundwater systems.

  8. Evaluation of the effect of valence state on cerium oxide nanoparticle toxicity following intratracheal instillation in rats

    PubMed Central

    Dunnick, Katherine M.; Morris, Anna M.; Badding, Melissa A.; Barger, Mark; Stefaniak, Aleksandr B.; Sabolsky, Edward M.; Leonard, Stephen S.

    2016-01-01

    Cerium (Ce) is becoming a popular metal for use in electrochemical applications. When in the form of cerium oxide (CeO2), Ce can exist in both 3 + and 4 + valence states, acting as an ideal catalyst. Previous in vitro and in vivo evidence have demonstrated that CeO2 has either anti- or pro-oxidant properties, possibly due to the ability of the nanoparticles to transition between valence states. Therefore, we chose to chemically modify the nanoparticles to shift the valence state toward 3+. During the hydrothermal synthesis process, 10 mol% gadolinium (Gd) and 20 mol% Gd, were substituted into the lattice of the CeO2 nanoparticles forming a perfect solid solution with various A-site valence states. These two Gd-doped CeO2 nanoparticles were compared to pure CeO2 nanoparticles. Preliminary characteristics indicated that doping results in minimal size and zeta potential changes but alters valence state. Following characterization, male Sprague-Dawley rats were exposed to 0.5 or 1.0 mg/kg nanoparticles via a single intratracheal instillation. Animals were sacrificed and bronchoalveolar lavage fluid and various tissues were collected to determine the effect of valence state and oxygen vacancies on toxicity 1-, 7-, or 84-day post-exposure. Results indicate that damage, as measured by elevations in lactate dehydrogenase, occurred within 1-day post-exposure and was sustained 7-day post-exposure, but subsided to control levels 84-day post-exposure. Furthermore, no inflammatory signaling or lipid peroxidation occurred following exposure with any of the nanoparticles. Our results implicate that valence state has a minimal effect on CeO2 nanoparticle toxicity in vivo. PMID:26898289

  9. Protective effects of cerium oxide and yttrium oxide nanoparticles on reduction of oxidative stress induced by sub-acute exposure to diazinon in the rat pancreas.

    PubMed

    Khaksar, Mohammad Reza; Rahimifard, Mahban; Baeeri, Maryam; Maqbool, Faheem; Navaei-Nigjeh, Mona; Hassani, Shokoufeh; Moeini-Nodeh, Shermineh; Kebriaeezadeh, Abbas; Abdollahi, Mohammad

    2017-05-01

    Diazinon is a kind of organophosphorus (OP) compound that is broadly used against different species of insects and pests. Oxidative stress can occur at very early stages of diazinon exposure and the pancreas is one of the main target organs for toxicity by diazinon. The aim of this study was to evaluate the protective effects of cerium oxide nanoparticles (CeO2 NPs) and yttrium oxide nanoparticles (Y2O3 NPs) against the pancreatic damage from sub-acute exposure of diazinon. Diazinon at a dose of 70mg/kg/day was given through gavage to rats once a day. Along with diazinon, trace amounts of CeO2 NPs and Y2O3 NPs (35mg/kg and 45mg/kg per day, respectively) were administered by intraperitoneal injection once a day for 2 weeks. Animals weight and blood glucose were measured during the treatment, and oxidative stress biomarkers, diabetes physiology, function and viability of cells were investigated at the end of the treatment in serum and pancreas tissues. Apoptosis of islets was examined by the flow cytometry. The high blood glucose level and significant weight loss resulting from diazinon were modified as a result of the application of the NPs. A significant recovery in oxidative stress markers, pro-insulin, insulin, C-peptide, adenosine diphosphate/adenosine triphosphate (ATP/ADP) ratio, caspase-3 and -9 activities and apoptosis-necrosis in the islets was observed. In conclusion, administration of CeO2 NPs or Y2O3 NPs only or their combination with suitable and defined dose will help to overcome the consequences from oxidant agents. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Sorption of trivalent cerium by a mixture of microbial cells and manganese oxides: Effect of microbial cells on the oxidation of trivalent cerium

    NASA Astrophysics Data System (ADS)

    Ohnuki, Toshihiko; Jiang, Mingyu; Sakamoto, Fuminori; Kozai, Naofumi; Yamasaki, Shinya; Yu, Qianqian; Tanaka, Kazuya; Utsunomiya, Satoshi; Xia, Xiaobin; Yang, Ke; He, Jianhua

    2015-08-01

    Sorption of Ce by mixtures of synthetic Mn oxides and microbial cells of Pseudomonas fluorescens was investigated to elucidate the role of microorganisms on Ce(III) oxidative migration in the environment. The mixtures, upon which Ce was sorbed following exposure to solutions containing 1.0 × 10-4 or 1.0 × 10-5 mol L-1 Ce(III), were analyzed by scanning electron microscopy energy dispersive X-ray spectroscopy (SEM-EDS) and micro-X-ray fluorescence (micro-XRF) at synchrotron facilities. A Ce LIII-edge micro XANES spectra analysis was also performed to determine the oxidation states of Ce adsorbed to the Mn oxides and microbial cells in the mixtures. The distribution ratios (Kd) of Ce between the individual solids and solution increased with increasing pH of the solution, and was nearly the same in mixtures containing varying amounts of microbial cells. SEM-EDS and micro-XRF analyses showed that Ce was sorbed by both MnO2 and microbial cells (1.7 × 10-1 or 3.3 × 10-1 g L-1). In addition, nano-particles containing Ce and P developed on the surface of the microbial cells. XANES analysis showed that lower fractions of Ce(III) were oxidized to Ce(IV) in the mixtures containing greater amounts of microbial cells. Micro-XANES analysis revealed that Ce was present as Ce(III) on the microbial cells and as Ce(IV) on Mn oxides. These results strongly suggest that the association of Ce(III) with the microbial cell surface and the formation of Ce phosphate nano-particles are responsible for suppressing the oxidation of Ce(III) to Ce(IV) in the mixtures.

  11. Influence of alloy content and a cerium surface treatment on the oxidation behavior of Fe-Cr ferritic stainless steels

    SciTech Connect

    Alman, D.E.; Jablonski, P.D.

    2006-01-01

    The cost of solid oxide fuel cells (SOFC) can be significantly reduced by using interconnects made from ferritic stainless steels. In fact, several alloys have been developed specifically for this application (Crofer 22APU and Hitachi ZMG323). However, these steels lack environmental stability in SOFC environments, and as a result, degrade the performance of the SOFC. A steel interconnect can contribute to performance degradation through: (i) Cr poisoning of electrochemically active sites within the cathode; (ii) formation of non-conductive oxides, such as SiO2 or Al2O3 from residual or minor alloying elements, at the base metal-oxide scale interface; and/or (iii) excessive oxide scale growth, which may also retard electrical conductivity. Consequently, there has been considerable attention on developing coatings to protect steel interconnects in SOFC environments and controlling trace elements during alloy production. Recently, we have reported on the development of a Cerium surface treatment that improves the oxidation behavior of a variety alloys, including Crofer 22APU [1-5]. Initial results indicated that the treatment may improve the performance of Crofer 22APU for SOFC application by: (i) retarding scale growth resulting in a thinner oxide scale; and (ii) suppressing the formation of a deleterious continuous SiO2 layer that can form at the metal-oxide scale interface in materials with high residual Si content [5]. Crofer 22 APU contains Fe-22Cr-0.5Mn-0.1Ti (weight percent). Depending on current market prices and the purity of raw materials utilized for ingot production, Cr can contribute upwards of 90 percent of the raw materials cost. The present research was undertaken to determine the influence of Cr content and minor element additions, especially Ti, on the effectiveness of the Ce surface treatment. Particular emphasis is placed on the behavior of low Cr alloys.

  12. Role of epithelial-mesenchymal transition (EMT) and fibroblast function in cerium oxide nanoparticles-induced lung fibrosis.

    PubMed

    Ma, Jane; Bishoff, Bridget; Mercer, R R; Barger, Mark; Schwegler-Berry, Diane; Castranova, Vincent

    2017-05-15

    The emission of cerium oxide nanoparticles (CeO2) from diesel engines, using cerium compounds as a catalyst to lower the diesel exhaust particles, is a health concern. We have previously shown that CeO2 induced pulmonary inflammation and lung fibrosis. The objective of the present study was to investigate the modification of fibroblast function and the role of epithelial-mesenchymal transition (EMT) in CeO2-induced fibrosis. Male Sprague-Dawley rats were exposed to CeO2 (0.15 to 7mg/kg) by a single intratracheal instillation and sacrificed at various times post-exposure. The results show that at 28days after CeO2 (3.5mg/kg) exposure, lung fibrosis was evidenced by increased soluble collagen in bronchoalveolar lavage fluid, elevated hydroxyproline content in lung tissues, and enhanced sirius red staining for collagen in the lung tissue. Lung fibroblasts and alveolar type II (ATII) cells isolated from CeO2-exposed rats at 28days post-exposure demonstrated decreasing proliferation rate when compare to the controls. CeO2 exposure was cytotoxic and altered cell function as demonstrated by fibroblast apoptosis and aggregation, and ATII cell hypertrophy and hyperplasia with increased surfactant. The presence of stress fibers, expressed as α-smooth muscle actin (SMA), in CeO2-exposed fibroblasts and ATII cells was significantly increased compared to the control. Immunohistofluorescence analysis demonstrated co-localization of TGF-β or α-SMA with prosurfactant protein C (SPC)-stained ATII cells. These results demonstrate that CeO2 exposure affects fibroblast function and induces EMT in ATII cells that play a role in lung fibrosis. These findings suggest potential adverse health effects in response to CeO2 nanoparticle exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Effects from a 90-day inhalation toxicity study with cerium oxide and barium sulfate nanoparticles in rats.

    PubMed

    Schwotzer, Daniela; Ernst, Heinrich; Schaudien, Dirk; Kock, Heiko; Pohlmann, Gerhard; Dasenbrock, Clemens; Creutzenberg, Otto

    2017-07-12

    Nanomaterials like cerium oxide and barium sulfate are frequently processed in industrial and consumer products and exposure of humans and other organisms is likely. Generally less information is given on health effects and toxicity, especially regarding long-term exposure to low nanoparticle doses. Since inhalation is still the major route of uptake the present study focused on pulmonary effects of CeO2NM-212 (0.1, 0.3, 1.0, 3.0 mg/m(3)) and BaSO4NM-220 nanoparticles (50.0 mg/m(3)) in a 90-day exposure setup. To define particle-related effects and potential mechanisms of action, observations in histopathology, bronchoalveolar lavage and immunohistochemistry were linked to pulmonary deposition and clearance rates. This further allows evaluation of potential overload related effects. Lung burden values increased with increasing nanoparticle dose levels and ongoing exposure. At higher doses, cerium clearance was impaired, suggesting lung overload. Barium elimination was extremely rapid and without any signs of overload. Bronchoalveolar lavage fluid analysis and histopathology revealed lung tissue inflammation with increasing severity and post-exposure persistency for CeO2. Also, marker levels for genotoxicity and cell proliferation were significantly increased. BaSO4 showed less inflammation or persistency of effects and particularly affected the nasal cavity. CeO2 nanoparticles penetrate the alveolar space and affect the respiratory tract after inhalation mainly in terms of inflammation. Effects at low dose levels and post-exposure persistency suggest potential long-term effects and a notable relevance for human health. The generated data might be useful to improve nanoparticle risk assessment and threshold value generation. Mechanistic investigations at conditions of non-overload and absent inflammation should be further investigated in future studies.

  14. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK–PKC–CBP signaling cascade

    PubMed Central

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5′-adenine monophosphate-activated protein kinase–protein kinase C–cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases. PMID:27069362

  15. Cerium oxide nanoparticles promote neurogenesis and abrogate hypoxia-induced memory impairment through AMPK-PKC-CBP signaling cascade.

    PubMed

    Arya, Aditya; Gangwar, Anamika; Singh, Sushil Kumar; Roy, Manas; Das, Mainak; Sethy, Niroj Kumar; Bhargava, Kalpana

    2016-01-01

    Structural and functional integrity of the brain is adversely affected by reduced oxygen saturation, especially during chronic hypoxia exposure and often encountered by altitude travelers or dwellers. Hypoxia-induced generation of reactive nitrogen and oxygen species reportedly affects the cortex and hippocampus regions of the brain, promoting memory impairment and cognitive dysfunction. Cerium oxide nanoparticles (CNPs), also known as nanoceria, switch between +3 and +4 oxidation states and reportedly scavenge superoxide anions, hydrogen peroxide, and peroxynitrite in vivo. In the present study, we evaluated the neuroprotective as well as the cognition-enhancing activities of nanoceria during hypobaric hypoxia. Using polyethylene glycol-coated 3 nm nanoceria (PEG-CNPs), we have demonstrated efficient localization of PEG-CNPs in rodent brain. This resulted in significant reduction of oxidative stress and associated damage during hypoxia exposure. Morris water maze-based memory function tests revealed that PEG-CNPs ameliorated hypoxia-induced memory impairment. Using microscopic, flow cytometric, and histological studies, we also provide evidences that PEG-CNPs augmented hippocampus neuronal survival and promoted neurogenesis. Molecular studies revealed that PEG-CNPs promoted neurogenesis through the 5'-adenine monophosphate-activated protein kinase-protein kinase C-cyclic adenosine monophosphate response element-binding protein binding (AMPK-PKC-CBP) protein pathway. Our present study results suggest that nanoceria can be translated as promising therapeutic molecules for neurodegenerative diseases.

  16. Evaluation of cerium oxide coated Cu cermets as inert anodes for aluminum electrowinning. Final report, August 1990--March 1992

    SciTech Connect

    Not Available

    1992-08-01

    Cu/NiFe{sub 2}O{sub 4} cermets were evaluated, with and without an in-situ deposited CEROX (TM; cerium oxide) coating, in 100 h laboratory A1 electrowinning tests. Bath ratio and current density were varied between tests and corrosion was determined by contamination of the aluminum and cryolite by cermet components (Cu, Fe, and Ni). Higher bath ratios of 1.5 to 1.6 led to less corrosion and thicker CEROX coatings. Lower current densities led to slightly less corrosion but much less oxidation of the Cu cermet substrate. At identical test conditions, the corrosion of the CEROX coated cermets was 1/7 that of an uncoated cermet. Corrosion was increased in CEROX coated cermets tested under unsaturated alumina conditions. The electrical conductivity of the CEROX coating was measured to be {approximately}0.2 ohm{sup {minus}1}cm{sup {minus}1}, resulting in a slight voltage penalty, depending on the thickness of the coating.

  17. Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: accumulation and oxidative damage.

    PubMed

    Huang, Peili; Li, Jianxin; Zhang, Shuhua; Chen, Chunxia; Han, Ying; Liu, Na; Xiao, Yang; Wang, Hui; Zhang, Man; Yu, Qiuhong; Liu, Yuting; Wang, Wei

    2011-01-01

    The aim of this study was to investigate the contents of lanthanum (La), cerium (Ce), and neodymium (Nd) that accumulate in nuclei and mitochondria isolated from the liver and their corresponding potential oxidative damage effects on nuclei and mitochondria. Five-week-old male imprinting control region (ICR) mice were exposed to chlorides of La, Ce, or Nd by oral gavage with one of three doses: 10, 20, or 40 mg/kgBW/day for 6 weeks. The concentrations of administered elements in hepatocyte nuclei and mitochondria were determined with inductively coupled plasma-mass (ICP-MS) spectrometry. The accumulation of La, Ce, and Nd in hepatocyte nuclei and mitochondria gradually increased in a dose-dependent manner with exposure to the elements, although the concentrations of La, Ce, and Nd in hepatocyte mitochondria were lower than those in their counterpart nuclei. In hepatocyte nuclei, superoxide dismutase (SOD) and catalase (CAT) activities decreased, whereas glutathione peroxidase (GPx) activity, glutathione (GSH) and malondialdehyde (MDA) levels increased. In hepatocyte mitochondria, SOD, CAT, and GPx activities and GSH levels were significantly decreased, and MDA levels were significantly increased. These results suggest that La, Ce, and Nd presumably enter hepatocytes and mainly accumulate in the nuclei and induce oxidative damage in hepatic nuclei and mitochondria.

  18. Modulation of surface structure and catalytic properties of cerium oxide nanoparticles by thermal and microwave synthesis techniques

    NASA Astrophysics Data System (ADS)

    He, Jian; Zhou, Lan; Liu, Jie; Yang, Lu; Zou, Ling; Xiang, Junyu; Dong, Shiwu; Yang, Xiaochao

    2017-04-01

    Cerium oxide nanoparticles (CNPs) have been intensively explored for biomedical applications in recent few years due to the versatile enzyme mimetic activities of the nanoparticles. However, the control of CNPs quality through the optimization of synthesis conditions remains largely unexplored as most of the previous studies only focus on utilizing the catalytic activities of the nanoparticles. In the present study, CNPs with size about 5 nm were synthesized by thermal decomposition method using traditional convective heating and recently developed microwave irradiation as heating source. The quality of CNPs synthesized by the two heating manner was evaluated. The CNPs synthesized by convective heating were slightly smaller than that synthesized by microwave irradiation heating. The cores of the CNPs synthesized by the two heating manner have similar crystal structure. While the surface subtle structures of the CNPs synthesized by two heating manner were different. The CNPs synthesized by microwave irradiation have more surface reactive hot spot than that synthesized by convective heating as the nanoparticles responded more actively to the redox environment variation. This difference resulted in the higher superoxide dismutase (SOD) mimetic activity of CNPs synthesized by microwave irradiation heating than that of the convective heating. Preliminary experiments indicated that the CNPs synthesized by microwave irradiation heating could better protect cells from oxidative stress due to the higher SOD mimetic activity of the nanoparticles.

  19. Carbon nanotubes supported cerium dioxide and platinum nanohybrids: Layer-by-layer synthesis and enhanced electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Lou, Xinyuan; Chen, Jiayi; Wang, Mengdi; Gu, Jialei; Wu, Ping; Sun, Dongmei; Tang, Yawen

    2015-08-01

    We successfully synthesize carbon nanotubes (CNTs) supported cerium dioxide and platinum (Pt/CeO2/CNTs) nanohybrids via layer-by-layer assembly. The composition, morphology and structure of the as-prepared Pt/CeO2/CNTs nanohybrids are characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDX), selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and inductively coupled plasma atomic emission spectrometry (ICP-AES). By comparison of the electrocatalytic properties of the Pt/CeO2/CNTs with the Pt/CNTs, we systematically investigate the promotion effect of CeO2 on the Pt/CeO2/CNTs catalysts towards methanol oxidation. It is found that the introduction of CeO2 not only enhances the electrocatalytic activity and stability of the Pt/CeO2/CNTs catalyst for methanol oxidation but also minimizes the CO poisoning, probably accounting for the good oxygen carrying capacity of CeO2 and its high stability in acidic solution.

  20. Combination of conventional chemotherapeutics with redox-active cerium oxide nanoparticles--a novel aspect in cancer therapy.

    PubMed

    Sack, Maren; Alili, Lirija; Karaman, Elif; Das, Soumen; Gupta, Ankur; Seal, Sudipta; Brenneisen, Peter

    2014-07-01

    Nanotechnology is becoming an important field of biomedical and clinical research and the application of nanoparticles in disease may offer promising advances in treatment of many diseases, especially cancer. Malignant melanoma is one of the most aggressive forms of cancer and its incidence is rapidly increasing. Redox-active cerium oxide nanoparticles (CNP) are known to exhibit significant antitumor activity in cells derived from human skin tumors in vitro and in vivo, whereas CNP is nontoxic and beyond that even protective (antioxidative) in normal, healthy cells of the skin. As the application of conventional chemotherapeutics is associated with harmful side effects on healthy cells and tissues, the clinical use is restricted. In this study, we addressed the question of whether CNP supplement a classical chemotherapy, thereby enhancing its efficiency without additional damage to normal cells. The anthracycline doxorubicin, one of the most effective cancer drugs, was chosen as reference for a classical chemotherapeutic agent in this study. Herein, we show that CNP enhance the antitumor activity of doxorubicin in human melanoma cells. Synergistic effects on cytotoxicity, reactive oxygen species generation, and oxidative damage in tumor cells were observed after co-incubation. In contrast to doxorubicin, CNP do not cause DNA damage and even protect human dermal fibroblasts from doxorubicin-induced cytotoxicity. A combination of classical chemotherapeutics with nongenotoxic but antitumor active CNP may provide a new strategy against cancer by improving therapeutic outcome and benefit for patients.

  1. Cerium Oxide Nanoparticles Induced Toxicity in Human Lung Cells: Role of ROS Mediated DNA Damage and Apoptosis

    PubMed Central

    Pandey, Alok K.

    2014-01-01

    Cerium oxide nanoparticles (CeO2 NPs) have promising industrial and biomedical applications. In spite of their applications, the toxicity of these NPs in biological/physiological environment is a major concern. Present study aimed to understand the molecular mechanism underlying the toxicity of CeO2 NPs on lung adenocarcinoma (A549) cells. After internalization, CeO2 NPs caused significant cytotoxicity and morphological changes in A549 cells. Further, the cell death was found to be apoptotic as shown by loss in mitochondrial membrane potential and increase in annexin-V positive cells and confirmed by immunoblot analysis of BAX, BCl-2, Cyt C, AIF, caspase-3, and caspase-9. A significant increase in oxidative DNA damage was found which was confirmed by phosphorylation of p53 gene and presence of cleaved poly ADP ribose polymerase (PARP). This damage could be attributed to increased production of reactive oxygen species (ROS) with concomitant decrease in antioxidant “glutathione (GSH)” level. DNA damage and cell death were attenuated by the application of ROS and apoptosis inhibitors N-acetyl-L- cysteine (NAC) and Z-DEVD-fmk, respectively. Our study concludes that ROS mediated DNA damage and cell cycle arrest play a major role in CeO2 NPs induced apoptotic cell death in A549 cells. Apart from beneficial applications, these NPs also impart potential harmful effects which should be properly evaluated prior to their use. PMID:24987704

  2. Elimination of Flammable Gas Effects in Cerium Oxide Semiconductor-Type Resistive Oxygen Sensors for Monitoring Low Oxygen Concentrations

    PubMed Central

    Itoh, Toshio; Izu, Noriya; Akamatsu, Takafumi; Shin, Woosuck; Miki, Yusuke; Hirose, Yasuo

    2015-01-01

    We have investigated the catalytic layer in zirconium-doped cerium oxide, Ce0.9Zr0.1O2 (CeZr10) resistive oxygen sensors for reducing the effects of flammable gases, namely hydrogen and carbon monoxide. When the concentration of flammable gases is comparable to that of oxygen, the resistance of CeZr10 is affected by the presence of these gases. We have developed layered thick films, which consist of an oxygen sensor layer (CeZr10), an insulation layer (Al2O3), and a catalytic layer consisting of CeZr10 with 3 wt% added platinum, which was prepared via the screen printing method. The Pt-CeZr10 catalytic layer was found to prevent the detrimental effects of the flammable gases on the resistance of the sensor layer. This effect is due to the catalytic layer promoting the oxidation of hydrogen and carbon monoxide through the consumption of ambient O2 and/or the lattice oxygen atoms of the Pt-CeZr10 catalytic layer. PMID:25905705

  3. Superiority of DFT+U with non-linear core correction for open-shell binary rare-earth metal oxides: a case study of native point defects in cerium oxides

    NASA Astrophysics Data System (ADS)

    Huang, Bolong

    2014-09-01

    We successfully proposed a newly corrected density functional theory plus Hubbard U parameter (DFT + U) based on partial core correction on the orbitals within norm-conserving lanthanide atomic pseudopotentials. A related and comprehensive investigation of native point defects in cerium oxides has also been performed as an examine by practice.

  4. Neuro-protective effects of cerium and yttrium oxide nanoparticles on high glucose-induced oxidative stress and apoptosis in undifferentiated PC12 cells.

    PubMed

    Ghaznavi, Habib; Najafi, Rezvan; Mehrzadi, Saeed; Hosseini, Asieh; Tekyemaroof, Neda; Shakeri-Zadeh, Ali; Rezayat, Mehdi; Sharifi, Ali M

    2015-07-01

    Oxidative stress has been recognized as the major factor for the development of diabetes and its complications. Cerium oxide and Yttrium oxide nanoparticles are known as free radicals scavengers. The aim of this study was to investigate the protective effect of CeO2 and Y2O3 on oxidative stress induced by high glucose in undifferentiated rat pheochromocytoma (PC12) cells. In this study, undifferentiated PC12 cells were exposed to high glucose (25 mg/ml, 24 hours) and the protective effects of CeO2 and Y2O3 nanoparticles were evaluated. The viability of undifferentiated PC12 cells was determined by MTT assay. The levels of reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate (DCF). The expression levels of pro-apoptotic Bax, anti-apoptotic Bcl-2 and caspase3 proteins were also detected by western blotting. Total antioxidant power (TAP), total thiol molecules (TTM) and lipid peroxidation (LPO) were also evaluated. CeO2 and Y2O3 increased survival of undifferentiated PC12 cells exposed to high glucose-induced oxidative stress. CeO2 and Y2O3 pre-treatment decreased ROS production, LPO, Bax and caspase-3 proteins expression. Both nanoparticles have also increased the TTM and Bcl-2 protein expression. These findings suggest that CeO2 and Y2O3 protect the undifferentiated PC12 cells against the oxidative stress and apoptosis induced by high glucose.

  5. Nanocasted synthesis of magnetic mesoporous iron cerium bimetal oxides (MMIC) as an efficient heterogeneous Fenton-like catalyst for oxidation of arsenite.

    PubMed

    Wen, Zhipan; Zhang, Yalei; Dai, Chaomeng; Sun, Zhen

    2015-04-28

    Magnetic mesoporous iron cerium bimetal oxides (MMIC) with large surface area and pore volume was synthesized via the hard template approach. This obtained MMIC was easily separated from aqueous solution with an external magnetic field and was proposed as a heterogeneous Fenton-like catalyst for oxidation of As(III). The MMIC presented excellent catalytic activity for the oxidation of As(III), achieving almost complete oxidation of 1000ppb As(III) after 60min and complete removal of arsenic species after 180min with reaction conditions of 0.4g/L catalyst, pH of 3.0 and 0.4mM H2O2. Kinetics analysis showed that arsenic removal followed the pseudo-first order, and the pseudo-first-order rate constants increased from 0.0014min(-1) to 0.0548min(-1) as the H2O2 concentration increased from 0.04mM to 0.4mM. On the basis of the effects of XPS analysis and reactive oxidizing species, As(III) in aqueous solution was mainly oxidized by OH radicals, including the surface-bound OHads generated on the MMIC surface which were involved in Fe(2+) and Ce(3+), and free OHfree generation by soluble iron ions which were released from the MMIC into the bulk solution, and the generated As(V) was finally removed by MMIC through adsorption.

  6. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.

    PubMed

    Zhang, Shi-Xiang; Xue, Shi-Fan; Deng, Jingjing; Zhang, Min; Shi, Guoyue; Zhou, Tianshu

    2016-11-15

    It is important and urgent to develop reliable and highly sensitive methods that can provide on-site and rapid detection of extensively used organophosphorus pesticides (OPs) for their neurotoxicity. In this study, we developed a novel colorimetric assay for the detection of OPs based on polyacrylic acid-coated cerium oxide nanoparticles (PAA-CeO2) as an oxidase mimic and OPs as inhibitors to suppress the activity of acetylcholinesterase (AChE). Firstly, highly dispersed PAA-CeO2 was prepared in aqueous solution, which could catalyze the oxidation of TMB to produce a color reaction from colorless to blue. And the enzyme of AChE was used to catalyze the substrate of acetylthiocholine (ATCh) to produce thiocholine (TCh). As a thiol-containing compound with reducibility, TCh can decrease the oxidation of TMB catalyzed by PAA-CeO2. Upon incubated with OPs, the enzymatic activity of AChE was inhibited to produce less TCh, resulting in more TMB catalytically oxidized by PAA-CeO2 to show an increasing blue color. The two representative OPs, dichlorvos and methyl-paraoxon, were tested using our proposed assay. The novel assay showed notable color change in a concentration-dependent manner, and as low as 8.62 ppb dichlorvos and 26.73 ppb methyl-paraoxon can be readily detected. Therefore, taking advantage of such oxidase-like activity of PAA-CeO2, our proposed colorimetric assay can potentially be a screening tool for the precise and rapid evaluation of the neurotoxicity of a wealth of OPs.

  7. Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles Based on Dissolution and Oxidative Stress Properties

    PubMed Central

    Xia, Tian; Kovochich, Michael; Liong, Monty; Mädler, Lutz; Gilbert, Benjamin; Shi, Haibin; Yeh, Joanne I.; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Three metal oxides nanoparticles that are currently being produced in high tonnage, TiO2, ZnO and CeO2, were synthesized by flame spray pyrolysis process and compared in a mechanistic study to elucidate the physicochemical characteristics that determine cellular uptake, subcellular localization, and toxic effects based on a test paradigm that was originally developed for oxidative stress and cytotoxicity in RAW 264.7 and BEAS-2B cell lines. ZnO induced toxicity in both cells, leading to the generation of reactive oxygen species (ROS), oxidant injury, excitation of inflammation and cell death. Using ICP-MS and fluorescent-labeled ZnO, it is found that ZnO dissolution could happen in culture medium and endosomes. Non-dissolved ZnO nanoparticles enter caveolae in BEAS-2B, but enter lysosomes in RAW 264.7 cells in which smaller particle remnants dissolve. In contrast, fluorescent-labeled CeO2 nanoparticles were taken up intact into caveolin-1 and LAMP-1 positive endosomal compartments, respectively, in BEAS-2B and RAW 264.7 cells, without inflammation or cytotoxicity. Instead, CeO2 suppressed ROS production and induced cellular resistance to an exogenous source of oxidative stress. Fluorescent-labeled TiO2 was processed by the same uptake pathways as CeO2 but did not elicit any adverse or protective effects. These results demonstrate that metal oxide nanoparticles induce a range of biological responses that vary from cytotoxic to cytoprotective and can only be properly understood by using a tiered test strategy such as we developed for oxidative stress and adapted to study other aspects of nanoparticle toxicity. PMID:19206459

  8. Method of applying a cerium diffusion coating to a metallic alloy

    DOEpatents

    Jablonski, Paul D [Salem, OR; Alman, David E [Benton, OR

    2009-06-30

    A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).

  9. Morphology control of cerium oxide particles synthesized via a supercritical solvothermal method.

    PubMed

    Devaraju, M Kempaiah; Yin, Shu; Sato, Tsugio

    2009-11-01

    Rod and sphere-like CeO(2) particles were obtained via a supercritical solvothermal method using CeCl(3).7H(2)O and Ce(NO(3))(3).6H(2)O as cerium sources in ethanol and methanol at 400 degrees C for 15 min followed by calcination in air. The rodlike particles were 200-400 nm in diameter and 1-2 mum in length. The spherical particles were 300-500 nm in diameter. The as-prepared rodlike particles using CeCl(3).7H(2)O consisted of mixtures of Ce(OH)(3) and Ce(CH(3)COO)(3) and were converted to rodlike CeO(2) by calcination in air at 500 degrees C. In contrast, the spherical particles prepared using Ce(NO(3))(3).6H(2)O consisted of fluorite-structured CeO(2). The possible formation mechanism was discussed on the basis of the effect of reaction time on the morphology at 400 degrees C. The rod- and spherelike CeO(2) particles exhibited strong UV absorption below 400 nm, and the absorbance edges extend to nearly 500 nm. The rod- and spherelike CeO(2) particles exhibited near-UV emission at 360 nm and blue emission at 465 nm with higher emission intensity compared to the commercial CeO(2) sample.

  10. Dissolution and transformation of cerium oxide nanoparticles in plant growth media

    NASA Astrophysics Data System (ADS)

    Schwabe, Franziska; Schulin, Rainer; Rupper, Patrick; Rotzetter, Aline; Stark, Wendelin; Nowack, Bernd

    2014-10-01

    From environmental modeling of engineered nanomaterial (ENM) release, it is clear that ENMs will enter soils, where they interact with soil compounds as well as plant roots. We analyzed three different size groups of cerium dioxide nanoparticles (CeO2-NPs) in respect to chemical changes in the most common plant growth medium, Hoagland solution. We created a simple environmental model using liquid dispersions of 9-, 23-, and 64-nm-uncoated CeO2-NPs. We found that CeO2-NPs release dissolved Ce when the pH of the medium is below 4.6 and in the presence of strong chelating agents even at pH of 8. In addition, we found that in reaction with Fe2+-ions, equimolar amounts of Ce were released from NPs. We could elucidate the involvement of the CeO2-NPs surface redox cycle between Ce3+ and Ce4+ to explain particle transformation. The chemical transformation of CeO2-NPs was summarized in four probable reactions: dissolution, surface reduction, complexation, and precipitation on the NP surface. The results show that CeO2-NPs are clearly not insoluble as often stated but can release significant amounts of Ce depending on the composition of the surrounding medium.

