Sample records for cern physics screen

  1. News Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2011-01-01

    Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

  2. CERN and high energy physics, the grand picture

    ScienceCinema

    Heuer, Rolf-Dieter

    2018-05-24

    The lecture will touch on several topics, to illustrate the role of CERN in the present and future of high-energy physics: how does CERN work? What is the role of the scientific community, of bodies like Council and SPC, and of international cooperation, in the definition of CERN's scientific programme? What are the plans for the future of the LHC and of the non-LHC physics programme? What is the role of R&D; and technology transfer at CERN?

  3. QM2017: Status and Key open Questions in Ultra-Relativistic Heavy-Ion Physics

    NASA Astrophysics Data System (ADS)

    Schukraft, Jurgen

    2017-11-01

    Almost exactly 3 decades ago, in the fall of 1986, the era of experimental ultra-relativistic E / m ≫ 1) heavy ion physics started simultaneously at the SPS at CERN and the AGS at Brookhaven with first beams of light Oxygen ions at fixed target energies of 200 GeV/A and 14.6 GeV/A, respectively. The event was announced by CERN [CERN's subatomic particle accelerators: Set up world-record in energy and break new ground for physics (CERN-PR-86-11-EN) (1986) 4 p, issued on 29 September 1986. URL (http://cds.cern.ch/record/855571)

  4. Hands on CERN: A Well-Used Physics Education Project

    ERIC Educational Resources Information Center

    Johansson, K. E.

    2006-01-01

    The "Hands on CERN" education project makes it possible for students and teachers to get close to the forefront of scientific research. The project confronts the students with contemporary physics at its most fundamental level with the help of particle collisions from the DELPHI particle physics experiment at CERN. It now exists in 14 languages…

  5. HIGH ENERGY PHYSICS: Bulgarians Sue CERN for Leniency.

    PubMed

    Koenig, R

    2000-10-13

    In cash-strapped Bulgaria, scientists are wondering whether a ticket for a front-row seat in high-energy physics is worth the price: Membership dues in CERN, the European particle physics lab, nearly equal the country's entire budget for competitive research grants. Faced with that grim statistic and a plea for leniency from Bulgaria's government, CERN's governing council is considering slashing the country's membership dues for the next 2 years.

  6. HIGH ENERGY PHYSICS: CERN Link Breathes Life Into Russian Physics.

    PubMed

    Stone, R

    2000-10-13

    Without fanfare, 600 Russian scientists here at CERN, the European particle physics laboratory, are playing key roles in building the Large Hadron Collider (LHC), a machine that will explore fundamental questions such as why particles have mass, as well as search for exotic new particles whose existence would confirm supersymmetry, a popular theory that aims to unify the four forces of nature. In fact, even though Russia is not one of CERN's 20 member states, most top high-energy physicists in Russia are working on the LHC. Some say their work could prove the salvation of high-energy physics back home.

  7. CERN launches high-school internship programme

    NASA Astrophysics Data System (ADS)

    Johnston, Hamish

    2017-07-01

    The CERN particle-physics lab has hosted 22 high-school students from Hungary in a pilot programme designed to show teenagers how science, technology, engineering and mathematics is used at the particle-physics lab.

  8. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    NASA Astrophysics Data System (ADS)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  9. News Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

    NASA Astrophysics Data System (ADS)

    2012-03-01

    Conference: Physics brings the community together Training: CERN trains physics teachers Education: World conference fosters physics collaborations Lecture: Physics education live at ASE Prize: Physics teacher wins first Moore medal Festival: European presidents patronize Science on Stage festival Videoconference: Videoconference brings Durban closer to the classroom

  10. Big Bang Day: The Making of CERN (Episode 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-06

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland. The institution was created to bring scientists together after WW2 .......

  11. Big Bang Day: The Making of CERN (Episode 1)

    ScienceCinema

    None

    2017-12-09

    A two-part history of the CERN project. Quentin Cooper explores the fifty-year history of CERN, the European particle physics laboratory in Switzerland. The institution was created to bring scientists together after WW2 .......

  12. Scaling the CERN OpenStack cloud

    NASA Astrophysics Data System (ADS)

    Bell, T.; Bompastor, B.; Bukowiec, S.; Castro Leon, J.; Denis, M. K.; van Eldik, J.; Fermin Lobo, M.; Fernandez Alvarez, L.; Fernandez Rodriguez, D.; Marino, A.; Moreira, B.; Noel, B.; Oulevey, T.; Takase, W.; Wiebalck, A.; Zilli, S.

    2015-12-01

    CERN has been running a production OpenStack cloud since July 2013 to support physics computing and infrastructure services for the site. In the past year, CERN Cloud Infrastructure has seen a constant increase in nodes, virtual machines, users and projects. This paper will present what has been done in order to make the CERN cloud infrastructure scale out.

  13. CERN welcomes new members

    NASA Astrophysics Data System (ADS)

    2017-08-01

    Lithuania is on course to become an associate member of CERN, pending final approval by the Lithuanian parliament. Associate membership will allow representatives of the Baltic nation to take part in meetings of the CERN Council, which oversees the Geneva-based physics lab.

  14. PARTICLE PHYSICS: CERN Gives Higgs Hunters Extra Month to Collect Data.

    PubMed

    Morton, O

    2000-09-22

    After 11 years of banging electrons and positrons together at higher energies than any other machine in the world, CERN, the European laboratory for particle physics, had decided to shut down the Large Electron-Positron collider (LEP) and install a new machine, the Large Hadron Collider (LHC), in its 27-kilometer tunnel. In 2005, the LHC will start bashing protons together at even higher energies. But tantalizing hints of a long-sought fundamental particle have forced CERN managers to grant LEP a month's reprieve.

  15. LHC@Home: a BOINC-based volunteer computing infrastructure for physics studies at CERN

    NASA Astrophysics Data System (ADS)

    Barranco, Javier; Cai, Yunhai; Cameron, David; Crouch, Matthew; Maria, Riccardo De; Field, Laurence; Giovannozzi, Massimo; Hermes, Pascal; Høimyr, Nils; Kaltchev, Dobrin; Karastathis, Nikos; Luzzi, Cinzia; Maclean, Ewen; McIntosh, Eric; Mereghetti, Alessio; Molson, James; Nosochkov, Yuri; Pieloni, Tatiana; Reid, Ivan D.; Rivkin, Lenny; Segal, Ben; Sjobak, Kyrre; Skands, Peter; Tambasco, Claudia; Veken, Frederik Van der; Zacharov, Igor

    2017-12-01

    The LHC@Home BOINC project has provided computing capacity for numerical simulations to researchers at CERN since 2004, and has since 2011 been expanded with a wider range of applications. The traditional CERN accelerator physics simulation code SixTrack enjoys continuing volunteers support, and thanks to virtualisation a number of applications from the LHC experiment collaborations and particle theory groups have joined the consolidated LHC@Home BOINC project. This paper addresses the challenges related to traditional and virtualized applications in the BOINC environment, and how volunteer computing has been integrated into the overall computing strategy of the laboratory through the consolidated LHC@Home service. Thanks to the computing power provided by volunteers joining LHC@Home, numerous accelerator beam physics studies have been carried out, yielding an improved understanding of charged particle dynamics in the CERN Large Hadron Collider (LHC) and its future upgrades. The main results are highlighted in this paper.

  16. Contextualized Magnetism in Secondary School: Learning from the LHC (CERN)

    ERIC Educational Resources Information Center

    Cid, Ramon

    2005-01-01

    Physics teachers in secondary schools usually mention the world's largest particle physics laboratory--CERN (European Organization for Nuclear Research)--only because of the enormous size of the accelerators and detectors used there, the number of scientists involved in their activities and also the necessary international scientific…

  17. CERN - Six Decades of Science, Innovation, Cooperation, and Inspiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quigg, Chris

    The European Laboratory for Particle Physics, which straddles the Swiss-French border northwest of Geneva, celebrates its sixtieth birthday in 2014 CERN is the preeminent particle-physics institution in the world, currently emphasizing the study of collisions of protons and heavy nuclei at very high energies and the exploration of physics on the electroweak scale (energies where electromagnetism and the weak nuclear force merge). With brilliant accomplishments in research, innovation, and education, and a sustained history of cooperation among people from different countries and cultures, CERN ranks as one of the signal achievements of the postwar European Project. For physicists the worldmore » over, the laboratory is a source of pride and inspiration.« less

  18. News Music: Here comes science that rocks Student trip: Two views of the future of CERN Classroom: Researchers can motivate pupils Appointment: AstraZeneca trust appoints new director Multimedia: Physics Education comes to YouTube Competition: Students compete in European Union Science Olympiad 2010 Physics roadshow: Pupils see wonders of physics

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Music: Here comes science that rocks Student trip: Two views of the future of CERN Classroom: Researchers can motivate pupils Appointment: AstraZeneca trust appoints new director Multimedia: Physics Education comes to YouTube Competition: Students compete in European Union Science Olympiad 2010 Physics roadshow: Pupils see wonders of physics

  19. News Festival: Science on stage deadline approaches Conference: Welsh conference attracts teachers Data: New phase of CERN openlab tackles exascale IT challenges for science Meeting: German Physical Society holds its physics education spring meeting Conference: Association offers golden opportunity in Norway Competition: So what's the right answer then?

    NASA Astrophysics Data System (ADS)

    2012-07-01

    Festival: Science on stage deadline approaches Conference: Welsh conference attracts teachers Data: New phase of CERN openlab tackles exascale IT challenges for science Meeting: German Physical Society holds its physics education spring meeting Conference: Association offers golden opportunity in Norway Competition: So what's the right answer then?

  20. Highlights from the CERN/ESO/NordForsk ''Gender in Physics Day''

    NASA Astrophysics Data System (ADS)

    Primas, F.; Guinot, G.; Strandberg, L.

    2017-03-01

    In their role as observers on the EU Gender Equality Network in the European Research Area (GENERA) project, funded under the Horizon 2020 framework, CERN, ESO and NordForsk joined forces and organised a Gender in Physics Day at the CERN Globe of Science and Innovation. The one-day conference aimed to examine innovative activities promoting gender equality, and to discuss gender-oriented policies and best practice in the European Research Area (with special emphasis on intergovernmental organisations), as well as the importance of building solid networks. The event was very well attended and was declared a success. The main highlights of the meeting are reported.

  1. Medical Applications at CERN and the ENLIGHT Network

    PubMed Central

    Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh

    2016-01-01

    State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN. PMID:26835422

  2. Medical Applications at CERN and the ENLIGHT Network.

    PubMed

    Dosanjh, Manjit; Cirilli, Manuela; Myers, Steve; Navin, Sparsh

    2016-01-01

    State-of-the-art techniques derived from particle accelerators, detectors, and physics computing are routinely used in clinical practice and medical research centers: from imaging technologies to dedicated accelerators for cancer therapy and nuclear medicine, simulations, and data analytics. Principles of particle physics themselves are the foundation of a cutting edge radiotherapy technique for cancer treatment: hadron therapy. This article is an overview of the involvement of CERN, the European Organization for Nuclear Research, in medical applications, with specific focus on hadron therapy. It also presents the history, achievements, and future scientific goals of the European Network for Light Ion Hadron Therapy, whose co-ordination office is at CERN.

  3. Software Aspects of IEEE Floating-Point Computations for Numerical Applications in High Energy Physics

    ScienceCinema

    Arnold, Jeffrey

    2018-05-14

    Floating-point computations are at the heart of much of the computing done in high energy physics. The correctness, speed and accuracy of these computations are of paramount importance. The lack of any of these characteristics can mean the difference between new, exciting physics and an embarrassing correction. This talk will examine practical aspects of IEEE 754-2008 floating-point arithmetic as encountered in HEP applications. After describing the basic features of IEEE floating-point arithmetic, the presentation will cover: common hardware implementations (SSE, x87) techniques for improving the accuracy of summation, multiplication and data interchange compiler options for gcc and icc affecting floating-point operations hazards to be avoided. About the speaker: Jeffrey M Arnold is a Senior Software Engineer in the Intel Compiler and Languages group at Intel Corporation. He has been part of the Digital->Compaq->Intel compiler organization for nearly 20 years; part of that time, he worked on both low- and high-level math libraries. Prior to that, he was in the VMS Engineering organization at Digital Equipment Corporation. In the late 1980s, Jeff spent 2½ years at CERN as part of the CERN/Digital Joint Project. In 2008, he returned to CERN to spent 10 weeks working with CERN/openlab. Since that time, he has returned to CERN multiple times to teach at openlab workshops and consult with various LHC experiments. Jeff received his Ph.D. in physics from Case Western Reserve University.

  4. Overview of LHC physics results at ICHEP

    ScienceCinema

    Mangano, Michelangelo

    2018-06-20

    This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar). For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  5. Overview of LHC physics results at ICHEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-02-25

     This month LHC physics day will review the physics results presented by the LHC experiments at the 2010 ICHEP in Paris. The experimental presentations will be preceeded by the bi-weekly LHC accelerator status report.The meeting will be broadcast via EVO (detailed info will appear at the time of the meeting in the "Video Services" item on the left menu bar)For those attending, information on accommodation, access to CERN and laptop registration is available from http://cern.ch/lpcc/visits

  6. HST at CERN an Amazing Adventure

    NASA Astrophysics Data System (ADS)

    Restivo, Evelyn

    2009-04-01

    The High School Teacher Program (HST) at the European Organization for Nuclear Research, CERN, in Geneva, Switzerland was initiated in 1998 by a group of scientists, as a multicultural international program designed to introduce high school physics teachers to high-energy physics. The goal of the program is to provide experiences and materials that will help teachers lead their students to a better understanding of the physical world. Interacting with physics teachers from around the world leads to new approaches for dealing with educational issues that all teachers encounter. The program includes a variety of tours, a series of lectures and classroom activities about the physics expected from the Large Hadron Collider.

  7. New directions in the CernVM file system

    NASA Astrophysics Data System (ADS)

    Blomer, Jakob; Buncic, Predrag; Ganis, Gerardo; Hardi, Nikola; Meusel, Rene; Popescu, Radu

    2017-10-01

    The CernVM File System today is commonly used to host and distribute application software stacks. In addition to this core task, recent developments expand the scope of the file system into two new areas. Firstly, CernVM-FS emerges as a good match for container engines to distribute the container image contents. Compared to native container image distribution (e.g. through the “Docker registry”), CernVM-FS massively reduces the network traffic for image distribution. This has been shown, for instance, by a prototype integration of CernVM-FS into Mesos developed by Mesosphere, Inc. We present a path for a smooth integration of CernVM-FS and Docker. Secondly, CernVM-FS recently raised new interest as an option for the distribution of experiment conditions data. Here, the focus is on improved versioning capabilities of CernVM-FS that allows to link the conditions data of a run period to the state of a CernVM-FS repository. Lastly, CernVM-FS has been extended to provide a name space for physics data for the LIGO and CMS collaborations. Searching through a data namespace is often done by a central, experiment specific database service. A name space on CernVM-FS can particularly benefit from an existing, scalable infrastructure and from the POSIX file system interface.

  8. Prospects for observation at CERN in NA62

    NASA Astrophysics Data System (ADS)

    Hahn, F.; NA62 Collaboration; Aglieri Rinella, G.; Aliberti, R.; Ambrosino, F.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Azhinenko, I.; Balev, S.; Bendotti, J.; Biagioni, A.; Biino, C.; Bizzeti, A.; Blazek, T.; Blik, A.; Bloch-Devaux, B.; Bolotov, V.; Bonaiuto, V.; Bragadireanu, M.; Britton, D.; Britvich, G.; Brook, N.; Bucci, F.; Butin, F.; Capitolo, E.; Capoccia, C.; Capussela, T.; Carassiti, V.; Cartiglia, N.; Cassese, A.; Catinaccio, A.; Cecchetti, A.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Chikilev, O.; Ciaranfi, R.; Collazuol, G.; Cooke, P.; Cooper, P.; Corradi, G.; Cortina Gil, E.; Costantini, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; Degrange, J.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Dixon, N.; Doble, N.; Duk, V.; Elsha, V.; Engelfried, J.; Enik, T.; Falaleev, V.; Fantechi, R.; Federici, L.; Fiorini, M.; Fry, J.; Fucci, A.; Fulton, L.; Gallorini, S.; Gatignon, L.; Gianoli, A.; Giudici, S.; Glonti, L.; Goncalves Martins, A.; Gonnella, F.; Goudzovski, E.; Guida, R.; Gushchin, E.; Hahn, F.; Hallgren, B.; Heath, H.; Herman, F.; Hutchcroft, D.; Iacopini, E.; Jamet, O.; Jarron, P.; Kampf, K.; Kaplon, J.; Karjavin, V.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khudyakov, A.; Kiryushin, Yu; Kleinknecht, K.; Kluge, A.; Koval, M.; Kozhuharov, V.; Krivda, M.; Kudenko, Y.; Kunze, J.; Lamanna, G.; Lazzeroni, C.; Leitner, R.; Lenci, R.; Lenti, M.; Leonardi, E.; Lichard, P.; Lietava, R.; Litov, L.; Lomidze, D.; Lonardo, A.; Lurkin, N.; Madigozhin, D.; Maire, G.; Makarov, A.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Massarotti, P.; Massri, K.; Matak, P.; Mazza, G.; Menichetti, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Morant, J.; Morel, M.; Moulson, M.; Movchan, S.; Munday, D.; Napolitano, M.; Newson, F.; Norton, A.; Noy, M.; Nuessle, G.; Obraztsov, V.; Padolski, S.; Page, R.; Palladino, V.; Pardons, A.; Pedreschi, E.; Pepe, M.; Perez Gomez, F.; Perrin-Terrin, M.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pietreanu, D.; Pinzino, J.; Pivanti, M.; Polenkevich, I.; Popov, I.; Potrebenikov, Yu; Protopopescu, D.; Raffaelli, F.; Raggi, M.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Russo, V.; Ryjov, V.; Salamon, A.; Salina, G.; Samsonov, V.; Santovetti, E.; Saracino, G.; Sargeni, F.; Schifano, S.; Semenov, V.; Sergi, A.; Serra, M.; Shkarovskiy, S.; Sotnikov, A.; Sougonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Staley, R.; Statera, M.; Sutcliffe, P.; Szilasi, N.; Tagnani, D.; Valdata-Nappi, M.; Valente, P.; Vasile, M.; Vassilieva, V.; Velghe, B.; Veltri, M.; Venditti, S.; Vormstein, M.; Wahl, H.; Wanke, R.; Wertelaers, P.; Winhart, A.; Winston, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.

    2015-07-01

    The rare decays are excellent processes to probe the Standard Model and indirectly search for new physics complementary to the direct LHC searches. The NA62 experiment at CERN SPS aims to collect and analyse O(1013) kaon decays before the CERN long-shutdown 2 (in 2018). This will allow to measure the branching ratio to a level of 10% accuracy. The experimental apparatus has been commissioned during a first run in autumn 2014.

  9. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

    PubMed

    Seife, C

    2000-07-14

    Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

  10. Physics in the Spotlight

    NASA Astrophysics Data System (ADS)

    2000-10-01

    CERN, ESA and ESO Put Physics On Stage [1] Summary Can you imagine how much physics is in a simple match of ping-pong, in throwing a boomerang, or in a musical concert? Physics is all around us and governs our lives. The World-Wide Web and mobile communication are only two examples of technologies that have rapidly found their way from science into the everyday life. [Go to Physics On Stage Website at CERN] But who is going to maintain these technologies and develop new ones in the future? Probably not young Europeans, as recent surveys show a frightening decline of interest in physics and technology among Europe's citizens, especially schoolchildren. Fewer and fewer young people enrol in physics courses at university. The project "Physics on Stage" tackles this problem head on. An international festival of 400 physics educators from 22 European countries [2] gather at CERN in Geneva from 6 to 10 November to show how fascinating and entertaining physics can be . In a week-long event innovative methods of teaching physics and demonstrations of the fun that lies in physics are presented in a fair, in 10 spectacular performances, and presentations. Workshops on 14 key themes will give the delegates - teachers, professors, artists and other physics educators - the chance to discuss and come up with solutions for the worrying situation of disenchantment with Science in Europe. The European Science and Technology Week 2000 "Physics on Stage" is a joint project organised by the European Organisation for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , Europe's leading physics research organisations. This is the first time that these three organisations have worked together in such close collaboration to catalyse a change in attitude towards science and technology education. Physics on Stage is funded in part by the European Commission and happens as an event in the European Science and Technology Week 2000, an initiative of the EC to raise public awareness of science and technology. Other partners are the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). European Commissioner Busquin to Visit Physics On Stage On Thursday, November 9, Philippe Busquin , Commissioner for Research, European Commission, Prof. Luciano Maiani , Director-General of CERN, Antonio Rodota , Director-General of ESA, Dr. Catherine Cesarsky , Director-General of ESO, and Dr. Achilleas Mitsos , Director-General of the Research DG in the European Commission, will participate in the activities of the Physics on Stage Festival. On this occasion, Commissioner Busquin will address conference delegates and the Media on the importance of Science and of innovative science and technology education. The Festival Each of the more than 400 delegates of the festival has been selected during the course of the year by committees in each of the 22 countries for outstanding projects promoting science. For example, a group of Irish physics teachers and their students will give a concert on instruments made exclusively of plumbing material, explaining the physics of sound at the same time. A professional theatre company from Switzerland stages a play on antimatter. Or two young Germans invite spectators to their interactive physics show where they juggle, eat fire and perform stunning physics experiments on stage. The colourful centrepiece of this week is the Physics Fair. Every country has its own stands where delegates show their projects, programmes or experiments and gain inspiration from the exhibits from other countries. Physics on Stage is a unique event. Nothing like it has ever happened in terms of international exchange, international collaboration and state of the art science and technology education methods. The Nobel prizewinners of 2030 are at school today. What ideas can Europe's teachers put forward to boost their interest in science? An invitation to the media We invite journalists to take part in this both politically and visually interesting event. We expect many useful results from this exchange of experience, there will a large choice of potential interview partners and of course uncountable images and impressions. Please fill in the form below and fax it back to CERN under +41 22 7850247. Go to the Webpage http://www.cern.ch/pos to find out all about Physics on Stage Festival at CERN. The main "Physics on Stage" web address is: http://www.estec.esa.nl/outreach/pos There is also a Physics On Stage webpage at ESO Notes [1] This is a joint Press Release by the European Organization for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO). [2] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute Particle Cosmology which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line.« less

  12. COSMO 09

    ScienceCinema

    None

    2018-02-13

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute Particle Cosmology which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line.

  13. CERN and 60 years of science for peace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuer, Rolf-Dieter, E-mail: Rolf.Heuer@cern.ch

    2015-02-24

    This paper presents CERN as it celebrates its 60{sup th} Anniversary since its founding. The presentation first discusses the mission of CERN and its role as an inter-governmental Organization. The paper also reviews aspects of the particle physics research programme, looking at both current and future accelerator-based facilities at the high-energy and intensity frontiers. Finally, the paper considers issues beyond fundamental research, such as capacity-building and the interface between Art and Science.

  14. CERN goes iconic

    NASA Astrophysics Data System (ADS)

    2017-06-01

    There are more than 1800 emoji that can be sent and received in text messages and e-mails. Now, the CERN particle-physics lab near Geneva has got in on the act and released its own collection of 35 images that can be used by anyone with an Apple device.

  15. OBITUARY: Maurice Jacob (1933 2007)

    NASA Astrophysics Data System (ADS)

    Quercigh, Emanuele; Šándor, Ladislav

    2008-04-01

    Maurice Jacob passed away on 2 May 2007. With his death, we have lost one of the founding fathers of the ultra-relativistic heavy ion programme. His interest in high-energy nuclear physics started in 1981 when alpha alpha collisions could first be studied in the CERN ISR. An enthusiastic supporter of ion beam experiments at CERN, Maurice was at the origin of the 1982 Quark Matter meeting in Bielefeld [1] which brought together more than 100 participants from both sides of the Atlantic, showing a good enthusiastic constituency for such research. There were twice as many the following year at Brookhaven. Finally in the mid-eighties, a heavy ion programme was approved both at CERN and at Brookhaven involving as many nuclear as particle physicists. It was the start of a fruitful interdisciplinary collaboration which is nowadays continuing both at RHIC and at LHC. Maurice followed actively the development of this field, reporting at a number of conferences and meetings (Les Arcs, Bielefeld, Beijing, Brookhaven, Lenox, Singapore, Taormina,...). This activity culminated in 2000, when Maurice, together with Ulrich Heinz, summarized the main results of the CERN SPS heavy-ion experiments and the evidence was obtained for a new state of matter [2]. Maurice was a brilliant theoretical physicist. His many contributions have been summarized in a recent article in the CERN Courier by two leading CERN theorists, John Ellis and Andre Martin [3]. The following is an excerpt from their article: `He began his research career at Saclay and, while still a PhD student, he continued brilliantly during a stay at Brookhaven. It was there in 1959 that Maurice, together with Giancarlo Wick, developed the helicity amplitude formalism that is the basis of many modern theoretical calculations. Maurice obtained his PhD in 1961 and, after a stay at Caltech, returned to Saclay. A second American foray was to SLAC, where he and Sam Berman made the crucial observation that the point-like structures (partons) seen in deep-inelastic scattering implied the existence of high-transverse-momentum processes in proton proton collisions, as the ISR at CERN subsequently discovered. In 1967 Maurice joined CERN, where he remained, apart from influential visits to Yale, Fermilab and elsewhere, until his retirement in 1998. He became one of the most respected international experts on the phenomenology of strong interactions, including diffraction, scaling, high-transverse-momentum processes and the formation of quark gluon plasma. In particular, he pioneered the studies of inclusive hadron-production processes, including scaling and its violations. Also, working with Ron Horgan, he made detailed predictions for the production of jets at CERN's proton antiproton collider. The UA2 and UA1 experiments subsequently discovered these. He was also interested in electron positron colliders, making pioneering calculations, together with Tai Wu, of radiation in high-energy collisions. Maurice was one of the scientific pillars of CERN, working closely with experimental colleagues in predicting and interpreting results from successive CERN colliders. He was indefatigable in organizing regular meetings on ISR physics, bringing together theorists and experimentalists to debate the meaning of new results and propose new measurements. He was one of the strongest advocates of Carlo Rubbia's proposal for a proton antiproton collider at CERN, and was influential in preparing and advertising its physics. In 1978 he organized the Les Houches workshop that brought the LEP project to the attention of the wider European particle physics community. He also organized the ECFA workshop at Lausanne in 1984 that made the first exploration of the possible physics of the LHC. It is a tragedy that Maurice has not lived to enjoy data from the LHC.' References [1] Maurice Jacob and Helmut Satz (eds) 1982 Proc. Workshop on Quark Matter Formation and Heavy Ion Collisions, Bielefeld, 10 14 May 1982 (Singapore: World Scientific Publishing) [2] Heinz Ulrich W and Jacob Maurice 2000 Evidence for a new state of matter: An assessment of the results from the CERN lead beam program. Preprint nucl-th/0002042 [3] Ellis J and Martin A 2007 CERN Courier 47 issue 6

  16. CERN: A European laboratory for a global project

    NASA Astrophysics Data System (ADS)

    Voss, Rüdiger

    2015-06-01

    In the most important shift of paradigm of its membership rules in 60 years, CERN in 2010 introduced a policy of “Geographical Enlargement” which for the first time opened the door for membership of non-European States in the Organization. This short article reviews briefly the history of CERN's membership rules, discusses the rationale behind the new policy, its relationship with the emerging global roadmap of particle physics, and gives a short overview of the status of the enlargement process.

  17. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP 2010)

    NASA Astrophysics Data System (ADS)

    Lin, Simon C.; Shen, Stella; Neufeld, Niko; Gutsche, Oliver; Cattaneo, Marco; Fisk, Ian; Panzer-Steindel, Bernd; Di Meglio, Alberto; Lokajicek, Milos

    2011-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held at Academia Sinica in Taipei from 18-22 October 2010. CHEP is a major series of international conferences for physicists and computing professionals from the worldwide High Energy and Nuclear Physics community, Computer Science, and Information Technology. The CHEP conference provides an international forum to exchange information on computing progress and needs for the community, and to review recent, ongoing and future activities. CHEP conferences are held at roughly 18 month intervals, alternating between Europe, Asia, America and other parts of the world. Recent CHEP conferences have been held in Prauge, Czech Republic (2009); Victoria, Canada (2007); Mumbai, India (2006); Interlaken, Switzerland (2004); San Diego, California(2003); Beijing, China (2001); Padova, Italy (2000) CHEP 2010 was organized by Academia Sinica Grid Computing Centre. There was an International Advisory Committee (IAC) setting the overall themes of the conference, a Programme Committee (PC) responsible for the content, as well as Conference Secretariat responsible for the conference infrastructure. There were over 500 attendees with a program that included plenary sessions of invited speakers, a number of parallel sessions comprising around 260 oral and 200 poster presentations, and industrial exhibitions. We thank all the presenters, for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Software Engineering, Data Stores, and Databases, Distributed Processing and Analysis, Computing Fabrics and Networking Technologies, Grid and Cloud Middleware, and Collaborative Tools. The conference included excursions to various attractions in Northern Taiwan, including Sanhsia Tsu Shih Temple, Yingko, Chiufen Village, the Northeast Coast National Scenic Area, Keelung, Yehliu Geopark, and Wulai Aboriginal Village, as well as two banquets held at the Grand Hotel and Grand Formosa Regent in Taipei. The next CHEP conference will be held in New York, the United States on 21-25 May 2012. We would like to thank the National Science Council of Taiwan, the EU ACEOLE project, commercial sponsors, and the International Advisory Committee and the Programme Committee members for all their support and help. Special thanks to the Programme Committee members for their careful choice of conference contributions and enormous effort in reviewing and editing about 340 post conference proceedings papers. Simon C Lin CHEP 2010 Conference Chair and Proceedings Editor Taipei, Taiwan November 2011 Track Editors/ Programme Committee Chair Simon C Lin, Academia Sinica, Taiwan Online Computing Track Y H Chang, National Central University, Taiwan Harry Cheung, Fermilab, USA Niko Neufeld, CERN, Switzerland Event Processing Track Fabio Cossutti, INFN Trieste, Italy Oliver Gutsche, Fermilab, USA Ryosuke Itoh, KEK, Japan Software Engineering, Data Stores, and Databases Track Marco Cattaneo, CERN, Switzerland Gang Chen, Chinese Academy of Sciences, China Stefan Roiser, CERN, Switzerland Distributed Processing and Analysis Track Kai-Feng Chen, National Taiwan University, Taiwan Ulrik Egede, Imperial College London, UK Ian Fisk, Fermilab, USA Fons Rademakers, CERN, Switzerland Torre Wenaus, BNL, USA Computing Fabrics and Networking Technologies Track Harvey Newman, Caltech, USA Bernd Panzer-Steindel, CERN, Switzerland Antonio Wong, BNL, USA Ian Fisk, Fermilab, USA Niko Neufeld, CERN, Switzerland Grid and Cloud Middleware Track Alberto Di Meglio, CERN, Switzerland Markus Schulz, CERN, Switzerland Collaborative Tools Track Joao Correia Fernandes, CERN, Switzerland Philippe Galvez, Caltech, USA Milos Lokajicek, FZU Prague, Czech Republic International Advisory Committee Chair: Simon C. Lin , Academia Sinica, Taiwan Members: Mohammad Al-Turany , FAIR, Germany Sunanda Banerjee, Fermilab, USA Dario Barberis, CERN & Genoa University/INFN, Switzerland Lothar Bauerdick, Fermilab, USA Ian Bird, CERN, Switzerland Amber Boehnlein, US Department of Energy, USA Kors Bos, CERN, Switzerland Federico Carminati, CERN, Switzerland Philippe Charpentier, CERN, Switzerland Gang Chen, Institute of High Energy Physics, China Peter Clarke, University of Edinburgh, UK Michael Ernst, Brookhaven National Laboratory, USA David Foster, CERN, Switzerland Merino Gonzalo, CIEMAT, Spain John Gordon, STFC-RAL, UK Volker Guelzow, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany John Harvey, CERN, Switzerland Frederic Hemmer, CERN, Switzerland Hafeez Hoorani, NCP, Pakistan Viatcheslav Ilyin, Moscow State University, Russia Matthias Kasemann, DESY, Germany Nobuhiko Katayama, KEK, Japan Milos Lokajícek, FZU Prague, Czech Republic David Malon, ANL, USA Pere Mato Vila, CERN, Switzerland Mirco Mazzucato, INFN CNAF, Italy Richard Mount, SLAC, USA Harvey Newman, Caltech, USA Mitsuaki Nozaki, KEK, Japan Farid Ould-Saada, University of Oslo, Norway Ruth Pordes, Fermilab, USA Hiroshi Sakamoto, The University of Tokyo, Japan Alberto Santoro, UERJ, Brazil Jim Shank, Boston University, USA Alan Silverman, CERN, Switzerland Randy Sobie , University of Victoria, Canada Dongchul Son, Kyungpook National University, South Korea Reda Tafirout , TRIUMF, Canada Victoria White, Fermilab, USA Guy Wormser, LAL, France Frank Wuerthwein, UCSD, USA Charles Young, SLAC, USA

  18. DG's New Year's presentation

    ScienceCinema

    Heuer, R.-D.

    2018-05-22

    CERN general staff meeting. Looking back at key messages: Highest priority: LHC physics in 2009; Increase diversity of the scientific program; Prepare for future projects; Establish open and direct communication; Prepare CERN towards a global laboratory; Increase consolidation efforts; Financial situation--tight; Knowledge and technology transfer--proactive; Contract policy and internal mobility--lessons learned.

  19. WorldWide Web: Hypertext from CERN.

    ERIC Educational Resources Information Center

    Nickerson, Gord

    1992-01-01

    Discussion of software tools for accessing information on the Internet focuses on the WorldWideWeb (WWW) system, which was developed at the European Particle Physics Laboratory (CERN) in Switzerland to build a worldwide network of hypertext links using available networking technology. Its potential for use with multimedia documents is also…

  20. News UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

    NASA Astrophysics Data System (ADS)

    2014-05-01

    UK public libraries offer walk-in access to research Atoms for Peace? The Atomic Weapons Establishment and UK universities Students present their research to academics: CERN@school Science in a suitcase: Marvin and Milo visit Ethiopia Inspiring telescopes A day for everyone teaching physics 2014 Forthcoming Events

  1. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-15

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.

  2. Experience with procuring, deploying and maintaining hardware at remote co-location centre

    NASA Astrophysics Data System (ADS)

    Bärring, O.; Bonfillou, E.; Clement, B.; Coelho Dos Santos, M.; Dore, V.; Gentit, A.; Grossir, A.; Salter, W.; Valsan, L.; Xafi, A.

    2014-05-01

    In May 2012 CERN signed a contract with the Wigner Data Centre in Budapest for an extension to CERN's central computing facility beyond its current boundaries set by electrical power and cooling available for computing. The centre is operated as a remote co-location site providing rack-space, electrical power and cooling for server, storage and networking equipment acquired by CERN. The contract includes a 'remote-hands' services for physical handling of hardware (rack mounting, cabling, pushing power buttons, ...) and maintenance repairs (swapping disks, memory modules, ...). However, only CERN personnel have network and console access to the equipment for system administration. This report gives an insight to adaptations of hardware architecture, procurement and delivery procedures undertaken enabling remote physical handling of the hardware. We will also describe tools and procedures developed for automating the registration, burn-in testing, acceptance and maintenance of the equipment as well as an independent but important change to the IT assets management (ITAM) developed in parallel as part of the CERN IT Agile Infrastructure project. Finally, we will report on experience from the first large delivery of 400 servers and 80 SAS JBOD expansion units (24 drive bays) to Wigner in March 2013. Changes were made to the abstract file on 13/06/2014 to correct errors, the pdf file was unchanged.

  3. PREFACE: Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009 Lectures from the CERN Winter School on Strings, Supergravity and Gauge Theories, CERN, 9-13 February 2009

    NASA Astrophysics Data System (ADS)

    Uranga, A. M.

    2009-11-01

    This special section is devoted to the proceedings of the conference `Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland 9-13 February 2009. This event is part of a yearly series of scientific schools, which represents a well established tradition. Previous events have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006, January 2007 and January 2008, and were funded by the European Mobility Research and Training Network `Constituents, Fundamental Forces and Symmetries of the Universe'. The next event will take place again at CERN, in January 2010. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in this special section, and six working group discussion sessions, focused on specific topics of the network research program. It was well attended by over 200 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years has been the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti de Sitter spacetimes with certain quantum (gauge) field theories. The duality has recently been applied to understanding the hydrodynamical properties of a hot plasma in gauge theories (like the quark-gluon plasma created in heavy ion collisions at the RHIC experiment at Brookhaven, and soon at the LHC at CERN) in terms of a dual gravitational AdS theory in the presence of a black hole. These developments were reviewed in the lecture notes by M Rangamani. In addition, the AdS/CFT duality has been proposed as a tool to study interesting physical properties in other physical systems described by quantum field theory, for instance in the context of a condensed matter system. The lectures by S Hartnoll provided an introduction to this recent development with an emphasis on the dual holographic description of superconductivity. Finally, ideas inspired by the AdS/CFT correspondence are yielding deep insights into fundamental questions of quantum gravity, like the entropy of black holes and its interpretation in terms of microstates. The lectures by S Mathur reviewed the black hole entropy and information paradox, and the proposal for its resolution in terms of `fuzzball' microstates. Further sets of lectures, not included in this special section, by F Zwirner and V Mukhanov, covered phenomenological aspects of high energy physics beyond the Standard Model and of cosmology. The coming experimental data in these two fields are expected to foster new developments in connecting string theory to the real world. The conference was financially supported by CERN and partially by the Arnold Sommerfeld Center for Theoretical Physics of the Ludwig Maximilians University of Munich. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. A M Uranga CERN, Switzerland Guest Editor

  4. More "Hands-On" Particle Physics: Learning with ATLAS at CERN

    ERIC Educational Resources Information Center

    Long, Lynne

    2011-01-01

    This article introduces teachers and students to a new portal of resources called Learning with ATLAS at CERN (http://learningwithatlas-portal.eu/), which has been developed by a European consortium of academic researchers and schools' liaison and outreach providers from countries across Europe. It includes the use of some of the mind-boggling…

  5. The FLUKA Code: An Overview

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Empl, A.; Fasso, A.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; hide

    2006-01-01

    FLUKA is a multipurpose Monte Carlo code which can transport a variety of particles over a wide energy range in complex geometries. The code is a joint project of INFN and CERN: part of its development is also supported by the University of Houston and NASA. FLUKA is successfully applied in several fields, including but not only, particle physics, cosmic ray physics, dosimetry, radioprotection, hadron therapy, space radiation, accelerator design and neutronics. The code is the standard tool used at CERN for dosimetry, radioprotection and beam-machine interaction studies. Here we give a glimpse into the code physics models with a particular emphasis to the hadronic and nuclear sector.

  6. The trigger system for K0→2 π0 decays of the NA48 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Mikulec, I.

    1998-02-01

    A fully pipelined 40 MHz "dead-time-free" trigger system for neutral K0 decays for the NA48 experiment at CERN is described. The NA48 experiment studies CP-violation using the high intensity beam of the CERN SPS accelerator. The trigger system sums, digitises, filters and processes signals from 13 340 channels of the liquid krypton electro-magnetic calorimeter. In 1996 the calorimeter and part of the trigger electronics were installed and tested. In 1997 the system was completed and prepared to be used in the first NA48 physics data taking period. Cagliari, Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warszawa, Wien Collaboration.

  7. Status and Roadmap of CernVM

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.

  8. A possible biomedical facility at the European Organization for Nuclear Research (CERN).

    PubMed

    Dosanjh, M; Jones, B; Myers, S

    2013-05-01

    A well-attended meeting, called "Brainstorming discussion for a possible biomedical facility at CERN", was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams.

  9. Radiation protection challenges in the management of radioactive waste from high-energy accelerators.

    PubMed

    Ulrici, Luisa; Algoet, Yvon; Bruno, Luca; Magistris, Matteo

    2015-04-01

    The European Laboratory for Particle Physics (CERN) has operated high-energy accelerators for fundamental physics research for nearly 60 y. The side-product of this activity is the radioactive waste, which is mainly generated as a result of preventive and corrective maintenance, upgrading activities and the dismantling of experiments or accelerator facilities. Prior to treatment and disposal, it is common practice to temporarily store radioactive waste on CERN's premises and it is a legal requirement that these storage facilities are safe and secure. Waste treatment typically includes sorting, segregation, volume and size reduction and packaging, which will depend on the type of component, its chemical composition, residual activity and possible surface contamination. At CERN, these activities are performed in a dedicated waste treatment centre under the supervision of the Radiation Protection Group. This paper gives an overview of the radiation protection challenges in the conception of a temporary storage and treatment centre for radioactive waste in an accelerator facility, based on the experience gained at CERN. The CERN approach consists of the classification of waste items into 'families' with similar radiological and physical-chemical properties. This classification allows the use of specific, family-dependent techniques for radiological characterisation and treatment, which are simultaneously efficient and compliant with best practices in radiation protection. The storage was planned on the basis of radiological and other possible hazards such as toxicity, pollution and fire load. Examples are given of technical choices for the treatment and radiological characterisation of selected waste families, which could be of interest to other accelerator facilities. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Comparison of electromagnetic and hadronic models generated using Geant 4 with antiproton dose measured in CERN.

    PubMed

    Tavakoli, Mohammad Bagher; Reiazi, Reza; Mohammadi, Mohammad Mehdi; Jabbari, Keyvan

    2015-01-01

    After proposing the idea of antiproton cancer treatment in 1984 many experiments were launched to investigate different aspects of physical and radiobiological properties of antiproton, which came from its annihilation reactions. One of these experiments has been done at the European Organization for Nuclear Research known as CERN using the antiproton decelerator. The ultimate goal of this experiment was to assess the dosimetric and radiobiological properties of beams of antiprotons in order to estimate the suitability of antiprotons for radiotherapy. One difficulty on this way was the unavailability of antiproton beam in CERN for a long time, so the verification of Monte Carlo codes to simulate antiproton depth dose could be useful. Among available simulation codes, Geant4 provides acceptable flexibility and extensibility, which progressively lead to the development of novel Geant4 applications in research domains, especially modeling the biological effects of ionizing radiation at the sub-cellular scale. In this study, the depth dose corresponding to CERN antiproton beam energy by Geant4 recruiting all the standard physics lists currently available and benchmarked for other use cases were calculated. Overall, none of the standard physics lists was able to draw the antiproton percentage depth dose. Although, with some models our results were promising, the Bragg peak level remained as the point of concern for our study. It is concluded that the Bertini model with high precision neutron tracking (QGSP_BERT_HP) is the best to match the experimental data though it is also the slowest model to simulate events among the physics lists.

  11. CERN@school: demonstrating physics with the Timepix detector

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Bithray, H.; Cook, J.; Coupe, A.; Eddy, D.; Fickling, R. L.; McKenna, J.; Parker, B.; Paul, A.; Shearer, N.

    2015-10-01

    This article shows how the Timepix hybrid silicon pixel detector, developed by the Medipix2 Collaboration, can be used by students and teachers alike to demonstrate some key aspects of any well-rounded physics curriculum with CERN@school. After an overview of the programme, the detector's capabilities for measuring and visualising ionising radiation are examined. The classification of clusters - groups of adjacent pixels - is discussed with respect to identifying the different types of particles. Three demonstration experiments - background radiation measurements, radiation profiles and the attenuation of radiation - are described; these can used as part of lessons or as inspiration for independent research projects. Results for exemplar data-sets are presented for reference, as well as details of ongoing research projects inspired by these experiments. Interested readers are encouraged to join the CERN@school Collaboration and so contribute to achieving the programme's aim of inspiring the next generation of scientists and engineers.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network Constituents, Fundamental Forces and Symmetries of the Universe. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva.« less

  13. Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Fields, CERN, 15 19 January 2007

    NASA Astrophysics Data System (ADS)

    Derendinger, J.-P.; Scrucca, C. A.; Uranga, A.

    2007-11-01

    This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 15 to the 19 of January 2007. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous conferences have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next will again take place at CERN, in January 2008. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, the notes of which are published in the present proceedings, and seven working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. String theory is a compelling candidate for a theory of all interactions. A basic challenge in this field is therefore to explore the connection of string theory models and the laws of physics in different realms, like high-energy particle physics, early cosmology, or physics of strongly coupled gauge theories. Concerning the exploration of string theory compactifications leading to realistic models of particle physics, one of the main obstacles in this direction is the proper understanding of supersymmetry breaking. The lecture notes by Nathan Seiberg review the realization of spontaneous breaking of supersymmetry in field theory, including recent developments via the use of meta-stable long-lived vacua. It is possible that such an understanding proves crucial in the realization of supersymmetry breaking in string theory. A second long-standing obstacle, which is being tackled with recent techniques, is moduli stabilization, namely the removal of unwanted massless scalar fields from string models. The present status of this problem, and its prospects of solution via the introduction of general sets of fluxes in the compactification space, were covered in the lectures by Brian Wecht. Application of these ideas to connect string theory to particle physics will require a good understanding of the experimental situation at the forthcoming collider LHC at CERN, and the detection tools for signals of new physics, as reviewed in the lectures by Joe Lykken (not covered in the present issue). Along a different line, the role of moduli fields in string theory is expected to provide a natural explanation of models of inflation, and thus of the origin of the cosmological evolution of our universe. The lecture notes by Cliff Burgess provide a review of big bang cosmology, inflation, and its possible explanation in terms of string theory constructions, including some of the most recent results in the field (these notes also appear in the proceedings of two other schools held in the same period). A surprising recent application of string theory is the description, via the ideas of holography and duality between string theories and gauge theories, of physical properties of quantum chromodynamics at high temperature. Indeed experimental data on the physical properties of the quark gluon plasma, produced in heavy ion collision at the RHIC experiment in Brookhaven (and soon at the LHC at CERN) can be recovered, at a semi-quantitative level, from computations in a string theory dual of the system. These applications are reviewed in the lectures by David Mateos. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructures that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. A special acknowledgement also goes to Denis Frank, for his very valuable help in preparing the conference web pages. Group photo

  14. The Proton Synchrotron (PS): At the Core of the CERN Accelerators

    NASA Astrophysics Data System (ADS)

    Cundy, Donald; Gilardoni, Simone

    The following sections are included: * Introduction * Extraction: Getting the Beam to Leave the Accelerator * Acceleration and Bunch Gymnastics * Boosting PS Beam Intensity * Capacitive Energy Storage Replaces Flywheel * Taking the Neutrinos by the Horns * OMEGA: Towards the Electronic Bubble Chamber * ISOLDE: Targeting a New Era in Nuclear Physics * The CERN n_TOF Facility: Catching Neutrons on the Fly * References

  15. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    ERIC Educational Resources Information Center

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  16. PREFACE: International Conference on Computing in High Energy and Nuclear Physics (CHEP 2012)

    NASA Astrophysics Data System (ADS)

    Ernst, Michael; Düllmann, Dirk; Rind, Ofer; Wong, Tony

    2012-12-01

    The International Conference on Computing in High Energy and Nuclear Physics (CHEP) was held at New York University on 21- 25 May 2012. CHEP is a major series of international conferences for physicists and computing professionals from the High Energy and Nuclear Physics community and related scientific and technical fields. The CHEP conference provides a forum to exchange information on computing progress and needs for the community, and to review recent, ongoing and future activities. CHEP conferences are held at roughly 18-month intervals, alternating between Europe, Asia, the Americas and other parts of the world. Recent CHEP conferences have been held in Taipei, Taiwan (2010); Prague, Czech Republic (2009); Victoria, Canada (2007); Mumbai, India (2006); Interlaken, Switzerland (2004); San Diego, United States (2003); Beijing, China (2001); Padova, Italy (2000). CHEP 2012 was organized by Brookhaven National Laboratory (BNL) and co-sponsored by New York University. The organizational structure for CHEP consists of an International Advisory Committee (IAC) which sets the overall themes of the conference, a Program Organizing Committee (POC) that oversees the program content, and a Local Organizing Committee (LOC) that is responsible for local arrangements (lodging, transportation and social events) and conference logistics (registration, program scheduling, conference site selection and conference proceedings). There were over 500 attendees with a program that included plenary sessions of invited speakers, a number of parallel sessions comprising around 125 oral and 425 poster presentations and industrial exhibitions. We thank all the presenters for the excellent scientific content of their contributions to the conference. Conference tracks covered topics on Online Computing, Event Processing, Distributed Processing and Analysis on Grids and Clouds, Computer Facilities, Production Grids and Networking, Software Engineering, Data Stores and Databases and Collaborative Tools. We would like to thank Brookhaven Science Associates, New York University, Blue Nest Events, the International Advisory Committee, the Program Committee and the Local Organizing Committee members for all their support and assistance. We also would like to acknowledge the support provided by the following sponsors: ACEOLE, Data Direct Networks, Dell, the European Middleware Initiative and Nexsan. Special thanks to the Program Committee members for their careful choice of conference contributions and enormous effort in reviewing and editing the conference proceedings. The next CHEP conference will be held in Amsterdam, the Netherlands on 14-18 October 2013. Conference Chair Michael Ernst (BNL) Program Committee Daniele Bonacorsi, University of Bologna, Italy Simone Campana, CERN, Switzerland Philippe Canal, Fermilab, United States Sylvain Chapeland, CERN, Switzerland Dirk Düllmann, CERN, Switzerland Johannes Elmsheuser, Ludwig Maximilian University of Munich, Germany Maria Girone, CERN, Switzerland Steven Goldfarb, University of Michigan, United States Oliver Gutsche, Fermilab, United States Benedikt Hegner, CERN, Switzerland Andreas Heiss, Karlsruhe Institute of Technology, Germany Peter Hristov, CERN, Switzerland Tony Johnson, SLAC, United States David Lange, LLNL, United States Adam Lyon, Fermilab, United States Remigius Mommsen, Fermilab, United States Axel Naumann, CERN, Switzerland Niko Neufeld, CERN, Switzerland Rolf Seuster, TRIUMF, Canada Local Organizing Committee Maureen Anderson, John De Stefano, Mariette Faulkner, Ognian Novakov, Ofer Rind, Tony Wong (BNL) Kyle Cranmer (NYU) International Advisory Committee Mohammad Al-Turany, GSI, Germany Lothar Bauerdick, Fermilab, United States Ian Bird, CERN, Switzerland Dominique Boutigny, IN2P3, France Federico Carminati, CERN, Switzerland Marco Cattaneo, CERN, Switzerland Gang Chen, Institute of High Energy Physics, China Peter Clarke, University of Edinburgh, United Kingdom Sridhara Dasu, University of Wisconsin-Madison, United States Günter Duckeck, Ludwig Maximilian University of Munich, Germany Richard Dubois, SLAC, United States Michael Ernst, BNL, United States Ian Fisk, Fermilab, United States Gonzalo Merino, PIC, Spain John Gordon, STFC-RAL, United Kingdom Volker Gülzow, DESY, Germany Frederic Hemmer, CERN, Switzerland Viatcheslav Ilyin, Moscow State University, Russia Nobuhiko Katayama, KEK, Japan Alexei Klimentov, BNL, United States Simon C. Lin, Academia Sinica, Taiwan Milos Lokajícek, FZU Prague, Czech Republic David Malon, ANL, United States Pere Mato Vila, CERN, Switzerland Mauro Morandin, INFN CNAF, Italy Harvey Newman, Caltech, United States Farid Ould-Saada, University of Oslo, Norway Ruth Pordes, Fermilab, United States Hiroshi Sakamoto, University of Tokyo, Japan Alberto Santoro, UERJ, Brazil Jim Shank, Boston University, United States Dongchul Son, Kyungpook National University, South Korea Reda Tafirout, TRIUMF, Canada Stephen Wolbers, Fermilab, United States Frank Wuerthwein, UCSD, United States

  17. The keys to CERN conference rooms - Managing local collaboration facilities in large organisations

    NASA Astrophysics Data System (ADS)

    Baron, T.; Domaracky, M.; Duran, G.; Fernandes, J.; Ferreira, P.; Gonzalez Lopez, J. B.; Jouberjean, F.; Lavrut, L.; Tarocco, N.

    2014-06-01

    For a long time HEP has been ahead of the curve in its usage of remote collaboration tools, like videoconference and webcast, while the local CERN collaboration facilities were somewhat behind the expected quality standards for various reasons. This time is now over with the creation by the CERN IT department in 2012 of an integrated conference room service which provides guidance and installation services for new rooms (either equipped for videoconference or not), as well as maintenance and local support. Managing now nearly half of the 246 meeting rooms available on the CERN sites, this service has been built to cope with the management of all CERN rooms with limited human resources. This has been made possible by the intensive use of professional software to manage and monitor all the room equipment, maintenance and activity. This paper focuses on presenting these packages, either off-the-shelf commercial products (asset and maintenance management tool, remote audio-visual equipment monitoring systems, local automation devices, new generation touch screen interfaces for interacting with the room) when available or locally developed integration and operational layers (generic audio-visual control and monitoring framework) and how they help overcoming the challenges presented by such a service. The aim is to minimise local human interventions while preserving the highest service quality and placing the end user back in the centre of this collaboration platform.

  18. Dissemination of data measured at the CERN n_TOF facility

    NASA Astrophysics Data System (ADS)

    Dupont, E.; Otuka, N.; Cabellos, O.; Aberle, O.; Aerts, G.; Altstadt, S.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Badurek, G.; Balibrea, J.; Barbagallo, M.; Barros, S.; Baumann, P.; Bécares, V.; Bečvář, F.; Beinrucker, C.; Belloni, F.; Berthier, B.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brown, A.; Brugger, M.; Caamaño, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Capote, R.; Cardella, R.; Carrapiço, C.; Casanovas, A.; Castelluccio, D. M.; Cennini, P.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Couture, A.; Cox, J.; Damone, L. A.; David, S.; Deo, K.; Diakaki, M.; Dillmann, I.; Domingo-Pardo, C.; Dressler, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Fernández-Domínguez, B.; Ferrant, L.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Fraval, K.; Frost, R. J. W.; Fujii, K.; Furman, W.; Ganesan, S.; Garcia, A. R.; Gawlik, A.; Gheorghe, I.; Gilardoni, S.; Giubrone, G.; Glodariu, T.; Göbel, K.; Gomez-Hornillos, M. B.; Goncalves, I. F.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Haight, R.; Harada, H.; Heftrich, T.; Heil, M.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Igashira, M.; Isaev, S.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Kaeppeler, F.; Kalamara, A.; Karadimos, D.; Karamanis, D.; Katabuchi, T.; Kavrigin, P.; Kerveno, M.; Ketlerov, V.; Khryachkov, V.; Kimura, A.; Kivel, N.; Kokkoris, M.; Konovalov, V.; Krtička, M.; Kroll, J.; Kurtulgil, D.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Naour, C. Le; Lerendegui-Marco, J.; Leong, L. S.; Licata, M.; Meo, S. Lo; Lonsdale, S. J.; Losito, R.; Lozano, M.; Macina, D.; Manousos, A.; Marganiec, J.; Martinez, T.; Marrone, S.; Masi, A.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Matteucci, F.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Montesano, S.; Moreau, C.; Mosconi, M.; Musumarra, A.; Negret, A.; Nolte, R.; O'Brien, S.; Oprea, A.; Palomo-Pinto, F. R.; Pancin, J.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perkowski, J.; Perrot, L.; Pigni, M. T.; Plag, R.; Plompen, A.; Plukis, L.; Poch, A.; Porras, I.; Praena, J.; Pretel, C.; Quesada, J. M.; Radeck, D.; Rajeev, K.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M.; Roman, F.; Rout, P. C.; Rudolf, G.; Rubbia, C.; Rullhusen, P.; Ryan, J. A.; Sabaté-Gilarte, M.; Salgado, J.; Santos, C.; Sarchiapone, L.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Stephan, C.; Suryanarayana, S. V.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Villamarin, D.; Vicente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Wallner, A.; Walter, S.; Ware, T.; Warren, S.; Weigand, M.; Weiß, C.; Wolf, C.; Wiesher, M.; Wisshak, K.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    The n_TOF neutron time-of-flight facility at CERN is used for high quality nuclear data measurements from thermal energy up to hundreds of MeV. In line with the CERN open data policy, the n_TOF Collaboration takes actions to preserve its unique data, facilitate access to them in standardised format, and allow their re-use by a wide community in the fields of nuclear physics, nuclear astrophysics and various nuclear technologies. The present contribution briefly describes the n_TOF outcomes, as well as the status of dissemination and preservation of n_TOF final data in the international EXFOR library.

  19. Preparation of a primary argon beam for the CERN fixed target physics.

    PubMed

    Küchler, D; O'Neil, M; Scrivens, R; Thomae, R

    2014-02-01

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar(11+) beam from the 14.5 GHz ECR ion source and the linear accelerator (Linac3) at CERN.

  20. Quantum Optics, Diffraction Theory, and Elementary Particle Physics

    ScienceCinema

    Glauber, Roy

    2018-05-22

    Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.

  1. Protocols for Scholarly Communication

    NASA Astrophysics Data System (ADS)

    Pepe, A.; Yeomans, J.

    2007-10-01

    CERN, the European Organization for Nuclear Research, has operated an institutional preprint repository for more than 10 years. The repository contains over 850,000 records of which more than 450,000 are full-text OA preprints, mostly in the field of particle physics, and it is integrated with the library's holdings of books, conference proceedings, journals and other grey literature. In order to encourage effective propagation and open access to scholarly material, CERN is implementing a range of innovative library services into its document repository: automatic keywording, reference extraction, collaborative management tools and bibliometric tools. Some of these services, such as user reviewing and automatic metadata extraction, could make up an interesting testbed for future publishing solutions and certainly provide an exciting environment for e-science possibilities. The future protocol for scientific communication should guide authors naturally towards OA publication, and CERN wants to help reach a full open access publishing environment for the particle physics community and related sciences in the next few years.

  2. NA61/SHINE facility at the CERN SPS: beams and detector system

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bogusz, M.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Christakoglou, P.; Cirkovic, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Efthymiopoulos, I.; Ereditato, A.; Fabich, A.; Feofilov, G. A.; Fodor, Z.; Fulop, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivashkin, A.; Jokovic, D.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kielczewska, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Koversarski, P.; Kowalski, S.; Krasnoperov, A.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A. I.; Maletic, D.; Manglunki, D.; Manic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messina, M.; Mrówczyński, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A. D.; Paul, T.; Peryt, W.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Pluta, J.; Popov, B. A.; Posiadala, M.; Puławski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Was, E.; Robert, A.; Röhrich, D.; Rondio, E.; Rossi, B.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczyński, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Schmidt, K.; Sekiguchi, T.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Sipos, R.; Skrzypczak, E.; Słodkowski, M.; Sosin, Z.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarz, A.; Wyszyński, O.; Zambelli, L.; Zipper, W.

    2014-06-01

    NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a multi-purpose experimental facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN Super Proton Synchrotron. It recorded the first physics data with hadron beams in 2009 and with ion beams (secondary 7Be beams) in 2011. NA61/SHINE has greatly profited from the long development of the CERN proton and ion sources and the accelerator chain as well as the H2 beamline of the CERN North Area. The latter has recently been modified to also serve as a fragment separator as needed to produce the Be beams for NA61/SHINE. Numerous components of the NA61/SHINE set-up were inherited from its predecessors, in particular, the last one, the NA49 experiment. Important new detectors and upgrades of the legacy equipment were introduced by the NA61/SHINE Collaboration. This paper describes the state of the NA61/SHINE facility — the beams and the detector system — before the CERN Long Shutdown I, which started in March 2013.

  3. Preparation of a primary argon beam for the CERN fixed target physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchler, D., E-mail: detlef.kuchler@cern.ch; O’Neil, M.; Scrivens, R.

    2014-02-15

    The fixed target experiment NA61 in the North Area of the Super Proton Synchrotron is studying phase transitions in strongly interacting matter. Up to now they used the primary beams available from the CERN accelerator complex (protons and lead ions) or fragmented beams created from the primary lead ion beam. To explore a wider range of energies and densities a request was made to provide primary argon and xenon beams. This paper describes the results of the setting up and 10 week test run of the Ar{sup 11+} beam from the 14.5 GHz ECR ion source and the linear acceleratormore » (Linac3) at CERN.« less

  4. Deployment and Operational Experiences with CernVM-FS at the GridKa Tier-1 Center

    NASA Astrophysics Data System (ADS)

    Alef, Manfred; Jäger, Axel; Petzold and, Andreas; Verstege, Bernhard

    2012-12-01

    In 2012 the GridKa Tier-1 computing center hosts 130 kHS06 computing resources and 14PB disk and 17PB tape space. These resources are shared between the four LHC VOs and a number of national and international VOs from high energy physics and other sciences. CernVM-FS has been deployed at GridKa to supplement the existing NFS-based system to access VO software on the worker nodes. It provides a solution tailored to the requirement of the LHC VOs. We will focus on the first operational experiences and the monitoring of CernVM-FS on the worker nodes and the squid caches.

  5. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    McAllister, Liam

    2018-05-14

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  6. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-22

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  7. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-06-28

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  8. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-23

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  9. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2017-12-09

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  10. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    McAllister, Liam

    2018-05-24

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher

  11. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    Sen, Ashoke

    2018-04-27

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.

  12. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-05-23

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  13. News

    NASA Astrophysics Data System (ADS)

    2003-07-01

    Meetings: Physics Teachers@CERN 2003 Education Group Annual Conference: Observations by a first-time participant... Summer Workshop: Making Music Competition: Physics in the fast lane Bristol Festival of Physics: Ice cream ice-breakers Online Resources: Old favourites go online UK Curriculum: What does society want? UK Curriculum: Assessment of Science Learning 14-19 Forthcoming Events

  14. The Education and Outreach Project of ATLAS--A New Participant in Physics Education

    ERIC Educational Resources Information Center

    Barnett, R. Michael; Johansson, K. Erik

    2006-01-01

    The ATLAS experiment at the Large Hadron Collider at CERN has a substantial collaborative Education and Outreach project. This article describes its activities and how it promotes physics to students around the world.

  15. X International Conference on Kaon Physics

    NASA Astrophysics Data System (ADS)

    2017-01-01

    The International Conference on Kaon Physics 2016 took place at the University of Birmingham (United Kingdom) on 14-17 September 2016. This conference continued the KAON series, offering an opportunity for theorists and experimentalists from the high-energy physics community to discuss all aspects of kaon physics. The 2016 edition saw a strong participation from theory and phenomenology and the first kaon results from the LHCb experiment at CERN, as well as updates from several experiments around the world including NA62 and KOTO. All papers published in this volume of KAON2016 have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. The organizers and the participants wish to thank the University of Birmingham, the European Research Council, CERN, the UK Science and Technology Facility Council and the UK Institute for Particle Physics Phenomenology for their support in the organization of this successful edition. Figure for summary

  16. Planck 2010

    ScienceCinema

    None

    2017-12-09

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.

  17. Lead ions and Coulomb’s Law at the LHC (CERN)

    NASA Astrophysics Data System (ADS)

    Cid-Vidal, Xabier; Cid, Ramon

    2018-03-01

    Although for most of the time the Large Hadron Collider (LHC) at CERN collides protons, for around one month every year lead ions are collided, to expand the diversity of the LHC research programme. Furthermore, in an effort not originally foreseen, proton-lead collisions are also taking place, with results of high interest to the physics community. All the large experiments of the LHC have now joined the heavy-ion programme, including the LHCb experiment, which was not at first expected to be part of it. The aim of this article is to introduce a few simple physical calculations relating to some electrical phenomena that occur when lead-ion bunches are running in the LHC, using Coulomb’s Law, to be taken to the secondary school classroom to help students understand some important physical concepts.

  18. International Workshop on Linear Colliders 2010

    ScienceCinema

    Lebrun, Ph.

    2018-06-20

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland). This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN.

  19. CERN: A global project

    NASA Astrophysics Data System (ADS)

    Voss, Rüdiger

    2017-07-01

    In the most important shift of paradigm of its membership rules in 60 years, CERN in 2010 introduced a policy of “Geographical Enlargement” which for the first time opened the door for membership of non-European States in the Organization. This short article reviews briefly the history of CERN’s membership rules, discusses the rationale behind the new policy, its relationship with the emerging global roadmap of particle physics, and gives a short overview of the status of the enlargement process.

  20. International Workshop on Linear Colliders 2010

    ScienceCinema

    Yamada, Sakue

    2018-05-24

    IWLC2010 International Workshop on Linear Colliders 2010ECFA-CLIC-ILC joint meeting: Monday 18 October - Friday 22 October 2010Venue: CERN and CICG (International Conference Centre Geneva, Switzerland) This year, the International Workshop on Linear Colliders organized by the European Committee for Future Accelerators (ECFA) will study the physics, detectors and accelerator complex of a linear collider covering both CLIC and ILC options. Contact Workshop Secretariat  IWLC2010 is hosted by CERN

  1. A possible biomedical facility at the European Organization for Nuclear Research (CERN)

    PubMed Central

    Dosanjh, M; Myers, S

    2013-01-01

    A well-attended meeting, called “Brainstorming discussion for a possible biomedical facility at CERN”, was held by the European Organization for Nuclear Research (CERN) at the European Laboratory for Particle Physics on 25 June 2012. This was concerned with adapting an existing, but little used, 78-m circumference CERN synchrotron to deliver a wide range of ion species, preferably from protons to at least neon ions, with beam specifications that match existing clinical facilities. The potential extensive research portfolio discussed included beam ballistics in humanoid phantoms, advanced dosimetry, remote imaging techniques and technical developments in beam delivery, including gantry design. In addition, a modern laboratory for biomedical characterisation of these beams would allow important radiobiological studies, such as relative biological effectiveness, in a dedicated facility with standardisation of experimental conditions and biological end points. A control photon and electron beam would be required nearby for relative biological effectiveness comparisons. Research beam time availability would far exceed that at other facilities throughout the world. This would allow more rapid progress in several biomedical areas, such as in charged hadron therapy of cancer, radioisotope production and radioprotection. The ethos of CERN, in terms of open access, peer-reviewed projects and governance has been so successful for High Energy Physics that application of the same to biomedicine would attract high-quality research, with possible contributions from Europe and beyond, along with potential new funding streams. PMID:23549990

  2. Across Europe to CERN: Taking students on the ultimate physics experience

    NASA Astrophysics Data System (ADS)

    Wheeler, Sam

    2018-05-01

    In 2013, I was an Einstein Fellow with the U.S. Department of Energy and I was asked by a colleague, working in a senator's office, if I would join him in a meeting with a physicist to "translate" the science into something more understandable. That meeting turned out to be a wonderful opportunity I would never have otherwise had. During the meeting I met Michael Tuts, a physicist who was working on project ATLAS at CERN. Afterwards, I walked with him out of the Senate office building to Union Station and, in parting, he gave me his card and told me that if I were in Geneva that he could help me get a tour of CERN and the LHC.

  3. Underground neutrino detectors for particle and astroparticle Science: The Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER)

    NASA Astrophysics Data System (ADS)

    Rubbia, André

    2009-06-01

    The current focus of the CERN program is the Large Hadron Collider (LHC), however, CERN is engaged in long baseline neutrino physics with the CNGS project and supports T2K as recognized CERN RE13, and for good reasons: a number of observed phenomena in high-energy physics and cosmology lack their resolution within the Standard Model of particle physics; these puzzles include the origin of neutrino masses, CP-violation in the leptonic sector, and baryon asymmetry of the Universe. They will only partially be addressed at LHC. A positive measurement of sin2 2θ13 > 0.01 would certainly give a tremendous boost to neutrino physics by opening the possibility to study CP violation in the lepton sector and the determination of the neutrino mass hierarchy with upgraded conventional super-beams. These experiments (so called 'Phase II') require, in addition to an upgraded beam power, next generation very massive neutrino detectors with excellent energy resolution and high detection efficiency in a wide neutrino energy range, to cover 1st and 2nd oscillation maxima, and excellent particle identification and p0 background suppression. Two generations of large water Cherenkov detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely successful. And there are good reasons to consider a third generation water Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande for both non-accelerator (proton decay, supernovae,...) and accelerator-based physics. On the other hand, a very massive underground liquid Argon detector of about 100 kton could represent a credible alternative for the precision measurements of 'Phase II' and aim at significantly new results in neutrino astroparticle and non-accelerator-based particle physics (e.g. proton decay).

  4. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    Sen, Ashoke

    2017-12-18

    Part 7.The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  5. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    ScienceCinema

    None

    2018-02-09

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental InteractionS". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher

  6. CERN Winter School on Supergravity, Strings, and Gauge Theory 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-22

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  7. CERN@school: bringing CERN into the classroom

    NASA Astrophysics Data System (ADS)

    Whyntie, T.; Cook, J.; Coupe, A.; Fickling, R. L.; Parker, B.; Shearer, N.

    2016-04-01

    CERN@school brings technology from CERN into the classroom to aid with the teaching of particle physics. It also aims to inspire the next generation of physicists and engineers by giving participants the opportunity to be part of a national collaboration of students, teachers and academics, analysing data obtained from detectors based on the ground and in space to make new, curiosity-driven discoveries at school. CERN@school is based around the Timepix hybrid silicon pixel detector developed by the Medipix 2 Collaboration, which features a 300 μm thick silicon sensor bump-bonded to a Timepix readout ASIC. This defines a 256-by-256 grid of pixels with a pitch of 55 μm, the data from which can be used to visualise ionising radiation in a very accessible way. Broadly speaking, CERN@school consists of a web portal that allows access to data collected by the Langton Ultimate Cosmic ray Intensity Detector (LUCID) experiment in space and the student-operated Timepix detectors on the ground; a number of Timepix detector kits for ground-based experiments, to be made available to schools for both teaching and research purposes; and educational resources for teachers to use with LUCID data and detector kits in the classroom. By providing access to cutting-edge research equipment, raw data from ground and space-based experiments, CERN@school hopes to provide the foundation for a programme that meets the many of the aims and objectives of CERN and the project's supporting academic and industrial partners. The work presented here provides an update on the status of the programme as supported by the UK Science and Technology Facilities Council (STFC) and the Royal Commission for the Exhibition of 1851. This includes recent results from work with the GridPP Collaboration on using grid resources with schools to run GEANT4 simulations of CERN@school experiments.

  8. CERN at 60: giant magnet journeys through Geneva

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2014-07-01

    More than 30,000 people descended onto Geneva's harbour last month to celebrate the bicentenary of the city's integration into Switzerland with a parade through the city. Joining the 1200 participants at the Genève200 celebrations were staff from the CERN particle-physics lab, which is located on the outskirts of Geneva, who paraded a superconducting dipole magnet - similar to the thousands used in the Large Hadron Collider - through the city's narrow streets on a 20 m lorry.

  9. Prospects for K+ →π+ ν ν ‾ observation at CERN in NA62

    NASA Astrophysics Data System (ADS)

    Khoriauli, G.; Aglieri Rinella, G.; Aliberti, R.; Ambrosino, F.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Azhinenko, I.; Balev, S.; Bendotti, J.; Biagioni, A.; Biino, C.; Bizzeti, A.; Blazek, T.; Blik, A.; Bloch-Devaux, B.; Bolotov, V.; Bonaiuto, V.; Bragadireanu, M.; Britton, D.; Britvich, G.; Bucci, F.; Butin, F.; Capitolo, E.; Capoccia, C.; Capussela, T.; Carassiti, V.; Cartiglia, N.; Cassese, A.; Catinaccio, A.; Cecchetti, A.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Checcucci, B.; Chikilev, O.; Ciaranfi, R.; Collazuol, G.; Conovaloff, A.; Cooke, P.; Cooper, P.; Corradi, G.; Cortina Gil, E.; Costantini, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; Degrange, J.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Dixon, N.; Doble, N.; Duk, V.; Elsha, V.; Engelfried, J.; Enik, T.; Falaleev, V.; Fantechi, R.; Fascianelli, V.; Federici, L.; Fiorini, M.; Fry, J.; Fucci, A.; Fulton, L.; Gallorini, S.; Gamberini, E.; Gatignon, L.; Georgiev, G.; Gianoli, A.; Giorgi, M.; Giudici, S.; Glonti, L.; Goncalves Martins, A.; Gonnella, F.; Goudzovski, E.; Guida, R.; Gushchin, E.; Hahn, F.; Hallgren, B.; Heath, H.; Herman, F.; Hutchcroft, D.; Iacopini, E.; Imbergamo, E.; Jamet, O.; Jarron, P.; Kampf, K.; Kaplon, J.; Karjavin, V.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khudyakov, A.; Kiryushin, Yu.; Kleinknecht, K.; Kluge, A.; Koval, M.; Kozhuharov, V.; Krivda, M.; Kudenko, Y.; Kunze, J.; Lamanna, G.; Lazzeroni, C.; Lenci, R.; Lenti, M.; Leonardi, E.; Lichard, P.; Lietava, R.; Litov, L.; Lomidze, D.; Lonardo, A.; Lurkin, N.; Madigozhin, D.; Maire, G.; Makarov, A.; Mandeiro, C.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Marchevski, R.; Martellotti, S.; Massarotti, P.; Massri, K.; Matak, P.; Maurice, E.; Menichetti, E.; Mila, G.; Minucci, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Morant, J.; Morel, M.; Moulson, M.; Movchan, S.; Munday, D.; Napolitano, M.; Neri, I.; Newson, F.; Norton, A.; Noy, M.; Nuessle, G.; Obraztsov, V.; Ostankov, A.; Padolski, S.; Page, R.; Palladino, V.; Pardons, A.; Parkinson, C.; Pedreschi, E.; Pepe, M.; Perez Gomez, F.; Perrin-Terrin, M.; Peruzzo, L.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pietreanu, D.; Pinzino, J.; Pivanti, M.; Polenkevich, I.; Popov, I.; Potrebenikov, Yu.; Protopopescu, D.; Raffaelli, F.; Raggi, M.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Russo, V.; Ryjov, V.; Salamon, A.; Salina, G.; Samsonov, V.; Santoni, C.; Santovetti, E.; Saracino, G.; Sargeni, F.; Schifano, S.; Semenov, V.; Sergi, A.; Serra, M.; Shkarovskiy, S.; Soldi, D.; Sotnikov, A.; Sougonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Staley, R.; Statera, M.; Sutcliffe, P.; Szilasi, N.; Tagnani, D.; Valdata-Nappi, M.; Valente, P.; Vasile, M.; Vassilieva, T.; Velghe, B.; Veltri, M.; Venditti, S.; Volpe, R.; Vormstein, M.; Wahl, H.; Wanke, R.; Wertelaers, P.; Winhart, A.; Winston, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.; NA62 Collaboration

    2016-01-01

    The main physics goal of the NA62 experiment at CERN is to precisely measure the branching ratio of the Kaon rare decay K+ →π+ ν ν ‾. This decay is strongly suppressed in the Standard Model. On the other hand its branching ratio is calculated with high accuracy. NA62 is designed to measure the K+ →π+ ν ν ‾ decay rate with an uncertainty better than 10%. The measurement can serve as a probe to some new physics phenomena, which can alter the decay rate. The NA62 experiment has been successfully launched in October 2014. The theory framework as well as the NA62 detector and the preliminary results are reviewed in this article.

  10. N° 15-2000: ESA, CERN and ESO launch "Physics on Stage"

    NASA Astrophysics Data System (ADS)

    2000-03-01

    But how much do the citizens of Europe really know about physics? Here is a unique opportunity to learn more about this elusive subject! Beginning in February 2000, three major European research establishments [1] are organising a unique Europe-wide programme to raise the public awareness of physics and related sciences. "Physics on Stage" is launched by the European Space Agency (ESA), the European Laboratory for Particle Physics (CERN), and the European Southern Observatory (ESO), with support from the European Union (EU). Other partners include the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). This exciting programme is part of the European Week for Science and Technology and will culminate in a Science Festival during November 6-11, 2000, at CERN, Geneva. Why "Physics on Stage"? The primary goal of "Physics on Stage" is to counteract the current decline in interest and knowledge of physics among Europe's citizens by means of a series of highly visible promotional activities. It will bring together leading scientists and educators, government bodies and the media, to confront the diminishing attraction of physics to young people and to develop strategies to reverse this trend. The objective in the short term is to infuse excitement and to provide new educational materials. In the longer term, "Physics on Stage" will generate new developments by enabling experts throughout Europe to meet, exchange and innovate. "Physics on Stage" in 22 European Countries. "Physics on Stage" has been initiated in 22 European countries [2]. In each country, a dedicated National Steering Committee (NSC) is being formed which will be responsible for their own national programme. A list of contact addresses is attached below. "Physics on Stage" is based on a series of high-profile physics-related activities that will inform the European public in general, and European high school physics teachers and media representatives in particular, about innovative ways to convey information about physics. It will stress the intimate connection of this natural science with our daily lives. It will be accompanied by a broad media debate on these subjects. This effort is undertaken in the context of a progressive decline in physics literacy amongst the European population at all levels and ages. Fewer and fewer young people are attracted towards careers in core sciences and technologies - this could potentially lead to a crisis in European technology in the coming decades unless action is taken now. Too few people possess the basic knowledge that is necessary to understand even common physical phenomena. And not enough are able to form their own substantiated opinions about them. What will happen during "Physics on Stage"? During the first phase of "Physics on Stage", from now until October 2000, the individual national steering committees (NSC) will survey the situation in their respective countries. The NSCs will collaborate with national media to identify new and exciting educational approaches to physics. These may involve demonstrations, interactive experiments, video and CD-Rom presentations, web applications, virtual reality, theatre performances, etc. Nationally run competitions will select some of the best and most convincing new ideas for presentations and educational materials which will receive development support from "Physics on Stage". The project will culminate in November 2000, with approximately 400 delegates converging on CERN, in Geneva, for the "Physics on Stage" conference. The conference will enable the national competition winners, science teachers, science communicators, publishers, top scientists and high-level representatives of the ministries and European organisations to brainstorm solutions to bolster physics' popularity. The programme will also include spectacular demonstrations of educational tools; the best will be disseminated over the national TV networks and other media to the European public. Why ESA, CERN, and ESO? As Europe's principal organisations in physics research (particle physics, space and astronomy), the three recognised their mutual responsibility to address the issue with the launch of a new initiative and the creative use of their own research to attract the attention of the general public and teachers alike. About the "European Science and Technology Week" The objective of the "European Science and Technology Week" is to improve the public's knowledge and understanding of science and technology - including the associated benefits for society as a whole. The week focuses on the European dimension of research, such as pan-European scientific and technological co-operation. The rationale for holding the Week has its roots in the importance of the role of science and technology in modern societies and the need therefore, to ensure that the public recognises its significance in our lives. The Week is a framework for special TV programmes, exhibitions, contests, conferences, electronic networking, and other science related activities to promote the public understanding of science and technology. The Week was launched in 1993, on the initiative of the European Commission. Raising public awareness of science and technology is now the subject of a clearly defined action within the Human Potential Programme of the Fifth Framework Programme. Notes [1] The same press release is published also by CERN and ESO. [2] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. Statements by the Directors General of ESA, CERN, and ESO Antonio Rodotà (ESA): "Space has become an integral part of every day life. The immense technological development that has led to this achievement has taken place and might be taken for granted. But now is the time to follow up and form the future on this basis, a future that has to be made by the youth and has to give its benefits to the youth. The European Space Agency is dedicated to support the youth in its development to become a space generation. Many activities have been done and are taking place, and many more are planned for the future. Teachers and educational institutions and organisations form a key role in this development. ESA is enthusiastic about co-operating with ESO, CERN and the European Union to create an opportunity to receive ideas from the educational society and will perform a dedicated effort in finding ways to support the realisation of those ideas." Luciano Maiani (CERN): "Science is a critical resource for mankind and, among natural sciences, physics will continue to play a crucial role, well into the next century. The young people of Europe deserve the best possible physics teaching. An enormous resource of first class teachers, teaching materials and innovative thinking exists in our Countries. The "Physics on Stage" project will bring these together to generate a new interest in physics education which will be to the long term benefit of children all over Europe. CERN is delighted to take part in this collaboration between the European Community and the continent's three leading physics research organisations." Catherine Cesarsky (ESO): "Astronomy and Astrophysics are at the very heart of modern physics. As vibrant research disciplines they use the most advanced technology available to humanity to explore Cosmos. It is also a science of extreme conditions - the largest distances, the longest periods of time, the highest temperatures, the strongest electrical and magnetic fields, the highest and lowest densities and the most extreme energies. Cosmos is indeed the greatest physics laboratory. For years, ESO - Europe's Astronomy Organisation - has been engaged in communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About ESA, CERN, and ESO The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, co-operation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO observatory La Silla in Chile is one of the largest and best-equipped observatories in the world. ESO's Very Large Telescope Array (VLT), an array of giant telescopes, is under construction at Cerro Paranal in the Chilean Atacama Desert. When completed in 2001, the VLT will be the largest and best optical telescope in the world. The CERN, European Organisation for Nuclear Research, has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco have observer status.

  11. 40th Anniversary of the First Proton-Proton Collisions in the CERN Intersecting Storage Rings (ISR)

    ScienceCinema

    None

    2018-06-20

    Welcome, Luigi di Lella and Rolf Heuer-Design and Construction of the ISR, Kurt Hubner-Physics at small angles, Ugo Amaldi (TERA Foundation)-The Impact of the ISR on Accelerator Physics and Technology, Philip J. Bryant-Physics at high transverse momentum, Pierre Darriulat (VATLY-Hanoi). Concluding remarks, Rolf Heuer

  12. Gauge bosons and heavy quarks: Proceedings of Summer Institute on Particle Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, J.F.

    1991-01-01

    This report contains papers on the following topics: Z decays and tests of the standard model; future possibilities for LEP; studies of the interactions of electroweak gauge bosons; top quark topics; the next linear collider; electroweak processes in hadron colliders; theoretical topics in B-physics; experimental aspects of B-physics; B-factory storage ring design; rare kaon decays; CP violation in K{sup 0} decays at CERN; recent K{sup 0} decay results from Fermilab E-731; results from LEP on heavy quark physics; review of recent results on heavy flavor production; weak matrix elements and the determination of the weak mixing angles; recent results frommore » CLEO I and a glance at CLEO II data; recent results from ARGUS; neutrino lepton physics with the CHARM 2 detector; recent results from the three TRISTAN experiments; baryon number violation at high energy in the standard model: fact or fiction New particle searches at LEP; review of QCD at LEP; electroweak interactions at LEP; recent results on W physics from the UA2 experiment at the CERN {rho}{bar {rho}} collider; B physics at CDF; and review of particle astrophysics.« less

  13. News

    NASA Astrophysics Data System (ADS)

    2002-05-01

    Physics on Stage: Physics on the political stage Women in Physics: Allez les girls! Curriculum: Students want ethics debate in school science Physics on Stage: Buzzing around the tulips Events: GIREP 2002 Competition: Schumacher in the shower! Higher Education: Universities consider conceptual physics courses Resources: Evaluation of Advancing Physics Research Frontiers: Physics Teachers @ CERN 2002 UK Curriculum: Preparing useful citizens China: Changing the approach NSTA Annual Convention: Innovations and simplicity Europe: European Community Science and Society Action Plan Citizenship: ASE-Wellcome Trust citizenship education initiative

  14. Planck 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-06-02

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st.more » Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.« less

  15. Planck 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covi, Laura; Hasenkamp, J.

    2010-06-02

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology. Extra dimensions; Electroweak symmetry breaking; LHC and Tevatron Physics; Collider physics; Flavor & neutrinos physics Astroparticle & cosmology; Gravity & holography; BStrongly coupled physics & CFT. Registration: registration will be open until May 1st.more » Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by; the Marie Curie Initial Training Network UNILHC PITN-GA-2009-23792; the ERC Advanced Grant "MassTeV" 226371; and the CERN-TH unit.« less

  16. Planck 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murayama, Hitoshi

    2010-06-02

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: SupersymmetrySupergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registrationmore » fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by; the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, the ERC Advanced Grant "MassTeV" 226371, and the CERN-TH unit.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons.Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, Liam

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions".This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, Liam

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe";. The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental InteractionS". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ashoke

    Part 7.The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five seriesmore » of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions";. This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Ashoke

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network". The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher.« less

  5. SLHC, the High-Luminosity Upgrade (public event)

    ScienceCinema

    None

    2017-12-09

    In the morning of June 23rd a public event is organised in CERN's Council Chamber with the aim of providing the particle physics community with up-to-date information about the strategy for the LHC luminosity upgrade and to describe the current status of preparation work. The presentations will provide an overview of the various accelerator sub-projects, the LHC physics prospects and the upgrade plans of ATLAS and CMS. This event is organised in the framework of the SLHC-PP project, which receives funding from the European Commission for the preparatory phase of the LHC High Luminosity Upgrade project. Informing the public is among the objectives of this EU-funded project. A simultaneous transmission of this meeting will be broadcast, available at the following address: http://webcast.cern.ch/

  6. CERN, ESA and ESO Launch "Physics On Stage"

    NASA Astrophysics Data System (ADS)

    2000-03-01

    Physics is everywhere . The laws of physics govern the Universe, the Sun, the Earth and even our own lives. In today's rapidly developing society, we are becoming increasingly dependent on high technology - computers, transport, and communication are just some of the key areas that are the result of discoveries by scientists working in physics. But how much do the citizens of Europe really know about physics? Here is a unique opportunity to learn more about this elusive subject! [Go to Physics On Stage Website] Beginning in February 2000, three major European research organisations are organising a unique Europe-wide programme to raise the public awareness of physics and related sciences. "Physics on Stage" is launched by the European Laboratory for Particle Physics (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , with support from the European Union. Other partners are the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). This exciting programme is part of the European Week for Science and Technology and will culminate in a Science Festival during November 6-11, 2000, on the CERN premises at the French-Swiss border near Geneva. Why "Physics on Stage"? The primary goal of "Physics on Stage" is to counteract the current decline in interest and knowledge about physics among Europe's citizens by means of a series of highly visible promotional activities. It will bring together leading scientists and educators, government bodies and the media, to confront the diminishing attraction of physics to young people and to develop strategies to reverse this trend. The objective in the short term is to infuse excitement and to provide new educational materials. In the longer term, "Physics on Stage" will generate new developments by enabling experts throughout Europe to meet, exchange and innovate. "Physics on Stage" in 22 European Countries "Physics on Stage" has been initiated in 22 European countries [2]. In each of these, a dedicated National Steering Committee is being formed which will be responsible for its own national programme. A list of contact addresses is attached below. "Physics on Stage" is based on a series of high-profile physics-related activities that will inform the European public in general and European high school physics teachers and media representatives in particular about innovative ways to convey information about physics. It will stress the intimate connection of this natural science with our daily lives. It will be accompanied by a broad media debate on these subjects. This effort is undertaken in the context of a progressive decline of physics literacy amongst the European population at all levels. Fewer and fewer young people are attracted towards careers in core sciences and technologies - this could potentially lead to a crisis in European technology in the coming decades unless action is taken now. Too few people possess the basic knowledge that is necessary to understand even common physical phenomena. And not enough are able to form their own substantiated opinions about them. What will happen during "Physics on Stage"? During the first phase of "Physics on Stage" , from now until October 2000, the individual National Steering Committees (NSCs) will survey the situation in their respective countries. The NSCs will collaborate with national media to identify new and exciting educational approaches to physics. These may involve demonstrations, interactive experiments, video and CD-Rom presentations, Web applications, virtual reality, theatre performances, etc. Nationally run competitions will select some of the best and most convincing new ideas for presentations and educational materials which will receive development support from "Physics on Stage" . The project will culminate in November 2000, with approximately 400 delegates converging on CERN, in Geneva, for the Physics on Stage Festival . During this event, the national competion winners, science teachers, science communicators, publishers, top scientists and high-level representatives of the ministries and European organisations will brainstorm future solutions to bolster physics' popularity. The programme will also include spectacular demonstrations of new educational tools; the best will be disseminated over the national TV networks and other media to the European public. Why CERN, ESA and ESO? As Europe's principal organisations in physics research (particle physics, space and astronomy), the three recognised their mutual responsibility to address the issue through the creation of a new initiative and the creative use of their own research to attract the public and teachers alike. About the "European Science and Technology Week" [Go to EWST Website] The objective of the European Science and Technology Week is to improve the public's knowledge and understanding of science and technology - including the associated benefits for society as a whole. The Week focuses on the European dimension of research, such as pan-European scientific and technological co-operation. The rationale for holding the Week has its roots in the importance of the role of science and technology in modern societies and the need, therefore, to ensure that the public recognises its significance in our lives. The Week is a framework for special TV programmes, exhibitions, contests, conferences, electronic networking, and other science related activities to promote the public understanding of science and technology. The Week was launched in 1993, on the initiative of the European Commission. Raising public awareness of science and technology is now the subject of a clearly defined action within the Human Potential Programme of the Fifth Framework Programme. Notes [1] This is a joint Press Release by the European Organization for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO). [1] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. Statements by the Directors General of CERN, ESA and ESO Luciano Maiani (CERN) : "Science is a critical resource for mankind and, among natural sciences, physics will continue to play a crucial role, well into the next century. The young people of Europe deserve the best possible physics teaching. An enormous resource of first class teachers, teaching materials and innovative thinking exists in our countries. The "Physics on Stage" project will bring these together to generate a new interest in physics education which will be to the long term benefit of children all over Europe. CERN is delighted to take part in this collaboration between the European Community and the continent's three leading physics research organizations." Antonio Rodotà (ESA) : "Space has become an integral part of every day life. The immense technological development that has led to this achievement has taken place and might be taken for granted. But now is the time to follow up and form the future on this basis, a future that has to made by the youth and has to give its benefits to the youth. The European Space Agency is dedicated to support the youth in its development to become a space generation. Many activities have been done and are taking place, and many more are planned for the future. Teachers and educational institutions and organisations form a key role in this development. ESA is enthusiastic about co-operating with ESO and CERN to create an opportunity to receiving ideas from the educational society and will perform a dedicated effort in finding ways to support the realisation of those ideas." Catherine Cesarsky (ESO) : "Astronomy and Astrophysics are at the very heart of modern physics. As vibrant research disciplines they use the most advanced technology available to humanity to explore Cosmos. It is also a science of extreme conditions - the largest distances, the longest periods of time, the highest temperatures, the strongest electrical and magnetic fields, the highest and lowest densities and the most extreme energies. Cosmos is indeed the greatest physics laboratory. For years, ESO - Europe's Astronomy Organisation - has been engaged in communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About CERN, ESA and ESO CERN , the European Organization for Nuclear Research , has its headquarters in Geneva. At present, its Member States are Austria, Belgium,Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco have observer status. The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, cooperation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO La Silla observatory (Chile) is one of the largest and best-equipped in the world. ESO's Very Large Telescope Array (VLT) is under construction at Cerro Paranal (Chile). When completed in 2001, the VLT will be the largest optical telescope in the world. Useful Physics On Stage addresses "Physics on Stage" webaddress: http://www.estec.esa.nl/outreach/pos International Steering Committee (ISC) Clovis de Matos (Executive Coordinator) ESA/ESTEC European Space Research and Technology Centre Office for Educational Outreach Activities Keplerlaan 1 Postbus 299 NL-2200 AG Noordwijk The Netherlands email: cdematos@estec.esa.nl Telephone: +31-71-565- 5518 Fax: +31-71-565 5590

  7. AMS data production facilities at science operations center at CERN

    NASA Astrophysics Data System (ADS)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  8. The ISOLDE LEGO® robot: building interest in frontier research

    NASA Astrophysics Data System (ADS)

    Elias Cocolios, Thomas; Lynch, Kara M.; Nichols, Emma

    2017-07-01

    An outreach programme centred around nuclear physics making use of a LEGO® Mindstorm® kit is presented. It consists of a presentation given by trained undergraduate students as science ambassadors followed by a workshop where the target audience programs the LEGO® Mindstorm® robots to familiarise themselves with the concepts in an interactive and exciting way. This programme has been coupled with the CERN-ISOLDE 50th anniversary and the launch of the CERN-MEDICIS facility in Geneva, Switzerland. The modular aspect of the programme readily allows its application to other topics.

  9. Materials Processing in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Schneider-Muntau, Hans J.; Wada, Hitoshi

    The latest in lattice QCD -- Quark-gluon plasma physics -- String theory and exact results in quantum field theory -- The status of local supersymmetry.Supersymmetry in nuclei -- Inflation, dark matter, dark energy -- How many dimensions are really compactified? -- Horizons -- Neutrino oscillations physics -- Fundamental constants and their possible time dependence.Highlights from BNL. new phenomena at RHIC -- Highlights from BABAR -- Diffraction studied with a hard scale at HERA -- The large hadron collider: a status report -- Status of non-LHC experiments at CERN -- Highlights from Gran Sass.Fast automatic systems for nuclear emulsion scanning: technique and experiments -- Probing the QGP with charm at ALICE-LHC -- magnetic screening length in hot QCD -- Non-supersymmetric deformation of the Klebanov-Strassler model and the related plane wave theory -- Holographic renormalization made simple: an example -- The kamLAND impact on neutrino oscillations -- Particle identification with the ALIC TOF detector at very high multiplicity -- Superpotentials of N = 1 SUSY gauge theories -- Measurement of the proton structure function F2 in QED compton scattering at HERA -- Yang-Mills effective action at high temperature -- The time of flight (TOF) system of the ALICE experiment -- Almost product manifolds as the low energy geometry of Dirichlet Brane.

  10. Air liquide 1.8 K refrigeration units for CERN LHC project

    NASA Astrophysics Data System (ADS)

    Hilbert, Benoît; Gistau-Baguer, Guy M.; Caillaud, Aurélie

    2002-05-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K [1, 2]. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K [3], these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given.

  11. Wolfgang Kummer at CERN

    NASA Astrophysics Data System (ADS)

    Schopper, Herwig

    Wolfgang Kummer was not only a great theorist but also a man with a noble spirit and extensive education, based on a fascinating long-term Austrian cultural tradition. As an experimentalist I am not sufficiently knowledgeable to evaluate his contributions to theoretical physics - this will certainly be done by more competent scientists. Nevertheless I admired him for not only being attached to fundamental and abstract problems like quantum field theory, quantum gravity or black holes, but for his interest in down to earth questions like electron-proton scattering or the toponium mass. I got to know Wolfgang Kummer very well and appreciate his human qualities during his long attachment to CERN, in particular when he served as president of the CERN Council, the highest decision taking authority of this international research centre, from 1985 to 1987 falling into my term as Director-General…

  12. "Physics on Stage" Festival Video Now Available

    NASA Astrophysics Data System (ADS)

    2001-01-01

    ESO Video Clip 01/01 is issued on the web in conjunction with the release of an 18-min documentary video from the Science Festival of the "Physics On Stage" programme. This unique event took place during November 6-11, 2000, on the CERN premises at the French-Swiss border near Geneva, and formed part of the European Science and Technology Week 2000, an initiative by the European Commission to raise the public awareness of science in Europe. Physics On Stage and the Science Festival were jointly organised by CERN, ESA and ESO, in collaboration with the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE) and national organisations in about 25 European countries. During this final phase of the yearlong Physics On Stage programme, more than 500 physics teachers, government officials and media representatives gathered at CERN to discuss different aspects of physics education. The meeting was particular timely in view of the current decline of interest in physics and technology by Europe's citizens, especially schoolchildren. It included spectacular demonstrations of new educational materials and methods. An 18-min video is now available that documents this event. It conveys the great enthusiasm of the many participants who spent an extremely fruitful week, meeting and exchanging information with colleagues from all over the continent. It shows the various types of activities that took place, from the central "fair" with national and organisational booths to the exciting performances and other dramatic presentations. Based of the outcome of 13 workshops that focussed on different subject matters, a series of very useful recommendations was passed at the final session. The Science Festival was also visited by several high-ranking officials, including the European Commissioner for Research, Phillipe Busquin. Full reports from the Festival will soon become available from the International Steering Committee..More information is available on the "Physics on Stage" webpages at CERN , ESA and ESO ). Note also the brief account published in the December 2000 issue of the ESO Messenger. The present video clip is available in four versions: two MPEG files and two streamer-versions of different sizes; the latter require RealPlayer software. Video Clip 01/01 may be freely reproduced. Tapes of this video clip and the 18-min video, suitable for transmission and in full professional quality (Betacam, etc.), are available for broadcasters upon request ; please contact the ESO EPR Department for more details. Most of the ESO PR Video Clips at the ESO website provide "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 06/00 about Fourth Light at Paranal! (4 September 2000) . General information is available on the web about ESO videos.

  13. An efficient, modular and simple tape archiving solution for LHC Run-3

    NASA Astrophysics Data System (ADS)

    Murray, S.; Bahyl, V.; Cancio, G.; Cano, E.; Kotlyar, V.; Kruse, D. F.; Leduc, J.

    2017-10-01

    The IT Storage group at CERN develops the software responsible for archiving to tape the custodial copy of the physics data generated by the LHC experiments. Physics run 3 will start in 2021 and will introduce two major challenges for which the tape archive software must be evolved. Firstly the software will need to make more efficient use of tape drives in order to sustain the predicted data rate of 150 petabytes per year as opposed to the current 50 petabytes per year. Secondly the software will need to be seamlessly integrated with EOS, which has become the de facto disk storage system provided by the IT Storage group for physics data. The tape storage software for LHC physics run 3 is code named CTA (the CERN Tape Archive). This paper describes how CTA will introduce a pre-emptive drive scheduler to use tape drives more efficiently, will encapsulate all tape software into a single module that will sit behind one or more EOS systems, and will be simpler by dropping support for obsolete backwards compatibility.

  14. [The Big Data Game : On the Ludic Constitution of the Collaborative Production of Knowledge in High-Energy Physics at CERN].

    PubMed

    Dippel, Anne

    2017-12-01

    This article looks at how games and play contribute to the big data-driven production of knowledge in High-Energy Physics, with a particular focus on the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), where the author has been conducting anthropological fieldwork since 2014. The ludic (playful) aspect of knowledge production is analyzed here in three different dimensions: the Symbolic, the Ontological, and the Epistemic. The first one points towards CERN as place where a cosmological game of probability is played with the help of Monte-Carlo simulations. The second one can be seen in the agonistic infrastructures of competing experimental collaborations. The third dimension unfolds in ludic platforms, such as online Challenges and citizen science games, which contribute to the development of machine learning algorithms, whose function is necessary in order to process the huge amount of data gathered from experimental events. Following Clifford Geertz, CERN itself is characterized as a site of deep play, a concept that contributes to understanding wider social and cultural orders through the analysis of ludic collective phenomena. The article also engages with Peter Galison's idea of the trading zone, proposing to comprehend it in the age of big data as a Playground. Thus the author hopes to contribute to a wider discussion in the historiographical and social study of science and technology, as well as in cultural anthropology, by recognizing the ludic in science as a central element of understanding collaborative knowledge production.

  15. Helix Nebula and CERN: A Symbiotic approach to exploiting commercial clouds

    NASA Astrophysics Data System (ADS)

    Barreiro Megino, Fernando H.; Jones, Robert; Kucharczyk, Katarzyna; Medrano Llamas, Ramón; van der Ster, Daniel

    2014-06-01

    The recent paradigm shift toward cloud computing in IT, and general interest in "Big Data" in particular, have demonstrated that the computing requirements of HEP are no longer globally unique. Indeed, the CERN IT department and LHC experiments have already made significant R&D investments in delivering and exploiting cloud computing resources. While a number of technical evaluations of interesting commercial offerings from global IT enterprises have been performed by various physics labs, further technical, security, sociological, and legal issues need to be address before their large-scale adoption by the research community can be envisaged. Helix Nebula - the Science Cloud is an initiative that explores these questions by joining the forces of three European research institutes (CERN, ESA and EMBL) with leading European commercial IT enterprises. The goals of Helix Nebula are to establish a cloud platform federating multiple commercial cloud providers, along with new business models, which can sustain the cloud marketplace for years to come. This contribution will summarize the participation of CERN in Helix Nebula. We will explain CERN's flagship use-case and the model used to integrate several cloud providers with an LHC experiment's workload management system. During the first proof of concept, this project contributed over 40.000 CPU-days of Monte Carlo production throughput to the ATLAS experiment with marginal manpower required. CERN's experience, together with that of ESA and EMBL, is providing a great insight into the cloud computing industry and highlighted several challenges that are being tackled in order to ease the export of the scientific workloads to the cloud environments.

  16. O8.10A MODEL FOR RESEARCH INITIATIVES FOR RARE CANCERS: THE COLLABORATIVE EPENDYMOMA RESEARCH NETWORK (CERN)

    PubMed Central

    Armstrong, T.S.; Aldape, K.; Gajjar, A.; Haynes, C.; Hirakawa, D.; Gilbertson, R.; Gilbert, M.R.

    2014-01-01

    Ependymoma represents less than 5% of adult central nervous system (CNS) tumors and a higher percentage of pediatric CNS tumors, but it remains an orphan disease. The majority of the laboratory-based research and clinical trials have been conducted in the pediatric setting, a reflection of the relative incidence and funding opportunities. CERN, created in 2006, was designed to establish a collaborative effort between laboratory and clinical research and pediatric and adult investigators. The organization of CERN is based on integration and collaboration among five projects. Project 1 contains the clinical trials network encompassing both adult and pediatric centers. This group has completed 2 clinical trials with more underway. Project 2 is focused on molecular classification of human ependymoma tumor tissues and also contains the tumor repository which has now collected over 600 fully clinically annotated CNS ependymomas from adults and children. Project 3 is focused on drug discovery utilizing robust laboratory models of ependymoma to perform high throughput screening of drug libraries, then taking promising agents through extensive preclinical testing including monitoring of drug delivery to tumor using state of the art microdialysis. Project 4 contains the basic research efforts evaluating the molecular pathogenesis of ependymoma and has successfully translated these findings by generating the first mouse models of ependymoma that are employed in preclinical drug development in Project 3. Project 5 studies patient outcomes, including the incorporation of these measures in the clinical trials. This project also contains an online Ependymoma Outcomes survey, collecting data on the consequences of the disease and its treatment. These projects have been highly successful and collaborative. For example, the serial measurement of symptom burden (Project 5) has greatly contributed to the evaluation of treatment efficacy of a clinical trial (Project 1) and investigators from Project 2 are evaluating potential predictive markers from tumor tissue from the same clinical trial. Results from genomic and molecular discoveries generated by Project 4 were evaluated using the clinical material from the Tumor Registry (Project 2). Agents identified from the high throughput screening in Project 3 are being used to create novel clinical trials (Project 1). As a complimentary effort, CERN's community outreach efforts provide a major gateway to patients, families, caregivers and healthcare providers, contributing to greater awareness of ependymoma, and supporting clinical trial accrual in Project 1. In summary, CERN has successfully created a collaborative, multi-national integrated effort combining pediatric- and adult-focused investigators spanning from basic science to patient outcomes measures. This research paradigm may be an effective approach for other rare cancers.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series ofmore » pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde. Local organizers: A. Uranga, J. Walcher. This video is Part 11 in the series.« less

  18. CERN's approach to public outreach

    NASA Astrophysics Data System (ADS)

    Landua, Rolf

    2016-03-01

    CERN's communication goes beyond publishing scientific results. Education and outreach are equally important ways of communicating with the general public, and in particular with the young generation. Over the last decade, CERN has significantly increased its efforts to accommodate the very large interest of the general public (about 300,000 visit requests per year), by ramping up its capacity for guided tours from 25,000 to more than 100,000 visitors per year, by creating six new of state-of-the-art exhibitions on-site, by building and operating a modern physics laboratory for school teachers and students, and by showing several traveling exhibitions in about 10 countries per year. The offer for school teachers has also been expanded, to 35-40 weeks of teacher courses with more than 1000 participants from more than 50 countries per year. The talk will give an overview about these and related activities.

  19. A facility to search for hidden particles at the CERN SPS: the SHiP physics case.

    PubMed

    Alekhin, Sergey; Altmannshofer, Wolfgang; Asaka, Takehiko; Batell, Brian; Bezrukov, Fedor; Bondarenko, Kyrylo; Boyarsky, Alexey; Choi, Ki-Young; Corral, Cristóbal; Craig, Nathaniel; Curtin, David; Davidson, Sacha; de Gouvêa, André; Dell'Oro, Stefano; deNiverville, Patrick; Bhupal Dev, P S; Dreiner, Herbi; Drewes, Marco; Eijima, Shintaro; Essig, Rouven; Fradette, Anthony; Garbrecht, Björn; Gavela, Belen; Giudice, Gian F; Goodsell, Mark D; Gorbunov, Dmitry; Gori, Stefania; Grojean, Christophe; Guffanti, Alberto; Hambye, Thomas; Hansen, Steen H; Helo, Juan Carlos; Hernandez, Pilar; Ibarra, Alejandro; Ivashko, Artem; Izaguirre, Eder; Jaeckel, Joerg; Jeong, Yu Seon; Kahlhoefer, Felix; Kahn, Yonatan; Katz, Andrey; Kim, Choong Sun; Kovalenko, Sergey; Krnjaic, Gordan; Lyubovitskij, Valery E; Marcocci, Simone; Mccullough, Matthew; McKeen, David; Mitselmakher, Guenakh; Moch, Sven-Olaf; Mohapatra, Rabindra N; Morrissey, David E; Ovchynnikov, Maksym; Paschos, Emmanuel; Pilaftsis, Apostolos; Pospelov, Maxim; Reno, Mary Hall; Ringwald, Andreas; Ritz, Adam; Roszkowski, Leszek; Rubakov, Valery; Ruchayskiy, Oleg; Schienbein, Ingo; Schmeier, Daniel; Schmidt-Hoberg, Kai; Schwaller, Pedro; Senjanovic, Goran; Seto, Osamu; Shaposhnikov, Mikhail; Shchutska, Lesya; Shelton, Jessie; Shrock, Robert; Shuve, Brian; Spannowsky, Michael; Spray, Andy; Staub, Florian; Stolarski, Daniel; Strassler, Matt; Tello, Vladimir; Tramontano, Francesco; Tripathi, Anurag; Tulin, Sean; Vissani, Francesco; Winkler, Martin W; Zurek, Kathryn M

    2016-12-01

    This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.

  20. Evaluation results of xTCA equipment for HEP experiments at CERN

    NASA Astrophysics Data System (ADS)

    Di Cosmo, M.; Bobillier, V.; Haas, S.; Joos, M.; Mico, S.; Vasey, F.; Vichoudis, P.

    2013-12-01

    The MicroTCA and AdvancedTCA industry standards are candidate modular electronic platforms for the upgrade of the current generation of high energy physics experiments. The PH-ESE group at CERN launched in 2011 the xTCA evaluation project with the aim of performing technical evaluations and eventually providing support for commercially available components. Different devices from different vendors have been acquired, evaluated and interoperability tests have been performed. This paper presents the test procedures and facilities that have been developed and focuses on the evaluation results including electrical, thermal and interoperability aspects.

  1. EDITORIAL: Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, 21 25 January 2008

    NASA Astrophysics Data System (ADS)

    Derendinger, J.-P.; Orlando, D.; Uranga, A.

    2008-11-01

    This special issue is devoted to the proceedings of the conference 'RTN Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, on the 21 25 January 2008. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools, which represents what is by now a well established tradition. The previous ones have been held at SISSA, in Trieste, Italy, in February 2005 and at CERN in January 2006. The next one will again take place at CERN, in February 2009. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of several general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximatively 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress, and to the open problems, in string theory. One of the most active areas in string theory in recent years is the AdS/CFT or gauge/gravity correspondence, which proposes the complete equivalence of string theory on (asymptotically) anti-de Sitter spacetimes with gauge theories. The duality relates the weak coupling regime of one system to the strongly coupled regime of the other, and is therefore very non-trivial to test beyond the supersymmetry-protected BPS sector. One of the key ideas to quantitatively match several quantities on both sides is the use of integrability, both in the gauge theory and the string side. The lecture notes by Nick Dorey provide a pedagogical introduction to the fascinating topic of integrability in AdS/CFT. On the string theory side, progress has been limited by the difficulties of quantizing the worldsheet theory in the presence of RR backgrounds. There is increasing hope that these difficulties can be overcome, using the pure spinor formulation of string theory. The lectures by Yaron Oz overview the present status of this proposal. The gauge/gravity correspondence is already leading to important insights into questions of quantum gravity, like the entropy of black holes and its interpretation in terms of microstates. These questions can be addressed in string theory, for certain classes of supersymmetric black holes. The lectures by Vijay Balasubramanian, Jan de Boer, Sheer El-Showk and Ilies Messamah review recent progress in this direction. Throughout the years, formal developments in string theory have systematically led to improved understanding on how it may relate to nature. In this respect, the lectures by Henning Samtleben describe how the formal developments on gauged supergravities can be used to describe compactification vacua in string theory, and their implications for moduli stabilization and supersymmetry breaking. Indeed, softly broken supersymmetry is one of the leading proposals to describe particle physics at the TeV energy range, as described in the lectures by Gian Giudice (not covered in this issue). This connection with TeV scale physics is most appropriate and timely, given that this energy range will shortly become experimentally accessible in the LHC at CERN. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the assistance and the infrastructure that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. Special thanks also go to Denis Frank, for his very valuable help in preparing the conference web pages. Group photo

  2. Fermilab Today

    Science.gov Websites

    all the animal species that were present in pre-European times," Walton said. One reason for the Cern in Geneva. The latest test has seen particle physics grid sites in the UK exchanging data at high

  3. Raymond Stora's obituary

    NASA Astrophysics Data System (ADS)

    Becchi, C.

    2015-10-01

    On Monday, July 20, 2015 Raymond Stora passed away; although he was seriously ill, his death was unexpected, the result of a sudden heart attack. Raymond was born on September 18, 1930. He had been sick for many months, yet continued to go to CERN where he was able to discuss the problems in physics and mathematics that interested him. In fact, his last publication (recorded on SPIRES) carries the date of December 2014, just before he contracted pneumonia, which dramatically reduced his mobility and hence the possibility of going to CERN. Still, this last project revived Raymond's interest in algebraic curves, and he spent a large part of his last months at home reading papers and books on this subject. In 2013, despite the large amount of time that his various therapies required, Raymond made a fundamental contribution to a difficult problem on renormalization in configuration space based on the subtle technical properties of homogeneous distributions. His knowledge of physics and, in particular, of quantum field theory, as well as of many fields of mathematics was so well known that many members of and visitors to CERN frequently asked Raymond for advice and assistance, which he gave with great enthusiasm and in the most gracious way. Ivan Todorov, commenting on Raymond's death, noted that we must remember Raymond's remarkable qualities, which were both human and scientific.

  4. Experimental High Energy Physics Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohlmann, Marcus

    This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) formore » the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 GeV for a Z' with the same standard-model couplings as the Z boson. Our student team operated a Tier-3 cluster on the Open Science Grid (OSG) to support local CMS physics analysis and remote OSG activity. As a service to the HEP community, Hohlmann participated in the Snowmass effort over the course of 2013. Specifically, he acted as a liaison for gaseous detectors between the Instrumentation Frontier and the Energy Frontier and contributed to five papers and reports submitted to the summer study.« less

  5. UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutherfoord, John P.; Johns, Kenneth A.; Shupe, Michael A.

    2013-07-29

    The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.

  6. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Heuer, Rolf-Dieter

    2018-06-15

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  7. Evaluation of the Huawei UDS cloud storage system for CERN specific data

    NASA Astrophysics Data System (ADS)

    Zotes Resines, M.; Heikkila, S. S.; Duellmann, D.; Adde, G.; Toebbicke, R.; Hughes, J.; Wang, L.

    2014-06-01

    Cloud storage is an emerging architecture aiming to provide increased scalability and access performance, compared to more traditional solutions. CERN is evaluating this promise using Huawei UDS and OpenStack SWIFT storage deployments, focusing on the needs of high-energy physics. Both deployed setups implement S3, one of the protocols that are emerging as a standard in the cloud storage market. A set of client machines is used to generate I/O load patterns to evaluate the storage system performance. The presented read and write test results indicate scalability both in metadata and data perspectives. Futher the Huawei UDS cloud storage is shown to be able to recover from a major failure of losing 16 disks. Both cloud storages are finally demonstrated to function as back-end storage systems to a filesystem, which is used to deliver high energy physics software.

  8. Towards a Future Linear Collider and The Linear Collider Studies at CERN

    ScienceCinema

    Stapnes, Steinar

    2017-12-18

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  9. Princeton University High Energy Physics Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marlow, Daniel R.

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement ofmore » $$\\sin^22\\theta_{13}$$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.« less

  10. NEWS: A trip to CERN

    NASA Astrophysics Data System (ADS)

    Ellison, A. D.