  11. Construction of A Triple-Stimuli-Responsive System Based on Cerium Oxide Coated Mesoporous Silica Nanoparticles

    PubMed Central

    Wen, Jia; Yang, Kui; Xu, Yongqian; Li, Hongjuan; Liu, Fengyu; Sun, Shiguo

    2016-01-01

    In this work, a triple-stimuli (GSH, pH and light irradiation) responsive system were designed based on CeO2 nanoparticles (CeO2 NPs) coated doxorubicin (DOX) and photosensitizer hematoporphyrin (HP) dual-loaded mesoporous silica nanoparticles (MSN). Upon entering into cancer cells, both high concentration of intracellular GSH and low pH environment would reduce CeO2 NPs to cerium ions, accompanied with the degradation of CeO2 NPs and the conformational change of HP under light irradiation, the preloaded DOX are thus released from the nanocarrier, resulting in a contrast fluorescence enhancement. Meanwhile, 1O2 generated from HP for potential photodynamic therapy (PDT) upon light irradiation. In comparison, not much influence can be observed for normal cells. This nanosystem not only has a significantly enhanced efficacy for cancer cells but also broad the scope for the future design and applications of multifunctional platforms for synergetic chemotherapy and PDT. PMID:27941942

  12. Toxicity assessment of aggregated/agglomerated cerium oxide nanoparticles in an in vitro 3D airway model: the influence of mucociliary clearance.

    PubMed

    Frieke Kuper, C; Gröllers-Mulderij, Mariska; Maarschalkerweerd, Thérèse; Meulendijks, Nicole M M; Reus, Astrid; van Acker, Frédérique; Zondervan-van den Beuken, Esther K; Wouters, Mariëlle E L; Bijlsma, Sabina; Kooter, Ingeborg M

    2015-03-01

    We investigated the toxicity of aggregated nanoparticles of cerium oxide (CeO2) using an in vitro 3D human bronchial epithelial model that included a mucociliary apparatus (MucilAir™). CeO2 was dispersed in saline and applied to the apical surface of the model. CeO2 did not induce distinct effects in the model, whereas it did in BEAS-2B and A549 cell cultures. The absence of effects of CeO2 was not because of the model's insensitivity. Nanoparticles of zinc oxide (ZnO) elicited positive responses in the toxicological assays. Respiratory mucus (0.1% and 1%) added to dispersions increased aggregation/agglomeration to such an extent that most CeO2 sedimented within a few minutes. Also, the mucociliary apparatus of the model removed CeO2 from the central part of the apical surface to the borders. This 'clearance' may have prevented the majority of CeO2 from reaching the epithelial cells. Chemical analysis of cerium in the basal tissue culture medium showed only minimal translocation of cerium across the 3D barrier. In conclusion, mucociliary defence appeared to prevent CeO2 reaching the respiratory epithelial cells in this 3D in vitro model. This model and approach can be used to study compounds of specific toxicological concern in airway defence mechanisms in vitro.

  13. Porous nano-cerium oxide wood chip biochar composites for aqueous levofloxacin removal and sorption mechanism insights.

    PubMed

    Yi, Shengze; Sun, Yuanyuan; Hu, Xin; Xu, Hongxia; Gao, Bin; Wu, Jichun

    2017-01-14

    The adsorption removal of levofloxacin (LEV), a widely used fluoroquinolone antibiotic, by using the biochars derived from the pyrolysis of pine wood chip pretreated with cerium trichloride was investigated through batch sorption experiments and multiple characterization techniques. The differences in the basic physicochemical properties between Ce-impregnated biochars and the pristine biochars were confirmed by the analysis of elemental compositions, specific surface areas, energy dispersive spectrometry, X-ray diffraction, and thermo-gravimetry. FT-IR spectra of the pre- and post-sorption biochars confirmed the chemical adsorption for LEV sorption onto the biochars. Large shifts in the binding energy of Ce3d, O1s, C1s, and N1s regions on the pre- and post-sorption biochars indicated the surface complexation of LEV molecule onto the biochars. The binding species of Ce(4+) and Ce(3+) identified by X-ray photoelectron spectroscopy reflect the role of Ce oxides during sorption. Batch adsorption showed the significant enhancement of adsorption capacity for LEV after the Ce modification. Batch adsorption kinetic data fitted well with the pseudo-second-order model. Both the Langmuir and the Freundlich models reproduced the isotherm data well. Findings from this work indicated that Ce-impregnated biochars can be effective for the removal of aqueous LEV.

  14. Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor.

    PubMed

    Xu, Yi; Wang, Chao; Hou, Jun; Wang, Peifang; You, Guoxiang; Miao, Lingzhan; Lv, Bowen; Yang, Yangyang

    2017-03-01

    The short term (8h) influences of cerium oxide nanoparticles (CeO2NPs) on the process of phosphorus removal in biofilm were investigated. At concentration of 0.1mg/L, CeO2 NPs posed no impacts on total phosphorus (TP) removal. While at 20mg/L, TP removal efficiency reduced from 85.16% to 59.62%. Results of P distribution analysis and (31)P nuclear magnetic resonance spectroscopy implied that the anaerobic degradation of polyphosphate (polyP) and the release of orthophosphate in extracellular polymeric substances (EPS) were inhibited. After aerobic exposure, the average chain length of polyP in microbial cells and EPS was shorter than control, and monoester and diester phosphates in cells were observed to release into EPS. Moreover, the EPS production and its contribution to P removal increased, while the capacity of EPS in P storage declined. X-ray diffraction analysis and saturation index calculation revealed that the formation of inorganic P precipitation in biofilm was inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The Degradation Mitigation Effect of Cerium Oxide in Polymer Electrolyte Membranes in Extended Fuel Cell Durability Tests

    SciTech Connect

    Pearman, Benjamin P; Mohajeri, Nahid; Brooker, R. Paul; Rodgers, Marianne; Slattery, Darlene; Hampton, Michael; Cullen, David A; Seal, Sudipta

    2013-01-01

    In this work, two formulations of single-crystal cerium oxide nanoparticles of varying particle sizes were incorporated into perfluorosulfonic acid membrane electrode assemblies (MEAs) and their ability to improve the in-situ membrane durability was studied by subjecting them to 94 and 500 hours open-circuit voltage hold accelerated durability tests . In the shorter test the open circuit voltage decay rate was reduced by half and the fluoride emission by at least one order of magnitude, though no effect on hydrogen crossover or performance of the baseline MEAs was measured. The presence of the additive increased the particle size but decreased the number of platinum catalyst particles that were deposited in the membrane. The main Pt band was found at the predicted location; however, the incorporation of ceria caused a broadening with particles reaching further into the membrane. In 500 h tests, ceria-containing MEAs demonstrated a seven-fold decrease in open-circuit voltage decay and three order of magnitude reduction in fluoride emission rates with unchanged performance and hydrogen crossover, remaining effectively pristine whilst the baseline MEA underwent catastrophic failure.

  16. Synthesis, characterization and photocatalytic study of graphene oxide and cerium co-doped in TiO2

    NASA Astrophysics Data System (ADS)

    Li, Jia; Zhang, Quan; Zeng, Liping; He, Deliang

    2016-02-01

    The nanocomposite of titanium dioxide (TiO2) combined with graphene oxide (GO) and cerium (Ce) was successfully synthesized via sol-gel method followed by calcining at 300 °C for 2 h. The composite was characterized by X-ray diffraction, ultraviolet-visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and Brunauer-Emmett-Teller. The photocatalytic activity was evaluated by photodegradation of methylene blue (MB) under the irradiation of xenon lamp. This study demonstrated that GO and Ce co-doped in TiO2 could broaden absorption edge to the visible light and increase surface area of samples. SEM observation showed that addition of Ce could solve the problem of the agglomeration of GO under the same experimental conditions. Moreover, the MB photocatalytic degradation rate of the composite with GO doped for 0.2 % and Ce doped for 0.6 % (mass ratio) was up to 97.7 %, which was largely attributed to the synergistic effects in the GO, Ce and TiO2 system.

  17. The degradation mitigation effect of cerium oxide in polymer electrolyte membranes in extended fuel cell durability tests

    NASA Astrophysics Data System (ADS)

    Pearman, Benjamin P.; Mohajeri, Nahid; Brooker, R. Paul; Rodgers, Marianne P.; Slattery, Darlene K.; Hampton, Michael D.; Cullen, David A.; Seal, Sudipta

    2013-03-01

    In this work, two formulations of cerium oxide nanoparticles were incorporated into perfluorosulfonic acid membrane electrode assemblies (MEAs) and their ability to improve the in-situ membrane durability was studied by subjecting them to 94 and 500 h open-circuit voltage hold accelerated durability tests. In the shorter test the open circuit voltage decay rate was reduced by half and the fluoride emission by at least one order of magnitude, though no effect on hydrogen crossover or performance on the baseline MEAs was measured. The presence of the additive increased the particle size but decreased the number of platinum catalyst particles that were deposited in the membrane. The main Pt band was found at the predicted location; however, the incorporation of ceria caused a broadening with particles reaching further into the membrane. In 500 h tests, ceria-containing MEAs demonstrated a seven-fold decrease in open-circuit voltage decay and three orders of magnitude reduction in fluoride emission rates with unchanged performance and hydrogen crossover, remaining effectively pristine whilst the baseline MEA underwent catastrophic failure.

  18. Microwave synthesis of pure and doped cerium (IV) oxide (CeO2) nanoparticles for methylene blue degradation.

    PubMed

    El Rouby, W M A; Farghali, A A; Hamdedein, A

    2016-11-01

    Cerium (IV) oxide (CeO2), samarium (Sm) and gadolinium (Gd) doped CeO2 nanoparticles were prepared using microwave technique. The effect of microwave irradiation time, microwave power and pH of the starting solution on the structure and crystallite size were investigated. The prepared nanoparticles were characterized using X-ray diffraction, FT-Raman spectroscopy, and transmission electron microscope. The photocatalytic activity of the as-prepared CeO2, Sm and Gd doped CeO2 toward degradation of methylene blue (MB) dye was investigated under UV light irradiation. The effect of pH, the amount of catalyst and the dye concentration on the degradation extent were studied. The photocatalytic activity of CeO2 was kinetically enhanced by trivalent cation (Gd and Sm) doping. The results revealed that Gd doped CeO2 nanoparticles exhibit the best catalytic degradation activity on MB under UV irradiation. For clarifying the environmental safety of the by products produced from the degradation process, the pathways of MB degradation were followed using liquid chromatography/mass spectroscopy (LC/MS). The total organic carbon content measurements confirmed the results obtained by LC/MS. Compared to the same nanoparticles prepared by another method, it was found that Gd doped CeO2 prepared by hydrothermal process was able to mineralize MB dye completely under UV light irradiation.

  19. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions

    PubMed Central

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-01-01

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca2+ and Mg2+) were more than 31-fold of that for monovalent cation (Na+ and K+). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X–100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment. PMID:27694968

  20. Human hemoglobin adsorption onto colloidal cerium oxide nanoparticles: a new model based on zeta potential and spectroscopy measurements.

    PubMed

    Mobasherat Jajroud, Sheida Yousefi; Falahati, Mojtaba; Attar, Farnoosh; Khavari-Nejad, Ramazan Ali

    2017-09-18

    The nanoparticle (NP)-induced conformational changes of protein and NP agglomeration have gained a remarkable interest in medical and biotechnological fields. Herein, the effect of human hemoglobin (Hb) on the colloidal stability of cerium oxide NP (CNP) was investigated by dynamic light scattering (DLS), zeta potential, and TEM analysis. In addition, the effect of CNP on the heme degradation and structural changes of Hb was studied using fluorescence, circular dichroism (CD), and UV-visible (UV-vis) spectroscopic methods. DLS and TEM analysis showed that the presence of Hb can increase the mean diameter of CNP. Zeta potential measurements revealed that CNP demonstrated a higher charge distribution relative to CNP/Hb complex. Besides, fluorescence studies indicated that two fluorescent heme degradation products are revealed during the interaction of CNP with Hb. Near UV-CD spectroscopy also showed that the microenvironmental changes of heme groups occur after interaction of Hb with CNP. The result of thermal behavior of Hb confirmed the structural changes of protein, which referred to decrease in the Hb stability in the presence of CNP. Indeed, the finding related to structural and functional changes of Hb induced by CNP may be crucial to obtain information regarding the side effects of NPs. Finally, this data reveal much insight into the effects of the interaction on protein structural changes and NP agglomeration, and can correlate the zeta potential of NP-protein complexes with the nature of the principle NP-protein interaction.

  1. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-10-01

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca2+ and Mg2+) were more than 31-fold of that for monovalent cation (Na+ and K+). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X–100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment.

  2. Cerium Oxide Nanoparticle Modified Scaffold Interface Enhances Vascularization of Bone Grafts by Activating Calcium Channel of Mesenchymal Stem Cells.

    PubMed

    Xiang, Junyu; Li, Jianmei; He, Jian; Tang, Xiangyu; Dou, Ce; Cao, Zhen; Yu, Bo; Zhao, Chunrong; Kang, Fei; Yang, Lu; Dong, Shiwu; Yang, Xiaochao

    2016-02-01

    Insufficient blood perfusion is one of the critical problems that hamper the clinical application of tissue engineering bone (TEB). Current methods for improving blood vessel distribution in TEB mainly rely on delivering exogenous angiogenic factors to promote the proliferation, migration, differentiation, and vessel formation of endothelial cells (ECs) and/or endothelial progenitor cells (EPCs). However, obstacles including limited activity preservation, difficulty in controlled release, and high cost obstructed the practical application of this strategy. In this study, TEB scaffold were modified with cerium oxide nanoparticles (CNPs) and the effects of CNPs existed at the scaffold surface on the growth and paracrine behavior of mesenchymal stem cells (MSCs) were investigated. The CNPs could improve the proliferation and inhibit the apoptosis of MSCs. Meanwhile, the interaction between the cell membrane and the nanoparticle surface could activate the calcium channel of MSCs leading to the rise of intracellular free Ca(2+) level, which subsequently augments the stability of HIF-1α. These chain reactions finally resulted in high expression of angiogenic factor VEGF. The improved paracrine of VEGF could thereby promote the proliferation, differentiation, and tube formation ability of EPCs. Most importantly, in vivo ectopic bone formation experiment demonstrated this method could significantly improve the blood vessel distribution inside of TEB.

  3. Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats.

    PubMed

    Gosens, Ilse; Mathijssen, Liesbeth E A M; Bokkers, Bas G H; Muijser, Hans; Cassee, Flemming R

    2014-09-01

    There are many uncertainties regarding the hazard of nanosized particles compared to the bulk material of the parent chemical. Here, the authors assess the comparative hazard of two nanoscale (NM-211 and NM-212) and one microscale (NM-213) cerium oxide materials in 28-day inhalation toxicity studies in rats (according to Organisation for Economic Co-operation and Development technical guidelines). All three materials gave rise to a dose-dependent pulmonary inflammation and lung cell damage but without gross pathological changes immediately after exposure. Following NM-211 and NM-212 exposure, epithelial cell injury was observed in the recovery groups. There was no evidence of systemic inflammation or other haematological changes following exposure of any of the three particle types. The comparative hazard was quantified by application of the benchmark concentration approach. The relative toxicity was explored in terms of three exposure metrics. When exposure levels were expressed as mass concentration, nanosized NM-211 was the most potent material, whereas when expression levels were based on surface area concentration, micro-sized NM-213 material induced the greatest extent of pulmonary inflammation/damage. Particles were equipotent based on particle number concentrations. In conclusion, similar pulmonary toxicity profiles including inflammation are observed for all three materials with little quantitative differences. Systemic effects were virtually absent. There is little evidence for a dominant predicting exposure metric for the observed effects.

  4. Fate of engineered cerium oxide nanoparticles in an aquatic environment and their toxicity toward 14 ciliated protist species.

    PubMed

    Zhang, Wei; Pu, Zhichao; Du, Songyan; Chen, Yongsheng; Jiang, Lin

    2016-05-01

    The potential environmental impacts of engineered cerium oxide nanoparticles (CeO2 NPs) on aquatic organisms have remained largely unknown. Therefore, the laboratory study featured herein was performed to determine the fate of CeO2 NPs in an aquatic environment and their toxicity towards 14 different ciliated protist species at a specified population level. An investigation of 48 h aggregation kinetics in the Dryl's solution showed the CeO2 NPs to be relatively stable. The pH values in three test medium were too far away from PZC, which explained the stability of CeO2 NPs. CeO2 NPs generally elicited more toxicity with increasing NP concentration, following certain dose-response relationships. Nano-CeO2 resulted in greater toxicity in a particle state than when added as bulk material. LC50 values showed a negative correlation with the surface-to-volume ratio for these protists, suggesting that surface adsorption of CeO2 NPs might contribute to the observed toxicity. Additionally, acute toxic responses of 14 ciliated protist species to CeO2 NPs were not significantly phylogenetically conserved. The results of these observations provide a better insight into the potential risks of CeO2 NPs in an aquatic environment.

  5. Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana.

    PubMed

    Yang, Xinping; Pan, Haopeng; Wang, Peng; Zhao, Fang-Jie

    2017-01-15

    The use of manufactured cerium oxide nanoparticles (CeO2-NPs) in consumer products has increased markedly over the past decade, and their release into natural ecosystems is unavoidable. This study investigated the phytotoxicity and uptake of CeO2-NPs in Arabidopsis thaliana grown in an agar medium. Although low concentrations of CeO2-NPs had stimulatory effects on plant growth, at higher concentrations, CeO2-NPs reduced growth and had adverse effects on the antioxidant systems and photosystem. Importantly, the toxicity resulted from the nanoparticles per se, rather than from the dissolved Ce ions. CeO2-NPs were taken up and subsequently translocated to shoot tissues, and transmission electron microscopy (TEM) showed the presence of a large number of needle-like particle aggregations in the intercellular regions and the cytoplasm of leaf cells. The up-translocation factor to shoots was independent of the concentrations of Ce in the roots and the supplied forms of Ce (i.e. CeO2-NPs, CeO2-bulk, and ionic Ce), suggesting that endocytosis is likely to be a general mechanism responsible for the translocation of these Ce compounds. These findings provide important information regarding the toxicity and uptake of CeO2-NPs in plants, which needs to be considered in environmental risk assessment for the safe use and disposal of CeO2-NPs.

  6. Effects of cerium oxide nanoparticles to fish and mammalian cell lines: An assessment of cytotoxicity and methodology.

    PubMed

    Rosenkranz, P; Fernández-Cruz, M L; Conde, E; Ramírez-Fernández, M B; Flores, J C; Fernández, M; Navas, J M

    2012-09-01

    Two cerium oxide nanoparticles (CeO(2) NPs) and one micro-sized CeO(2) particle were thoroughly characterized in their pristine form, in water and in cell culture medium. The particles were tested for cytotoxicity to the H4IIE rat hepatoma cell line or the RTG-2 rainbow trout gonadal cell line by means of four standard cytotoxicity assays. Nominal concentrations were verified by inductively coupled plasma mass spectrometry (ICP-MS) and methods were assessed for their suitability to detect reliably adverse effects due to particle exposure. All three particles showed aggregation in water and media. In the H4IIE cell line, the MTT cytotoxicity test revealed that negative effects could be observed for the CeO(2) NPs after 24h and for all particles after 72h of exposure, making the effects size, concentration and time dependent. No negative effect for the concentrations tested was detected for the remaining three assays and the RTG-2 cell line, making the MTT assay and the H4IIE cell line an appropriate system to assess adverse effects of CeO(2) NPs. A verification of the nominal concentration through ICP-MS revealed that there was a discrepancy between nominal and measured concentration depending on concentration and particle tested. Interferences of particles with assays were found to be present and need to be taken into consideration.

  7. Transport of cerium oxide nanoparticles in saturated silica media: influences of operational parameters and aqueous chemical conditions.

    PubMed

    Zhang, Zhaohan; Gao, Peng; Qiu, Ye; Liu, Guohong; Feng, Yujie; Wiesner, Mark

    2016-10-03

    This paper aimed to investigate the influences of operational parameters and aqueous chemical conditions on transport behaviors of cerium oxides nanoparticles (CeO2-NPs) in saturated silica media. Results indicated that increasing rates of attachment efficiency (α) were related with cationic types, and critical deposition concentration (CDC) for divalent cation (Ca(2+) and Mg(2+)) were more than 31-fold of that for monovalent cation (Na(+) and K(+)). Increase or reduction of electrolyte pH could both promote the mobility of CeO2-NPs in glass beads, while influence was more evident at alkaline conditions. α increased linearly with NPs concentrations, while decreased linearly with flow velocity in the column, and effects were related with electrolyte contents. Presence of surfactants could sharply decreased α, and SDS was more effective to facilitate CeO2-NPs transport than Triton X-100. With DOMs concentrations increasing, α firstly kept constant, then sharply declined, and finally reduced very slowly. The influence of DOMs on NPs deposition was in order of SA > HA > TA >  BSA. Overall, this study revealed that aqueous chemical conditions was crucial to NPs transport in porous media, and would provide significant information for our understanding on the fate and transport of nanoparticles in natural environment.

  8. Cerium oxide nanoparticles/multi-wall carbon nanotubes composites: Facile synthesis and electrochemical performances as supercapacitor electrode materials

    NASA Astrophysics Data System (ADS)

    Deng, Dongyang; Chen, Nan; Li, Yuxiu; Xing, Xinxin; Liu, Xu; Xiao, Xuechun; Wang, Yude

    2017-02-01

    Cerium oxide nanoparticles/multi-wall carbon nanotubes (MWCNTs) composites are synthesized by a facile hydrothermal method without any surfactant or template. The morphology and microstructure of samples are examined by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Electrochemical properties of the MWCNTs, the pure CeO2, and the CeO2/MWCNTs nanocomposites electrodes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge (GDC) and electrochemical impedance spectroscopy (EIS) measurements. The CeO2/MWCNTs nanocomposite (at the mole ratio of 1:1) electrode exhibits much larger specific capacitance compared with both the MWCNTs electrode and the pure CeO2 electrode and significantly improves cycling stability compared to the pure CeO2 electrode. The CeO2/MWCNTs nanocomposite (at the mole ratio of 1:1) achieves a specific capacitance of 455.6 F g-1 at the current density of 1 A g-1. Therefore, the as prepared CeO2/MWCNTs nanocomposite is a promising electrode material for high-performance supercapacitors.

  9. Effect of nano-sized cerium-zirconium oxide solid solution on far-infrared emission properties of tourmaline powders

    NASA Astrophysics Data System (ADS)

    Guo, Bin; Yang, Liqing; Hu, Weijie; Li, Wenlong; Wang, Haojing

    2015-10-01

    Far-infrared functional nanocomposites were prepared by the co-precipitation method using natural tourmaline (XY3Z6Si6O18(BO3)3V3W, where X is Na+, Ca2+, K+, or vacancy; Y is Mg2+, Fe2+, Mn2+, Al3+, Fe3+, Mn3+, Cr3+, Li+, or Ti4+; Z is Al3+, Mg2+, Cr3+, or V3+; V is O2-, OH-; and W is O2-, OH-, or F-) powders, ammonium cerium(IV) nitrate and zirconium(IV) nitrate pentahydrate as raw materials. The reference sample, tourmaline modified with ammonium cerium(IV) nitrate alone was also prepared by a similar precipitation route. The results of Fourier transform infrared spectroscopy show that tourmaline modified with Ce and Zr has a better far-infrared emission property than tourmaline modified with Ce alone. Through characterization by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS), the mechanism for oxygen evolution during the heat process in the two composite materials was systematically studied. The XPS spectra show that Fe3+ ratio inside tourmaline modified with Ce alone can be raised by doping Zr. Moreover, it is showed that there is a higher Ce3+ ratio inside the tourmaline modified with Ce and Zr than tourmaline modified with Ce alone. In addition, XRD results indicate the formation of CeO2 and Ce1-xZrxO2 crystallites during the heat treatment and further TEM observations show they exist as nanoparticles on the surface of tourmaline powders. Based on these results, we attribute the improved far-infrared emission properties of Ce-Zr doped tourmaline to the enhanced unit cell shrinkage of the tourmaline arisen from much more oxidation of Fe2+ to Fe3+ inside the tourmaline caused by the change in the catalyst redox properties of CeO2 brought about by doping with Zr4+. In all samples, tourmaline modified with 7.14 wt.% Ce and 1.86 wt.% Zr calcined at 800∘C for 5 h has the best far-infrared emission property with the maximum emissivity value of 98%.

  10. Fabrication of lactate biosensor based on lactate dehydrogenase immobilized on cerium oxide nanoparticles.

    PubMed

    Nesakumar, Noel; Sethuraman, Swaminathan; Krishnan, Uma Maheswari; Rayappan, John Bosco Balaguru

    2013-11-15

    An electrochemical biosensor was developed to determine lactate that plays an important role in clinical diagnosis, fermentation and food quality analysis. Abnormal concentration of lactate has been related to diseases such as hypoxia, acute heart disorders, lactic acidosis, muscle fatigue and meningitis. Also, lactate concentration in blood helps to evaluate the athletic performance in sports. The main aim of the work is to fabricate NADH/LDH/Nano-CeO2/GCE bio-electrode for sensing lactate in human blood samples. Toward this, CeO2 nanoparticles were synthesized by a hydroxide mediated approach using cerium nitrate hexahydrate (Ce(NO3)3·6H2O) and NaOH as precursors. X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FE-SEM) studies were carried out to determine the structural and morphological characteristics of CeO2 nanoparticles. XRD pattern indicated the formation of highly crystalline CeO2 nanoparticles with face centered cubic structure. The FE-SEM studies revealed the formation of nanospherical particles of size 29.73±2.59 nm. The working electrode was fabricated by immobilizing nicotinamide adenine dinucleotide (NADH) and lactate dehydrogenase (LDH) on GCE surface with CeO2 nanoparticles as an interface. Electrochemical studies were carried out through cyclic voltammetry using a three electrode system with NADH/LDH/NanoCeO2/GCE as a working electrode, Ag/AgCl saturated with 0.1M KCl as a reference electrode and Pt wire as a counter electrode. From the amperometric study, the linearity was found to be in the range of 0.2-2 mM with the response time of less than 4s.

  11. Cerium Oxide-Incorporated Calcium Silicate Coating Protects MC3T3-E1 Osteoblastic Cells from H2O2-Induced Oxidative Stress.

    PubMed

    Li, Kai; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2016-11-01

    Oxidative stress regulates cellular functions in multiple pathological conditions, including bone formation by osteoblastic cells. In this work, the protective effects of cerium oxide (CeO2)-incorporated calcium silicate (CeO2-CS) coating on the response of osteoblasts to H2O2-induced oxidative stress and the related mechanism were examined. CeO2 incorporation significantly improved osteoblast viability and reduced cell apoptosis caused by H2O2 when compared with the control. H2O2-induced reduction of differentiation marker alkaline phosphatase (ALP) was recovered in the presence of the CeO2-CS coating. The above effects were mediated by the antioxidant effect of CeO2. The CeO2-CS coating immersed in 0.1 mM H2O2 aqueous solution was able to degrade 64 % of it in 1 week. In addition, CeO2 incorporation decreased reactive oxygen species (ROS) production and suppressed malondialdehyde (MDA) formation in H2O2-treated osteoblasts. Taken together, CeO2-CS biomedical coatings with antioxidant property would be promising for bone regeneration under oxidative stress.

  12. Effect of the Cerium Oxide (CeO2) on the Structural and Electrochemical Properties of the LaNi5Ce Metal Hydride Anode

    NASA Astrophysics Data System (ADS)

    Utami Hapsari, Ade; Zulfia, Anne; Raharjo, Jarot; Agustanhakri

    2017-07-01

    One of negative electrode, AB5-type alloy electrodes, have been extensively studied and applied in rechargeable Ni-MH batteries due to their excellent electrochemical characteristics. Some researchers have found that addition of rare earth oxides (La, Ce, Pr, Er, Tm, Yb) to AB5-type alloy (MH) electrode improves battery performance significantly. Cerium Oxide (CeO2) is a light rare earth oxide is widely obtained from the processing of tailings in mining activities. During this time, there is still little data for research applications of cerium oxide for electrode materials. In this paper, the effects of adding CeO2 on the performance metal hydride electrode were investigated. In order to study the effects of CeO2 on the performance of anode material, 1%, 2%, and 3% of weight ratio CeO2 was mixed to LaNi5 as an negative electrode. The powder mixtures were mechanically milled at a speed of rpm 240 for 2 hours using ball mill. The powder mixtures were characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Electrochemical characteristics were measured using electrochemical impedance spectroscopy (EIS). The powder mixing showed the presence of Ce atom substitution into LaNi5 structures that affect the electrochemical properties of the material. The addition of cerium oxide at LaNi5 increase of the value of impedance. However, the addition of the value of impedance at 1% CeO2 is not significant when compared with the addition of 2% and 3% CeO2 that actually make the electrochemical properties of LaNi5 worst. Although the addition of 1% CeO2 also slightly increases the impedance value of LaNi5, but the addition of 1% CeO2 showed increase the corrosion resistance than without the addition of CeO2 and the addition of 2% and 3% CeO2.

  13. Study of Degradation Kinetics of Parathion Methyl On Mixed Nanocrystalline Titania-Zirconium and Titania-Cerium Oxides

    NASA Astrophysics Data System (ADS)

    Kuráň, Pavel; Pšenička, Martin; Šťastný, Martin; Benkocká, Monika; Janoš, Pavel

    2016-10-01

    The unique surface properties of some nanocrystalline metal oxides and their application for removal of various toxic compounds were reported in early 1990s. Recently, a reliable method for the preparation of reactive cerium dioxide sorbent and its application for degradation of the organophosphate pesticides, such as parathion methyl, chlorpyrifos, dichlofenthion, fenchlorphos, and prothiofos, as well as of some chemical warfare agents-nerve gases soman and O-ethyl S-[2-(diisopropylamino) ethyl] methylphosphonothioate (VX) was published. This paper reports on the kinetics study of degradation of parathion methyl as a representative organophosphate on nanocrystalline metal oxides TiO2, ZrO2, CeO2 and their mixtures in different molar ratios of particular elements. The tested sorbents except of CeO2 were prepared by different methods (e.g. sol-gel, precipitation) in cooperation with Institute of Inorganic Chemistry (Rez, Czech Republic). The degradation kinetics of parathion methyl on tested sorbents was followed by HPLC equipped with diode array detector. The basic kinetics parameters (half-lives of parathion methyl degradation, rate constants of degradation product formation) were calculated for each sorbent from Weber-Morris equation of 1st order diffusion kinetic model. The results proved the ability of prepared sorbents to degrade parathion methyl under formation of 4-nitrophenol as the main degradation product. The most efficient sorbents were TiCe (2:8), TiCe (1:1), TiCe (0:1) (50-70 %) followed by TiZr (1:1), TiCe (8:2), TiZr (8:2), TiZr (2:8) (20-30%) and TiO2, ZrO2 (less than 5 %).

  14. Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels

    PubMed Central

    Pošćić, Filip; Mattiello, Alessandro; Fellet, Guido; Miceli, Fabiano; Marchiol, Luca

    2016-01-01

    The implications of metal nanoparticles (MeNPs) are still unknown for many food crops. The purpose of this study was to evaluate the effects of cerium oxide (nCeO2) and titanium oxide (nTiO2) nanoparticles in soil at 0, 500 and 1000 mg·kg−1 on the nutritional parameters of barley (Hordeum vulgare L.) kernels. Mineral nutrients, amylose, β-glucans, amino acid and crude protein (CP) concentrations were measured in kernels. Whole flour samples were analyzed by ICP-AES/MS, HPLC and Elemental CHNS Analyzer. Results showed that Ce and Ti accumulation under MeNPs treatments did not differ from the control treatment. However, nCeO2 and nTiO2 had an impact on composition and nutritional quality of barley kernels in contrasting ways. Both MeNPs left β-glucans unaffected but reduced amylose content by approximately 21%. Most amino acids and CP increased. Among amino acids, lysine followed by proline saw the largest increase (51% and 37%, respectively). Potassium and S were both negatively impacted by MeNPs, while B was only affected by 500 mg nCeO2·kg−1. On the contrary Zn and Mn concentrations were improved by 500 mg nTiO2·kg−1, and Ca by both nTiO2 treatments. Generally, our findings demonstrated that kernels are negatively affected by nCeO2 while nTiO2 can potentially have beneficial effects. However, both MeNPs have the potential to negatively impact malt and feed production. PMID:27294945

  15. Effects of Cerium and Titanium Oxide Nanoparticles in Soil on the Nutrient Composition of Barley (Hordeum vulgare L.) Kernels.