    2000-07-01

    Two years ago John Kinchin and myself were lucky enough to attend the Goldsmith's particle physics course. As well as many interesting lectures and activities, this course included a visit to CERN. To most physics teachers CERN is Mecca, a hallowed place where gods manipulate and manufacture matter. The experience of being there was even better. Alison Wright was an enthusiastic and very knowledgeable host who ensured the visit went smoothly and we all learned a lot. While we were there, John and I discussed the possibility of bringing a party of A-level students to see real physics in action. In February of this year we managed it. 33 students from two schools, Boston Grammar School and Northampton School for Boys, and four staff left England and caught the 2 am ferry to France. Many hours and a few `short cuts' later we arrived at our hotel in St Genis, not far from CERN. The first day was spent sight-seeing in Lausanne and Geneva. The Olympic museum in Lausanne is well worth a visit. Unfortunately, the famous fountain in Geneva was turned off, but then you can't have everything. The following morning we turned up at CERN late due to the coach's brakes being iced up! We were met once again by Alison Wright who forgave us and introduced the visit by giving an excellent talk on CERN, its background and its reason for existing. At this point we met another member of our Goldsmith's course and his students so we joined forces once again. We then piled back into the coach to re-cross the border and visit ALEPH. ALEPH is a monster of a detector 150 m below ground. We divided into four groups, each with a very able and knowledgeable guide, and toured the site. The size and scale of the detector are awesome and the students were suitably impressed. We repeated the speed of sound experiment of two years ago at the bottom of a 150 m concrete shaft (320 m s-1), posed for a group photo in front of the detector (figure 1) and returned to the main site for lunch in the canteen. Over lunch we mixed with physicists of many different nationalities and backgrounds. Figure 1 Figure 1. In the afternoon we visited Microcosm, the CERN visitors centre, and the LEP control room and also the SPS. Here the students learned new applications for much of the physics of standing waves and resonance that they had been taught in the classroom. Later that night, we visited a bowling alley where momentum and collision theory were put into practice. The following morning we returned to CERN and visited the large magnet testing facility. Here again physics was brought to life. We saw superconducting magnets being assembled and tested and the students gained a real appreciation of the problems and principles involved. The afternoon was rounded off by a visit to a science museum in Geneva - well worth a visit, as some of us still use some of the apparatus on display. Friday was our last full day so we visited Chamonix in the northern Alps. In the morning, we ascended the Aiguille de Midi - by cable car. Twenty minutes and 3842 m later we emerged into 50 km h-1 winds and -10 °C temperature, not counting the -10 °C wind chill factor. A crisp packet provided an unusual demonstration of the effects of air pressure (figure 2). Figure 2 Figure 2. The views from the summit were very spectacular though a few people experienced mild altitude sickness. That afternoon the party went to the Mer de Glace. Being inside a 3 million year-old structure moving down a mountain at 3 cm per day was an interesting experience, as was a tot of whisky with 3 million year-old water. Once again the local scenery was very photogenic and the click and whirr of cameras was a constant background noise. Saturday morning saw an early start for the long drive home. Most students - and some staff - took the opportunity to catch up on their sleep. Thanks are due to many people without whom the trip would never have taken place. Anne Craige, Stuart Williams, Christine Sutton and Andrew Morrison of PPARC, but most especially Alison Wright of CERN and John Kinchin of Boston Grammar School who did all the hard work and organization. The week gave students a unique chance to see the principles of physics being applied in many different ways and I am sure this has reinforced their knowledge and understanding. Some students also took the opportunity to practise their language skills. The only remaining question is: what next? I'll have to think about it in the summer when I have some slack time. Hmm, SLAC, that gives me an idea....

  11. Reviews Book: Voyage to the Heart of the Matter: The ATLAS Experiment at CERN Equipment: SEP Spectroscope Books: Quantum Gods / The Universe Places to visit: The Royal Institution of Great Britain Book: What is this Thing Called Science? Book: Don't be Such a Scientist: Talking Substance in the Age of Style Equipment: La Crosse Anemometer Book: Wonder and Delight Web Watch

    NASA Astrophysics Data System (ADS)

    2010-05-01

    WE RECOMMEND SEP Spectroscope Flatpacked classroom equipment for pupils aged 10 and over Quantum Gods Book attacks spiritualism and religion with physics The Universe Study of whether physics alone can explain origin of universe La Crosse Anemometer Handheld monitor is packed with useful features Wonder and Delight Essays in science education in honour of Eric Rogers WORTH A LOOK Voyage to the Heart of the Matter: The ATLAS Experiment at CERN Pop-up book explains background to complex physics The Royal Institution of Great Britain RI museum proves interesting but not ideal for teaching What is this Thing Called Science? Theory and history of science in an opinionated study Don't be Such a Scientist: Talking Substance in the Age of Style Explanation of how science is best communicated to the public WEB WATCH Particle physics simulations vary in complexity, usefulness and how well they work

  12. ATLAS Live: Collaborative Information Streams

    NASA Astrophysics Data System (ADS)

    Goldfarb, Steven; ATLAS Collaboration

    2011-12-01

    I report on a pilot project launched in 2010 focusing on facilitating communication and information exchange within the ATLAS Collaboration, through the combination of digital signage software and webcasting. The project, called ATLAS Live, implements video streams of information, ranging from detailed detector and data status to educational and outreach material. The content, including text, images, video and audio, is collected, visualised and scheduled using digital signage software. The system is robust and flexible, utilizing scripts to input data from remote sources, such as the CERN Document Server, Indico, or any available URL, and to integrate these sources into professional-quality streams, including text scrolling, transition effects, inter and intra-screen divisibility. Information is published via the encoding and webcasting of standard video streams, viewable on all common platforms, using a web browser or other common video tool. Authorisation is enforced at the level of the streaming and at the web portals, using the CERN SSO system.

  13. Viewpoint: the End of the World at the Large Hadron Collider?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peskin, Michael E.; /SLAC

    New arguments based on astrophysical phenomena constrain the possibility that dangerous black holes will be produced at the CERN Large Hadron Collider. On 8 August, the Large Hadron Collider (LHC) at CERN injected its first beams, beginning an experimental program that will produce proton-proton collisions at an energy of 14 TeV. Particle physicists are waiting expectantly. The reason is that the Standard Model of strong, weak, and electromagnetic interactions, despite its many successes, is clearly incomplete. Theory says that the holes in the model should be filled by new physics in the energy region that will be studied by themore » LHC. Some candidate theories are simple quick fixes, but the most interesting ones involve new concepts of spacetime waiting to be discovered. Look up the LHC on Wikipedia, however, and you will find considerable space devoted to safety concerns. At the LHC, we will probe energies beyond those explored at any previous accelerator, and we hope to create particles that have never been observed. Couldn't we, then, create particles that would actually be dangerous, for example, ones that would eat normal matter and eventually turn the earth into a blob of unpleasantness? It is morbid fun to speculate about such things, and candidates for such dangerous particles have been suggested. These suggestions have been analyzed in an article in Reviews of Modern Physics by Jaffe, Busza, Wilczek, and Sandweiss and excluded on the basis of constraints from observation and from the known laws of physics. These conclusions have been upheld by subsequent studies conducted at CERN.« less

  14. PREFACE: International Workshop on Discovery Physics at the LHC (Kruger2012)

    NASA Astrophysics Data System (ADS)

    Cleymans, Jean

    2013-08-01

    The second conference on 'Discovery Physics at the LHC' was held on 3-7 December 2012 at the Kruger Gate Hotel in South Africa. In total there were 110 participants from Armenia, Belgium, Brazil, Canada, Czech Republic, France, Germany, Greece, Israel, Italy, Norway, Poland, USA, Russia, Slovakia, Spain, Sweden, United Kingdom, Switzerland and South Africa. The latest results from the Large Hadron Collider, Brookhaven National Laboratory, Jefferson Laboratory and BABAR experiments, as well as the latest theoretical insights were presented. Set against the backdrop of the majestic Kruger National Park a very stimulating conference with many exchanges took place. The proceedings reflect the high standard of the conference. The financial contributions from the National Institute for Theoretical Physics (NITHeP), the SA-CERN programme, the UCT-CERN Research Centre, the University of Johannesburg, the University of the Witwatersrand and iThemba Labs—Laboratory for Accelerator Based Science are gratefully acknowledged. Jean Cleymans Chair of the Local Organizing Committee Local Organizing Committee Oana Boeriu Jean Cleymans Simon H Connell Alan S Cornell William A Horowitz Andre Peshier Trevor Vickey Zeblon Z Vilakazi Group picture

  15. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    PubMed

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez T, Arturo

    The use of the sophisticated and large underground detectors at CERN for cosmic ray studies has been considered by several groups, e.g. UA1, LEP and LHC detectors. They offer the opportunity to provide large sensitivity area with magnetic analysis which allow a precise determination of the direction of cosmic ray muons as well as their momentum up to the order of some TeV. The aim of this article is to review the observation of high energy cosmic ray muons using precise spectrometers at CERN, mainly LEP detectors as well as the possibility of improve those measurements with LHC apparatus, givingmore » special emphasis to the ACORDE-ALICE cosmic ray physics program.« less

  17. Antiproton Trapping for Advanced Space Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.

    1998-01-01

    The Summary of Research parallels the Statement of Work (Appendix I) submitted with the proposal, and funded effective Feb. 1, 1997 for one year. A proposal was submitted to CERN in October, 1996 to carry out an experiment on the synthesis and study of fundamental properties of atomic antihydrogen. Since confined atomic antihydrogen is potentially the most powerful and elegant source of propulsion energy known, its confinement and properties are of great interest to the space propulsion community. Appendix II includes an article published in the technical magazine Compressed Air, June 1997, which describes CERN antiproton facilities, and ATHENA. During the period of this grant, Prof. Michael Holzscheiter served as spokesman for ATHENA and, in collaboration with Prof. Gerald Smith, worked on the development of the antiproton confinement trap, which is an important part of the ATHENA experiment. Appendix III includes a progress report submitted to CERN on March 12, 1997 concerning development of the ATHENA detector. Section 4.1 reviews technical responsibilities within the ATHENA collaboration, including the Antiproton System, headed by Prof. Holzscheiter. The collaboration was advised (see Appendix IV) on June 13, 1997 that the CERN Research Board had approved ATHENA for operation at the new Antiproton Decelerator (AD), presently under construction. First antiproton beams are expected to be delivered to experiments in about one year. Progress toward assembly of the ATHENA detector and initial testing expected in 1999 has been excellent. Appendix V includes a copy of the minutes of the most recently documented collaboration meeting held at CERN of October 24, 1997, which provides more information on development of systems, including the antiproton trapping apparatus. On February 10, 1998 Prof. Smith gave a 3 hour lecture on the Physics of Antimatter, as part of the Physics for the Third Millennium Lecture Series held at MSFC. Included in Appendix VI are notes and graphs presented on the ATHENA experiment. Portable antiproton trap has been under development. The goal is to store and transport antiprotons from a production site, such as Fermilab near Chicago, to a distant site, such as Huntsville, AL, thus demonstrating the portability of antiprotons.

  18. Disk storage at CERN

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.

    2015-12-01

    CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.

  19. First experimental evidence of hydrodynamic tunneling of ultra-relativistic protons in extended solid copper target at the CERN HiRadMat facility

    NASA Astrophysics Data System (ADS)

    Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2014-08-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  20. A Human Volunteer Screening Questionnaire: Development and Application

    DTIC Science & Technology

    1975-02-01

    rapport (i.e., marital status, siblings, and hometown). The next four sections con- cerning education, career field, AQE scores , and technical school...elicit information which will affect the selection procedure (i.e., expulsion from school or low AQE scores ), as well as be indicative of the...attendance. The mean AQE scores for the 27 latter selectees, who filled out SAM Form 70, were General 80.5, Administrative 64.3, Mechanical 81.5, and

  1. Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Florian, D.

    This Report summarizes the results of the activities of the LHC Higgs Cross Section Working Group in the period 2014-2016. The main goal of the working group was to present the state-of-the-art of Higgs physics at the LHC, integrating all new results that have appeared in the last few years. The first part compiles the most up-to-date predictions of Higgs boson production cross sections and decay branching ratios, parton distribution functions, and off-shell Higgs boson production and interference effects. The second part discusses the recent progress in Higgs effective field theory predictions, followed by the third part on pseudo-observables, simplifiedmore » template cross section and fiducial cross section measurements, which give the baseline framework for Higgs boson property measurements. The fourth part deals with the beyond the Standard Model predictions of various benchmark scenarios of Minimal Supersymmetric Standard Model, extended scalar sector, Next-to-Minimal Supersymmetric Standard Model and exotic Higgs boson decays. This report follows three previous working-group reports: Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002), Handbook of LHC Higgs Cross Sections: 2. Differential Distributions (CERN-2012-002), and Handbook of LHC Higgs Cross Sections: 3. Higgs properties (CERN-2013-004). The current report serves as the baseline reference for Higgs physics in LHC Run 2 and beyond.« less

  2. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tannenbaum, M. J.

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  3. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    DOE PAGES

    Tannenbaum, M. J.

    2018-01-30

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPSmore » $$\\bar{p}$$ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.« less

  4. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  5. SHiP: a new facility with a dedicated detector to search for new neutral particles and studying tau neutrino properties

    NASA Astrophysics Data System (ADS)

    Shevchenko, V.

    2017-12-01

    SHiP (Search for Hidden Particles) is a new general purpose fixed target facility, whose Technical Proposal has been recently reviewed by the CERN SPS Committee and by the CERN Research Board. The two boards recommended that the experiment proceeds further to a Comprehensive Design phase in the context of the new CERNWorking group "Physics Beyond Colliders", aiming at presenting a CERN strategy for the European Strategy meeting of 2019. In the initial phase of SHiP, the 400 GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2×1020 pot in 5 years. A dedicated detector, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below O(10) GeV/c2. The main focus will be the physics of the so-called Hidden Portals, i.e. search for Dark Photons, Light scalars and pseudo-scalars, and Heavy Neutrinos. The sensitivity to Heavy Neutrinos will allow for the first time to probe, in the mass range between the kaon and the charm meson mass, a coupling range for which Baryogenesis and active neutrino masses could also be explained. Another dedicated detector will allow the study of neutrino cross-sections and angular distributions.

  6. Current experiments in elementary particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  7. News

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Meeting: Brecon hosts 'alternative-style' Education Group Conference Meeting: Schools' Physics Group meeting delivers valuable teaching update Saturn Mission: PPARC’s Saturn school resource goes online Funding: Grant scheme supports Einstein Year activities Meeting: Liverpool Teachers’ Conference revives enthusiasm for physics Loan Scheme: Moon samples loaned to schools Awards: Schoolnet rewards good use of ICT in learning Funding: PPARC provides cash for science projects Workshop: Experts in physics education research share knowledge at international event Bulgaria: Transit of Venus comes to town Conference: CERN weekend provides lessons in particle physics Summer School: Teachers receive the summer-school treatment

  8. Big Bang Day : Physics Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-07

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  9. Big Bang Day : Physics Rocks

    ScienceCinema

    None

    2017-12-09

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  10. Physics at the SPS.

    PubMed

    Gatignon, L

    2018-05-01

    The CERN Super Proton Synchrotron (SPS) has delivered a variety of beams to a vigorous fixed target physics program since 1978. In this paper, we restrict ourselves to the description of a few illustrative examples in the ongoing physics program at the SPS. We will outline the physics aims of the COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS), north area 64 (NA64), north area 62 (NA62), north area 61 (NA61), and advanced proton driven plasma wakefield acceleration experiment (AWAKE). COMPASS studies the structure of the proton and more specifically of its spin. NA64 searches for the dark photon A', which is the messenger for interactions between normal and dark matter. The NA62 experiment aims at a 10% precision measurement of the very rare decay K + → π + νν. As this decay mode can be calculated very precisely in the Standard Model, it offers a very good opportunity to look for new physics beyond the Standard Model. The NA61/SHINE experiment studies the phase transition to Quark Gluon Plasma, a state in which the quarks and gluons that form the proton and the neutron are de-confined. Finally, AWAKE investigates proton-driven wake field acceleration: a promising technique to accelerate electrons with very high accelerating gradients. The Physics Beyond Colliders study at CERN is paving the way for a significant and diversified continuation of this already rich and compelling physics program that is complementary to the one at the big colliders like the Large Hadron Collider.

  11. Physics at the SPS

    NASA Astrophysics Data System (ADS)

    Gatignon, L.

    2018-05-01

    The CERN Super Proton Synchrotron (SPS) has delivered a variety of beams to a vigorous fixed target physics program since 1978. In this paper, we restrict ourselves to the description of a few illustrative examples in the ongoing physics program at the SPS. We will outline the physics aims of the COmmon Muon Proton Apparatus for Structure and Spectroscopy (COMPASS), north area 64 (NA64), north area 62 (NA62), north area 61 (NA61), and advanced proton driven plasma wakefield acceleration experiment (AWAKE). COMPASS studies the structure of the proton and more specifically of its spin. NA64 searches for the dark photon A', which is the messenger for interactions between normal and dark matter. The NA62 experiment aims at a 10% precision measurement of the very rare decay K+ → π+νν. As this decay mode can be calculated very precisely in the Standard Model, it offers a very good opportunity to look for new physics beyond the Standard Model. The NA61/SHINE experiment studies the phase transition to Quark Gluon Plasma, a state in which the quarks and gluons that form the proton and the neutron are de-confined. Finally, AWAKE investigates proton-driven wake field acceleration: a promising technique to accelerate electrons with very high accelerating gradients. The Physics Beyond Colliders study at CERN is paving the way for a significant and diversified continuation of this already rich and compelling physics program that is complementary to the one at the big colliders like the Large Hadron Collider.

  12. Physics with CMS and Electronic Upgrades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohlf, James W.

    2016-08-01

    The current funding is for continued work on the Compact Muon Solenoid (CMS) at the CERN Large Hadron Collider (LHC) as part of the Energy Frontier experimental program. The current budget year covers the first year of physics running at 13 TeV (Run 2). During this period we have concentrated on commisioning of the μTCA electronics, a new standard for distribution of CMS trigger and timing control signals and high bandwidth data aquistiion as well as participating in Run 2 physics.

  13. Current experiments in elementary particle physics. Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galic, H.; Wohl, C.G.; Armstrong, B.

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  14. Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, 16 20 January, 2006

    NASA Astrophysics Data System (ADS)

    Derendinger, J.-P.; Scrucca, C. A.; Uranga, A. M.

    2006-11-01

    This special issue is devoted to the proceedings of the conference 'Winter School on Strings, Supergravity and Gauge Theories', which took place at CERN, the European Centre for Nuclear Research, in Geneva, Switzerland, from the 16 to the 20 of January 2006. This event was organized in the framework of the European Mobility Research and Training Network entitled 'Constituents, Fundamental Forces and Symmetries of the Universe'. It is part of a yearly series of scientific schools which have become a traditional rendezvous for young researchers of the community. The previous one was held at SISSA, in Trieste, Italy, in February 2005, and the next one will take place again at CERN, in January 2007. The school was primarily meant for young doctoral students and postdoctoral researchers working in the area of string theory. It consisted of five general lectures of four hours each, whose notes are published in the present proceedings, and five working group discussion sessions, focused on specific topics of the network research program. It was attended by approximately 250 participants. The topics of the lectures were chosen to provide an introduction to some of the areas of recent progress and to the open problems in string theory. String theory is expected to provide insights into the description of systems where the role of gravity is crucial. One prominent example of such systems are time-dependent backgrounds with big bang singularities, whose status in string theory is reviewed in the lecture notes by Ben Craps. In another main problem in quantum gravity, string theory gives a fascinating microscopic description of black holes and their properties. The lectures by Shiraz Minwalla review the thermal properties of black holes from their microscopic description in terms of a holographically dual large N field theory. Progress in the description of black hole microstates, and its interplay with the macroscopic description in terms of supergravity solutions via the attractor mechanism, are covered by the lectures by Atish Dabholkar and Boris Pioline. A final important mainstream topic in string theory, being a higher-dimensional theory, is its compactification to four dimensions, and the computation of four-dimensional physical properties in terms of the properties of the internal space. The lectures by Mariana Graña review recent progress in the classification of the most general supersymmetric backgrounds describing the compactified dimensions, and their role in determining the number of massless scalar moduli fields in four dimensions. The conference was financially supported by the European Commission under contract MRTN-CT-2004-005104 and by CERN. It was jointly organized by the Physics Institute of the University of Neuchâtel and the Theory Unit of the Physics Division of CERN. It is a great pleasure for us to warmly thank the Theory Unit of CERN for its very kind hospitality and for the high quality of the services and infrastructure that it has provided. We also acknowledge helpful administrative assistance from the Physics Institute of the University of Neuchâtel. Special thanks go finally to Denis Frank for his very valuable help in preparing the conference web pages, and to J Rostant, A-M Perrin and M-S Vascotto for their continuous and very reliable assistance.

  15. Target R and D for high power proton beam applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabich, A.

    High power targets are one of the major issues in an accelerator complex for future HEP physic studies. The paper will review status of studies worldwide. It will focus on the status of the MERIT mercury-jet target experiment at CERN.

  16. Antihydrogen on tap

    NASA Astrophysics Data System (ADS)

    Charlton, Michael

    2005-03-01

    Plentiful quantities of antihydrogen, the bound state system of the antiparticles the positron and the antiproton, have recently been made under very controlled conditions in experiments at the European Laboratory of Particle Physics (CERN) near Geneva. In this article I describe how that was done, and why.

  17. PanDA for COMPASS at JINR

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. Sh.

    2016-09-01

    PanDA (Production and Distributed Analysis System) is a workload management system, widely used for data processing at experiments on Large Hadron Collider and others. COMPASS is a high-energy physics experiment at the Super Proton Synchrotron. Data processing for COMPASS runs locally at CERN, on lxbatch, the data itself stored in CASTOR. In 2014 an idea to start running COMPASS production through PanDA arose. Such transformation in experiment's data processing will allow COMPASS community to use not only CERN resources, but also Grid resources worldwide. During the spring and summer of 2015 installation, validation and migration work is being performed at JINR. Details and results of this process are presented in this paper.

  18. The beam and detector of the NA62 experiment at CERN

    NASA Astrophysics Data System (ADS)

    Cortina Gil, E.; Martín Albarrán, E.; Minucci, E.; Nüssle, G.; Padolski, S.; Petrov, P.; Szilasi, N.; Velghe, B.; Georgiev, G.; Kozhuharov, V.; Litov, L.; Husek, T.; Kampf, K.; Zamkovsky, M.; Aliberti, R.; Geib, K. H.; Khoriauli, G.; Kleinknecht, K.; Kunze, J.; Lomidze, D.; Marchevski, R.; Peruzzo, L.; Vormstein, M.; Wanke, R.; Winhart, A.; Bolognesi, M.; Carassiti, V.; Chiozzi, S.; Cotta Ramusino, A.; Gianoli, A.; Malaguti, R.; Dalpiaz, P.; Fiorini, M.; Gamberini, E.; Neri, I.; Norton, A.; Petrucci, F.; Statera, M.; Wahl, H.; Bucci, F.; Ciaranfi, R.; Lenti, M.; Maletta, F.; Volpe, R.; Bizzeti, A.; Cassese, A.; Iacopini, E.; Antonelli, A.; Capitolo, E.; Capoccia, C.; Cecchetti, A.; Corradi, G.; Fascianelli, V.; Gonnella, F.; Lamanna, G.; Lenci, R.; Mannocchi, G.; Martellotti, S.; Moulson, M.; Paglia, C.; Raggi, M.; Russo, V.; Santoni, M.; Spadaro, T.; Tagnani, D.; Valeri, S.; Vassilieva, T.; Cassese, F.; Roscilli, L.; Ambrosino, F.; Capussela, T.; Di Filippo, D.; Massarotti, P.; Mirra, M.; Napolitano, M.; Saracino, G.; Barbanera, M.; Cenci, P.; Checcucci, B.; Duk, V.; Farnesini, L.; Gersabeck, E.; Lupi, M.; Papi, A.; Pepe, M.; Piccini, M.; Scolieri, G.; Aisa, D.; Anzivino, G.; Bizzarri, M.; Campeggi, C.; Imbergamo, E.; Piluso, A.; Santoni, C.; Berretta, L.; Bianucci, S.; Burato, A.; Cerri, C.; Fantechi, R.; Galeotti, S.; Magazzu', G.; Minuti, M.; Orsini, A.; Petragnani, G.; Pontisso, L.; Raffaelli, F.; Spinella, F.; Collazuol, G.; Mannelli, I.; Avanzini, C.; Costantini, F.; Di Lella, L.; Doble, N.; Giorgi, M.; Giudici, S.; Pedreschi, E.; Piandani, R.; Pierazzini, G.; Pinzino, J.; Sozzi, M.; Zaccarelli, L.; Biagioni, A.; Leonardi, E.; Lonardo, A.; Valente, P.; Vicini, P.; D'Agostini, G.; Ammendola, R.; Bonaiuto, V.; De Simone, N.; Federici, L.; Fucci, A.; Paoluzzi, G.; Salamon, A.; Salina, G.; Sargeni, F.; Biino, C.; Dellacasa, G.; Garbolino, S.; Marchetto, F.; Martoiu, S.; Mazza, G.; Rivetti, A.; Arcidiacono, R.; Bloch-Devaux, B.; Boretto, M.; Iacobuzio, L.; Menichetti, E.; Soldi, D.; Engelfried, J.; Estrada-Tristan, N.; Bragadireanu, A. M.; Hutanu, O. E.; Azorskiy, N.; Elsha, V.; Enik, T.; Falaleev, V.; Glonti, L.; Gusakov, Y.; Kakurin, S.; Kekelidze, V.; Kilchakovskaya, S.; Kislov, E.; Kolesnikov, A.; Madigozhin, D.; Misheva, M.; Movchan, S.; Polenkevich, I.; Potrebenikov, Y.; Samsonov, V.; Shkarovskiy, S.; Sotnikov, S.; Tarasova, L.; Zaytseva, M.; Zinchenko, A.; Bolotov, V.; Fedotov, S.; Gushin, E.; Khotjantsev, A.; Khudyakov, A.; Kleimenova, A.; Kudenko, Yu.; Shaikhiev, A.; Gorin, A.; Kholodenko, S.; Kurshetsov, V.; Obraztsov, V.; Ostankov, A.; Rykalin, V.; Semenov, V.; Sugonyaev, V.; Yushchenko, O.; Bician, L.; Blazek, T.; Cerny, V.; Koval, M.; Lietava, R.; Aglieri Rinella, G.; Arroyo Garcia, J.; Balev, S.; Battistin, M.; Bendotti, J.; Bergsma, F.; Bonacini, S.; Butin, F.; Ceccucci, A.; Chiggiato, P.; Danielsson, H.; Degrange, J.; Dixon, N.; Döbrich, B.; Farthouat, P.; Gatignon, L.; Golonka, P.; Girod, S.; Goncalves Martins De Oliveira, A.; Guida, R.; Hahn, F.; Harrouch, E.; Hatch, M.; Jarron, P.; Jamet, O.; Jenninger, B.; Kaplon, J.; Kluge, A.; Lehmann-Miotto, G.; Lichard, P.; Maire, G.; Mapelli, A.; Morant, J.; Morel, M.; Noël, J.; Noy, M.; Palladino, V.; Pardons, A.; Perez-Gomez, F.; Perktold, L.; Perrin-Terrin, M.; Petagna, P.; Poltorak, K.; Riedler, P.; Romagnoli, G.; Ruggiero, G.; Rutter, T.; Rouet, J.; Ryjov, V.; Saputi, A.; Schneider, T.; Stefanini, G.; Theis, C.; Tiuraniemi, S.; Vareia Rodriguez, F.; Venditti, S.; Vergain, M.; Vincke, H.; Wertelaers, P.; Brunetti, M. B.; Edwards, S.; Goudzovski, E.; Hallgren, B.; Krivda, M.; Lazzeroni, C.; Lurkin, N.; Munday, D.; Newson, F.; Parkinson, C.; Pyatt, S.; Romano, A.; Serghi, X.; Sergi, A.; Staley, R.; Sturgess, A.; Heath, H.; Page, R.; Angelucci, B.; Britton, D.; Protopopescu, D.; Skillicorn, I.; Cooke, P.; Dainton, J. B.; Fry, J. R.; Fulton, L.; Hutchcroft, D.; Jones, E.; Jones, T.; Massri, K.; Maurice, E.; McCormick, K.; Sutcliffe, P.; Wrona, B.; Conovaloff, A.; Cooper, P.; Coward, D.; Rubin, P.; Winston, R.

    2017-05-01

    NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the K+ → π+ ν bar nu decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. The beam line and detector components are described together with their early performance obtained from 2014 and 2015 data.

  19. The accuracy of the ATLAS muon X-ray tomograph

    NASA Astrophysics Data System (ADS)

    Avramidou, R.; Berbiers, J.; Boudineau, C.; Dechelette, C.; Drakoulakos, D.; Fabjan, C.; Grau, S.; Gschwendtner, E.; Maugain, J.-M.; Rieder, H.; Rangod, S.; Rohrbach, F.; Sbrissa, E.; Sedykh, E.; Sedykh, I.; Smirnov, Y.; Vertogradov, L.; Vichou, I.

    2003-01-01

    A gigantic detector, the ATLAS project, is under construction at CERN for particle physics research at the Large Hadron Collider which is to be ready by 2006. An X-ray tomograph has been developed, designed and constructed at CERN in order to control the mechanical quality of the ATLAS muon chambers. We reached a measurement accuracy of 2 μm systematic and 2 μm statistical uncertainties in the horizontal and vertical directions in the working area 220 cm (horizontal)×60 cm (vertical). Here we describe in detail the fundamental approach of the basic principle chosen to achieve such good accuracy. In order to crosscheck our precision, key results of measurements are presented.

  20. Q&A: Cosmic gardener

    NASA Astrophysics Data System (ADS)

    Hoffman, Jascha

    2011-05-01

    Charles Jencks designs landscapes and sculptures to convey concepts in astronomy, biology and mathematics -- notably at CERN, Europe's particle-physics lab near Geneva, Switzerland, and in his Garden of Cosmic Speculation near Dumfries in Scotland, UK. On the launch of his new book, he discusses green architecture and metaphor.

  1. PREFACE: International Workshop on Discovery Physics at the LHC (Kruger2014)

    NASA Astrophysics Data System (ADS)

    Cleymans, Jean

    2015-06-01

    The third biannual conference on 'Discovery Physics at the LHC' was held on December 1-6 2014 at the Kruger Gate Hotel in South Africa. Over 100 participants attended from Austria, Australia, Belgium, Brazil, Canada, China, the Czech Republic, France, Germany, Italy, the Netherlands, Norway, Poland, South Africa, Switzerland, the UK and the USA. The latest results from the Large Hadron Collider as well the latest theoretical insights were presented. With the majestic Kruger National Park in the background this led to a very stimulating conference with many exchanges taking place. The proceedings reflect the high level of the conference. The financial contributions from the SA-CERN programme, the UCT-CERN Research Centre, the University of Johannesburg, the University of the Witwatersrand and iThemba L.A.B.S. are gratefully acknowledged. Local Organizing Committee: Z. Buthelezi J. Cleymans (chair) S. H. Connell A. S. Cornell T. Dietel S. Förtsch N. Haasbroek A. Hamilton W. A. Horowitz B. Mellado Z. Z. Vilakazi S. Yacoob

  2. The SHIP facility at CERN

    NASA Astrophysics Data System (ADS)

    De Lellis, Giovanni

    2016-04-01

    Searches for new physics with accelerators are being performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. A new experimental facility meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored from the experimental point of view. A beam dump facility, built at CERN in the north area, using 400 GeV protons is a copious factory of charmed hadrons and could be used to probe the existence of such particles. The beam dump is also an ideal source of tau neutrinos, the less known particle in the Standard Model. In particular, tau anti-neutrinos have not been directly observed so far. We report the physics potential of such an experiment and outline the performances of a detector operating at the same facility for the search for the τ → μμμ decay.

  3. Pc as Physics Computer for Lhc ?

    NASA Astrophysics Data System (ADS)

    Jarp, Sverre; Simmins, Antony; Tang, Hong; Yaari, R.

    In the last five years, we have seen RISC workstations take over the computing scene that was once controlled by mainframes and supercomputers. In this paper we will argue that the same phenomenon might happen again. A project, active since March this year in the Physics Data Processing group, of CERN's CN division is described where ordinary desktop PCs running Windows (NT and 3.11) have been used for creating an environment for running large LHC batch jobs (initially the DICE simulation job of Atlas). The problems encountered in porting both the CERN library and the specific Atlas codes are described together with some encouraging benchmark results when comparing to existing RISC workstations in use by the Atlas collaboration. The issues of establishing the batch environment (Batch monitor, staging software, etc.) are also covered. Finally a quick extrapolation of commodity computing power available in the future is touched upon to indicate what kind of cost envelope could be sufficient for the simulation farms required by the LHC experiments.

  4. High Energy Physics Research with the CMS Experiment at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Gail G.

    2013-05-31

    The highlight of our last budget period, June 1, 2010, to May 31, 2013, was the discovery of the Higgs boson by the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC), announced on July 4, 2012, and for which François Englert and Peter Higgs were awarded the 2013 Nobel Prize in Physics on October 8, 2013. The Higgs boson was postulated in 1964 to explain how elementary particles obtain mass and was the missing piece of the Standard Model. However, the Standard Model does not describe everything that we know. There are many unanswered questions, such asmore » how can the Higgs boson have the mass that we have observed, are there more Higgs bosons, why is there more matter than antimatter, and what is the invisible dark matter, which constitutes about 85% of the matter in the universe. Our group played a significant role in the discovery of the Higgs boson and in subsequent analyses. We also carried out searches for new physics, in ways that could help elucidate some of the remaining questions. Our role in the CMS detector focused on the Tracker, a silicon strip outer tracker and pixel inner tracker.« less

  5. Footprints of Fascination: Digital Traces of Public Engagement with Particle Physics on CERN's Social Media Platforms.

    PubMed

    Kahle, Kate; Sharon, Aviv J; Baram-Tsabari, Ayelet

    2016-01-01

    Although the scientific community increasingly recognizes that its communication with the public may shape civic engagement with science, few studies have characterized how this communication occurs online. Social media plays a growing role in this engagement, yet it is not known if or how different platforms support different types of engagement. This study sets out to explore how users engage with science communication items on different platforms of social media, and what are the characteristics of the items that tend to attract large numbers of user interactions. Here, user interactions with almost identical items on five of CERN's social media platforms were quantitatively compared over an eight-week period, including likes, comments, shares, click-throughs, and time spent on CERN's site. The most popular items were qualitatively analyzed for content features. Findings indicate that as audience size of a social media platform grows, the total rate of engagement with content tends to grow as well. However, per user, engagement tends to decline with audience size. Across all platforms, similar topics tend to consistently receive high engagement. In particular, awe-inspiring imagery tends to frequently attract high engagement across platforms, independent of newsworthiness. To our knowledge, this study provides the first cross-platform characterization of public engagement with science on social media. Findings, although focused on particle physics, have a multidisciplinary nature; they may serve to benchmark social media analytics for assessing science communication activities in various domains. Evidence-based suggestions for practitioners are also offered.

  6. Footprints of Fascination: Digital Traces of Public Engagement with Particle Physics on CERN's Social Media Platforms

    PubMed Central

    Baram-Tsabari, Ayelet

    2016-01-01

    Although the scientific community increasingly recognizes that its communication with the public may shape civic engagement with science, few studies have characterized how this communication occurs online. Social media plays a growing role in this engagement, yet it is not known if or how different platforms support different types of engagement. This study sets out to explore how users engage with science communication items on different platforms of social media, and what are the characteristics of the items that tend to attract large numbers of user interactions. Here, user interactions with almost identical items on five of CERN's social media platforms were quantitatively compared over an eight-week period, including likes, comments, shares, click-throughs, and time spent on CERN's site. The most popular items were qualitatively analyzed for content features. Findings indicate that as audience size of a social media platform grows, the total rate of engagement with content tends to grow as well. However, per user, engagement tends to decline with audience size. Across all platforms, similar topics tend to consistently receive high engagement. In particular, awe-inspiring imagery tends to frequently attract high engagement across platforms, independent of newsworthiness. To our knowledge, this study provides the first cross-platform characterization of public engagement with science on social media. Findings, although focused on particle physics, have a multidisciplinary nature; they may serve to benchmark social media analytics for assessing science communication activities in various domains. Evidence-based suggestions for practitioners are also offered. PMID:27232498

  7. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 9)

    ScienceCinema

    None

    2018-06-27

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  8. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 5)

    ScienceCinema

    None

    2018-06-27

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  9. Planck 2010: From the Planck Scale to the ElectroWeak Scale (Part 6)

    ScienceCinema

    None

    2018-06-28

    "Planck 2010: From the Planck Scale to the ElectroWeak Scale". The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC. The main topic covered will be "Supersymmetry", with discussions on: supergravity and string phenomenology, extra dimensions, electroweak symmetry breaking, LHC and Tevatron physics, collider physics, flavor and neutrino physics, astroparticle and cosmology, gravity and holography, and strongly coupled physics and CFT.

  10. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, R.; Grenier, D.; Wollmann, D.

    2014-08-15

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like themore » Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.« less

  11. Novel apparatus and methods for performing remotely controlled particle-solid interaction experiments at CERN

    NASA Astrophysics Data System (ADS)

    Krause, H. F.; Deveney, E. F.; Jones, N. L.; Vane, C. R.; Datz, S.; Knudsen, H.; Grafström, P.; Schuch, R.

    1997-04-01

    Recent atomic physics studies involving ultrarelativistic Pb ions required solid target positioners, scintillators, and a sophisticated data acquisition and control system placed in a remote location at the CERN Super Proton Synchrotron near Geneva, Switzerland. The apparatus, installed in a high-radiation zone underground, had to (i) function for months, (ii) automatically respond to failures such as power outages and particle-induced computer upsets, and (iii) communicate with the outside world via a telephone line. The heart of the apparatus developed was an Apple Macintosh-based CAMAC system that answered the telephone and interpreted and executed remote control commands that (i) sensed and set targets, (ii) controlled voltages and discriminator levels for scintillators, (iii) modified data acquisition hardware logic, (iv) reported control information, and (v) automatically synchronized data acquisition to the CERN spill cycle via a modem signal and transmitted experimental data to a remote computer. No problems were experienced using intercontinental telephone connections at 1200 baud. Our successful "virtual laboratory" approach that uses off-the-shelf electronics is generally adaptable to more conventional bench-type experiments.

  12. Novel approaches for inspiring students and electrifying the public

    NASA Astrophysics Data System (ADS)

    Lidström, Suzy; Read, Alex; Parke, Stephen; Allen, Roland; Goldfarb, Steven; Mehlhase, Sascha; Ekelöf, Tord; Walker, Alan

    2014-03-01

    We will briefly summarize a wide variety of innovative approaches for inspiring students and stimulating broad public interest in fundamental physics research, as exemplified by recent activities related to the Higgs boson discovery and Higgs-Englert Nobel Prize on behalf of the Swedish Academy, CERN, Fermilab, and the Niels Bohr Institute. Personal interactions with the scientists themselves can be particularly electrifying, and these were encouraged by the wearing of ``Higgs Boson? Ask Me!'' badges, which will be made available to those attending this talk. At CERN, activities include Virtual Visits, (Google) Hangout with CERN, initiatives to grab attention (LEGO models, music videos, art programs, pins, etc.), substantive communication (lab visits and events, museum exhibits, traveling exhibits, local visits, Masterclasses, etc.), and educational activities (summer student programs, semester abroad programs, internships, graduate programs, etc.). For serious students and their teachers, or scientists in other areas, tutorial articles are appropriate. These are most effective if they also incorporate innovative approaches - for example, attractive figures that immediately illustrate the concepts, analogies that will resonate with the reader, and a broadening of perspective. Physica Scripta, Royal Swedish Academy of Sciences.

  13. U.S. Involvement in the LHC

    DOE PAGES

    Green, Dan

    2016-12-14

    The demise of the SSC in the U.S. created an upheaval in the U.S. high energy physics (HEP) community. Here, the subsequent redirection of HEP efforts to the CERN Large Hadron Collider (LHC) can perhaps be seen as informing on possible future paths for worldwide collaboration on future HEP megaprojects.

  14. GEANT4 and Secondary Particle Production

    NASA Technical Reports Server (NTRS)

    Patterson, Jeff

    2004-01-01

    GEANT 4 is a Monte Carlo tool set developed by the High Energy Physics Community (CERN, SLAC, etc) to perform simulations of complex particle detectors. GEANT4 is the ideal tool to study radiation transport and should be applied to space environments and the complex geometries of modern day spacecraft.

  15. The beam and detector of the NA62 experiment at CERN

    DOE PAGES

    Gil, E. Cortina; Albarrán, E. Martín; Minucci, E.; ...

    2017-05-31

    NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the K + → π + ν ν¯ decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. Furthermore, the beam line and detector componentsmore » are described together with their early performance obtained from 2014 and 2015 data.« less

  16. The beam and detector of the NA62 experiment at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gil, E. Cortina; Albarrán, E. Martín; Minucci, E.

    NA62 is a fixed-target experiment at the CERN SPS dedicated to measurements of rare kaon decays. Such measurements, like the branching fraction of the K + → π + ν ν¯ decay, have the potential to bring significant insights into new physics processes when comparison is made with precise theoretical predictions. For this purpose, innovative techniques have been developed, in particular, in the domain of low-mass tracking devices. Detector construction spanned several years from 2009 to 2014. The collaboration started detector commissioning in 2014 and will collect data until the end of 2018. Furthermore, the beam line and detector componentsmore » are described together with their early performance obtained from 2014 and 2015 data.« less

  17. A Tony Thomas-Inspired Guide to INSPIRE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution frommore » the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.« less

  18. Protonium production in ATHENA

    NASA Astrophysics Data System (ADS)

    Venturelli, L.; Amoretti, M.; Amsler, C.; Bonomi, G.; Carraro, C.; Cesar, C. L.; Charlton, M.; Doser, M.; Fontana, A.; Funakoshi, R.; Genova, P.; Hayano, R. S.; Jørgensen, L. V.; Kellerbauer, A.; Lagomarsino, V.; Landua, R.; Rizzini, E. Lodi; Macrì, M.; Madsen, N.; Manuzio, G.; Mitchard, D.; Montagna, P.; Posada, L. G.; Pruys, H.; Regenfus, C.; Rotondi, A.; Testera, G.; van der Werf, D. P.; Variola, A.; Yamazaki, Y.; Zurlo, N.; Athena Collaboration

    2007-08-01

    The ATHENA experiment at CERN, after producing cold antihydrogen atoms for the first time in 2002, has synthesised protonium atoms in vacuum at very low energies. Protonium, i.e. the antiproton-proton bound system, is of interest for testing fundamental physical theories. In the nested penning trap of the ATHENA apparatus protonium has been produced as result of a chemical reaction between an antiproton and the simplest matter molecule, H2+. The formed protonium atoms have kinetic energies in the range 40-700 meV and are metastable with mean lifetimes of the order of 1 μs. Our result shows that it will be possible to start measurements on protonium at low energy antiproton facilities, such as the AD at CERN or FLAIR at GSI.

  19. The high Beta cryo-modules and the associated cryogenic system for the HIE-ISOLDE upgrade at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delruelle, N.; Leclercq, Y.; Pirotte, O.

    2014-01-29

    The major upgrade of the energy and intensity of the existing ISOLDE and REX-ISOLDE radioactive ion beam facilities at CERN requires the replacement of most of the existing ISOLDE post-acceleration equipment by a superconducting linac based on quarter-wave resonators housed together with superconducting solenoids in a series of four high-β and two low-β cryo-modules. As well as providing optimum conditions for physics, the cryo-modules need to function under stringent vacuum and cryogenic conditions. We present the detail design and expected cryogenic performance of the high- β cryo-module together with the cryogenic supply and distribution system destined to service the completemore » superconducting linac.« less

  20. Current experiments in elementary particle physics. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galic, H.; Armstrong, F.E.; von Przewoski, B.

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  1. Big-Bang-Gate Cosmic Titanic: Why Aren't Physics Journal's Editors Bringing It To The Center of Scientific Attention

    NASA Astrophysics Data System (ADS)

    Gentry, Robert

    2010-02-01

    Until now science's greatest debacle occurred when Copernicus exposed Ptolemaic cosmologists' 1300 hundred year-long fraud that it must be true because observations fit theory so well, while they ignored the untested state of its central assumption of Earth centered planetary motion. With much hubris modern physicists are confident this could never happen again, that the integrity of physics journals editors suffices to guarantee that a challenge to the reigning cosmological theory -- big bang cosmology -- would immediately be brought to the center of scientific attention for analysis and discussion. In fact a decade ago it was reported [MPLA 2619 (1997); arXiv:gr-gc/9806061] that, like Ptolemaic cosmology before it, big bang's central assumption that GR expansion effects cause in-flight expansion had never been tested and, further, that experimental testing of it using GR operation of the GPS showed it to be false. This result proves it is impossible for the 2.73 K CBR to be fireball relic radiation. These results were expanded in CERN reports EXT-2003-021;022, but have been uniformly rejected by physics journals, one of which accepted a paper similar to CERN EXT-2003-022, only to reject it a few days later with the admission not to publish it because of fearing reaction of the worldwide physics community. For update on my PRL submission see http://www.alphacosmos.net. )

  2. Supersymmetry and Kaon physics

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kei

    2017-01-01

    Kaon physics has played an essential role in testing the Standard Model and in searching for new physics with measurements of CP violation and rare decays. Current progress of lattice calculations enables us to predict kaon observables accurately, especially for the direct CP violation, ε‧/ε, and there is a discrepancy from the experimental data at the 2.9 σ level. On the experimental side, the rare kaon decays and are ongoing to be measured at the SM accuracy by KOTO at J-PARC and NA62 at CERN. These kaon observables are good probes for new physics. We study supersymmetric effects; the chargino and gluino contributions to Z penguin, in kaon observables.

  3. Unveiling the top secrets with the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chierici, R.

    2013-12-01

    Top quark physics is one of the pillars of fundamental research in the field of high energy physics. It not only gives access to precision measurements for constraining the Standard Model of particles and interactions but also it represents a privileged domain for new physics searches. This contribution summarizes the main results in top quark physics obtained with the two general-purpose detectors ATLAS and CMS during the first two years of operations of the Large Hadron Collider (LHC) at CERN. It covers the 2010 and 2011 data taking periods, where the LHC ran at a centre-of-mass energy of 7 TeV.

  4. Top-quark pairs at high invariant mass: a model-independent discriminator of new physics at the Large Hadron Collider.

    PubMed

    Barger, Vernon; Han, Tao; Walker, Devin G E

    2008-01-25

    We study top-quark pair production to probe new physics at the CERN Large Hadron Collider. We propose reconstruction methods for tt[over] semileptonic events and use them to reconstruct the tt[over] invariant mass. The angular distribution of top quarks in their c.m. frame can determine the spin and production subprocess for each new physics resonance. Forward-backward asymmetry and CP-odd variables can be constructed to further delineate the nature of new physics. We parametrize the new resonances with a few generic parameters and show high invariant mass top pair production may provide an early indicator for new physics beyond the standard model.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, V.E.; Carmony, D.D.; Garfinkel, A.F.

    This report discusses: The CDF for {bar p}-p Collisions at FNAL; The L3 Detector for e{sup +}e{sup {minus}} Collisions at CERN; The SCD Detector for pp Collisions at the SSCL (calorimeters); The SDC Detector for pp Collisions at the SSCL (muon detector); The CO experiment for {bar p}-p Collisions at FNAL; and Accelerator Physics at Fermilab.

  6. Black Holes and the Large Hadron Collider

    ERIC Educational Resources Information Center

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  7. Fermilab Heroes of the LHC: Joel Butler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, Joel

    2017-08-23

    Particle physics research is both international and collaborative, with large national laboratories working together to most efficiently advance science. Joel Butler, Distinguished Scientist at Fermi National Accelerator Laboratory is the leader of the Compact Muon Solenoid experiment at the CERN laboratory in Europe. In this video, Joel tells us a bit about what it’s like.

  8. Fireworks on the 4th of July

    ERIC Educational Resources Information Center

    Barnett, R. Michael

    2013-01-01

    After half a century of waiting, the drama was intense. Physicists slept overnight outside the auditorium to get seats for the seminar at the CERN lab in Geneva, Switzerland. Ten thousand miles away on the other side of the planet, at the world's most prestigious international particle physics conference, hundreds of physicists from every corner…

  9. The SHiP experiment at CERN

    NASA Astrophysics Data System (ADS)

    De Lellis, G.; SHiP Collaboration

    2017-04-01

    The discovery of the Higgs boson has fully confirmed the Standard Model of particles and fields. Nevertheless, there are still fundamental phenomena, like the existence of dark matter and the baryon asymmetry of the Universe, which deserve an explanation that could come from the discovery of new particles. Searches for new physics with accelerators are performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. A new experiment at CERN meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored. A beam dump facility using high intensity 400 GeV protons is a copious source of such unknown particles in the GeV mass range. The beam dump is also a copious source of neutrinos and in particular it is an ideal source of tau neutrinos, the less known particle in the Standard Model. Indeed, tau anti-neutrinos have not been directly observed so far. We report the physics potential of such an experiment.

  10. The SHiP experiment at CERN

    NASA Astrophysics Data System (ADS)

    Bonivento, Walter M.

    2017-07-01

    The discovery of the Higgs boson has fully confirmed the Standard Model of particles and fields. Nevertheless, there are still fundamental phenomena, like the existence of dark matter and the baryon asymmetry of the Universe, deserving an explanation that could come from the discovery of new particles. Searches for new physics with accelerators are performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. A new experiment at CERN meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored. A beam dump facility using high intensity 400 GeV protons is a copious source of such unknown particles in the GeV mass range. The beam dump is also a copious source of neutrinos and in particular it is an ideal source of tau neutrinos, the less known particle in the Standard Model. The neutrino detector can also search for dark matter through its scattering off the electrons. We report the physics potential of the SHiP experiment.

  11. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.

    2017-08-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  12. Current Experiments in Particle Physics. 1996 Edition.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galic, Hrvoje

    2003-06-27

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  13. Current experiments in elementary particle physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  14. Top Quark and Higgs Boson Physics at LHC-ATLAS

    NASA Astrophysics Data System (ADS)

    Tomoto, M.

    2013-03-01

    One of the main goal of the Large Hadron Collider (LHC) experiments at CERN in Switzerland is to aim to solve the "origin of the mass" by discovering the Higgs boson and understanding the interaction of the Higgs boson with the elementary particles. The ATLAS, which is one of the LHC experiments has taken about 5 fb-1 of physics quality data and published several results with regard to the "origin of the mass" since March 2010. This presentation focuses on the latest results of the heaviest elementary particle, namely, top quark physics and the Higgs boson searches from ATLAS.

  15. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  16. Probing New Physics with Jets at the LHC

    ScienceCinema

    Harris, Robert

    2017-12-09

    The Large Hadron Collider at CERN has the potential to make a major discovery as early as 2008 from simple measurements of events with two high energy jets. This talk will present the jet trigger and analysis plans of the CMS collaboration, which were produced at the LHC Physics Center at Fermilab. Plans to search the two jet channel for generic signals of new particles and forces will be discussed. I will present the anticipated sensitivity of the CMS experiment to a variety of models of new physics, including quark compositeness, technicolor, superstrings, extra dimensions and grand unification.

  17. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.

    PubMed

    Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V

    2016-02-01

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.

  18. Extreme Energy Events Project: Construction of the detectors and installation in Italian High Schools

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; An, S.; Antolini, R.; Badalà, A.; Baldini Ferroli, R.; Bencivenni, G.; Blanco, F.; Bressan, E.; Chiavassa, A.; Chiri, C.; Cifarelli, L.; Cindolo, F.; Coccia, E.; de Pasquale, S.; di Giovanni, A.; D'Incecco, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gustavino, C.; Hatzifotiadou, D.; Imponente, G.; Kim, J.; La Rocca, P.; Librizzi, F.; Maggiora, A.; Menghetti, H.; Miozzi, S.; Moro, R.; Panareo, M.; Pappalardo, G. S.; Piragino, G.; Riggi, F.; Romano, F.; Sartorelli, G.; Sbarra, C.; Selvi, M.; Serci, S.; Williams, C.; Zichichi, A.; Zuyeuski, R.

    2008-04-01

    The EEE Project, conceived by its leader Antonino Zichichi, aims to detect Extreme Energy Events of cosmic rays with an array of muon telescopes distributed over the Italian territory. The Project involves Italian High Schools in order to introduce young people to Physics, also countervailing the recent crisis of university scientific classes inscriptions. The detectors for the EEE telescopes are Multigap Resistive Plate Chambers (MRPC) and have been constructed by teams of High School students who went in shift at the CERN laboratories. The mechanics and the electronics were developed by groups of researchers from CERN, the Italian Centro Fermi and INFN. The first group of schools of the EEE Project has inaugurated their telescopes recently. A status report of the Project and the preliminary results are presented.

  19. Pixelsex or Cosmic Revelation – how art & science can meet in public space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otto Roth, Tim

    2009-10-28

    Tim Otto Roth is known for his large projects in public space linking art & science. In his presentation the German artist and media theorist demonstrates some of his latest projects - among others Cosmic Revelation which changed the KASCADE detector field for cosmic rays at the Karlsruhe Institute of Technology into a giant flashing light field. The Pixelsex project leads him to the question if the universe might be digital. In occasion of his one week residency at CERN Tim Otto Roth explores the material culture of particle physics and its ways of finding pictorial representations. Above all hemore » is interested in methods like the Monte Carlo simulation, but also in CERN as giant collaborative institution and consequently as birthplace for the World Wide Web.« less

  20. Space charge problems in high intensity RFQs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, M.

    1996-06-01

    Measurements were made to check the performance of the CERN high intensity RFQs (RFQ2A and RFQ2B) and assess the validity of the design approach; the study of space charge effects was undertaken in this context. RFQ2A and RFQ2B are 200 mA, 750 keV proton accelerators, operating at 202.56 MHz. Since the beginning of 1993, RFQ2B serves as injector to the CERN 50 MeV Alvarez linac (Linac 2). In 1992, both RFQs were on the test stand to undergo a series of beam measurements, which were compared with computations. The studies concerning the RFQ2A were more detailed and they are reportedmore » in this paper. {copyright} {ital 1996 American Institute of Physics.}« less

  1. Pixelsex or Cosmic Revelation – how art & science can meet in public space

    ScienceCinema

    Otto Roth, Tim

    2018-05-18

    Tim Otto Roth is known for his large projects in public space linking art & science. In his presentation the German artist and media theorist demonstrates some of his latest projects - among others Cosmic Revelation which changed the KASCADE detector field for cosmic rays at the Karlsruhe Institute of Technology into a giant flashing light field. The Pixelsex project leads him to the question if the universe might be digital. In occasion of his one week residency at CERN Tim Otto Roth explores the material culture of particle physics and its ways of finding pictorial representations. Above all he is interested in methods like the Monte Carlo simulation, but also in CERN as giant collaborative institution and consequently as birthplace for the World Wide Web.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    campbell, myron

    To create a research and study abroad program that would allow U.S. undergraduate students access to the world-leading research facilities at the European Organization for Nuclear Research (CERN), the World Health Organization, various operations of the United Nations and other international organizations based in Geneva.The proposal is based on the unique opportunities currently existing in Geneva. The Large Hadron Collider (LHC) is now operational at CERN, data are being collected, and research results are already beginning to emerge. At the same time, a related reduction of activity at U.S. facilities devoted to particle physics is expected. In addition, the U.S.more » higher-education community has an ever-increasing focus on international organizations dealing with world health pandemics, arms control and human rights, a nexus also centered in Geneva.« less

  3. A Bonner Sphere Spectrometer for pulsed fields

    PubMed Central

    Aza, E.; Dinar, N.; Manessi, G. P.; Silari, M.

    2016-01-01

    The use of conventional Bonner Sphere Spectrometers (BSS) in pulsed neutron fields (PNF) is limited by the fact that proportional counters, usually employed as the thermal neutron detectors, suffer from dead time losses and show severe underestimation of the neutron interaction rate, which leads to strong distortion of the calculated spectrum. In order to avoid these limitations, an innovative BSS, called BSS-LUPIN, has been developed for measuring in PNF. This paper describes the physical characteristics of the device and its working principle, together with the results of Monte Carlo simulations of its response matrix. The BSS-LUPIN has been tested in the stray neutron field at the CERN Proton Synchrotron, by comparing the spectra obtained with the new device, the conventional CERN BSS and via Monte Carlo simulations. PMID:25948828

  4. COSMO 09

    ScienceCinema

    None

    2018-06-20

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin). List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle. Dark matter, convenor: Marco Cirelli. Dark energy and modified gravity, convenor: Kazuya Koyama. CMB, LSS and cosmological parameters/models, convenor: Licia Verde. String cosmology, convenor: Jim Cline. Baryogenesis and leptogenesis, convenor: Mariano Quiros. The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  5. COSMO 09

    ScienceCinema

    Peiris, Hiranya

    2018-06-12

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise.The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  6. COSMO 09

    ScienceCinema

    Knapp, Johannes

    2018-06-14

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference(price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  7. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin). List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle. Dark matter, convenor: Marco Cirelli. Dark energy and modified gravity, convenor: Kazuya Koyama. CMB, LSS and cosmological parameters/models, convenor: Licia Verde. String cosmology, convenor: Jim Cline. Baryogenesis and leptogenesis, convenor: Mariano Quiros. The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  8. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  9. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peiris, Hiranya

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise.The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  10. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salati, Pierre

    Part 5 lecture. Outline 1) Evidence for primary cosmic ray positrons 2) DM species with quite special properties 3) The effect of clumpiness on DM annihilaion 4) Decaying dark matter 5) perpectives more than conclusions. This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, themore » Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees.[Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  11. COSMO 09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, Johannes

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take placemore » from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference(price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.« less

  12. COSMO 09

    ScienceCinema

    None

    2018-06-13

    This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees. [Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  13. COSMO 09

    ScienceCinema

    Salati, Pierre

    2018-05-24

    Part 5 lecture. Outline 1) Evidence for primary cosmic ray positrons 2) DM species with quite special properties 3) The effect of clumpiness on DM annihilaion 4) Decaying dark matter 5) perpectives more than conclusions. This year's edition of the annual Cosmo International Conference on Particle Physics and Cosmology -- Cosmo09 -- will be hosted by the CERN Theory Group from Monday September 7 till Friday September 11, 2009. The conference will take place at CERN, Geneva (Switzerland). The Cosmo series is one of the major venues of interaction between cosmologists and particle physicists. In the exciting LHC era, the Conference will be devoted to the modern interfaces between Fundamental and Phenomenological Particle Physics and Physical Cosmology and Astronomy. The Conference will be followed by the CERN TH Institute "Particle Cosmology" which will take place from Monday September 14 till Friday September 18, 2009. The CERN-TH Institutes are visitor programs intended to bring together scientists with similar interests and to promote scientific collaborations. If you wish to participate, please register on the Institute web page. Link to last editions: COSMO 07 (U. of Sussex), COSMO 08 (U. of Wisconsin) List of plenary speakers: Gianfranco Bertone, Pierre Binetruy, Francois Bouchet, Juerg Diemand, Jonathan Feng, Gregory Gabadadze, Francis Halzen, Steen Hannestad, Will Kinney, Johannes Knapp, Hiranya Peiris, Will Percival, Syksy Rasanen, Alexandre Refregier, Pierre Salati, Roman Scoccimarro, Michael Schubnell, Christian Spiering, Neil Spooner, Andrew Tolley, Matteo Viel. The plenary program is available on-line. Select "Preliminary programme" in the left menu and click on each plenary session to see details. Parallel sessions: Inflation, convenor: Andrew Liddle Dark matter, convenor: Marco Cirelli Dark energy and modified gravity, convenor: Kazuya Koyama CMB, LSS and cosmological parameters/models, convenor: Licia Verde String cosmology, convenor: Jim Cline Baryogenesis and leptogenesis, convenor: Mariano Quiros The submission of talk proposals is closed by now. The parallel session program is available on-line. Select "Preliminary programme" in the left menu and click on each parallel session title to see details. Posters. Participants willing to present a poster will be offered the opportunity to hang it in the hall, next to the main auditorium. The poster application is closed by now. The poster list is available on-line. Registration. On-line registration is open from January 16 till August 31 (click on the link in the left menu). There will be no registration fees.[Thanks to the generosity of EU's network "UniverseNet", we have some limited funds available for supporting the visit of a few young scientists who could not attend otherwise. The application for funding is closed by now. All applicants have already been informed of the success of their application.] Accomodation. Participants are expected to arrange their accomodation by themselves: some rooms with shower, wc and washbasin have been blocked in the CERN hostel for the conference (price: 58CHF/night). Unfortunately, all these rooms have already been booked. You can book a hotel in Geneva or in the area surrounding CERN using this list. If you book a hotel on the French side, be sure to have a passport or a visa valid also in France. All participants are expected to be in possession of a passport or a visa valid in Swizerland (if relevant), and to be covered by their own health insurance during their visit. Sponsors. This conference is receiving support from the European Community's Marie Curie Research and Training Network UniverseNet.

  14. Physical Activity and Screen Time in Adolescents and Their Friends

    PubMed Central

    Sirard, John R.; Bruening, Meg; Wall, Melanie M.; Eisenberg, Marla E.; Kim, Sun K.; Neumark-Sztainer, Dianne

    2012-01-01

    Background Little is known about the actual physical activity and screen time behaviors of an adolescent’s friends relative to the individual’s behavior. Purpose To determine the associations between an adolescent’s physical activity and screen time and his/her nominated friends’ physical activity and screen time. Methods Data were obtained from EAT 2010 (Eating and Activity Among Teens), a large cross-sectional study (n=2126) conducted in 20 middle schools and high schools in Minneapolis/St. Paul MN during the 2009–2010 academic year and analyzed during 2011. Each participant nominated up to six friends from a school roster, and data from those friends were obtained as part of the school-based data collection procedures. Physical activity and screen time were assessed with previously used and validated questionnaires. Generalized estimating equation models, stratified by gender, were used to assess associations between adolescents’ physical activity and screen time and their friends’ physical activity and screen time. Results Physical activity for female adolescents was associated with their male and female friends’ physical activity, including their male and female best friends (all p<0.05). Males’ physical activity was associated with their female friends’ physical activity (p<0.03). Females’ screen time was associated with their male and female friends’ screen time (p≤0.03), but not with that of their best friends. Males’ screen time was associated with only their female friends’ screen time (p=0.04). Conclusions The consistent association between female adolescents’ physical activity and their friends’ physical activity indicates a need to include peer effects on adolescent female physical activity in future intervention work. PMID:23253649

  15. Introducing the LHC in the Classroom: An Overview of Education Resources Available

    ERIC Educational Resources Information Center

    Wiener, Gerfried J.; Woithe, Julia; Brown, Alexander; Jende, Konrad

    2016-01-01

    In the context of the recent re-start of CERN's Large Hadron Collider (LHC) and the challenge presented by unidentified falling objects (UFOs), we seek to facilitate the introduction of high energy physics in the classroom. Therefore, this paper provides an overview of the LHC and its operation, highlighting existing education resources, and…

  16. Exploring the Standard Model of Particles

    ERIC Educational Resources Information Center

    Johansson, K. E.; Watkins, P. M.

    2013-01-01

    With the recent discovery of a new particle at the CERN Large Hadron Collider (LHC) the Higgs boson could be about to be discovered. This paper provides a brief summary of the standard model of particle physics and the importance of the Higgs boson and field in that model for non-specialists. The role of Feynman diagrams in making predictions for…

  17. HYPATIA--An Online Tool for ATLAS Event Visualization

    ERIC Educational Resources Information Center

    Kourkoumelis, C.; Vourakis, S.

    2014-01-01

    This paper describes an interactive tool for analysis of data from the ATLAS experiment taking place at the world's highest energy particle collider at CERN. The tool, called HYPATIA/applet, enables students of various levels to become acquainted with particle physics and look for discoveries in a similar way to that of real research.

  18. Simon van der Meer (1925-2011):. A Modest Genius of Accelerator Science

    NASA Astrophysics Data System (ADS)

    Chohan, Vinod C.

    2011-02-01

    Simon van der Meer was a brilliant scientist and a true giant of accelerator science. His seminal contributions to accelerator science have been essential to this day in our quest for satisfying the demands of modern particle physics. Whether we talk of long base-line neutrino physics or antiproton-proton physics at Fermilab or proton-proton physics at LHC, his techniques and inventions have been a vital part of the modern day successes. Simon van der Meer and Carlo Rubbia were the first CERN scientists to become Nobel laureates in Physics, in 1984. Van der Meer's lesserknown contributions spanned a whole range of subjects in accelerator science, from magnet design to power supply design, beam measurements, slow beam extraction, sophisticated programs and controls.

  19. Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: the multidisciplinary ‘VoxTox’ research programme

    PubMed Central

    Burnet, Neil G; Scaife, Jessica E; Romanchikova, Marina; Thomas, Simon J; Bates, Amy M; Wong, Emma; Noble, David J; Shelley, Leila EA; Bond, Simon J; Forman, Julia R; Hoole, Andrew CF; Barnett, Gillian C; Brochu, Frederic M; Simmons, Michael PD; Jena, Raj; Harrison, Karl; Yeap, Ping Lin; Drew, Amelia; Silvester, Emma; Elwood, Patrick; Pullen, Hannah; Sultana, Andrew; Seah, Shannon YK; Wilson, Megan Z; Russell, Simon G; Benson, Richard J; Rimmer, Yvonne L; Jefferies, Sarah J; Taku, Nicolette; Gurnell, Mark; Powlson, Andrew S; Schönlieb, Carola-Bibiane; Cai, Xiaohao; Sutcliffe, Michael PF; Parker, Michael A

    2017-01-01

    The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose. PMID:29177202

  20. Applying physical science techniques and CERN technology to an unsolved problem in radiation treatment for cancer: the multidisciplinary 'VoxTox' research programme.

    PubMed

    Burnet, Neil G; Scaife, Jessica E; Romanchikova, Marina; Thomas, Simon J; Bates, Amy M; Wong, Emma; Noble, David J; Shelley, Leila Ea; Bond, Simon J; Forman, Julia R; Hoole, Andrew Cf; Barnett, Gillian C; Brochu, Frederic M; Simmons, Michael Pd; Jena, Raj; Harrison, Karl; Yeap, Ping Lin; Drew, Amelia; Silvester, Emma; Elwood, Patrick; Pullen, Hannah; Sultana, Andrew; Seah, Shannon Yk; Wilson, Megan Z; Russell, Simon G; Benson, Richard J; Rimmer, Yvonne L; Jefferies, Sarah J; Taku, Nicolette; Gurnell, Mark; Powlson, Andrew S; Schönlieb, Carola-Bibiane; Cai, Xiaohao; Sutcliffe, Michael Pf; Parker, Michael A

    2017-06-01

    The VoxTox research programme has applied expertise from the physical sciences to the problem of radiotherapy toxicity, bringing together expertise from engineering, mathematics, high energy physics (including the Large Hadron Collider), medical physics and radiation oncology. In our initial cohort of 109 men treated with curative radiotherapy for prostate cancer, daily image guidance computed tomography (CT) scans have been used to calculate delivered dose to the rectum, as distinct from planned dose, using an automated approach. Clinical toxicity data have been collected, allowing us to address the hypothesis that delivered dose provides a better predictor of toxicity than planned dose.

  1. Screening physical health? Yes! But...: nurses' views on physical health screening in mental health care.

    PubMed

    Happell, Brenda; Scott, David; Nankivell, Janette; Platania-Phung, Chris

    2013-08-01

    To explore nurses' views on the role of nurses in screening and monitoring for physical care of consumers with serious mental illness, at a regional mental health care service. People with serious mental illness experience heightened incidence of preventable and treatable physical illnesses such as cardiovascular disease and diabetes. Screening and monitoring are considered universal clinical safeguards. Nurses can potentially facilitate systematic screening, but their views on physical health care practices are rarely investigated. Qualitative exploratory study. Focus group interviews with 38 nurses of a regional mental health care service district of Australia. To facilitate discussion, participants were presented with a screening system, called the Health Improvement Profile (HIP), as an exemplar of screening of physical health risks by nurses. Inductive data analysis and theme development were guided by a thematic analysis framework. Nurses argued that treatable and preventable physical health problems were common. Four main themes were identified: screening - essential for good practice; the policy-practice gap; 'screening then what?' and, is HIP the answer? Screening and monitoring were considered crucial to proper diagnosis and treatment, however, were not performed systematically or consistently. Nurse readiness for an enhanced role in screening was shaped by: role and responsibility issues, legal liability concerns, funding and staff shortages. Participants were concerned that lack of follow up would limit effectiveness of these interventions. Screening was considered an important clinical step in effective diagnosis and treatment; however, identified barriers need to be addressed to ensure screening is part of a systemic approach to improve physical health of consumers with serious mental illness. Nurses have potential to influence improvement in physical health outcomes for consumers of mental health services. Such potential can only be realised if a systematic approach to physical health care is taken. © 2013 John Wiley & Sons Ltd.

  2. In AppreciationThe Depth and Breadth of John Bell's Physics

    NASA Astrophysics Data System (ADS)

    Jackiw, Roman; Shimony, Abner

    This essay surveys the work of John Stewart Bell, one of the great physicists of the twentieth century. Section 1 is a brief biography, tracing his career from working-class origins and undergraduate training in Belfast, Northern Ireland, to research in accelerator and nuclear physics in the British national laboratories at Harwell and Malvern, to his profound research on elementary particle physics as a member of the Theory Group at CERN and his equally profound ``hobby'' of investigating the foundations of quantum mechanics. Section 2 concerns this hobby, which began in his discontent with Bohr's and Heisenberg's analyses of the measurement process. He was attracted to the program of hidden variables interpretations, but he revolutionized the foundations of quantum mechanics by a powerful negative result: that no hidden variables theory that is ``local'' (in a clear and well-motivated sense) can agree with all the correlations predicted by quantum mechanics regarding well-separated systems. He further deepened the foundations of quantum mechanics by penetrating conceptual analyses of results concerning measurement theory of von Neumann, de Broglie and Bohm, Gleason, Jauch and Piron, Everett, and Ghirardi-Rimini-Weber. Bell's work in particle theory (Section 3) began with a proof of the CPT theorem in his doctoral dissertation, followed by investigations of the phenomenology of CP-violating experiments. At CERN Bell investigated the commutation relations in current algebras from various standpoints. The failure of current algebra combined with partially conserved current algebra to permit the experimentally observed decay of the neutral pi-meson into two photons stimulated the discovery by Bell and Jackiw of anomalous or quantal symmetry breaking, which has numerous implications for elementary particle phenomena. Other late investigations of Bell on elementary particle physics were bound states in quantum chromodynamics (in collaboration with Bertlmann) and estimates for the anomalous magnetic moment of the muon (in collaboration with de Rafael). Section 4 concerns accelerations, starting at Harwell with the algebra of strong focusing and the stability of orbits in linear accelerators and synchrotrons. At CERN he continued to contribute to accelerator physics, and with his wife Mary Bell he wrote on electron cooling and Beamstrahlung. A spectacular late achievement in accelerator physics was the demonstration (in collaboration with Leinaas) that the effective black-body radiation seen by an accelerated observer in an electromagnetic vacuum - the ``Unruh effect''- had already been observed experimentally in the partial depolarization of electrons traversing circular orbits.

  3. The Associations of Youth Physical Activity and Screen Time with Fatness and Fitness: The 2012 NHANES National Youth Fitness Survey

    PubMed Central

    Laurson, Kelly R.; Kim, Youngwon; Saint-Maurice, Pedro F.; Welk, Gregory J.

    2016-01-01

    The purpose of the study is to examine the associations of youth physical activity and screen time with weight status and cardiorespiratory fitness in children and adolescents, separately, utilizing a nationally representative sample. A total of 1,113 participants (692 children aged 6–11 yrs; 422 adolescents aged 12–15 yrs) from the 2012 NHANES National Youth Fitness Survey. Participants completed physical activity and screen time questionnaires, and their body mass index and cardiorespiratory fitness (adolescents only) were assessed. Adolescents completed additional physical activity questions to estimate daily MET minutes. Children not meeting the screen time guideline had 1.69 times the odds of being overweight/obese compared to those meeting the screen time guideline, after adjusting for physical activity and other control variables. Among adolescent, screen time was significantly associated with being overweight/obese (odds ratio = 1.82, 95% confidence interval: 1.06–3.15), but the association attenuated toward the borderline of being significant after controlling for physical activity. Being physically active was positively associated with cardiorespiratory fitness, independent of screen time among adolescents. In joint association analysis, children who did not meet physical activity nor screen time guidelines had 2.52 times higher odds of being overweight/obese than children who met both guidelines. Adolescents who did not meet the screen time guideline had significantly higher odds ratio of being overweight/obese regardless of meeting the physical activity guideline. Meeting the physical activity guideline was also associated with cardiorespiratory fitness regardless of meeting the screen time guideline in adolescents. Screen time is a stronger factor than physical activity in predicting weight status in both children and adolescents, and only physical activity is strongly associated with cardiorespiratory fitness in adolescents. PMID:26820144

  4. Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.

    2016-02-15

    At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less

  5. PREFACE Preface

    NASA Astrophysics Data System (ADS)

    Bleicher, Markus; Caines, Helen; Calderon de la Barca Sanchez, Manuel; de Falco, Alessandro; Fries, Rainer; Granier de Cassagnac, Raphael; Hippolyte, Boris; Mischke, Andre; Nardi, Marzia; Salgado, Carlos A.

    2011-01-01

    The 4th Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-nucleus Collisions (Hot Quarks 2010) was held in La Londe-Les-Maures, France, from June 21-26, 2010. Following the traditions of the conference, this meeting gathered more than 70 participants in the first years of their scientific careers. The present issue contains the proceedings of this workshop. The articles published in this volume clearly show the presence of a dynamic new generation of physicists interested in the different aspects of high energy nuclear collisions. The newest results from RHIC at Brookhaven and SPS at CERN were presented, as well as the latest results from the proton-proton programme from the LHC at CERN, while waiting for the data of the lead-lead collisions only available some months after the meeting. Along with these experimental findings, the corresponding theoretical research was also extensively discussed as well as the new perspectives for future facilities like FAIR, EIC and LHeC. We wish to thank the sponsors of the Hot Quarks 2010 Conference, who supported the authors of this volume: IN2P3/CNRS (France), EMMI (Germany), Institut Pluridisciplinaire Hubert Curien (France), National Science Foundation (USA), CERN (Switzerland), Helmholtz International Center for FAIR (Germany), Xunta de Galicia (Spain) and the Journal of Physics G. Markus Bleicher (Frankfurt (HIC4FAIR), Germany)Helen Caines (Yale University, USA)Manuel Calderon de la Barca Sanchez (UC Davis, USA)Alessandro de Falco (Cagliari/INFN, Italy)Rainer Fries (Texas A & M University, USA) Raphael Granier de Cassagnac (Ecole Polytechnique, France)Boris Hippolyte (IPHC, Strasbourg, France)Andre Mischke (Utrecht University, The Netherlands)Marzia Nardi (Torino/INFN, Italy)Carlos A Salgado (Universidade de Santiago de Compostela, Galicia, Spain)

  6. Physics Goals and Experimental Challenges of the Proton-Proton High-Luminosity Operation of the LHC

    NASA Astrophysics Data System (ADS)

    Campana, P.; Klute, M.; Wells, P. S.

    2016-10-01

    The completion of Run 1 of the Large Hadron Collider (LHC) at CERN has seen the discovery of the Higgs boson and an unprecedented number of precise measurements of the Standard Model, and Run 2 has begun to provide the first data at higher energy. The high-luminosity upgrade of the LHC (HL-LHC) and the four experiments (ATLAS, CMS, ALICE, and LHCb) will exploit the full potential of the collider to discover and explore new physics beyond the Standard Model. We review the experimental challenges and the physics opportunities in proton-proton collisions at the HL-LHC.

  7. Geant4 hadronic physics validation with ATLAS Tile Calorimeter test-beam data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexa, C.; Constantinescu, S.; Dita, S.

    We present comparison studies between Geant4 shower packages and ATLAS Tile Calorimeter test-beam data collected at CERN in H8 beam line at the SPS. Emphasis is put on hadronic physics lists and data concerning differences between Tilecal response to pions and protons of same energy. The ratio between the pure hadronic fraction of pion and the pure hadronic fraction of proton F{sub h}{sup {pi}}/F{sub h}{sup p} was estimated with Tilecal test-beam data and compared with Geant4 simulations.

  8. ALICE detector in construction phase

    NASA Astrophysics Data System (ADS)

    Peryt, Wiktor S.

    2005-09-01

    ALICE1 collaboration, which prepares one of the biggest physics experiments in the history, came into production phase of its detector. The experiment will start at LHC2 at CERN in 2007/2008. In the meantime about 1000 people from ~70 institutions are involved in this enterprise. ALICE detector consists of many sub-detectors, designed and manufactured in many laboratories and commercial firms, located mainly in Europe, but also in U.S., India, China and Korea. To assure appropriate working environment for such a specific task, strictly related to tests of particular components, measurements and assembly procedures Detector Construction Database system has been designed and implemented at CERN and at some labs involved in these activities. In this paper special attention is paid to this topic not only due to fact of innovative approach to the problem. Another reason is the group of young computer scientists (mainly students) from the Warsaw University of Technology, leaded by the author, has designed and developed the system for the whole experiment3. Another very interesting subject is the Data Acquisition System which has to fulfill very hard requirements concerning speed and high bandwidth. Required technical performance is achieved thanks to using PCI bus (usually in previous high energy physics experiments VME standard has been used) and optical links. Very general overview of the whole detector and physics goals of ALICE experiment will also be given.

  9. The Machine at the End of the Universe

    ERIC Educational Resources Information Center

    Monastersky, Richard

    2008-01-01

    Switzerland is the land of Big Ideas, where even the streets have Nobel prizes. At the European particle physics lab known as CERN, the roads through campus bear the names of Einstein, Curie, Bohr, and Heisenberg. Working amid those tributes to giants of the past century, physicists from around the world are trying to make history of their own and…

  10. The SHiP project at CERN

    NASA Astrophysics Data System (ADS)

    De Lellis, G.; SHiP Collaboration

    2016-07-01

    The discovery of the Higgs boson has fully confirmed the Standard Model of particles and fields. Nevertheless, there are still fundamental phenomena, like the existence of dark matter and the baryon asymmetry, which deserve an explanation that could come from the discovery of new particles. Searches for new physics with accelerators are performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. A new experimental facility at CERN meant to search for very weakly coupled particles in the few GeV mass domain has been recently proposed. The existence of such particles, foreseen in different theoretical models beyond the Standard Model, is largely unexplored. A beam dump facility using 400 GeV protons is a copious factory of charmed hadrons and could be used to probe the existence of such particles. The beam dump is also a copious source of neutrinos and in particular it is an ideal source of tau neutrinos, the less known particle in the Standard Model. Indeed, tau anti-neutrinos have not been directly observed so far. We report the physics potential of such an experiment. Resistive Plate Chambers could play a role in the SHiP detector.

  11. CERN-derived analysis of lunar radiation backgrounds

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Svoboda, Robert

    1993-01-01

    The Moon produces radiation which background-limits scientific experiments there. Early analyses of these backgrounds have either failed to take into consideration the effect of charm in particle physics (because they pre-dated its discovery), or have used branching ratios which are no longer strictly valid (due to new accelerator data). We are presently investigating an analytical program for deriving muon and neutrino spectra generated by the Moon, converting an existing CERN computer program known as GEANT which does the same for the Earth. In so doing, this will (1) determine an accurate prompt neutrino spectrum produced by the lunar surface; (2) determine the lunar subsurface particle flux; (3) determine the consequence of charm production physics upon the lunar background radiation environment; and (4) provide an analytical tool for the NASA astrophysics community with which to begin an assessment of the Moon as a scientific laboratory versus its particle radiation environment. This will be done on a recurring basis with the latest experimental results of the particle data groups at Earth-based high-energy accelerators, in particular with the latest branching ratios for charmed meson decay. This will be accomplished for the first time as a full 3-dimensional simulation.

  12. Impact of Policies on Physical Activity and Screen Time Practices in 50 Child-Care Centers in North Carolina.

    PubMed

    Erinosho, Temitope; Hales, Derek; Vaughn, Amber; Mazzucca, Stephanie; Ward, Dianne S

    2016-01-01

    This study assessed physical activity and screen time policies in child-care centers and their associations with physical activity and screen time practices and preschool children's (3-5 years old) physical activity. Data were from 50 child-care centers in North Carolina. Center directors reported on the presence/absence of written policies. Trained research assistants observed physical activity and screen time practices in at least 1 preschool classroom across 3 to 4 days. Children (N = 544) wore accelerometers to provide an objective measure of physical activity. Physical activity and screen time policies varied across centers. Observational data showed 82.7 min/d of active play opportunities were provided to children. Screen time provided did not exceed 30 min/d/child at 98% of centers. Accelerometer data showed children spent 38 min/d in moderate-to-vigorous physical activity and 206 min/d in sedentary activity. Policies about staff supervision of media use were negatively associated with screen time (P < .05). Contrary to expectation, policies about physical activity were associated with less time in physical activity. Clear strategies are needed for translating physical activity policies to practice. Further research is needed to evaluate the quality of physical activity policies, their impact on practice, and ease of operationalization.

  13. Gaseous Electron Multiplier (GEM) Detectors

    NASA Astrophysics Data System (ADS)

    Gnanvo, Kondo

    2017-09-01

    Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.

  14. Introduction

    NASA Astrophysics Data System (ADS)

    2016-11-01

    A year has passed since Raymond left us, but for many of us it seems like it was yesterday. Indeed, since his departure last July, not a week or even a day has gone by without his former collaborators, students, colleagues having a thought for him. Some initiatives have already been taken in order to celebrate Raymond's memory. The special day for Raymond organized at CERN last December was an opportunity to celebrate this exceptional man. In Annecy, with the implication of CERN and Marseille and thanks to a spontaneous and generous gift of Raymond's wife Marie-Françoise and their children Olivier and Thierry, the opening of a special room containing a huge collection of scientific books of Raymond is almost completed. It is in the same spirit that the present editors decided to dedicate a special issue of Nuclear Physics in memory of Raymond. In the following pages, some important problems Raymond was interested in are presented, discussed and sometimes solved. The diversity of topics in this issue reflects well the extent of Raymond's interests in Physics and Mathematics. Raymond was not only a gifted man for the so-called theoretical sciences, mathematics and physics, but he was also passionate about arts, music, drawing and of course literature, just as he was a leader always ready to bring his help and share his deep knowledge in physics and mathematics with others. Many people were deeply touched by Paul Sorba's tribute during Raymond's funeral. This is why we asked Paul to translate his speech, originally given in French, which seemed to us a perfect Prolegomena for this special volume of Nuclear Physics. The volume "Mathematical Foundations of Quantum Field Theory" is organized as follows: General and historical contributions

  15. Section Editors

    NASA Astrophysics Data System (ADS)

    Groep, D. L.; Bonacorsi, D.

    2014-06-01

    1. Data Acquisition, Trigger and Controls Niko NeufeldCERNniko.neufeld@cern.ch Tassos BeliasDemokritosbelias@inp.demokritos.gr Andrew NormanFNALanorman@fnal.gov Vivian O'DellFNALodell@fnal.gov 2. Event Processing, Simulation and Analysis Rolf SeusterTRIUMFseuster@cern.ch Florian UhligGSIf.uhlig@gsi.de Lorenzo MonetaCERNLorenzo.Moneta@cern.ch Pete ElmerPrincetonpeter.elmer@cern.ch 3. Distributed Processing and Data Handling Nurcan OzturkU Texas Arlingtonnurcan@uta.edu Stefan RoiserCERNstefan.roiser@cern.ch Robert IllingworthFNAL Davide SalomoniINFN CNAFDavide.Salomoni@cnaf.infn.it Jeff TemplonNikheftemplon@nikhef.nl 4. Data Stores, Data Bases, and Storage Systems David LangeLLNLlange6@llnl.gov Wahid BhimjiU Edinburghwbhimji@staffmail.ed.ac.uk Dario BarberisGenovaDario.Barberis@cern.ch Patrick FuhrmannDESYpatrick.fuhrmann@desy.de Igor MandrichenkoFNALivm@fnal.gov Mark van de SandenSURF SARA sanden@sara.nl 5. Software Engineering, Parallelism & Multi-Core Solveig AlbrandLPSC/IN2P3solveig.albrand@lpsc.in2p3.fr Francesco GiacominiINFN CNAFfrancesco.giacomini@cnaf.infn.it Liz SextonFNALsexton@fnal.gov Benedikt HegnerCERNbenedikt.hegner@cern.ch Simon PattonLBNLSJPatton@lbl.gov Jim KowalkowskiFNAL jbk@fnal.gov 6. Facilities, Infrastructures, Networking and Collaborative Tools Maria GironeCERNMaria.Girone@cern.ch Ian CollierSTFC RALian.collier@stfc.ac.uk Burt HolzmanFNALburt@fnal.gov Brian Bockelman U Nebraskabbockelm@cse.unl.edu Alessandro de SalvoRoma 1Alessandro.DeSalvo@ROMA1.INFN.IT Helge MeinhardCERN Helge.Meinhard@cern.ch Ray PasetesFNAL rayp@fnal.gov Steven GoldfarbU Michigan Steven.Goldfarb@cern.ch

  16. Spin and model determination of Z‧ - boson in lepton pair production at CERN LHC

    NASA Astrophysics Data System (ADS)

    Tsytrinov, A. V.; Pankov, A. A.; Serenkova, I. A.; Bednyakov, V. A.

    2017-12-01

    Many new physics models predict production of heavy resonances in Drell-Yan channel and can be observed at the CERN LHC. If a new resonance is discovered as a peak in the dilepton invariant mass distribution at the LHC, the identification of its spin and couplings can be done by measuring production rates and angular distributions of the decay products. Here we discuss the spin-1 identification of Z‧-boson for a set of representative models (SSM, E6, LR, and ALR) against the spin-2 RS graviton resonance and a spin-0 sneutrino resonance with the same mass and producing the same number of events under the resonance peak. We use the center-edge asymmetry for spin identification, as well as the total dilepton production cross section for the distinguishing the considered Z‧-boson models from one another.

  17. The Cortex project A quasi-real-time information system to build control systems for high energy physics experiments

    NASA Astrophysics Data System (ADS)

    Barillere, R.; Cabel, H.; Chan, B.; Goulas, I.; Le Goff, J. M.; Vinot, L.; Willmott, C.; Milcent, H.; Huuskonen, P.

    1994-12-01

    The Cortex control information system framework is being developed at CERN. It offers basic functions to allow the sharing of information, control and analysis functions; it presents a uniform human interface for such information and functions; it permits upgrades and additions without code modification and it is sufficiently generic to allow its use by most of the existing or future control systems at CERN. Services will include standard interfaces to user-supplied functions, analysis, archive and event management. Cortex does not attempt to carry out the direct data acquisition or control of the devices; these are activities which are highly specific to the application and are best done by commercial systems or user-written programs. Instead, Cortex integrates these application-specific pieces and supports them by supplying other commonly needed facilities such as collaboration, analysis, diagnosis and user assistance.

  18. Operation and performance of the EEE network array for the detection of cosmic rays

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Licciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2017-02-01

    The EEE (Extreme Energy Events) Project is an experiment for the detection of cosmic ray muons by means of a sparse array of telescopes, each made of three Multigap Resistive Plate Chambers (MRPC), distributed over all the Italian territory and at CERN. The main scientific goals of the Project are the investigation of the properties of the local muon flux, the detection of Extensive Air Showers (EAS) and the search for long-distance correlations between far telescopes. The Project is also characterized by a strong educational and outreach aspect since the telescopes are managed by teams of students and teachers who had previously constructed them at CERN. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array, which currently consists of more than 50 telescopes, is also presented by showing the most recent physics results.

  19. First results from a combined analysis of CERN computing infrastructure metrics

    NASA Astrophysics Data System (ADS)

    Duellmann, Dirk; Nieke, Christian

    2017-10-01

    The IT Analysis Working Group (AWG) has been formed at CERN across individual computing units and the experiments to attempt a cross cutting analysis of computing infrastructure and application metrics. In this presentation we will describe the first results obtained using medium/long term data (1 months — 1 year) correlating box level metrics, job level metrics from LSF and HTCondor, IO metrics from the physics analysis disk pools (EOS) and networking and application level metrics from the experiment dashboards. We will cover in particular the measurement of hardware performance and prediction of job duration, the latency sensitivity of different job types and a search for bottlenecks with the production job mix in the current infrastructure. The presentation will conclude with the proposal of a small set of metrics to simplify drawing conclusions also in the more constrained environment of public cloud deployments.

  20. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    NASA Astrophysics Data System (ADS)

    Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco

    2017-09-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  1. The Evolution of CERN EDMS

    NASA Astrophysics Data System (ADS)

    Wardzinska, Aleksandra; Petit, Stephan; Bray, Rachel; Delamare, Christophe; Garcia Arza, Griselda; Krastev, Tsvetelin; Pater, Krzysztof; Suwalska, Anna; Widegren, David

    2015-12-01

    Large-scale long-term projects such as the LHC require the ability to store, manage, organize and distribute large amounts of engineering information, covering a wide spectrum of fields. This information is a living material, evolving in time, following specific lifecycles. It has to reach the next generations of engineers so they understand how their predecessors designed, crafted, operated and maintained the most complex machines ever built. This is the role of CERN EDMS. The Engineering and Equipment Data Management Service has served the High Energy Physics Community for over 15 years. It is CERN's official PLM (Product Lifecycle Management), supporting engineering communities in their collaborations inside and outside the laboratory. EDMS is integrated with the CAD (Computer-aided Design) and CMMS (Computerized Maintenance Management) systems used at CERN providing tools for engineers who work in different domains and who are not PLM specialists. Over the years, human collaborations and machines grew in size and complexity. So did EDMS: it is currently home to more than 2 million files and documents, and has over 6 thousand active users. In April 2014 we released a new major version of EDMS, featuring a complete makeover of the web interface, improved responsiveness and enhanced functionality. Following the results of user surveys and building upon feedback received from key users group, we brought what we think is a system that is more attractive and makes it easy to perform complex tasks. In this paper we will describe the main functions and the architecture of EDMS. We will discuss the available integration options, which enable further evolution and automation of engineering data management. We will also present our plans for the future development of EDMS.

  2. ENLIGHT: European network for Light ion hadron therapy.

    PubMed

    Dosanjh, Manjit; Amaldi, Ugo; Mayer, Ramona; Poetter, Richard

    2018-04-03

    The European Network for Light Ion Hadron Therapy (ENLIGHT) was established in 2002 following various European particle therapy network initiatives during the 1980s and 1990s (e.g. EORTC task group, EULIMA/PIMMS accelerator design). ENLIGHT started its work on major topics related to hadron therapy (HT), such as patient selection, clinical trials, technology, radiobiology, imaging and health economics. It was initiated through CERN and ESTRO and dealt with various disciplines such as (medical) physics and engineering, radiation biology and radiation oncology. ENLIGHT was funded until 2005 through the EC FP5 programme. A regular annual meeting structure was started in 2002 and continues until today bringing together the various disciplines and projects and institutions in the field of HT at different European places for regular exchange of information on best practices and research and development. Starting in 2006 ENLIGHT coordination was continued through CERN in collaboration with ESTRO and other partners involved in HT. Major projects within the EC FP7 programme (2008-2014) were launched for R&D and transnational access (ULICE, ENVISION) and education and training networks (Marie Curie ITNs: PARTNER, ENTERVISION). These projects were instrumental for the strengthening of the field of hadron therapy. With the start of 4 European carbon ion and proton centres and the upcoming numerous European proton therapy centres, the future scope of ENLIGHT will focus on strengthening current and developing European particle therapy research, multidisciplinary education and training and general R&D in technology and biology with annual meetings and a continuously strong CERN support. Collaboration with the European Particle Therapy Network (EPTN) and other similar networks will be pursued. Copyright © 2018 CERN. Published by Elsevier B.V. All rights reserved.

  3. Across Europe to CERN: Taking Students on the Ultimate Physics Experience

    ERIC Educational Resources Information Center

    Wheeler, Sam

    2018-01-01

    In 2013, I was an Einstein Fellow with the U.S. Department of Energy and I was asked by a colleague, working in a senator's office, if I would join him in a meeting with a physicist to "translate" the science into something more understandable. That meeting turned out to be a wonderful opportunity I would never have otherwise had. During…

  4. Preschoolers' physical activity, screen time, and compliance with recommendations.

    PubMed

    Hinkley, Trina; Salmon, Jo; Okely, Anthony D; Crawford, David; Hesketh, Kylie

    2012-03-01

    Little evidence exists about the prevalence of adequate levels of physical activity and of appropriate screen-based entertainment in preschool children. Previous studies have generally relied on small samples. This study investigates how much time preschool children spend being physically active and engaged in screen-based entertainment. The study also reports compliance with the recently released Australian recommendations for physical activity (≥3 h·d(-1)) and screen entertainment (≤1 h·d(-1)) and the National Association for Sport and Physical Education physical activity guidelines (≥2 h·d(-1)) and American Academy of Pediatrics screen-based entertainment recommendations (≤2 h·d(-1)) in a large sample of preschool children. Participants were 1004 Melbourne preschool children (mean age = 4.5 yr, range = 3-5 yr) and their families in the Healthy Active Preschool Years study. Physical activity data were collected by accelerometry during an 8-d period. Parents reported their child's television/video/DVD viewing, computer/Internet, and electronic game use during a typical week. A total of 703 (70%) had sufficient accelerometry data, and 935 children (93%) had useable data on time spent in screen-based entertainment. Children spent 16% (approximately 127 min·d(-1)) of their time being physically active. Boys and younger children were more active than were girls and older children, respectively. Children spent an average of 113 min·d(-1) in screen-based entertainment. Virtually no children (<1%) met both the Australian recommendations and 32% met both the National Association for Sport and Physical Education and American Academy of Pediatrics recommendations. The majority of young children are not participating in adequate amounts of physical activity and in excessive amounts of screen-based entertainment. It is likely that physical activity may decline and that screen-based entertainment may increase with age. Compliance with recommendations may be further reduced. Strategies to promote physical activity and reduce screen-based entertainment in young children are required.

  5. Virtual reality visualization algorithms for the ALICE high energy physics experiment on the LHC at CERN

    NASA Astrophysics Data System (ADS)

    Myrcha, Julian; Trzciński, Tomasz; Rokita, Przemysław

    2017-08-01

    Analyzing massive amounts of data gathered during many high energy physics experiments, including but not limited to the LHC ALICE detector experiment, requires efficient and intuitive methods of visualisation. One of the possible approaches to that problem is stereoscopic 3D data visualisation. In this paper, we propose several methods that provide high quality data visualisation and we explain how those methods can be applied in virtual reality headsets. The outcome of this work is easily applicable to many real-life applications needed in high energy physics and can be seen as a first step towards using fully immersive virtual reality technologies within the frames of the ALICE experiment.

  6. "Infinitos"

    NASA Astrophysics Data System (ADS)

    1994-04-01

    On Friday, 22 April 1994, a new science exhibition ``Infinitos", arranged jointly by Lisboa'94, CERN and ESO, will open at the Museu de Electricidade on the waterfront of Lisbon, the capital of Portugal. In a series of spectacular displays, it illustrates man's current understanding of how the Universe works - from the tiniest structures of matter to the most far flung galaxies. On this day, it will be inaugurated by the President of Lisboa'94, Prof. Vitor Constancio, the Portuguese Science Minister, Prof. L. Valente de Oliveira, Prof. C. Llewellyn Smith, Director General of CERN [2] and Dr. P. Creola, President of ESO Council. This exhibition is part of a rich cultural programme taking place at Lisbon during 1994 in the frame of ``Lisboa 94 - European City of Culture", after which it will travel to major cities around Europe. The frontiers of our knowledge push into inner space - the structure of the smallest components of matter - and into outer space - the dramatic phenomena of distant galaxies. Two of Europe's leading science organisations are playing a crucial role in this great human adventure. The European Laboratory for Particle Physics, CERN, operates the mighty accelerators and colliding beam machines to penetrate deep into matter and recreate the conditions which prevailed in the Universe a tiny fraction of a second after the Big Bang. The European Southern Observatory, ESO, operates the largest optical observatory in the world with a range of advanced telescopes searching the sky to study the evolution and content of our Universe. The ``Infinitos'' exhibition uses many modern exhibition techniques, including sophisticated audio-visual presentations and interactive video programmes. Visitors enter through a gallery of portraits of the most celebrated scientists from the 16th to 20th centuries and an exhibition of art inspired by scientific research. After passing a cosmic ray detector showing the streams of particles which pour down constantly from outer space, visitors continue into a central area where they are confronted with the essential questions of astro- and particle physics, f.inst. ``What is the Universe made of?'', ``How was the Universe created?'', ``What is in the sky?'', ``What is Dark Matter?'', ``Where does the stuff in our bodies come from?'', and ``Are we alone in the Universe?'' A central theme of this display is ``What we don't know''. In the second part of the exhibition visitors are shown the instruments and techniques used in today's big science research which will help to provide the answers. There are special displays on Europe's future large research projects such as the Large Hadron Collider (LHC) at CERN, which will bring protons into head-on collision at higher energies (14 TeV) than ever before to allow scientists to penetrate still further into the structure of matter and recreate the conditions prevailing in the Universe just 10-12 seconds after the "Big Bang" when the temperature was 10^16 degrees. Another highlight is a large interactive model of ESO's Very Large Telescope (VLT), the world's most ambitious optical telescope project, now under construction. The telescope's unequalled potential for exciting astronomical observations at the outer reaches of the Universe is clearly explained. Special emphasis is given to the contribution of Portuguese research institutes to the work of CERN and ESO, and particle physicists and astronomers from Portugal will be present at the exhibition to talk to visitors about their work. This exhibition will remain open until 12 June 1994 and will be a major attraction, also to the many tourists visiting this year's European City of Culture. 1. This is a joint Press Release of Lisboa'94, CERN and ESO. 2. CERN, the European Laboratory for Particle Physics, has its headquarters in Geneva. At present, its Member States are Austria, Belgium, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland and the United Kingdom. Israel, the Russian Federation, Turkey, Yugoslavia (status suspended after UN embargo, June 1992), the European Commission and Unesco have observer status.

  7. Relationship of weight status, physical activity and screen time with academic achievement in adolescents.

    PubMed

    García-Hermoso, Antonio; Marina, Raquel

    The aim of this study was to examine the relationship of weight status, physical activity and screen time with academic achievement in Chilean adolescents. The present cross-sectional study included 395 adolescents. The International Obesity Task Force cut-off points were used to define the weight status. Physical activity was assessed using the Physical Activity Questionnaire for Adolescents and screen time was assessed using several questions about television, videogame and computer use. Academic achievement was measured using the mean of the grades obtained in mathematics and language subjects. In both genders, adolescents with obesity and excessive screen time earned worse grades compared to their non-obese peers and their peers that complied with screen time recommendations. The logistic regression analysis showed that adolescents with obesity, classified with medium-low physical activity and excessive screen time recommendations (excess ≥2h/day) are less likely to obtain high academic achievement (boys: OR=0.26; girls: OR=0.23) compared to their non-obese peers, high levels of physical activity and those who comply with the current screen time recommendations. Similar results were observed in adolescents with obesity and classified with medium-low physical activity (boys: OR=0.46; girls: OR=0.33) or excessive screen time (boys: OR=0.35; girls: OR=0.36) compared to adolescents with high levels of physical activity and those who complied with the screen time recommendations, respectively. This study shows that when combined, obesity, low-medium levels of physical activity and excessive screen time might be related to poor academic achievement. Copyright © 2015 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  8. Computer-aided design of liposomal drugs: In silico prediction and experimental validation of drug candidates for liposomal remote loading.

    PubMed

    Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram

    2014-01-10

    Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs' structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al., J. Control. Release 160 (2012) 147-157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-Nearest Neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used by us in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. © 2013.

  9. Computer-aided design of liposomal drugs: in silico prediction and experimental validation of drug candidates for liposomal remote loading

    PubMed Central

    Cern, Ahuva; Barenholz, Yechezkel; Tropsha, Alexander; Goldblum, Amiram

    2014-01-01

    Previously we have developed and statistically validated Quantitative Structure Property Relationship (QSPR) models that correlate drugs’ structural, physical and chemical properties as well as experimental conditions with the relative efficiency of remote loading of drugs into liposomes (Cern et al, Journal of Controlled Release, 160(2012) 14–157). Herein, these models have been used to virtually screen a large drug database to identify novel candidate molecules for liposomal drug delivery. Computational hits were considered for experimental validation based on their predicted remote loading efficiency as well as additional considerations such as availability, recommended dose and relevance to the disease. Three compounds were selected for experimental testing which were confirmed to be correctly classified by our previously reported QSPR models developed with Iterative Stochastic Elimination (ISE) and k-nearest neighbors (kNN) approaches. In addition, 10 new molecules with known liposome remote loading efficiency that were not used in QSPR model development were identified in the published literature and employed as an additional model validation set. The external accuracy of the models was found to be as high as 82% or 92%, depending on the model. This study presents the first successful application of QSPR models for the computer-model-driven design of liposomal drugs. PMID:24184343

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Charles D.; Cline, David B.; Byers, N.

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.« less

  12. Dissemination of CERN's Technology Transfer: Added Value from Regional Transfer Agents

    ERIC Educational Resources Information Center

    Hofer, Franz

    2005-01-01

    Technologies developed at CERN, the European Organization for Nuclear Research, are disseminated via a network of external technology transfer officers. Each of CERN's 20 member states has appointed at least one technology transfer officer to help establish links with CERN. This network has been in place since 2001 and early experiences indicate…

  13. Who should swing the stethoscope? An audit of baseline physical examination and blood monitoring on new patients accepted by an early intervention in psychosis team.

    PubMed

    Crabb, Jim; McAllister, Mark; Blair, Alison

    2009-11-01

    It has been established that patients with severe mental illness are at increased risk of physical illness and that physical health screening should be performed when an individual experiences a first episode of psychosis. The aim of the audit was to examine how physical health screening was achieved in the real world of an early intervention in psychosis (EIP) service in Scotland. Of particular interest was considering if primary or secondary care were more effective in providing specific physical health assessment for those presenting to the service. A case note audit was performed. The audit shows that physical examination and blood tests were being completed in the majority of service users under the care of the Esteem service. However, an unacceptably high number were not undergoing sufficient initial screening for metabolic syndrome or having baseline monitoring prior to commencing antipsychotic medication. Our results suggest that relying on primary care to provide physical health screening was not an effective approach in a population experiencing first-episode psychosis. Having a psychiatrist motivated to perform physical health screening within the EIP team may help to improve the uptake of physical health screening. Strategies to improve physical health screening in EIP services are discussed. © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Asia Pty Ltd.

  14. Service innovation: a comparison of two approaches for physical screening of psychiatric inpatients.

    PubMed

    Harrison, Mark Richard; McMillan, Catherine Frances; Dickinson, Timothy

    2012-06-01

    Psychiatric medications have clear links to obesity, diabetes, dyslipidaemia, hypertension, hyperprolactinaemia and movement disorders. These disorders are a common cause of morbidity and mortality in psychiatric patients but physical screening by health services is often haphazard. We report the findings of an audit of physical screening across two hospital wards. Each ward undertook a process of service improvement. One ward modified the admissions proforma and the other developed a discharge screening clinic. The effectiveness of each of these interventions was then compared through a reaudit of practice across both wards. At baseline, screening was performed inconsistently and infrequently. On average, the modified admissions proforma increased screening rates by 4.7% compared to 30.7% for discharge screening clinics. The discharge screening clinic demonstrated statistically significant improvements in screening rates and effectively delivered health promotion advice. Discharge screening clinics are significantly more likely than improved admissions procedures to detect clinically significant abnormalities. If these abnormalities are detected and treated then the long-term physical health of psychiatric patients may be improved.

  15. Impact of large beam-induced heat loads on the transient operation of the beam screens and the cryogenic plants of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Correia Rodrigues, H.; Tavian, L.

    2017-12-01

    The Future Circular Collider (FCC) under study at CERN will produce 50-TeV high-energy proton beams. The high-energy particle beams are bent by 16-T superconducting dipole magnets operating at 1.9 K and distributed over a circumference of 80 km. The circulating beams induce 5 MW of dynamic heat loads by several processes such as synchrotron radiation, resistive dissipation of beam image currents and electron clouds. These beam-induced heat loads will be intercepted by beam screens operating between 40 and 60 K and induce transients during beam injection. Energy ramp-up and beam dumping on the distributed beam-screen cooling loops, the sector cryogenic plants and the dedicated circulators. Based on the current baseline parameters, numerical simulations of the fluid flow in the cryogenic distribution system during a beam operation cycle were performed. The effects of the thermal inertia of the headers on the helium flow temperature at the cryogenic plant inlet as well as the temperature gradient experienced by the beam screen has been assessed. Additionally, this work enabled a thorough exergetic analysis of different cryogenic plant configurations and laid the building-block for establishing design specification of cold and warm circulators.

  16. A test of the Feynman scaling in the fragmentation region

    NASA Technical Reports Server (NTRS)

    Doke, T.; Innocente, V.; Kasahara, K.; Kikuchi, J.; Kashiwagi, T.; Lanzano, S.; Masuda, K.; Murakami, H.; Muraki, Y.; Nakada, T.

    1985-01-01

    The result of the direct measurement of the fragmentation region will be presented. The result will be obtained at the CERN proton-antiproton collider, being exposured the Silicon calorimeters inside beam pipe. This experiment clarifies a long riddle of cosmic ray physics, whether the Feynman scaling does villate at the fragmentation region or the Iron component is increasing at 10 to the 15th power eV.

  17. Less screen time and more frequent vigorous physical activity is associated with lower risk of reporting negative mental health symptoms among Icelandic adolescents.

    PubMed

    Hrafnkelsdottir, Soffia M; Brychta, Robert J; Rognvaldsdottir, Vaka; Gestsdottir, Sunna; Chen, Kong Y; Johannsson, Erlingur; Guðmundsdottir, Sigridur L; Arngrimsson, Sigurbjorn A

    2018-01-01

    Few studies have explored the potential interrelated associations of screen time and physical activity with mental health in youth, particularly using objective methods. We examined cross-sectional associations of these variables among Icelandic adolescents, using objective and subjective measurements of physical activity. Data were collected in the spring of 2015 from 315 tenth grade students (mean age 15.8 years) in six elementary schools in metropolitan Reykjavík, Iceland. Participants reported, via questionnaire, on demographics, weekly frequency of vigorous physical activity, daily hours of screen time and mental health status (symptoms of depression, anxiety and somatic complaints, self-esteem and life satisfaction). Total physical activity was measured over one week with wrist-worn accelerometers. Body composition was determined by DXA-scanning. Poisson regression analysis was used to explore independent and interactive associations of screen time and physical activity with mental health variables, adjusting for gender, body fat percentage and maternal education. Less screen time (below the group median of 5.3 h/day) and more frequent vigorous physical activity (≥4x/week) were each associated with reporting fewer symptoms of depression, anxiety, low self-esteem, and life dissatisfaction. No significant associations were observed between objectively measured physical activity and mental health outcomes. Interactive regression analysis showed that the group reporting both less screen time and more frequent vigorous physical activity had the lowest risk of reporting symptoms of depression, anxiety, low self-esteem, and life dissatisfaction. Reports of less screen time and more frequent vigorous physical activity were associated with lower risk of reporting mental health problems among Icelandic adolescents. Those who reported a combination of engaging in less screen time and more frequent vigorous physical activity had the lowest risk, suggesting a synergistic relationship between the two behaviors on mental health outcomes. Our results support guiding youth towards more active and less sedentary/screen-based lifestyle.

  18. The LHC timeline: a personal recollection (1980-2012)

    NASA Astrophysics Data System (ADS)

    Maiani, Luciano; Bonolis, Luisa

    2017-12-01

    The objective of this interview is to study the history of the Large Hadron Collider in the LEP tunnel at CERN, from first ideas to the discovery of the Brout-Englert-Higgs boson, seen from the point of view of a member of CERN scientific committees, of the CERN Council and a former Director General of CERN in the years of machine construction.

  19. Higher screen time is associated with overweight, poor dietary habits and physical inactivity in Brazilian adolescents, mainly among girls.

    PubMed

    Christofaro, Diego Giulliano Destro; De Andrade, Selma Maffei; Mesas, Arthur Eumann; Fernandes, Rômulo Araújo; Farias Júnior, José Cazuza

    2016-01-01

    To analyse the associations between high screen time and overweight, poor dietary habits and physical activity in adolescents according to sex. The study comprised 515 boys and 716 girls aged 14-17 years from Londrina, Brazil. Nutritional status (normal weight or overweight/obese) was assessed by calculating the body mass index. Eating habits and time spent in physical activity were reported using a questionnaire. The measurement of screen time considered the time spent watching television, using a computer and playing video games during a normal week. Associations between high screen time and dependent variables (nutritional status, eating habits and physical activity levels) were assessed by binary logistic regression, adjusted for sociodemographic and lifestyle variables. Most adolescents (93.8% of boys and 87.2% of girls) spent more than 2 hours per day in screen-time activities. After adjustments, an increasing trend in the prevalence of overweight and physical inactivity with increasing time spent on screen activities was observed for both sexes. Screen times of >4 hours/day compared with <2 hours/day were associated with physical inactivity, low consumption of vegetables and high consumption of sweets only in girls and the consumption of soft drinks in both sexes. The frequency of overweight and physical inactivity increased with increasing screen time in a trending manner and independently of the main confounders. The relationship between high screen time and poor eating habits was particularly relevant for adolescent girls.

  20. Compilation of current high energy physics experiments - Sept. 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addis, L.; Odian, A.; Row, G. M.

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary ofmore » the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche. (RWR)« less

  1. Answering Gauguin’s Questions: Where Are We Coming From, Where Are We Going, and What Are We?

    ScienceCinema

    Ellis, John [CERN

    2017-12-09

    The knowledge of matter revealed by the current reigning theory of particle physics, the so-called Standard Model, still leaves open many basic questions. What is the origin of the matter in the Universe? How does its mass originate? What is the nature of the dark matter that fills the Universe? Are there additional dimensions of space? The Large Hadron Collider (LHC) at the CERN Laboratory in Geneva, Switzerland, where high-energy experiments have now started, will take physics into a new realm of energy and time, and will address these physics analogues of Gauguin's questions. The answers will set the stage for possible future experiments beyond the scope of the LHC.

  2. Physical exam frequency

    MedlinePlus

    How often you need a physical exam; Health maintenance visit; Health screening; Checkup ... illness Recommendations are based on sex and age: Health screening -- women -- age 18 to 39 Health screening -- ...

  3. 1987 Nuclear Science Symposium, 34th, and 1987 Symposium on Nuclear Power Systems, 19th, San Francisco, CA, Oct. 21-23, 1987, Proceedings

    NASA Astrophysics Data System (ADS)

    Armantrout, Guy A.

    1988-02-01

    The present conference consideres topics in radiation detectors, advanced electronic circuits, data acquisition systems, radiation detector systems, high-energy and nuclear physics radiation detection, spaceborne instrumentation, health physics and environmental radiation detection, nuclear medicine, nuclear well logging, and nuclear reactor instrumentation. Attention is given to the response of scintillators to heavy ions, phonon-mediated particle detection, ballistic deficits in pulse-shaping amplifiers, fast analog ICs for particle physics, logic cell arrays, the CERN host interface, high performance data buses, a novel scintillating glass for high-energy physics applications, background events in microchannel plates, a tritium accelerator mass spectrometer, a novel positron tomograph, advancements in PET, cylindrical positron tomography, nuclear techniques in subsurface geology, REE borehole neutron activation, and a continuous tritium monitor for aqueous process streams.

  4. Physics in ;Real Life;: Accelerator-based Research with Undergraduates

    NASA Astrophysics Data System (ADS)

    Klay, J. L.

    All undergraduates in physics and astronomy should have access to significant research experiences. When given the opportunity to tackle challenging open-ended problems outside the classroom, students build their problem-solving skills in ways that better prepare them for the workplace or future research in graduate school. Accelerator-based research on fundamental nuclear and particle physics can provide a myriad of opportunities for undergraduate involvement in hardware and software development as well as ;big data; analysis. The collaborative nature of large experiments exposes students to scientists of every culture and helps them begin to build their professional network even before they graduate. This paper presents an overview of my experiences - the good, the bad, and the ugly - engaging undergraduates in particle and nuclear physics research at the CERN Large Hadron Collider and the Los Alamos Neutron Science Center.

  5. WORKSHOP “PHYSICS FOR HEALTH IN EUROPE”

    ScienceCinema

    None

    2018-06-20

    2-4 February 2010 at CERN This event will be will be available live via the Webcast Service and transmitted in parallel to:IT auditorium, Salle Anderssen 40-S2-A01(Tuesday 2nd February)BE auditorium (all day), Salle 40-S2-01 (only between 08:00- 14:00) (Wednesday 3rd February)BE auditorium, Salle Curie 40-S2-C01(Thursday 4th February).

  6. WORKSHOP “PHYSICS FOR HEALTH IN EUROPE”

    ScienceCinema

    None

    2018-06-20

    2-4 February 2010 at CERN This event will be will be available live via the Webcast Service and transmitted in parallel to:IT auditorium, Salle Anderssen 40-S2-A01(Tuesday 2nd February)BE auditorium (all day), Salle 40-S2-01 (only between 08:00- 14:00) (Wednesday 3rd February)BE auditorium, Salle Curie 40-S2-C01(Thursday 4th February). 

  7. Workshop - "Physics for Health in Europe"

    ScienceCinema

    None

    2018-05-16

    2-4 February 2010 at CERN This event will be will be available live via the Webcast Service and transmitted in parallel to: IT auditorium, Salle Anderssen 40-S2-A01(Tuesday 2nd February) BE auditorium (all day), Salle 40-S2-01 (only between 08:00- 14:00) (Wednesday 3rd February)BE auditorium, Salle Curie 40-S2-C01(Thursday 4th February)   

  8. Renaissance of the ~1 TeV Fixed-Target Program

    NASA Astrophysics Data System (ADS)

    Adams, T.; Appel, J. A.; Arms, K. E.; Balantekin, A. B.; Conrad, J. M.; Cooper, P. S.; Djurcic, Z.; Dunwoodie, W.; Engelfried, J.; Fisher, P. H.; Gottschalk, E.; de Gouvea, A.; Heller, K.; Ignarra, C. M.; Karagiorgi, G.; Kwan, S.; Loinaz, W. A.; Meadows, B.; Moore, R.; Morfín, J. G.; Naples, D.; Nienaber, P.; Pate, S. F.; Papavassiliou, V.; Petrov, A. A.; Purohit, M. V.; Ray, H.; Russ, J.; Schwartz, A. J.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Spitz, J.; Syphers, M. J.; Tait, T. M. P.; Vannucci, F.