    PubMed

    Pošćić, Filip; Mattiello, Alessandro; Fellet, Guido; Miceli, Fabiano; Marchiol, Luca

    2016-06-09

    The implications of metal nanoparticles (MeNPs) are still unknown for many food crops. The purpose of this study was to evaluate the effects of cerium oxide (nCeO₂) and titanium oxide (nTiO₂) nanoparticles in soil at 0, 500 and 1000 mg·kg(-1) on the nutritional parameters of barley (Hordeum vulgare L.) kernels. Mineral nutrients, amylose, β-glucans, amino acid and crude protein (CP) concentrations were measured in kernels. Whole flour samples were analyzed by ICP-AES/MS, HPLC and Elemental CHNS Analyzer. Results showed that Ce and Ti accumulation under MeNPs treatments did not differ from the control treatment. However, nCeO₂ and nTiO₂ had an impact on composition and nutritional quality of barley kernels in contrasting ways. Both MeNPs left β-glucans unaffected but reduced amylose content by approximately 21%. Most amino acids and CP increased. Among amino acids, lysine followed by proline saw the largest increase (51% and 37%, respectively). Potassium and S were both negatively impacted by MeNPs, while B was only affected by 500 mg nCeO₂·kg(-1). On the contrary Zn and Mn concentrations were improved by 500 mg nTiO₂·kg(-1), and Ca by both nTiO₂ treatments. Generally, our findings demonstrated that kernels are negatively affected by nCeO₂ while nTiO₂ can potentially have beneficial effects. However, both MeNPs have the potential to negatively impact malt and feed production.

  16. The state of the components in copper-cerium catalysts supported on different oxides

    NASA Astrophysics Data System (ADS)

    Kosmambetova, G. R.; Kriventsov, V. V.; Moroz, E. M.; Pakharukova, V. P.; Strizhak, P. E.; Zyuzin, D. A.

    2009-05-01

    The phase composition and the state of the active components in the catalysts used for preferential oxidation (PROX) of CO in hydrogen-containing mixtures are considered. Cu-Ce catalysts supported on different oxides (ZrO 2, TiO 2, Al 2O 3, MnO 2) before and after PROX reaction are characterized.

  17. Influence of a Cerium surface treatment on the oxidation behavior of type 347 stainless steel

    SciTech Connect

    Alman, D.E.; Jablonski, P.D.

    2007-04-01

    A surface treatment was applied to the surface of Type 347 stainless steel to enhance oxidation resistance. The treatment consisted of dip coating coupons in a CeO2 and halide activator slurry, followed by a thermal treatment at 900C in an inert atmosphere for 12 hours. Cyclical oxidation tests were conducted at 800C in either dry air or air+3%H2O. In dry air, the treatment reduced the oxidation rate (reduced the magnitude of weight gain) of the alloy by a factor of three. Protective chromium based oxide and spinel ((Mn,Cr)3O4 and (Cr,Fe)2O3) phases formed on the surface of the untreated and treated alloy. More significantly, the treatment suppressed the oxide scale spallation that occurred upon cyclical exposure of this alloy to moist air. In moist air, less protective chromite (FeCr2O4), magnetite (Fe+2Fe2+3O4), and hematite (Fe2O3) formed as oxide products on the surface of the base alloy. The treated alloy did not spall during exposure to moist air, and interestingly, the treated alloy possessed similar oxidation rates (magnitude of weight gain) in both moist and dry air. The same protective chromium based oxide and spinel ((Mn,Cr)3O4 and (Cr,Fe)2O3) phases formed on the surface of the treated alloy exposed to both moist and dry air. In the aggressive moist environment, the Ce surface treatment suppressed the formation of less protective iron-oxides, and concomitant oxide scale spallation during thermal cycling.

  18. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    NASA Astrophysics Data System (ADS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-10-01

    The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce-MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18O2 isotopic exchange and O2-H2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  19. The growth and structure of thin oxide films on nickel superficially modified with ceria and cerium

    NASA Astrophysics Data System (ADS)

    Czerwinski, Franciszek

    A small addition of elements with a high affinity to oxygen can have a profound effect on the high temperature oxidation behaviour of many metals and alloys. In order to explain the improvement in oxidation resistance, the research was conducted using Ni-NiO as a model system of cation-diffusing oxides, and Ce as a typical reactive element. Three essential techniques were employed to modify the surface of Ni with Ce and CeO2: ion implantation, sol-gel technology, and reactive sputtering. The improvement of Ni oxidation resistance was assessed by oxygen uptake measurements mainly during the early stages but also for long-term exposures at temperatures between 873 and 1073 K in pure oxygen, both at low and atmospheric pressures. The variety of oxides produced were examined in detail by several advanced techniques including Rutherford backscattering spectrometry, Auger electron spectroscopy, secondary ion-mass spectrometry, transmission- and scanning-transmission electron microscopy equipped with electron and x-ray analyzers, atomic force microscopy, infrared spectroscopy, and x-ray diffraction techniques. In order to provide direct evidence regarding the mechanism of oxide growth, a sequential oxidation using oxygen isotopes 16O2/18O2 was conducted. After conversion to the form of ceramic coating, superficially applied CeO2 sol-gel significantly reduced the Ni oxidation rate as well as changing the NiO morphology and internal microstructure. The extent of the effect depended on coating thickness, size of CeO2 particles, substrate surface finishing and preoxidation before coating. Under optimum conditions, the reduction in the Ni oxidation rate achieved by sol-gel, reactive sputtering, and ion implantation, was similar. It was found that Ni oxidation resistance is controlled by a well-defined NiO sublayer that is composed of randomly-oriented NiO grains and CeO2 particles. Moreover, in this sublayer, the Ce4+ ions segregate to the NiO grain boundaries. At high

  20. Preparation of Sm doped cerium dioxide film by anodization

    NASA Astrophysics Data System (ADS)

    LIU, Xiaozhen; Yang, Junhua; Liu, Xiaozhou; Xia, Letian; Chen, Jie; Zhu, Ying

    2017-04-01

    The Sm doped cerium dioxide films were prepared with cerium foils as raw materials by anodization in Sm(NO3)3-Na2C2O4-NH3·H2O-H2O-(CH2OH)2 electrolyte. The anodic Sm doped cerium oxide film was heat treated at 550°C. The Sm doped cerium dioxide films were characterized with X-ray diffraction (XRD), energy-dispersive analyses of X-ray (EDAX), Fourier transform infrared (FTIR) techniques and scanning electron microcopy (SEM), respectively. The anodic Sm doped cerium oxide film is semi crystalline film. The heat treated anodic Sm doped cerium oxide film at 550°C has a structure of cubic fluorite. The doping of Sm is replacement doping or caulking doping. The Sm doped cerium dioxide film is porous film. The water, ethylene glycol and CO2 are adsorbed in the anodic Sm doped cerium oxide film. The adsorbing water, ethylene glycol and CO2 in the anodic Sm doped cerium oxide film are removed at 550°C. The Sm doped cerium dioxide film has strong absorption in the range of 1200 ~ 4000cm-1.

  1. A nitrilo-tri-acetic-acid/acetic acid route for the deposition of epitaxial cerium oxide films as high temperature superconductor buffer layers

    SciTech Connect

    Thuy, T.T.; Lommens, P.; Narayanan, V.; Van de Velde, N.; De Buysser, K.; Herman, G.G.; Cloet, V.; Van Driessche, I.

    2010-09-15

    A water based cerium oxide precursor solution using nitrilo-tri-acetic-acid (NTA) and acetic acid as complexing agents is described in detail. This precursor solution is used for the deposition of epitaxial CeO{sub 2} layers on Ni-5at%W substrates by dip-coating. The influence of the complexation behavior on the formation of transparent, homogeneous solutions and gels has been studied. It is found that ethylenediamine plays an important role in the gelification. The growth conditions for cerium oxide films were Ar-5% gas processing atmosphere, a solution concentration level of 0.25 M, a dwell time of 60 min at 900 {sup o}C and 5-30 min at 1050 {sup o}C. X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscopy (AFM), pole figures and spectroscopic ellipsometry were used to characterize the CeO{sub 2} films with different thicknesses. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) was used to determine the carbon residue level in the surface of the cerium oxide film, which was found to be lower than 0.01%. Textured films with a thickness of 50 nm were obtained. - Graphical abstract: Study of the complexation and hydrolysis behavior of Ce{sup 4+} ions in the presence of nitrilo-tri-acetic acid and the subsequent development of an aqueous chemical solution deposition route suited for the processing of textured CeO{sub 2} buffer layers on Ni-W tapes.

  2. Evaluation of in vitro cytotoxicity, biocompatibility, and changes in the expression of apoptosis regulatory proteins induced by cerium oxide nanocrystals

    PubMed Central

    Khan, Shahanavaj; Ansari, Anees A.; Rolfo, Christian; Coelho, Andreia; Abdulla, Maha; Al-Khayal, Khayal; Ahmad, Rehan

    2017-01-01

    Abstract Cerium oxide nanocrystals (CeO2-NCs) exhibit superoxide dismutase and catalase mimetic activities. Based on these catalytic activities, CeO2-NCs have been suggested to have the potential to treat various diseases. The crystalline size of these materials is an important factor that influences the performance of CeO2-NCs. Previous reports have shown that several metal-based nanocrystals, including CeO2-NCs, can induce cytotoxicity in cancer cells. However, the underlying mechanisms have remained unclear. To characterize the anticancer activities of CeO2-NCs, several assays related to the mechanism of cytotoxicity and induction of apoptosis has been performed. Here, we have carried out a systematic study to characterize CeO2-NCs phase purity (X-ray diffraction), morphology (electron microscopy), and optical features (optical absorption, Raman scattering, and photoluminescence) to better establish their potential as anticancer drugs. Our study revealed anticancer effects of CeO2-NCs in HT29 and SW620 colorectal cancer cell lines with half-maximal inhibitory concentration (IC50) values of 2.26 and 121.18 μg ml–1, respectively. Reductions in cell viability indicated the cytotoxic potential of CeO2-NCs in HT29 cells based on inverted and florescence microscopy assessments. The mechanism of cytotoxicity confirmed by estimating possible changes in the expression levels of Bcl2, BclxL, Bax, PARP, cytochrome c, and β-actin (control) proteins in HT29 cells. Down-regulation of Bcl2 and BclxL and up-regulation of Bax, PARP, and cytochrome c proteins suggested the significant involvement of CeO2-NCs exposure in the induction of apoptosis. Furthermore, biocompatibility assay showed minimum effect of CeO2-NCs on human red blood cells. PMID:28634498

  3. The influence of Cerium doping on the crystal and electronic properties of FeBO3 oxides

    NASA Astrophysics Data System (ADS)

    Özkendir, Osman Murat

    2017-02-01

    Cerium substituted FeBO3 samples were investigated according to their crystal and electronic properties via the general formula CexCuFe1-x BO3. With the doping of the heavy fermion "Cerium", samples were determined in polycrystalline structure. With the incressing Ce in the samples, disturbances on the Cu-Fe planes became more clear that supports the formation of geometrically different crystal structures. To obtain the electronic mechanisms in the crystals, X-ray Absorption Fine Structure Spectroscopy (XAFS) technique were used to study the electronic properties of the samples in coordination with the X-ray diffraction (XRD) patterns. As a result of the analysis, f-levels of the Cerium atoms were determined as the main playground of interplays and strongly correlated electrons of 4f-3d levels were determined to emerge dominant interactions causing phase transitions.

  4. Engineering scoping study of the production of hydrogen and oxygen from the cerium oxide-sodium phosphate/carbonate thermochemical cycle

    SciTech Connect

    Goeller, H.E.

    1984-04-01

    One potential industrial application of solar energy is for the production of hydrogen (and oxygen) using a cycle of thermochemical reactions. This report provides a preliminary evaluation of the engineering feasibility of such an operation based on the cerium oxide-sodium phosphate/carbonate thermochemical cycle to produce 2 metric tons of hydrogen per day. Material and heat balances were developed, and equipment was sized. The preliminary pilot plant layout was then compared with a plant of the same capacity for producing hydrogen by the electrolysis of water. The use of water electrolysis seems superior and cheaper in all respects. 7 figures, 4 tables.

  5. Cerium Oxide Nanoparticles Inhibits Oxidative Stress and Nuclear Factor-κB Activation in H9c2 Cardiomyocytes Exposed to Cigarette Smoke Extract

    PubMed Central

    Wang, Kangkai; Kolattukudy, Pappachan E.

    2011-01-01

    Cigarette smoke contains and generates a large amount of reactive oxygen species (ROS) that affect normal cellular function and have pathogenic consequences in the cardiovascular system. Increased oxidative stress and inflammation are considered to be an important mechanism of cardiovascular injury induced by cigarette smoke. Antioxidants may serve as effective therapeutic agents against smoke-related cardiovascular disease. Because of the presence of oxygen vacancies on its surface and self-regenerative cycle of its dual oxidation states, Ce3+ and Ce4+, cerium oxide (CeO2) nanoparticles offer a potential to quench ROS in biological systems. In this study, we determined the ability of CeO2 nanoparticles to protect against cigarette smoke extract (CSE)-induced oxidative stress and inflammation in cultured rat H9c2 cardiomyocytes. CeO2 nanoparticles pretreatment of H9c2 cells resulted in significant inhibition of CSE-induced ROS production and cell death. Pretreatment of H9c2 cells with CeO2 nanoparticles suppressed CSE-induced phosphorylation of IκBα, nuclear translocation of p65 subunit of nuclear factor-κB (NF-κB), and NF-κB reporter activity in H9c2 cells. CeO2 nanoparticles pretreatment also resulted in a significant down-regulation of NF-κB-regulated inflammatory genes tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and inducible nitric-oxide synthase and further inhibited CSE-induced depletion of antioxidant enzymes, such as copper zinc superoxide dismutase, manganese superoxide dismutase, and intracellular glutathione content. These results indicate that CeO2 nanoparticles can inhibit CSE-induced cell damage via inhibition of ROS generation, NF-κB activation, inflammatory gene expression, and antioxidant depletion and may have a great potential for treatment of smoking-related diseases. PMID:21464334

  6. A fully spray-coated fuel cell membrane electrode assembly using Aquivion ionomer with a graphene oxide/cerium oxide interlayer

    NASA Astrophysics Data System (ADS)

    Breitwieser, Matthias; Bayer, Thomas; Büchler, Andreas; Zengerle, Roland; Lyth, Stephen M.; Thiele, Simon

    2017-05-01

    A novel multilayer membrane electrode assembly (MEA) for polymer electrolyte membrane fuel cells (PEMFCs) is fabricated in this work, within a single spray-coating device. For the first time, direct membrane deposition is used to fabricate a PEMFC by spraying the short-side-chain ionomer Aquivion directly onto the gas diffusion electrodes. The fully sprayed MEA, with an Aquivion membrane 10 μm in thickness, achieved a high power density of 1.6 W/cm2 for H2/air operation at 300 kPaabs. This is one of the highest reported values for thin composite membranes operated in H2/air atmosphere. By the means of confocal laser scanning microscopy, individual carbon fibers from the gas diffusion layer are identified to penetrate through the micro porous layer (MPL), likely causing a low electrical cell resistance in the range of 150 Ω cm2 through the thin sprayed membranes. By spraying a 200 nm graphene oxide/cerium oxide (GO/CeO2) interlayer between two layers of Aquivion ionomer, the impact of the electrical short is eliminated and the hydrogen crossover current density is reduced to about 1 mA/cm2. The peak power density of the interlayer-containing MEA drops only by 10% compared to a pure Aquivion membrane of similar thickness.

  7. A comparative study of the oxides of lanthanum, cerium, praseodymium, and samarium as catalysts for the oxidative dehydrogenation of methane in the presence and absence of carbon tetrachloride

    SciTech Connect

    Sugiyama, Shigeru; Matsumura, Yasuyuki; Moffat, J.B. )

    1993-02-01

    The catalytic oxidative coupling of methane to ethane and ethene has been investigated on the rare earth oxides, i.e., La[sub 2]O[sub 3], CeO[sub 2], Pr[sub 6]O[sub 11], and Sm[sub 2]O[sub 3]. Addition of a small amount of tetrachloromethane (TCM) to the reactant stream improves the catalytic activity of these oxides. In particular, the praseodymium catalyst yields high selectivity to the C[sub 2] compounds comparable to La[sub 2]O[sub 3] or Sm[sub 2]O[sub 3] when TCM is present in the feedstream. The X-ray diffraction patterns for these catalysts after the reaction with TCM show the presence of the oxychlorides in the catalysts except for the cerium catalyst, for which the selectivity to C[sub 2] compounds is very low even in the presence of TCM. The oxychlorides can be generated on La[sub 2]O[sub 3], Sm[sub 2]O[sub 3], or Pr[sub 6]O[sub 11] by preheating under a stream including TCM. The product distribution of the reaction with these catalysts in the absence of TCM is similar to that with the oxides in the presence of TCM, while Pr[sub 6]O[sub 11] pretreated with TCM is unstable with no TCM in the feedstream. It appears that the improvement of the activity of the rare earth catalysts with TCM in the feedstream is primarily due to the formation of the oxychlorides during the reaction. 49 refs., 6 figs., 5 tabs.

  8. Investigation of ionic conductivity of lanthanum cerium oxide nano crystalline powder synthesized by co precipitation method

    NASA Astrophysics Data System (ADS)

    Tinwala, Hozefa; Shah, Patij; Siddhapara, Kirit; Shah, Dimple; Menghani, Jyoti

    2016-10-01

    Lanthanum (La) doped Ceria (CeO2) electrolyte has attracted considerable interest, as a candidate material for solid oxide fuel cells (SOFCs). The ionic conductivity of La doped CeO2 system (La2Ce2O7) nano-particles synthesized by the co-precipitation method has been investigated. The cubic fluorite structure was observed from the structural analysis of the material. Morphology of the sintered pellets are observed by scanning electron microscope (SEM), respectively. From the results of impedance spectroscopy from temperature range of room temperature to 400 °C, the oxide ion conductivity due to proton charge carrier was observed. Thermogravimetric analysis (TGA) was performed on the material to check stability of phase at high temperature.

  9. Characteristics and mechanism study of cerium oxide based random access memories

    SciTech Connect

    Hsieh, Cheng-Chih; Roy, Anupam; Rai, Amritesh; Chang, Yao-Feng; Banerjee, Sanjay K.

    2015-04-27

    In this work, low operating voltage and high resistance ratio of different resistance states of binary transition metal oxide based resistive random access memories (RRAMs) are demonstrated. Binary transition metal oxides with high dielectric constant have been explored for RRAM application for years. However, CeO{sub x} is considered as a relatively new material to other dielectrics. Since research on CeO{sub x} based RRAM is still at preliminary stage, fundamental characteristics of RRAM such as scalability and mechanism studies need to be done before moving further. Here, we show very high operation window and low switching voltage of CeO{sub x} RRAMs and also compare electrical performance of Al/CeO{sub x}/Au system between different thin film deposition methods and discuss characteristics and resistive switching mechanism.

  10. Removal of cerium ions from aqueous solution by hydrous ferric oxide--a radiotracer study.

    PubMed

    Dubey, Som Shankar; Rao, Battula Sreenivasa

    2011-02-28

    Radiotracer technique has been used to study the removal behavior of Ce (III) ions from aqueous solutions by synthesized and well characterized hydrous ferric oxide (HFO). Adsorptive concentration (10(-4)-10(-8) mol dm(-3)), pH (ca 4.0-10.0) and temperature (303-333 K) were examined for assessing optimal conditions for removal of these ions. The uptake of Ce (III) ions, which fitted well for Freundlich and D-R isotherms, increased with increase in the temperature and no significant desorption took place in the studied temperature range. The presence of some anions/cations affected the uptake of metal ion markedly. Irradiation of hydrous ferric oxide and tungsten oxide by using a 11.1×10(9) Bq (Ra-Be) neutron source having a neutron flux of 3.9×10(6) cm(-2) s(-1) with associated γ-dose rate of 1.72 Gy/h did not influence the extent of adsorption of Ce (III) significantly. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Toxicity and bio-accumulation of inhaled cerium oxide nanoparticles in CD1 mice.

    PubMed

    Aalapati, Srinivas; Ganapathy, Selvam; Manapuram, Saikumar; Anumolu, Goparaju; Prakya, Balakrishna Murthy

    2014-11-01

    Male CD1 mice were subjected to nose-inhalation exposure of CeO2 nanoparticles (NPs) for 0, 7, 14 or 28 days with 14 or 28 days of recovery time at an aerosol concentration of 2 mg/m(3). Markers of lung injury and pro-inflammatory cytokines (interleukin-1beta, tumour necrosis factor-alpha, interleukin-6 and macrophage inflammatory protein-2) in bronchoalveolar lavage fluid (BALF), oxidative stress in lungs, bio-accumulation, and histopathology of pulmonary and extrapulmonary tissues were assessed. BALF analysis revealed the induction of pulmonary inflammation, as evident by an increase in the influx of neutrophils with a significant secretion of pro-inflammatory cytokines that lead to generation of oxidative stress and cytotoxicity, as is evident by induction of lipid peroxidation, depletion of glutathione and increased BALF lactate dehydrogenase and protein. The histopathological examination revealed that these inhaled CeO2 NPs were located all over the pulmonary parenchyma, inducing a severe, chronic, active inflammatory response characterised by necrosis, proteinosis, fibrosis and well-formed discrete granulomas in the pulmonary tissue and tubular degeneration leading to coagulative necrosis in kidneys. Inductively coupled plasma optical emission spectrometer results showed a significant bio-accumulation of these particles in the pulmonary and extrapulmonary tissues, even after one month of post-inhalation exposure. Together, these findings suggest that inhalation exposure of CeO2 NPs can induce pulmonary and extrapulmonary toxicity.

  12. Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption

    NASA Astrophysics Data System (ADS)

    Seo, Jihoon; Moon, Jinok; Kim, Joo Hyun; Lee, Kangchun; Hwang, Junha; Yoon, Heesung; Yi, Dong Kee; Paik, Ungyu

    2016-12-01

    In this study, we have investigated the role of the Ce oxidation state (Ce3+/Ce4+) on the CeO2 surfaces for silicate adsorption. In aqueous medium, the Ce3+ sites lead to the formation of -OH groups at the CeO2 surface through H2O dissociation. Silicate ions can adsorb onto the CeO2 surface through interaction with the -OH groups (-Ce-OH- + -Si-O- ↔ -Ce-O-Si- + OH-). As the Ce3+ concentration increased from 19.3 to 27.6%, the surface density of -OH group increased from 0.34 to 0.72 OH/nm2. To evaluate the adsorption behaviors of silicate ions onto CeO2 NPs, we carried out an adsorption isothermal analysis, and the adsorption isotherm data followed the Freundlich model. The Freundlich constant for the relative adsorption capacity (KF) and adsorption intensity (1/n) indicated that CeO2 NPs with high Ce3+ concentration show higher adsorption affinity with silicate ions. As a result, we have demonstrated that the Ce oxidation state (Ce3+/Ce4+) on the CeO2 surface can have a significant influence on the silicate adsorption.

  13. Interactions between sub-10-nm iron and cerium oxide nanoparticles and 3T3 fibroblasts: the role of the coating and aggregation state

    NASA Astrophysics Data System (ADS)

    Safi, M.; Sarrouj, H.; Sandre, O.; Mignet, N.; Berret, J.-F.

    2010-04-01

    Recent nanotoxicity studies revealed that the physico-chemical characteristics of engineered nanomaterials play an important role in the interactions with living cells. Here, we report on the toxicity and uptake of cerium and iron oxide sub-10-nm nanoparticles by NIH/3T3 mouse fibroblasts. Coating strategies include low-molecular weight ligands (citric acid) and polymers (poly(acrylic acid), MW = 2000 g mol - 1). Electrostatically adsorbed on the surfaces, the organic moieties provide a negatively charged coating in physiological conditions. We find that most particles were biocompatible, as exposed cells remained 100% viable relative to controls. Only the bare and the citrate-coated nanoceria exhibit a slight decrease in mitochondrial activity at very high cerium concentrations (>1 g l - 1). We also observe that the citrate-coated particles are internalized/adsorbed by the cells in large amounts, typically 250 pg/cell after 24 h incubation for iron oxide. In contrast, the polymer-coated particles are taken up at much lower rates (<30 pg/cell). The strong uptake shown by the citrated particles is related to the destabilization of the dispersions in the cell culture medium and their sedimentation down to the cell membranes. In conclusion, we show that the uptake of nanomaterials by living cells depends on the coating of the particles and on its ability to preserve the colloidal nature of the dispersions.

  14. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells.

    PubMed

    Gojova, Andrea; Lee, Jun-Tae; Jung, Heejung S; Guo, Bing; Barakat, Abdul I; Kennedy, Ian M

    2009-07-01

    Because vascular endothelial cell inflammation is critical in the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response. To test the hypothesis, we incubated HAECs for 4 h with different concentrations (0.001-50 microg/ml) of CeO(2) nanoparticles and subsequently measured mRNA levels of the three inflammatory markers intercellular adhesion molecule 1 (ICAM-1), interleukin (IL)-8, and monocyte chemotactic protein (MCP-1) using real-time polymerase chain reaction (PCR). Ceria nanoparticles caused very little inflammatory response in HAECs, even at the highest dose. This material is apparently rather benign in comparison with Y(2)O(3) and ZnO nanoparticles that we have studied previously. These results suggest that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends strongly on particle composition.

  15. Pilot demonstration of cerium oxide coated anodes. Final report, April 1990--October 1992

    SciTech Connect

    Gregg, J.S.; Frederick, M.S.; Shingler, M.J.; Alcorn, T.R.

    1992-10-01

    Cu cermet anodes were tested for 213 to 614 hours with an in-situ deposited CEROX coating in a pilot cell operated by Reynolds Manufacturing Technology Laboratory. At high bath ratio ({approximately}1.5) and low current density (0.5 A/cm{sup 2}), a {ge}1 mm thick dense CEROX coating was deposited on the anodes. At lower bath ratios and higher current density, the CEROX coating was thinner and less dense, but no change in corrosion rate was noted. Regions of low current density on the anodes and sides adjacent to the carbon anode sometimes had thin or absent CEROX coatings. Problems with cracking and oxidation of the cermet substrates led to higher corrosion rates in a pilot cell than would be anticipated from lab scale results.

  16. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells

    PubMed Central

    Gojova, Andrea; Lee, Jun-Tae; Jung, Heejung S.; Guo, Bing; Barakat, Abdul I.; Kennedy, Ian M.

    2010-01-01

    Because vascular endothelial cell inflammation is critical in the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response. To test the hypothesis, we incubated HAECs for 4 h with different concentrations (0.001–50 μg/ml) of CeO2 nanoparticles and subsequently measured mRNA levels of the three inflammatory markers intercellular adhesion molecule 1 (ICAM-1), interleukin (IL)-8, and monocyte chemotactic protein (MCP-1) using real-time polymerase chain reaction (PCR). Ceria nanoparticles caused very little inflammatory response in HAECs, even at the highest dose. This material is apparently rather benign in comparison with Y2O3 and ZnO nanoparticles that we have studied previously. These results suggest that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends strongly on particle composition. PMID:19558244

  17. A rapid solvothermal synthesis of cerium oxide hollow spheres and characterization

    SciTech Connect

    Kempaiah Devaraju, Murukanahally; Liu, Xiangwen; Yin, Shu; Sato, Tsugio

    2012-10-15

    An easy and size controlled solvothermal synthesis of CeO{sub 2} hollow spheres is still a challenge in the area of materials synthesis. Here, CeO{sub 2} hollow spheres have been synthesized using PVA500 as a surfactant via solvothermal reaction followed by calcinations. The size of CeO{sub 2} hollow spheres could be controlled from 500 to 150 nm by changing the amounts of Ce(NO{sub 3}){sub 3}{center_dot}6H{sub 2}O and PVA500. The possible growth mechanism of CeO{sub 2} hollow sphere was explained. The CO oxidation catalytic activity of the CeO{sub 2} hollow spheres were superior to that of the commercial CeO{sub 2} powder due to the high specific surface area and small crystallite size. - Graphical abstract: A rapid and easy way to prepare CeO{sub 2} hollow sphere with 150-500 nm in diameter was successfully achieved by solvothermal reaction. The prepared particles showed hollowness due to Ostwald ripening process. An improved catalytic activity was observed and discussed. Highlights: A rapid synthesis of CeO{sub 2} hollow spheres with diameter size from 15 to 500 nm. Black-Right-Pointing-Pointer Cheap surfactant was used to prepare hollow spheres. Black-Right-Pointing-Pointer Effect of temperature and surfactant ratio were investigated. Black-Right-Pointing-Pointer Systematic characterization by XRD, FESEM, TEM, TG, FTIR and UV. Black-Right-Pointing-Pointer CO oxidation analysis results showed better catalytic activity.

  18. Stabilization of miniemulsion droplets by cerium oxide nanoparticles: a step toward the elaboration of armored composite latexes.

    PubMed

    Zgheib, Nancy; Putaux, Jean-Luc; Thill, Antoine; D'Agosto, Franck; Lansalot, Muriel; Bourgeat-Lami, Elodie

    2012-04-10

    Stable methyl methacrylate (MMA) miniemulsions were successfully prepared using for the first time cerium oxide (CeO(2)) nanoparticles as solid stabilizers in the absence of any molecular surfactant. The interaction between MMA droplets and CeO(2) nanoparticles was induced by the use of methacrylic acid (MAA) as a comonomer. Both MAA and CeO(2) contents played a key role on the diameter and the stability of the droplets formed during the emulsification step. Cryo-transmission electron microscopy (TEM) images of the suspensions formed with 35 wt % of CeO(2) showed the presence of polydisperse 50-150 nm spherical droplets. More surprisingly, some nonspherical (likely discoidal) objects that could be the result of the sonication step were also observed. The subsequent polymerization of these Pickering miniemulsion droplets led to the formation of composite PMMA latex particles armored with CeO(2). In all cases, the conversion was limited to ca. 85%, concomitant with a loss of stability of the latex for CeO(2) contents lower than 35 wt %. This stability issues were likely related to the screening of the cationic charges present on CeO(2) nanoparticles upon polymerization. TEM images showed mostly spherical particles with a diameter ranging from 100 to 400 nm and homogeneously covered with CeO(2). Besides, for particles typically larger than 200 nm, a buckled morphology was observed supporting the presence of residual monomer at the end of the polymerization and consistent with the limited conversion. The versatility of these systems was further demonstrated using 35 wt % of CeO(2) and replacing MMA by n-butyl acrylate (BA) either alone or in combination with MMA. Stable monomer emulsions were always obtained, with the droplet size increasing with the hydrophobicity of the oil phase, pointing out the key influence of the wettability of the solid stabilizer. The polymerization of Pickering miniemulsion stabilized by CeO(2) nanoparticles proved to be an efficient strategy

  19. Assessment the Exposure Level of Rare Earth Elements in Workers Producing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles.

    PubMed

    Li, Yan; Yu, Hua; Li, Peng; Bian, Ying

    2017-02-01

    In order to assess occupational exposure level of 15 rare earth elements (REEs) and identify the associated influence, we used inductively coupled plasma mass spectrometry (ICP-MS) based on closed-vessel microwave-assisted wet digestion procedure to determinate the concentration of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in urinary samples obtained from workers producing ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggest that La and Ce were the primary component, together accounting for 97 % of total REEs in workers. The urinary levels of La, and Ce among the workers (6.36, 15.32 μg.g(-1) creatinine, respectively) were significantly enriched compared to those levels measured in the control subjects (1.52, 4.04 μg.g(-1) creatinine, respectively) (p < 0.05). This study simultaneously identified the associated individual factors, the results indicate that the concentrations in over 5 years group (11.64 ± 10.93 for La, 27.83 ± 24.38 for Ce) were significantly elevated compared to 1-5 years group (2.58 ± 1.51 for La, 6.87 ± 3.90 for Ce) (p < 0.05). Compared the urinary levels of La and Ce at the separation and packaging locations (9.10 ± 9.51 for La, 22.29 ± 21.01 for Ce) with the other locations (2.85 ± 0.98 for La, 6.37 ± 2.12 for Ce), the results show urinary concentrations were significantly higher in workers at separation and packaging locations (p < 0.01). Inter-individual variation in levels of La and Ce in urine is the result of multi-factorial comprehensive action. Further researches should focus on the multiple factors contributing to the REEs levels of the occupationally exposed workers.