    This document describes the physics potential of a new fixed-target program based on a ~1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.

  9. And the winners are...

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2008-09-01

    For 63-year-old Sergio Ferrara, winning a multi-million-Euro grant from the European Research Council (ERC) will mean something special: being able to return to Italy to continue his research into high-energy physics. Without his European windfall, Ferrara, who currently works in the theory section at the CERN particle-physics lab near Geneva, would either have had to retire in a few years' time due to strict employment laws or emigrate to the US where there is no compulsory retirement age. So the news that he was among the first people to be awarded one of the ERC's generous new advanced grants came as a huge relief.

  10. The MoEDAL Experiment at the Lhc — a New Light on the High Energy Frontier

    NASA Astrophysics Data System (ADS)

    Pinfold, James L.

    2014-01-01

    In 2010, the CERN (European Centre for Particle Physics Research) Research Board unanimously approved MoEDAL, the seventh international experiment at the Large Hadron Collider (LHC), which is designed to search for avatars of new physics signified by highly ionizing particles. A MoEDAL discovery would have revolutionary implications for our understanding of the microcosm, providing insights into such fundamental questions as: do magnetic monopoles exist, are there extra dimensions or new symmetries of nature; what is the mechanism for the generation of mass; what is the nature of dark matter and how did the big bang unfurl at the earliest times.

  11. The MoEDAL Experiment at the Lhc -- a New Light on the High Energy Frontier

    NASA Astrophysics Data System (ADS)

    Pinfold, James L.

    2014-04-01

    In 2010, the CERN (European Centre for Particle Physics Research) Research Board unanimously approved MoEDAL, the seventh international experiment at the Large Hadron Collider (LHC), which is designed to search for avatars of new physics signified by highly ionizing particles. A MoEDAL discovery would have revolutionary implications for our understanding of the microcosm, providing insights into such fundamental questions as: do magnetic monopoles exist, are there extra dimensions or new symmetries of nature; what is the mechanism for the generation of mass; what is the nature of dark matter and how did the big bang unfurl at the earliest times.

  12. Renaissance of the ~ 1-TeV Fixed-Target Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, T.; /Florida State U.; Appel, J.A.

    2011-12-02

    This document describes the physics potential of a new fixed-target program based on a {approx}1 TeV proton source. Two proton sources are potentially available in the future: the existing Tevatron at Fermilab, which can provide 800 GeV protons for fixed-target physics, and a possible upgrade to the SPS at CERN, called SPS+, which would produce 1 TeV protons on target. In this paper we use an example Tevatron fixed-target program to illustrate the high discovery potential possible in the charm and neutrino sectors. We highlight examples which are either unique to the program or difficult to accomplish at other venues.

  13. Screening for Traumatic Experiences and Mental Health Distress Among Women in HIV Care in Cape Town, South Africa.

    PubMed

    Yemeke, Tatenda T; Sikkema, Kathleen J; Watt, Melissa H; Ciya, Nonceba; Robertson, Corne; Joska, John A

    2017-07-01

    Traumatic events can negatively affect clinical outcomes among HIV positive women, particularly when those events result in ongoing psychological distress. Consequently, there have been calls to integrate screening and treatment of traumatic experiences and associated mental health disorders into HIV care. In South Africa, screening for traumatic experiences and mental health is not a routine part of HIV care. The goal of this study was to examine the prevalence of traumatic experiences and mental health distress among women in an HIV clinic in Cape Town, South Africa, and to explore the acceptability of routine screening in this setting. Seventy HIV positive women were screened following referral from health care workers in the clinic. Among the participants, 51% reported a history of sexual abuse and 75% reported physical intimate partner violence (physical IPV). Among all participants, 36% met screening criteria for depression; among those with traumatic experiences ( n = 57), 70% met screening criteria for posttraumatic stress disorder (PTSD). Compared with reporting no sexual abuse or physical IPV, having experienced both sexual abuse and physical IPV was significantly associated with higher odds of depression, while reporting either sexual abuse or physical IPV individually was not significantly associated with increased odds of depression. Among women reporting sexual abuse, 61% were disclosing their experience for the first time during the screening; 31% of women with physical IPV experience were disclosing for the first time. Overall, 98% of participants thought screening should be routine and extended to all women as part of clinic care. Screening women for sexual abuse and physical IPV may be an important component of ensuring HIV care engagement.

  14. Update on CERN Search based on SharePoint 2013

    NASA Astrophysics Data System (ADS)

    Alvarez, E.; Fernandez, S.; Lossent, A.; Posada, I.; Silva, B.; Wagner, A.

    2017-10-01

    CERN’s enterprise Search solution “CERN Search” provides a central search solution for users and CERN service providers. A total of about 20 million public and protected documents from a wide range of document collections is indexed, including Indico, TWiki, Drupal, SharePoint, JACOW, E-group archives, EDMS, and CERN Web pages. In spring 2015, CERN Search was migrated to a new infrastructure based on SharePoint 2013. In the context of this upgrade, the document pre-processing and indexing process was redesigned and generalised. The new data feeding framework allows to profit from new functionality and it facilitates the long term maintenance of the system.

  15. Embedded fiber Bragg grating sensors for true temperature monitoring in Nb3Sn superconducting magnets for high energy physics

    NASA Astrophysics Data System (ADS)

    Chiuchiolo, A.; Bajas, H.; Bajko, M.; Consales, M.; Giordano, M.; Perez, J. C.; Cusano, A.

    2016-05-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) planned at the European Organization for Nuclear Research (CERN) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. The instrumentation required for the racetrack coils needs the development of reliable sensing systems able to monitor the magnet thermo-mechanical behavior during its service life, from the coil fabrication to the magnet operation. With this purpose, Fiber Bragg Grating (FBG) sensors have been embedded in the coils of the Short Model Coil (SMC) magnet fabricated at CERN. The FBG sensitivity to both temperature and strain required the development of a solution able to separate mechanical and temperature effects. This work presents for the first time a feasibility study devoted to the implementation of an embedded FBG sensor for the measurement of the "true" temperature in the impregnated Nb3Sn coil during the fabrication process.

  16. Using S3 cloud storage with ROOT and CvmFS

    NASA Astrophysics Data System (ADS)

    Arsuaga-Ríos, María; Heikkilä, Seppo S.; Duellmann, Dirk; Meusel, René; Blomer, Jakob; Couturier, Ben

    2015-12-01

    Amazon S3 is a widely adopted web API for scalable cloud storage that could also fulfill storage requirements of the high-energy physics community. CERN has been evaluating this option using some key HEP applications such as ROOT and the CernVM filesystem (CvmFS) with S3 back-ends. In this contribution we present an evaluation of two versions of the Huawei UDS storage system stressed with a large number of clients executing HEP software applications. The performance of concurrently storing individual objects is presented alongside with more complex data access patterns as produced by the ROOT data analysis framework. Both Huawei UDS generations show a successful scalability by supporting multiple byte-range requests in contrast with Amazon S3 or Ceph which do not support these commonly used HEP operations. We further report the S3 integration with recent CvmFS versions and summarize the experience with CvmFS/S3 for publishing daily releases of the full LHCb experiment software stack.

  17. Analysis of the Laser Calibration System for the CMS HCAL at CERN's Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Lebolo, Luis

    2005-11-01

    The European Organization for Nuclear Physics' (CERN) Large Hadron Collider uses the Compact Muon Solenoid (CMS) detector to measure collision products from proton-proton interactions. CMS uses a hadron calorimeter (HCAL) to measure the energy and position of quarks and gluons by reconstructing their hadronic decay products. An essential component of the detector is the calibration system, which was evaluated in terms of its misalignment, linearity, and resolution. In order to analyze the data, the authors created scripts in ROOT 5.02/00 and C++. The authors also used Mathematica 5.1 to perform complex mathematics and AutoCAD 2006 to produce optical ray traces. The misalignment of the optical components was found to be satisfactory; the Hybrid Photodiodes (HPDs) were confirmed to be linear; the constant, noise and stochastic contributions to its resolution were analyzed; and the quantum efficiency of most HPDs was determined to be approximately 40%. With a better understanding of the laser calibration system, one can further understand and improve the HCAL.

  18. Studies on a 300 k pixel detector telescope

    NASA Astrophysics Data System (ADS)

    Middelkamp, Peter; Antinori, F.; Barberis, D.; Becks, K. H.; Beker, H.; Beusch, W.; Burger, P.; Campbell, M.; Cantatore, E.; Catanesi, M. G.; Chesi, E.; Darbo, G.; D'Auria, S.; Davia, C.; di Bari, D.; di Liberto, S.; Elia, D.; Gys, T.; Heijne, E. H. M.; Helstrup, H.; Jacholkowski, A.; Jæger, J. J.; Jakubek, J.; Jarron, P.; Klempt, W.; Krummenacher, F.; Knudson, K.; Kralik, I.; Kubasta, J.; Lasalle, J. C.; Leitner, R.; Lemeilleur, F.; Lenti, V.; Letheren, M.; Lopez, L.; Loukas, D.; Luptak, M.; Martinengo, P.; Meddeler, G.; Meddi, F.; Morando, M.; Munns, A.; Pellegrini, F.; Pengg, F.; Pospisil, S.; Quercigh, E.; Ridky, J.; Rossi, L.; Safarik, K.; Scharfetter, L.; Segato, G.; Simone, S.; Smith, K.; Snoeys, W.; Vrba, V.

    1996-02-01

    Four silicon pixel detector planes are combined to form a tracking telescope in the lead ion experiment WA97 at CERN with 290 304 sensitive elements each of 75 μm by 500 μm area. An electronic pulse processing circuit is associated with each individual sensing element and the response for ionizing particles is binary with an adjustable threshold. The noise rate for a threshold of 6000 e- has been measured to be less than 10-10. The inefficient area due to malfunctioning pixels is 2.8% of the 120 cm2. Detector overlaps within one plane have been used to determine the alignment of the components of the plane itself, without need for track reconstruction using external detectors. It is the first time that such a big surface covered with active pixels has been used in a physics experiment. Some aspects concerning inclined particle tracks and time walk have been measured separately in a beam test at the CERN SPS H6 beam.

  19. Radioactive ion beams at ISOLDE/CERN recent developments and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georg, U.; Catherall, R.; Giles, T.

    1999-11-16

    Since the move of ISOLDE from CERN's synchrocyclotron (SC) to the Proton Synchrotron Booster (PSB) in 1992 extensive work has been devoted to the development of new beams, i.e. the production of new isotopes, beams of higher intensity and the ionization of further elements. Most of these developments were driven by the particular needs of the physics community proposing new experiments. The main achievements were the adaption of liquid metal targets to the pulsed proton beam to prevent shockwaves and splashing inside the target container and systematic studies on the time structure of the release of the isotopes from themore » target. Furthermore the work on laser ion-sources already started at ISOLDE-2 was continued, the so-called RIST target was developed, and most recently first tests on the isotope production while increasing the proton energy from 1 GeV to 1.4 GeV were done. The latter topics are discussed in this paper.« less

  20. Radioactive Ion Beams at ISOLDE/CERN Recent Developments and Perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U. Georg; J.R.J. Bennett; U.C. Bergmann

    1999-12-31

    Since the move of ISOLDE from CERN's synchrocyclotron (SC) to the Proton Synchrotron Booster (PSB) in 1992 extensive work has been devoted to the development of new beams, i.e. the production of new isotopes, beams of higher intensity and the ionization of further elements. Most of these developments were driven by the particular needs of the physics community proposing new experiments. The main achievements were the adaption of liquid metal targets to the pulsed proton beam to prevent shockwaves and splashing inside the target container and systematic studies on the time structure of the release of the isotopes from themore » target. Furthermore the work on laser ion-sources already started at ISOLDE-2 was continued, the so-called RIST target was developed, and most recently first tests on the isotope production while increasing the proton energy from 1 GeV to 1.4 GeV were done. The latter topics are discussed in this paper.« less

  1. Physical activity and screen time: trends in U.S. children aged 9-13 years, 2002-2006.

    PubMed

    Huhman, Marian; Lowry, Richard; Lee, Sarah M; Fulton, Janet E; Carlson, Susan A; Patnode, Carrie D

    2012-05-01

    We examined trends of physical activity and screen time among nationally representative samples of children aged 9-13 years to explore whether children overall are becoming less physically active and less likely to be in compliance with screen time recommendations. We analyzed Youth Media Campaign Longitudinal Survey data for trends and demographic patterns of free time and organized physical activity, and hours and minutes of watching television and playing video or computer games. Child-parent dyads for 2002 (N = 3114), 2004 (N = 5177), and 2006 (N = 1200) were analyzed. On the day before the interview, and for free time physical activity in the past week, children reported a significant increase in physical activity from 2002-2006. Screen time levels were stable overall; 76.4% of children met the recommendations of 2 hours or less of daily screen time. Levels of physical activity among U.S. children aged 9-13 years were stable, or levels slightly improved from 2002-2006. Except for some subgroup differences, trends for compliance with screen time recommendations were also stable from 2002-2006 for U.S. children aged 9-13 years.

  2. Indirect self-modulation instability measurement concept for the AWAKE proton beam

    NASA Astrophysics Data System (ADS)

    Turner, M.; Petrenko, A.; Biskup, B.; Burger, S.; Gschwendtner, E.; Lotov, K. V.; Mazzoni, S.; Vincke, H.

    2016-09-01

    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV / c proton beam from the CERN SPS (longitudinal beam size σz = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of ≈ 7 ×1014 atoms /cm3 (plasma wavelength λp = 1.2 mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence an SMI saturation point resolution of 1.2 m can be achieved.

  3. Associations between Screen Time and Physical Activity among Spanish Adolescents

    PubMed Central

    Serrano-Sanchez, Jose A.; Martí-Trujillo, Sara; Lera-Navarro, Angela; Dorado-García, Cecilia; González-Henríquez, Juan J.; Sanchís-Moysi, Joaquín

    2011-01-01

    Background Excessive time in front of a single or several screens could explain a displacement of physical activity. The present study aimed at determining whether screen-time is associated with a reduced level of moderate to vigorous physical activity (MVPA) in Spanish adolescents living in favorable environmental conditions. Methodology/Principal Findings A multi-stage stratified random sampling method was used to select 3503 adolescents (12–18 years old) from the school population of Gran Canaria, Spain. MVPA, screen-time in front of television, computer, video game console and portable console was assessed in the classroom by fulfilling a standardized questionnaire. Bivariate and multivariate logistic regression analyses adjusted by a set of social-environmental variables were carried out. Forty-six percent of girls (95% CI±2.3%) and 26% of boys (95% CI±2.1%) did not meet the MVPA recommendations for adolescents. Major gender differences were observed in the time devoted to vigorous PA, video games and the total time spent on screen-based activities. Boys who reported 4 hours•week−1 or more to total screen-time showed a 64% (OR = 0.61, 95% CI, 0.44–0.86) increased risk of failing to achieve the recommended adolescent MVPA level. Participation in organized physical activities and sports competitions were more strongly associated with MVPA than screen-related behaviors. Conclusions/Significance No single screen-related behavior explained the reduction of MVPA in adolescents. However, the total time accumulated through several screen-related behaviors was negatively associated with MVPA level in boys. This association could be due to lower availability of time for exercise as the time devoted to sedentary screen-time activities increases. Participation in organized physical activities seems to counteract the negative impact of excessive time in front of screens on physical activity. PMID:21909435

  4. Associations between screen time and physical activity among Spanish adolescents.

    PubMed

    Serrano-Sanchez, Jose A; Martí-Trujillo, Sara; Lera-Navarro, Angela; Dorado-García, Cecilia; González-Henríquez, Juan J; Sanchís-Moysi, Joaquín

    2011-01-01

    Excessive time in front of a single or several screens could explain a displacement of physical activity. The present study aimed at determining whether screen-time is associated with a reduced level of moderate to vigorous physical activity (MVPA) in Spanish adolescents living in favorable environmental conditions. A multi-stage stratified random sampling method was used to select 3503 adolescents (12-18 years old) from the school population of Gran Canaria, Spain. MVPA, screen-time in front of television, computer, video game console and portable console was assessed in the classroom by fulfilling a standardized questionnaire. Bivariate and multivariate logistic regression analyses adjusted by a set of social-environmental variables were carried out. Forty-six percent of girls (95% CI±2.3%) and 26% of boys (95% CI±2.1%) did not meet the MVPA recommendations for adolescents. Major gender differences were observed in the time devoted to vigorous PA, video games and the total time spent on screen-based activities. Boys who reported 4 hours•week(-1) or more to total screen-time showed a 64% (OR = 0.61, 95% CI, 0.44-0.86) increased risk of failing to achieve the recommended adolescent MVPA level. Participation in organized physical activities and sports competitions were more strongly associated with MVPA than screen-related behaviors. No single screen-related behavior explained the reduction of MVPA in adolescents. However, the total time accumulated through several screen-related behaviors was negatively associated with MVPA level in boys. This association could be due to lower availability of time for exercise as the time devoted to sedentary screen-time activities increases. Participation in organized physical activities seems to counteract the negative impact of excessive time in front of screens on physical activity.

  5. PREFACE: Hot Quarks 2012: Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions

    NASA Astrophysics Data System (ADS)

    Bleicher, Markus; Caines, Helen; Calderón de la Barca Sanchez, Manuel; Fries, Rainer; Granier de Cassagnac, Raphaël; Hippolyte, Boris; Mischke, André; Mócsy, Ágnes; Petersen, Hannah; Ruan, Lijuan; Salgado, Carlos A.

    2013-09-01

    The 5th edition of the Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2012) was held in Copamarina, Puerto Rico from 14-20 October 2012. As in previous years, this meeting gathered more than 70 participants in the early years of their scientific careers. This issue contains the proceedings of the workshop. As in the past, the Hot Quarks workshop offered a unique atmosphere for a lively discussion and interpretation of the current measurements from high energy nuclear collisions. Recent results and upgrades at CERN's Large Hadron Collider (LHC) and Brookhaven's Relativistic Heavy Ion Collider (RHIC) were presented. Measurements from the proton-led run at the CERN-LHC were shown for the first time at this meeting. Recent theoretical developments were also extensively discussed, as well as the proposals for future facilities such as the Facility for Antiproton and Ion Research (FAIR) at Darmstadt, the Electron-Ion Collider at Brookhaven, and the LHeC. The conference's goal to provide a platform for young researchers to learn and foster their interactions was successfully met. We wish to thank the sponsors of the Hot Quarks 2012 Conference, who supported the authors of this volume: Brookhaven National Laboratory (USA), European Laboratory for Particle Physics CERN (Switzerland), European Research Council (EU), ExtreMe Matter Institute EMMI (Germany), Helmholtz International Center for FAIR (Germany), IN2P3/CNRS (France) and the European Research Council via grant #259612, Lawrence Berkeley National Laboratory (USA), Lawrence Livermore National Laboratory (USA), Los Alamos National Laboratory (USA), National Science Foundation (USA), and Netherlands Organization for Scientific Research (Netherlands). Marcus BleicherAndré Mischke Goethe-University Frankfurt and HIC4FAIRUtrecht University and Nikhef Amsterdam GermanyThe Netherlands Helen CainesÁgnes Mócsy Yale UniversityPratt Institute and Brookhaven National Laboratory USAUSA Manuel Calderón de la Barca SánchezHannah Petersen UC DavisFIAS USAGermany Rainer J FriesLijuan Ruan Texas A&M UniversityBrookhaven National Laboratory USAUSA Raphaël Granier de CassagnacCarlos A Salgado CNRS-IN2P3 and Ëcole polytechniqueUniversidade de Santiago de Compostela FranceSpain Boris Hippolyte CNRS-IN2P3 and Université de Strasbourg France The PDF also contains the conference poster.

  6. A large hadron electron collider at CERN

    DOE PAGES

    Abelleira Fernandez, J. L.

    2015-04-06

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously withmore » the LHC in the twenties and to achieve an integrated luminosity of O(100)fb –1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.« less

  7. Celebration in Honour of Magda and Torleif Ericson's 80th Birthday

    ScienceCinema

    Bernabeu, Jose; Chanfray, Guy; Wiese, Wolfram; Richter, Achim; Thomas, Anthony; Ericson, Magda; Ericson, Torleif

    2018-06-21

    A Chinese proverb says that happiness is when friends coming from far away meet and talk to each other. These words could very well be used to sum up the celebration held at CERN in honour of the 80th birthdays of Magda and Torleif Ericson, a couple both in the normal sense of the word and often also in the field of physics. During the celebratory event on 17 September, speakers reviewed the depth and breadth of the contributions that Torleif and Magda have made to theoretical physics in general and to nuclear physics in particular. José Bernabeu, Guy Chanfray, Wolfram Wiese, Achim Richter and Anthony Thomas all covered the considerable research that has been stimulated by Ericson–Ericson correlation(s) over the past 50 years.

  8. ALICE in the early Universe wonderland

    NASA Astrophysics Data System (ADS)

    Di Nezza, Pasquale

    2012-03-01

    In these years the Large Hadron Collider (LHC) at CERN is probing, for the first time, physics at energy scales more than an order of magnitude beyond that of the Standard Model. These experiments explore an energy regime of particle physics where phenomena, such as supersymmetry and Grand Unified Theories, may become relevant. Certainly, the LHC should shed light on the mechanism of electroweak symmetry breaking and may discover the first fundamental scalar particle seen in nature. The collisions of heavy ions (Pb - Pb) will create the same "soup" the early Universe had at the epoch of 10-5 seconds. In general, there is a strong and growing interplay between particle physics and cosmology, in particular in the possible production of mini black holes and dark matter candidates like the lightest neutralino in the MSSM.

  9. Psychological distress, television viewing, and physical activity in children aged 4 to 12 years.

    PubMed

    Hamer, Mark; Stamatakis, Emmanuel; Mishra, Gita

    2009-05-01

    Sedentary behavior and physical activity may be independent risk factors for psychological distress in adolescents, although there is no existing information for children. We examined the cross-sectional association between psychological distress, television and screen entertainment time, and physical activity levels among a representative sample of children aged 4 to 12 years from the 2003 Scottish Health Survey. Participants were 1486 boys and girls (mean age: 8.5 +/- 2.3 years). Parents answered on behalf of children who were required to be present. The parents completed the Strengths and Difficulties Questionnaire and information on television and screen entertainment time, physical activity, and dietary intake of their children. An abnormally high Strengths and Difficulties Questionnaire total difficulties score (20-40) was found in 4.2% of the sample. Approximately 25% of the children were exposed to television and screen entertainment at least 3 hours/day. In general linear models, television and screen entertainment time per week and physical activity levels were independently associated with the Strengths and Difficulties Questionnaire total difficulties score after adjustment for age, gender, area deprivation level, single-parent status, medical conditions, and various dietary intake indicators. There was also an additive interaction effect showing that the combination of high television and screen entertainment time and low physical activity was associated with the highest Strengths and Difficulties Questionnaire score. Higher television and screen entertainment exposure (>2.7 hours/day) alone resulted in a 24% increase in the Strengths and Difficulties Questionnaire score in comparison with lower television and screen entertainment exposure (<1.6 hours/day), although when combined with low physical activity this resulted in a 46% increase. Higher levels of television and screen entertainment time and low physical activity levels interact to increase psychological distress in young children.

  10. Physical activity and screen-time viewing among elementary school-aged children in the United States from 2009 to 2010.

    PubMed

    Fakhouri, Tala H I; Hughes, Jeffery P; Brody, Debra J; Kit, Brian K; Ogden, Cynthia L

    2013-03-01

    OBJECTIVES To describe the percentage of children who met physical activity and screen-time recommendations and to examine demographic differences. Recommendations for school-aged children include 60 minutes of daily moderate-to-vigorous physical activity and no more than 2 hours per day of screen-time viewing. DESIGN Cross-sectional study. SETTING Data from the 2009-2010 National Health and Nutrition Examination Survey, a representative sample of the US population. PARTICIPANTS Analysis included 1218 children 6 to 11 years of age. MAIN EXPOSURES Age, race/ethnicity, sex, income, family structure, and obesity status. MAIN OUTCOME MEASURES Proxy-reported adherence to physical activity and screen-time recommendations, separately and concurrently. RESULTS Based on proxy reports, overall, 70% of children met physical activity recommendations, and 54% met screen-time viewing recommendations. Although Hispanics were less likely to meet physical activity recommendations (adjusted odds ratio [aOR], 0.60 [95% CI, 0.38-0.95]), they were more likely to meet screen-time recommendations compared with non-Hispanic whites (aOR, 1.69 [95% CI, 1.18-2.43]). Only 38% met both recommendations concurrently. Age (9-11 years vs 6-8 years: aOR, 0.57 [95% CI, 0.38-0.85]) and obesity (aOR, 0.53 [95% CI, 0.38-0.73]) were inversely associated with concurrent adherence to both recommendations. CONCLUSIONS Fewer than 4 in 10 children met both physical activity and screen-time recommendations concurrently. The prevalence of sedentary behavior was higher in older children. Low levels of screen-time viewing may not necessarily predict higher levels of physical activity.

  11. Pet dogs and child physical activity: the role of child-dog attachment.

    PubMed

    Gadomski, A M; Scribani, M B; Krupa, N; Jenkins, P

    2017-10-01

    Dog ownership has been associated with increased physical activity in children which in turn may mitigate childhood obesity. To measure the association between child-dog attachment and child physical activity and screen time. Cross-sectional study including 370 children (ages 4-10) who had pet dogs in the home. Parents completed the DartScreen, a web-based screener, before a well-child visit. Screener domains included child body mass index (BMI), physical activity, screen time and dog-related questions. The Companion Animal Bonding Scale (CABS) was used to measure child attachment to the dog. Clinic nurses weighed and measured the children. Associations between CABS, BMI z-score, screen time and physical activity were estimated. CABS was strongly associated with time spent being active with the dog (F = 22.81, p < 0.0001), but not with BMI z-score or screen time. A higher level of child attachment to a pet dog is associated with increased child physical activity. © 2016 World Obesity Federation.

  12. Hangout with CERN: Reaching the Public with the Collaborative Tools of Social Media

    NASA Astrophysics Data System (ADS)

    Goldfarb, S.; Kahle, K. L. M.; Rao, A.

    2014-06-01

    On 4 July 2012, particle physics became a celebrity. Around 1,000,000,000 people (yes, 1 billion) [1] saw rebroadcasts of two technical presentations announcing the discovery of a new boson. The occasion was a joint seminar of the CMS [2] and ATLAS [3] collaborations, and the target audience were particle physicists. Yet the world ate it up like a sporting event. Roughly two days later, in a parallel session of ICHEP in Melbourne, Australia [4], a group of physicists decided to explain the significance of this discovery to the public. They used a tool called "Hangout", part of the relatively new Google+ social media platform [5], to converse directly with the public via a webcast videoconference. The demand to join this Hangout [6] overloaded the server several times. In the end, a compromise involving Q&A via comments was set up, and the conversation was underway. We present a new project born shortly after this experience called Hangout with CERN [7], and discuss its success in creating an effective conversational channel between the public and particle physicists. We review earlier efforts by both CMS and ATLAS contributing to this development, and then describe the current programme, involving nearly all aspects of CERN, and some topics that go well beyond that. We conclude by discussing the potential of the programme both to improve our accountability to the public and to train our community for public communication.

  13. From Physics to industry: EOS outside HEP

    NASA Astrophysics Data System (ADS)

    Espinal, X.; Lamanna, M.

    2017-10-01

    In the competitive market for large-scale storage solutions the current main disk storage system at CERN EOS has been showing its excellence in the multi-Petabyte high-concurrency regime. It has also shown a disruptive potential in powering the service in providing sync and share capabilities and in supporting innovative analysis environments along the storage of LHC data. EOS has also generated interest as generic storage solution ranging from university systems to very large installations for non-HEP applications.

  14. Workshop "Physics for Health in Europe"

    ScienceCinema

    Boerman, Otto

    2018-06-20

    Presentation on Radioisotopes in diagnostics and therapy. 2-4 February 2010 at CERN This event will be will be available live via the Webcast Service and transmitted in parallel to: IT auditorium, Salle Anderssen 40-S2-A01(Tuesday 2nd February) BE auditorium (all day), Salle 40-S2-01 (only between 08:00- 14:00) (Wednesday 3rd February) BE auditorium, Salle Curie 40-S2-C01(Thursday 4th February).  

  15. WORKSHOP “PHYSICS FOR HEALTH IN EUROPE”

    ScienceCinema

    None

    2018-06-20

    2-4 February 2010 at CERN This event will be will be available live via the Webcast Service and transmitted in parallel to:IT auditorium, Salle Anderssen 40-S2-A01(Tuesday 2nd February)BE auditorium (all day), Salle 40-S2-01 (only between 08:00- 14:00) (Wednesday 3rd February)BE auditorium, Salle Curie 40-S2-C01(Thursday 4th February)   .

  16. WORKSHOP “PHYSICS FOR HEALTH IN EUROPE”

    ScienceCinema

    None

    2017-12-09

    2-4 February 2010 at CERN This event will be will be available live via the Webcast Service and transmitted in parallel to:IT auditorium, Salle Anderssen 40-S2-A01(Tuesday 2nd February)BE auditorium (all day), Salle 40-S2-01 (only between 08:00- 14:00) (Wednesday 3rd February)BE auditorium, Salle Curie 40-S2-C01(Thursday 4th February)   

  17. Voyage dans le noir. Trous noirs, matière noire, énergie noire et antimatière [Journey in the dark. Black holes, dark matter, dark energy and antimatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez-Gaume, Luis; Doser, Michael; Grojean, Chri

    2009-11-26

    Et si nous faisions avec les physiciens un voyage dans le noir ? De l'astrophysique à la physique des particules les trois noirs, la matière noire, l'énergie noire ou l’antimatière intriguent et fascinent. Que sont ces objets qui bousculent nos idées et qui véhiculent parfois des craintes irraisonnées? Luis Alvarez-Gaume, Michael Doser et Christophe Grojean, physiciens du CERN vous invitent à mettre en lumière (!) les constituants de base de la matière et à explorer les mystères de la physique contemporaine. Une soirée lumineuse pour éclairer des concepts et ne plus avoir peur du noir. [ What if we mademore » a trip to the physicists in the dark? From astrophysics to particle physics the three blacks, dark matter, dark energy or antimatter intrigue and fascinate. What are these objects that jostle our ideas and sometimes convey irrational fears? Luis Alvarez-Gaume, Michael Doser and Christophe Grojean, CERN physicists invite you to highlight (!) The basic constituents of matter and to explore the mysteries of contemporary physics. A bright evening to illuminate concepts and not be afraid of the dark.]« less

  18. Pain, pain intensity and pain disability in high school students are differently associated with physical activity, screening hours and sleep.

    PubMed

    Silva, Anabela G; Sa-Couto, Pedro; Queirós, Alexandra; Neto, Maritza; Rocha, Nelson P

    2017-05-16

    Studies exploring the association between physical activity, screen time and sleep and pain usually focus on a limited number of painful body sites. Nevertheless, pain at different body sites is likely to be of different nature. Therefore, this study aims to explore and compare the association between time spent in self-reported physical activity, in screen based activities and sleeping and i) pain presence in the last 7-days for 9 different body sites; ii) pain intensity at 9 different body sites and iii) global disability. Nine hundred sixty nine students completed a questionnaire on pain, time spent in moderate and vigorous physical activity, screen based time watching TV/DVD, playing, using mobile phones and computers and sleeping hours. Univariate and multivariate associations between pain presence, pain intensity and disability and physical activity, screen based time and sleeping hours were investigated. Pain presence: sleeping remained in the multivariable model for the neck, mid back, wrists, knees and ankles/feet (OR 1.17 to 2.11); moderate physical activity remained in the multivariate model for the neck, shoulders, wrists, hips and ankles/feet (OR 1.06 to 1.08); vigorous physical activity remained in the multivariate model for mid back, knees and ankles/feet (OR 1.05 to 1.09) and screen time remained in the multivariate model for the low back (OR = 2.34. Pain intensity: screen time and moderate physical activity remained in the multivariable model for pain intensity at the neck, mid back, low back, shoulder, knees and ankles/feet (Rp 2 0.02 to 0.04) and at the wrists (Rp 2  = 0.04), respectively. Disability showed no association with sleeping, screen time or physical activity. This study suggests both similarities and differences in the patterns of association between time spent in physical activity, sleeping and in screen based activities and pain presence at 8 different body sites. In addition, they also suggest that the factors associated with the presence of pain, pain intensity and pain associated disability are different.

  19. Screening for Physical Problems in Classrooms for Severely Handicapped Students.

    ERIC Educational Resources Information Center

    Dever, Richard; Knapczyk, Dennis

    1980-01-01

    The authors present a screening device with which teachers of severely handicapped students may detect the presence of a physical problem. The screening approach covers vision, auditory problems, seizures, orthopedic problems, and pain. (CL)

  20. Physics and Diplomacy: A True Story

    NASA Astrophysics Data System (ADS)

    Sessoms, Allen

    2017-01-01

    Physics has played a prominent role in U.S. diplomacy since the development of nuclear weapons during World War II. The discipline expanded its reach during the Atoms for Peace initiative of president Eisenhower and continued through the Cold War with the Soviet Union. Physics maintains a prominent role in the diplomatic dialogue through efforts in the nuclear non-proliferation arena and in major international science collaborations such as in experiments at CERN, ITER and the International Space Station. Physics has also served as the template for the much broader impact of science on diplomacy. For example, climate change, energy efficiency and ocean science have all benefitted from the path blazed by physicists. But how effective have physicists been in steering clear of political dynamics while trying to infuse scientific facts into policy debates? This talk will consider this through the eyes of a physicist who has spent many years providing advice to policy makers, both inside and outside of government.

  1. XXV International Workshop on Deep-Inelastic Scattering and Related Subjects

    NASA Astrophysics Data System (ADS)

    DIS2017 is the 25th in an annual series of international workshops covering an eclectic mixture of material related to Quantum Chromodynamics and Deep Inelastic Scattering as well as a general survey of the hottest current topics in high energy physics. Much of the program is devoted to the most recent results from large experiments at BNL, CERN, DESY, FNAL, JLab, and KEK. Relevant theoretical advances are also covered in detail. The meeting is organised around seven working groups: WG1) Structure Functions and Parton Densities; WG2) Low x and Diffractive Physics; WG3) Higgs and BSM Physics in Hadron Collisions; WG4) Hadronic and Electroweak Observables; WG5) Physics with Heavy Flavours; WG6) Spin and 3D Structure; WG7) Future of DIS. Please note that a number of contributions are listed but downloadable files have not been provided: please check the DIS2017 webpage for the slides and information therein.

  2. Towards the conceptual design of the cryogenic system of the Future Circular Collider (FCC)

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Correia Rodrigues, H.; Delikaris, D.; Duda, P.; Haberstroh, C.; Holdener, F.; Klöppel, S.; Kotnig, C.; Millet, F.; Polinski, J.; Quack, H.; Tavian, L.

    2017-12-01

    Following the update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study considers several options for very high-energy hadron-hadron, electron-positron and hadron-electron colliders. From the cryogenics point of view, the most challenging option is the hadron-hadron collider (FCC-hh) for which the conceptual design of the cryogenic system is progressing. The FCC-hh cryogenic system will have to produce up to 120 kW at 1.8 K for the superconducting magnet cooling, 6 MW between 40 and 60 K for the beam-screen and thermal-shield cooling as well as 850 g/s between 40 and 290 K for the HTS current-lead cooling. The corresponding total entropic load represents about 1 MW equivalent at 4.5 K and this cryogenic system will be by far the largest ever designed. In addition, the total mass to be cooled down is about 250’000 t and an innovative cool-down process must be proposed. This paper will present the proposed cryogenic layout and architecture, the cooling principles of the main components, the corresponding cooling schemes, as well as the cryogenic plant arrangement and proposed process cycles. The corresponding required development plan for such challenging cryogenic system will be highlighted.

  3. EFQPSK Versus CERN: A Comparative Study

    NASA Technical Reports Server (NTRS)

    Borah, Deva K.; Horan, Stephen

    2001-01-01

    This report presents a comparative study on Enhanced Feher's Quadrature Phase Shift Keying (EFQPSK) and Constrained Envelope Root Nyquist (CERN) techniques. These two techniques have been developed in recent times to provide high spectral and power efficiencies under nonlinear amplifier environment. The purpose of this study is to gain insights into these techniques and to help system planners and designers with an appropriate set of guidelines for using these techniques. The comparative study presented in this report relies on effective simulation models and procedures. Therefore, a significant part of this report is devoted to understanding the mathematical and simulation models of the techniques and their set-up procedures. In particular, mathematical models of EFQPSK and CERN, effects of the sampling rate in discrete time signal representation, and modeling of nonlinear amplifiers and predistorters have been considered in detail. The results of this study show that both EFQPSK and CERN signals provide spectrally efficient communications compared to filtered conventional linear modulation techniques when a nonlinear power amplifier is used. However, there are important differences. The spectral efficiency of CERN signals, with a small amount of input backoff, is significantly better than that of EFQPSK signals if the nonlinear amplifier is an ideal clipper. However, to achieve such spectral efficiencies with a practical nonlinear amplifier, CERN processing requires a predistorter which effectively translates the amplifier's characteristics close to those of an ideal clipper. Thus, the spectral performance of CERN signals strongly depends on the predistorter. EFQPSK signals, on the other hand, do not need such predistorters since their spectra are almost unaffected by the nonlinear amplifier, Ibis report discusses several receiver structures for EFQPSK signals. It is observed that optimal receiver structures can be realized for both coded and uncoded EFQPSK signals with not too much increase in computational complexity. When a nonlinear amplifier is used, the bit error rate (BER) performance of the CERN signals with a matched filter receiver is found to be more than one decibel (dB) worse compared to the bit error performance of EFQPSK signals. Although channel coding is found to provide BER performance improvement for both EFQPSK and CERN signals, the performance of EFQPSK signals remains better than that of CERN. Optimal receiver structures for CERN signals with nonlinear equalization is left as a possible future work. Based on the numerical results, it is concluded that, in nonlinear channels, CERN processing leads towards better bandwidth efficiency with a compromise in power efficiency. Hence for bandwidth efficient communications needs, CERN is a good solution provided effective adaptive predistorters can be realized. On the other hand, EFQPSK signals provide a good power efficient solution with a compromise in band width efficiency.

  4. Physical Activity and Screen-based Activity in Healthy Development of School-aged Children.

    PubMed

    Hamřík, Zdeněk; Bobáková, Daniela; Kalman, Michal; Veselská, Zuzana Dankulincová; Klein, Daniel; Gecková, Andrea Madarasová

    2015-11-01

    Physical and screen-based activity in adolescents plays a crucial role in future health outcomes. Therefore, the aim of the study was to examine the associations of physical activity and screen-based activity with behavioural and psychosocial characteristics of school-aged children. Data on 11, 13 and 15 years old elementary school pupils (N=9,014; mean age=13.59) who participated in the cross-sectional Health Behaviour in School-aged Children 2009/2010 study in the Czech Republic and the Slovak Republic were analyzed. The associations of vigorous physical activity and screen-based activity with substance use, violent behaviour, eating habits and school-related outcomes adjusted for age were explored using logistic regression. Vigorous physical activity was positively associated with some of the health-related behaviours (smoking, breakfast consumption, vegetable and fruit consumption) and school related outcomes (perceived school achievement and school pressure), with gender and country based differences. Screen-based activity was significantly associated with all examined health-related behaviours and school related outcomes with only some country and gender based differences. Vigorous physical activity is positively associated with healthy development of adolescents. Screen-based behaviour shows an inverse relationship with adolescents' healthy development, especially in the group of 11 and 13 years old children. Supporting physical activity conducive environments might lead to a reduction in screen-based behaviour in adolescents and should be highlighted in health-promoting strategies. Copyright© by the National Institute of Public Health, Prague 2015.

  5. Sharing scientific discovery globally: toward a CERN virtual visit service

    NASA Astrophysics Data System (ADS)

    Goldfarb, S.; Hatzifotiadou, D.; Lapka, M.; Papanestis, A.

    2017-10-01

    The installation of virtual visit services by the LHC collaborations began shortly after the first high-energy collisions were provided by the CERN accelerator in 2010. The experiments: ATLAS [1], CMS [2], LHCb [3], and ALICE [4] have all joined in this popular and effective method to bring the excitement of scientific exploration and discovery into classrooms and other public venues around the world. Their programmes, which use a combination of video conference, webcast, and video recording to communicate with remote audiences have already reached tens of thousands of viewers, and the demand only continues to grow. Other venues, such as the CERN Control Centre, are also considering similar permanent installations. We present a summary of the development of the various systems in use around CERN today, including the technology deployed and a variety of use cases. We then lay down the arguments for the creation of a CERN-wide service that would support these programmes in a more coherent and effective manner. Potential services include a central booking system and operational management similar to what is currently provided for the common CERN video conference facilities. Certain choices in technology could be made to support programmes based on popular tools including (but not limited to) Skype™ [5], Google Hangouts [6], Facebook Live [7], and Periscope [8]. Successful implementation of the project, which relies on close partnership between the experiments, CERN IT CDA [9], and CERN IR ECO [10], has the potential to reach an even larger, global audience, more effectively than ever before.

  6. PREFACE: DISCRETE 2012 - Third Symposium on Prospects in the Physics of Discrete Symmetries

    NASA Astrophysics Data System (ADS)

    Branco, G. C.; Emmanuel-Costa, D.; González Felipe, R.; Joaquim, F. R.; Lavoura, L.; Palomares-Ruiz, S.; Rebelo, M. N.; Romão, J. C.; Silva, J. P.

    2013-07-01

    The Third Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2012) was held at Instituto Superior Técnico, Portugal, from 3-7 December 2012 and was organised by Centro de Física Teórica de Partículas (CFTP) of Instituto Superior Técnico, Universidade Técnica de Lisboa. This is the sequel to the Symposia that was successfully organised in Valéncia in 2008 and in Rome in 2010. The topics covered included: T, C, P, CP symmetries CPT symmetry, decoherence, Lorentz symmetry breaking Discrete symmetries and models of flavour mixing Baryogenesis, leptogenesis Neutrino physics Electroweak symmetry breaking and physics beyond the Standard Model Accidental symmetries (B, L conservation) Experimental prospects at LHC Dark matter searches Super flavour factories, and other new experimental facilities The Symposium was organised in plenary sessions with a total of 24 invited talks, and parallel sessions with a total of 70 talks, including both invited and selected contributions from the submitted abstracts. The speakers of the plenary sessions were: Ignatios Antoniadis, Abdelhak Djouadi, Rabindra Mohapatra, André Rubbia, Alexei Yu Smirnov, José Bernabéu, Marco Cirelli, Apostolos Pilaftsis, Antonio Di Domenico, Robertus Potting, João Varela, Frank Rathmann, Michele Gallinaro, Dumitru Ghilencea, Neville Harnew, John Walsh, Patrícia Conde Muíño, Juan Aguilar-Saavedra, Nick Mavromatos, Ulrich Nierste, Ferruccio Feruglio, Vasiliki Mitsou, Masanori Yamauchi, and Marcello Giorgi. The Symposium was attended by about 140 participants. Among the social events, there was a social dinner in the historical Associação Comercial de Lisboa, which included a musical performance of 'Fado', the traditional music from Lisbon. The next symposium of the series will be organised by King's College, London University, UK, from 1-5 December 2014. Guest Editors G C Branco, D Emmanuel-Costa, R González Felipe, F R Joaquim, L Lavoura, S Palomares-Ruiz, M N Rebelo, J C Romão, J P Silva and J I Silva-Marcos International Advisory CommitteeLocal Organising Committee Francisco del Águila (Granada)From CFTP Jose Bernabéu (Valencia) Francisco Botella (Valencia)G C Branco Andrzej Buras (Munich)D Emmanuel-Costa Marcos Cerrada (Madrid)R González Felipe Pierluigi Campana (CERN)F R Joaquim Antonio Di Domenico (Rome)L Lavoura John Ellis (CERN)S Palomares-Ruiz Fernando Ferroni (Rome)M N Rebelo Luis Garrido (Barcelona)J C Romão Marcello Giorgi (Pisa)J P Silva Neville Harnew (Oxford)J I Silva-Marcos Maria José Herrero (Madrid) David Hitlin (Caltech)From LIP Gino Isidori (Frascati) Guido Martinelli (Rome)G Barreira Antonio Masiero (Padua)J Varela Nickolaos Mavromatos (London) Vasiliki Mitsou (Valencia) Hitoshi Murayama (Berkeley) Tatsuya Nakada (Lausanne) Antonio Pich (Valencia) Apostolos Pilaftsis (Manchester) Stefan Pokorski (Warsaw) Fabio Zwirner (Padua) Secretariat Dulce Conceição Sandra Oliveira Cláudia Romão discrete2012@cftp.ist.utl.pt http://indico.cern.ch/event/discrete2012 Sponsors CFTP - Centro de Física Teórica de Partículas LIP - Laboratório de Instrumentação e Física Experimental de Partículas IST - Instituto Superior Técnico FCT - Fundação para a Ciência e a Tecnologia Group picture The PDF also contains the conference poster and a list of participants.

  7. Screen time, weight status and the self-concept of physical attractiveness in adolescents.

    PubMed

    Suchert, Vivien; Hanewinkel, Reiner; Isensee, Barbara

    2016-04-01

    Adolescents in modern societies spend about 3 h per day in front of small recreational screens. The present study aims at investigating the relationships between screen time and different indicators of overweight. In addition, associations with the self-concept of physical attractiveness and perceived weight status will be examined. In a total sample of 1228 students (47.5% girls) aged 12-17 years (M = 13.74, SD = 0.68) cross-sectional associations were determined by conducting multiple linear regression analyses. Screen time showed a significant positive dose-response relationship with body mass index percentile, waist circumference, body fat, waist-to-height-ratio, and a negative association with self-concept of physical attractiveness independent of age, gender and moderate to vigorous physical activity. Thus, screen time seems to be associated with adolescent overweight, abdominal obesity, and body dissatisfaction. Reducing adolescents' screen time could be a promising approach for primary prevention of obesity and for the promotion of a positive physical self-concept. Copyright © 2016 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  8. Bidirectional associations between activity-related parenting practices, and child physical activity, sedentary screen-based behavior and body mass index: a longitudinal analysis.

    PubMed

    Sleddens, Ester F C; Gubbels, Jessica S; Kremers, Stef P J; van der Plas, Eline; Thijs, Carel

    2017-07-06

    It has been generally assumed that activity-related parenting practices influence children's activity behavior and weight status. However, vice versa parents may also change their parenting behaviors in response to their perceptions of their child's activity behavior and weight status. This study examined the bidirectional relationships between activity-related parenting practices, and physical activity, sedentary screen-based behavior, and body mass index (BMI) between children's age of 5 and 7 years. Three scales of the Activity-related Parenting Questionnaire (i.e. 'restriction of sedentary behavior', 'stimulation of physical activity', and 'monitoring of physical activity') were completed by 1694 parents of the Dutch KOALA Birth Cohort Study at the child's age of around 5 and again around age 7. Physical activity, sedentary screen-based behavior and BMI were measured at both ages as well. Linear regression models were used to estimate the bidirectional associations between each parenting practice and the child's physical activity levels, sedentary screen-based behavior and BMI z-scores. Several parenting practices at age 5 predicted child physical activity, sedentary screen-based behavior, and BMI z-scores at age 7. Restriction of sedentary behavior positively predicted child BMI and sedentary screen-based behavior, whereas this practice negatively predicted child physical activity. In addition, stimulation of physical activity at age 5 was significantly associated with higher levels of child physical activity at age 7. The following child factors at age 5 predicted parenting practices at age 7: Child physical activity positively predicted parental stimulation of physical activity and monitoring activities. Sedentary screen-based behavior was associated with lower parental stimulation to be active. Findings generally revealed that parents and children mutually influence each other's behavior. A reinforcing feedback loop was present between parental stimulation of physical activity and child physical activity. Bidirectional parent-child interaction should be considered in future research in order to properly inform parenting-related intervention programs aimed at preventing or treating childhood overweight or obesity. System dynamic methods to explore the existence of reinforcing or balancing loops are needed in this regard.

  9. Mysql Data-Base Applications for Dst-Like Physics Analysis

    NASA Astrophysics Data System (ADS)

    Tsenov, Roumen

    2004-07-01

    The data and analysis model developed and being used in the HARP experiment for studying hadron production at CERN Proton Synchrotron is discussed. Emphasis is put on usage of data-base (DB) back-ends for persistent storing and retrieving "alive" C++ objects encapsulating raw and reconstructed data. Concepts of "Data Summary Tape" (DST) as a logical collection of DB-persistent data of different types, and of "intermediate DST" (iDST) as a physical "tag" of DST, are introduced. iDST level of persistency allows a powerful, DST-level of analysis to be performed by applications running on an isolated machine (even laptop) with no connection to the experiment's main data storage. Implementation of these concepts is considered.

  10. Learning with the ATLAS Experiment at CERN

    ERIC Educational Resources Information Center

    Barnett, R. M.; Johansson, K. E.; Kourkoumelis, C.; Long, L.; Pequenao, J.; Reimers, C.; Watkins, P.

    2012-01-01

    With the start of the LHC, the new particle collider at CERN, the ATLAS experiment is also providing high-energy particle collisions for educational purposes. Several education projects--education scenarios--have been developed and tested on students and teachers in several European countries within the Learning with ATLAS@CERN project. These…

  11. First experience with the new .cern Top Level Domain

    NASA Astrophysics Data System (ADS)

    Alvarez, E.; Malo de Molina, M.; Salwerowicz, M.; Silva De Sousa, B.; Smith, T.; Wagner, A.

    2017-10-01

    In October 2015, CERN’s core website has been moved to a new address, http://home.cern, marking the launch of the brand new top-level domain .cern. In combination with a formal governance and registration policy, the IT infrastructure needed to be extended to accommodate the hosting of Web sites in this new top level domain. We will present the technical implementation in the framework of the CERN Web Services that allows to provide virtual hosting, a reverse proxy solution and that also includes the provisioning of SSL server certificates for secure communications.

  12. [Physical activity, screen time, and use of medicines among adolescents: the 1993 Pelotas (Brazil) birth cohort study].

    PubMed

    Bergmann, Gabriel Gustavo; Bertoldi, Andréa Dâmaso; Mielke, Grégore Iven; Camargo, Aline Lins; Matijasevich, Alicia; Hallal, Pedro Curi

    2016-01-01

    This study aimed to evaluate cross-sectional and longitudinal associations between physical activity, screen time, and use of medicines among adolescents from the 1993 Pelotas (Brazil) birth cohort study, followed at 11 (N = 4,452), 15 (N = 4,325), and 18 years of age (N = 4,106). The study recorded the use of medicines in the previous 15 days, continuous use of some medication, level of physical activity (by questionnaire and accelerometry), and screen time (TV, computer, and videogame). One-third of adolescents had used at least one medicine in the previous 15 days and approximately 10% were on some continuous medication. In the adjusted analysis, the results showed that higher levels of physical activity at 18 years and less screen time at 15 years in boys were associated with lower overall use of medicines (p < 0.05). For boys, physical activity at 11 and 18 years were inversely related to continuous medication (p < 0.05). More physically active boys and those with less screen time in adolescence showed lower use of medicines at 18 years of age.

  13. Black Holes and the Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Roy, Arunava

    2011-12-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film ``Angels and Demons.'' In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society1 website featured an article on BH formation at the LHC.2 This article examines some aspects of mini BHs and explores the possibility of their detection at the LHC.

  14. Workshop “Physics for Health in Europe”

    ScienceCinema

    Battistoni, G.

    2018-05-25

    2nd part of the session. 2-4 February 2010 at CERN This event will be will be available live via the Webcast Service and transmitted in parallel to:IT auditorium, Salle Anderssen 40-S2-A01 (Tuesday 2nd February) BE auditorium (all day), Salle 40-S2-01 (only between 08:00- 14:00) (Wednesday 3rd February) BE auditorium, Salle Curie 40-S2-C01 (Thursday 4th February)   

  15. Fireworks on the 4th of July

    NASA Astrophysics Data System (ADS)

    Barnett, R. Michael

    2013-02-01

    After half a century of waiting, the drama was intense. Physicists slept overnight outside the auditorium to get seats for the seminar at the CERN lab in Geneva, Switzerland. Ten thousand miles away on the other side of the planet, at the world's most prestigious international particle physics conference, hundreds of physicists from every corner of the globe lined up to hear the seminar streamed live from Geneva (see Fig. 1). And in universities from North America to Asia, physicists and students gathered to watch the streaming talks.

  16. Recent results and prospects for NA62 experiment

    NASA Astrophysics Data System (ADS)

    Martellotti, Silvia; Aglieri Rinella, G.; Aliberti, R.; Ambrosino, F.; Ammendola, R.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Azhinenko, I.; Balev, S.; Barbanera, M.; Bendotti, J.; Biagioni, A.; Bician, L.; Biino, C.; Bizzeti, A.; Blazek, T.; Blik, A.; Bloch-Devaux, B.; Bolotov, V.; Bonaiuto, V.; Boretto, M.; Bragadireanu, M.; Britton, D.; Britvich, G.; Brunetti, M. B.; Bryman, D.; Bucci, F.; Butin, F.; Capitolo, E.; Capoccia, C.; Capussela, T.; Cassese, A.; Catinaccio, A.; Cecchetti, A.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Checcucci, B.; Chikilev, O.; Chiozzi, S.; Ciaranfi, R.; Collazuol, G.; Conovaloff, A.; Cooke, P.; Cooper, P.; Corradi, G.; Cortina Gil, E.; Costantini, F.; Cotorobai, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; Degrange, J.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Di Lorenzo, S.; Dixon, N.; Doble, N.; Dobrich, B.; Duk, V.; Elsha, V.; Engelfried, J.; Enik, T.; Estrada, N.; Falaleev, V.; Fantechi, R.; Fascianelli, V.; Federici, L.; Fedotov, S.; Fiorini, M.; Fry, J.; Fu, J.; Fucci, A.; Fulton, L.; Gallorini, S.; Galeotti, S.; Gamberini, E.; Gatignon, L.; Georgiev, G.; Gianoli, A.; Giorgi, M.; Giudici, S.; Glonti, L.; Goncalves Martins, A.; Gonnella, F.; Goudzovski, E.; Guida, R.; Gushchin, E.; Hahn, F.; Hallgren, B.; Heath, H.; Herman, F.; Husek, T.; Hutanu, O.; Hutchcroft, D.; Iacobuzio, L.; Iacopini, E.; Imbergamo, E.; Jamet, O.; Jarron, P.; Jones, E.; Kampf, K.; Kaplon, J.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khotyantsev, A.; Khudyakov, A.; Kiryushin, Yu.; Kleimenova, A.; Kleinknecht, K.; Kluge, A.; Koval, M.; Kozhuharov, V.; Krivda, M.; Kucerova, Z.; Kudenko, Y.; Kunze, J.; Lamanna, G.; Latino, G.; Lazzeroni, C.; Lehmann-Miotto, G.; Lenci, R.; Lenti, M.; Leonardi, E.; Lichard, P.; Lietava, R.; Litov, L.; Lollini, R.; Lomidze, D.; Lonardo, A.; Lupi, M.; Lurkin, N.; McCormick, K.; Madigozhin, D.; Maire, G.; Mandeiro, C.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Marchevski, R.; Martellotti, S.; Massarotti, P.; Massri, K.; Matak, P.; Maurice, E.; Mefodev, A.; Menichetti, E.; Minucci, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Morant, J.; Morel, M.; Moulson, M.; Movchan, S.; Munday, D.; Napolitano, M.; Neri, I.; Newson, F.; Norton, A.; Noy, M.; Nuessle, G.; Numao, T.; Obraztsov, V.; Ostankov, A.; Padolski, S.; Page, R.; Palladino, V.; Paoluzzi, G.; Parkinson, C.; Pedreschi, E.; Pepe, M.; Perez Gomez, F.; Perrin-Terrin, M.; Peruzzo, L.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pietreanu, D.; Pinzino, J.; Polenkevich, I.; Pontisso, L.; Potrebenikov, Yu.; Protopopescu, D.; Raffaelli, F.; Raggi, M.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Russo, V.; Ryjov, V.; Salamon, A.; Salina, G.; Samsonov, V.; Santoni, C.; Saracino, G.; Sargeni, F.; Semenov, V.; Sergi, A.; Serra, M.; Shaikhiev, A.; Shkarovskiy, S.; Skillicorn, I.; Soldi, D.; Sotnikov, A.; Sougonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Staley, R.; Sturgess, A.; Sutcliffe, P.; Szilasi, N.; Tagnani, D.; Trilov, S.; Valdata-Nappi, M.; Valente, P.; Vasile, M.; Vassilieva, T.; Velghe, B.; Veltri, M.; Venditti, S.; Vicini, P.; Volpe, R.; Vormstein, M.; Wahl, H.; Wanke, R.; Wertelaers, P.; Winhart, A.; Winston, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.; NA62 Collaboration

    2017-04-01

    The K+ →π+ ν ν ‾ decay is theoretically one of the cleanest meson decays and so a good place to look for indirect effects of new physics complementary to LHC searches. The NA62 experiment at CERN is designed to measure the branching ratio of this decay with 10% precision. NA62 was commissioned in October 2014, took data in pilot runs in 2014 and 2015. The NA62 experimental setup is illustrated and data quality is reported.

  17. Search for K+ →π+ ν ν ‾ at NA62

    NASA Astrophysics Data System (ADS)

    Volpe, R.; Aglieri Rinella, G.; Aliberti, R.; Ambrosino, F.; Ammendola, R.; Angelucci, B.; Antonelli, A.; Anzivino, G.; Arcidiacono, R.; Azhinenko, I.; Balev, S.; Barbanera, M.; Bendotti, J.; Biagioni, A.; Bician, L.; Biino, C.; Bizzeti, A.; Blazek, T.; Blik, A.; Bloch-Devaux, B.; Bolotov, V.; Bonaiuto, V.; Boretto, M.; Bragadireanu, M.; Britton, D.; Britvich, G.; Brunetti, M. B.; Bryman, D.; Bucci, F.; Butin, F.; Capitolo, E.; Capoccia, C.; Capussela, T.; Cassese, A.; Catinaccio, A.; Cecchetti, A.; Ceccucci, A.; Cenci, P.; Cerny, V.; Cerri, C.; Checcucci, B.; Chikilev, O.; Chiozzi, S.; Ciaranfi, R.; Collazuol, G.; Conovaloff, A.; Cooke, P.; Cooper, P.; Corradi, G.; Cortina Gil, E.; Costantini, F.; Cotorobai, F.; Cotta Ramusino, A.; Coward, D.; D'Agostini, G.; Dainton, J.; Dalpiaz, P.; Danielsson, H.; Degrange, J.; De Simone, N.; Di Filippo, D.; Di Lella, L.; Di Lorenzo, S.; Dixon, N.; Doble, N.; Dobrich, B.; Duk, V.; Elsha, V.; Engelfried, J.; Enik, T.; Estrada, N.; Falaleev, V.; Fantechi, R.; Fascianelli, V.; Federici, L.; Fedotov, S.; Fiorini, M.; Fry, J.; Fu, J.; Fucci, A.; Fulton, L.; Gallorini, S.; Galeotti, S.; Gamberini, E.; Gatignon, L.; Georgiev, G.; Gianoli, A.; Giorgi, M.; Giudici, S.; Glonti, L.; Goncalves Martins, A.; Gonnella, F.; Goudzovski, E.; Guida, R.; Gushchin, E.; Hahn, F.; Hallgren, B.; Heath, H.; Herman, F.; Husek, T.; Hutanu, O.; Hutchcroft, D.; Iacobuzio, L.; Iacopini, E.; Imbergamo, E.; Jamet, O.; Jarron, P.; Jones, E.; Jones, T.; Kampf, K.; Kaplon, J.; Kekelidze, V.; Kholodenko, S.; Khoriauli, G.; Khotyantsev, A.; Khudyakov, A.; Kiryushin, Yu.; Kleimenova, A.; Kleinknecht, K.; Kluge, A.; Koval, M.; Kozhuharov, V.; Krivda, M.; Kucerova, Z.; Kudenko, Yu.; Kunze, J.; Lamanna, G.; Latino, G.; Lazzeroni, C.; Lehmann-Miotto, G.; Lenci, R.; Lenti, M.; Leonardi, E.; Lichard, P.; Lietava, R.; Litov, L.; Lollini, R.; Lomidze, D.; Lonardo, A.; Lupi, M.; Lurkin, N.; McCormick, K.; Madigozhin, D.; Maire, G.; Mandeiro, C.; Mannelli, I.; Mannocchi, G.; Mapelli, A.; Marchetto, F.; Marchevski, R.; Martellotti, S.; Massarotti, P.; Massri, K.; Matak, P.; Maurice, E.; Mefodev, A.; Menichetti, E.; Minucci, E.; Mirra, M.; Misheva, M.; Molokanova, N.; Morant, J.; Morel, M.; Moulson, M.; Movchan, S.; Munday, D.; Napolitano, M.; Neri, I.; Newson, F.; Norton, A.; Noy, M.; Nuessle, G.; Numao, T.; Obraztsov, V.; Ostankov, A.; Padolski, S.; Page, R.; Palladino, V.; Paoluzzi, G.; Parkinson, C.; Pedreschi, E.; Pepe, M.; Perez Gomez, F.; Perrin-Terrin, M.; Peruzzo, L.; Petrov, P.; Petrucci, F.; Piandani, R.; Piccini, M.; Pietreanu, D.; Pinzino, J.; Polenkevich, I.; Pontisso, L.; Potrebenikov, Yu.; Protopopescu, D.; Raffaelli, F.; Raggi, M.; Riedler, P.; Romano, A.; Rubin, P.; Ruggiero, G.; Russo, V.; Ryjov, V.; Salamon, A.; Salina, G.; Samsonov, V.; Santoni, C.; Saracino, G.; Sargeni, F.; Semenov, V.; Sergi, A.; Serra, M.; Shaikhiev, A.; Shkarovskiy, S.; Skillicorn, I.; Soldi, D.; Sotnikov, A.; Sugonyaev, V.; Sozzi, M.; Spadaro, T.; Spinella, F.; Staley, R.; Sturgess, A.; Sutcliffe, P.; Szilasi, N.; Tagnani, D.; Trilov, S.; Valdata-Nappi, M.; Valente, P.; Vasile, M.; Vassilieva, T.; Velghe, B.; Veltri, M.; Venditti, S.; Vicini, P.; Volpe, R.; Vormstein, M.; Wahl, H.; Wanke, R.; Wertelaers, P.; Winhart, A.; Winston, R.; Wrona, B.; Yushchenko, O.; Zamkovsky, M.; Zinchenko, A.; NA62 Collaboration

    2017-01-01

    Among the meson decays, K → πν ν ‾ are the cleanest environment, from the theoretical point of view, where to search for new physics effects. The NA62 Experiment at CERN SPS aims to measure the BR (K+ →π+ ν ν ‾) with a 10% precision by the end of 2018. It has been commissioned with technical runs in 2014 and 2015, and some preliminary results of the detector performances and quality of data are here reported.

  18. A CAMAC-VME-Macintosh data acquisition system for nuclear experiments

    NASA Astrophysics Data System (ADS)

    Anzalone, A.; Giustolisi, F.

    1989-10-01

    A multiprocessor system for data acquisition and analysis in low-energy nuclear physics has been realized. The system is built around CAMAC, the VMEbus, and the Macintosh PC. Multiprocessor software has been developed, using RTF, MACsys, and CERN cross-software. The execution of several programs that run on several VME CPUs and on an external PC is coordinated by a mailbox protocol. No operating system is used on the VME CPUs. The hardware, software, and system performance are described.

  19. Recent Results from ISOLDE and HIE-ISOLDE

    NASA Astrophysics Data System (ADS)

    Borge, María J. G.

    2018-02-01

    ISOLDE is the CERN facility dedicated to the production of rare ion beams for many different experiments in the fields of nuclear and atomic physics, materials science and life sciences. The HIE-ISOLDE, Higher Intensity and Energy upgrade has finished its stage 1 dedicated to upgrade the energy up to 5.5 MeV/u, producing the first radioactive beams with this energy in September 9th 2016. Recent results from the low energy and post-accelerated beams are given in this contribution.

  20. Insufficient evidence for the use of a physical examination to detect maltreatment in children without prior suspicion: a systematic review

    PubMed Central

    2013-01-01

    Background Although it is often performed in clinical practice, the diagnostic value of a screening physical examination to detect maltreatment in children without prior suspicion has not been reviewed. This article aims to evaluate the diagnostic value of a complete physical examination as a screening instrument to detect maltreatment in children without prior suspicion. Methods We systematically searched the databases of MEDLINE, EMBASE, PsychINFO, CINAHL, and ERIC, using a sensitive search strategy. Studies that i) presented medical findings of a complete physical examination for screening purposes in children 0–18 years, ii) specifically recorded the presence or absence of signs of child maltreatment, and iii) recorded child maltreatment confirmed by a reference standard, were included. Two reviewers independently performed study selection, data extraction, and quality appraisal using the QUADAS-2 tool. Results The search yielded 4,499 titles, of which three studies met the eligibility criteria. The prevalence of confirmed signs of maltreatment during screening physical examination varied between 0.8% and 13.5%. The designs of the studies were inadequate to assess the diagnostic accuracy of a screening physical examination for child maltreatment. Conclusions Because of the lack of informative studies, we could not draw conclusions about the diagnostic value of a screening physical examination in children without prior suspicion of child maltreatment. PMID:24313949

  1. Insufficient evidence for the use of a physical examination to detect maltreatment in children without prior suspicion: a systematic review.

    PubMed

    Hoytema van Konijnenburg, Eva Mm; Teeuw, Arianne H; Sieswerda-Hoogendoorn, Tessa; Leenders, Arnold G E; van der Lee, Johanna H

    2013-12-06

    Although it is often performed in clinical practice, the diagnostic value of a screening physical examination to detect maltreatment in children without prior suspicion has not been reviewed. This article aims to evaluate the diagnostic value of a complete physical examination as a screening instrument to detect maltreatment in children without prior suspicion. We systematically searched the databases of MEDLINE, EMBASE, PsychINFO, CINAHL, and ERIC, using a sensitive search strategy. Studies that i) presented medical findings of a complete physical examination for screening purposes in children 0-18 years, ii) specifically recorded the presence or absence of signs of child maltreatment, and iii) recorded child maltreatment confirmed by a reference standard, were included. Two reviewers independently performed study selection, data extraction, and quality appraisal using the QUADAS-2 tool. The search yielded 4,499 titles, of which three studies met the eligibility criteria. The prevalence of confirmed signs of maltreatment during screening physical examination varied between 0.8% and 13.5%. The designs of the studies were inadequate to assess the diagnostic accuracy of a screening physical examination for child maltreatment. Because of the lack of informative studies, we could not draw conclusions about the diagnostic value of a screening physical examination in children without prior suspicion of child maltreatment.

  2. Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research.

    PubMed

    Tahir, N A; Burkart, F; Shutov, A; Schmidt, R; Wollmann, D; Piriz, A R

    2014-12-01

    In a recent publication [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we reported results on beam-target interaction experiments that have been carried out at the CERN HiRadMat (High Radiation to Materials) facility using extended solid copper cylindrical targets that were irradiated with a 440-GeV proton beam delivered by the Super Proton Synchrotron (SPS). On the one hand, these experiments confirmed the existence of hydrodynamic tunneling of the protons that leads to substantial increase in the range of the protons and the corresponding hadron shower in the target, a phenomenon predicted by our previous theoretical investigations [Tahir et al., Phys. Rev. ST Accel. Beams 25, 051003 (2012)]. On the other hand, these experiments demonstrated that the beam heated part of the target is severely damaged and is converted into different phases of high energy density (HED) matter, as suggested by our previous theoretical studies [Tahir et al., Phys. Rev. E 79, 046410 (2009)]. The latter confirms that the HiRadMat facility can be used to study HED physics. In the present paper, we give details of the numerical simulations carried out to understand the experimental measurements. These include the evolution of the physical parameters, for example, density, temperature, pressure, and the internal energy in the target, during and after the irradiation. This information is important in order to determine the region of the HED phase diagram that can be accessed in such experiments. These simulations have been done using the energy deposition code fluka and a two-dimensional hydrodynamic code, big2, iteratively.

  3. Perceptions of exercise screening among older adults.

    PubMed

    Stathokostas, Liza; Petrella, Andrea F M; Blunt, Wendy; Petrella, Robert J

    2018-06-01

    Prephysical activity screening is important for older adults' participating in physical activity. Unfortunately, many older adults face barriers to exercise participation and thus, may not complete proper physical activity screening. The purpose of this project was to conduct a thematic analysis of perceptions and experiences of community-dwelling older adults regarding prephysical activity screening (i.e., Get Active Questionnaire (GAQ) and a standardized exercise stress test). A convenience sample of adults (male n = 58, female n = 54) aged 75 ± 7 years living in the City of London, Ontario, Canada, was used. Participants completed a treadmill stress test and the GAQ at a research laboratory for community-based referrals. One week later, participants completed the GAQ again and were asked questions by a research assistant about their perceptions of the screening process. Thematic analysis of the responses was conducted. The results indicated that older adults view physical activity screening as acceptable, but not always necessary. Also, the experiences expressed by this sample of older adults indicated that physical activity screening can contribute to continued confidence (through reassurance) and can contribute to increased motivation (through yearly fitness results) in exercise participation. In conclusion, older adults may perceive screening as supportive in exercise adoption, if screening is simple, convenient, and supports older adults' motivation and confidence to exercise.

  4. The influence of friends and siblings on the physical activity and screen viewing behaviours of children aged 5–6 years: a qualitative analysis of parent interviews

    PubMed Central

    Edwards, M J; Jago, R; Sebire, S J; Kesten, J M; Pool, L; Thompson, J L

    2015-01-01

    Objectives The present study uses qualitative data to explore parental perceptions of how their young child's screen viewing and physical activity behaviours are influenced by their child's friends and siblings. Design Telephone interviews were conducted with parents of year 1 children (age 5–6 years). Interviews considered parental views on a variety of issues related to their child's screen viewing and physical activity behaviours, including the influence that their child's friends and siblings have over such behaviours. Interviews were transcribed verbatim and analysed using deductive content analysis. Data were organised using a categorisation matrix developed by the research team. Coding and theme generation was iterative and refined throughout. Data were entered into and coded within N-Vivo. Setting Parents were recruited through 57 primary schools located in Bristol and the surrounding area that took part in the B-ProAct1v study. Participants Fifty-three parents of children aged 5–6 years. Results Parents believe that their child's screen viewing and physical activity behaviours are influenced by their child's siblings and friends. Friends are considered to have a greater influence over the structured physical activities a child asks to participate in, whereas the influence of siblings is more strongly perceived over informal and spontaneous physical activities. In terms of screen viewing, parents suggest that their child's friends can heavily influence the content their child wishes to consume, however, siblings have a more direct and tangible influence over what a child watches. Conclusions Friends and siblings influence young children's physical activity and screen viewing behaviours. Child-focused physical activity and screen viewing interventions should consider the important influence that siblings and friends have over these behaviours. PMID:25976759

  5. Postpartum nurses' perceptions of barriers to screening for intimate partner violence: a cross-sectional survey

    PubMed Central

    2012-01-01

    Background Intimate partner violence (IPV) is a human rights violation that is pervasive worldwide, and is particularly critical for women during the reproductive period. IPV includes physical, sexual and emotional abuse. Nurses on in-patient postpartum units are well-positioned to screen women for IPV, yet low screening rates suggest that barriers to screening exist. The purpose of this study was to (a) identify the frequency of screening for IPV, (b) the most important barriers to screening, (c) the relationship between the barriers to screening and the frequency of screening for types of abuse, and (d) to identify other factors that contribute to the frequency of screening for IPV. Methods In 2008, we conducted a cross-sectional survey of 96 nurses from postpartum inpatient units in three Canadian urban hospitals. The survey included the Barriers to Abuse Assessment Tool (BAAT), adapted for postpartum nurses (PPN). Ordinary least squares (OLS) regression models were used to predict barriers to screening for each type of IPV. Results The frequency of screening varied by the type of abuse with highest screening rates found for physical and emotional abuse. According to the BAAT-PPN, lack of knowledge was the most important barrier to screening. The BAAT-PPN total score was negatively correlated with screening for physical, sexual, and emotional abuse. Using OLS regression models and after controlling for demographic characteristics, the BAAT-PPN explained 14%, 12%, and 11% of the variance in screening for physical, sexual and emotional abuse, respectively. Fluency in the language of the patient was negatively correlated with screening for each type of abuse. When added as Step 3 to OLS regression models, language fluency was associated with an additional decrease in the likelihood of screening for physical (beta coefficient = -.38, P < .001), sexual (beta coefficient = -.24, P = .05), and emotional abuse (beta coefficient = -.48, P < .001) and increased the variance explained by the model to 25%, 17%, and 31%, respectively. Conclusions Our findings support an inverse relationship between rates of screening for IPV and nurses' perceptions of barriers. Barriers to screening for IPV, particularly related to knowledge and language fluency, need to be addressed to increase rates of screening on postpartum units. PMID:22348260

  6. Physical activity and screen-time of childhood haematopoietic stem cell transplant survivors.

    PubMed

    Bogg, Tina Ft; Shaw, Peter J; Cohn, Richard J; Wakefield, Claire E; Hardy, Louise L; Broderick, Carolyn; Naumann, Fiona

    2015-10-01

    Reduced bone mineral density, impaired cardiovascular fitness and increased risk of obesity are well-known late effects of haematopoietic stem cell transplantation (HSCT) in survivors of childhood cancer. These comorbidities can be mitigated through physical activity and limiting screen-time (ST). This study aims to increase the understanding of physical activity and ST behaviours for children following HSCT. Children were recruited from two oncology follow-up clinics and completed a questionnaire on their physical activity levels and screen-time. Children were classified as short (≤2 years) and long-term (>2 years) survivors. Fifty-eight children were eligible, of whom forty children of age 6-18 years (60% males) participated in the study. Less than half (47.5%) met the daily recommendations for physical activity and one-third met the ST recommendations. Late survivors reported higher daily physical activity and less ST than early survivors. Among late survivors, females reported higher daily physical activity and less ST than males. Our findings suggest that the majority of children following HSCT were not sufficiently active and had excessive screen-time; however, this was comparable to healthy populations. Appropriately designed physical activity and screen-time intervention programmes should be explored early following transplant for children undergoing HSCT. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  7. Hangout with CERN: a direct conversation with the public

    NASA Astrophysics Data System (ADS)

    Rao, Achintya; Goldfarb, Steven; Kahle, Kate

    2016-04-01

    Hangout with CERN refers to a weekly, half-hour-long, topical webcast hosted at CERN. The aim of the programme is threefold: (i) to provide a virtual tour of various locations and facilities at CERN, (ii) to discuss the latest scientific results from the laboratory, and, most importantly, (iii) to engage in conversation with the public and answer their questions. For each ;episode;, scientists gather around webcam-enabled computers at CERN and partner institutes/universities, connecting to one another using the Google+ social network's ;Hangouts; tool. The show is structured as a conversation mediated by a host, usually a scientist, and viewers can ask questions to the experts in real time through a Twitter hashtag or YouTube comments. The history of Hangout with CERN can be traced back to ICHEP 2012, where several physicists crowded in front of a laptop connected to Google+, using a ;Hangout On Air; webcast to explain to the world the importance of the discovery of the Higgs-like boson, announced just two days before at the same conference. Hangout with CERN has also drawn inspiration from two existing outreach endeavours: (i) ATLAS Virtual Visits, which connected remote visitors with scientists in the ATLAS Control Room via video conference, and (ii) the Large Hangout Collider, in which CMS scientists gave underground tours via Hangouts to groups of schools and members of the public around the world. In this paper, we discuss the role of Hangout with CERN as a bi-directional outreach medium and an opportunity to train scientists in effective communication.

  8. Celebration in Honour of Magda and Torleif Ericson's 80th Birthday

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernabeu, Jose; Chanfray, Guy; Wiese, Wolfram

    A Chinese proverb says that happiness is when friends coming from far away meet and talk to each other. These words could very well be used to sum up the celebration held at CERN in honour of the 80th birthdays of Magda and Torleif Ericson, a couple both in the normal sense of the word and often also in the field of physics. During the celebratory event on 17 September, speakers reviewed the depth and breadth of the contributions that Torleif and Magda have made to theoretical physics in general and to nuclear physics in particular. José Bernabeu, Guy Chanfray,more » Wolfram Wiese, Achim Richter and Anthony Thomas all covered the considerable research that has been stimulated by Ericson–Ericson correlation(s) over the past 50 years.« less

  9. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  10. Transverse beam splitting made operational: Key features of the multiturn extraction at the CERN Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Huschauer, A.; Blas, A.; Borburgh, J.; Damjanovic, S.; Gilardoni, S.; Giovannozzi, M.; Hourican, M.; Kahle, K.; Le Godec, G.; Michels, O.; Sterbini, G.; Hernalsteens, C.

    2017-06-01

    Following a successful commissioning period, the multiturn extraction (MTE) at the CERN Proton Synchrotron (PS) has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS) since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT) extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.

  11. One Year of FOS Measurements in CMS Experiment at CERN

    NASA Astrophysics Data System (ADS)

    Szillási, Zoltán; Buontempo, Salvatore; Béni, Noémi; Breglio, Giovanni; Cusano, Andrea; Laudati, Armando; Giordano, Michele; Saccomanno, Andrea; Druzhkin, Dmitry; Tsirou, Andromachi

    Results are presented on the activity carried out by our research group, in collaboration with the SME Optosmart s.r.l. (an Italian spin-off company), on the application of Fiber Optic Sensor (FOS) techniques to monitor high-energy physics (HEP) detectors. Assuming that Fiber Bragg Grating sensors (FBGs) radiation hardness has been deeply studied for other field of application, we have applied the FBG technology to the HEP research domain. We present here the experimental evidences of the solid possibility to use such a class of sensors also in HEP detector very complex environmental side conditions. In particular we present more than one year data results of FBG measurements in the Compact Muon Solenoid (CMS) experiment set up at the CERN, where we have monitored temperatures (within CMS core) and strains in different locations by using FBG sensors during the detector operation with the Large Hadron Collider (LHC) collisions and high magnetic field. FOS data and FOS readout system stability and reliability is demonstrated, with continuous 24/24 h 7/7d data taking under severe and complex side conditions.

  12. Accelerator controls at CERN: Some converging trends

    NASA Astrophysics Data System (ADS)

    Kuiper, B.

    1990-08-01

    CERN's growing services to the high-energy physics community using frozen resources has led to the implementation of "Technical Boards", mandated to assist the management by making recommendations for rationalizations in various technological domains. The Board on Process Control and Electronics for Accelerators, TEBOCO, has emphasized four main lines which might yield economy in resources. First, a common architecture for accelerator controls has been agreed between the three accelerator divisions. Second, a common hardware/software kit has been defined, from which the large majority of future process interfacing may be composed. A support service for this kit is an essential part of the plan. Third, high-level protocols have been developed for standardizing access to process devices. They derive from agreed standard models of the devices and involve a standard control message. This should ease application development and mobility of equipment. Fourth, a common software engineering methodology and a commercial package of application development tools have been adopted. Some rationalization in the field of the man-machine interface and in matters of synchronization is also under way.

  13. Final Report for U.S. DOE GRANT No. DEFG02-96ER41015 November 1, 2010 - April 30, 2013 entitled HIGH ENERGY ACCELERATOR AND COLLIDING BEAM USER GROUP at the UNIVERSITY of MARYLAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Nicholas; Jawahery, Abolhassan; Eno, Sarah C

    2013-07-26

    We have finished the third year of a three year grant cycle with the U.S. Department of Energy for which we were given a five month extension (U.S. D.O.E. Grant No. DEFG02-96ER41015). This document is the fi nal report for this grant and covers the period from November 1, 2010 to April 30, 2013. The Maryland program is administered as a single task with Professor Nicholas Hadley as Principal Investigator. The Maryland experimental HEP group is focused on two major research areas. We are members of the CMS experiment at the LHC at CERN working on the physics of themore » Energy Frontier. We are also analyzing the data from the Babar experiment at SLAC while doing design work and R&D towards a Super B experiment as part of the Intensity Frontier. We have recently joined the LHCb experiment at CERN. We concluded our activities on the D experiment at Fermilab in 2009.« less

  14. News Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

    NASA Astrophysics Data System (ADS)

    2011-07-01

    Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

  15. Signature CERN-URSS

    ScienceCinema

    None

    2017-12-09

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  16. The association of BMI status with adolescent preventive screening.

    PubMed

    Jasik, Carolyn Bradner; Adams, Sally H; Irwin, Charles E; Ozer, Elizabeth

    2011-08-01

    To examine the relationship between BMI status (normal, overweight, and obese) and preventive screening among adolescents at their last checkup. We used population-based data from the 2003-2007 California Health Interview Surveys, telephone interviews of adolescents aged 12 to 17 years with a checkup in the past 12 months (n = 9220). Respondents were asked whether they received screening for nutrition, physical activity, and emotional distress. BMI was calculated from self-reported height and weight: (1) normal weight or underweight (<85th percentile); (2) overweight (85th-94th percentile); and (3) obese (>95th percentile). Multivariate logistic regression models tested how screening by topic differed according to BMI status, adjusting for age, gender, income, race/ethnicity, and survey year. Screening percentages in the pooled sample (all 3 years) were higher for obese, but not overweight, adolescents for physical activity (odds ratio: 1.4; P < .01) and nutrition (odds ratio: 1.6; screening did not differ P < .01). Stratified analysis by year revealed higher screening for obese (versus normal-weight) adolescents for nutrition and physical activity in 2003 and for all 3 topics in 2005. However, by 2007, screening did not differ according to BMI status. Overall screening between 2003 and 2007 declined for nutrition (75%-59%; P < .01), physical activity (74%-60%; P < .01), and emotional distress (31%-24%; P < .01). Obese adolescents receive more preventive screening versus their normal-weight peers. Overweight adolescents do not report more screening, but standards of care dictate increased attention for this group. These results are discouraging amid a rise in pediatric obesity and new guidelines that recommend screening by BMI status.

  17. Cost-effectiveness of preparticipation screening for prevention of sudden cardiac death in young athletes.

    PubMed

    Wheeler, Matthew T; Heidenreich, Paul A; Froelicher, Victor F; Hlatky, Mark A; Ashley, Euan A

    2010-03-02

    Inclusion of 12-lead electrocardiography (ECG) in preparticipation screening of young athletes is controversial because of concerns about cost-effectiveness. To evaluate the cost-effectiveness of ECG plus cardiovascular-focused history and physical examination compared with cardiovascular-focused history and physical examination alone for preparticipation screening. Decision-analysis, cost-effectiveness model. Published epidemiologic and preparticipation screening data, vital statistics, and other publicly available data. Competitive athletes in high school and college aged 14 to 22 years. Lifetime. Societal. Nonparticipation in competitive athletic activity and disease-specific treatment for identified athletes with heart disease. Incremental health care cost per life-year gained. Addition of ECG to preparticipation screening saves 2.06 life-years per 1000 athletes at an incremental total cost of $89 per athlete and yields a cost-effectiveness ratio of $42 900 per life-year saved (95% CI, $21 200 to $71 300 per life-year saved) compared with cardiovascular-focused history and physical examination alone. Compared with no screening, ECG plus cardiovascular-focused history and physical examination saves 2.6 life-years per 1000 athletes screened and costs $199 per athlete, yielding a cost-effectiveness ratio of $76 100 per life-year saved ($62 400 to $130 000). Results are sensitive to the relative risk reduction associated with nonparticipation and the cost of initial screening. Effectiveness data are derived from 1 major European study. Patterns of causes of sudden death may vary among countries. Screening young athletes with 12-lead ECG plus cardiovascular-focused history and physical examination may be cost-effective. Stanford Cardiovascular Institute and the Breetwor Foundation.

  18. Challenges in 21st Century Physics

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.

    2007-01-01

    We are truly fortunate to live in one of the great epochs of human discovery, a time when science is providing new visions and understanding about ourselves and the world in which we live. At last, we are beginning to explore the Universe itself. One particularly exciting area of advancement is high-energy physics where several existing concepts will be put to the test. A brief survey will be given of accomplishments in 20th Century physics. These include relativity and quantum physics which have produced breakthroughs in cosmology, astrophysics, and high-energy particle physics. The current situation is then assessed, combining the last 100 years of progress with new 21st Century challenges about unification and where to go next. Finally, the future is upon us. The next frontier in experimental high-energy physics, the Large Hadron Collider (LHC) at CERN in Geneva, is scheduled to begin coming online this year (2007). The potential for the LHC to address several of the significant problems in physics today will be discussed, as this great accelerator examines the predictions of the Standard Model of particle physics and even cosmology. New physics and new science will surely emerge and a better vision of the world will unfold.

  19. M. Hildred Blewett and the Blewett Scholarship

    NASA Astrophysics Data System (ADS)

    Whitten, Barbara

    2011-03-01

    M. Hildred Blewett became a physicist at a time when few women were physicists. After beginning her career at General Electric, she became a respected accelerator physicist, working at Brookhaven, Argonne, and eventually CERN. Blewett was married for a time to John Blewett, another accelerator physicist, but the couple divorced without children and she never remarried. She felt that her career in physics was hampered by her gender, and when she died in 2004 at the age of 93, she left the bulk of her estate to the American Physical Society, to found a Scholarship for women in physics. Since 2005 the Blewett Scholarship has been awarded to women in physics who are returning to physics after a career break, usually for family reasons. Family/career conflicts are one of the most important reasons why young women in early careers leave physics---a loss for them as well as the physics community, which has invested time and money in their training. The Blewett Scholarship is one way for the physics community, under the leadership of CSWP, to help these young women resume their careers. I will discuss the life and work of Hildred Blewett, the Blewett Scholarship, and its benefits to the physics community.

  20. What helps children to be more active and less sedentary? Perceptions of mothers living in disadvantaged neighbourhoods.

    PubMed

    Veitch, J; Hume, C; Salmon, J; Crawford, D; Ball, K

    2013-01-01

      Increasing children's participation in physical activity and decreasing time spent in sedentary behaviours is of great importance to public health. Despite living in disadvantaged neighbourhoods, some children manage to engage in health-promoting physical activity and avoid high levels of screen-based activities (i.e. watching TV, computer use and playing electronic games). Understanding how these children manage to do well and whether there are unique features of their home or neighbourhood that explain their success is important for informing strategies targeting less active and more sedentary children. The aim of this qualitative study was to gain in-depth insights from mothers regarding their child's resilience to low physical activity and high screen-time.   Semi-structured face-to-face interviews were conducted with 38 mothers of children who lived in disadvantaged neighbourhoods in urban and rural areas of Victoria, Australia. The interviews were designed to gain in-depth insights about perceived individual, social and physical environmental factors influencing resilience to low physical activity and high screen-time.   Themes relating to physical activity that emerged from the interviews included: parental encouragement, support and modelling; sports culture in a rural town; the physical home and neighbourhood environment; child's individual personality; and dog ownership. Themes relating to screen-time behaviours encompassed: parental control; and child's individual preferences.   The results offer important insights into potential avenues for developing 'resilience' and increasing physical activity and reducing screen-time among children living in disadvantaged neighbourhoods. In light of the negative effects of low physical activity and high levels of screen-time on children's health, this evidence is urgently needed. © 2011 Blackwell Publishing Ltd.

  1. LCG MCDB—a knowledgebase of Monte-Carlo simulated events

    NASA Astrophysics Data System (ADS)

    Belov, S.; Dudko, L.; Galkin, E.; Gusev, A.; Pokorski, W.; Sherstnev, A.

    2008-02-01

    In this paper we report on LCG Monte-Carlo Data Base (MCDB) and software which has been developed to operate MCDB. The main purpose of the LCG MCDB project is to provide a storage and documentation system for sophisticated event samples simulated for the LHC Collaborations by experts. In many cases, the modern Monte-Carlo simulation of physical processes requires expert knowledge in Monte-Carlo generators or significant amount of CPU time to produce the events. MCDB is a knowledgebase mainly dedicated to accumulate simulated events of this type. The main motivation behind LCG MCDB is to make the sophisticated MC event samples available for various physical groups. All the data from MCDB is accessible in several convenient ways. LCG MCDB is being developed within the CERN LCG Application Area Simulation project. Program summaryProgram title: LCG Monte-Carlo Data Base Catalogue identifier: ADZX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public Licence No. of lines in distributed program, including test data, etc.: 30 129 No. of bytes in distributed program, including test data, etc.: 216 943 Distribution format: tar.gz Programming language: Perl Computer: CPU: Intel Pentium 4, RAM: 1 Gb, HDD: 100 Gb Operating system: Scientific Linux CERN 3/4 RAM: 1 073 741 824 bytes (1 Gb) Classification: 9 External routines:perl >= 5.8.5; Perl modules DBD-mysql >= 2.9004, File::Basename, GD::SecurityImage, GD::SecurityImage::AC, Linux::Statistics, XML::LibXML > 1.6, XML::SAX, XML::NamespaceSupport; Apache HTTP Server >= 2.0.59; mod auth external >= 2.2.9; edg-utils-system RPM package; gd >= 2.0.28; rpm package CASTOR-client >= 2.1.2-4; arc-server (optional) Nature of problem: Often, different groups of experimentalists prepare similar samples of particle collision events or turn to the same group of authors of Monte-Carlo (MC) generators to prepare the events. For example, the same MC samples of Standard Model (SM) processes can be employed for the investigations either in the SM analyses (as a signal) or in searches for new phenomena in Beyond Standard Model analyses (as a background). If the samples are made available publicly and equipped with corresponding and comprehensive documentation, it can speed up cross checks of the samples themselves and physical models applied. Some event samples require a lot of computing resources for preparation. So, a central storage of the samples prevents possible waste of researcher time and computing resources, which can be used to prepare the same events many times. Solution method: Creation of a special knowledgebase (MCDB) designed to keep event samples for the LHC experimental and phenomenological community. The knowledgebase is realized as a separate web-server ( http://mcdb.cern.ch). All event samples are kept on types at CERN. Documentation describing the events is the main contents of MCDB. Users can browse the knowledgebase, read and comment articles (documentation), and download event samples. Authors can upload new event samples, create new articles, and edit own articles. Restrictions: The software is adopted to solve the problems, described in the article and there are no any additional restrictions. Unusual features: The software provides a framework to store and document large files with flexible authentication and authorization system. Different external storages with large capacity can be used to keep the files. The WEB Content Management System provides all of the necessary interfaces for the authors of the files, end-users and administrators. Running time: Real time operations. References: [1] The main LCG MCDB server, http://mcdb.cern.ch/. [2] P. Bartalini, L. Dudko, A. Kryukov, I.V. Selyuzhenkov, A. Sherstnev, A. Vologdin, LCG Monte-Carlo data base, hep-ph/0404241. [3] J.P. Baud, B. Couturier, C. Curran, J.D. Durand, E. Knezo, S. Occhetti, O. Barring, CASTOR: status and evolution, cs.oh/0305047.

  2. Ambulatory Care Data Base (ACDB) Data Dictionary Sequential Files of Phase 1

    DTIC Science & Technology

    1989-11-01

    STIMULATION AND EXERCISE 07000 EXAM MICROSCOPIC (ARTHROPOD) 07001 SCREENING, SICKLE CELL 07002 SCREENING, RUBELLA 07003 EXAM, PHYSICAL , (CHN) 07004...DIATHERMY 97028 PHYSICAL MEDICINE TREATMENT, ULTRAVIOLET 97116 GAIT TRAINING 97118 ELECTRICAL STIMULATION , MANUAL 97120 IONTOPHORESIS 97124 PHYSICAL ...Hematology 50 ENT 71 Pain/ Physical Med. 51 Occupational Ther. 72 Plastic Surgery 52 Ophthamology/Op 73 Preventive Med/CHN 53 Physical Ther, 74 General

  3. Nanoscale TiO₂-coated LPGs as radiation-tolerant humidity sensors for high-energy physics applications.

    PubMed

    Consales, Marco; Berruti, Gaia; Borriello, Anna; Giordano, Michele; Buontempo, Salvatore; Breglio, Giovanni; Makovec, Alajos; Petagna, Paolo; Cusano, Andrea

    2014-07-15

    This Letter deals with a feasibility analysis for the development of radiation-tolerant fiber-optic humidity sensors based on long-period grating (LPG) technology to be applied in high-energy physics (HEP) experiments currently running at the European Organization for Nuclear Research (CERN). In particular, here we propose a high-sensitivity LPG sensor coated with a finely tuned titanium dioxide (TiO₂) thin layer (~100 nm thick) through the solgel deposition method. Relative humidity (RH) monitoring in the range 0%-75% and at four different temperatures (in the range -10°C-25°C) was carried out to assess sensor performance in real operative conditions required in typical experiments running at CERN. Experimental results demonstrate the very high RH sensitivities of the proposed device (up to 1.4 nm/% RH in correspondence to very low humidity levels), which turned out to be from one to three orders of magnitude higher than those exhibited by fiber Bragg grating sensors coated with micrometer-thin polyimide overlays. The radiation tolerance capability of the TiO₂-coated LPG sensor is also investigated by comparing the sensing performance before and after its exposure to a 1 Mrad dose of γ-ionizing radiation. Overall, the results collected demonstrate the strong potential of the proposed technology with regard to its future exploitation in HEP applications as a robust and valid alternative to the commercial (polymer-based) hygrometers currently used.

  4. Voyage dans le noir. Trous noirs, matière noire, énergie noire et antimatière [Journey in the dark. Black holes, dark matter, dark energy and antimatter

    ScienceCinema

    Alvarez-Gaume, Luis; Doser, Michael; Grojean, Chri

    2018-05-24

    Et si nous faisions avec les physiciens un voyage dans le noir ? De l'astrophysique à la physique des particules les trois noirs, la matière noire, l'énergie noire ou l’antimatière intriguent et fascinent. Que sont ces objets qui bousculent nos idées et qui véhiculent parfois des craintes irraisonnées? Luis Alvarez-Gaume, Michael Doser et Christophe Grojean, physiciens du CERN vous invitent à mettre en lumière (!) les constituants de base de la matière et à explorer les mystères de la physique contemporaine. Une soirée lumineuse pour éclairer des concepts et ne plus avoir peur du noir. [ What if we made a trip to the physicists in the dark? From astrophysics to particle physics the three blacks, dark matter, dark energy or antimatter intrigue and fascinate. What are these objects that jostle our ideas and sometimes convey irrational fears? Luis Alvarez-Gaume, Michael Doser and Christophe Grojean, CERN physicists invite you to highlight (!) The basic constituents of matter and to explore the mysteries of contemporary physics. A bright evening to illuminate concepts and not be afraid of the dark.

  5. Screen time impairs the relationship between physical fitness and academic attainment in children.

    PubMed

    Aguilar, Macarena M; Vergara, Felipe A; Velásquez, Erikson J A; Marina, Raquel; García-Hermoso, Antonio

    2015-01-01

    The purpose of this study was twofold: to analyze the association between physical fitness and academic attainment, and to determine the influence of screen time on the association between physical fitness and academic attainment. A cross-sectional study including 395 schoolchildren from seven schools of the Maule Region, Chile (mean age 12.1 years; 50.4% boys) participated in the autumn of 2014 (March to June). Self-reported physical activity and screen time were evaluated. The study measured academic achievement (mean of the grades obtained in several core subjects), physical fitness (cardiorespiratory fitness and muscular strength), weight, height, parental education, and socioeconomic status. Linear regression analysis was used to analyze the relationships between physical fitness and academic attainment after adjusting for potential confounders by gender. Analysis of variance was used to analyze the differences in academic attainment according to fitness and screen time categories (< 2 hours/day and ≥ 2 hours/day). In both genders good cardiorespiratory fitness levels were associated with high language (β=0.272-0.153) and mean academic attainment (β=0.192-0.156) grades; however, after adjusting for screen time and other potential confounders, these associations disappear. Similarly, no relationship was observed after analyzing those children who spend more hours of screen time (≥ 2 hours/day). Academic attainment is associated with higher cardiorespiratory fitness levels; however, it was weakly impaired by screen time. These findings seem to suggest that parents and policymakers should minimize the negative effects of screen time on children's lives to maximize the beneficial effect of healthy habits on academic attainment. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  6. Mobility Status as a Predictor of Obesity, Physical Activity, and Screen Time Use among Children Aged 5-11 Years in the United States.

    PubMed

    Wilson, Patrick B; Haegele, Justin A; Zhu, Xihe

    2016-09-01

    To examine physical activity participation, screen time habits, and the prevalence of overweight/obesity among children in the general population with mobility limitations and those enrolled in special education services. An observational, cross-sectional analysis of the 2011-2014 National Health and Nutrition Examination Survey, a representative sample of the US population. Mobility limitations, special education services utilization, proxy-reported physical activity and screen time, and overweight/obesity status were assessed in children aged 5-11 years. Boys with mobility limitations were less likely to meet physical activity guidelines (≥60 minutes daily) compared with those with no limitations (58.1% vs 74.4%, adjusted F = 4.61, P = .04). In a logistic regression model, boys with mobility limitations had significantly lower odds (0.42, 95% CI 0.20-0.86) of meeting physical activity guidelines. The prevalence of children meeting screen time recommendations (≤2 hours daily) among those receiving special education services (42.4%) was lower than children not receiving services (53.2%; adjusted F = 8.87, P < .01). In a logistic regression model, children receiving special education services showed a trend toward significantly lower odds (0.74, 95% CI 0.54-1.03, P = .07) of meeting screen time recommendations. No statistically significant differences for overweight/obesity were found. Clear differences were present in physical activity between boys with and without mobility limitations. Furthermore, children receiving special education services demonstrated a lower likelihood of meeting screen time recommendations. Children with disabilities may benefit from targeted interventions aimed at increasing physical activity while decreasing screen time. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Joint association of screen time and physical activity on self-rated health and life satisfaction in children and adolescents: the CASPIAN-IV study.

    PubMed

    Matin, Nassim; Kelishadi, Roya; Heshmat, Ramin; Motamed-Gorji, Nazgol; Djalalinia, Shirin; Motlagh, Mohammad Esmaeil; Ardalan, Gelayol; Arefirad, Tahereh; Mohammadi, Rasool; Safiri, Saeid; Qorbani, Mostafa

    2017-01-01

    Self-rated health and life satisfaction are two subjective measures for assessing overall health status. This study aims to investigate the association of self-rated health and life satisfaction with physical activity and screen time. As part of the fourth survey of a national surveillance program in Iran (CASPIAN-IV study), 14 880 students aged 6 to 18 years were selected via multi-stage cluster sampling from 30 provinces. Data were obtained from the WHO Global School-Based Student Health Survey questionnaire. A total of 13 486 students with mean age of 12.47 (SD 3.36) completed the study. In crude model both prolonged screen time and physical activity were associated with favorable life satisfaction and self-rated health. However, in multivariate analysis only high physical activity was associated with good self-rated health (OR 1.37) and life satisfaction (OR 1.39), while prolonged screen time was not associated with good self-rated health (OR 1.02) and life satisfaction (OR 0.94). For combined screen time-physical activity variable, low screen time-high physical activity combination had the highest OR for both good self-rated health (OR 1.37) and life satisfaction (OR 1.43) in multivariate analysis. Our findings suggest that increasing physical activity is more crucial than emphasizing reducing screen time in improving the well-being of children and adolescents. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callan, Curtis G.; Gubser, Steven S.; Marlow, Daniel R.

    The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased),more » Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.« less

  9. TSR: A storage and cooling ring for HIE-ISOLDE

    NASA Astrophysics Data System (ADS)

    Butler, P. A.; Blaum, K.; Davinson, T.; Flanagan, K.; Freeman, S. J.; Grieser, M.; Lazarus, I. H.; Litvinov, Yu. A.; Lotay, G.; Page, R. D.; Raabe, R.; Siesling, E.; Wenander, F.; Woods, P. J.

    2016-06-01

    It is planned to install the heavy-ion, low-energy ring TSR, currently at the Max-Planck-Institute for Nuclear Physics in Heidelberg, at the HIE-ISOLDE facility in CERN, Geneva. Such a facility will provide a capability for experiments with stored, cooled secondary beams that is rich and varied, spanning from studies of nuclear ground-state properties and reaction studies of astrophysical relevance, to investigations with highly-charged ions and pure isomeric beams. In addition to experiments performed using beams recirculating within the ring, the cooled beams can be extracted and exploited by external spectrometers for high-precision measurements. The capabilities of the ring facility as well as some physics cases will be presented, together with a brief report on the status of the project.

  10. To Screen or Not to Screen? A Decision Analysis of the Utility of Screening for Developmental Dysplasia of the Hip

    PubMed Central

    Mahan, Susan T.; Katz, Jeffrey N.; Kim, Young-Jo

    2009-01-01

    Background: The United States Preventive Services Task Force recently determined that they could not recommend any screening strategies for developmental dysplasia of the hip. Disparate findings in the literature and treatment-related problems have led to confusion about whether or not to screen for this disorder. The purpose of the present study was to determine, with use of expected-value decision analysis, which of the following three strategies leads to the best chance of having a non-arthritic hip by the age of sixty years: (1) no screening for developmental dysplasia of the hip, (2) universal screening of newborns with both physical examination and ultrasonography, or (3) universal screening with physical examination but only selective use of ultrasonography for neonates considered to be at high risk. Methods: Developmental dysplasia of the hip, avascular necrosis, and the treatment algorithm were carefully defined. The outcome was determined as the probability of any neonate having a non-arthritic hip through the age of sixty years. A decision tree was then built with decision nodes as described above, and chance node probabilities were determined from a thorough review of the literature. Foldback analysis and sensitivity analyses were performed. Results: The expected value of a favorable hip outcome was 0.9590 for the strategy of screening all neonates with physical examination and selective use of ultrasonography, 0.9586 for screening all neonates with physical examination and ultrasonography, and 0.9578 for no screening. A lower expected value implies a greater risk for the development of osteoarthritis as a result of developmental dysplasia of the hip or avascular necrosis; thus, the optimum strategy was selective screening. This model was robust to sensitivity analysis, except when the rate of missed dysplasia rose as high as 4/1000 or the rate of treated hip subluxation/dislocation was the same; then, the optimum strategy was to screen all neonates with both physical examination and ultrasonography. Conclusions: Our decision analytic model indicated that the optimum strategy, associated with the highest probability of having a non-arthritic hip at the age of sixty years, was to screen all neonates for hip dysplasia with a physical examination and to use ultrasonography selectively for infants who are at high risk. Additional data on the costs and cost-effectiveness of these screening policies are needed to guide policy recommendations. Level of Evidence: Economic and decision analysis Level II. See Instructions to Authors for a complete description of levels of evidence. PMID:19571094

  11. Screening and Assessment for Physical and Mental Health Issues That Impact TANF Recipients' Ability To Work.

    ERIC Educational Resources Information Center

    Kramer, Fredrica D.

    2001-01-01

    This document examines screening and assessment for physical and mental health conditions that impact Temporary Assistance for Needy Families (TANF) recipients' ability to work. The document begins by defining screening and assessment and discussing their relevance for agencies serving TANF recipients. The next section answers policy questions…

  12. Reducing Recreational Sedentary Screen Time: A Community Guide Systematic Review.

    PubMed

    Ramsey Buchanan, Leigh; Rooks-Peck, Cherie R; Finnie, Ramona K C; Wethington, Holly R; Jacob, Verughese; Fulton, Janet E; Johnson, Donna B; Kahwati, Leila C; Pratt, Charlotte A; Ramirez, Gilbert; Mercer, Shawna L; Glanz, Karen

    2016-03-01

    Sedentary time spent with screen media is associated with obesity among children and adults. Obesity has potentially serious health consequences, such as heart disease and diabetes. This Community Guide systematic review examined the effectiveness and economic efficiency of behavioral interventions aimed at reducing recreational (i.e., neither school- nor work-related) sedentary screen time, as measured by screen time, physical activity, diet, and weight-related outcomes. For this review, an earlier ("original") review (search period, 1966 through July 2007) was combined with updated evidence (search period, April 2007 through June 2013) to assess effectiveness of behavioral interventions aimed at reducing recreational sedentary screen time. Existing Community Guide systematic review methods were used. Analyses were conducted in 2013-2014. The review included 49 studies. Two types of behavioral interventions were evaluated that either (1) focus on reducing recreational sedentary screen time only (12 studies); or (2) focus equally on reducing recreational sedentary screen time and improving physical activity or diet (37 studies). Most studies targeted children aged ≤13 years. Children's composite screen time (TV viewing plus other forms of recreational sedentary screen time) decreased 26.4 (interquartile interval= -74.4, -12.0) minutes/day and obesity prevalence decreased 2.3 (interquartile interval= -4.5, -1.2) percentage points versus a comparison group. Improvements in physical activity and diet were reported. Three study arms among adults found composite screen time decreased by 130.2 minutes/day. Among children, these interventions demonstrated reduced screen time, increased physical activity, and improved diet- and weight-related outcomes. More research is needed among adolescents and adults. Published by Elsevier Inc.

  13. Contribution of the After-School Period to Children's Daily Participation in Physical Activity and Sedentary Behaviours.

    PubMed

    Arundell, Lauren; Hinkley, Trina; Veitch, Jenny; Salmon, Jo

    2015-01-01

    Children's after-school physical activity (PA) and sedentary behaviours (SB) are not well understood, despite the potential this period holds for intervention. This study aimed to describe children's after-school physical activity and sedentary behaviours; establish the contribution this makes to daily participation and to achieving physical activity and sedentary behaviours guidelines; and to determine the association between after-school moderate- to vigorous-intensity physical activity (MVPA), screen-based sedentary behaviours and achieving the physical activity and sedentary behaviour guidelines. Children (n = 406, mean age 8.1 years, 58% girls) wore an ActiGraph GT3X accelerometer. The percentage of time and minutes spent sedentary (SED), in light- physical activity (LPA) and MVPA between the end-of-school and 6pm (weekdays) was calculated. Parents (n = 318, 40 years, 89% female) proxy-reported their child's after-school participation in screen-based sedentary behaviours. The contribution that after-school SED, LPA, MVPA, and screen-based sedentary behaviours made to daily levels, and that after-school MVPA and screen-based sedentary behaviours made to achieving the physical activity/sedentary behaviour guidelines was calculated. Regression analysis determined the association between after-school MVPA and screen-based sedentary behaviours and achieving the physical activity/sedentary behaviours guidelines. Children spent 54% of the after-school period SED, and this accounted for 21% of children's daily SED levels. Boys spent a greater percentage of time in MVPA than girls (14.9% vs. 13.6%; p<0.05), but this made a smaller contribution to their daily levels (27.6% vs 29.8%; p<0.05). After school, boys and girls respectively performed 18.8 minutes and 16.7 minutes of MVPA, which is 31.4% and 27.8% of the MVPA (p<0.05) required to achieve the physical activity guidelines. Children spent 96 minutes in screen-based sedentary behaviours, contributing to 84% of their daily screen-based sedentary behaviours and 80% of the sedentary behaviour guidelines. After-school MVPA was positively associated with achieving the physical activity guidelines (OR: 1.31, 95%CI 1.18, 1.44, p<0.05), and after-school screen-based sedentary behaviours were negatively associated with achieving the sedentary behaviours guidelines (OR: 0.97, 95%CI: 0.96, 0.97, p<0.05). The after-school period plays a critical role in the accumulation of children's physical activity and sedentary behaviours. Small changes to after-school behaviours can have large impacts on children's daily behaviours levels and likelihood of meeting the recommended levels of physical activity and sedentary behaviour. Therefore interventions should target reducing after-school sedentary behaviours and increasing physical activity.

  14. Tier One Performance Screen Initial Operational Test and Evaluation: 2010 Annual Report

    DTIC Science & Technology

    2011-10-01

    ANNUAL REPORT EXECUTIVE SUMMARY Research Requirement: In addition to educational, physical , and moral screens, the U.S. Army relies on a...number of criteria of interest. Most notably, the Physical Conditioning scale predicted Soldiers’ self- reported Army Physical Fitness Test (APFT...individual Soldier through maximally effective selection, classification, and retention strategies. In addition to educational, physical , and moral

  15. The health indicators associated with screen-based sedentary behavior among adolescent girls: a systematic review.

    PubMed

    Costigan, Sarah A; Barnett, Lisa; Plotnikoff, Ronald C; Lubans, David R

    2013-04-01

    Evidence suggests sitting time is independently associated with a range of health issues in adults, yet the relationship between sedentary behavior and health indicators in young people is less clear. Age-related increases in sedentary behavior are well-documented; the behavioral patterns of adolescent girls are of particular concern. More than one third of adolescent girls' sedentary behavior time is accumulated through use of recreational screen-based behaviors. The objective of this review was to investigate the association between recreational screen-based sedentary behavior and the physical, behavioral, and psychosocial health indicators for adolescent girls. A secondary objective was to identify studies that have adjusted sedentary behavior indicators for physical activity. A structured electronic search of all publication years (through December 2011) was conducted to identify studies in: CINAHL, Communications and Mass Media Complete, ERIC, MEDLINE with Full Text, PsycINFO, and SPORTDiscus with Full Text. Included publications were observational and interventional studies involving adolescent girls (12-18 years) that examined associations between screen-based, sedentary behavior and health indicators (physical, psychosocial, and/or behavioral). The search identified 33 studies that evaluated health indicators of screen-based sedentary behaviors among adolescent girls. Strong evidence for a positive association between screen-based sedentary behavior and weight status was found. A positive association was observed between screen-time and sleep problems, musculoskeletal pain and depression. Negative associations were identified between screen time and physical activity/fitness, screen time and psychological well-being, and screen time and social support. The relationship between screen-based sedentary behavior and diet quality was inconclusive. Less than half of the studies adjusted sedentary behavior indicators for physical activity. Screen-based sedentary behavior is associated with a range of adverse health consequences, but additional longitudinal studies are needed to better understand the health impacts. In addition, screen-time guidelines for youth should be regularly revised and updated to reflect rapid technological changes. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  16. Beyond the standard model of particle physics.

    PubMed

    Virdee, T S

    2016-08-28

    The Large Hadron Collider (LHC) at CERN and its experiments were conceived to tackle open questions in particle physics. The mechanism of the generation of mass of fundamental particles has been elucidated with the discovery of the Higgs boson. It is clear that the standard model is not the final theory. The open questions still awaiting clues or answers, from the LHC and other experiments, include: What is the composition of dark matter and of dark energy? Why is there more matter than anti-matter? Are there more space dimensions than the familiar three? What is the path to the unification of all the fundamental forces? This talk will discuss the status of, and prospects for, the search for new particles, symmetries and forces in order to address the open questions.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. © 2016 The Author(s).

  17. Search for strong gravity in multijet final states produced in pp collisions at √s = 13 TeV using the ATLAS detector at the LHC

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2016-03-07

    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13 TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (H T) greater than 1 TeV. No excess is seen at large H T and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with H T > 5.8 TeV are excluded. As amore » result, limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions.« less

  18. The MoEDAL Experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Pinfold, James L.

    2014-04-01

    In 2010 the CERN (European Centre for Particle Physics Research) Research Board unanimously approved MoEDAL, the 7th international experiment at the Large Hadron Collider (LHC), which is designed to search for avatars of new physics signified by highly ionizing particles. The MoEDAL detector is like a giant camera ready to reveal "photographic" evidence for new physics and also to actually trap long-lived new particles for further study. The MoEDAL experiment will significantly expand the horizon for discovery at the LHC, in a complementary way. A MoEDAL discovery would have revolutionary implications for our understanding of the microcosm, providing insights into such fundamental questions as: do magnetic monopoles exist, are there extra dimensions or new symmetries of nature; what is the mechanism for the generation of mass; what is the nature of dark matter and how did the big-bang unfurl at the earliest times.

  19. Using the FLUKA Monte Carlo Code to Simulate the Interactions of Ionizing Radiation with Matter to Assist and Aid Our Understanding of Ground Based Accelerator Testing, Space Hardware Design, and Secondary Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Reddell, Brandon

    2015-01-01

    Designing hardware to operate in the space radiation environment is a very difficult and costly activity. Ground based particle accelerators can be used to test for exposure to the radiation environment, one species at a time, however, the actual space environment cannot be duplicated because of the range of energies and isotropic nature of space radiation. The FLUKA Monte Carlo code is an integrated physics package based at CERN that has been under development for the last 40+ years and includes the most up-to-date fundamental physics theory and particle physics data. This work presents an overview of FLUKA and how it has been used in conjunction with ground based radiation testing for NASA and improve our understanding of secondary particle environments resulting from the interaction of space radiation with matter.

  20. The influence of friends and siblings on the physical activity and screen viewing behaviours of children aged 5-6 years: a qualitative analysis of parent interviews.