  20. Combination of supported bimetallic rhodium–molybdenum catalyst and cerium oxide for hydrogenation of amide

    PubMed Central

    Nakagawa, Yoshinao; Tamura, Riku; Tamura, Masazumi; Tomishige, Keiichi

    2015-01-01

    Hydrogenation of cyclohexanecarboxamide to aminomethylcyclohexane was conducted with silica-supported bimetallic catalysts composed of noble metal and group 6–7 elements. The combination of rhodium and molybdenum with molar ratio of 1:1 showed the highest activity. The effect of addition of various metal oxides was investigated on the catalysis of Rh–MoOx/SiO2, and the addition of CeO2 much increased the activity and selectivity. Higher hydrogen pressure and higher reaction temperature in the tested range of 2–8 MPa and 393–433 K, respectively, were favorable in view of both activity and selectivity. The highest yield of aminomethylcyclohexane obtained over Rh–MoOx/SiO2 + CeO2 was 63%. The effect of CeO2 addition was highest when CeO2 was not calcined, and CeO2 calcined at >773 K showed a smaller effect. The use of CeO2 as a support rather decreased the activity in comparison with Rh–MoOx/SiO2. The weakly-basic nature of CeO2 additive can affect the surface structure of Rh–MoOx/SiO2, i.e. reducing the ratio of Mo–OH/Mo–O− sites. PMID:27877749

  1. Combination of supported bimetallic rhodium-molybdenum catalyst and cerium oxide for hydrogenation of amide

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshinao; Tamura, Riku; Tamura, Masazumi; Tomishige, Keiichi

    2015-02-01

    Hydrogenation of cyclohexanecarboxamide to aminomethylcyclohexane was conducted with silica-supported bimetallic catalysts composed of noble metal and group 6-7 elements. The combination of rhodium and molybdenum with molar ratio of 1:1 showed the highest activity. The effect of addition of various metal oxides was investigated on the catalysis of Rh-MoOx/SiO2, and the addition of CeO2 much increased the activity and selectivity. Higher hydrogen pressure and higher reaction temperature in the tested range of 2-8 MPa and 393-433 K, respectively, were favorable in view of both activity and selectivity. The highest yield of aminomethylcyclohexane obtained over Rh-MoOx/SiO2 + CeO2 was 63%. The effect of CeO2 addition was highest when CeO2 was not calcined, and CeO2 calcined at >773 K showed a smaller effect. The use of CeO2 as a support rather decreased the activity in comparison with Rh-MoOx/SiO2. The weakly-basic nature of CeO2 additive can affect the surface structure of Rh-MoOx/SiO2, i.e. reducing the ratio of Mo-OH/Mo-O- sites.

  2. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy

    PubMed Central

    Johnston-Peck, Aaron C.; Winterstein, Jonathan P.; Roberts, Alan D.; DuChene, Joseph S.; Qian, Kun; Sweeny, Brendan C.; Wei, Wei David; Sharma, Renu; Stach, Eric A.; Herzing, Andrew A.

    2016-01-01

    Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce3+ influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce3+ ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. PMID:26744830

  3. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A

    2016-03-01

    Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. Published by Elsevier B.V.

  4. Studies on Synthesis, Microstructure and Transport Properties of Doped Cerium Oxides

    NASA Astrophysics Data System (ADS)

    Handal, Hala Talaat Abd El-Samei

    Acceptor-doped ceria exhibits mixed ionic electronic conduction in reducing conditions and chemical stability against sulfur poisoning and coking. This thesis's primary goal is to explore new anode materials based on ceria--solid solutions for solid oxide fuel cells (SOFCs). The physicochemical and electrochemical performance of Ce0.9-xY 0.1MnxO2-delta ( x = 0 to 15 mol%) (CYMO) and Ce0.87Y0.1Mn 0.01N0.02O2-delta (N = Mg or Ca) were studied. Among the materials investigated in this study, Ce0.89Y 0.1Mn0.01Mg0.02O2-delta (Mg-CYMO) showed the highest total conductivity of 0.2 S cm-1 at 700°C in H2. An area specific polarization resistance of 0.23 O cm2 was observed for both Mg-CYMO and Ce0.8Y 0.1Mn0.1O2-delta (10CYMO) at 800°C, in wet H2. Chronoamperometric measurement for the symmetrical cell configuration based on 10CYMO electrodes showed stable performance upon exposure to 10 ppm H2S/H2. In a full cell configuration, 10CYMO (anode)/YSZ (electrolyte)/La0.8Sr0.2MnO3 (LSM)-YSZ cathode, polarization resistance of 1.4 O cm2 and power density of 75 mW/cm2 were obtained at 800°C in wet H2. The main challenge of employing proton-conducting electrolytes in SOFC is their poor chemical stability in the presence of steam and hydrocarbon fuels. Another goal of this thesis is to develop a chemically stable proton-conducting electrolyte for SOFCs. The effects of Fe and Co substitution on the electrical and physicochemical properties of BaCe0.9Sm0.1O 3-delta (BCS) were evaluated. Thermogravimetric analysis showed that incorporation of 5 to 10 mol% Fe or Co in BCS did not improve the chemical stability in CO2 at elevated temperatures. The BCSC10 sample sintering at 1400°C showed the highest electrical conductivity of 0.02 S cm -1 at 600°C in air, but it did not show any appreciable proton mobility under humidified atmosphere.

  5. Nanoscale Cobalt-Manganese Oxide Catalyst Supported on Shape-Controlled Cerium Oxide: Effect of Nanointerface Configuration on Structural, Redox, and Catalytic Properties.

    PubMed

    Hillary, Brendan; Sudarsanam, Putla; Amin, Mohamad Hassan; Bhargava, Suresh K

    2017-02-28

    Understanding the role of nanointerface structures in supported bimetallic nanoparticles is vital for the rational design of novel high-performance catalysts. This study reports the synthesis, characterization, and the catalytic application of Co-Mn oxide nanoparticles supported on CeO2 nanocubes with the specific aim of investigating the effect of nanointerfaces in tuning structure-activity properties. High-resolution transmission electron microscopy analysis reveals the formation of different types of Co-Mn nanoalloys with a range of 6 ± 0.5 to 14 ± 0.5 nm on the surface of CeO2 nanocubes, which are in the range of 15 ± 1.5 to 25 ± 1.5 nm. High concentration of Ce(3+) species are found in Co-Mn/CeO2 (23.34%) compared with that in Mn/CeO2 (21.41%), Co/CeO2 (15.63%), and CeO2 (11.06%), as evidenced by X-ray photoelectron spectroscopy (XPS) analysis. Nanoscale electron energy loss spectroscopy analysis in combination with XPS studies shows the transformation of Co(2+) to Co(3+) and simultaneously Mn(4+/3+) to Mn(2+). The Co-Mn/CeO2 catalyst exhibits the best performance in solvent-free oxidation of benzylamine (89.7% benzylamine conversion) compared with the Co/CeO2 (29.2% benzylamine conversion) and Mn/CeO2 (82.6% benzylamine conversion) catalysts for 3 h at 120 °C using air as the oxidant. Irrespective of the catalysts employed, a high selectivity toward the dibenzylimine product (97-98%) was found compared with the benzonitrile product (2-3%). The interplay of redox chemistry of Mn and Co at the nanointerface sites between Co-Mn nanoparticles and CeO2 nanocubes as well as the abundant structural defects in cerium oxide plays a key role in the efficiency of the Co-Mn/CeO2 catalyst for the aerobic oxidation of benzylamine.

  6. Properties of cerium-zirconium mixed oxides partially substituted by neodymium: Comparison with Zr-Ce-Pr-O ternary oxides

    SciTech Connect

    Mikulova, Jana; Rossignol, Sylvie . E-mail: Sylvie.rossignol@univ-poitiers.fr; Gerard, Francois; Mesnard, Danielle; Kappenstein, Charles; Duprez, Daniel

    2006-08-15

    CeO{sub 2} doped with praseodymium, neodymium and/or zirconium atoms were prepared by coprecipitation and by the sol-gel method. Structural properties were investigated by in situ XRD and Raman spectroscopy while oxygen storage capacity (OSC) was measured by transient CO oxidation. All the compounds, except pure Nd{sub 2}O{sub 3}, have a fluorite-type structure as well as a Raman band at 560 cm{sup -1} characteristic of the oxygen vacancies involving non-stoichiometric oxides. The lattice parameter under hydrogen, being dependent on the temperature, revealed two reduction mechanisms: one at a low temperature at the surface and another at a high temperature in the bulk. Ce-Nd binary oxides show a strong tendency towards crystallite aggregation, which reduces accessibility to gases and OSC properties. Zirconium improves the thermal resistance to sintering of both Ce-Nd and Ce-Pr oxides. The Zr-Ce-Pr-O followed by Zr-Ce-Nd-O compounds displaying high oxygen mobility at a low temperature, appear to be very promising for practical applications such as OSC materials. - Graphical abstract: Variation of oxygen vacancies under hydrogen on ternary oxides.

  7. Development and Validation of Spectrofluorimetric Method for Determination of Biotin in Bulk and Pharmaceutical Preparations via its Oxidation with Cerium (IV).

    PubMed

    Walash, M I; Rizk, M; Sheribah, Z A; Salim, M M

    2010-09-01

    A simple and sensitive spectrofluorimetric method was developed for the determination of biotin in pure form and in pharmaceutical preparations. The proposed method is based on the oxidation of the drug with cerium (IV) ammonium sulfate in acidic medium. The fluorescence of the produced Cerium (III) was measured at 365 nm after excitation at 255 nm. The different experimental parameters affecting the development and stability of the reaction were carefully studied and optimized. The method is applicable over the concentration range of 30-120 ng/mL with correlation coefficient of 0.9998. The detection limit (LOD) of biotin was 2.41 ng/mL while quantitation limit (LOQ) was 7.29 ng/mL. The proposed procedure was successfully applied for the determination of biotin in pharmaceutical preparations with mean recoveries of 99.55 ± 0.83 and 101.67 ± 1.53 for biotin ampoules and capsules, respectively. The results obtained were in good agreement with those obtained using the official method.

  8. Development and Validation of Spectrofluorimetric Method for Determination of Biotin in Bulk and Pharmaceutical Preparations via its Oxidation with Cerium (IV)

    PubMed Central

    Walash, M. I.; Rizk, M.; Sheribah, Z. A.; Salim, M. M.

    2010-01-01

    A simple and sensitive spectrofluorimetric method was developed for the determination of biotin in pure form and in pharmaceutical preparations. The proposed method is based on the oxidation of the drug with cerium (IV) ammonium sulfate in acidic medium. The fluorescence of the produced Cerium (III) was measured at 365 nm after excitation at 255 nm. The different experimental parameters affecting the development and stability of the reaction were carefully studied and optimized. The method is applicable over the concentration range of 30-120 ng/mL with correlation coefficient of 0.9998. The detection limit (LOD) of biotin was 2.41 ng/mL while quantitation limit (LOQ) was 7.29 ng/mL. The proposed procedure was successfully applied for the determination of biotin in pharmaceutical preparations with mean recoveries of 99.55 ± 0.83 and 101.67 ± 1.53 for biotin ampoules and capsules, respectively. The results obtained were in good agreement with those obtained using the official method. PMID:23675202

  9. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice.

    PubMed

    Nemmar, Abderrahim; Yuvaraju, Priya; Beegam, Sumaya; Fahim, Mohamed A; Ali, Badreldin H

    2017-01-01

    CeO2 nanoparticles (CeO2 NPs) which are used as a diesel fuel additive are emitted in the particulate phase in the exhaust, posing a health concern. However, limited information exists regarding the in vivo acute toxicity of CeO2 NPs on multiple organs. Presently, we investigated the acute (24 h) effects of intratracheally instilled CeO2 NPs in mice (0.5 mg/kg) on oxidative stress, inflammation, and DNA damage in major organs including lung, heart, liver, kidneys, spleen, and brain. Lipid peroxidation measured by malondialdehyde production was increased in the lungs only, and reactive oxygen species were increased in the lung, heart, kidney, and brain. Superoxide dismutase activity was decreased in the lung, liver, and kidney, whereas glutathione increased in lung but it decreased in the kidney. Total nitric oxide was increased in the lung and spleen but it decreased in the heart. Tumour necrosis factor-α increased in all organs studied. Interleukin- (IL-) 6 increased in the lung, heart, liver, kidney, and spleen. IL-1β augmented in the lung, heart, kidney, and spleen. Moreover, CeO2 NPs induced DNA damage, assessed by COMET assay, in all organs studied. Collectively, these findings indicate that pulmonary exposure to CeO2 NPs causes oxidative stress, inflammation, and DNA damage in multiple organs.

  10. Cerium Oxide Nanoparticles in Lung Acutely Induce Oxidative Stress, Inflammation, and DNA Damage in Various Organs of Mice

    PubMed Central

    Yuvaraju, Priya; Beegam, Sumaya; Fahim, Mohamed A.; Ali, Badreldin H.

    2017-01-01

    CeO2 nanoparticles (CeO2 NPs) which are used as a diesel fuel additive are emitted in the particulate phase in the exhaust, posing a health concern. However, limited information exists regarding the in vivo acute toxicity of CeO2 NPs on multiple organs. Presently, we investigated the acute (24 h) effects of intratracheally instilled CeO2 NPs in mice (0.5 mg/kg) on oxidative stress, inflammation, and DNA damage in major organs including lung, heart, liver, kidneys, spleen, and brain. Lipid peroxidation measured by malondialdehyde production was increased in the lungs only, and reactive oxygen species were increased in the lung, heart, kidney, and brain. Superoxide dismutase activity was decreased in the lung, liver, and kidney, whereas glutathione increased in lung but it decreased in the kidney. Total nitric oxide was increased in the lung and spleen but it decreased in the heart. Tumour necrosis factor-α increased in all organs studied. Interleukin- (IL-) 6 increased in the lung, heart, liver, kidney, and spleen. IL-1β augmented in the lung, heart, kidney, and spleen. Moreover, CeO2 NPs induced DNA damage, assessed by COMET assay, in all organs studied. Collectively, these findings indicate that pulmonary exposure to CeO2 NPs causes oxidative stress, inflammation, and DNA damage in multiple organs. PMID:28392888

  11. Determining the Source of Water Vapor in a Cerium Oxide Electrochemical Oxygen Separator to Achieve Aviator Grade Oxygen

    NASA Technical Reports Server (NTRS)

    Graf, John; Taylor, Dale; Martinez, James

    2014-01-01

    More than a metric ton of water is transported to the International Space Station (ISS) each year to provide breathing oxygen for the astronauts. Water is a safe and compact form of stored oxygen. The water is electrolyzed on ISS and ambient pressure oxygen is delivered to the cabin. A much smaller amount of oxygen is used each year in spacesuits to conduct Extra Vehicular Activities (EVAs). Space suits need high pressure (>1000 psia) high purity oxygen (must meet Aviator Breathing Oxygen "ABO" specifications, >99.5% O2). The water / water electrolysis system cannot directly provide high pressure, high purity oxygen, so oxygen for EVAs is transported to ISS in high pressure gas tanks. The tanks are relatively large and heavy, and the majority of the system launch weight is for the tanks and not the oxygen. Extracting high purity oxygen from cabin air and mechanically compressing the oxygen might enable on-board production of EVA grade oxygen using the existing water / water electrolysis system. This capability might also benefit human spaceflight missions, where oxygen for EVAs could be stored in the form of water, and converted into high pressure oxygen on-demand. Cerium oxide solid electrolyte-based ion transport membranes have been shown to separate oxygen from air, and a supported monolithic wafer form of the CeO2 electrolyte membrane has been shown to deliver oxygen at pressures greater than 300 psia. These supported monolithic wafers can withstand high pressure differentials even though the membrane is very thin, because the ion transport membrane is supported on both sides (Fig 1). The monolithic supported wafers have six distinct layers, each with matched coefficients of thermal expansion. The wafers are assembled into a cell stack which allows easy air flow across the wafers, uniform current distribution, and uniform current density (Fig 2). The oxygen separation is reported to be "infinitely selective" to oxygen [1] with reported purity of 99.99% [2

  12. Role of tetrachloromethane as a gas-phase additive in the oxidative dehydrogenation of propane over cerium oxide

    SciTech Connect

    Sugiyama, Shigeru; Iizuka, Y.; Nitta, E.; Hayashi, H.; Moffat, J.B.

    2000-01-01

    In the absence of tetrachloromethane (TCM) carbon dioxide is the principal product formed in the oxidation of propane on ceria. The introduction of small partial pressures of TCM increases the conversion of propane with selectivities to propene up to 80%. Except under special circumstances no evidence of chlorinated species from TCM is found in the bulk structure while the surface region is shown to contain chlorine, although its form is not known. The enhancement of conversion and selectivity to propene is shown to be dependent upon the presence of chlorine, in whatever form, in the surface region of the catalyst.

  13. Effects of the Physical Characteristics of Cerium Oxide on Plasma-Enhanced Tetraethylorthosiliate Removal Rate of Chemical Mechanical Polishing for Shallow Trench Isolation

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Kyun; Paik, Ungyu; Oh, Seong-Geun; Park, Yong-Kook; Katoh, Takeo; Park, Jea-Gun

    2003-03-01

    Ceria powders were synthesized by two different methods, solid-state displacement reaction and wet chemical precipitation, and the influence of the physical characteristics of cerium oxide on the removal rate of plasma-enhanced tetraethylorthosilicate (PETEOS) and chemical vapor deposition (CVD) nitride films in chemical mechanical planarization (CMP) was investigated. The fundamental physicochemical property and electrokinetic behavior of ceria particles in aqueous suspending media were investigated to identify the correlation between the colloidal property of ceria and the CMP performance. The surface potentials of two different ceria particles are found to have different isoelectric point (pHiep) values and differences in physical properties of ceria particles such as porosity and density were found to be the key parameters in CMP of PETEOS films. Ceria powders synthesized by the solid-state displacement reaction method yielded a higher removal rate of PETEOS and higher selectivity than powders synthesized by the wet chemical precipitation method.

  14. Study of the cerium(IV)-picrate system in acetonitrile.

    PubMed

    Kratochvil, B; Tipler, M; McKay, B

    1966-07-01

    A potentiometric and spectrophotometric study has been made of the reaction between hexanitratocerate and picrate in dry acetonitrile. Several cerium(IV)-picrate complexes are formed; the formation constant for the first is estimated to be 4 from spectrophotometric measurements. The catalytic effect of picrate on hydroquinone oxidation by nitratocerate is postulated to be due to more rapid electron transfer by cerium picrate complexes.

  15. Cerium anomaly at microscale in fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Bertrand, Loïc

    2015-09-01

    Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies.

  16. Size determination and quantification of engineered cerium oxide nanoparticles by flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry.

    PubMed

    Sánchez-García, L; Bolea, E; Laborda, F; Cubel, C; Ferrer, P; Gianolio, D; da Silva, I; Castillo, J R

    2016-03-18

    Facing the lack of studies on characterization and quantification of cerium oxide nanoparticles (CeO2 NPs), whose consumption and release is greatly increasing, this work proposes a method for their sizing and quantification by Flow Field-flow Fractionation (FFFF) coupled to Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Two modalities of FFFF (Asymmetric Flow- and Hollow Fiber-Flow Field Flow Fractionation, AF4 and HF5, respectively) are compared, and their advantages and limitations discussed. Experimental conditions (carrier composition, pH, ionic strength, crossflow and carrier flow rates) are studied in detail in terms of NP separation, recovery, and repeatability. Size characterization of CeO2 NPs was addressed by different approaches. In the absence of feasible size standards of CeO2 NPs, suspensions of Ag, Au, and SiO2 NPs of known size were investigated. Ag and Au NPs failed to show a comparable behavior to that of the CeO2 NPs, whereas the use of SiO2 NPs provided size estimations in agreement to those predicted by the theory. The latter approach was thus used for characterizing the size of CeO2 NPs in a commercial suspension. Results were in adequate concordance with those achieved by transmission electron microscopy, X-ray diffraction and dynamic light scattering. The quantification of CeO2 NPs in the commercial suspension by AF4-ICP-MS required the use of a CeO2 NPs standards, since the use of ionic cerium resulted in low recoveries (99 ± 9% vs. 73 ± 7%, respectively). A limit of detection of 0.9 μg L(-1) CeO2 corresponding to a number concentration of 1.8 × 1012 L(-1) for NPs of 5 nm was achieved for an injection volume of 100 μL.

  17. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  18. Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition.

    PubMed

    Xue, Li; He, Hong; Liu, Chang; Zhang, Changbin; Zhang, Bo

    2009-02-01

    A series of alkali metal- and alkaline earth metal-doped cobalt-cerium composite oxide catalysts were prepared by the citrate method and tested for the decomposition of N20. Strong promotion effects of alkali and alkaline earth metals on the activity of the catalyst were obtained in the order Li < Na < K < Rb < Cs and Mg < Ca < Sr, Ba. The promotion effects of alkaline earth metals were much weaker than the effects of alkali metals. To investigate the origin of the promotion effect, X-ray diffraction, Brunauer-Emmett-Teller surface area measurement X-ray photoelectron spectroscopy, temperature-programmed desorption, and hydrogen temperature-programmed reduction methods were used to characterize the alkali metal-doped catalyst. The analytical results indicated that alkali metals improved the redox ability of active site Co2+ by acting as electronic promoters. Catalytic decomposition of N2O proceeds through an oxidation-reduction mechanism with participation of electrons from Co2+, thus the increase in the redox ability of Co2+ should lead to an increase in the activity of the catalyst.

  19. Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles

    PubMed Central

    Selvaraj, Vellaisamy; Nepal, Niraj; Rogers, Steven; Manne, Nandini D.P.K.; Arvapalli, Ravikumar; Rice, Kevin M.; Asano, Shinichi; Fankhanel, Erin; Ma, Jane J.; Shokuhfar, Tolou; Maheshwari, Mani; Blough, Eric R.

    2015-01-01

    Sepsis is a life threatening disease that is associated with high mortality. Existing treatments have failed to improve survivability in septic patients. The purpose of this present study is to evaluate whether cerium oxide nanoparticles (CeO2NPs) can prevent lipopolysaccharide (LPS) induced severe sepsis mortality by preventing hepatic dysfunction in male Sprague Dawley rats. Administration of a single dose (0.5 mg/kg) of CeO2NPs intravenously to septic rats significantly improved survival rates and functioned to restore body temperature, respiratory rate and blood pressure towards baseline. Treatment-induced increases in animal survivability were associated with decreased hepatic damage along with reductions in serum cytokines/chemokines, and diminished inflammatory related signaling. Kupffer cells and macrophage cells exposed to CeO2NPs exhibited decreases in LPS-induced cytokine release (TNF-α, IL-1β, IL-6, HMGB1) which were associated with diminished cellular ROS, reduced levels of nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and decreased nuclear factor-kappa light chain enhancer of activated B cells (NF-kB) transcriptional activity. The findings of this study indicate that CeO2NPs may be useful as a therapeutic agent for sepsis. PMID:25968464

  20. Tuning the Selectivity of Catalytic Carbon Dioxide Hydrogenation over Iridium/Cerium Oxide Catalysts with a Strong Metal-Support Interaction.

    PubMed

    Li, Siwei; Xu, Yao; Chen, Yifu; Li, Weizhen; Lin, Lili; Li, Mengzhu; Deng, Yuchen; Wang, Xiaoping; Ge, Binghui; Yang, Ce; Yao, Siyu; Xie, Jinglin; Li, Yongwang; Liu, Xi; Ma, Ding

    2017-08-28

    A one-step ligand-free method based on an adsorption-precipitation process was developed to fabricate iridium/cerium oxide (Ir/CeO2 ) nanocatalysts. Ir species demonstrated a strong metal-support interaction (SMSI) with the CeO2 substrate. The chemical state of Ir could be finely tuned by altering the loading of the metal. In the carbon dioxide (CO2 ) hydrogenation reaction it was shown that the chemical state of Ir species-induced by a SMSI-has a major impact on the reaction selectivity. Direct evidence is provided indicating that a single-site catalyst is not a prerequisite for inhibition of methanation and sole production of carbon monoxide (CO) in CO2 hydrogenation. Instead, modulation of the chemical state of metal species by a strong metal-support interaction is more important for regulation of the observed selectivity (metallic Ir particles select for methane while partially oxidized Ir species select for CO production). The study provides insight into heterogeneous catalysts at nano, sub-nano, and atomic scales. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles.

    PubMed

    Selvaraj, Vellaisamy; Nepal, Niraj; Rogers, Steven; Manne, Nandini D P K; Arvapalli, Ravikumar; Rice, Kevin M; Asano, Shinichi; Fankhanel, Erin; Ma, Jane J; Shokuhfar, Tolou; Maheshwari, Mani; Blough, Eric R

    2015-08-01

    Sepsis is a life threatening disease that is associated with high mortality. Existing treatments have failed to improve survivability in septic patients. The purpose of this present study is to evaluate whether cerium oxide nanoparticles (CeO2NPs) can prevent lipopolysaccharide (LPS) induced severe sepsis mortality by preventing hepatic dysfunction in male Sprague Dawley rats. Administration of a single dose (0.5 mg/kg) of CeO2NPs intravenously to septic rats significantly improved survival rates and functioned to restore body temperature, respiratory rate and blood pressure towards baseline. Treatment-induced increases in animal survivability were associated with decreased hepatic damage along with reductions in serum cytokines/chemokines, and diminished inflammatory related signaling. Kupffer cells and macrophage cells exposed to CeO2NPs exhibited decreases in LPS-induced cytokine release (TNF-α, IL-1β, IL-6, HMGB1) which were associated with diminished cellular ROS, reduced levels of nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and decreased nuclear factor-kappa light chain enhancer of activated B cells (NF-kB) transcriptional activity. The findings of this study indicate that CeO2NPs may be useful as a therapeutic agent for sepsis.

  2. The potential toxic effects of cerium on organism: cerium prolonged the developmental time and induced the expression of Hsp70 and apoptosis in Drosophila melanogaster.

    PubMed

    Wu, Bin; Zhang, Di; Wang, Dan; Qi, Chunyan; Li, Zongyun

    2012-10-01

    Due to the widespread application of cerium, a rare earth element, the risk of exposure to cerium has increased. Therefore, understanding the physiological effects of cerium is of great importance. Our previous work showed that cerium caused significant lifespan shortening accompanied by oxidative damage in Drosophila melanogaster, however, little is known about the detailed mechanism of cerium-induced cytotoxicity. Thus, we examined the developmental time during metamorphosis, and assessed the toxic effects of cerium by evaluating heat shock protein 70 (Hsp70), DNA damage markers and apoptosis in D. melanogaster. We found that cerium extended the developmental time of D. melanogaster and up-regulated the expression of Hsp70 when the concentration of cerium was increased (especially concentrations over 26.3 μg/g). Up-regulation of the cell cycle checkpoint p53 and cell signaling protein p38 were also observed when the concentration of cerium was over 104 μg/g. In addition, the activities of caspase-3 and caspase-9, markers of apoptosis, were significantly higher when the larvae were exposed to ceric sulfate. These results suggest that high concentrations of cerium may result in DNA damage and ultimately apoptosis in D. melanogaster, and strongly indicate that cerium should be applied with caution and the potential toxic effects in humans should also be taken into consideration.

  3. Methane Activation Mediated by a Series of Cerium-Vanadium Bimetallic Oxide Cluster Cations: Tuning Reactivity by Doping.

    PubMed

    Ma, Jia-Bi; Meng, Jing-Heng; He, Sheng-Gui

    2016-04-18

    The reactions of cerium-vanadium cluster cations Cex Vy Oz (+) with CH4 are investigated by time-of-flight mass spectrometry and density functional theory calculations. (CeO2 )m (V2 O5 )n (+) clusters (m=1,2, n=1-5; m=3, n=1-4) with dimensions up to nanosize can abstract one hydrogen atom from CH4 . The theoretical study indicates that there are two types of active species in (CeO2 )m (V2 O5 )n (+) , V[(Ot )2 ](.) and [(Ob )2 CeOt ](.) (Ot and Ob represent terminal and bridging oxygen atoms, respectively); the former is less reactive than the latter. The experimentally observed size-dependent reactivities can be rationalized by considering the different active species and mechanisms. Interestingly, the reactivity of the (CeO2 )m (V2 O5 )n (+) clusters falls between those of (CeO2 )2-4 (+) and (V2 O5 )1-5 (+) in terms of C-H bond activation, thus the nature of the active species and the cluster reactivity can be effectively tuned by doping. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L).

    PubMed

    Corral-Diaz, Baltazar; Peralta-Videa, Jose R; Alvarez-Parrilla, Emilio; Rodrigo-García, Joaquin; Morales, Maria Isabel; Osuna-Avila, Pedro; Niu, Genhua; Hernandez-Viezcas, Jose A; Gardea-Torresdey, Jorge L

    2014-11-01

    The effects of nCeO2 on food quality are not well known yet. This research was performed to determine the impact of nCeO2 on radish (Raphanus sativus L.). Plants were cultivated to full maturity in potting soil treated with nCeO2 at concentrations of 0, 62.5, 125, 250, and 500 mg/kg. Germination, growth, photosynthesis, ionome, and antioxidants were evaluated at different growth stages. Results showed that at 500 mg/kg, nCeO2 significantly retarded seed germination but did not reduce the number of germinated seeds. None of the treatments affected gas exchange, photosynthesis, growth, phenols, flavonoids, and nutrients' accumulation in tubers and leaves of adult plants. However, tubers' antioxidant capacity, expressed as FRAP, ABTS(•-) and DPPH, increased by 30%, 32%, and 85%, respectively, in plants treated with 250 mg nCeO2kg(-1) soil. In addition, cerium accumulation in tubers of plants treated with 250 and 500 mg/kg reached 72 and 142 mg/kg d wt, respectively. This suggests that nCeO2 could improve the radical scavenging potency of radish but it might introduce nCeO2 into the food chain with unknown consequences. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Evaluation of the role of oxidative stress, inflammation and apoptosis in the pulmonary and the hepatic toxicity induced by cerium oxide nanoparticles following intratracheal instillation in male Sprague-Dawley rats

    NASA Astrophysics Data System (ADS)

    Nalabotu, Siva Krishna

    The field of nanotechnology is rapidly progressing with potential applications in the automobile, healthcare, electronics, cosmetics, textiles, information technology, and environmental sectors. Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. With increased applications of nanotechnology, there are increased chances of exposure to manufactured nanomaterials. Recent reports on the toxicity of engineered nanomaterials have given scientific and regulatory agencies concerns over the safety of nanomaterials. Specifically, the Organization for Economic Co-operation and Development (OECD) has identified fourteen high priority nanomaterials for study. Cerium oxide (CeO2) nanoparticles are one among the high priority group. Recent data suggest that CeO2 nanoparticles may be toxic to lung cell lines in vitro and lung tissues in vivo. Other work has proposed that oxidative stress may play an important role in the toxicity; however, the exact mechanism of the toxicity, has to our knowledge, not been investigated. Similarly, it is not clear whether CeO2 nanoparticles exhibit systemic toxicity. Here, we investigate whether pulmonary exposure to CeO2 nanoparticles is associated with oxidative stress, inflammation and apoptosis in the lungs and liver of adult male Sprague-Dawley rats. Our data suggest that the intratracheal instillation of CeO2 nanoparticles can cause an increased lung weight to body weight ratio. Changes in lung weights were associated with the accumulation of cerium in the lungs, elevations in serum inflammatory markers, an increased Bax to Bcl-2 ratio, elevated caspase-3 protein levels, increased phosphorylation of p38-MAPK and diminished phosphorylation of ERK1/2-MAPK. Our findings from the study evaluating the possible translocation of CeO2 nanoparticles from the lungs to the liver suggest that CeO 2 nanoparticle exposure was associated with increased liver ceria levels, elevations in serum alanine transaminase

  6. Cerium oxalate precipitation

    SciTech Connect

    Chang, T.P.

    1987-02-01

    Cerium, a nonradioactive, common stand-in for plutonium in development work, has been used to simulate several plutonium precipitation processes at the Savannah River Laboratory. There are similarities between the plutonium trifluoride and the cerium oxalate precipitations in particle size and extent of plating, but not particle morphology. The equilibrium solubility, precipitation kinetics, particle size, extent of plating, and dissolution characteristics of cerium oxalate have been investigated. Interpretations of particle size and plating based on precipitation kinetics (i.e., nucleation and crystal growth) are presented. 16 refs., 7 figs., 6 tabs.

  7. [application of the analytical transmission electron microscopy techniques for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in mammalian cells].