    PubMed

    Edwards, M J; Jago, R; Sebire, S J; Kesten, J M; Pool, L; Thompson, J L

    2015-05-14

    The present study uses qualitative data to explore parental perceptions of how their young child's screen viewing and physical activity behaviours are influenced by their child's friends and siblings. Telephone interviews were conducted with parents of year 1 children (age 5-6 years). Interviews considered parental views on a variety of issues related to their child's screen viewing and physical activity behaviours, including the influence that their child's friends and siblings have over such behaviours. Interviews were transcribed verbatim and analysed using deductive content analysis. Data were organised using a categorisation matrix developed by the research team. Coding and theme generation was iterative and refined throughout. Data were entered into and coded within N-Vivo. Parents were recruited through 57 primary schools located in Bristol and the surrounding area that took part in the B-ProAct1v study. Fifty-three parents of children aged 5-6 years. Parents believe that their child's screen viewing and physical activity behaviours are influenced by their child's siblings and friends. Friends are considered to have a greater influence over the structured physical activities a child asks to participate in, whereas the influence of siblings is more strongly perceived over informal and spontaneous physical activities. In terms of screen viewing, parents suggest that their child's friends can heavily influence the content their child wishes to consume, however, siblings have a more direct and tangible influence over what a child watches. Friends and siblings influence young children's physical activity and screen viewing behaviours. Child-focused physical activity and screen viewing interventions should consider the important influence that siblings and friends have over these behaviours. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Does home equipment contribute to socioeconomic gradients in Australian children's physical activity, sedentary time and screen time?

    PubMed

    Dumuid, Dot; Olds, Timothy S; Lewis, Lucy K; Maher, Carol

    2016-08-05

    Activity behaviours (physical activity, sedentary time and screen time) have been linked to health outcomes in childhood. Furthermore, socioeconomic disparities have been observed in both children's activity behaviours and health outcomes. Children's physical home environments may play a role in these relationships. This study aimed to examine the associations and interactions between children's physical home environment, socioeconomic status and moderate-to-vigorous physical activity, sedentary time and screen time. Australian children (n = 528) aged 9-11 years from randomly selected schools participated in the cross-sectional International Study of Childhood Obesity, Lifestyle and the Environment. Children's physical home environment (access to equipment), socioeconomic status (household income and parental education) and demographic variables (gender and family structure) were determined by parental questionnaire. Moderate-to-vigorous physical activity and sedentary time were measured objectively by 7-day 24-h accelerometry. Screen time was obtained from child survey. The associations between the physical home environment, socioeconomic status and moderate-to-vigorous physical activity, sedentary time and screen time were examined for 427 children, using analysis of covariance, and linear and logistic regression, with adjustment for gender and family structure. The presence of TVs (p < 0.01) and video game consoles (p < 0.01) in children's bedrooms, and child possession of handheld video games (p = 0.04), cell phones (p < 0.01) and music devices (p = 0.04) was significantly and positively associated with screen time. Ownership of these devices (with the exception of music devices) was inversely related to socioeconomic status (parental education). Children's moderate-to-vigorous intensity physical activity (p = 0.04) and possession of active play equipment (p = 0.04) were both positively associated with socioeconomic status (household income), but were not related to each other (with the exception of bicycle ownership). Children with less electronic devices, particularly in their bedrooms, participated in less screen time, regardless of socioeconomic status. Socioeconomic disparities were identified in children's moderate-to-vigorous physical activity, however socioeconomic status was inconsistently related to possession of active play equipment. Home active play equipment was therefore not a clear contributor to the socioeconomic gradients in Australian children's moderate-to-vigorous physical activity.

  2. Airport Screening

    MedlinePlus

    Health Physics Society Specialists in Radiation Safety Airport Screening Fact Sheet Adopted: May 2011 Photo courtesy of Dan ... a safe level. An American National Standards Institute/Health Physics Society industry standard states that the maxi- mum ...

  3. Anisotropic strange star with Tolman V potential

    NASA Astrophysics Data System (ADS)

    Shee, Dibyendu; Deb, Debabrata; Ghosh, Shounak; Ray, Saibal; Guha, B. K.

    In this paper, we present a strange stellar model using Tolman V-type metric potential employing simplest form of the MIT bag equation of state (EOS) for the quark matter. We consider that the stellar system is spherically symmetric, compact and made of an anisotropic fluid. Choosing different values of n we obtain exact solutions of the Einstein field equations and finally conclude that for a specific value of the parameter n = 1/2, we find physically acceptable features of the stellar object. Further, we conduct different physical tests, viz., the energy condition, generalized Tolman-Oppeheimer-Volkoff (TOV) equation, Herrera’s cracking concept, etc., to confirm the physical validity of the presented model. Matching conditions provide expressions for different constants whereas maximization of the anisotropy parameter provides bag constant. By using the observed data of several compact stars, we derive exact values of some of the physical parameters and exhibit their features in tabular form. It is to note that our predicted value of the bag constant satisfies the report of CERN-SPS and RHIC.

  4. Nuclear spectroscopy with Geant4. The superheavy challenge

    NASA Astrophysics Data System (ADS)

    Sarmiento, Luis G.

    2016-12-01

    The simulation toolkit Geant4 was originally developed at CERN for high-energy physics. Over the years it has been established as a swiss army knife not only in particle physics but it has seen an accelerated expansion towards nuclear physics and more recently to medical imaging and γ- and ion- therapy to mention but a handful of new applications. The validity of Geant4 is vast and large across many particles, ions, materials, and physical processes with typically various different models to choose from. Unfortunately, atomic nuclei with atomic number Z > 100 are not properly supported. This is likely due to the rather novelty of the field, its comparably small user base, and scarce evaluated experimental data. To circumvent this situation different workarounds have been used over the years. In this work the simulation toolkit Geant4 will be introduced with its different components and the effort to bring the software to the heavy and superheavy region will be described.

  5. 25th Birthday Cern- Amphi

    ScienceCinema

    None

    2017-12-09

    Cérémonie du 25ème anniversaire du Cern avec 2 orateurs: le Prof.Weisskopf parle de la signification et le rôle du Cern et le Prof.Casimir(?) fait un exposé sur les rélations entre la science pure et la science appliquée et la "big science" (science légère)

  6. Screen time and passive school travel as independent predictors of cardiorespiratory fitness in youth.

    PubMed

    Sandercock, Gavin R H; Ogunleye, Ayodele A

    2012-05-01

    The most prevalent sedentary behaviours in children and adolescents are engagement with small screen media (screen-time) and passive travel (by motorised vehicle). The objective of this research was to assess the independence of these behaviours from one another and from physical activity as predictors of cardiorespiratory fitness in youth. We measured cardiorespiratory fitness in n=6819 10-16 year olds (53% male) who self-reported their physical activity (7-day recall) school travel and screen time habits. Travel was classified as active (walking, cycling) or passive; screen time as <2 h, 2-4 h or >4 h. The multivariate odds of being fit were higher in active travel (Boys: OR 1.32, 95% CI: 1.09-1.59; Girls: OR 1.46, 1.15-1.84) than in passive travel groups. Boys reporting low screen time were more likely to be fit than those reporting >4 h (OR 2.11, 95% CI: 1.68-2.63) as were girls (OR 1.66, 95% CI: 1.24-2.20). These odds remained significant after additionally controlling for physical activity. Passive travel and high screen time are independently associated with poor cardiorespiratory fitness in youth, and this relationship is independent of physical activity levels. A lifestyle involving high screen time and habitual passive school travel appears incompatible with healthful levels of cardiorespiratory fitness in youth. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Parallel Event Analysis Under Unix

    NASA Astrophysics Data System (ADS)

    Looney, S.; Nilsson, B. S.; Oest, T.; Pettersson, T.; Ranjard, F.; Thibonnier, J.-P.

    The ALEPH experiment at LEP, the CERN CN division and Digital Equipment Corp. have, in a joint project, developed a parallel event analysis system. The parallel physics code is identical to ALEPH's standard analysis code, ALPHA, only the organisation of input/output is changed. The user may switch between sequential and parallel processing by simply changing one input "card". The initial implementation runs on an 8-node DEC 3000/400 farm, using the PVM software, and exhibits a near-perfect speed-up linearity, reducing the turn-around time by a factor of 8.

  8. GPU real-time processing in NA62 trigger system

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P. S.; Pastorelli, E.; Piandani, R.; Piccini, M.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2017-01-01

    A commercial Graphics Processing Unit (GPU) is used to build a fast Level 0 (L0) trigger system tested parasitically with the TDAQ (Trigger and Data Acquisition systems) of the NA62 experiment at CERN. In particular, the parallel computing power of the GPU is exploited to perform real-time fitting in the Ring Imaging CHerenkov (RICH) detector. Direct GPU communication using a FPGA-based board has been used to reduce the data transmission latency. The performance of the system for multi-ring reconstrunction obtained during the NA62 physics run will be presented.

  9. AGIS: The ATLAS Grid Information System

    NASA Astrophysics Data System (ADS)

    Anisenkov, Alexey; Belov, Sergey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander

    2012-12-01

    ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  10. AGIS: The ATLAS Grid Information System

    NASA Astrophysics Data System (ADS)

    Anisenkov, A.; Di Girolamo, A.; Klimentov, A.; Oleynik, D.; Petrosyan, A.; Atlas Collaboration

    2014-06-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produced petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we describe the ATLAS Grid Information System (AGIS), designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  11. Liquid Argon Calorimetry for ATLAS

    NASA Astrophysics Data System (ADS)

    Robinson, Alan

    2008-05-01

    This summer, the largest collaborative physics project since the Manhattan project will go online. One of four experiments for the Large Hadron Collider at CERN in Geneva, ATLAS, employs over 2000 people. Canadians have helped design, construct, and calibrate the liquid argon calorimeters for ATLAS to capture the products of the high energy collisions produced by the LHC. From an undergraduate's perspective, explore how these calorimeters are made to handle their harsh requirement. From nearly a billion proton-proton collisions a second, physicists hope to discover the Higgs boson and other new fundamental particles.

  12. Results from the HARP Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catanesi, M. G.

    2008-02-21

    Hadron production is a key ingredient in many aspects of {nu} physics. Precise prediction of atmospheric {nu} fluxes, characterization of accelerator {nu} beams, quantification of {pi} production and capture for {nu}-factory designs, all of these would profit from hadron production measurements. HARP at the CERN PS was the first hadron production experiment designed on purpose to match all these requirements. It combines a large, full phase space acceptance with low systematic errors and high statistics. HARP was operated in the range from 3 GeV to 15 GeV. We briefly describe here the most recent results.

  13. Physical health monitoring in mental health settings: a study exploring mental health nurses' views of their role.

    PubMed

    Mwebe, Herbert

    2017-10-01

    To explore nurses' views of their role in the screening and monitoring of the physical care needs of people with serious mental illness in a mental health service provider. There is increasing awareness through research that people with serious mental illness disproportionately experience and die early from physical health conditions. Mental health nurses are best placed as front-line workers to offer screening, monitoring and interventions; however, their views on physical care interventions are not studied often. Qualitative exploratory study. The study was carried out in a mental health inpatient centre in England. Volunteer sampling was adopted for the study with a total target sample of (n = 20) nurses from three inpatient wards. Semistructured interviews were conducted with (n = 10) registered mental health nurses who had consented to take part in the study. Inductive data analysis and theme development were guided by a thematic analytic framework. Participants shared a clear commitment regarding their role regarding physical health screening and monitoring in mental health settings. Four themes emerged as follows: features of current practice and physical health monitoring; perceived barriers to physical health monitoring; education and training needs; and strategies to improve physical health monitoring. Nurses were unequivocal in their resolve to ensure good standard physical health monitoring and screening interventions in practice. However, identified obstacles have to be addressed to ensure that physical health screening and monitoring is integrated adequately in everyday clinical activities. Achieving this would require improvements in nurses' training, and an integrated multiservice and team-working approach. Attending to the physical health needs of people with serious mental illness has been associated with multiple improvements in both mental and physical health; nurses have a vital role to play in identifying and addressing causes of poor physical health to improve physical health outcomes in people with serious mental illness. © 2016 John Wiley & Sons Ltd.

  14. Global EOS: exploring the 300-ms-latency region

    NASA Astrophysics Data System (ADS)

    Mascetti, L.; Jericho, D.; Hsu, C.-Y.

    2017-10-01

    EOS, the CERN open-source distributed disk storage system, provides the highperformance storage solution for HEP analysis and the back-end for various work-flows. Recently EOS became the back-end of CERNBox, the cloud synchronisation service for CERN users. EOS can be used to take advantage of wide-area distributed installations: for the last few years CERN EOS uses a common deployment across two computer centres (Geneva-Meyrin and Budapest-Wigner) about 1,000 km apart (∼20-ms latency) with about 200 PB of disk (JBOD). In late 2015, the CERN-IT Storage group and AARNET (Australia) set-up a challenging R&D project: a single EOS instance between CERN and AARNET with more than 300ms latency (16,500 km apart). This paper will report about the success in deploy and run a distributed storage system between Europe (Geneva, Budapest), Australia (Melbourne) and later in Asia (ASGC Taipei), allowing different type of data placement and data access across these four sites.

  15. INTEGRATED OPERATIONAL DOSIMETRY SYSTEM AT CERN.

    PubMed

    Dumont, Gérald; Pedrosa, Fernando Baltasar Dos Santos; Carbonez, Pierre; Forkel-Wirth, Doris; Ninin, Pierre; Fuentes, Eloy Reguero; Roesler, Stefan; Vollaire, Joachim

    2017-04-01

    CERN, the European Organization for Nuclear Research, upgraded its operational dosimetry system in March 2013 to be prepared for the first Long Shutdown of CERN's facilities. The new system allows the immediate and automatic checking and recording of the dosimetry data before and after interventions in radiation areas. To facilitate the analysis of the data in context of CERN's approach to As Low As Reasonably Achievable (ALARA), this new system is interfaced to the Intervention Management Planning and Coordination Tool (IMPACT). IMPACT is a web-based application widely used in all CERN's accelerators and their associated technical infrastructures for the planning, the coordination and the approval of interventions (work permit principle). The coupling of the operational dosimetry database with the IMPACT repository allows a direct and almost immediate comparison of the actual dose with the estimations, in addition to enabling the configuration of alarm levels in the dosemeter in function of the intervention to be performed. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Introduction to CERN

    ScienceCinema

    Heuer, R.-D.

    2018-02-19

    Summer Student Lecture Programme Introduction. The mission of CERN; push back the frontiers of knowledge, e.g. the secrets of the Big Bang...what was the matter like within the first moments of the Universe's existence? You have to develop new technologies for accelerators and detectors (also information technology--the Web and the GRID and medicine--diagnosis and therapy). There are three key technology areas at CERN; accelerating, particle detection, large-scale computing.

  17. Service management at CERN with Service-Now

    NASA Astrophysics Data System (ADS)

    Toteva, Z.; Alvarez Alonso, R.; Alvarez Granda, E.; Cheimariou, M.-E.; Fedorko, I.; Hefferman, J.; Lemaitre, S.; Clavo, D. Martin; Martinez Pedreira, P.; Pera Mira, O.

    2012-12-01

    The Information Technology (IT) and the General Services (GS) departments at CERN have decided to combine their extensive experience in support for IT and non-IT services towards a common goal - to bring the services closer to the end user based on Information Technology Infrastructure Library (ITIL) best practice. The collaborative efforts have so far produced definitions for the incident and the request fulfilment processes which are based on a unique two-dimensional service catalogue that combines both the user and the support team views of all services. After an extensive evaluation of the available industrial solutions, Service-now was selected as the tool to implement the CERN Service-Management processes. The initial release of the tool provided an attractive web portal for the users and successfully implemented two basic ITIL processes; the incident management and the request fulfilment processes. It also integrated with the CERN personnel databases and the LHC GRID ticketing system. Subsequent releases continued to integrate with other third-party tools like the facility management systems of CERN as well as to implement new processes such as change management. Independently from those new development activities it was decided to simplify the request fulfilment process in order to achieve easier acceptance by the CERN user community. We believe that due to the high modularity of the Service-now tool, the parallel design of ITIL processes e.g., event management and non-ITIL processes, e.g., computer centre hardware management, will be easily achieved. This presentation will describe the experience that we have acquired and the techniques that were followed to achieve the CERN customization of the Service-Now tool.

  18. Vidyo@CERN: A Service Update

    NASA Astrophysics Data System (ADS)

    Fernandes, J.; Baron, T.

    2015-12-01

    We will present an overview of the current real-time video service offering for the LHC, in particular the operation of the CERN Vidyo service will be described in terms of consolidated performance and scale: The service is an increasingly critical part of the daily activity of the LHC collaborations, topping recently more than 50 million minutes of communication in one year, with peaks of up to 852 simultaneous connections. We will elaborate on the improvement of some front-end key features such as the integration with CERN Indico, or the enhancements of the Unified Client and also on new ones, released or in the pipeline, such as a new WebRTC client and CERN SSO/Federated SSO integration. An overview of future infrastructure improvements, such as virtualization techniques of Vidyo routers and geo-location mechanisms for load-balancing and optimum user distribution across the service infrastructure will also be discussed. The work done by CERN to improve the monitoring of its Vidyo network will also be presented and demoed. As a last point, we will touch the roadmap and strategy established by CERN and Vidyo with a clear objective of optimizing the service both on the end client and backend infrastructure to make it truly universal, to serve Global Science. To achieve those actions, the introduction of the multitenant concept to serve different communities is needed. This is one of the consequences of CERN's decision to offer the Vidyo service currently operated for the LHC, to other Sciences, Institutions and Virtual Organizations beyond HEP that might express interest for it.

  19. Physical Activity and Cervical Cancer Testing among American Indian Women

    ERIC Educational Resources Information Center

    Muus, Kyle J.; Baker-Demaray, Twyla B.; Bogart, T. Andy; Duncan, Glen E.; Jacobsen, Clemma; Buchwald, Dedra S.; Henderson, Jeffrey A.

    2012-01-01

    Purpose: Studies have shown that women who engage in high levels of physical activity have higher rates of cancer screening, including Papanicalaou (Pap) tests. Because American Indian (AI) women are at high risk for cervical cancer morbidity and mortality, we examined Pap screening prevalence and assessed whether physical activity was associated…

  20. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal

    2015-12-01

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the ability to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d'Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.

  1. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chardonnet, Pascal; LAPTh, Université de Savoie, CNRS, B.P. 110, Annecy-le-Vieux F-74941; ICRANet, Piazza della Repubblica 10, 65122 Pescara

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the abilitymore » to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d’Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.« less

  2. The Coming Revolutions in Particle Physics

    ScienceCinema

    Quigg, Chris

    2017-12-09

    Wonderful opportunities await particle physics over the next decade, with new instruments and experiments poised to explore the frontiers of high energy, infinitesimal distances, and exquisite rarity. We look forward to the Large Hadron Collider at CERN to explore the 1-TeV scale (extending efforts at LEP and the Tevatron to unravel the nature of electroweak symmetry breaking) and many initiatives to develop our understanding of the problem of identity: what makes a neutrino a neutrino and a top quark a top quark. We suspect that the detection of proton decay is only a few orders of magnitude away in sensitivity. Astronomical observations should help to tell us what kinds of matter and energy make up the universe. We might even learn to read experiment for clues about the dimensionality of spacetime. If we are inventive enough, we may be able to follow this rich menu with the physics opportunities offered by a linear electron-positron collider and a (muon storage ring) neutrino factory. I expect a remarkable flowering of experimental particle physics, and of theoretical physics that engages with experiment.

  3. How Children Use Active Videogames and the Association Between Screen Time and Physical Activity.

    PubMed

    Forde, Cuisle; Hussey, Juliette

    2015-08-01

    The energy required to play active videogames (AVGs) has been reported on in the literature; however, little is known about how children use such games in their home environment. The aim of this study was to investigate children's use of AVGs and the association among AVG use, other screen-based activities, and physical activity levels. Eight hundred and twenty children 12.1 (0.6) years of age participated. Physical activity levels, sedentary screen-based activities, and AVG use were investigated. Differences across genders and deprivation indices were also analyzed. Fifty-eight percent of children met minimal physical activity guidelines. Forty-seven percent of children exceeded screen time recommendations. Of those who had access to AVGs, more children played sedentary games (or active games in a sedentary manner [68 percent]) than active games (55 percent) on AVG consoles. Furthermore, sedentary games were played for longer than active games. AVG play was positively correlated with reported time spent watching television (P=0.02). In free-living conditions AVG consoles are being used by more children and for longer durations as sedentary screen-based devices rather than active screen-based devices.

  4. Children's perceptions of the factors helping them to be 'resilient' to sedentary lifestyles.

    PubMed

    Veitch, Jenny; Arundell, Lauren; Hume, Clare; Ball, Kylie

    2013-08-01

    Despite the increased risk of sedentary lifestyles associated with socioeconomic disadvantage, some children living in disadvantaged areas display 'resilience' to unhealthy behaviours whereby they manage to engage in regular physical activity and avoid high levels of screen time. It is important to understand what is helping these children to do well. This qualitative study explored the perceptions of 'resilient' children regarding factors that assist them to engage in high levels of physical activity and low screen time. In-depth face-to-face interviews were conducted with 38 children (7-13 years) living in disadvantaged neighbourhoods in urban and rural areas of Victoria, Australia. Themes that emerged relating to physical activity included: parental support and encouragement of physical activity, having a supportive physical environment and having friends to be active with. Themes relating to screen time included: individual preferences to be active, knowledge of health risks associated with sedentary behaviour, having a home environment supportive of physical activity and parental rules. The results provide valuable insights regarding factors that may help children living in disadvantaged neighbourhoods to be physically active and reduce their screen time and may inform future studies targeting this important population group.

  5. The ALICE Software Release Validation cluster

    NASA Astrophysics Data System (ADS)

    Berzano, D.; Krzewicki, M.

    2015-12-01

    One of the most important steps of software lifecycle is Quality Assurance: this process comprehends both automatic tests and manual reviews, and all of them must pass successfully before the software is approved for production. Some tests, such as source code static analysis, are executed on a single dedicated service: in High Energy Physics, a full simulation and reconstruction chain on a distributed computing environment, backed with a sample “golden” dataset, is also necessary for the quality sign off. The ALICE experiment uses dedicated and virtualized computing infrastructures for the Release Validation in order not to taint the production environment (i.e. CVMFS and the Grid) with non-validated software and validation jobs: the ALICE Release Validation cluster is a disposable virtual cluster appliance based on CernVM and the Virtual Analysis Facility, capable of deploying on demand, and with a single command, a dedicated virtual HTCondor cluster with an automatically scalable number of virtual workers on any cloud supporting the standard EC2 interface. Input and output data are externally stored on EOS, and a dedicated CVMFS service is used to provide the software to be validated. We will show how the Release Validation Cluster deployment and disposal are completely transparent for the Release Manager, who simply triggers the validation from the ALICE build system's web interface. CernVM 3, based entirely on CVMFS, permits to boot any snapshot of the operating system in time: we will show how this allows us to certify each ALICE software release for an exact CernVM snapshot, addressing the problem of Long Term Data Preservation by ensuring a consistent environment for software execution and data reprocessing in the future.

  6. List of Participants

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Mohab Abou ZeidInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Ido AdamMax-Planck-Institut für Gravitationsphysik (AEI), Potsdam Henrik AdorfLeibniz Universität Hannover Mohammad Ali-AkbariIPM, Tehran Antonio Amariti Università di Milano-Bicocca Nicola Ambrosetti Université de Neuchâtel Martin Ammon Max-Planck-Institut für Physik, München Christopher AndreyÉcole Polytechnique Fédérale de Lausanne (EPFL) Laura AndrianopoliPolitecnico di Torino David AndriotLPTHE, Université UPMC Paris VI Carlo Angelantonj Università di Torino Pantelis ApostolopoulosUniversitat de les Illes Balears, Palma Gleb ArutyunovInstitute for Theoretical Physics, Utrecht University Davide AstolfiUniversità di Perugia Spyros AvramisUniversité de Neuchâtel Mirela BabalicChalmers University, Göteborg Foday BahDigicom Ioannis Bakas University of Patras Igor BandosUniversidad de Valencia Jose L F BarbonIFTE UAM/CSIC Madrid Till BargheerMax-Planck-Institut für Gravitationsphysik (AEI), Potsdam Marco Baumgartl Eidgenössische Technische Hochschule (ETH), Zürich James BedfordImperial College London Raphael BenichouLaboratoire de Physique Théorique, École Normale Supérieure, Paris Francesco Benini SISSA, Trieste Eric Bergshoeff Centre for Theoretical Physics, University of Groningen Alice BernamontiVrije Universiteit, Brussel Julia BernardLaboratoire de Physique Théorique, École Normale Supérieure, Paris Adel Bilal Laboratoire de Physique Théorique, École Normale Supérieure, Paris Marco Billo' Università di Torino Matthias Blau Université de Neuchâtel Guillaume BossardAlbert-Einstein-Institut, Golm Leonardo BriziÉcole Polytechnique Fédérale de Lausanne (EPFL) Johannes BroedelLeibniz Universität Hannover (AEI) Tom BrownQueen Mary, University of London Ilka BrunnerEidgenössische Technische Hochschule (ETH), Zürich Erling BrynjolfssonUniversity of Iceland Dmitri BykovSteklov Institute, Moscow and Trinity College, Dublin Joan CampsUniversitat de Barcelona Davide CassaniLaboratoire de Physique Théorique, École Normale Supérieure, Paris Alejandra CastroUniversity of Michigan Claudio Caviezel Max-Planck-Institut für Physik, München Alessio Celi Universitat de Barcelona Anna Ceresole Istituto Nazionale di Fisica Nucleare, Università di Torino Athanasios ChatzistavrakidisNational Technical University of Athens Wissam ChemissanyCentre for Theoretical Physics, University of Groningen Eugen-Mihaita CioroianuUniversity of Craiova Andres CollinucciTechnische Universität Wien Paul CookUniversità di Roma, Tor Vergata Lorenzo CornalbaUniversità di Milano-Bicocca Aldo CotroneKatholieke Universiteit Leuven Ben Craps Vrije Universiteit, Brussel Stefano Cremonesi SISSA, Trieste Riccardo D'AuriaPolitecnico di Torino Gianguido Dall'AgataUniversity of Padova Jose A de AzcarragaUniversidad de Valencia Jan de BoerInstituut voor Theoretische Fysica, Universiteit van Amsterdam Sophie de BuylInstitut des Hautes Études Scientifiques, Bures-sur-Yvette Marius de LeeuwUtrecht University Frederik De RooVrije Universiteit, Brussel Jan De Rydt Katholieke Universiteit Leuven and CERN, Geneva Bernard de WitInstitute for Theoretical Physics, Utrecht University Stephane DetournayIstituto Nazionale di Fisica Nucleare, Sezione di Milano Paolo Di Vecchia Niels Bohr Institute, København Eugen DiaconuUniversity of Craiova Vladimir Dobrev Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia Nick DoreyUniversity of Cambridge Hajar Ebrahim NajafabadiIPM, Tehran Federico Elmetti Università di Milano Oleg Evnin Vrije Universiteit, Brussel Francesco Fiamberti Università di Milano Davide Forcella SISSA, Trieste and CERN, Geneva Valentina Forini Humboldt-Universität zu Berlin Angelos Fotopoulos Università di Torino Denis Frank Université de Neuchâtel Marialuisa Frau Università di Torino Matthias Gaberdiel Eidgenössische Technische Hochschule (ETH), Zürich Diego Gallego SISSA/ISAS, Trieste Maria Pilar Garcia del MoralIstituto Nazionale di Fisica Nucleare, Università di Torino Valentina Giangreco Marotta PulettiUppsala University Valeria L GiliQueen Mary, University of London Luciano GirardelloUniversità di Milano-Bicocca Gian GiudiceCERN, Geneva Kevin Goldstein Institute for Theoretical Physics, Utrecht University Joaquim Gomis Universitat de Barcelona Pietro Antonio GrassiUniversità del Piemonte Orientale, Alessandria Viviane GraßLudwig-Maximilians-Universität, München Gianluca Grignani Università di Perugia Luca Griguolo Università di Parma Johannes GrosseJagiellonian University, Krakow Umut Gursoy École Polytechnique, Palaiseau Norberto Gutierrez RodriguezUniversity of Oviedo Babak HaghighatPhysikalisches Institut, Universität Bonn Troels Harmark Niels Bohr Institute, København Robert HaslhoferEidgenössische Technische Hochschule (ETH), Zürich Tae-Won HaPhysikalisches Institut, Universität Bonn Alexander HauptImperial College London and Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Marc HenneauxUniversité Libre de Bruxelles Johannes HennLAPTH, Annecy-le-Vieux Shinji HiranoNiels Bohr Institute, København Stefan HoheneggerEidgenössische Technische Hochschule (ETH), Zürich Jan HomannLudwig-Maximilians-Universität, München Gabriele Honecker CERN, Geneva Joost HoogeveenInstituut voor Theoretische Fysica, Universiteit van Amsterdam Mechthild HuebscherUniversidad Autónoma de Madrid Chris HullImperial College London Carmen-Liliana IonescuUniversity of Craiova Ella JasminUniversité Libre de Bruxelles Konstantin KanishchevInstitute of Theoretical Physics, University of Warsaw Stefanos Katmadas Utrecht University Alexandros KehagiasNational Technical University of Athens Christoph Keller Eidgenössische Technische Hochschule (ETH), Zürich Patrick Kerner Max-Planck-Institut für Physik, München Rebiai KhaledLaboratoire de Physique Mathématique et Physique Subatomique, Université Mentouri, Constantine Elias Kiritsis Centre de Physique Théorique, École Polytechnique, Palaiseau and University of Crete Denis KleversPhysikalisches Institut, Universität Bonn Paul Koerber Max-Planck-Institut für Physik, München Simon Koers Max-Planck-Institut für Physik, München Karl KollerLudwig-Maximilians-Universität, München Peter Koroteev Institute for Theoretical and Experimental Physics (ITEP), Moscow and Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Alexey KoshelevVrije Universiteit, Brussel Costas KounnasÉcole Normale Supérieure, Paris Daniel KreflCERN, Geneva Charlotte KristjansenNiels Bohr Institute, København Finn LarsenCERN, Geneva and University of Michigan Arnaud Le DiffonÉcole Normale Supérieure, Lyon Michael LennekCentre de Physique Théorique, École Polytechnique, Palaiseau Alberto Lerda Università del Piemonte Orientale, Alessandria Andreas LiberisUniversity of Patras Maria A Lledo Universidad de Valencia Oscar Loaiza-Brito CINVESTAV, Mexico Florian Loebbert Max-Planck-Institut für Gravitationsphysik (AEI), Potsdam Yolanda Lozano University of Oviedo Dieter Luest Ludwig-Maximilians-Universität, München Tomasz Łukowski Jagiellonian University, Krakow Diego Mansi University of Crete Alberto Mariotti Università di Milano-Bicocca Raffaele Marotta Istituto Nazionale di Fisica Nucleare, Napoli Alessio Marrani Istituto Nazionale di Fisica Nucleare and LNF, Firenze Andrea Mauri University of Crete Liuba Mazzanti École Polytechnique, Palaiseau Sean McReynoldsUniversità di Milano-Bicocca AKM Moinul Haque Meaze Chittagong University Patrick Meessen Instituto de Física Teórica, Universidad Autónoma de Madrid Carlo MeneghelliUniversità di Parma and Albert-Einstein-Institut, Golm Lotta Mether University of Helsinki and CERN, Geneva René Meyer Max-Planck-Institut für Physik, München Georgios MichalogiorgakisCenter de Physique Théorique, École Polytechnique, Palaiseau Giuseppe Milanesi Eidgenössische Technische Hochschule (ETH), Zürich Samuel Monnier Université de Genève Wolfgang MueckUniversità di Napoli Federico II Elena Méndez Escobar University of Edinburgh Iulian Negru University of Craiova Emil NissimovInstitute for Nuclear Research and Nuclear Energy, Sofia Teake NutmaCentre for Theoretical Physics, University of Groningen Niels Obers Niels Bohr Institute, København Olof Ohlsson SaxUppsala University Rodrigo OleaIstituto Nazionale di Fisica Nucleare, Sezione di Milano Domenico OrlandoUniversité de Neuchâtel Marta Orselli Niels Bohr Institute, København Tomas OrtinInstituto de Física Teórica, Universidad Autónoma de Madrid Yaron OzTel Aviv University Enrico PajerLudwig-Maximilians-Universität, München Angel Paredes GalanUtrecht University Sara PasquettiUniversité de Neuchâtel Silvia PenatiUniversità di Milano-Bicocca Jan PerzKatholieke Universiteit Leuven Igor PesandoUniversità di Torino Tassos PetkouUniversity of Crete Marios PetropoulosCenter de Physique Théorique, École Polytechnique, Palaiseau Franco PezzellaIstituto Nazionale di Fisica Nucleare, Sezione di Napoli Moises Picon PonceUniversity of Padova Marco PirroneUniversità di Milano-Bicocca Andrea PrinslooUniversity of Cape Town Joris RaeymaekersKatholieke Universiteit Leuven Alfonso RamalloUniversidade de Santiago de Compostela Carlo Alberto RattiUniversità di Milano-Bicocca Marco RauchPhysikalisches Institut, Universität Bonn Ronald Reid-EdwardsUniversity of Hamburg Patricia RitterUniversity of Edinburgh Peter RoenneDESY, Hamburg Jan RosseelUniversità di Torino Clement RuefService de Physique Théorique, CEA Saclay Felix RustMax-Planck-Institut für Physik, München Thomas RyttovNiels Bohr Institute, København and CERN, Geneva Agustin Sabio VeraCERN, Geneva Christian SaemannTrinity College, Dublin Houman Safaai SISSA, Trieste Henning SamtlebenÉcole Normale Supérieure, Lyon Alberto SantambrogioIstituto Nazionale di Fisica Nucleare, Sezione di Milano Silviu Constantin SararuUniversity of Craiova Ricardo SchiappaCERN, Geneva Ionut Romeo SchiopuChalmers University, Göteborg Cornelius Schmidt-ColinetEidgenössische Technische Hochschule (ETH), Zürich Johannes SchmudeSwansea University Waldemar SchulginLaboratoire de Physique Théorique, École Normale Supérieure, Paris Domenico SeminaraUniversità di Firenze Alexander SevrinVrije Universiteit, Brussel Konstadinos SfetsosUniversity of Patras Igor ShenderovichSt Petersburg State University Jonathan ShockUniversidade de Santiago de Compostela Massimo SianiUniversità di Milano-Bicocca Christoph SiegUniversità Degli Studi di Milano Joan SimonUniversity of Edinburgh Paul SmythUniversity of Hamburg Luca SommovigoUniversidad de Valencia Dmitri Sorokin Istituto Nazionale di Fisica Nucleare, Padova Christos SourdisUniversity of Patras Wieland StaessensVrije Universiteit, Brussel Ivan StefanovUniversity of Patras Sigurdur StefanssonUniversity of Iceland Kellogg Stelle Imperial College London Giovanni Tagliabue Università di Milano Laura Tamassia Katholieke Universiteit Leuven Javier TarrioUniversidade de Santiago de Compostela Dimitri TerrynVrije Universiteit, Brussel Larus Thorlacius University of Iceland Mario ToninDipartimento Di Fisica, Sezione Di Padova Mario Trigiante Politecnico di Torino Efstratios TsatisUniversity of Patras Arkady TseytlinImperial College London Pantelis TziveloglouCornell University, New York and CERN, Geneva Angel Uranga CERN, Geneva Dieter Van den Bleeken Katholieke Universiteit Leuven Ernst van Eijk Università di Napoli Federico II Antoine Van Proeyen Katholieke Universiteit Leuven Maaike van ZalkUtrecht University Pierre Vanhove Service de Physique Théorique, CEA Saclay Silvia Vaula Instituto de Física Teórica, Universidad Autónoma de Madrid Cristian Vergu Service de Physique Théorique, CEA Saclay Alessandro VichiÉcole Polytechnique Fédérale de Lausanne (EPFL) Marlene WeissCERN, Geneva and Eidgenössische Technische Hochschule (ETH), Zürich Sebastian Weiss Université de Neuchâtel Alexander WijnsUniversity of Iceland Linus WulffUniversity of Padova Thomas WyderKatholieke Universiteit Leuven Ahmed YoussefAstroParticule et Cosmologie (APC), Université Paris Diderot Daniela ZanonUniversità Degli Studi di Milano Andrea ZanziPhysikalisches Institut, Universität Bonn Andrey ZayakinInstitute for Theoretical and Experimental Physics (ITEP), Moscow Tobias ZinggUniversity of Iceland Dimitrios ZoakosUniversidade de Santiago de Compostela Emanuele ZorzanUniversità di Milano Konstantinos ZoubosNiels Bohr Institute, København

  7. Public Lecture

    ScienceCinema

    None

    2017-12-09

    An outreach activity is being organized by the Turkish community at CERN, on 5 June 2010 at CERN Main Auditorium. The activity consists of several talks that will take 1.5h in total. The main goal of the activity will be describing the CERN based activities and experiments as well as stimulating the public's attention to the science related topics. We believe the wide communication of the event has certain advantages especially for the proceeding membership process of Turkey.

  8. The ATLAS Experiment: Mapping the Secrets of the Universe (LBNL Summer Lecture Series)

    ScienceCinema

    Barnett, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physics Division

    2018-01-12

    Summer Lecture Series 2007: Michael Barnett of Berkeley Lab's Physics Division discusses the ATLAS Experiment at the European Laboratory for Particle Physics' (CERN) Large Hadron Collider. The collider will explore the aftermath of collisions at the highest energy ever produced in the lab, and will recreate the conditions of the universe a billionth of a second after the Big Bang. The ATLAS detector is half the size of the Notre Dame Cathedral and required 2000 physicists and engineers from 35 countries for its construction. Its goals are to examine mini-black holes, identify dark matter, understand antimatter, search for extra dimensions of space, and learn about the fundamental forces that have shaped the universe since the beginning of time and will determine its fate.

  9. On Defining Mass

    NASA Astrophysics Data System (ADS)

    Hecht, Eugene

    2011-01-01

    Though central to any pedagogical development of physics, the concept of mass is still not well understood. Properly defining mass has proven to be far more daunting than contemporary textbooks would have us believe. And yet today the origin of mass is one of the most aggressively pursued areas of research in all of physics. Much of the excitement surrounding the Large Hadron Collider at CERN is associated with discovering the mechanism responsible for the masses of the elementary particles. This paper will first briefly examine the leading definitions, pointing out their shortcomings. Then, utilizing relativity theory, it will propose—for consideration by the community of physicists—a conceptual definition of mass predicated on the more fundamental concept of energy, more fundamental in that everything that has mass has energy, yet not everything that has energy has mass.

  10. Search for new physics in the monophoton final state in proton-proton collisions at sqrt(s) = 13 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    2017-06-12

    A search is conducted for new physics in a final state containing a photon and missing transverse momentum in proton-proton collisions at sqrt(s) = 13 TeV. The data collected by the CMS experiment at the CERN LHC correspond to an integrated luminosity of 12.9 inverse-femtobarns. No deviations are observed relative to the predictions of the standard model. The results are interpreted as exclusion limits on the dark matter production cross sections and parameters in models containing extra spatial dimensions. Improved limits are set with respect to previous searches using the monophoton final state. In particular, the limits on the extramore » dimension model parameters are the most stringent to date in this channel.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharucha, A.; Bigi, I. I.; Bobeth, C.

    During 2011 the LHCb experiment at CERN collected 1.0 fb -1 of √s=7~TeV pp collisions. Due to the large heavy quark production cross-sections, these data provide unprecedented samples of heavy flavoured hadrons. The first results from LHCb have made a significant impact on the flavour physics landscape and have definitively proved the concept of a dedicated experiment in the forward region at a hadron collider. This document discusses the implications of these first measurements on classes of extensions to the Standard Model, bearing in mind the interplay with the results of searches for on-shell production of new particles at ATLASmore » and CMS. The physics potential of an upgrade to the LHCb detector, which would allow an order of magnitude more data to be collected, is emphasised.« less

  12. The TOTEM Experiment at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    TOTEM Collaboration; Anelli, G.; Antchev, G.; Aspell, P.; Avati, V.; Bagliesi, M. G.; Berardi, V.; Berretti, M.; Boccone, V.; Bottigli, U.; Bozzo, M.; Brücken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Capurro, F.; Catanesi, M. G.; Catastini, P. L.; Cecchi, R.; Cerchi, S.; Cereseto, R.; Ciocci, M. A.; Cuneo, S.; Da Vià, C.; David, E.; Deile, M.; Dimovasili, E.; Doubrava, M.; Eggert, K.; Eremin, V.; Ferro, F.; Foussat, A.; Galuška, M.; Garcia, F.; Gherarducci, F.; Giani, S.; Greco, V.; Hasi, J.; Haug, F.; Heino, J.; Hilden, T.; Jarron, P.; Joram, C.; Kalliopuska, J.; Kaplon, J.; Kašpar, J.; Kundrát, V.; Kurvinen, K.; Lacroix, J. M.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Rodriguez, F. Lucas; Macina, D.; Macrí, M.; Magazzù, C.; Magazzù, G.; Magri, A.; Maire, G.; Manco, A.; Meucci, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Perrot, A.-L.; Österberg, K.; Paoletti, R.; Pedreschi, E.; Petäjäjärvi, J.; Pollovio, P.; Quinto, M.; Radermacher, E.; Radicioni, E.; Rangod, S.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Tazzioli, A.; Torazza, D.; Trovato, A.; Trummal, A.; Turini, N.; Vacek, V.; Van Remortel, N.; Vinš, V.; Watts, S.; Whitmore, J.; Wu, J.

    2008-08-01

    The TOTEM Experiment will measure the total pp cross-section with the luminosity-independent method and study elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, will be installed on each side in the pseudorapidity region 3.1 <= |η| <= 6.5, and Roman Pot stations will be placed at distances of ±147 m and ±220 m from IP5. Being an independent experiment but technically integrated into CMS, TOTEM will first operate in standalone mode to pursue its own physics programme and at a later stage together with CMS for a common physics programme. This article gives a description of the TOTEM apparatus and its performance.

  13. Search for new physics in the monophoton final state in proton-proton collisions at √{s}=13 TeV

    NASA Astrophysics Data System (ADS)

    Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; El-khateeb, E.; Elgammal, S.; Mohamed, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Triantis, F. A.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Bhawandeep, U.; Chawla, R.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, U.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Sgaravatto, M.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; RuizJimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; Cimmino, A.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2017-10-01

    A search is conducted for new physics in a final state containing a photon and missing transverse momentum in proton-proton collisions at √{s}=13 TeV. The data collected by the CMS experiment at the CERN LHC correspond to an integrated luminosity of 12.9 fb-1. No deviations are observed relative to the predictions of the standard model. The results are interpreted as exclusion limits on the dark matter production cross sections and parameters in models containing extra spatial dimensions. Improved limits are set with respect to previous searches using the monophoton final state. In particular, the limits on the extra dimension model parameters are the most stringent to date in this channel. [Figure not available: see fulltext.

  14. A 5-year longitudinal analysis of modifiable predictors for outdoor play and screen-time of 2- to 5-year-olds.

    PubMed

    Xu, Huilan; Wen, Li Ming; Hardy, Louise L; Rissel, Chris

    2016-08-26

    Early childhood is a critical time for establishing physical activity and sedentary behaviours. Identifying modifiable predictors of physical activity and sedentary behaviours in the early life stages can inform the development of early intervention programs. The aim of this study was to identify modifiable predictors of outdoor play (a proxy of physical activity) and screen-time in 2- to 5-year-olds. A longitudinal data analysis was conducted using 5-year follow-up data from the Healthy Beginnings Trial undertaken in Sydney, Australia from 2007 to 2013. A total of 667 pregnant women were recruited for the study. Information on mothers' demographics, physical activity, screen-time, knowledge of child development, and awareness of childhood obesity during pregnancy (at baseline); children's tummy time (a colloquial term describing the time when a baby is placed on his or her stomach while awake and supervised) at 6 months old and screen-time at 1 year old was collected via interviews with participating mothers as potential modifiable predictors. Main outcomes were children's outdoor playtime and screen-time at ages 2, 3.5, and 5 years. Mixed linear and logistic regression models were built to determine these modifiable predictors. Mothers' screen-time during pregnancy (β = 2.1, 95 % CI 0.17-4.12; P = 0.030) and children's daily screen-time at age 1 year (β = 15.2, 95 % CI 7.28-23.11; P < 0.0001) predicted children's daily screen-time across ages 2 to 5 years after controlling for confounding factors. Practising tummy time daily (β = 13.4, 95 % CI 1.26-25.52; P = 0.030), mother's physical activity level (β = 3.9, 95 % CI 0.46-7.28; P = 0.026), and having been informed about playing with child at baseline (β = 11.6, 95 % CI 1.56-21.54; P = 0.023) predicted children's outdoor playtime across ages 2 to 5 years. Mothers played an important role in their children's outdoor play and screen-time in the first years of live. Children's early exposure to screen devices could be associated with their later screen-time. Early interventions to improve young children's physical activity and sedentary behaviour should focus on improving pregnant women's physical activity, awareness of playing with their child, reducing their own screen-time as well as practicing daily tummy time for infants after giving birth. The Healthy Beginnings Trial is registered with the Australian Clinical Trial Registry ( ACTRNO12607000168459 ). Registered 13 March 2007. Prospectively registered.

  15. Potential Influences of Exergaming on Self-Efficacy for Physical Activity and Sport

    ERIC Educational Resources Information Center

    Krause, Jennifer M.; Benavidez, Eddie A.

    2014-01-01

    Screen time, including video gaming, has been perceived to be a major catalyst for the lack of physical activity among youth. However, exergaming has pierced the technology and physical activity scenes with a twist, and happens to be redefining how technology and "screen time" are now being viewed as catalysts for increasing physical…

  16. The association of parental obesity with physical activity and sedentary behaviors of their children: the CASPIAN-V study.

    PubMed

    Angoorani, Pooneh; Heshmat, Ramin; Ejtahed, Hanieh-Sadat; Motlagh, Mohammad Esmaeil; Ziaodini, Hasan; Taheri, Majzoubeh; Aminaee, Tahereh; Shafiee, Gita; Godarzi, Azam; Qorbani, Mostafa; Kelishadi, Roya

    2017-11-07

    Low physical activity and sedentary behaviors, two important determinants of childhood obesity, may be influenced by parental lifestyle and weight status. This study aims to determine the association of parental weight status with children's physical activity and screen time. This study was conducted on 14,440 Iranian schools students, aged 7-18 years, and one of their parents, who participated in the large national school-based surveillance program. The children's screen-based and physical activities were evaluated based on the World Health Organization's Global School Student Health Survey. Children and parental height, weight, and waist circumference were measured using standardized methods. Overall, 14,274 students and one of their parents completed the survey (participation rate: 99%). Mean (standard deviation) age of students was 12.3 (3.2) years, and the prevalence of low physical activity and high screen time was 58.2% and 17.7%, respectively. In multivariate model, the parental general obesity and abdominal obesity increased the odds of children having low physical activity, by 21% and 13%, respectively. Parental overweight, general obesity, and abdominal obesity increased the odds of the combination of low physical activity/high screen time in children by 33%, 26%, and 20%, respectively. This study showed that parental obesity was associated with increased screen-based activities and low physical activity in children. Focus on parental weight status, as an important factor influenced by their lifestyle, can be helpful for preventing sedentary behaviors in their children. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  17. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geynisman, M.; Bremer, J.; Chalifour, M.

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements formore » the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.« less

  18. The ELENA facility

    NASA Astrophysics Data System (ADS)

    Bartmann, Wolfgang; Belochitskii, Pavel; Breuker, Horst; Butin, Francois; Carli, Christian; Eriksson, Tommy; Oelert, Walter; Ostojic, Ranko; Pasinelli, Sergio; Tranquille, Gerard

    2018-03-01

    The CERN Antiproton Decelerator (AD) provides antiproton beams with a kinetic energy of 5.3 MeV to an active user community. The experiments would profit from a lower beam energy, but this extraction energy is the lowest one possible under good conditions with the given circumference of the AD. The Extra Low Energy Antiproton ring (ELENA) is a small synchrotron with a circumference a factor of 6 smaller than the AD to further decelerate antiprotons from the AD from 5.3 MeV to 100 keV. Controlled deceleration in a synchrotron equipped with an electron cooler to reduce emittances in all three planes will allow the existing AD experiments to increase substantially their antiproton capture efficiencies and render new experiments possible. ELENA ring commissioning is taking place at present and first beams to a new experiment installed in a new experimental area are foreseen in 2017. The transfer lines from ELENA to existing experiments in the old experimental area will be installed during CERN Long Shutdown 2 (LS2) in 2019 and 2020. The status of the project and ring commissioning will be reported. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  19. Plans for an ERL Test Facility at CERN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Erik; Bruning, O S; Calaga, Buchi Rama Rao

    2014-12-01

    The baseline electron accelerator for LHeC and one option for FCC-he is an Energy Recovery Linac. To prepare and study the necessary key technologies, CERNhas started – in collaboration with JLAB and Mainz University – the conceptual design of an ERL Test Facility (ERL-TF). Staged construction will allow the study under different conditions with up to 3 passes, beam energies of up to about 1 GeV and currents of up to 50 mA. The design and development of superconducting cavity modules, including coupler and HOM damper designs, are also of central importance for other existing and future accelerators and theirmore » tests are at the heart of the current ERL-TF goals. However, the ERL-TF could also provide a unique infrastructure for several applications that go beyond developing and testing the ERL technology at CERN. In addition to experimental studies of beam dynamics, operational and reliability issues in an ERL, it could equally serve for quench tests of superconducting magnets, as physics experimental facility on its own right or as test stand for detector developments. This contribution will describe the goals and the concept of the facility and the status of the R&D.« less

  20. A practical approach to virtualization in HEP

    NASA Astrophysics Data System (ADS)

    Buncic, P.; Aguado Sánchez, C.; Blomer, J.; Harutyunyan, A.; Mudrinic, M.

    2011-01-01

    In the attempt to solve the problem of processing data coming from LHC experiments at CERN at a rate of 15PB per year, for almost a decade the High Enery Physics (HEP) community has focused its efforts on the development of the Worldwide LHC Computing Grid. This generated large interest and expectations promising to revolutionize computing. Meanwhile, having initially taken part in the Grid standardization process, industry has moved in a different direction and started promoting the Cloud Computing paradigm which aims to solve problems on a similar scale and in equally seamless way as it was expected in the idealized Grid approach. A key enabling technology behind Cloud computing is server virtualization. In early 2008, an R&D project was established in the PH-SFT group at CERN to investigate how virtualization technology could be used to improve and simplify the daily interaction of physicists with experiment software frameworks and the Grid infrastructure. In this article we shall first briefly compare Grid and Cloud computing paradigms and then summarize the results of the R&D activity pointing out where and how virtualization technology could be effectively used in our field in order to maximize practical benefits whilst avoiding potential pitfalls.

  1. Comparison of Theoretically Predicted Electromagnetic Heavy Ion Cross Sections with CERN SPS and RHIC Data

    NASA Astrophysics Data System (ADS)

    Baltz, Anthony J.

    2002-10-01

    Theoretical predictions for a number of electromagnetically induced reactions have been compared with available ultrarelativistic heavy ion data. Calculations for three atomic process have been confronted with CERN SPS data. Theoretically predicted rates are in good agreement with data[1] for bound-electron positron pairs and ionization of single electron heavy ions. Furthermore, the exact solution of the semi-classical Dirac equation in the ultrarelativistic limit reproduces the perturbative scaling result seen in data[2] for continuum pairs (i.e. cross sections go as Z_1^2 Z_2^2). In the area of electromagnetically induced nuclear and hadronic physics, mutual Coulomb dissociation predictions are in good agreement with RHIC Zero Degree Calorimeter measurements[3], and calculations of coherent vector meson production accompanied by mutual Coulomb dissociation[4] are in good agreement with RHIC STAR data[5]. [1] H. F. Krause et al., Phys. Rev. Lett., 80, 1190 (1998). [2] C. R. Vane et al., Phys. Rev. A 56, 3682 (1997). [3] Mickey Chiu et al., Phys. Rev. Lett. 89, 012302 (2002). [4] Anthony J. Baltz, Spencer R. Klein, and Joakim Nystrand, Phys. Rev. Lett. 89, 012301 (2002). [5] C. Adler et al., STAR Collaboration, arXiv:nucl-ex/206004.

  2. Design of the cryogenic systems for the Near and Far LAr-TPC detectors of the Short-Baseline Neutrino program (SBN) at Fermilab

    NASA Astrophysics Data System (ADS)

    Geynisman, M.; Bremer, J.; Chalifour, M.; Delaney, M.; Dinnon, M.; Doubnik, R.; Hentschel, S.; Kim, M. J.; Montanari, C.; Montanari, D.; Nichols, T.; Norris, B.; Sarychev, M.; Schwartz, F.; Tillman, J.; Zuckerbrot, M.

    2017-12-01

    The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ∼260 tons) and SBN’s Far Detector (SBN-FD, ∼760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.

  3. Managing a tier-2 computer centre with a private cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara

    2014-06-01

    In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.

  4. [Somatic disorders in outpatient psychiatry: the added value of a standard physical examination during the intake of outpatients].

    PubMed

    van den Berg, K E M; Rijnders, C A Th; van Dam, A; van de Ven, A L M; van der Feltz-Cornelis, C M; Graafsma, S J

    2014-01-01

    It is well-known that psychiatric patients often suffer from severe somatic problems, such as diabetes mellitus and cardiovascular disease. Up till now, research has concentrated almost exclusively on the inpatient setting, but there is strong evidence that the correlation also exists in psychiatric patients who are outpatients. In the Netherlands there are, as yet, no clear recommendations regarding a standard form of somatic screening for the outpatient population. A pilot study performed by GGz Breburg has shown that somatic screening (without a physical examination) gave substantial additional value to treatment planning. To investigate the added value that a physical examination can provide when new psychiatric patients are screened for aspects of somatic concern (ASC). Newly referred outpatients (n = 70) were screened somatically by means of a questionnaire and supplementary medical interview, and by laboratory tests and physical examination. If a somatic problem was found which had not been detected previously, the patient was referred back to to the general practitioner. At least one ASC was found in 81,4% of all patients. In 45,7% of all patients the asc had not been detected. 12% of all the newly discovered somatic problems were found exclusively via the physical examination. A physical examination provides substantial information and adds value to the somatic screening of psychiatric outpatients.

  5. Children′s physical activity and screen time: qualitative comparison of views of parents of infants and preschool children

    PubMed Central

    2012-01-01

    Background While parents are central to the development of behaviours in their young children, little is known about how parents view their role in shaping physical activity and screen time behaviours. Methods Using an unstructured focus group design, parental views and practices around children′s physical activity and screen time (television and computer use) were explored with eight groups of new parents (n=61; child age <12 months) and eight groups of parents with preschool-aged (3–5 year old) children (n=36) in Melbourne, Australia. Results Parents generally believed children are naturally active, which may preclude their engagement in strategies designed to increase physical activity. While parents across both age groups shared many overarching views concerning parenting for children′s physical activity and screen time behaviours, some strategies and barriers differed depending on the age of the child. While most new parents were optimistic about their ability to positively influence their child′s behaviours, many parents of preschool-aged children seemed more resigned to strategies that worked for them, even when aware such strategies may not be ideal. Conclusions Interventions aiming to increase children′s physical activity and decrease screen time may need to tailor strategies to the age group of the child and address parents′ misconceptions and barriers to optimum parenting in these domains. PMID:23270548

  6. Factors associated with objectively measured total sedentary time and screen time in children aged 9-11 years.

    PubMed

    Ferrari, Gerson Luis de Moraes; Pires, Carlos; Solé, Dirceu; Matsudo, Victor; Katzmarzyk, Peter T; Fisberg, Mauro

    2018-01-04

    To identify factors associated with total sedentary time and screen time in children aged 9-11 years. For seven consecutive days, 328 children (51.5% boys) used accelerometers to monitor total sedentary time. Screen time was calculated by the self-reporting method. Individual, family, family environment, and school environment questionnaires were filled out. Body composition was measured using a Tanita scale. The mean sedentary time was 500min/day (boys: 489, girls: 511, p=0.005), and mean screen time was 234min/day (boys: 246, girls: 222, p=0.053). In both genders, factors associated with sedentary time were healthy dietary pattern and moderate-to-vigorous physical activity. In boys, only moderate-to-vigorous physical activity was significant; in girls, the healthy dietary pattern, moderate-to-vigorous physical activity, and transportation to school were significant. As for the screen time, the associated factors were body mass index and healthy dietary pattern (both genders). In boys, the associated factors were body mass index, healthy dietary pattern, and television in the bedroom. In girls, the associated factors were healthy dietary pattern, transportation to school, and physical activity policies or practice at school. Several associated factors were identified in the association between total sedentary time and screen time in children; however, only the healthy dietary pattern was common between sedentary time and screen time. Copyright © 2017. Published by Elsevier Editora Ltda.

  7. Meeting Jentschke

    ScienceCinema

    None

    2018-05-18

    After an introduction about the latest research and news at CERN, the DG W. Jentschke speaks about future management of CERN with two new general managers, who will be in charge for the next 5 years: Dr. J.B. Adams who will focus on the administration of CERN and also the construction of buildings and equipment, and Dr. L. Van Hove who will be responsible for research activities. The DG speaks about expected changes, shared services, different divisions and their leaders, etc.