    PubMed

    Shebanova, A S; Bogdanov, A G; Ismagulova, T T; Feofanov, A V; Semenyuk, P I; Muronets, V I; Erokhina, M V; Onishchenko, G E; Kirpichnikov, M P; Shaitan, K V

    2014-01-01

    This work represents the results of the study on applicability of the modern methods of analytical transmission electron microscopy for detection, identification and visualization of localization of nanoparticles of titanium and cerium oxides in A549 cell, human lung adenocarcinoma cell line. A comparative analysis of images of the nanoparticles in the cells obtained in the bright field mode of transmission electron microscopy, under dark-field scanning transmission electron microscopy and high-angle annular dark field scanning transmission electron was performed. For identification of nanoparticles in the cells the analytical techniques, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy, were compared when used in the mode of obtaining energy spectrum from different particles and element mapping. It was shown that the method for electron tomography is applicable to confirm that nanoparticles are localized in the sample but not coated by contamination. The possibilities and fields of utilizing different techniques for analytical transmission electron microscopy for detection, visualization and identification of nanoparticles in the biological samples are discussed.

  8. Effects of Cerium Oxide Nanoparticles on the Proliferation, Osteogenic Differentiation and Adipogenic Differentiation of Primary Mouse Bone Marrow Stromal Cells In Vitro.

    PubMed

    Zhang, Qun; Ge, Kun; Ren, Huihui; Zhang, Cuimiao; Zhang, Jinchao

    2015-09-01

    The effects of cerium oxide nanoparticles (nanoceria) on the proliferation, osteogenic and adipogenic differentiation of primary mouse bone marrow stromal cells (BMSCs) were studied by employing 3-(4,5-dimethylthiazol-2-yl)-2,5-dipheny tetrazolium bromide (MTT), alkaline phosphatase (ALP) activity, collagen production, alizarin red-S (ARS) and oil red o stain assays. The results indicated that nanoceria increased the viability of BMSCs at all tested concentrations with evident dose dependence for 24 and 72 h. On day 14, nanoceria inhibited the osteogenic differentiation of BMSCs at all tested concentrations. On day 19 and 24, nanoceria inhibited the formation of mineralized matrix nodules of BMSCs at all tested concentrations. On day 17, nanoceria inhibited the adipogenic differentiation of BMSCs at all tested concentrations. This suggests that the effects of nanoceria on the proliferation, osteogenic differentiation and adipogenic differentiation of BMSCs are very complicated. Both the concentration and culture time have significant influence on the proliferation, osteogenic differentiation and adipogenic differentiation of BMSCs. These results will be helpful for rational applications of nanoceria in the future.

  9. XANES (X-ray Absorption Near Edge Structure) investigation of cerium as an inhibitor for Al alloys

    SciTech Connect

    Davenport, A.J.; Isaacs, H.S. ); Kendig, M.W. . Science Center)

    1991-01-01

    Cerium ions are under investigation as possible replacements for toxic chromates. The use of cerium ions as corrosion inhibitors for aluminum alloys is investigated using XANES (x-ray absorption near edge structure). On immersion in a dilute solution of cerium ions, cerium is incorporated into the oxide films on aluminum alloys in either the 3- or 4-valent state depending upon the alloy and on the surface preparation. 7 refs., 2 figs.

  10. Mixed cerium-platinum oxides: Electronic structure of [CeO]Ptn (n = 1, 2) and [CeO2]Pt complex anions and neutrals

    NASA Astrophysics Data System (ADS)

    Ray, Manisha; Kafader, Jared O.; Topolski, Josey E.; Jarrold, Caroline Chick

    2016-07-01

    The electronic structures of several small Ce-Pt oxide complexes were explored using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. Pt and Pt2 both accept electron density from CeO diatomic molecules, in which the cerium atom is in a lower-than-bulk oxidation state (+2 versus bulk +4). Neutral [CeO]Pt and [CeO]Pt2 complexes are therefore ionic, with electronic structures described qualitatively as [CeO+2]Pt-2 and [CeO+]Pt2-, respectively. The associated anions are described qualitatively as [CeO+]Pt-2 and [CeO+]Pt2-2, respectively. In both neutrals and anions, the most stable molecular structures determined by calculations feature a distinct CeO moiety, with the positively charged Ce center pointing toward the electron rich Pt or Pt2 moiety. Spectral simulations based on calculated spectroscopic parameters are in fair agreement with the spectra, validating the computationally determined structures. In contrast, when Pt is coupled with CeO2, which has no Ce-localized electrons that can readily be donated to Pt, the anion is described as [CeO2]Pt-. The molecular structure predicted computationally suggests that it is governed by charge-dipole interactions. The neutral [CeO2]Pt complex lacks charge-dipole stabilizing interactions, and is predicted to be structurally very different from the anion, featuring a single Pt-O-Ce bridge bond. The PE spectra of several of the complexes exhibit evidence of photodissociation with Pt- daughter ion formation. The electronic structures of these complexes are related to local interactions in Pt-ceria catalyst-support systems.

  11. Low-temperature spectroscopy of optical centers in cerium-yttrium (Ce1-xYxO2-x/2) and cerium-zirconium (Ce1-xZrxO2) oxides

    NASA Astrophysics Data System (ADS)

    Okrushko, E. N.; Seminko, V. V.; Maksimuchuk, P. O.; Bespalova, I. I.; Kononets, N. V.; Viagin, O. G.; Malyukin, Yu. V.

    2017-05-01

    The results of studying the impact of isovalent (Zr4+) and non-isovalent (Y3+) impurity ions on the formation of oxygen vacancies in the lattice of cerium dioxide nanocrystals. It is shown that the oxygen vacancy content increases significantly with the introduction of both the Y3+ and Zr4+ ions, and that the oxygen vacancies play a part in the formation of two types of optical centers: Ce3+-V..-Ce3+ and F+-centers. The ratio of these optical centers can be manipulated by varying the concentration of impurity ions and the atmosphere of high-temperature nanocrystal processing.

  12. Virus Removal by Biogenic Cerium

    SciTech Connect

    De Gusseme, B.; Du Laing, G; Hennebel, T; Renard, P; Chidambaram, D; Fitts, J; Bruneel, E; Van Driessche, I; Verbeken, K; et. al.

    2010-01-01

    The rare earth element cerium has been known to exert antifungal and antibacterial properties in the oxidation states +III and +IV. This study reports on an innovative strategy for virus removal in drinking water by the combination of Ce(III) on a bacterial carrier matrix. The biogenic cerium (bio-Ce) was produced by addition of aqueous Ce(III) to actively growing cultures of either freshwater manganese-oxidizing bacteria (MOB) Leptothrix discophora or Pseudomonas putida MnB29. X-ray absorption spectroscopy results indicated that Ce remained in its trivalent state on the bacterial surface. The spectra were consistent with Ce(III) ions associated with the phosphoryl groups of the bacterial cell wall. In disinfection assays using a bacteriophage as model, it was demonstrated that bio-Ce exhibited antiviral properties. A 4.4 log decrease of the phage was observed after 2 h of contact with 50 mg L{sup -1} bio-Ce. Given the fact that virus removal with 50 mg L{sup -1} Ce(III) as CeNO{sub 3} was lower, the presence of the bacterial carrier matrix in bio-Ce significantly enhanced virus removal.

  13. Cerium sequestration and accumulation in fractured crystalline bedrock: The role of Mn-Fe (hydr-)oxides and clay minerals

    NASA Astrophysics Data System (ADS)

    Yu, Changxun; Drake, Henrik; Mathurin, Frédéric A.; Åström, Mats E.

    2017-02-01

    This study focuses on the mechanisms of Ce sequestration and accumulation in the fracture network of the upper kilometer of the granitoid bedrock of the Baltic Shield in southeast Sweden (Laxemar area, Sweden). The material includes 81 specimens of bulk secondary mineral precipitates (;fracture coatings;) collected on fracture walls identified in 17 drill cores, and 66 groundwater samples collected from 21 deep boreholes with equipment designed for retrieval of representative groundwater at controlled depths. The concentrations of Ce in the fracture coatings, although varying considerably (10-90th percentiles: 67-438 mg kg-1), were frequently higher than those of the wall rock (10-90th percentiles: 70-118 mg kg-1). Linear combination fitting analysis of Ce LIII-edge X-ray absorption near-edge structure (XANES) spectra, obtained for 19 fracture coatings with relatively high Ce concentrations (⩾145 mg kg-1) and a wide range of Ce-anomaly values, revealed that Ce(IV) occurs frequently in the upper 10 m of the fracture network (Ce(IV)/Cetotal = 0.06-1.00 in 8 out of 11 specimens) and is mainly associated with Mn oxides (modeled as Ce oxidatively scavenged by birnessite). These features are in line with the strong oxidative and sorptive capacities of Mn oxide as demonstrated by previous studies, and abundant todorokite and birnessite-like Mn oxides identified in 3 out of 4 specimens analyzed by Mn K-edge X-ray absorption spectroscopy (XAS) in the upper parts of the fracture network (down to 5 m). For a specimen with very high Ce concentration (1430 mg kg-1) and NASC-normalized Ce anomaly (3.63), the analysis of Ce XANES and Mn XAS data revealed (i) a predominance of Ce oxide in addition to Ce scavenged by Mn oxide; and (ii) a large fraction of poorly-crystalline hexagonal birnessite and aqueous Mn2+, suggesting a recent or on-going oxidation of Mn2+ in this fracture. In addition, the Ce oxide precipitates on this fracture observed by in situ SEM-EDS contained

  14. Humic Substances-dependent Aggregation and Transport of Cerium Oxide Nanoparticles in Porous Media at Different pHs and Ionic Strengths

    NASA Astrophysics Data System (ADS)

    Mu, L.; Jacobson, A. R.; Darnault, C. J. G.

    2015-12-01

    Cerium oxide nanoparticles (CeO2 NPs) are commonly used in several fields and industries, such as chemical and pharmaceutical, due to both their physical and chemical properties. For example, they are employed in the manufacturing of catalysts, as fuel additives, and as polishing agents. The release and exposure to CeO2 NPs can occur during their fabrication, application, and waste disposal, as well as through their life-cycle and accidents. Therefore, the assessment of the dynamic nature of CeO2 NPs stability and mobilty in the environment is of paramount importance to establish the environmental and public health risks associated with their inevitable release in the environment. Humic substances are a key element of soils and have been revealed to possibly affect the fate and transport of nanoparticles in soils. Consequently, our present research aims at investigating the influence that different pHs, monovalent and divalent cations, Suwannee River humic acid, and Suwanee River fulvic acid have on the aggregation, transport, and deposition of CeO2 NPs. Batch studies performed with different concentrations of humic and fulvic acids associated with a wide spectrum of pHs and ionic strengths were examined. Key variables from these batch studies were then examined to simulate experimental conditions commonly encountered in the soil-water system to conduct column transport experiments in order to establish the fate and transport of CeO2 NPs in saturated porous media, which is a critical phase in characterizing the behavior of CeO2 NPs in subsurface environmental systems.

  15. Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation.

    PubMed

    Lim, Hyungseob; Kim, Jae Young; Evans, Edward J; Rai, Amritesh; Kim, Jun-Hyuk; Wygant, Bryan R; Mullins, C Buddie

    2017-09-13

    There has been debate on whether Ni(OH)2 is truly catalytically active for the photo/electrocatalytic oxygen evolution reaction. In this report, we synthesized a Ni(OH)2 cocatalyst on a hematite photoanode and showed that, as has been proposed in other studies, the current density varies as a function of scan rate, which arises due to a photoinduced capacitive charging effect. We discovered that this photoinduced charging of Ni(2+/3+) can be overcome by mixing cerium nitrate into the Ni precursor solution. Under illumination, the NiCeOx cocatalyst on a hematite photoanode exhibited an approximately 200 mV cathodic shift in onset potential and a ∼53% enhancement in photocurrent at 1.23 V vs RHE. Material characterization by electrochemical impedance spectroscopy revealed that the Ni species create a p-n junction across the charge space region, which facilitates collection of the photogenerated holes by the cocatalyst layer, and core level X-ray photoelectron spectroscopy showed that Ce incorporated into the Ni-based cocatalyst layer may possibly induce the oxidation of the Ni species. In addition, we observed a reduction in binding energies of Ni after photoelectrochemical water splitting reactions, which suggests that the lattice oxygen of the NiCeOx is consumed in the catalytic cycle, forming oxygen vacancies. The NiCeOx cocatalyst, however, was incapable of passivating the surface recombination centers of the hematite photoanode, as indicated by the unaltered flat-band potential determined with Mott-Schottky analysis.

  16. Tuning reactivity and electronic properties through ligand reorganization within a cerium heterobimetallic framework.

    PubMed

    Robinson, Jerome R; Gordon, Zachary; Booth, Corwin H; Carroll, Patrick J; Walsh, Patrick J; Schelter, Eric J

    2013-12-18

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  17. Tuning Reactivity and Electronic Properties through Ligand Reorganization within a Cerium Heterobimetallic Framework

    SciTech Connect

    Robinson, Jerome R.; Gordon, Zachary; Booth, Corwin H.; Carroll, Patrick J.; Walsh, Patrick J.; Schelter, Eric J.

    2014-06-24

    Cerium compounds have played vital roles in organic, inorganic, and materials chemistry due to their reversible redox chemistry between trivalent and tetravalent oxidation states. However, attempts to rationally access molecular cerium complexes in both oxidation states have been frustrated by unpredictable reactivity in cerium(III) oxidation chemistry. Such oxidation reactions are limited by steric saturation at the metal ion, which can result in high energy activation barriers for electron transfer. An alternative approach has been realized using a rare earth/alkali metal/1,1'-BINOLate (REMB) heterobimetallic framework, which uses redox-inactive metals within the secondary coordination sphere to control ligand reorganization. The rational syntheses of functionalized cerium(IV) products and a mechanistic examination of the role of ligand reorganization in cerium(III) oxidation are presented.

  18. Pharmacological potential of cerium oxidenanoparticles

    NASA Astrophysics Data System (ADS)

    Celardo, Ivana; Pedersen, Jens Z.; Traversa, Enrico; Ghibelli, Lina

    2011-04-01

    Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxidenanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce3+ ions present in CeO2. These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce3+ and Ce4+oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellularreactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.

  19. Determination of chemical speciations of cerium in nuclear waste glasses

    SciTech Connect

    Gong, Meiling; Li, Hong

    1996-12-31

    Cerium oxides have been widely used as a surrogate for plutonium in the investigation of the melt and durability behavior of simulated nuclear waste glasses. It is well known that there is a cerous-ceric equilibrium in silicate glasses under normal melting conditions. The position of this equilibrium depends on glass composition, melting temperature, furnace atmosphere, and possibly the total amounts of cerium in glass. The oxidation state of cerium affects total solubility of cerium in glass, solubilities of other components in glass, viscosities and liquidus temperatures of the melts, and the chemical durability of the glasses. A procedure was developed for the determination of the ceric and cerous distribution. The glass was ground to small particles of less than 300 meshes and was dissolved in mixture of HF and H{sub 2}SO{sub 4}. The ceric oxide was graduately reduced to cerous species in the presence of HF acid during the dissolution. To compensate the change of the equilibrium during the dissolution, a calibration curve is made with a mixture of standard solution of ceric sulphate and one gram of glass of the same composition containing no cerium. Boric acid was added to complex the fluoride ions, and the resultant solution was titrated potentiometrically with 0.01 N ferrous ammonium sulphate solution. The corrected ceric concentration was obtained on the calibration curve. The total cerium content in the above solution was analyzed using ICP-AES and the cerous content was the difference between the total Ce and Ce(+4).

  20. Effect of heat treatment on the crystal structure and FTIR spectra of Sm doped cerium dioxide film

    NASA Astrophysics Data System (ADS)

    Liu, Xiaozhou; Liu, Xiaozhou; Xia, Letian; Chen, Jie; Wang, Xiaoyu

    2017-04-01

    The Sm doped cerium dioxide films were prepared with cerium foils as raw materials by anodization in Sm(NO3)3-Na2C2O4-NH3·H2O-H2O-(CH2OH)2 electrolyte. The anodic Sm doped cerium oxide films were heat treated in 100°C ~ 400°C. The heat treated anodic Sm doped cerium oxide films were characterized with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) techniques respectively. The heat treated anodic Sm doped cerium oxide film at 100°C is the semi crystalline film. As heat treatment temperatures being in 200°C ~ 400°C, the heat treated anodic Sm doped cerium oxide films have a structure of cubic fluorite respectively. The doping of Sm can be achieved well by anodization method and be recognized as replacement doping or caulking doping. The crystal structure of Sm doped cerium dioxide films become more complete with the increase of heat treatment temperature in 200 ~ 400 °C. The doping of Sm can improve the crystallinity of the cerium dioxide film. The presence of adsorbing water, ethylene glycol and CO2 in the heat treated anodic Sm doped cerium oxide film at 100°C. The adsorbing ethylene glycols and water, CO2 in the anodic Sm doped cerium oxide film are removed at 200°C and 300°C respectively.

  1. The oxidation of water by cerium(IV) catalysed by nanoparticulate RuO2 on mesoporous silica.

    PubMed

    King, Nicola C; Dickinson, Calum; Zhou, Wuzong; Bruce, Duncan W

    2005-03-21

    Mesoporous silicates are prepared by templating on the hexagonal (H1) mesophase of surfactant bipyridine complexes of ruthenium(II) using a true liquid-crystal templating approach. On calcination, the surfactant template is removed except for the central metal ion that is oxidised, forming nanoparticles of RuO2 that deposit within the pores. RuO2 is a known oxidation catalyst and, despite its anhydrous nature in these silicates, is found to be very active in catalyzing the oxidation of water by acidic CeIV.

  2. Thermoelectric properties of cerium monopnictides

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Alexander, M. N.; Wood, C.; Lockwood, R. A.; Vandersande, J. W.

    1987-01-01

    Several cerium pnictides have been synthesized from the pure elements and hot pressed into test samples. Measurements of Seebeck coefficients and electrical resistivities were performed on these samples from room temperature to 1000 C. Cerium arsenide and cerium antimonide are n-type; cerium nitride changes from p-type to n-type conduction at 800 C. The materials are semimetals with resistivities below 1 mohm/cm. Cerium arsenide is the most favorable of the pnictides studied for high-temperature thermoelectric energy conversion, with an average power factor of 15 microW/cm K sq from 500 to 1000 C.

  3. Thermoelectric properties of cerium monopnictides

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Alexander, M. N.; Wood, C.; Lockwood, R. A.; Vandersande, J. W.

    1987-01-01

    Several cerium pnictides have been synthesized from the pure elements and hot pressed into test samples. Measurements of Seebeck coefficients and electrical resistivities were performed on these samples from room temperature to 1000 C. Cerium arsenide and cerium antimonide are n-type; cerium nitride changes from p-type to n-type conduction at 800 C. The materials are semimetals with resistivities below 1 mohm/cm. Cerium arsenide is the most favorable of the pnictides studied for high-temperature thermoelectric energy conversion, with an average power factor of 15 microW/cm K sq from 500 to 1000 C.

  4. Cerium neodymium oxide solid solution synthesis as a potential analogue for substoichiometric AmO2 for radioisotope power systems

    NASA Astrophysics Data System (ADS)

    Watkinson, E. J.; Ambrosi, R. M.; Williams, H. R.; Sarsfield, M. J.; Stephenson, K.; Weston, D. P.; Marsh, N.; Haidon, C.

    2017-04-01

    The European Space Agency (ESA) is sponsoring a research programme on the development of americium oxides for radioisotope generators and heater units. Cubic AmO2-(x/2) with an O/Am ratio between 1.65 and 1.75 is a potentially suitable compound for pellet sintering. C-type (Ia-3) Ce1-xNdxO2-(x/2) oxides with 0.5 < x < 0.7 could be used as a surrogate for some Ia-3 AmO2-(x/2). A new Ce1-xNdxO2-(x/2) production process has been investigated where a nominally selected x value of 0.6 was targeted: Ce and Nd nitrates and oxalic acid were added drop-wise into a vessel, where they continuously reacted to create oxalate precipitates. The effect of temperature (25 °C, 60 °C) of the reactants (mixed at 250 revolutions per minute) on oxalate particle shape and size were investigated. Oxalates were calcined at 900 °C to produce oxide particles. Oxalate particle properties were characterised as these are expected to influence oxides particle properties and fuel pellet sintering.

  5. Influence of a Cerium Surface Treatment on the Oxidation Behavior of Cr2O3-Forming Alloys (title on slides varies: Oxidation Behavior of Cerium Surface Treated Chromia Forming Alloys)

    SciTech Connect

    Alman, D.E.; Holcomb, G.R.; Adler, T.A.; Jablonski, P.D.

    2007-04-01

    Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This temperature will require the construction of boiler and turbine components from austenitic stainless steels and nickel alloys. Many of the alloys being considered for use are primarily Cr2O3 forming alloys [1-4]. It is well known that the addition of a small amount of reactive elements, such as the rare earths elements Ce, La, and Y, can significantly improve the high temperature oxidation resistance of both iron- and nickel- base alloys. A list of the benefits of the reactive element effect include: (i) slowing scale growth, (ii) enhancing scale adhesion; and (iii) stabilizing Cr2O3 formation at lower Cr levels. The incorporation of the reactive element can be made in the melt or through a surface infusion or surface coating. Surface modifications allow for the concentration of the reactive element at the surface where it can provide the most benefit. This paper will detail a Ce surface treatment developed at NETL that improves the high temperature oxidation resistance of Cr2O3 forming alloys. The treatment consists of painting, dip coating, or spraying the alloy surface with a slurry containing CeO2 and a halide activator followed by a thermal treatment in a mild (x10-3 Torr) vacuum. During treatment the CeO2 reacts with the alloy to for a thin CrCeO3-type scale on the alloy surface. Upon subsequent oxidation, scale growth occurs at a reduced rate on alloys in the surface treated condition compared to those in the untreated condition.

  6. A cerium oxide nanoparticle-based device for the detection of chronic inflammation via optical and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Kaittanis, Charalambos; Santra, Santimukul; Asati, Atul; Perez, J. Manuel

    2012-03-01

    Monitoring of microenvironmental parameters is critical in healthcare and disease management. Harnessing the antioxidant activity of nanoceria and the imaging capabilities of iron oxide nanoparticles in a device setup, we were able to image changes in the device's aqueous milieu. The device was able to convey and process changes in the microenvironment's pH and reactive oxygen species' concentration, distinguishing physiological from abnormal levels. As a result under physiological and transient inflammatory conditions, the device's fluorescence and magnetic resonance signals, emanating from multimodal iron oxide nanoparticles, were similar. However, under chronic inflammatory conditions that are usually associated with high local concentrations of reactive oxygen species and pH decrease, the device's output was considerably different. Specifically, the device's fluorescence emission significantly decreased, while the magnetic resonance signal T2 increased. Further studies identified that the changes in the device's output are attributed to inactivation of the sensing component's nanoceria that prevents it from successfully scavenging the generated free radicals. Interestingly, the buildup of free radical excess led to polymerization of the iron oxide nanoparticle's coating, with concomitant formation of micron size aggregates. Our studies indicate that a nanoceria-based device can be utilized for the monitoring of pro-inflammatory biomarkers, having important applications in the management of numerous ailments while eliminating nanoparticle toxicity issues.Monitoring of microenvironmental parameters is critical in healthcare and disease management. Harnessing the antioxidant activity of nanoceria and the imaging capabilities of iron oxide nanoparticles in a device setup, we were able to image changes in the device's aqueous milieu. The device was able to convey and process changes in the microenvironment's pH and reactive oxygen species' concentration

  7. Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State.

    PubMed

    López-Haro, Miguel; Yoshida, Kenta; Del Río, Eloy; Pérez-Omil, José A; Boyes, Edward D; Trasobares, Susana; Zuo, Jian-Min; Gai, Pratibha L; Calvino, José J

    2016-05-03

    Using a method that combines experimental and simulated Aberration-Corrected High Resolution Electron Microscopy images with digital image processing and structure modeling, strain distribution maps within gold nanoparticles relevant to real powder type catalysts, i.e., smaller than 3 nm, and supported on a ceria-based mixed oxide have been determined. The influence of the reduction state of the support and particle size has been examined. In this respect, it has been proven that reduction even at low temperatures induces a much larger compressive strain on the first {111} planes at the interface. This increase in compression fully explains, in accordance with previous DFT calculations, the loss of CO adsorption capacity of the interface area previously reported for Au supported on ceria-based oxides.

  8. Synthesis of praseodymium doped cerium oxides by the polymerization-combustion method for application as anodic component in SOFC devices

    NASA Astrophysics Data System (ADS)

    Cruz Pacheco, A. F.; Gómez Cuaspud, J. A.; López, E. Vera

    2016-02-01

    This work reports the synthesis and the characterization of six oxides; it is based on Ce1-xPrxO2 (x=0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) system, which is obtained by the polymerization- combustion technique for potential applications on design of advanced electrodic components, for solid oxide fuel cells (SOFC). Initially the solid precursors are characterized by infrared spectroscopy (FTIR) and thermal analysis (TGA-DTA), allowing to determine the formation of prevalent citrate species and the optimal temperature for the consolidation of the desired crystalline phases. The X-ray diffraction (XRD) and the transmission electron microscopy analysis (TEM) are performed over calcined samples which provided information about the formation of a fluorite phase with grain distribution, surface, textural and morphological properties consistent with the nanometric obtaining crystallites (30nm), it is oriented along the (1 1 1) facet, with d spacings of 0.31nm for the main diffraction signal. These results indicate the effectiveness of the proposed synthesis method for potential applications in the design of advanced anodic materials for solid oxide fuel cells.

  9. Redox Reactivity of Cerium Oxide Nanoparticles Induces the Formation of Disulfide Bridges in Thiol-Containing Biomolecules.

    PubMed

    Rollin-Genetet, Françoise; Seidel, Caroline; Artells, Ester; Auffan, Mélanie; Thiéry, Alain; Vidaud, Claude

    2015-12-21

    The redox state of disulfide bonds is implicated in many redox control systems, such as the cysteine-cystine couple. Among proteins, ubiquitous cysteine-rich metallothioneins possess thiolate metal binding groups susceptible to metal exchange in detoxification processes. CeO2 NPs are commonly used in various industrial applications due to their redox properties. These redox properties that enable dual oxidation states (Ce(IV)/Ce(III)) to exist at their surface may act as oxidants for biomolecules. The interaction among metallothioneins, cysteine, and CeO2 NPs was investigated through various biophysical approaches to shed light on the potential effects of the Ce(4+)/Ce(3+) redox system on the thiol groups of these biomolecules. The possible reaction mechanisms include the formation of a disulfide bridge/Ce(III) complex resulting from the interaction between Ce(IV) and the thiol groups, leading to metal unloading from the MTs, depending on their metal content and cluster type. The formation of stable Ce(3+) disulfide complexes has been demonstrated via their fluorescence properties. This work provides the first evidence of thiol concentration-dependent catalytic oxidation mechanisms between pristine CeO2 NPs and thiol-containing biomolecules.

  10. The carbon monoxide oxidation reaction over controlled catalyst structures based on gold/cerium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Zheng

    Gold-based catalysts have attracted significant research interest due to their remarkably high activity for many important reactions, including the low-temperature CO oxidation reaction. Despite extensive studies, several fundamental issues in the understanding of CO oxidation over supported gold catalysts are unresolved. The locus and nature of active sites, including the role of the metal, metal oxide support, and their interface, remain controversial. The objectives of this thesis were to study CO oxidation on Au/CeO2 catalysts that were prepared using thin film techniques so as to form geometrically controlled structures in contrast to the typical supported nanoparticle systems. Using these structures enables one to evaluate the contribution of metal oxide support (CeO2), and locate and identify the active sites in the Au/CeO2 system. In particular, the specific contribution to the reaction by the metal/oxide interface, the role and nature of the vacancies in the oxide, the role of the dimensions of the Au and ceria, and the role of stress in the gold films have been investigated. Two catalyst systems, each employing nanoscale films, were investigated. One was formed from a "single layer" of metal or oxide in the form of an extended surface that was then decorated with a thin layer of the other catalyst partner; the second approach was a study of multilayer metal/oxide structures to assess the role of the metal/metal oxide interface. More specifically the reaction sites formed at the three-phase boundary of metal, metal oxide and gas. In the first case, a Au film (4.5nm) was prepared using vapor deposition on SiO2/Si (100) substrates. The gold coalesced into discrete islands with large lateral size (20-100nm) and was found to be only weakly active. The extremely low activity of gold with large lateral extended surface has been attributed to the lack of uncoordinated gold atoms on this type of gold surface. Subsequently decorating the gold with nanosized ceria

  11. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    NASA Astrophysics Data System (ADS)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  12. Manganese-cerium oxide (MnOx-CeO2) catalysts supported by titanium-bearing blast furnace slag for selective catalytic reduction of nitric oxide with ammonia at low temperature.

    PubMed

    Xu, Yifan; Liu, Rong; Ye, Fei; Jia, Feng; Ji, Lingchen

    2017-08-01

    A series of manganese-cerium oxide (MnOx-CeO2) catalysts supported by Ti-bearing blast furnace slag were prepared by wet impregnation and used for low-temperature selective catalytic reduction (SCR) of NO with NH3. The slag-based catalyst exhibited high nitrogen oxide removal (deNOx) activity and wide effective temperature range. Under the condition of NO = 500 ppm, NH3 = 500 ppm, O2 = 7-8 vol%, and total flow rate = 1600 mL/min, the Mn-Ce/Slag catalyst exhibited a NO conversion higher than 95% in the range of 180-260 °C. The activity of Mn/Slag catalysts was greatly enhanced with the addition of CeO2. The results indicated that Ti-bearing blast furnace slag had suitable phase composition as good support of SCR catalyst. Ti-bearing blast furnace slag is a kind of industrial waste in China. Much slag was underused and piling up, which could cause many environmental issues, such as enormous waste of titanium and groundwater and soil contamination by heavy metals in leachates. The utilization of slag as the support of SCR catalyst will not only make use of solid waste but also cut down the NOx emitted from power plant.

  13. Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst: Graphene oxide/magnetite/cerium-doped titania.

    PubMed

    Cao, Muhan; Wang, Peifang; Ao, Yanhui; Wang, Chao; Hou, Jun; Qian, Jin

    2016-04-01

    In this study, magnetic graphene oxide-loaded Ce-doped titania (MGO-Ce-TiO2) hybridized composite was prepared by a facile method. The as-prepared samples exhibited good adsorption capacity, high visible-light photoactive and magnetic separability as a novel photocatalyst in the degradation of tetracyclines (TC). The intermediate products and photocatalytic route of TC were proposed based on the analysis results of LC-MS. Moreover, the repeatability of the photoactivity with the use of MGO-Ce-TiO2 was investigated in the multi-round experiments with the assistance of an applied magnetic field. Therefore, the prepared composite photocatalysts were considered as a kind of promising photocatalyst in a suspension reaction system, in which they can offer effectively recovery ability. The effect of MGO content on the photocatalytic performance was also studied, and an optimum content was obtained. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Comparison of the high-pressure behavior of the cerium oxides Ce2O3 and CeO2

    DOE PAGES

    Lipp, M. J.; Jeffries, J. R.; Cynn, H.; ...

    2016-02-09

    We studied the high-pressure behavior of Ce2O3 using angle-dispersive x-ray diffraction to 70 GPa and compared with that of CeO2. Up to the highest pressure Ce2O3 remains in the hexagonal phase (space group 164, P ¯32/m1) typical for the lanthanide sesquioxides. We did not observe a theoretically predicted phase instability for 30 GPa. The isothermal bulk modulus and its pressure derivative for the quasihydrostatic case are B0 = 111 ± 2 GPa, B'0 = 4.7 ± 0.3, and for the case without pressure-transmitting medium B0 = 104 ±4 GPa, B'0 = 6.5 ± 0.4. Starting from ambient-pressure magnetic susceptibility measurementsmore » for both oxides in highly purified form,we find that the Ce atom in Ce2O3 behaves like a trivalent Ce3+ ion (2.57μB per Ce atom) in contrast to previously published data. Since x-ray emission spectroscopy of the Lγ (4d3/2 → 2p1/2) transition is sensitive to the 4f -electron occupancy, we also followed the high-pressure dependence of this line for both oxides up to 50 GPa. We observed no change of the respective line shape, indicating that the 4f -electron configuration is stable for both materials. We posit from this data that the 4f electrons do not drive the volume collapse of CeO2 from the high-symmetry, low-pressure fluorite structure to the lower-symmetry orthorhombic phase.« less

  15. Oxidation of glyoxylic acid by cerium(IV): Oxygen-induced enhancement of the primary radical concentration

    SciTech Connect

    Neumann, B. ||; Steinbock, O.; Dalal, N.S. |; Mueller, S.C. |||

    1996-07-25

    In order to help understand the role of oxygen in Ce(IV)-induced oxidation of small carbonic acids, we investigated the reaction of glyoxylic acid (HCOCOOH) and Ce(IV) in 1 M sulfuric acid. Spectrophotometric data showed that in excess of glyoxylic acid the consumption of Ce(IV) obeys pseudo-first-order kinetics, with a rate constant of 8.8 L mol{sup -1} s{sup -1} at 25{degree}C and an activation energy of 80 kJ mol{sup -1}. Rapid-flow EPR measurements revealed an approximately 1:2:1 triplet with a g value of 2.0071{+-}0.0005 and a hyperfine splitting of 7.1{+-}0.2 G, assignable to the primary radical formed by abstraction of a hydrogen atom from hydrated glyoxylic acid. The rate constant for the anaerobic self-decay of the radical was measured as approximately 3.7x10{sup 9} L mol{sup -1} s{sup -1}. Surprisingly, oxygen had no effect on the Ce(IV) kinetics, while the radical decay was significantly inhibited under aerobic conditions (ratio of experimental rate constants = 6.3). Amperometric measurements revealed accompanying oxygen consumption. Analyses based on numerical simulations show that the observed oxygen-induced increase in radical concentration cannot be explained in the framework of standard autooxidation mechanisms. An alternative reaction scheme is suggested which reproduces the observed aerobic radical kinetics and which thus could be relevant to similar oxidation reactions. 30 refs., 7 figs., 2 tabs.

  16. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS.

    PubMed

    Li, Yan; Yu, Hua; Zheng, Siqian; Miao, Yang; Yin, Shi; Li, Peng; Bian, Ying

    2016-03-22

    Rare earth elements (REEs) have undergone a steady spread in several industrial, agriculture and medical applications. With the aim of exploring a sensitive and reliable indicator of estimating exposure level to REEs, a simple, accurate and specific ICP-MS method for simultaneous direct quantification of 15 REEs ((89)Y, (139)La, (140)Ce, (141)Pr, (146)Nd, (147)Sm, (153)Eu, (157)Gd, (159)Tb, (163)Dy, (165)Ho, (166)Er, (169)Tm, (172)Yb and (175)Lu) in human urine has been developed and validated. The method showed good linearity for all REEs in human urine in the concentrations ranging from 0.001-1.000 μg ∙ L(-1) with r² > 0.997. The limits of detection and quantification for this method were in the range of 0.009-0.010 μg ∙ L(-1) and 0.029-0.037 μg ∙ L(-1), the recoveries on spiked samples of the 15 REEs ranged from 93.3% to 103.0% and the relative percentage differences were less than 6.2% in duplicate samples, and the intra- and inter-day variations of the analysis were less than 1.28% and less than 0.85% for all REEs, respectively. The developed method was successfully applied to the determination of 15 REEs in 31 urine samples obtained from the control subjects and the workers engaged in work with manufacturing of ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggested that only the urinary levels of La (1.234 ± 0.626 μg ∙ L(-1)), Ce (1.492 ± 0.995 μg ∙ L(-1)), Nd (0.014 ± 0.009 μg ∙ L(-1)) and Gd (0.023 ± 0.010 μg ∙ L(-1)) among the exposed workers were significantly higher (p < 0.05) than the levels measured in the control subjects. From these, La and Ce were the primary components, and accounted for 88% of the total REEs. Lanthanum comprised 27% of the total REEs while Ce made up the majority of REE content at 61%. The remaining elements only made up 1% each, with the exception of Dy which was not detected. Comparison with the previously published data, the levels of urinary La and Ce in workers and

  17. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS

    PubMed Central

    Li, Yan; Yu, Hua; Zheng, Siqian; Miao, Yang; Yin, Shi; Li, Peng; Bian, Ying

    2016-01-01

    Rare earth elements (REEs) have undergone a steady spread in several industrial, agriculture and medical applications. With the aim of exploring a sensitive and reliable indicator of estimating exposure level to REEs, a simple, accurate and specific ICP-MS method for simultaneous direct quantification of 15 REEs (89Y, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb and 175Lu) in human urine has been developed and validated. The method showed good linearity for all REEs in human urine in the concentrations ranging from 0.001–1.000 μg∙L−1 with r2 > 0.997. The limits of detection and quantification for this method were in the range of 0.009–0.010 μg∙L−1 and 0.029–0.037 μg∙L−1, the recoveries on spiked samples of the 15 REEs ranged from 93.3% to 103.0% and the relative percentage differences were less than 6.2% in duplicate samples, and the intra- and inter-day variations of the analysis were less than 1.28% and less than 0.85% for all REEs, respectively. The developed method was successfully applied to the determination of 15 REEs in 31 urine samples obtained from the control subjects and the workers engaged in work with manufacturing of ultrafine and nanoparticles containing cerium and lanthanum oxide. The results suggested that only the urinary levels of La (1.234 ± 0.626 μg∙L−1), Ce (1.492 ± 0.995 μg∙L−1), Nd (0.014 ± 0.009 μg∙L−1) and Gd (0.023 ± 0.010 μg∙L−1) among the exposed workers were significantly higher (p < 0.05) than the levels measured in the control subjects. From these, La and Ce were the primary components, and accounted for 88% of the total REEs. Lanthanum comprised 27% of the total REEs while Ce made up the majority of REE content at 61%. The remaining elements only made up 1% each, with the exception of Dy which was not detected. Comparison with the previously published data, the levels of urinary La and Ce in workers and the control subjects show a higher trend

  18. TU-F-CAMPUS-T-01: Potential of Using Cerium Oxide Nanoparticles (CONP) for Protecting Healthy Tissue During Accelerated Partial Breast Irradiation (APBI)

    SciTech Connect

    Mainali, M; Cifter, G

    2015-06-15

    Purpose: The purpose of this research is to investigate the feasibility of using targeted cerium oxide nanoparticles (CONP) during APBI to protect healthy cells. Methods: In one approach, CONP are assumed to be incorporated in a micrometer-thick polymer film on the surface of routinely used mammosite balloon applicators for sustained in-situ release of the CONP. In case two, CONPs are administered directly into the lumpectomy cavity. The concentration of H{sub 2}O{sub 2} produced by ionizing radiation was estimated from previously published work using short range linear extrapolation. The assessment of CONPs concentration required to absorb corresponding H{sub 2}O{sub 2} to protect healthy tissue was calculated. Fick’s Second law of diffusion was employed to determine the initial concentration of CONP needed to achieve the minimum concentration for radioprotection at distance 1 cm and 2 cm from the lumpectomy cavity during APBI. The study was carried out for different nanoparticle sizes. Results: The initial concentration of CONPs required to get desired radioprotection concentration at 1 cm and 2 cm after 7 days was found to be 0.4089 mg per Kg and 59.7605 g per Kg respectively for 2 nm size nanoparticles. Using concentrations of 5 mg per kg of CONP that have been shown to be used to confer radioprotection (for about 7.97 Gy) in experiments it was observed that 4.5631, 8.5286, 10.9247, 22.0408, 43.6796 and 65.5618 number of days are required to achieve radioprotection at 1 cm for CONP of sizes 2 nm, 3.8 nm, 5 nm, 10 nm, 20 nm, 30 nm, respectively. Conclusion: Our preliminary results show that smaller size (2 nm and 3.8 nm) CONP would be suitable as radio protectant during APBI because they took a reasonable number of days, i.e. less than 10 days to reach tissues of 1 cm or 2 cm thickness.

  19. The electron shuffle: Cerium influences samarium 4f orbital occupancy in heteronuclear Ce-Sm oxide clusters

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Topolski, Josey E.; Marrero-Colon, Vicmarie; Iyengar, Srinivasan S.; Jarrold, Caroline Chick

    2017-05-01

    The anion photoelectron (PE) spectra along with supporting results of density functional theory (DFT) calculations on SmO-, SmCeOy-, and Sm2Oy- (y = 1, 2) are reported and compared to previous results on CeO- [M. Ray et al., J. Chem. Phys. 142, 064305 (2015)] and Ce2Oy- (y = 1, 2) [J. O. Kafader et al., J. Chem. Phys. 145, 154306 (2016)]. Similar to the results on CexOy- clusters, the PE spectra of SmO-, SmCeOy-, and Sm2Oy- (y = 1, 2) all exhibit electronic transitions to the neutral ground state at approximately 1 eV e-BE. The Sm centers in SmO and Sm2O2 neutrals can be described with the 4f56s superconfiguration, which is analogous to CeO and Ce2O2 neutrals in which the Ce centers can be described with the 4f 6s superconfiguration (ZCe = ZSm - 4). The Sm center in CeSmO2, in contrast, has a 4f6 occupancy, while the Ce center maintains the 4f 6s superconfiguration. The less oxidized Sm centers in both Sm2O and SmCeO have 4f6 6s occupancies. The 4f6 subshell occupancy results in relatively weak Sm-O bond strengths. If this extra 4f occupancy also occurs in bulk Sm-doped ceria, it may play a role in the enhanced O2- ionic conductivity in Sm-doped ceria. Based on the results of DFT calculations, the heteronuclear Ce-Sm oxides have molecular orbitals that are distinctly localized Sm 4f, Sm 6s, Ce 4f, and Ce 6s orbitals. The relative intensity of two electronic bands in the PE spectrum of Sm2O- exhibits an unusual photon energy-dependence, and the PE spectrum of Sm2O2- exhibits a photon energy-dependent continuum signal between two electronic transitions. Several explanations, including the high magnetic moment of these suboxide species and the presence of low-lying quasi-bound anion states, are considered.

  20. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lee, Hyejin; Han, Myungseong; Choi, Young-Woo; Bae, Byungchan

    2015-11-01

    Hydrocarbon-based cerium composite membranes were prepared for proton exchange membrane fuel cell applications to increase oxidative stability. Different amounts of cerium ions were impregnated in sulfonated poly(arylene ether sulfone) (SPES) membranes and their physicochemical properties were investigated according to the cerium content. Field-emission scanning electron microscopy and inductively coupled plasma analyses confirmed the presence of cerium ions in the composite membranes and 1H NMR indicated the successful coordination of sulfonic acid groups with the metal ions. Increasing amounts of cerium ions resulted in decreases in the proton conductivity and water uptake, but enhanced oxidative stability. The oxidative stability of the composite membranes was proven via a hydrogen peroxide exposure experiment which mimicked fuel cell operating conditions. In addition, more than 2200 h was achieved with the composite membrane under in situ accelerated open circuit voltage (OCV) durability testing (DOE protocol), whereas the corresponding pristine SPES membrane attained only 670 h.

  1. Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties.

    PubMed

    Arumugam, Ayyakannu; Karthikeyan, Chandrasekaran; Haja Hameed, Abdulrahman Syedahamed; Gopinath, Kasi; Gowri, Shanmugam; Karthika, Viswanathan

    2015-04-01

    CeO2 nanoparticles (NPs) were green synthesized using Gloriosa superba L. leaf extract. The synthesized nanoparticles retained the cubic structure, which was confirmed by X-ray diffraction studies. The oxidation states of the elements (C (1s), O (1s) and Ce (3d)) were confirmed by XPS studies. TEM images showed that the NPs possessed spherical shape and particle size of 5nm. The Ce-O stretching bands were observed at 451cm(-1) and 457cm(-1) from the FT-IR and Raman spectra respectively. The band gap of the CeO2 NPs was estimated as 3.78eV from the UV-visible spectrum. From the photoluminescence measurements, the broad emission composed of eight different bands were found. The antibacterial studies performed against a set of bacterial strains showed that Gram positive (G+) bacteria were relatively more susceptible to the NPs than Gram negative (G-) bacteria. The toxicological behavior of CeO2 NPs was found due to the synthesized NPs with uneven ridges and oxygen defects in CeO2 NPs. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Multi-wall carbon nanotubes as support of copper-cerium composite for preferential oxidation of carbon monoxide

    NASA Astrophysics Data System (ADS)

    Zeng, Shanghong; Zhang, Lu; Jiang, Nan; Gao, Meiyi; Zhao, Xiaozhou; Yin, Yueling; Su, Haiquan

    2015-10-01

    The CuxO/MWCNTs, CeO2/MWCNTs and CuxO-CeO2/MWCNTs catalysts were synthesized by a simple impregnation method, and characterized via X-ray diffraction, N2 adsorption-desorption, Fourier transformed infrared spectroscopy, transmission electron microscopy, H2 temperature-programmed reduction and X-ray photoelectron spectra. The catalytic performance for preferential CO oxidation was carried out in the hydrogen-rich gasses. It is found that the hydrophilic functional groups of hydroxyl and carboxyl in the samples are favorable for the incorporation of CuxO and CeO2 into the tubes of the MWCNTs. Most of CuxO particles and CeO2 nanowires are filled in the tubes of MWCNTs, and a small amount of nanoparticles are deposited on the surface of MWCNTs. The MWCNTs have high BET surface area, which is helpful for the dispersion of CuxO and CeO2 to expose more active surface for CO-PROX reaction over the CuxO-CeO2/MWCNTs catalysts. The CuxO-CeO2/MWCNTs-C catalyst shows good catalytic activity and the temperature window of CO total conversion is from 135 °C to 175 °C. MWCNTs with high BET surface area weaken poisoning effect of H2O and CO2 after 135 °C.

  3. Selective catalytic reduction of NOx with NH3 over iron-cerium-tungsten mixed oxide catalyst prepared by different methods

    NASA Astrophysics Data System (ADS)

    Xiong, Zhi-bo; Liu, Jing; Zhou, Fei; Liu, Dun-yu; Lu, Wei; Jin, Jing; Ding, Shi-fa

    2017-06-01

    A series of magnetic Fe0.85Ce0.10W0.05Oz catalysts were synthesized by three different methods(Co-precipitation(Fe0.85Ce0.10W0.05Oz-CP), Hydrothermal treatment assistant critic acid sol-gel method(Fe0.85Ce0.10W0.05Oz-HT) and Microwave irradiation assistant critic acid sol-gel method(Fe0.85Ce0.10W0.05Oz-MW)), and the catalytic activity was evaluated for selective catalytic reduction of NO with NH3. The catalyst was characterized by XRD, N2 adsorption-desorption, XPS, H2-TPR and NH3-TPD. Among the tested catalysts, Fe0.85Ce0.10W0.05Oz-MW shows the highest NOx conversion over per gram in unit time with NOx conversion of 60.8% at 350 °C under a high gas hourly space velocity of 1,200,000 ml/(g h). Different from Fe0.85Ce0.10W0.05Oz-CP catalyst, there exists a large of iron oxide crystallite(γ-Fe2O3 and α-Fe2O3) scattered in Fe0.85Ce0.10W0.05Oz catalysts prepared through hydrothermal treatment or microwave irradiation assistant critic acid sol-gel method, and higher iron atomic concentration on their surface. And Fe0.85Ce0.10W0.05Oz-MW shows higher surface absorbed oxygen concentration and better dispersion compared with Fe0.85Ce0.10W0.05Oz-HT catalyst. These features were favorable for the high catalytic performance of NO reduction with NH3 over Fe0.85Ce0.10W0.05Oz-MW catalyst.

  4. In vitro skin decontamination of the organophosphorus pesticide Paraoxon with nanometric cerium oxide CeO2.

    PubMed

    Salerno, Alicia; Devers, Thierry; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Josse, Denis; Briançon, Stéphanie

    2017-04-01

    Organophosphorus compounds (OP), which mainly penetrate via the percutaneous pathway, represent a threat for both military and civilians. Body surface decontamination is vital to prevent victims poisoning. The development of a cost-effective formulation, which could be efficient and easy to handle in case of mass contamination, is therefore crucial. Metal oxides nanoparticles, due their large surface areas and the large amount of highly reactive sites, present high reactivity towards OP. First, this study aimed at evaluating the reaction of CeO2 nanoparticles, synthetized by microwave path and calcined at 500 or 600 °C, with Paraoxon (POX) in aqueous solution. Results showed that both nanoparticles degraded 60%-70% of POX. CeO2 calcined at 500 °C, owing to its larger specific area, was the most effective. Moreover, the degradation was significantly increased under Ultra-Violet irradiation (initial degradation rate doubled). Then, skin decontamination was studied in vitro using the Franz cell method with pig-ear skin samples. CeO2 powder and an aqueous suspension of CeO2 (CeO2-W) were applied 1 h after POX exposure. The efficiency of decontamination, including removal and/or degradation of POX, was compared to Fuller's earth (FE) and RSDL lotion which are, currently, the most efficient systems for skin decontamination. CeO2-W and RSDL were the most efficient to remove POX from the skin surface and decrease skin absorption by 6.4 compared to the control not decontaminated. FE reduced significantly (twice) the absorbed fraction of POX, contrarily to CeO2 powder. Considering only the degradation rate of POX, the products ranged in the order CeO2 > RSDL > CeO2-W > FE (no degradation). This study showed that CeO2 nanoparticles are a promising material for skin decontamination of OP if formulated as a dispersion able to remove POX like CeO2-W and to degrade it as CeO2 powder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Photoemission study of cerium silicate model systems

    NASA Astrophysics Data System (ADS)

    Skála, Tomáš; Matolín, Vladimír

    2013-01-01

    Interaction of silicon with cerium oxide was studied by photoelectron spectroscopy using two model systems CeOx/Si(1 1 1) and Si/CeO2(1 1 1)/Cu(1 1 1) which can be used for fundamental studies in the field of microelectronics and heterogeneous catalysis. The interaction was found to be strong and lead to a formation of cerium silicate films of the proposed stoichiometry Ce4.67Si3O13. Their maximum thickness was limited by diffusion of silicon. Beside silicate other compounds were growing on the surface - SiO2, Si2O, Si, and CeO2. The assignment of the formed species is based on the interpretation of photoemission spectra involving the measurements of various reference O/Si and Sisbnd O/Cu systems.

  6. Ultrathin, epitaxial cerium dioxide on silicon

    SciTech Connect

    Flege, Jan Ingo Kaemena, Björn; Höcker, Jan; Schmidt, Thomas; Falta, Jens; Bertram, Florian; Wollschläger, Joachim

    2014-03-31

    It is shown that ultrathin, highly ordered, continuous films of cerium dioxide may be prepared on silicon following substrate prepassivation using an atomic layer of chlorine. The as-deposited, few-nanometer-thin Ce{sub 2}O{sub 3} film may very effectively be converted at room temperature to almost fully oxidized CeO{sub 2} by simple exposure to air, as demonstrated by hard X-ray photoemission spectroscopy and X-ray diffraction. This post-oxidation process essentially results in a negligible loss in film crystallinity and interface abruptness.

  7. Fenton-Like Reaction Catalyzed by the Rare Earth Inner Transition Metal Cerium

    PubMed Central

    HECKERT, ERIC G.; SEAL, SUDIPTA; SELF, WILLIAM T.

    2011-01-01

    Cerium (Ce) is a rare earth metal that is not known to have any biological role. Cerium oxide materials of several sizes and shapes have been developed in recent years as a scaffold for catalysts. Indeed even cerium oxide nanoparticles themselves have displayed catalytic activities and antioxidant properties in tissue culture and animal models. Because of ceria's ability to cycle between the +3 and +4 states at oxygen vacancy sites, we investigated whether cerium metal would catalyze a Fenton-like reaction with hydrogen peroxide. Indeed, cerium chloride did exhibit radical production in the presence of hydrogen peroxide, as assessed by relaxation of supercoiled plasmid DNA. Radical production in this reaction was also followed by production of radical cation of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Radical scavengers and spin traps were capable of competing with ABTS for radicals produced in this cerium dependent Fenton-like reaction. Electron paramagnetic resonance experiments reveal both hydroxyl radical and superoxide anion in a reaction containing cerium and hydrogen peroxide. Based on these results we propose that cerium is capable of redox-cycling with peroxide to generate damaging oxygen radicals. PMID:18678042

  8. Fenton-like reaction catalyzed by the rare earth inner transition metal cerium.

    PubMed

    Heckert, Eric G; Seal, Sudipta; Self, William T

    2008-07-01

    Cerium (Ce) is a rare earth metal that is not known to have any biological role. Cerium oxide materials of several sizes and shapes have been developed in recent years as a scaffold for catalysts. Indeed even cerium oxide nanoparticles themselves have displayed catalytic activities and antioxidant properties in tissue culture and animal models. Because of ceria's ability to cycle between the +3 and +4 states at oxygen vacancy sites, we investigated whether cerium metal would catalyze a Fenton-like reaction with hydrogen peroxide. Indeed, cerium chloride did exhibit radical production in the presence of hydrogen peroxide, as assessed by relaxation of supercoiled plasmid DNA. Radical production in this reaction was also followed by production of radical cation of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS). Radical scavengers and spin traps were capable of competing with ABTS for radicals produced in this cerium dependent Fenton-like reaction. Electron paramagnetic resonance experiments reveal both hydroxyl radical and superoxide anion in a reaction containing cerium and hydrogen peroxide. Based on these results we propose that cerium is capable of redox-cycling with peroxide to generate damaging oxygen radicals.

  9. Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: Complementary experimental, molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods

    NASA Astrophysics Data System (ADS)

    Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi

    2017-10-01

    The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion

  10. On the number, binding energies, and mutual intensities of Ce3d peaks in the XPS analysis of cerium oxide systems: A response to Murugan et al., Superlatt. Microstruct. 85 (2015) 321

    NASA Astrophysics Data System (ADS)

    Paparazzo, Ernesto

    2017-05-01

    I discuss on an XPS analysis of CeO2 thin films offered by Murugan et al. in a recent article, Superlatt. Microstruct. 85 (2015) 321. I argue that the authors' interpretation is not an accurate picture of the chemical composition of their material, especially not the mapping of the Ce(IV)-Ce(III) redox couple, because such interpretation largely overlooks the quantum mechanics principles and electron correlation phenomena that govern the binding energies and mutual intensities of photoemission peaks in the Ce3d spectrum. I propose that the spectral feature that the authors observe at ∼522 eV on the binding energy scale is not the O1s component of lattice cerium oxide, as the authors infer, but the AlKα3,4-related satellite of the AlKα1,2 - excited O1s peak, which they observe at ∼532.5 eV.

  11. Study of preparation method and oxidization/reduction effect on the performance of nickel-cerium oxide catalysts for aqueous-phase reforming of ethanol

    NASA Astrophysics Data System (ADS)

    Roy, B.; Leclerc, C. A.

    2015-12-01

    The effect of preparation method and oxidation state of the active metal on the catalytic activity of Ni-Ce-O catalysts was studied for aqueous phase reforming of ethanol. A sol-gel (SG) route and a solution combustion synthesis (SCS) method were used for the preparation of 10 wt% Ni loaded catalysts. The catalytic activity of three groups of catalysts; reduced at 425 °C (HR, metallic Ni), reduced at 1000 °C (FR, metallic Ni), and not reduced (NR, as NiO) were tested at different operating conditions. The difference in the metal particle sizes, governed by the preparation method, affects the catalytic efficiency most, not the reduced or oxidized state of Ni. The SG samples were superior for ethanol conversion and selectivity for H2 and CO2 compared to the SCS samples. The X-ray photoelectron spectroscopy (XPS) analysis of the samples demonstrated that the relative ratio of Ce2O3 to CeO2 increased inside the reactor. While Ni doping increases oxygen mobility in the Ce-O lattice, Ce3+ converts Ni2+ to metallic Ni inside the reactor. This can explain why the reduction stage for Ni-Ce-O system in APR is irrelevant. Higher oxygen mobility through the support helps oxidation of CO to CO2 leading to improved catalytic performance.

  12. Lanthanum Cerium Manganese Hexaaluminate Combustion Catalysts for Compact Steam Reformers

    DTIC Science & Technology

    2005-12-07

    monoxide, and ethylene as partial oxidation products. Of the metals tested, iron is best, followed by cobalt and cerium. Our results concur with Wang et...that of Groppi et al., which marginally outperformed LaMnAl11O19 [15]. Our bimetallic manganese- cobalt catalyst was similarly lacking and did not...LaCo0.5Mn0.5Al11O19 are nearly identical and that in the absence of manganese, cobalt - and cerium-substituted hexaaluminates are equivalent catalysts. It

  13. Potential for recovery of cerium contained in automotive catalytic converters

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2013-01-01

    Catalytic converters (CATCONs) are required by Federal law to be installed in nearly all gasoline- and diesel-fueled onroad vehicles used in the United States. About 85 percent of the light-duty vehicles and trucks manufactured worldwide are equipped with CATCONs. Portions of the CATCONs (called monoliths) are recycled for their platinum-group metal (PGM) content and for the value of the stainless steel they contain. The cerium contained in the monoliths, however, is disposed of along with the slag produced from the recycling process. Although there is some smelter capacity in the United States to treat the monoliths in order to recover the PGMs, a great percentage of monoliths is exported to Europe and South Africa for recycling, and a lesser amount is exported to Japan. There is presently no commercial-scale capacity in place domestically to recover cerium from the monoliths. Recycling of cerium or cerium compounds from the monoliths could help ensure against possible global supply shortages by increasing the amount that is available in the supply chain as well as the number and geographic distribution of the suppliers. It could also reduce the amount of material that goes into landfills. Also, the additional supply could lower the price of the commodity. This report analyzes how much cerium oxide is contained in CATCONs and how much could be recovered from used CATCONs.

  14. Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity.

    PubMed

    Xu, Bingbing; Qi, Fei; Sun, Dezhi; Chen, Zhonglin; Robert, Didier

    2016-03-01

    In this study, the performance of bezafibrate (BZF) degradation and detoxification in the aqueous phase using cerium-modified red mud (RM) catalysts prepared using different cerium sources and synthesis methods were evaluated. Experimental results showed that the surface cerium modification was responsible for the development of the catalytic activity of RM and this was influenced by the cerium source and the synthesis method. Catalyst prepared from cerium (IV) by precipitation was found to show the best catalytic activity in BZF degradation and detoxification. Reactive oxygen species including peroxides, hydroxyl radicals, and super oxide ions were identified in all reactions and we proposed the corresponding catalytic reaction mechanism for each catalyst that prepared from different cerium source and method. This was supported by the intermediates profiles that were generated upon BZF degradation. The surface and the structural properties of cerium-modified RM were characterized in detail by several analytical methods. Two interesting findings were made: (1) the surface texture (specific surface area and mesoporous volume) influenced the catalytic reaction pathway; and (2) Ce(III) species and oxygen vacancies were generated on the surface of the catalyst after cerium modification. This plays an important role in the development of the catalytic activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Thermodynamic Calculation among Cerium, Oxygen, and Sulfur in Liquid Iron

    PubMed Central

    Pan, Fei; Zhang, Jian; Chen, Hao-Long; Su, Yen-Hsun; Su, Yen-Hao; Hwang, Weng-Sing

    2016-01-01

    Thermodynamic calculation has been applied to predict the inclusion formation in molten SS400 steel. When the Cerium addition in liquid iron is 70 ppm and the initial Oxygen and Sulphur are both 110 ppm, the formation of oxides containing Cerium would experience the transformation from Ce2O3 to CeO2 and also the formation of sulfides containing Cerium would experience the transformation from CeS to Ce2S3 and then to Ce3S4. Below 2000 K the most thermodynamic stable matter is CeO2 and the less thermodynamic stable inclusion is CeS. Only when the amount of [O] is extremely low and the amount of [S] and [Ce] is relatively high, Ce2S3 has the possibility to form. PMID:27767092

  16. Thermodynamic Calculation among Cerium, Oxygen, and Sulfur in Liquid Iron

    NASA Astrophysics Data System (ADS)

    Pan, Fei; Zhang, Jian; Chen, Hao-Long; Su, Yen-Hsun; Su, Yen-Hao; Hwang, Weng-Sing

    2016-10-01

    Thermodynamic calculation has been applied to predict the inclusion formation in molten SS400 steel. When the Cerium addition in liquid iron is 70 ppm and the initial Oxygen and Sulphur are both 110 ppm, the formation of oxides containing Cerium would experience the transformation from Ce2O3 to CeO2 and also the formation of sulfides containing Cerium would experience the transformation from CeS to Ce2S3 and then to Ce3S4. Below 2000 K the most thermodynamic stable matter is CeO2 and the less thermodynamic stable inclusion is CeS. Only when the amount of [O] is extremely low and the amount of [S] and [Ce] is relatively high, Ce2S3 has the possibility to form.

  17. Electrorefining of cerium: Part 2, Cerium as a surrogate for plutonium electrorefining studies

    SciTech Connect

    Raraz, A.G.; Mishra, B.; Olson, D.L.; Moore, J.J.

    1992-01-01

    The plutonium metal produced by the Direct Oxide Reduction Process is associated with other metallic impurities that have to be removed. The purification of plutonium is achieved using electrorefining process through a molten salt medium. The optimization of process parameters involved in electrorefining is required to make the process effective, in terms of the metal purity, cell efficiency and overall process reliability. Since the study of strategic and radioactive metals requires the use of a surrogate, it is important to choose surrogates that simulate the process as closely as possible. Cerium has been chosen to study the electrorefining behavior of plutonium. The differences that exist in the physico-chemical properties between the two metals have been critically examined and appropriate models have been developed to study the behavior. Cerium is a justified choice for the investigation.

  18. Molecular and electronic structures of cerium and cerium suboxide clusters

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Topolski, Josey E.; Jarrold, Caroline Chick

    2016-10-01

    The anion photoelectron (PE) spectra of Ce2Oy- (y = 1, 2), Ce3Oy- (y = 0-4), Ce4Oy- (y = 0-2), and Ce5Oy- (y = 1, 2) are reported and analyzed with supporting results from density functional theory calculations. The PE spectra all exhibit an intense electronic transition to the neutral ground state, all falling in the range of 0.7 to 1.1 eV electron binding energy, with polarization dependence consistent with detachment from diffuse Ce 6s-based molecular orbitals. There is no monotonic increase in electron affinity with increasing oxidation. A qualitative picture of how electronic structure evolves with an oxidation state emerges from comparison between the spectra and the computational results. The electronic structure of the smallest metallic cluster observed in this study, Ce3, is similar to the bulk structure in terms of atomic orbital occupancy (4f 5d2 6s). Initial cerium cluster oxidation involves largely ionic bond formation via Ce 5d and O 2p orbital overlap (i.e., larger O 2p contribution), with Ce—O—Ce bridge bonding favored over Ce=O terminal bond formation. With subsequent oxidation, the Ce 5d-based molecular orbitals are depleted of electrons, with the highest occupied orbitals described as diffuse Ce 6s based molecular orbitals. In the y ≤ (x + 1) range of oxidation states, each Ce center has a singly occupied non-bonding 4f orbital. The PE spectrum of Ce3O4- is unique in that it exhibits a single nearly vertical transition. The highly symmetric structure predicted computationally is the same structure determined from Ce3O4+ IR predissociation spectra [A. M. Burow et al., Phys. Chem. Chem. Phys. 13, 19393 (2011)], indicating that this structure is stable in -1, 0, and +1 charge states. Spectra of clusters with x ≥ 3 exhibit considerable continuum signal above the ground state transition; the intensity of the continuum signal decreases with increasing oxidation. This feature is likely the result of numerous quasi-bound anion states or two

  19. The influence of the nature of the metal on the performance of cerium oxide supported catalysts in the partial oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Mattos, L. V.; Noronha, F. B.

    This work studied the effect of the nature of the metal on the performance of Co/CeO 2, Pd/CeO 2 and Pt/CeO 2 catalysts in the partial oxidation of ethanol. Infrared spectroscopy of adsorbed ethanol and temperature programmed desorption of ethanol were performed in order to establish the reaction mechanism. Catalytic experiments revealed that the product distribution is strongly affected by the nature of the metal. Acetaldehyde was practically the only product formed on a Co/CeO 2 catalyst while methane was also produced on Pt/CeO 2 and Pd/CeO 2 catalysts. These results were explained through a reaction mechanism proposed by the characterization techniques. Co/CeO 2 and Pt/CeO 2 catalysts show mainly ethoxy species at room temperature whereas acetate species is mainly formed on the Pd/CeO 2 catalyst. The ethoxy species can undergo further dehydrogenation and desorb as acetaldehyde. This effect is more significant with the Co/CeO 2 catalyst and could explain the higher selectivity to acetaldehyde observed on supported Co and Pt catalysts.

  20. Microstructure of surface cerium hydride growth sites

    SciTech Connect

    Brierley, Martin; Knowles, John; Montgomery, Neil; Preuss, Michael

    2014-05-15

    Samples of cerium were exposed to hydrogen under controlled conditions causing cerium hydride sites to nucleate and grow on the surface. The hydriding rate was measured in situ, and the hydrides were characterised using secondary ion mass spectrometry, scanning electron microscopy, and optical microscopy. The results show that the hydriding rate proceeded more quickly than earlier studies. Characterisation confirmed that the hydrogen is confined to the sites. The morphology of the hydrides was confirmed to be oblate, and stressed material was observed surrounding the hydride, in a number of cases lathlike features were observed surrounding the hydride sites laterally with cracking in the surface oxide above them. It is proposed that during growth the increased lattice parameter of the CeH{sub 2} induces a lateral compressive stress around the hydride, which relieves by the ca. 16% volume collapse of the γ-Ce to α-Ce pressure induced phase transition. Cracking of the surface oxide above the laths reduces the diffusion barrier to hydrogen reaching the metal/oxide interface surrounding the hydride site and contributes to the anisotropic growth of the hydrides.

  1. Purification of cerium, neodymium and gadolinium for low background experiments

    NASA Astrophysics Data System (ADS)

    Boiko, R. S.; Barabash, A. S.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Laubenstein, M.; Mokina, V. M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.

    2014-01-01

    Cerium, neodymium and gadolinium contain double beta active isotopes. The most interesting are 150Nd and 160Gd (promising for 0ν2β search), 136Ce (2β+ candidate with one of the highest Q2β). The main problem of compounds containing lanthanide elements is their high radioactive contamination by uranium, radium, actinium and thorium. The new generation 2β experiments require development of methods for a deep purification of lanthanides from the radioactive elements. A combination of physical and chemical methods was applied to purify cerium, neodymium and gadolinium. Liquid-liquid extraction technique was used to remove traces of Th and U from neodymium, gadolinium and for purification of cerium from Th, U, Ra and K. Co-precipitation and recrystallization methods were utilized for further reduction of the impurities. The radioactive contamination of the samples before and after the purification was tested by using ultra-low-background HPGe gamma spectrometry. As a result of the purification procedure the radioactive contamination of gadolinium oxide (a similar purification efficiency was reached also with cerium and neodymium oxides) was decreased from 0.12 Bq/kg to 0.007 Bq/kg in 228Th, from 0.04 Bq/kg to <0.006 Bq/kg in 226Ra, and from 0.9 Bq/kg to 0.04 Bq/kg in 40K. The purification methods are much less efficient for chemically very similar radioactive elements like actinium, lanthanum and lutetium.

  2. Preparation of cerium halide solvate complexes

    DOEpatents

    Vasudevan, Kalyan V; Smith, Nickolaus A; Gordon, John C; McKigney, Edward A; Muenchaussen, Ross E

    2013-08-06

    Crystals of a solvated cerium(III) halide solvate complex resulted from a process of forming a paste of a cerium(III) halide in an ionic liquid, adding a solvent to the paste, removing any undissolved solid, and then cooling the liquid phase. Diffusing a solvent vapor into the liquid phase also resulted in crystals of a solvated cerium(III) halide complex.

  3. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  4. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    DOEpatents

    Bamberger, Carlos E.

    1980-01-01

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  5. Cyclic thermochemical process for producing hydrogen using cerium-titanium compounds

    DOEpatents

    Bamberger, C.E.

    A thermochemical cyclic process for producing hydrogen employs the reaction between ceric oxide and titanium dioxide to form cerium titanate and oxygen. The titanate is treated with an alkali metal hydroxide to give hydrogen, ceric oxide, an alkali metal titanate and water. Alkali metal titanate and water are boiled to give titanium dioxide which, along with ceric oxide, is recycled.

  6. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents.

    PubMed

    Gutiérrez-Arzaluz, Mirella; Noreña-Franco, Luis; Ángel-Cuevas, Saúl; Mugica-Álvarez, Violeta; Torres-Rodríguez, Miguel

    2016-05-24

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce-Co/Al₂O₃ membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce-Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  7. An investigation on the influence of milling time and calcination temperature on the characterization of nano cerium oxide powder synthesized by mechanochemical route

    SciTech Connect

    Aminzare, M.; Amoozegar, Z.; Sadrnezhaad, S.K.

    2012-11-15

    Highlights: ► Synthesis of nanosized CeO{sub 2} was carried out using mechanochemical reactions plus sequential calcinations procedure. ► The effect of milling time and calcinations procedure on crystallite size and surface area of the as-synthesized powders was investigated. ► The extended milling times were exposed to result in the smaller crystallite size, and hence higher surface area for the as-synthesized powder. ► Higher calcinations temperatures, on the other hand, led to the as-synthesized powder with a larger crystallite size and therefore, lower surface area. ► Activation energy for nanocrystallite growth was calculated during the calcinations procedure and the aforementioned crystallite growth was found to be conducted in the light of interfacial reactions. -- Abstract: The synthesis of nano-sized CeO{sub 2} powder was investigated via mechanochemical reactions between hydrate cerium chloride and sodium hydroxide as the starting materials. The process was followed by a subsequent calcination procedure. Characterization of as-synthesized powder was performed using X-ray diffraction, FTIR spectroscopy, Brunner–Emmett–Teller (BET) nitrogen gas absorption, scanning electron microscopy (SEM) and particle size analyzer (PSA). The precursors were milled for different milling times and then were subjected to different heat treatment procedure at variable temperatures from 100 to 700 °C. According to the results, milling time and calcination temperatures induce paramountal effects on crystallite size and surface area of as-synthesized powders. In addition, the average activation energy for the growth of nanocrystals during calcination was determined to be about 12.53 kJ/mol, suggesting the influence of interfacial reactions on the crystallite growth during the calcination procedure.

  8. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  9. Synthesis, electrochemistry, and reactivity of cerium(III/IV) methylene-bis-phenolate complexes.

    PubMed

    Mahoney, Brian D; Piro, Nicholas A; Carroll, Patrick J; Schelter, Eric J

    2013-05-20

    A series of cerium complexes containing a 2,2'-methylenebis(6-tert-butyl-4-methylphenolate) (MBP(2-)) ligand framework is described. Electrochemical studies of the compound [Li(THF)2Ce(MBP)2(THF)2] (1) reveal that the metal based oxidation wave occurs at -0.93 V vs Fc/Fc(+). This potential demonstrates significant stabilization of the cerium(IV) ion in the MBP(2-) framework with a shift of ∼2.25 V from the typically reported value for the cerium(III/IV) couple of E°' = +1.30 V vs Fc/Fc(+) for Ce(ClO4)3 in HClO4 solutions. Compound 1 undergoes oxidation to form stable cerium(IV) species in the presence of a variety of common oxidants. The coordination of the redox-active ligands 2,2'-bipyridine and benzophenone to 1 result in complexes in which no apparent metal-to-ligand charge transfer occurs and the cerium ion remains in the +3 oxidation state.

  10. Photoionization of the cerium isonuclear sequence and cerium endohedral fullerene

    NASA Astrophysics Data System (ADS)

    Habibi, Mustapha

    This dissertation presents an experimental photoionization study of the cerium isonuclear sequence ions in the energy range of the 4d inner-shell giant resonance. In addition, single and double photoionization and photofragmentation cross sections of the cerium endohedral ion Ce C+82 were also measured and studied in the 4d excitation-ionization energy range of cerium. Relative and absolute cross-section measurements were performed at undulator beamline 10.0.1 of the Advanced Light Source (ALS) for nine parent cerium ions: Ce+ - Ce9+. Double-to-single ionization cross-section ratios were measured for photoionization of the endohedral Ce C+82 and empty fullerene C C+82 molecular ions. The merged ion and photon beams technique was used to conduct the experiments. Multiconfiguration Hartree-Fock calculations were performed as an aid to interpret the experimental data. Four Rydberg series for 4d → nf (n ≥ 4) and 4d → np (n ≥ 6) autoionizing excitations were assigned using the quantum defect theory for the Ce3+ photoionization cross section. The experimental data show the collapse of the nf wavefunctions (n ≥ 4) with increasing ionization stage as outer-shell electrons are stripped from the parent ion. The nf orbital collapse occurs partially for Ce2+ and Ce3+ ion and completely for Ce4+, where these wavefunctions penetrate the core region of the ion. A strong contribution to the total oscillator strength was observed in the double and triple photoionization channels for low charge states (Ce +, Ce2+, and Ce3+), whereas most of the 4d excitations of the higher charge states decay by ejection of one electron.

  11. Metal Atom Oxidation Laser

    DTIC Science & Technology

    1976-09-01

    mixtures of dusts of rare earth fluorides and oxides administered intratracheally and by inhalation. Some of the test animals (guinea pigs) died of...neodymium and cerium oxides were also made. These dusts were administered intratracheally to white rats. The investigation showed that these oxides...but milder. Cerium oxide was the least damaging of the three. With regard to the" aerosols of the oxides of yttrium, neodymium and other rare earth

  12. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    PubMed

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Efficiencies and mechanisms of ZSM5 zeolites loaded with cerium, iron, or manganese oxides for catalytic ozonation of nitrobenzene in water.

    PubMed

    Chen, Chunmao; Yan, Xin; Yoza, Brandon A; Zhou, Tingting; Li, Yang; Zhan, Yali; Wang, Qinghong; Li, Qing X

    2017-09-08

    Discharge of industrial wastewater causes water pollution. It is therefore necessary to treat wastewater prior to discharge. Catalytic ozonation processes (COP) using ZSM5 zeolites loaded with metallic (Ce, Fe, or Mn) oxides to remove nitrobenzene from water were investigated. The total organic carbon (TOC) removal by the COP treatment with NaZSM5-38, HZSM5-38, and NaZSM5-100 were increased by 6.7%, 23.1%, and 19.8%, respectively, in comparison with single ozonation efficiency (39.2%). The loadings of Ce, Fe, or Mn oxides increased the catalytic activity relative to ZSM5 zeolites alone. The Ce loaded material (Ce/NaZSM5-38) had the highest TOC removal (86.3%). The different-metallic-oxides loaded zeolites exhibited different chemical processes during the removal of nitrobenzene from water. During COP treatment, NaZSM5-38 zeolites removed nitrobenzene mainly via OH mediated oxidation. HZSM5-38 and NaZSM5-100 zeolites showed powerful adsorption toward nitrobenzene. Both adsorption and direct ozonation contribute the TOC removal in their early uses. The OH mediated oxidation dominates the TOC removal process as the adsorption became saturated after multiple uses. Surface SiO bonds and/or SiO(H)Al structures are the active sites for ZSM5 zeolites. Efficient surface dispersion of the metallic oxides enhances the catalytic activity. This study shows the high potentials of ZSM5 zeolites as catalysts in COP to efficiently treat refractory wastewaters. Copyright © 2017. Published by Elsevier B.V.

  14. Grain Growth in Cerium Metal

    NASA Astrophysics Data System (ADS)

    Cooley, Jason; Katz, Martha; Mielke, Charles; Montalvo, Joel

    We report on grain growth in forged and rolled cerium plate for temperatures from 350 to 700 degrees C and times from 30 to 120 minutes. The cerium was made by arc-melting into a 25 mm deep by 80 mm diameter copper mold. The resulting disk was forged at room temperature to a 25% reduction of thickness four times with a 350 degree C strain relief heat treatment for 60 minutes between forging steps. The resulting 8 mm thick plate was clock rolled at room temperature to a 25% reduction of thickness three times with a 350 C strain relief heat treatment between steps resulting in a plate approximately 3 mm thick. 5 x 10 mm coupons were cut from the plate for the grain growth study.

  15. Preparation of yttrium, lanthanum, cerium, and neodymium basic carbonate particles by homogeneous precipitation

    SciTech Connect

    Akinc, M.; Sordelet, D. )

    1987-07-01

    Uniform yttrium, lanthanum, cerium, and neodymium basic carbonate particles were prepared by homogeneous precipitation. Powders were characterized with respect to size, shape, crystal structure, and thermal decomposition behavior. Yttria precursor particles were spherical, monosized (0.4 {mu}m), and amorphous; whereas lanthana, neodymia, and ceria precursors were prismatic (ranging from 1 to 6 {mu}m in size) and crystalline. Crystal structure was found to be ancylite-type orthorhombic symmetry in all three cases. Upon heating in air, yttrium, lanthanum, and neodymium precursors underwent two-step decomposition to first form oxycarbonate and then oxide. Cerium hydroxycarbonate decomposed in a single step to form the oxide.

  16. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  17. Exposure and Health Effects Review of Engineered Nanoscale Cerium and Cerium Dioxide Associated with its Use as a Fuel Additive - NOW IN PRINT IN THE JOURNAL

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels that are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (Ce02) has recently gained a wide range of applications which includes coatin...

  18. Investigation of the Effect of Yttrium Oxide Nanoparticles Doped with Cerium and Neodymium on Electro-Optics of Liquid Crystal Polymer Composites

    NASA Astrophysics Data System (ADS)

    Zharkova, G. M.; Osipov, V. V.; Platonov, V. V.; Podkin, A. V.; Strel'tsov, S. A.

    2016-12-01

    Morphology and properties of liquid crystal polymer composites doped with inorganic nanoparticles are described. These composites comprised nematic liquid crystal 5CB, polyvinyl acetate, and nanoparticles of oxides (Y2O3, CeO2:Y2O3, and Nd2O3:Y2O3). Nanopowders were synthesized by the laser method of vaporization of a solid target under CO2-laser or fiber ytterbium laser irradiation. The effect of oxides on the electro-optical properties of the composites and times of response to an electrical pulse is investigated. It is shown that incorporation of CeO2:Y2O3 nanopowder in liquid crystal polymer composites affects the decrease of the control field and the increase of light transmission in an electric field stronger than incorporation of Nd2O3:Y2O3 nanoparticles.

  19. Decomposition kinetics of ammonia in gaseous stream by a nanoscale copper-cerium bimetallic catalyst.

    PubMed

    Hung, Chang-Mao

    2008-01-15

    This study performance is to examine the kinetics over nanoscale copper-cerium bimetallic catalyst under selective catalytic oxidation (SCO) of ammonia to N(2) in a tubular fixed-bed reactor (TFBR) at temperatures from 150 to 400 degrees C in the presence of oxygen. The nanoscale copper-cerium bimetallic catalyst was prepared by co-precipitation with Cu(NO(3))(2) and Ce(NO(3))(3) at molar ratio of 6:4. Experimental results showed that the catalyst with transmission electron microscopy (TEM) revealed that copper and cerium are well dispersed and catalyst in the form of nanometer-sized particles. Moreover, the kinetic behavior of NH(3) oxidation with catalysis can be accounted by using the rate expression of the Langmuir-Hinshelwood type kinetic model. Kinetic parameters are also developed on the basis of the differential reactor data. Also, experimental results are compared with those of the model predicted.

  20. ADSORPTION OF CERIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Roberts, F.P.

    1963-08-13

    Cerium can be removed from aqueous nitric acid (2 to 13 M) solutions by passing the latter over a PbO/sub 2/-containing anion exchange resin. The cerium is taken up by the resin, while any lanthanides, yttrium, and strontium present remain in the solution. (AEC)

  1. A model cerium oxide matrix composite reinforced with a homogeneous dispersion of silver particulate - prepared using the glycine-nitrate process

    SciTech Connect

    Weil, K. Scott; Hardy, John S.

    2005-01-31

    Recently a new method of ceramic brazing has been developed. Based on a two-phase liquid composed of silver and copper oxide, brazing is conducted directly in air without the need of an inert cover gas or the use of surface reactive fluxes. Because the braze displays excellent wetting characteristics on a number ceramic surfaces, including alumina, various perovskites, zirconia, and ceria, we were interested in investigating whether a metal-reinforced ceramic matrix composite (CMC) could be developed with this material. In the present study, two sets of homogeneously mixed silver/copper oxide/ceria powders were synthesized using a combustion synthesis technique. The powders were compacted and heat treated in air above the liquidus temperature for the chosen Ag-CuO composition. Metallographic analysis indicates that the resulting composite microstructures are extremely uniform with respect to both the size of the metallic reinforcement as well as its spatial distribution within the ceramic matrix. The size, morphology, and spacing of the metal particulate in the densified composite appears to be dependent on the original size and the structure of the starting combustion synthesized powders.

  2. Oxidative mobilization of cerium and uranium and enhanced release of "immobile" high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B

    NASA Astrophysics Data System (ADS)

    Kraemer, Dennis; Kopf, Sebastian; Bau, Michael

    2015-09-01

    Polyvalent trace elements such as the high field strength elements (HFSE) are commonly considered rather immobile during low-temperature water-rock interaction. Hence, they have become diagnostic tools that are widely applied in geochemical studies. We present results of batch leaching experiments focused on the mobilization of certain HFSE (Y, Zr, Hf, Th, U and rare earth elements) from mafic, intermediate and felsic igneous rocks in the presence and absence, respectively, of the siderophore desferrioxamine B (DFOB). Our data show that DFOB strongly enhances the mobility of these trace elements during low-temperature water-rock interaction. The presence of DFOB produces two distinct features in the Rare Earths and Yttrium (REY) patterns of leaching solutions, regardless of the mineralogical and chemical composition or the texture of the rock type studied. Bulk rock-normalized REY patterns of leaching solutions with DFOB show (i) a very distinct positive Ce anomaly and (ii) depletion of La and other light REY relative to the middle REY, with a concave downward pattern between La and Sm. These features are not observed in experiments with hydrochloric acid, acetic acid or deionized water. In DFOB-bearing leaching solutions Ce and U are decoupled from and selectively enriched relative to light REY and Th, respectively, due to oxidation to Ce(IV) and U(VI). Oxidation of Ce3+ and U4+ is promoted by the significantly higher stability of the Ce(IV) and U(VI) DFOB complexes as compared to the Ce(III) and U(IV) DFOB complexes. This is similar to the relationship between the Ce(IV)- and Ce(III)-pentacarbonate complexes that cause positive Ce anomalies in alkaline lakes. However, while formation of Ce(IV) carbonate complexes is confined to alkaline environments, Ce(IV) DFOB complexes may produce positive Ce anomalies even in mildly acidic and near-neutral natural waters. Siderophore-promoted dissolution processes also significantly enhance mobility of other 'immobile' HFSE

  3. The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration

    SciTech Connect

    Cardillo, Dean; Konstantinov, Konstantin; Devers, Thierry

    2013-11-15

    Highlights: • Possible application of cerium-doped α-hematite as ultraviolet filter. • Nanoparticles obtained through co-precipitation technique using various cerium doping levels followed by annealing. • Comprehensive materials characterisation utilizing XRD, DSC/TGA, STEM, UV–vis spectroscopy. • Increasing cerium content reduces particle sizing and alters morphology. • Solubility of cerium in hematite seen between 5 and 10% doping, 10% cerium doping greatly enhances attenuation in ultraviolet region and increases optical bandgap. - Abstract: Metal oxide nanoparticles have potential use in energy storage, electrode materials, as catalysts and in the emerging field of nanomedicine. Being able to accurately tailor the desirable properties of these nanoceramic materials, such as particle size, morphology and optical bandgap (E{sub g}) is integral in the feasibility of their use. In this study we investigate the altering of both the structure and physical properties through the doping of hematite (α-Fe{sub 2}O{sub 3}) nanocrystals with cerium at a range of concentrations, synthesised using a one-pot co-precipitation method. This extremely simple synthesis followed by thermal treatment results in stable Fe{sub 2−x}Ce{sub x}O{sub y} nanoceramics resulting from the burning of any unreacted precursors and transformation of goethite-cerium doped nanoparticle intermediate. The inclusion of Ce into the crystal lattice of these α-Fe{sub 2}O{sub 3} nanoparticles causes a significantly large reduction in mean crystalline size and alteration in particle morphology with increasing cerium content. Finally we report an increase optical semiconductor bandgap, along with a substantial increase in the ultraviolet attenuation found for a 10% Ce-doping concentration which shows the potential application of cerium-doped hematite nanocrystals to be used as a pigmented ultraviolet filter for cosmetic products.

  4. Effects of Cerium Oxide and Ferrocene Nanoparticles Addition As Fuel-Borne Catalysts on Diesel Engine Particulate Emissions: Environmental and Health Implications.

    PubMed

    Zhang, Zhi-Hui; Balasubramanian, Rajasekhar

    2017-04-06

    This study systematically examined the potential impacts of doping CeO2 and Fe(C5H5)2 nanoparticles as fuel-borne catalysts (FBCs) to ultralow sulfur diesel (ULSD) fuel on the physical, chemical and toxicological characteristics of diesel particulate matter (DPM). The FBCs-doped fuels are effective in promoting soot oxidation and reducing the DPM mass emissions, but lead to a significant increase in the total particle counts due to the formation of self-nucleated metallic nanoparticles. Compared to undoped ULSD, the FBCs-doped fuels result in higher concentrations of particle-phase polycyclic aromatic hydrocarbons (PAHs) and n-alkanes, higher fractions of organic carbon (OC) and water-soluble organic carbon (WSOC) in particles, show slight alterations in soot nanostructure, reduce soot ignition temperature and activation energy. Exposure of the human-type II cell alveolar epithelial cells (A549) to DPM derived from FBCs-doped fuels shows a decrease in cell viability and alterations in the global gene expression with a broad range of biochemical pathways. The overall variations in DPM characteristics are mainly caused by the catalytic combustion process, and are related to the type, properties and contents of FBCs used in diesel fuel as well as the engine operating conditions. Environmental and health implications of the study are highlighted.

  5. Electrical conductivity and impedance spectroscopy studies of cerium based aeschynite type semiconducting oxides: CeTiMO6 (M=Nb or Ta)

    NASA Astrophysics Data System (ADS)

    Sumi, S.; Rao, P. Prabhakar; Deepa, M.; Koshy, Peter

    2010-09-01

    Complex ceramic oxides, CeTiMO6 (M=Nb or Ta) having aeschynite type mineral structure were prepared by the conventional ceramic route. Complex impedance analysis in the frequency range 10 Hz-1 MHz over a wide temperature range (30-600 °C) indicates the presence of grain boundary effect along with the bulk contribution and also confirms the presence of non-Debye type of multiple relaxations in the material. The frequency dependent conductivity plots exhibit double power law dependence suggesting three types of conduction mechanisms: low frequency (10 Hz-1 kHz) conductivity owing to long range translational motion of electrons (frequency independent), mid-frequency conductivity (1-10 kHz) due to short-range hopping, and high frequency (10 kHz-1 MHz) conduction due to localized orientation hopping mechanism. The hopping model can explain the nature of the conduction mechanism completely. The electrical conductivity measurements with temperature suggest the negative temperature coefficient of resistance behavior. The activation energy studies allow insight into the nature of the conduction mechanisms.

  6. Cerium and niobium doped SrCoO3-δ as a potential cathode for intermediate temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Shouguo; Feng, Shuangjiu; Lu, Qiliang; Li, Yide; Wang, Hong; Wang, Chunchang

    2014-04-01

    Sr0.9Ce0.1Co0.9Nb0.1O3-δ (SCCN) has been synthesized using solid state reaction, and investigated as a new cathode material for intermediate temperature solid oxide fuel cells (ITSOFCs). SCCN material exhibits sufficiently high electronic conductivity and excellent chemical compatibility with SDC electrolyte. Highly charged Ce4+ and Nb5+ successfully stabilize the perovskite structure to avoid order-disorder phase transition. The electrical conductivity reaches a high value of 516 S cm-1 at 300 °C in air. The area specific resistances of the SCCN-50 wt.% Ce0.8Sm0.2O1.9 (SDC) cathode are as low as 0.027, 0.049, and 0.094 Ω cm2 at 700, 650, and 600 °C, respectively, with the corresponding peak power densities of 1074, 905, and 589 mW cm-2. A relatively low thermal expansion coefficient of SCCN-SDC is 14.3 × 10-6 K-1 in air. All these results imply that SCCN holds tremendous promise as a cathode material for ITSOFCs.

  7. Tetrabromobisphenol A photoelectrocatalytic degradation using reduced graphene oxide and cerium dioxide comodified TiO2 nanotube arrays as electrode under visible light.

    PubMed

    Zhou, Qingxiang; Xing, An; Zhao, Danchen; Zhao, Kuifu

    2016-12-01

    Tetrabromobisphenol A, one of the most important brominated retardants, is an typical persistent organic pollutant and it is of great value to develop rapid and effective degradation method. Present study established a photoelectrodegradation method with CeO2 and reduced graphene oxide co-modified TiO2 nanotube arrays (RGO-CeO2-TiO2 NAs), which were successfully synthesized and characterized with scanning electron microscopy (SEM) and Energy Dispersive X Ray Spectrometry (EDX). The SEM Images revealed that the nanotubes had a diameter of about 100 nm and an obvious layer of CeO2 and RGO on the surface of TiO2 nanotube arrays. The EDX data exhibited the presence of Ce element. The results demonstrated that TBBPA was degraded at a high degradation rate constant of 0.0191 min(-1), and photogenerated holes played a major role in the degradation reaction. Significant decrease of degradation efficiency was achieved with the presence of EDTA-2Na(hole scavenger), yet while the existence of t-BuOH(OH scavenger) resulted in less inhibition on the degradation. Besides, RGO-CeO2-TiO2 NAs exhibited good stability with rarely decline of degradation efficiency for ten reused runs. All these indicated that RGO-CeO2-TiO2 NAs were a good catalyst with extraordinary catalytic activity and stability for PEC degradation, and would have great potential in the control and removal of pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: Yield effects and projected dietary intake from consumption.

    PubMed

    Bradfield, Scott J; Kumar, Pawan; White, Jason C; Ebbs, Stephen D

    2017-01-01

    The potential release of metal oxide engineered nanoparticles (ENP) into agricultural systems has created the need to evaluate the impact of these materials on crop yield and food safety. The study here grew sweet potato (Ipomoea batatas) to maturity in field microcosms using substrate amended with three concentrations (100, 500 or 1000 mg kg DW(-1)) of either nZnO, nCuO, or nCeO2 or equivalent amounts of Zn(2+), Cu(2+), or Ce(4+). Adverse effects on tuber biomass were observed only for the highest concentration of Zn or Cu applied. Exposure to both forms of Ce had no adverse effect on yield and a slight positive benefit at higher concentrations on tuber diameter. The three metals accumulated in both the peel and flesh of the sweet potato tubers, with concentrations higher in the peel than the flesh for each element. For Zn, >70% of the metal was in the flesh and for Cu >50%. The peels retained 75-95% of Ce in the tubers. The projected dietary intake of each metal by seven age-mass classes from child to adult only exceeded the oral reference dose for chronic toxicity in a scenario where children consumed tubers grown at the highest metal concentration. The results throughout were generally not different between the ENP- and ionic-treatments, suggesting that the added ENPs underwent dissolution to release their component ions prior to accumulation. The results offer insight into the fate and impact of these ENPs in soils. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. A Study of Electrocatalytic and Photocatalytic Activity of Cerium Molybdate Nanocubes Decorated Graphene Oxide for the Sensing and Degradation of Antibiotic Drug Chloramphenicol.

    PubMed

    Karthik, Raj; Vinoth Kumar, Jeyaraj; Chen, Shen-Ming; Karuppiah, Chelladurai; Cheng, Yi-Hui; Muthuraj, Velluchamy

    2017-02-22

    In this present work, "killing two birds with one stone" strategy was performed for the electrochemical trace level detection and photocatalytic degradation of antibiotic drug chloramphenicol (CAP) using Ce(MoO4)2 nanocubes/graphene oxide (CeM/GO) composite for the first time. The CeM/GO composite was synthesized via simple hydrothermal treatment followed by sonication process. The successful formation of CeM/GO composite was confirmed by several analytical and spectroscopic techniques. The CeM/GO composite modified glassy carbon electrode (GCE) showed excellent electrocatalytic activity toward the reduction of CAP in terms of decrease the potential and increase the cathodic peak current in comparison with different modified and unmodified electrodes. The electrocatalytic reduction of CAP based on the CeM/GO modified GCE exhibited high selectivity, wide linear ranges, lower detection limit, and good sensitivity of 0.012-20 and 26-272 μM, 2 nM ,and 1.8085 μA μM(-1) cm(-2), respectively. Besides, when CeM/GO/GCE was used to analyze the CAP in real samples, such as honey and milk, the satisfactory recovery results were obtained. On the other hand, the CeM/GO composite played excellent catalyst toward the photodegradation of CAP. The obtained results from the UV-vis spectroscopy clearly suggested that CeM/GO composite had high photocatalytic activity compared to pristine Ce(MoO4)2 nanocubes. The degradation efficiency of CeM/GO toward CAP is observed about 99% within 50 min under visible irradiation and it shows a good stability by observing the reusability of the catalyst. The enhanced photocatalytic performance was attributed to the increased migration efficiency of photoinduced electrons and holes.

  10. Lung retention of cerium in humans.

    PubMed Central

    Pairon, J C; Roos, F; Iwatsubo, Y; Janson, X; Billon-Galland, M A; Bignon, J; Brochard, P

    1994-01-01

    A retrospective study was conducted to evaluate lung retention of particles containing cerium in subjects with and without previous occupational exposure to mineral dusts. Analytical transmission electron microscopy was performed on 459 samples of bronchoalveolar lavage (BAL) fluid and 75 samples of lung tissue. Study of the distribution of mineralogical species in human samples showed that particles containing cerium were encountered in less than 10% of subjects. The proportion of subjects with particles containing cerium in their biological samples was not different between controls and subjects with previous occupational exposure to fibrous or nonfibrous mineral dusts. This was considered as the background level of lung retention of cerium in the general population. By contrast, determination of the absolute concentration of particles containing cerium in BAL fluid and lung tissue samples showed that 1.2% (from BAL fluid) and 1.5% (from lung tissue) of subjects with previous exposure to mineral particles had high lung retention of particles containing cerium. This study is believed to be the first one in which lung retention of cerium was estimated in the general population. PMID:8130849

  11. Remarkable changes in the photoluminescent properties of Y2Ce2O7:Eu(3+) red phosphors through modification of the cerium oxidation states and oxygen vacancy ordering.

    PubMed

    Raj, Athira K V; Prabhakar Rao, P; Sreena, T S; Sameera, S; James, Vineetha; Renju, U A

    2014-11-21

    A new series of red phosphors based on Eu(3+)-doped yttrium cerate [Y1.9Ce2O7:0.1Eu(3+), Y2Ce1.9O7:0.1Eu(3+) and Y2Ce2-xO7:xEu(3+) (x = 0.05, 0.10, 0.15, 0.20, 0.25 and 0.50)] was prepared via a conventional solid-state method. The influence of the substitution of Eu(3+) at the aliovalent site on the photoluminescent properties was determined by powder X-ray diffraction, FT Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy with energy-dispersive spectroscopy, UV-visible absorption spectroscopy, photoluminescence spectroscopy and lifetime measurements. The substitution of Eu(3+) at the Ce(4+) site induces a structural transition from a defect fluorite to a C-type structure, which increases the oxygen vacancy ordering and the distortion of the Eu(3+) environment, and decreases the formation of Ce(3+) states. In contrast, phosphors with isovalent substitution at the Y(3+) site exhibit the biphasic nature of defect fluorite and a C-type structure, thereby increasing the number of Ce(3+) oxidation states. These modifications resulted in remarkable changes in the photoluminescent properties of Y2Ce1.9O7:0.1Eu(3+) red phosphors, with emission intensities 3.8 times greater than those of the Ce0.9O2:0.1Eu(3+) and Y1.9Ce2O7:0.1Eu(3+). The photoluminescent properties of Y2Ce2-xO7:xEu(3+) were studied at different Eu(3+) concentrations under excitation with blue light. These phosphors emit intense red light due to the (5)D0-(7)F2 transition under excitation at 466 nm and no concentration quenching is observed with up to 50 mol% Eu(3+). They show increased lifetimes in the range 0.62-0.72 ms at Eu(3+) concentrations. The cation ordering linked to the oxygen vacancy ordering led to the uniform distribution of Eu(3+) ions in the lattice, thus allowing higher doping concentrations without quenching and consequently increasing the lifetime of the (5)D0 states. Our results demonstrate that significant improvements in

  12. Optical properties of cerium doped oxyfluoroborate glass.

    PubMed

    Bahadur, A; Dwivedi, Y; Rai, S B

    2013-06-01

    Cerium doped oxyfluoroborate glasses have been prepared and its spectroscopic properties have been discussed. It is found that the absorption edge shifts towards the lower energy side for the higher concentration of cerium dopant. Optical band gap for these glasses have been calculated and it is found that the number of non-bridging oxygen increases with cerium content. The emission spectra of these glasses have been recorded using UV laser radiations (266 and 355 nm) and it is observed that these glasses show bright blue emission. On the basis of excitation and emission spectra we have reported the existence of at least two different emission centers of Ce(3+)ions.

  13. Enhanced chemiluminescence of cerium(IV)-Tween 85 system and the analytical application.

    PubMed

    Li, Shifeng; Qian, Li; Zhu, Yan; Liu, Manman; Gao, Yinping; Ni, Yonghong

    2013-01-01

    The oxidation reaction between cerium(IV) and Tween 85 in sulfuric acid medium produced weak chemiluminescence (CL). In this paper, it was found that citrate could strongly enhance the CL of cerium(IV)-Tween 85-polyphenol system. Based on studies of ultraviolet-visible spectra and CL spectra, the CL enhancement mechanism had been proposed. It was surmised that the light emission was from an excited oxygen molecular pair O2((1)Δg)O2((1)∑g(-)). The maximum emission wavelength was about 478 nm. The effects of 17 amino acids and 29 organic compounds on cerium(IV)-Tween 85-citrate CL were investigated by a flow injection procedure. This study showed the present system had a wide application for the determination of these compounds.

  14. Synthesis and characterization of cerium and yttrium alkoxide complexes supported by ferrocene-based chelating ligands.

    PubMed

    Broderick, Erin M; Thuy-Boun, Peter S; Guo, Neng; Vogel, Carola S; Sutter, Jörg; Miller, Jeffrey T; Meyer, Karsten; Diaconescu, Paula L

    2011-04-04

    Two series of Schiff base metal complexes were investigated, where each series was supported by an ancillary ligand incorporating a ferrocene backbone and different N=X functionalities. One ligand is based on an imine, while the other is based on an iminophosphorane group. Cerium(IV), cerium(III), and yttrium(III) alkoxide complexes supported by the two ligands were synthesized. All metal complexes were characterized by cyclic voltammetry. Additionally, NMR, Mössbauer, X-ray absorption near-edge structure (XANES), and absorption spectroscopies were used. The experimental data indicate that iron remains in the +2 oxidation state and that cerium(IV) does not engage in a redox behavior with the ancillary ligand.

  15. Threshold Ionization and Spin-Orbit Coupling of Cerium Monoxide

    NASA Astrophysics Data System (ADS)

    Cao, Wenjin; Zhang, Yuchen; Wu, Lu; Yang, Dong-Sheng

    2017-06-01

    Cerium oxides are widely used in heterogeneous catalysis due to their ability to switch between different oxidation states. We report here the mass-analyzed threshold ionization (MATI) spectroscopy of cerium monoxide (CeO) produced by laser ablating a Ce rod in a molecular beam source. The MATI spectrum in the range of 40000-45000 \\wn exhibits several band systems with similar vibrational progressions. The strongest band is at 43015 (5) \\wn, which can be assigned as the adiabatic ionization energy of the neutral species. The spectrum also shows Ce-O stretching frequencies of 817 and 890 \\wn in the neutral and ion states, respectively. By comparing with spin-orbit coupled multireference quasi-degenerate perturbation theory (SO-MCQDPT) calculations, the observed band systems are assigned to transitions from various low-energy spin-orbit levels of the neutral oxide to the two lowest spin-orbit levels of the corresponding ion. The current work will also be compared with previous experimental and computational studies on the neutral species.

  16. Cerium clustering and radiation damage resistance in aluminophosphate and silicophosphate glasses

    NASA Astrophysics Data System (ADS)

    Rygel, Jennifer Lynn

    Cerium oxide is a well-known additive for increasing resistance to radiation damage in glass by preventing electrons and holes freed by irradiation from becoming trapped at defect sites and inducing optical absorption bands which can severely darken the glass. Phosphate glasses provide a unique opportunity for studying radiation damage resistance due to their high rare-earth solubility, ˜25 mol%. Two series of glasses, nominally AlP3O9-CeP 3O9 and CeP3O9-SiP2O 7, were synthesized to investigate structure-property relationships in a range of compositions near the metaphosphate. The presence of cerium clustering, or sharing of oxygen between cerium cations, was predicted using the chain fragment cluster model, an extension of earlier models for rare-earth phosphate glasses. Using the atom% composition determined by XPS from vacuum fracture surfaces, and cation coordination measured by Ce K-edge EXAFS, 29Si CPMG NMR, and 27Al MAS NMR, it was determined that clustering occurs for glasses containing ≥ 14 mol% Ce2O3 in the aluminophosphate glass series and ≥ 18 mol% Ce2O3 in the silicophosphate glass series. Many measured properties have been observed to correlate with the presence or absence of cerium clustering, cluster size, or other concomitant structural changes, including: visible coloration, density, refractive index, Ce3+ photoluminescence, and Ce3+ paramagnetic resonance. Additionally, radiation damage resistance was identified in the aluminophosphate and silicophosphate glasses which were predicted to have clustered cerium cations through the absence of radiation-induced phosphorus-related paramagnetic defects. This resistance is attributed to a structural implication of clustering. Specifically, cerium cations will be in close proximity to defect precursor sites at the concentrations required for clustering and are thus able to prevent localization of electrons and holes on those sites. Finally, irradiation-induced optical absorption was measured in all

  17. DFT study of the active site of the XoxF-type natural, cerium-dependent methanol dehydrogenase enzyme.

    PubMed

    Bogart, Justin A; Lewis, Andrew J; Schelter, Eric J

    2015-01-19

    Rare-earth metal cations have recently been demonstrated to be essential co-factors for the growth of the methanotrophic bacterium Methylacidiphilum fumariolicum SolV. A crystal structure of the rare-earth-dependent methanol dehydrogenase (MDH) includes a cerium cation in the active site. Herein, the Ce-MDH active site has been analyzed through DFT calculations. The results show the stability of the Ce(III)-pyrroloquinoline quinone (PQQ) semiquinone configuration. Calculations on the active oxidized form of this complex indicate a 0.81 eV stabilization of the PQQ(0) LUMO at cerium versus calcium, supporting the observation that the cerium cation in the active site confers a competitive advantage to Methylacidiphilum fumariolicum SolV. Using reported aqueous electrochemical data, a semi-empirical correlation was established based on cerium(IV/III) redox potentials. The correlation allowed estimation of the cerium oxidation potential of +1.35 V versus saturated calomel electrode (SCE) in the active site. The results are expected to guide the design of functional model complexes and alcohol-oxidation catalysts based on lanthanide complexes of biologically relevant quinones.

  18. Pulmonary toxicity in mice following exposure to cerium chloride.

    PubMed

    Hong, Jie; Yu, Xiaohong; Pan, Xiaoyu; Zhao, Xiaoyang; Sheng, Lei; Sang, Xuezi; Lin, Anan; Zhang, Chi; Zhao, Yue; Gui, Suxin; Sun, Qingqing; Wang, Ling; Hong, Fashui

    2014-06-01

    The widespread application of lanthanoids (Lns) in manufacturing industries has raised occupational and environmental health concerns about the possible increased health risks to humans exposed to Lns in their working and living environments. Numerous studies have shown that exposures to Ln cause pulmonary injury in animals, but very little is known about the molecular mechanisms of the pulmonary inflammation caused by cerium chloride (CeCl3) exposure. In this study, we evaluated the oxidative stress and molecular mechanism underlying with the pulmonary inflammation associated with chronic lung toxicity in mice treated with nasally instilled CeCl3 for 90 consecutive days. Our findings suggest that significant cerium accumulated in the lung, leading the obvious increase of the lung indices, significant increases in inflammatory cells and levels of lactate dehydrogenase, alkaline phosphate, and total protein, overproduction of reactive oxygen species and peroxidation of lipids, reduced antioxidant capacity, and pulmonary inflammation. CeCl3 exposure also activated nuclear factor κB, increased the expression of tumor necrosis factor α, cyclooxygenase-2, heme oxygenase 1, interleukin 2, interleukin 4, interleukin 6, interleukin 8, interleukin 10, interleukin 18, interleukin 1β, and CYP1A1. However, CeCl3 reduced the expression of nuclear factor κB (NF-κB)-inhibiting factor and heat shock protein 70. These findings suggest that the pulmonary inflammation caused by CeCl3 in mice is closely associated with oxidative stress and inflammatory cytokine expression.

  19. Titrimetric and Spectrophotometric Methods for the Assay of Ketotifen Using Cerium(IV) and Two Reagents

    PubMed Central

    Raghu, Madihalli Srinivas; Basavaiah, Kanakapura; Prashanth, Kudige Nagaraj; Vinay, Kanakapura Basavaiah

    2013-01-01

    One titrimetric and two spectrophotometric methods are described for the determination of ketotifen fumarate (KTF) in bulk drug and in tablets using cerium(IV) as the oxidimetric agent. In titrimetry (method A), the drug was treated with a measured excess of cerium(IV) in H2SO4 medium and after a standing time of 10 min, the surplus oxidant was determined by back titration with iron(II). The spectrophotometric procedures involve addition of a known excess of cerium(IV) to KTF in acid medium followed by the determination of unreacted oxidant by reacting with either p-dimethyl amino benzaldehyde and measuring the resulting colour at 460 nm (method B) or o-dianisidine and subsequent measurement of the absorbance of coloured product at 470 nm (method C). Titrimetric assay is based on a 1 : 2 reaction stoichiometry between KTF and cerium(IV) and the method is applicable over 2–18 mg range. In spectrophotometry, regression analysis of Beer's law plots showed a good correlation in 0.4–8.0 and 0.4–10.0 g mL−1 KTF ranges for method B and method C, respectively, and the corresponding molar absorptivity coefficients are calculated to be 4.0 × 104 and 3.7 × 104 L mol−1 cm−1. PMID:24324496

  20. Kinetics of thermal synthesis of cerium sulfides

    NASA Astrophysics Data System (ADS)

    Gibbard, Kevin B.; Allahar, Kerry N.; Kolman, David; Butt, Darryl P.

    2008-09-01

    One of the most promising applications for cerium sulfide is as a refractory for molten metal processing, particularly for reactive actinides. Separate processes were used to synthesize cerium monosulfide, cerium sesquisulfide (Ce 2S 3) and cerium hydride (CeH 2). High purity Ce 2S 3 was produced by reacting ceria (CeO 2) and hydrogen sulfide (H 2S) in an induction furnace using a carbon catalyst at temperatures above 2000 °C. CeH 2 was synthesized from cerium metal and hydrogen gas at 100 °C. Ce 2S 3 and CeH 2 were subsequently reacted together in an induction furnace at temperatures above 1700 °C to produce CeS. X-ray diffraction was used to analyze synthesized samples and the kinetics of the CeS synthesis reaction was modeled using a diffusion-limited reaction model. The activation energy for the process was estimated to be 190 kJ/mol.

  1. α-Radioactivity of cerium-142

    USGS Publications Warehouse

    Senftle, F.E.; Stern, T.W.; Alekna, V.P.

    1959-01-01

    JOHNSON AND NIER1 have measured the atomic masses of some of the rare-earth isotopes and have shown that the mass difference cerium-142—(barium-138 + helium-4) is equivalent to 1.68 ± 0.10 MeV. Similar results for the naturally occurring samarium and neodymium isotopes show that the α-active isotope of each element is the one having the largest possible decay energy. Rasmussen and others2 suggest that the two or three neutrons just beyond the closed shell of 82 neutrons have decreased binding energies and hence the α-energy has a maximum about 84 neutrons. Johnson and Nier suggest that the α-decay of cerium-142 may take place with enough energy to be experimentally observable. Porschen and Riezler3 examined a sample of un-enriched cerium ammonium citrate using nuclear track plates sensitive to α-particles. No α-activity was observed after a 30-day exposure of 1.2 mgm. of the cerium salt. In 1957 Riezler and Kauw4 reported an alpha activity for an enriched sample of cerium-142. From their results they calculated a half-life of 5.1 × 1015 years with an uncertainty factor of 2.

  2. EPDM composite membranes modified with cerium doped lead zirconate titanate

    NASA Astrophysics Data System (ADS)

    Zaharescu, T.; Dumitru, A.; Lungulescu, M. E.; Velciu, G.

    2016-01-01

    This study was performed on γ-irradiated ethylene-propylene diene terpolymer (EPDM) loaded with lead zirconate titanate. The inorganic phase has a perovskite structure with general formula Pb(Zr0.65-xCexTi0.35)O3. The three composites with different Ce dopant concentrations revealed the stabilization activity of filler against oxidation proved by chemiluminescence investigation in respect to pristine polymer. The presence of cerium low concentrations in the solid lead zirconate titanate nanoparticles causes significant slowing of oxidation rate during radiation exposure. The improvement in the stabilization feature of filler is correlated with the existence of traps, whose interaction with free radicals assumes medium energy due to their convenient depth.

  3. Cerium migration during PEM fuel cell accelerated stress testing

    DOE PAGES

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; ...

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humiditymore » cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.« less

  4. Cerium migration during PEM fuel cell accelerated stress testing

    SciTech Connect

    Baker, Andrew M.; Mukundan, Rangachary; Borup, Rodney L.; Spernjak, Dusan; Judge, Elizabeth J.; Advani, Suresh G.; Prasad, Ajay K.

    2016-01-01

    Cerium is a radical scavenger which improves polymer electrolyte membrane (PEM) fuel cell durability. During operation, however, cerium rapidly migrates in the PEM and into the catalyst layers (CLs). In this work, membrane electrode assemblies (MEAs) were subjected to accelerated stress tests (ASTs) under different humidity conditions. Cerium migration was characterized in the MEAs after ASTs using X-ray fluorescence. During fully humidified operation, water flux from cell inlet to outlet generated in-plane cerium gradients. Conversely, cerium profiles were flat during low humidity operation, where in-plane water flux was negligible, however, migration from the PEM into the CLs was enhanced. Humidity cycling resulted in both in-plane cerium gradients due to water flux during the hydration component of the cycle, and significant migration into the CLs. Fluoride and cerium emissions into effluent cell waters were measured during ASTs and correlated, which signifies that ionomer degradation products serve as possible counter-ions for cerium emissions. Fluoride emission rates were also correlated to final PEM cerium contents, which indicates that PEM degradation and cerium migration are coupled. Lastly, it is proposed that cerium migrates from the PEM due to humidification conditions and degradation, and is subsequently stabilized in the CLs by carbon catalyst supports.

  5. Divalent fluoride doped cerium fluoride scintillator

    DOEpatents

    Anderson, David F.; Sparrow, Robert W.

    1991-01-01

    The use of divalent fluoride dopants in scintillator materials comprising cerium fluoride is disclosed. The preferred divalent fluoride dopants are calcium fluoride, strontium fluoride, and barium fluoride. The preferred amount of divalent fluoride dopant is less than about two percent by weight of the total scintillator. Cerium fluoride scintillator crystals grown with the addition of a divalent fluoride have exhibited better transmissions and higher light outputs than crystals grown without the addition of such dopants. These scintillators are useful in radiation detection and monitoring applications, and are particularly well suited for high-rate applications such as positron emission tomography (PET).

  6. Near-road modeling and measurement of cerium-containing particles generated by nanoparticle diesel fuel additive use

    EPA Science Inventory

    Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impac...

  7. Near-road modeling and measurement of cerium-containing particles generated by nanoparticle diesel fuel additive use

    EPA Science Inventory

    Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impac...

  8. Cerium(III) and neodymium(III) complexes as scavengers of X/XO-derived superoxide radical.

    PubMed

    Kostova, Irena; Traykova, Maria

    2006-09-01

    The cerium (III) and neodymium (III) complexes with 3,3'-benzylidenebis[4-hydroxycoumarin] were synthesized and characterized by different analytical and spectral methods. The synthesis of these complexes is taken into consideration with cytotoxic screening and study of their antioxidant effect. Their cytotoxicity toward cancerous cell cultures correlated with the weakness of the coordinative bond between the cation and organic ligand and with the capability to scavenge superoxide radicals as well. On the basis of the data reported by us earlier and our new results, it was proposed that cerium (III) complex with 3,3'-benzylidenebis[4-hydroxycoumarin] might induce intracellular acidification along with control over the extracellular oxidative stress.

  9. Effect of Adding Cerium on Microstructure and Morphology of Ce-Based Inclusions Formed in Low-Carbon Steel

    PubMed Central

    Adabavazeh, Z.; Hwang, W. S.; Su, Y. H.

    2017-01-01

    Intra-granular Acicular Ferrite (IAF), as one of the most well-known desirable microstructure of ferrite with a chaotic crystallographic orientation, can not only refine the microstructure and retard the propagation of cleavage crack but also provide excellent combination of strength and toughness in steel. The effect of adding cerium on microstructure and controlling proper cerium-based inclusions in order to improve properties in low-carbon commercial steel (SS400) were investigated. The type of inclusions can be controlled by changing S/O ratio and Ce content. Without Ce modification, MnS is a dominate inclusion. After adding Ce, the stable inclusion phases change from AlCeO3 to Ce2O2S. The optimum amount of cerium, 0.0235 wt.%, lead in proper grain refinement and formation of cerium oxide, oxy-sulfide and sulfide inclusions. Having a high amount of cerium results in increasing the number of inclusions significantly as a result it cannot be effective enough and the inclusions will act like barriers for others. It is found that the inclusions with a size of about 4∼7 μm can serve as heterogeneous nucleation sites for AF formation. Thermodynamic calculations have been applied to predict the inclusion formation in this molten steel as well, which show a good agreement with experimental one. PMID:28485376

  10. Near-road modeling and measurement of cerium-containing particles generated by nanoparticle diesel fuel additive use.

    PubMed

    Gantt, Brett; Hoque, Shamia; Willis, Robert D; Fahey, Kathleen M; Delgado-Saborit, Juana Mari; Harrison, Roy M; Erdakos, Garnet B; Bhave, Prakash V; Zhang, K Max; Kovalcik, Kasey; Pye, Havala O T

    2014-09-16

    Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impacts, size-resolved measurements of particle composition and mass concentration have been performed in Newcastle-upon-Tyne, United Kingdom, where buses have used an nCe additive since 2005. These observations show that the noncrustal cerium fraction thought to be associated with the use of nCe has a mass concentration ∼ 0.3 ng m(-3) with a size distribution peaking at 100-320 nm in aerodynamic diameter. Simulations with a near-roadway multicomponent sectional aerosol dynamic model predict that the use of nCe additives increases the number concentration of nuclei mode particles (<50 nm in diameter) while decreasing the total mass concentration. The near-road model predicts a downwind mass size distribution of cerium-containing particles peaking at 150 nm in aerodynamic diameter, a value similar to that measured for noncrustal cerium in Newcastle. This work shows that both the emission and atmospheric transformation of cerium-containing particles needs to be taken into account by regional modelers, exposure scientists, and policymakers when determining potential environmental and human health impacts.

  11. Assessment of the abatement of acelsulfame K using cerium doped ZnO as photocatalyst.

    PubMed

    Calza, P; Gionco, C; Giletta, M; Kalaboka, M; Sakkas, V A; Albanis, T; Paganini, M C

    2017-02-05

    In the present study, we investigated the possibility to abate Acesulfame K, a persistent emerging contaminant, in aqueous media using zinc oxide based materials. For this purpose, bare and Ce-doped zinc oxide was prepared via an easy and cheap hydrothermal process using different cerium salts as precursors. Their photocatalytic performance was evaluated in different media, namely ultrapure and river water under both UV-vis and visible light. Commercial TiO2 P25 was also employed and used as a reference photocatalyst for comparison purposes. The obtained results pointed out that cerium doped zinc oxide composites exhibit higher performance than TiO2 P25, especially under visible light and in the presence of organic matter, when the activity of the latter is greatly depressed. In particular, ZnO doped with cerium (1%) was the most effective material, and could be a promising alternative to TiO2 P25, especially in the treatment of natural waters.

  12. Synthesis of cerium rich intermetallics using molten metal eutectics

    NASA Astrophysics Data System (ADS)

    Tucker, Patricia Christine

    Metal eutectic fluxes are useful for exploratory synthesis of new intermetallic phases. In this work the use of cerium/transition metal eutectics such as: Ce/Co, Ce/Ni, and Ce/Fe have yielded many new synthetically and magnetically complex phases. Structural units that were previously observed in phases grown in La/Ni eutectic reactions have also been observed in new structures and analogs grown from cerium/transition metal eutectics. These structural units include a main group element coordinated by 9 rare-earth atoms (such as the Al Ce9 clusters seen in Ce31.0(2)Fe11.8(5)Al6.5(6) B13C4), trigonal planar FeC3 units (also seen in Ce31.0(2)Fe11.8(5)Al6.5(6)B 13C4), iron clusters capped by light elements (Fe4C 6 frustrated tetrahedral in Ce21Fe8M7C 14, and larger Fe clusters in Ce33Fe14B25 C34). Variants of these building blocks were observed in Ce10Co2B7C16 with square Co units and chains of B and C connected to them, Fe2C8 units observed in Ce7Fe2C9, and FeC4 observed in Ce4FeGa0.85Al0.15C4 and Ce4FeAlC4. Two new phases were grown from Ce/Fe eutectic, Ce33Fe 14B25C34 and Ce33Fe13B 18C34 which exhibits very similar structures, but significantly different magnetic behavior. Structurally these two phases are similar. Both crystallize in the Im-3m space group, but differ by the centering of the Fe clusters. Ce33Fe14B25C34 contains Fe clusters centered by B atoms and Al doped on the Fe2 site. In Ce33Fe13B18C34, the Fe cluster is a perfect cuboctahedron. Ce33Fe14B25 C34 exhibits mixed valent behavior of cerium at 75K and no magnetic moment on iron, where-as Ce33Fe13B18C 34 exhibits tetravalent cerium and its iron clusters undergo a ferromagnetic transition at 180K. Another borocarbide, Ce10Co2B7C 16 was synthesized from Ce/Co eutectic flux. This structure features squares of Co surrounded by chains of C and B and a sea of cerium atoms. Temperature dependent magnetic susceptibility measurements at 1 Tesla were fit to a modified Curie-Weiss law and a moment per Ce was

  13. Study of cerium phase transitions in shock wave experiments

    NASA Astrophysics Data System (ADS)

    Zhernokletov, M. V.; Kovalev, A. E.; Komissarov, V. V.; Novikov, M. G.; Zocher, M. A.; Cherne, F. J.

    2011-02-01

    Cerium has a complex phase diagram that is explained by the presence of structural phase transitions. Experiments to measure the sound velocities in cerium by two methods were carried out to determine the onset of cerium melting on the Hugoniot. In the pressure range 4-37 GPa, the sound velocity in cerium samples was measured by the counter release method using manganin-based piezoresistive gauges. In the pressure range 35-140 GPa, the sound velocity in cerium was measured by the overtaking release method using carbogal and tetrachloromethane indicator liquids. The samples were loaded with plane shock wave generators using powerful explosive charges. The onset of cerium melting on the Hugoniot at a pressure of about 13 GPa has been ascertained from the measured elastic longitudinal and bulk sound velocities.

  14. Study of cerium phase transitions in shock wave experiments

    SciTech Connect

    Zhernokletov, M. V. Kovalev, A. E.; Komissarov, V. V.; Novikov, M. G.; Zocher, M. A. Cherne, F. J.

    2011-02-15

    Cerium has a complex phase diagram that is explained by the presence of structural phase transitions. Experiments to measure the sound velocities in cerium by two methods were carried out to determine the onset of cerium melting on the Hugoniot. In the pressure range 4-37 GPa, the sound velocity in cerium samples was measured by the counter release method using manganin-based piezoresistive gauges. In the pressure range 35-140 GPa, the sound velocity in cerium was measured by the overtaking release method using carbogal and tetrachloromethane indicator liquids. The samples were loaded with plane shock wave generators using powerful explosive charges. The onset of cerium melting on the Hugoniot at a pressure of about 13 GPa has been ascertained from the measured elastic longitudinal and bulk sound velocities.

  15. Influence of cerium on the pulsed UV nanosecond laser processing of photostructurable glass ceramic materials

    NASA Astrophysics Data System (ADS)

    Livingston, F. E.; Adams, P. M.; Helvajian, H.

    2005-07-01

    Photostructurable glass ceramic (PSGC) materials contain a sensitizer that is used to facilitate the optical exposure process. The primary role of the sensitizer is to absorb incident radiation and generate photoelectrons. With thermal treatment, these photoelectrons can then interact with nascent metal ions to induce the formation of metallic clusters and the precipitation of a soluble crystalline phase in the glass matrix. The photo-ionization efficiency of the sensitizer species is strongly dependent on its spectral absorption and oxidation state in the base glass. Stabilizing compounds are typically added to the glass matrix to maintain the photo-active oxidation state and promote efficient exposure. To investigate the effectiveness of the photo-initiator, we have conducted experiments in which sample coupons of a commercial PSGC material (Foturan™, Schott Corp., Germany) were carefully exposed to various photon doses by pulsed UV nanosecond lasers at λ = 266 nm and 355 nm. Foturan is a lithium aluminosilicate glass that contains trace amounts of cerium as the photosensitive agent (0.01-0.04 wt.% admixture Ce 2O 3). The photo-initiator efficiency was investigated by using samples with cerium and without cerium. The irradiation wavelengths were selected because they lie above and below the primary absorption band of the cerium photo-initiator. Optical transmission spectroscopy (OTS) was employed to identify and monitor the population density of the photo-induced trapped electron state as a function of incident laser irradiance. The irradiated samples were thermally processed and then analyzed again with OTS to measure the quenching of the trapped electron state and the concurrent growth of a spectral band associated with the formation of nanometer-scale metallic clusters. The growth of metallic clusters signifies the "fixing" of the exposure and permanent image formation in the glass. The OTS results reveal that for λ = 266 nm laser irradiation, at least two

  16. Thermochemical Modeling of the Uranium-Cerium-Oxygen System

    SciTech Connect

    Voit, Stewart L; Besmann, Theodore M

    2010-10-01

    The objective of the Fuel Cycle R&D Program, Advanced Fuels campaign is to provide the research and development necessary to develop low loss, high quality nuclear fuels for ultra-high burnup reactor operation. Primary work in this area will be focused on the ceramic and metallic fuel systems. The goal of the current work is to enhance the understanding of ceramic nuclear fuel thermochemistry to support fuel research and development efforts. The thermochemical behavior of oxide nuclear fuel under irradiation is dependent on the oxygen to metal ratio (O:M). In fluorite-structured fuel, the actinide metal cation is bonded with {approx}2 oxygen atoms on a crystal lattice and as the metal atoms fission, fission fragments and free oxygen are created. The resulting fission fragments will contain some oxide forming elements, however these are insufficient to bind to all the liberated oxygen and therefore, there is an average increase in O:M with fuel burnup. Some of the fission products also form species that will migrate to and react with the cladding surface in a phenomenon known as Fuel Clad Chemical Interaction (FCCI). Cladding corrosion is life-limiting so it is desirable to understand influencing factors, such as oxide thermochemistry, which can be used to guide the design and fabrication of higher burn up fuel. A phased oxide fuel thermochemical model development effort is underway within the Advanced Fuels Campaign. First models of binary oxide systems are developed. For nuclear fuel system this means U-O and transuranic systems such as Pu-O, Np-O and Am-O. Next, the binary systems will be combined to form pseudobinary systems such as U-Pu-O, etc. The model development effort requires the use of data to allow optimization based on known thermochemical parameters as a function of composition and temperature. Available data is mined from the literature and supplemented by experimental work as needed. Due to the difficulty of performing fuel fabrication development

  17. Gamma-alpha Isostructural Transition in Cerium

    SciTech Connect

    Lanata, Nicola; Yao, Yong-Xin; Wang, Cai-Zhuang; Ho, Kai-Ming; Schmalian, Jorg; Haule, Kristjan; Kotliar, Gabriel

    2013-11-05

    We present zero-temperature first-principles calculations of elemental cerium and we compute its pressure-volume phase diagram within a theoretical framework able to describe simultaneously both the α and the γ phases. A surprising result revealed by our study is the presence of a clear signature of the transition at zero temperature and that this signature can be observed if and only if the spin-orbit coupling is taken into account. Our calculations indicate that the transition line in the pressure-temperature phase diagram of this material has a low-T critical point at negative pressures, placed very close to zero temperature. This suggests that cerium is very close to being “quantum critical,” in agreement with recent experiments.

  18. Phonons of the anomalous element cerium

    PubMed Central

    Krisch, Michael; Farber, D. L.; Xu, R.; Antonangeli, Daniele; Aracne, C. M.; Beraud, Alexandre; Chiang, Tai-Chang; Zarestky, J.; Kim, Duck Young; Isaev, Eyvaz I.; Ahuja, Rajeev; Johansson, Börje

    2011-01-01

    Many physical and chemical properties of the light rare-earths and actinides are governed by the active role of f electrons, and despite intensive efforts the details of the mechanisms of phase stability and transformation are not fully understood. A prominent example which has attracted a lot of interest, both experimentally and theoretically over the years is the isostructural γ - α transition in cerium. We have determined by inelastic X-ray scattering, the complete phonon dispersion scheme of elemental cerium across the γ → α transition, and compared it with theoretical results using ab initio lattice dynamics. Several phonon branches show strong changes in the dispersion shape, indicating large modifications in the interactions between phonons and conduction electrons. This is reflected as well by the lattice Grüneisen parameters, particularly around the X point. We derive a vibrational entropy change , illustrating the importance of the lattice contribution to the transition. Additionally, we compare first principles calculations with the experiments to shed light on the mechanism underlying the isostructural volume collapse in cerium under pressure. PMID:21597000

  19. Atomic Transition Probabilities for Neutral Cerium

    NASA Astrophysics Data System (ADS)

    Lawler, J. E.; den Hartog, E. A.; Wood, M. P.; Nitz, D. E.; Chisholm, J.; Sobeck, J.

    2009-10-01

    The spectra of neutral cerium (Ce I) and singly ionized cerium (Ce II) are more complex than spectra of other rare earth species. The resulting high density of lines in the visible makes Ce ideal for use in metal halide (MH) High Intensity Discharge (HID) lamps. Inclusion of cerium-iodide in a lamp dose can improve both the Color Rendering Index and luminous efficacy of a MH-HID lamp. Basic spectroscopic data including absolute atomic transition probabilities for Ce I and Ce II are needed for diagnosing and modeling these MH-HID lamps. Recent work on Ce II [1] is now being augmented with similar work on Ce I. Radiative lifetimes from laser induced fluorescence measurements [2] on neutral Ce are being combined with emission branching fractions from spectra recorded using a Fourier transform spectrometer. A total of 14 high resolution spectra are being analyzed to determine branching fractions for 2000 to 3000 lines from 153 upper levels in neutral Ce. Representative data samples and progress to date will be presented. [4pt] [1] J. E. Lawler, C. Sneden, J. J. Cowan, I. I. Ivans, and E. A. Den Hartog, Astrophys. J. Suppl. Ser. 182, 51-79 (2009). [0pt] [2] E. A. Den Hartog, K. P. Buettner, and J. E. Lawler, J. Phys. B: Atomic, Molecular & Optical Physics 42, 085006 (7pp) (2009).

  20. Coupled redox transformations of catechol and cerium at the surface of a cerium(III) phosphate mineral

    NASA Astrophysics Data System (ADS)

    Cervini-Silva, Javiera; Gilbert, Benjamin; Fakra, Sirine; Friedlich, Stephan; Banfield, Jillian

    2008-05-01

    Highly insoluble Ce-bearing phosphate minerals form by weathering of apatite [Ca5(PO4)3.(OH,F,Cl)], and are important phosphorous repositories in soils. Although these phases can be dissolved via biologically-mediated pathways, the dissolution mechanisms are poorly understood. In this paper we report spectroscopic evidence to support coupling of redox transformations of organic carbon and cerium during the reaction of rhabdophane (CePO4·H2O) and catechol, a ubiquitous biogenic compound, at pH 5. Results show that the oxic-anoxic conditions influence the mineral dissolution behavior. Under anoxic conditions, the release of P and Ce occurs stoichiometrically. In contrast, under oxic conditions, the mineral dissolution behavior is incongruent, with dissolving Ce3+ ions oxidizing to CeO2. Reaction product analysis shows the formation of CO2, polymeric C, and oxalate and malate. The presence of more complex forms of organic carbon was also confirmed. Near edge X-ray absorption fine structure spectroscopy measurements at Ce-M4,5 and C-K absorption edges on reacted CePO4·H2O samples in the absence or presence of catechol and dissolved oxygen confirm that (1) the mineral surface converts to the oxide during this reaction, while full oxidation is limited to the near-surface region only; (2) the Ce valence remains unchanged when the reaction between CePO4·H2O and O2 but in the absence of catechol. Carbon K-edge spectra acquired from rhabdophane reacted with catechol under oxic conditions show spectral features before and after reaction that are considerably different from catechol, indicating the formation of more complex organic molecules. Decreases in intensity of characteristic catechol peaks are accompanied by the appearance of new π∗ resonances due to carbon in carboxyl (ca. 288.5 eV) and carbonyl (ca. 289.3 eV) groups, and the development of broad structure in the σ∗ region characteristic of aliphatic carbon. Evolution of the C K-edge spectra is consistent