  8. Meeting new Canadian 24-Hour Movement Guidelines for the Early Years and associations with adiposity among toddlers living in Edmonton, Canada.

    PubMed

    Lee, Eun-Young; Hesketh, Kylie D; Hunter, Stephen; Kuzik, Nicholas; Rhodes, Ryan E; Rinaldi, Christina M; Spence, John C; Carson, Valerie

    2017-11-20

    Canada has recently released guidelines that include toddler-specific recommendations for physical activity, screen-based sedentary behaviour, and sleep. This study examined the proportions of toddlers meeting the new Canadian 24-Hour Movement Guidelines for the Early Years (0-4 years) and associations with body mass index (BMI) z-scores in a sample from Edmonton, Canada. Participants included 151 toddlers (aged 19.0 ± 1.9 months) for whom there was complete objectively measured physical activity data from the Parents' Role in Establishing healthy Physical activity and Sedentary behaviour habits (PREPS) project. Toddlers' physical activity was measured using ActiGraph wGT3X-BT monitors. Toddlers' screen time and sleep were measured using the PREPS questionnaire. Toddlers' height and weight were objectively measured by public health nurses and BMI z-scores were calculated using World Health Organization growth standards. Meeting the overall 24-Hour Movement Guidelines was defined as: ≥180 min/day of total physical activity, including ≥1 min/day of moderate- to vigorous-intensity physical activity; no screen time per day (for those aged 12-23 months) or ≤1 h/day of screen time per day (ages 24-35 months); and 11-14 h of sleep per 24-h period. Frequency analyses and linear regression models were conducted. Only 11.9% of toddlers met the overall 24-Hour Movement Guidelines, but this finding was largely driven by screen time. The majority of toddlers met the individual physical activity (99.3%) and sleep (82.1%) recommendations, while only 15.2% of toddlers met the screen time recommendation. No associations were observed between meeting specific and general combinations of recommendations within the guidelines and BMI z-scores. Most toddlers in this sample were meeting physical activity and sleep recommendations but were engaging in more screen time than recommended. Consequently, only a small proportion of toddlers met the overall guidelines. Based on the findings of this study, identifying modifiable correlates of screen time to inform appropriate strategies to reduce screen time appears key for increasing the proportion of toddlers meeting the 24-Hour Movement Guidelines for the Early Years. Future research should examine the associations between meeting the new guidelines and other health indicators. Furthermore, future high-quality studies examining dose-response relationships between movement behaviours and health indicators are needed to inform guideline updates.

  9. Strange Particles and Heavy Ion Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassalleck, Bernd; Fields, Douglas

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for thismore » award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.« less

  10. Is there evidence for mandating electrocardiogram as part of the pre-participation examination?

    PubMed

    Borjesson, Mats; Dellborg, Mikael

    2011-01-01

    The risk of sudden cardiac death may be increased up to 2.8 times in competitive athletes compared with nonathletes. The majority of sudden cardiac death cases are caused by an underlying abnormality that potentially may be identified on cardiovascular screening, depending on the specific abnormality and the content of the cardiovascular screening applied. Indeed, today, cardiac screening is universally recommended by the cardiac societies [European Society of Cardiology (ESC) and American Heart Association (AHA)] and required by the sporting bodies [Fédération Internationale de Football Association (FIFA) and Union of European Football Associations (UEFA)]. Pre-participation examination is by consensus understood to include personal history and physical examination; controversy exists regarding the usefulness and appropriateness of screening using resting 12-lead electrocardiogram (ECG), with an apparent transatlantic difference. The ESC recommends screening consisting of personal history, physical examination, and 12-lead resting ECG, whereas recommendations from the AHA includes only personal history and physical examination. There is firm scientific ground to state that the sensitivity of screening with ECG is vastly superior to, and the cost-effectiveness significantly better than, screening without ECG. Cardiac screening of elite athletes with personal history, physical examination, and ECG is cost-effective also in comparison with other well-accepted procedures of modern health care, such as dialysis and implantable cardiac defibrillators. Newly published recommendations for the interpretation of the ECG in athletes (ESC) and future studies on ECGs in athletes of different ethnicity, gender, and age may further increase the specificity of ECG in cardiac screening, refining the screening procedure and lowering the costs for additional follow-up testing. Cardiac screening without ECG is not cost-effective and may be only marginally better than no screening at all and at a considerable higher cost. The difficulties in feasibility and liability issues for recommending ECGs in some countries need to be acknowledged but must be dealt with within those countries/systems. On ethical grounds, the reasons (logistical, legal, economic) for not screening individual athletes should be clearly stated. Alas, the current evidence, as presented here, suggests that the ECG should be mandatory in pre-participation screening of athletes.

  11. Concurrent Associations between Physical Activity, Screen Time, and Sleep Duration with Childhood Obesity.

    PubMed

    Laurson, Kelly R; Lee, Joey A; Gentile, Douglas A; Walsh, David A; Eisenmann, Joey C

    2014-01-01

    Aim. To examine the simultaneous influence of physical activity, screen time, and sleep duration recommendations on the odds of childhood obesity (including overweight). Methods. Physical activity was assessed via pedometer and screen time, and sleep duration were assessed via survey in a cross sectional sample of 674 children (aged 7-12 years) from two Midwestern communities in the fall of 2005. Participants were cross tabulated into four groups depending on how many recommendations were being met (0, 1, 2, or all 3). Linear and logistic regression were used to examine the influence of physical activity, screen time and sleep duration on obesity and interactions among the three variables. Results. Children achieving all three recommendations simultaneously (9.2% of total sample) were the least likely to be obese. Approximately 16% of boys and 9% of girls achieving all recommendations were overweight or obese compared to 53% of boys and 42.5% of girls not achieving any. Conclusions. The odds of obesity increased in a graded manner for each recommendation which was not met. Meeting all three recommendations appears to have a protective effect against obesity. Continued efforts are warranted to promote healthy lifestyle behaviors that include meeting physical activity, screen time, and sleep duration recommendations concurrently.

  12. Concurrent Associations between Physical Activity, Screen Time, and Sleep Duration with Childhood Obesity

    PubMed Central

    Laurson, Kelly R.; Lee, Joey A.; Gentile, Douglas A.; Walsh, David A.; Eisenmann, Joey C.

    2014-01-01

    Aim. To examine the simultaneous influence of physical activity, screen time, and sleep duration recommendations on the odds of childhood obesity (including overweight). Methods. Physical activity was assessed via pedometer and screen time, and sleep duration were assessed via survey in a cross sectional sample of 674 children (aged 7–12 years) from two Midwestern communities in the fall of 2005. Participants were cross tabulated into four groups depending on how many recommendations were being met (0, 1, 2, or all 3). Linear and logistic regression were used to examine the influence of physical activity, screen time and sleep duration on obesity and interactions among the three variables. Results. Children achieving all three recommendations simultaneously (9.2% of total sample) were the least likely to be obese. Approximately 16% of boys and 9% of girls achieving all recommendations were overweight or obese compared to 53% of boys and 42.5% of girls not achieving any. Conclusions. The odds of obesity increased in a graded manner for each recommendation which was not met. Meeting all three recommendations appears to have a protective effect against obesity. Continued efforts are warranted to promote healthy lifestyle behaviors that include meeting physical activity, screen time, and sleep duration recommendations concurrently. PMID:24734210

  13. Physical examination and ECG screening in relation to echocardiography findings in young healthy adults.

    PubMed

    Landau, Dan-Avi; Grossman, Alon; Sherer, Yaniv; Harpaz, David; Azaria, Bella; Carter, Dan; Barenboim, Erez; Goldstein, Liav

    2008-01-01

    Cardiovascular screening in young adults is an important tool in many occupational settings. Our aim was to test whether screening physical examination and ECG influence the rate of abnormal echocardiogarphic findings in young healthy subjects. Consecutive echocardiography results of 18- to 20-year-old flight candidates were analyzed retrospectively. Echocardiographies were performed as part of a screening protocol, which includes ECG, physical examination and referral for echocardiography for any positive finding. A second stage includes universal echocardiography for all candidates. 1,066 subjects were evaluated; 489 subjects underwent echocardiography following referral because of abnormal auscultatory or ECG findings. Findings (mostly mild valvular insufficiencies) were demonstrated in 12.7%, with only 0.6% of subjects disqualified. In subjects who underwent universal echocardiography (n = 577), findings (mostly mild valvular insufficiencies) were detected in 18%, with only 0.5% of subjects disqualified. The rate of significant echocardiography findings is extremely low in this young and healthy population. The presence of abnormal findings on either physical examination or ECG screening was not demonstrated to alter the rate of abnormal echocardiographic findings. We suggest that the low yield of screening should be weighed against the cost of an unidentified congenital cardiac lesion in the specific setting. Copyright 2007 S. Karger AG, Basel.

  14. CERN Collider, France-Switzerland

    NASA Image and Video Library

    2013-08-23

    This image, acquired by NASA Terra spacecraft, is of the CERN Large Hadron Collider, the world largest and highest-energy particle accelerator laying beneath the French-Swiss border northwest of Geneva yellow circle.

  15. The ALICE experiment at the CERN LHC

    NASA Astrophysics Data System (ADS)

    ALICE Collaboration; Aamodt, K.; Abrahantes Quintana, A.; Achenbach, R.; Acounis, S.; Adamová, D.; Adler, C.; Aggarwal, M.; Agnese, F.; Aglieri Rinella, G.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Aleksandrov, D.; Alessandro, B.; Alfaro, R.; Alfarone, G.; Alici, A.; Alme, J.; Alt, T.; Altinpinar, S.; Amend, W.; Andrei, C.; Andres, Y.; Andronic, A.; Anelli, G.; Anfreville, M.; Angelov, V.; Anzo, A.; Anson, C.; Anticić, T.; Antonenko, V.; Antonczyk, D.; Antinori, F.; Antinori, S.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Aprodu, V.; Arba, M.; Arcelli, S.; Argentieri, A.; Armesto, N.; Arnaldi, R.; Arefiev, A.; Arsene, I.; Asryan, A.; Augustinus, A.; Awes, T. C.; Äysto, J.; Danish Azmi, M.; Bablock, S.; Badalà, A.; Badyal, S. K.; Baechler, J.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barberis, P.-L.; Barbet, J. M.; Barnäfoldi, G.; Barret, V.; Bartke, J.; Bartos, D.; Basile, M.; Basmanov, V.; Bastid, N.; Batigne, G.; Batyunya, B.; Baudot, J.; Baumann, C.; Bearden, I.; Becker, B.; Belikov, J.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Belyaev, S.; Benato, A.; Beney, J. L.; Benhabib, L.; Benotto, F.; Beolé, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Bernard, C.; Berny, R.; Berst, J. D.; Bertelsen, H.; Betev, L.; Bhasin, A.; Baskar, P.; Bhati, A.; Bianchi, N.; Bielčik, J.; Bielčiková, J.; Bimbot, L.; Blanchard, G.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Blyth, S.; Boccioli, M.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Bonnet, D.; Bonvicini, V.; Borel, H.; Borotto, F.; Borshchov, V.; Bortoli, Y.; Borysov, O.; Bose, S.; Bosisio, L.; Botje, M.; Böttger, S.; Bourdaud, G.; Bourrion, O.; Bouvier, S.; Braem, A.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Bruckner, G.; Brun, R.; Bruna, E.; Brunasso, O.; Bruno, G. E.; Bucher, D.; Budilov, V.; Budnikov, D.; Buesching, H.; Buncic, P.; Burns, M.; Burachas, S.; Busch, O.; Bushop, J.; Cai, X.; Caines, H.; Calaon, F.; Caldogno, M.; Cali, I.; Camerini, P.; Campagnolo, R.; Campbell, M.; Cao, X.; Capitani, G. P.; Romeo, G. Cara; Cardenas-Montes, M.; Carduner, H.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casado, J.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castor, J.; Catanescu, V.; Cattaruzza, E.; Cavazza, D.; Cerello, P.; Ceresa, S.; Černý, V.; Chambert, V.; Chapeland, S.; Charpy, A.; Charrier, D.; Chartoire, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chepurnov, V.; Chernenko, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chochula, P.; Chiavassa, E.; Chibante Barroso, V.; Choi, J.; Christakoglou, P.; Christiansen, P.; Christensen, C.; Chykalov, O. A.; Cicalo, C.; Cifarelli-Strolin, L.; Ciobanu, M.; Cindolo, F.; Cirstoiu, C.; Clausse, O.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Colledani, C.; Combaret, C.; Combet, M.; Comets, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Contin, G.; Contreras, J.; Cormier, T.; Corsi, F.; Cortese, P.; Costa, F.; Crescio, E.; Crochet, P.; Cuautle, E.; Cussonneau, J.; Dahlinger, M.; Dainese, A.; Dalsgaard, H. H.; Daniel, L.; Das, I.; Das, T.; Dash, A.; Da Silva, R.; Davenport, M.; Daues, H.; DeCaro, A.; de Cataldo, G.; DeCuveland, J.; DeFalco, A.; de Gaspari, M.; de Girolamo, P.; de Groot, J.; DeGruttola, D.; DeHaas, A.; DeMarco, N.; DePasquale, S.; DeRemigis, P.; de Vaux, D.; Decock, G.; Delagrange, H.; DelFranco, M.; Dellacasa, G.; Dell'Olio, C.; Dell'Olio, D.; Deloff, A.; Demanov, V.; Dénes, E.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Bartelomen, A.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Díaz Valdes, R.; Dietel, T.; Dima, R.; Ding, H.; Dinca, C.; Divià, R.; Dobretsov, V.; Dobrin, A.; Doenigus, B.; Dobrowolski, T.; Domínguez, I.; Dorn, M.; Drouet, S.; Dubey, A. E.; Ducroux, L.; Dumitrache, F.; Dumonteil, E.; Dupieux, P.; Duta, V.; Dutta Majumdar, A.; Dutta Majumdar, M.; Dyhre, Th; Efimov, L.; Efremov, A.; Elia, D.; Emschermann, D.; Engster, C.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evangelista, A.; Evans, D.; Evrard, S.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Farano, R.; Fearick, R.; Fedorov, O.; Fekete, V.; Felea, D.; Feofilov, G.; Férnandez Téllez, A.; Ferretti, A.; Fichera, F.; Filchagin, S.; Filoni, E.; Finck, C.; Fini, R.; Fiore, E. M.; Flierl, D.; Floris, M.; Fodor, Z.; Foka, Y.; Fokin, S.; Force, P.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Fraissard, D.; Franco, A.; Franco, M.; Frankenfeld, U.; Fratino, U.; Fresneau, S.; Frolov, A.; Fuchs, U.; Fujita, J.; Furget, C.; Furini, M.; Fusco Girard, M.; Gaardhøje, J.-J.; Gabrielli, A.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gaido, L.; Gallas Torreira, A.; Gallio, M.; Gandolfi, E.; Ganoti, P.; Ganti, M.; Garabatos, J.; Garcia Lopez, A.; Garizzo, L.; Gaudichet, L.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giolu, G.; Giraudo, G.; Giubellino, P.; Glasow, R.; Glässel, P.; Ferreiro, E. G.; Gonzalez Gutierrez, C.; Gonzales-Trueba, L. H.; Gorbunov, S.; Gorbunov, Y.; Gos, H.; Gosset, J.; Gotovac, S.; Gottschlag, H.; Gottschalk, D.; Grabski, V.; Grassi, T.; Gray, H.; Grebenyuk, O.; Grebieszkow, K.; Gregory, C.; Grigoras, C.; Grion, N.; Grigoriev, V.; Grigoryan, A.; Grigoryan, C.; Grigoryan, S.; Grishuk, Y.; Gros, P.; Grosse-Oetringhaus, J.; Grossiord, J.-Y.; Grosso, R.; Grynyov, B.; Guarnaccia, C.; Guber, F.; Guerin, F.; Guernane, R.; Guerzoni, M.; Guichard, A.; Guida, M.; Guilloux, G.; Gulkanyan, H.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, V.; Gustafsson, H.-A.; Gutbrod, H.; Hadjidakis, C.; Haiduc, M.; Hamar, G.; Hamagaki, H.; Hamblen, J.; Hansen, J. C.; Hardy, P.; Hatzifotiadou, D.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hayrapetyan, A.; Hasch, D.; Hasegan, D.; Hehner, J.; Heine, N.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Herlant, S.; Herrera Corral, G.; Herrmann, N.; Hetland, K.; Hille, P.; Hinke, H.; Hippolyte, B.; Hoch, M.; Hoebbel, H.; Hoedlmoser, H.; Horaguchi, T.; Horner, M.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Guo, C. Hu; Humanic, T.; Hurtado, A.; Hwang, D. S.; Ianigro, J. C.; Idzik, M.; Igolkin, S.; Ilkaev, R.; Ilkiv, I.; Imhoff, M.; Innocenti, P. G.; Ionescu, E.; Ippolitov, M.; Irfan, M.; Insa, C.; Inuzuka, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacobs, P.; Jacholkowski, A.; Jančurová, L.; Janik, R.; Jasper, M.; Jena, C.; Jirden, L.; Johnson, D. P.; Jones, G. T.; Jorgensen, C.; Jouve, F.; Jovanović, P.; Junique, A.; Jusko, A.; Jung, H.; Jung, W.; Kadija, K.; Kamal, A.; Kamermans, R.; Kapusta, S.; Kaidalov, A.; Kakoyan, V.; Kalcher, S.; Kang, E.; Kapitan, J.; Kaplin, V.; Karadzhev, K.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Karpio, K.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Mohsin Khan, M.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, S.; Kinson, J. B.; Kiprich, S. K.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, T.; Kiworra, V.; Klay, J.; Klein Bösing, C.; Kliemant, M.; Klimov, A.; Klovning, A.; Kluge, A.; Kluit, R.; Kniege, S.; Kolevatov, R.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kornas, E.; Koshurnikov, E.; Kotov, I.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Kryshen, E.; Kucheriaev, Y.; Kugler, A.; Kuhn, C.; Kuijer, P.; Kumar, L.; Kumar, N.; Kumpumaeki, P.; Kurepin, A.; Kurepin, A. N.; Kushpil, S.; Kushpil, V.; Kutovsky, M.; Kvaerno, H.; Kweon, M.; Labbé, J.-C.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; La Rocca, P.; Lamont, M.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; LeBornec, Y.; LeBris, N.; LeGailliard, C.; Lebedev, V.; Lecoq, J.; Lee, K. S.; Lee, S. C.; Lefévre, F.; Legrand, I.; Lehmann, T.; Leistam, L.; Lenoir, P.; Lenti, V.; Leon, H.; Monzon, I. Leon; Lévai, P.; Li, Q.; Li, X.; Librizzi, F.; Lietava, R.; Lindegaard, N.; Lindenstruth, V.; Lippmann, C.; Lisa, M.; Listratenko, O. M.; Littel, F.; Liu, Y.; Lo, J.; Lobanov, V.; Loginov, V.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Lorenzo, P. M.; Løvhøiden, G.; Lu, S.; Ludolphs, W.; Lunardon, M.; Luquin, L.; Lusso, S.; Lutz, J.-R.; Luvisetto, M.; Lyapin, V.; Maevskaya, A.; Magureanu, C.; Mahajan, A.; Majahan, S.; Mahmoud, T.; Mairani, A.; Mahapatra, D.; Makarov, A.; Makhlyueva, I.; Malek, M.; Malkiewicz, T.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manea, C.; Mangotra, L. K.; Maniero, D.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marcel, A.; Marchini, S.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marin, A.; Marin, J.-C.; Marras, D.; Martinengo, P.; Martínez, M. I.; Martinez-Davalos, A.; Martínez Garcia, G.; Martini, S.; Marzari Chiesa, A.; Marzocca, C.; Masciocchi, S.; Masera, M.; Masetti, M.; Maslov, N. I.; Masoni, A.; Massera, F.; Mast, M.; Mastroserio, A.; Matthews, Z. L.; Mayer, B.; Mazza, G.; Mazzaro, M. D.; Mazzoni, A.; Meddi, F.; Meleshko, E.; Menchaca-Rocha, A.; Meneghini, S.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Meunier, O.; Miake, Y.; Michalon, A.; Michinelli, R.; Miftakhov, N.; Mignone, M.; Mikhailov, K.; Milosevic, J.; Minaev, Y.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitsyn, V.; Mitu, C.; Mohanty, B.; Moisa, D.; Molnar, L.; Mondal, M.; Mondal, N.; Montaño Zetina, L.; Monteno, M.; Morando, M.; Morel, M.; Moretto, S.; Morhardt, Th; Morsch, A.; Moukhanova, T.; Mucchi, M.; Muccifora, V.; Mudnic, E.; Müller, H.; Müller, W.; Munoz, J.; Mura, D.; Musa, L.; Muraz, J. F.; Musso, A.; Nania, R.; Nandi, B.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.; Nazarenko, S.; Nazarov, G.; Nellen, L.; Nendaz, F.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.; Nitti, M.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noto, F.; Nouais, D.; Nyiri, A.; Nystrand, J.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Oldenburg, M.; Oleks, I.; Olsen, E. K.; Onuchin, V.; Oppedisano, C.; Orsini, F.; Ortiz-Velázquez, A.; Oskamp, C.; Oskarsson, A.; Osmic, F.; Österman, L.; Otterlund, I.; Ovrebekk, G.; Oyama, K.; Pachr, M.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S.; Pal, S.; Pálla, G.; Palmeri, A.; Pancaldi, G.; Panse, R.; Pantaleo, A.; Pappalardo, G. S.; Pastirčák, B.; Pastore, C.; Patarakin, O.; Paticchio, V.; Patimo, G.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pénichot, Y.; Pepato, A.; Pereira, H.; Peresunko, D.; Perez, C.; Perez Griffo, J.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, V.; Petrov, V.; Petrovici, M.; Peyré, J.; Piano, S.; Piccotti, A.; Pichot, P.; Piemonte, C.; Pikna, M.; Pilastrini, R.; Pillot, P.; Pinazza, O.; Pini, B.; Pinsky, L.; Pinto Morais, V.; Pismennaya, V.; Piuz, F.; Platt, R.; Ploskon, M.; Plumeri, S.; Pluta, J.; Pocheptsov, T.; Podesta, P.; Poggio, F.; Poghosyan, M.; Poghosyan, T.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pompei, F.; Pop, A.; Popescu, S.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.; Preghenella, R.; Prino, F.; Prodan, L.; Prono, G.; Protsenko, M. A.; Pruneau, C. A.; Przybyla, A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putschke, J.; Quartieri, J.; Quercigh, E.; Rachevskaya, I.; Rachevski, A.; Rademakers, A.; Radomski, S.; Radu, A.; Rak, J.; Ramello, L.; Raniwala, R.; Raniwala, S.; Rasmussen, O. B.; Rasson, J.; Razin, V.; Read, K.; Real, J.; Redlich, K.; Reichling, C.; Renard, C.; Renault, G.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Rigalleau, L. M.; Riggi, F.; Riegler, W.; Rindel, E.; Riso, J.; Rivetti, A.; Rizzi, M.; Rizzi, V.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román-López, S.; Romanato, M.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Rostchin, V.; Rotondo, F.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, D.; Roy, P.; Royer, L.; Rubin, G.; Rubio, A.; Rui, R.; Rusanov, I.; Russo, G.; Ruuskanen, V.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Salur, S.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sann, H.; Santiard, J.-C.; Santo, R.; Santoro, R.; Sargsyan, G.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Schackert, B.; Schiaua, C.; Schicker, R.; Schioler, T.; Schippers, J. D.; Schmidt, C.; Schmidt, H.; Schneider, R.; Schossmaier, K.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Schyns, E.; Scioli, G.; Scomparin, E.; Snow, H.; Sedykh, S.; Segato, G.; Sellitto, S.; Semeria, F.; Senyukov, S.; Seppänen, H.; Serci, S.; Serkin, L.; Serra, S.; Sesselmann, T.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, E.; Sharma, S.; Shigaki, K.; Shileev, K.; Shukla, P.; Shurygin, A.; Shurygina, M.; Sibiriak, Y.; Siddi, E.; Siemiarczuk, T.; Sigward, M. H.; Silenzi, A.; Silvermyr, D.; Silvestri, R.; Simili, E.; Simion, V.; Simon, R.; Simonetti, L.; Singaraju, R.; Singhal, V.; Sinha, B.; Sinha, T.; Siska, M.; Sitár, B.; Sitta, M.; Skaali, B.; Skowronski, P.; Slodkowski, M.; Smirnov, N.; Smykov, L.; Snellings, R.; Snoeys, W.; Soegaard, C.; Soerensen, J.; Sokolov, O.; Soldatov, A.; Soloviev, A.; Soltveit, H.; Soltz, R.; Sommer, W.; Soos, C.; Soramel, F.; Sorensen, S.; Soyk, D.; Spyropoulou-Stassinaki, M.; Stachel, J.; Staley, F.; Stan, I.; Stavinskiy, A.; Steckert, J.; Stefanini, G.; Stefanek, G.; Steinbeck, T.; Stelzer, H.; Stenlund, E.; Stocco, D.; Stockmeier, M.; Stoicea, G.; Stolpovsky, P.; Strmeň, P.; Stutzmann, J. S.; Su, G.; Sugitate, T.; Šumbera, M.; Suire, C.; Susa, T.; Sushil Kumar, K.; Swoboda, D.; Symons, J.; Szarka, I.; Szostak, A.; Szuba, M.; Szymanski, P.; Tadel, M.; Tagridis, C.; Tan, L.; Tapia Takaki, D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Thäder, J.; Tieulent, R.; Timmer, P.; Tolyhy, T.; Topilskaya, N.; Torcato de Matos, C.; Torii, H.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tröger, G.; Tromeur, W.; Truesdale, D.; Trzaska, W.; Tsiledakis, G.; Tsilis, E.; Tsvetkov, A.; Turcato, M.; Turrisi, R.; Tuveri, M.; Tveter, T.; Tydesjo, H.; Tykarski, L.; Tywoniuk, K.; Ugolini, E.; Ullaland, K.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Usseglio, M.; Vacchi, A.; Vala, M.; Valiev, F.; Vande Vyvre, P.; Van Den Brink, A.; Van Eijndhoven, N.; Van Der Kolk, N.; van Leeuwen, M.; Vannucci, L.; Vanzetto, S.; Vanuxem, J.-P.; Vargas, M. A.; Varma, R.; Vascotto, A.; Vasiliev, A.; Vassiliou, M.; Vasta, P.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Verhoeven, W.; Veronese, F.; Vetlitskiy, I.; Vernet, R.; Victorov, V.; Vidak, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.; Vodopianov, A.; Volpe, G.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wabnitz, C.; Wagner, V.; Wallet, L.; Wan, R.; Wang, Y.; Wang, Y.; Wheadon, R.; Weis, R.; Wen, Q.; Wessels, J.; Westergaard, J.; Wiechula, J.; Wiesenaecker, A.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, C.; Willis, N.; Windelband, B.; Witt, R.; Woehri, H.; Wyllie, K.; Xu, C.; Yang, C.; Yang, H.; Yermia, F.; Yin, Z.; Yin, Z.; Ky, B. Yun; Yushmanov, I.; Yuting, B.; Zabrodin, E.; Zagato, S.; Zagreev, B.; Zaharia, P.; Zalite, A.; Zampa, G.; Zampolli, C.; Zanevskiy, Y.; Zarochentsev, A.; Zaudtke, O.; Závada, P.; Zbroszczyk, H.; Zepeda, A.; Zeter, V.; Zgura, I.; Zhalov, M.; Zhou, D.; Zhou, S.; Zhu, G.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zubarev, A.; Zucchini, A.; Zuffa, M.

    2008-08-01

    ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 × 16 × 26 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.

  16. Review of CERN Data Centre Infrastructure

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Bell, T.; van Eldik, J.; McCance, G.; Panzer-Steindel, B.; Coelho dos Santos, M.; Traylen and, S.; Schwickerath, U.

    2012-12-01

    The CERN Data Centre is reviewing strategies for optimizing the use of the existing infrastructure and expanding to a new data centre by studying how other large sites are being operated. Over the past six months, CERN has been investigating modern and widely-used tools and procedures used for virtualisation, clouds and fabric management in order to reduce operational effort, increase agility and support unattended remote data centres. This paper gives the details on the project's motivations, current status and areas for future investigation.

  17. Réunion publique HR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-04-30

    Chers Collègues,Je me permets de vous rappeler qu'une réunion publique organisée par le Département HR se tiendra aujourd'hui:Vendredi 30 avril 2010 à 9h30 dans l'Amphithéâtre principal (café offert dès 9h00).Durant cette réunion, des informations générales seront données sur:le CERN Admin e-guide, qui est un nouveau guide des procédures administratives du CERN ayant pour but de faciliter la recherche d'informations pratiques et d'offrir un format de lecture convivial;le régime d'Assurance Maladie de l'Organisation (présentation effectuée par Philippe Charpentier, Président du CHIS Board) et;la Caisse de Pensions (présentation effectuée par Théodore Economou, Administrateur de la Caisse de Pensions du CERN).Une transmission simultanéemore » de cette réunion sera assurée dans l'Amphithéâtre BE de Prévessin et également disponible à l'adresse suivante: http://webcast.cern.chJe me réjouis de votre participation!Meilleures salutations,Anne-Sylvie CatherinChef du Département des Ressources humaines__________________________________________________________________________________Dear Colleagues,I should like to remind you that a plublic meeting organised by HR Department will be held today:Friday 30 April 2010 at 9:30 am in the Main Auditorium (coffee from 9:00 am).During this meeting, general information will be given about:the CERN Admin e-guide which is a new guide to the Organization's administrative procedures, drawn up to facilitate the retrieval of practical information and to offer a user-friendly format;the CERN Health Insurance System (presentation by Philippe Charpentier, President of the CHIS Board) and;the Pension Fund (presentation by Theodore Economou, Administrator of the CERN Pension Fund).A simultaneous transmission of this meeting will be broadcast in the BE Auditorium at Prévessin and will also be available at the following address. http://webcast.cern.chI look forward to your participation!Best regards,Anne-Sylvie CatherinHead, Human Resources Department« less

  18. Réunion publique HR

    ScienceCinema

    None

    2017-12-09

    Chers Collègues,Je me permets de vous rappeler qu'une réunion publique organisée par le Département HR se tiendra aujourd'hui:Vendredi 30 avril 2010 à 9h30 dans l'Amphithéâtre principal (café offert dès 9h00).Durant cette réunion, des informations générales seront données sur:le CERN Admin e-guide, qui est un nouveau guide des procédures administratives du CERN ayant pour but de faciliter la recherche d'informations pratiques et d'offrir un format de lecture convivial;le régime d'Assurance Maladie de l'Organisation (présentation effectuée par Philippe Charpentier, Président du CHIS Board) et;la Caisse de Pensions (présentation effectuée par Théodore Economou, Administrateur de la Caisse de Pensions du CERN).Une transmission simultanée de cette réunion sera assurée dans l'Amphithéâtre BE de Prévessin et également disponible à l'adresse suivante: http://webcast.cern.chJe me réjouis de votre participation!Meilleures salutations,Anne-Sylvie CatherinChef du Département des Ressources humaines__________________________________________________________________________________Dear Colleagues,I should like to remind you that a plublic meeting organised by HR Department will be held today:Friday 30 April 2010 at 9:30 am in the Main Auditorium (coffee from 9:00 am).During this meeting, general information will be given about:the CERN Admin e-guide which is a new guide to the Organization's administrative procedures, drawn up to facilitate the retrieval of practical information and to offer a user-friendly format;the CERN Health Insurance System (presentation by Philippe Charpentier, President of the CHIS Board) and;the Pension Fund (presentation by Theodore Economou, Administrator of the CERN Pension Fund).A simultaneous transmission of this meeting will be broadcast in the BE Auditorium at Prévessin and will also be available at the following address. http://webcast.cern.chI look forward to your participation!Best regards,Anne-Sylvie CatherinHead, Human Resources Department

  19. Cardiovascular screening in adolescents and young adults: a prospective study comparing the Pre-participation Physical Evaluation Monograph 4th Edition and ECG

    PubMed Central

    Fudge, Jessie; Harmon, Kimberly G; Owens, David S; Prutkin, Jordan M; Salerno, Jack C; Asif, Irfan M; Haruta, Alison; Pelto, Hank; Rao, Ashwin L; Toresdahl, Brett G; Drezner, Jonathan A

    2015-01-01

    Background This study compares the accuracy of cardiovascular screening in active adolescents and young adults using a standardised history, physical examination and resting 12-lead ECG. Methods Participants were prospectively screened using a standardised questionnaire based on the Pre-participation Physical Evaluation Monograph 4th Edition (PPE-4), physical examination and ECG interpreted using modern standards. Participants with abnormal findings had focused echocardiography and further evaluation. Primary outcomes included disorders associated with sudden cardiac arrest (SCA). Results From September 2010 to July 2011, 1339 participants underwent screening: age 13–24 (mean 16) years, 49% male, 68% Caucasian, 17% African-American and 1071 (80%) participating in organised sports. Abnormal history responses were reported on 916 (68%) questionnaires. After physician review, 495/ 916 (54%) participants with positive questionnaires were thought to have non-cardiac symptoms and/or a benign family history and did not warrant additional evaluation. Physical examination was abnormal in 124 (9.3%) participants, and 72 (5.4%) had ECG abnormalities. Echocardiograms were performed in 586 (44%) participants for abnormal history (31%), physical examination (8%) or ECG (5%). Five participants (0.4%) were identified with a disorder associated with SCA, all with ECG-detected Wolff-Parkinson-White. The false-positive rates for history, physical examination and ECG were 31.3%, 9.3% and 5%, respectively. Conclusions A standardised history and physical examination using the PPE-4 yields a high false-positive rate in a young active population with limited sensitivity to identify those at risk for SCA. ECG screening has a low false-positive rate using modern interpretation standards and improves detection of primary electrical disease at risk of SCA. PMID:24948082

  20. Fe en Accion/Faith in Action: Design and implementation of a church-based randomized trial to promote physical activity and cancer screening among churchgoing Latinas

    PubMed Central

    Arredondo, Elva M.; Haughton, Jessica; Ayala, Guadalupe X.; Slymen, Donald J.; Sallis, James F.; Burke, Kari; Holub, Christina; Chanson, Dayana; Perez, Lilian G.; Valdivia, Rodrigo; Ryan, Sherry; Elder, John

    2015-01-01

    Objectives To describe both conditions of a two-group randomized trial, one that promotes physical activity and one that promotes cancer screening, among churchgoing Latinas. The trial involves promotoras (community health workers) targeting multiple levels of the Ecological Model. This trial builds on formative and pilot research findings. Design Sixteen churches were randomly assigned to either the physical activity intervention or cancer screening comparison condition (approximately 27 women per church). In both conditions, promotoras from each church intervened at the individual- (e.g., beliefs), interpersonal- (e.g., social support), and environmental- (e.g., park features and access to health care) levels to affect change on target behaviors. Measurements The study’s primary outcome is min/wk of moderate-to-vigorous physical activity (MVPA) at baseline and 12 and 24 months following implementation of intervention activities. We enrolled 436 Latinas (aged 18–65 years) who engaged in less than 250 min/wk of MVPA at baseline as assessed by accelerometer, attended church at least four times per month, lived near their church, and did not have a health condition that could prevent them from participating in physical activity. Participants were asked to complete measures assessing physical activity and cancer screening as well as their correlates at 12- and 24-months. Summary Findings from the current study will address gaps in research by showing the long term effectiveness of multi-level faith-based interventions promoting physical activity and cancer screening among Latino communities. PMID:26358535

  1. Maternal and paternal parenting practices and their influence on children's adiposity, screen-time, diet and physical activity.

    PubMed

    Lloyd, Adam B; Lubans, David R; Plotnikoff, Ronald C; Collins, Clare E; Morgan, Philip J

    2014-08-01

    The primary aim of this study was to examine a range of potential behavioral and maternal/paternal correlates of adiposity in children. Secondary aims were to examine (a) correlates of screen-time, diet and physical activity and (b) if there were differences in maternal and paternal physical activity- and dietary-related parenting practices. Cross-sectional analysis was conducted using 70 families with children (59% boys (41/70), mean age 8.4 (±2.4) years). Parenting practices were measured using the Parenting Strategies for Eating and Activity Scale. Children's outcomes included: 7-day pedometry (physical activity), screen-time, percent energy from core foods (Food frequency questionnaire) and BMI z-score. Multiple regression models were generated to examine the associations between maternal and paternal parenting practices and children's variables. In the regression analyses, fathers' BMI (p < .01) and mothers' control (p < .001) were significantly associated with child weight status. Fathers' reinforcement (p < .01) was significantly associated with child physical activity. For screen-time, mothers' monitoring (p < .001) and child characteristics [age (p = .01), sex (p = .01), BMI z-score (p = .03)] were significant predictors. Mothers' parenting practices [limit setting (p = .01), reinforcement (p = .02)] and child screen-time (p = .02) were significantly associated with intake of core foods. Despite some similarities within families, three out of five parenting constructs were significantly different between mothers and fathers. Mothers and fathers have different parental influences on their children's weight status and lifestyle behaviors and both should be included in lifestyle interventions targeting children. A focus on maternal parenting specifically relating to screen-time and diet, and father's physical activity parenting and weight status may support their children in developing more healthy behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Towards Polarized Antiprotons at FAIR

    NASA Astrophysics Data System (ADS)

    Rathmann, Frank

    2007-06-01

    Understanding the interplay of the nuclear interaction with polarized protons and the electromagnetic interaction with polarized electrons in polarized atoms is crucial to progress towards the PAX goal to eventually produce stored polarized antiproton beams at FAIR. Presently, there exist two competing theoretical scenarios: one with substantial spin filtering of (anti)protons by atomic electrons, and a second one suggesting a self-cancellation of the electron contribution to spin filtering. After a brief review of the PAX physics case for polarized antiprotons at FAIR, a detailed discussion of future investigations, including spin-filtering experiments at COSY-Jülich and at the AD of CERN is presented.

  3. The Higgs mechanism and the origin of mass

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak

    2012-06-01

    The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which describes in a unified framework the electromagnetic, weak and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.

  4. The Higgs Mechanism and the Orogin of Mass

    NASA Astrophysics Data System (ADS)

    Djouadi, Abdelhak

    The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which, describes in a unified framework the electromagnetic, weak, and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.

  5. A MOdular System for Acquisition, Interface and Control (MOSAIC) of detectors and their related electronics for high energy physics experiment

    NASA Astrophysics Data System (ADS)

    Robertis, G. De; Fanizzi, G.; Loddo, F.; Manzari, V.; Rizzi, M.

    2018-02-01

    In this work the MOSAIC ("MOdular System for Acquisition, Interface and Control") board, designed for the readout and testing of the pixel modules for the silicon tracker upgrade of the ALICE (A Large Ion Collider Experiment) experiment at teh CERN LHC, is described. It is based on an Artix7 Field Programmable Gate Array device by Xilinx and is compliant with the six unit "Versa Modular Eurocard" standard (6U-VME) for easy housing in a standard VMEbus crate from which it takes only power supplies and cooling.

  6. Robert R. Wilson Prize III: Applications of Intrabeam Scattering Formulae to a Myriad of Accelerator Systems

    NASA Astrophysics Data System (ADS)

    Mtingwa, Sekazi K.

    2017-01-01

    We discuss our entree into accelerator physics and the problem of intrabeam scattering in particular. We focus on the historical importance of understanding intrabeam scattering for the successful operation of Fermilab's Accumulator and Tevatron and the subsequent hunt for the top quark, and its importance for successful operation of CERN's Large Hadron Collider that discovered the Higgs boson. We provide details on intrabeam scattering formalisms for hadron and electron beams at high energies, concluding with an Ansatz by Karl Bane that has applications to electron damping rings and synchrotron light sources.

  7. 2016 Research Outreach Program report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hye Young; Kim, Yangkyu

    2016-10-13

    This paper is the research activity report for 4 weeks in LANL. Under the guidance of Dr. Lee, who performs nuclear physics research at LANSCE, LANL, I studied the Low Energy NZ (LENZ) setup and how to use the LENZ. First, I studied the LENZ chamber and Si detectors, and worked on detector calibrations, using the computer software, ROOT (CERN developed data analysis tool) and EXCEL (Microsoft office software). I also performed the calibration experiments that measure alpha particles emitted from a Th-229 source by using a S1-type detector (Si detector). And with Dr. Lee, we checked the result.

  8. Commissioning of a CERN Production and Analysis Facility Based on xrootd

    NASA Astrophysics Data System (ADS)

    Campana, Simone; van der Ster, Daniel C.; Di Girolamo, Alessandro; Peters, Andreas J.; Duellmann, Dirk; Coelho Dos Santos, Miguel; Iven, Jan; Bell, Tim

    2011-12-01

    The CERN facility hosts the Tier-0 of the four LHC experiments, but as part of WLCG it also offers a platform for production activities and user analysis. The CERN CASTOR storage technology has been extensively tested and utilized for LHC data recording and exporting to external sites according to experiments computing model. On the other hand, to accommodate Grid data processing activities and, more importantly, chaotic user analysis, it was realized that additional functionality was needed including a different throttling mechanism for file access. This paper will describe the xroot-based CERN production and analysis facility for the ATLAS experiment and in particular the experiment use case and data access scenario, the xrootd redirector setup on top of the CASTOR storage system, the commissioning of the system and real life experience for data processing and data analysis.

  9. CERN alerter—RSS based system for information broadcast to all CERN offices

    NASA Astrophysics Data System (ADS)

    Otto, R.

    2008-07-01

    Nearly every large organization uses a tool to broadcast messages and information across the internal campus (messages like alerts announcing interruption in services or just information about upcoming events). These tools typically allow administrators (operators) to send 'targeted' messages which are sent only to specific groups of users or computers, e/g only those located in a specified building or connected to a particular computing service. CERN has a long history of such tools: CERNVMS's SPM_quotMESSAGE command, Zephyr [2] and the most recent the NICE Alerter based on the NNTP protocol. The NICE Alerter used on all Windows-based computers had to be phased out as a consequence of phasing out NNTP at CERN. The new solution to broadcast information messages on the CERN campus continues to provide the service based on cross-platform technologies, hence minimizing custom developments and relying on commercial software as much as possible. The new system, called CERN Alerter, is based on RSS (Really Simple Syndication) [9] for the transport protocol and uses Microsoft SharePoint as the backend for database and posting interface. The windows-based client relies on Internet Explorer 7.0 with custom code to trigger the window pop-ups and the notifications for new events. Linux and Mac OS X clients could also rely on any RSS readers to subscribe to targeted notifications. The paper covers the architecture and implementation aspects of the new system.

  10. The impact of a service learning experience to enhance curricular integration in a physical therapist education program.

    PubMed

    Gazsi, Claudia C; Oriel, Kathryn N

    2010-01-01

    A goal when designing the Physical Therapy Program at Lebanon Valley College (LVC) was to maximize vertical and horizontal integration of course content related to (a) medical Spanish, (b) geriatrics, and (c) health promotion through a service learning engagement. Seventeen Doctor of Physical Therapy students from LVC participated in a fall risk screening at a local senior center in a Spanish-speaking neighborhood. The screen included the single leg stance, timed-up-and-go (TUG), and functional reach tests. The students screened 30 participants over a 3-hour time period. Following the screening event, students were asked to reflect on their experience. Reflections revealed that the activity supported integration of concurrent didactic course material and Core Values, reinforced cultural issues presented the previous year, and convinced students that physical therapists have a distinct and important role in primary and secondary prevention in meeting the needs of the Spanish-speaking elderly community.

  11. Predicting Child Physical Activity and Screen Time: Parental Support for Physical Activity and General Parenting Styles

    PubMed Central

    Crain, A. Lauren; Senso, Meghan M.; Levy, Rona L.; Sherwood, Nancy E.

    2014-01-01

    Objective: To examine relationships between parenting styles and practices and child moderate-to-vigorous physical activity (MVPA) and screen time. Methods: Participants were children (6.9 ± 1.8 years) with a body mass index in the 70–95th percentile and their parents (421 dyads). Parent-completed questionnaires assessed parental support for child physical activity (PA), parenting styles and child screen time. Children wore accelerometers to assess MVPA. Results: Parenting style did not predict MVPA, but support for PA did (positive association). The association between support and MVPA, moreover, varied as a function of permissive parenting. For parents high in permissiveness, the association was positive (greater support was related to greater MVPA and therefore protective). For parents low in permissiveness, the association was neutral; support did not matter. Authoritarian and permissive parenting styles were both associated with greater screen time. Conclusions: Parenting practices and styles should be considered jointly, offering implications for tailored interventions. PMID:24812256

  12. The Feasibility of Standardised Geriatric Assessment Tools and Physical Exercises in Frail Older Adults.

    PubMed

    Jadczak, A D; Mahajan, N; Visvanathan, R

    2017-01-01

    Geriatric assessment tools are applicable to the general geriatric population; however, their feasibility in frail older adults is yet to be determined. The study aimed to determine the feasibility of standardised geriatric assessment tools and physical exercises in hospitalised frail older adults. Various assessment tools including the FRAIL Screen, the Charlson Comorbidity Index, the SF-36, the Trail Making Test (TMT), the Rapid Cognitive Screen, the Self Mini Nutritional Assessment (MNA-SF) and the Lawton iADL as well as standard physical exercises were assessed using observational protocols. The FRAIL Screen, MNA-SF, Rapid Cognitive Screen, Lawton iADL and the physical exercises were deemed to be feasible with only minor comprehension, execution and safety issues. The TMT was not considered to be feasible and the SF-36 should be replaced by its shorter form, the SF-12. In order to ensure the validity of these findings a study with a larger sample size should be undertaken.

  13. Physical Examination Has a Low Yield in Screening for Carpal Tunnel Syndrome

    PubMed Central

    Dale, Ann Marie; Descatha, Alexis; Coomes, Justin; Franzblau, Alfred; Evanoff, Bradley

    2013-01-01

    Background Physical examination is often used to screen workers for carpal tunnel syndrome (CTS). In a population of newly-hired workers, we evaluated the yield of such screening. Methods Our study population included 1108 newly-hired workers in diverse industries. Baseline data included a symptom questionnaire, physical exam, and bilateral nerve conduction testing of the median and ulnar nerves; individual results were not shared with the employer. We tested three outcomes: symptoms of CTS, abnormal median nerve conduction, and a case definition of CTS that required both symptoms and median neuropathy. Results Of the exam measures used, only Semmes-Weinstein sensory testing had a sensitivity value above 31%. Positive predictive values were low, and likelihood ratios were all under 5.0 for positive testing and over 0.2 for negative testing. Conclusion Physical examination maneuvers have a low yield for the diagnosis of CTS in workplace surveillance programs and in post-offer, pre-placement screening programs. PMID:21154516

  14. PREFACE: Hot Quarks 2014: Workshop for young scientists on the physics of ultrarelativistic nucleus-nucleus collisions

    NASA Astrophysics Data System (ADS)

    2015-05-01

    The 6th edition of the Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2014) was held in Las Negras, Spain from 21-28 September 2014. Following the traditions of the conference, this meeting gathered more than 70 participants in the first years of their scientific careers. The present issue contains the proceedings of this workshop. As in the past, the Hot Quarks workshop offered a unique atmosphere for a lively discussion and interpretation of the current measurements from high energy nuclear collisions. Recent results and upgrades at CERN's Large Hadron Collider (LHC) and Brookhaven's Relativistic Heavy Ion Collider (RHIC) were presented. Recent theoretical developments were also extensively discussed as well as the perspectives for future facilities such as the Facility for Antiproton and Ion Research (FAIR) at Darmstadt and the Electron-Ion Collider at Brookhaven. The conference's goal to provide a platform for young researchers to learn and foster their interactions was successfully met. We wish to thank the sponsors of the Hot Quarks 2014 Conference, who supported the authors of this volume: Brookhaven National Laboratory (USA), CPAN (Spain), Czech Science Foundation (GACR) under grant 13-20841S (Czech Republic), European Laboratory for Particle Physics CERN (Switzerland), European Research Council under grant 259612 (EU), ExtreMe Matter Institute EMMI (Germany), Helmholtz Association and GSI under grant VH-NG-822, Helmholtz International Center for FAIR (Germany), National Science Foundation under grant No.1359622 (USA), Nuclear Physics Institute ASCR (Czech Republic), Patronato de la Alhambra y Generalife (Spain) and the Universidad de Granada (Spain). Javier López Albacete, Universidad de Granada (Spain) Jana Bielcikova, Nuclear Physics Inst. and Academy of Sciences (Czech Republic) Rainer J. Fries, Texas A&M University (USA) Raphaël Granier de Cassagnac, CNRS-IN2P3 and École polytechnique (France) Boris Hippolyte, CNRS-IN2P3 and Université de Strasbourg (France) Jiangyong Jia, Stony Brook University and Brookhaven National Laboratory (USA) André Mischke, Utrecht University and Nikhef Amsterdam (The Netherlands) Ágnes Mócsy, Pratt Institute and Brookhaven National Laboratory (USA) Hannah Petersen, Goethe University, FIAS and GSI (Germany) Lijuan Ruan, Brookhaven National Laboratory (USA) Sevil Salur, Rutgers University, (USA)

  15. Neuroblastoma Screening

    MedlinePlus

    ... including physical and emotional problems. False-negative test results can occur. Screening test results may appear to ... even if there are symptoms. False-positive test results can occur. Screening test results may appear to ...

  16. The value of health screening in music schools and conservatoires.

    PubMed

    Clark, Terry; Williamon, Aaron; Redding, Emma

    2013-04-01

    Interest in musicians' health and well-being is growing, reflected by increasing numbers of investigations into the physicality and psychology of musical performance. Within sport and dance, screening and profiling programmes, especially of the musculoskeletal system, have furthered understanding on not only physical and psychological capabilities and demands but also musculoskeletal injury mechanisms and susceptibility. This article engages with questions relating to the development and delivery of musician-specific health screening programmes. Effective screening can offer a variety of benefits for musicians, providing informed recommendations for sustaining performance-related fitness across educational and professional contexts. Employing an interdisciplinary approach when developing screening programmes is essential, as is the ecological appropriateness of the measures used. The implications inherent in delivering and sustaining successful screening programmes in schools and conservatoires are discussed.

  17. Physics with thermal antiprotons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hynes, M.V.; Campbell, L.J.

    1988-01-01

    The same beam cooling techniques that have allowed for high luminosity antiproton experiments at high energy also provide the opportunity for experiments at ultra-low energy. Through a series of deceleration stages, antiprotons collected and cooled at the peak momentum for production can by made available at thermal or sub-thermal energies. In particular, the CERN, PS-200 collaboration is developing an RFO-plused ion trap beam line for the antiproton gravitational mass experiment at LEAR that will provide beams of antiprotons in the energy range 0.001--1000.0 eV. Antiprotons at these energies make these fundamentals particles available for experiments in condensed matter and atomicmore » physics. The recent speculation that antiprotons may form metastable states in some forms of normal matter could open many new avenues of basic and applied research. 7 refs., 3 figs.« less

  18. Search for physics beyond the standard model in events with two leptons, jets, and missing transverse momentum in pp collisions at √s = 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2015-04-22

    Our search is presented for physics beyond the standard model in final states with two opposite-sign same-flavor leptons, jets, and missing transverse momentum. The data sample corresponds to an integrated luminosity of 19.4 fb -1 of proton-proton collisions at √s = 8 TeV collected with the CMS detector at the CERN LHC in 2012. The analysis focuses on searches for a kinematic edge in the invariant mass distribution of the oppositesign same-flavor lepton pair and for final states with an on-shell Z boson. Furthermore, the observations are consistent with expectations from standard model processes and are interpreted in terms ofmore » upper limits on the production of supersymmetric particles.« less

  19. Implications of LHCb measurements and future prospects

    DOE PAGES

    Bharucha, A.; Bigi, I. I.; Bobeth, C.; ...

    2013-04-26

    During 2011 the LHCb experiment at CERN collected 1.0 fb -1 of √s=7~TeV pp collisions. Due to the large heavy quark production cross-sections, these data provide unprecedented samples of heavy flavoured hadrons. The first results from LHCb have made a significant impact on the flavour physics landscape and have definitively proved the concept of a dedicated experiment in the forward region at a hadron collider. This document discusses the implications of these first measurements on classes of extensions to the Standard Model, bearing in mind the interplay with the results of searches for on-shell production of new particles at ATLASmore » and CMS. The physics potential of an upgrade to the LHCb detector, which would allow an order of magnitude more data to be collected, is emphasised.« less

  20. Software and languages for microprocessors

    NASA Astrophysics Data System (ADS)

    Williams, David O.

    1986-08-01

    This paper forms the basis for lectures given at the 6th Summer School on Computing Techniques in Physics, organised by the Computational Physics group of the European Physics Society, and held at the Hotel Ski, Nové Město na Moravě, Czechoslovakia, on 17-26 September 1985. Various types of microprocessor applications are discussed and the main emphasis of the paper is devoted to 'embedded' systems, where the software development is not carried out on the target microprocessor. Some information is provided on the general characteristics of microprocessor hardware. Various types of microprocessor operating system are compared and contrasted. The selection of appropriate languages and software environments for use with microprocessors is discussed. Mechanisms for interworking between different languages, including reasonable error handling, are treated. The CERN developed cross-software suite for the Motorola 68000 family is described. Some remarks are made concerning program tools applicable to microprocessors. PILS, a Portable Interactive Language System, which can be interpreted or compiled for a range of microprocessors, is described in some detail, and the implementation techniques are discussed.

  1. Exploratory Lattice QCD Study of the Rare Kaon Decay K^{+}→π^{+}νν[over ¯].

    PubMed

    Bai, Ziyuan; Christ, Norman H; Feng, Xu; Lawson, Andrew; Portelli, Antonin; Sachrajda, Christopher T

    2017-06-23

    We report a first, complete lattice QCD calculation of the long-distance contribution to the K^{+}→π^{+}νν[over ¯] decay within the standard model. This is a second-order weak process involving two four-Fermi operators that is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with physical quark masses and controlled systematic errors will be possible with the next generation of computers.

  2. Exploratory Lattice QCD Study of the Rare Kaon Decay K+→π+ν ν ¯

    NASA Astrophysics Data System (ADS)

    Bai, Ziyuan; Christ, Norman H.; Feng, Xu; Lawson, Andrew; Portelli, Antonin; Sachrajda, Christopher T.; Rbc-Ukqcd Collaboration

    2017-06-01

    We report a first, complete lattice QCD calculation of the long-distance contribution to the K+→π+ν ν ¯ decay within the standard model. This is a second-order weak process involving two four-Fermi operators that is highly sensitive to new physics and being studied by the NA62 experiment at CERN. While much of this decay comes from perturbative, short-distance physics, there is a long-distance part, perhaps as large as the planned experimental error, which involves nonperturbative phenomena. The calculation presented here, with unphysical quark masses, demonstrates that this contribution can be computed using lattice methods by overcoming three technical difficulties: (i) a short-distance divergence that results when the two weak operators approach each other, (ii) exponentially growing, unphysical terms that appear in Euclidean, second-order perturbation theory, and (iii) potentially large finite-volume effects. A follow-on calculation with physical quark masses and controlled systematic errors will be possible with the next generation of computers.

  3. Electronic screens in children's bedrooms and adiposity, physical activity and sleep: do the number and type of electronic devices matter?

    PubMed

    Chaput, Jean-Philippe; Leduc, Geneviève; Boyer, Charles; Bélanger, Priscilla; LeBlanc, Allana G; Borghese, Michael M; Tremblay, Mark S

    2014-07-11

    To examine whether the number and type of electronic screens available in children's bedrooms matter in their relationship to adiposity, physical activity and sleep. A cross-sectional study was conducted involving 502 children aged 9-11 years from Ottawa, Ontario. The presence (yes/no) of a television (TV), computer or video game system in the child's bedroom was reported by the parents. Percentage body fat was measured using bioelectrical impedance. An accelerometer was worn over seven days to assess moderate-to-vigorous physical activity (MVPA), total sedentary time, sleep duration and sleep efficiency. Screen time was self-reported by the child. After adjustment for age, sex, ethnicity, annual household income and highest level of parental education, children with 2-3 screens in their bedroom had a significantly higher percentage of body fat than children with no screen in their bedroom. However, while children with 2-3 screens in their bedroom engaged in more screen time overall than those with no screen, total sedentary time and MVPA were not significantly different. Sleep duration was not related to the number of screens in the bedroom, but sleep efficiency was significantly lower in children with at least 2 screens in the bedroom. Finally, children having only a TV in their bedroom had significantly higher adiposity than those having no screen at all. In contrast, the presence of a computer in children's bedrooms was not associated with higher adiposity than that of children with no screen. A higher number of screens in a child's bedroom was associated with higher adiposity, more total screen time and lower sleep efficiency. Having a TV in the bedroom appears to be the type of screen presence associated with higher levels of adiposity. Given the popularity of screens among children, these findings are increasingly relevant to health promotion strategies.

  4. CERN automatic audio-conference service

    NASA Astrophysics Data System (ADS)

    Sierra Moral, Rodrigo

    2010-04-01

    Scientists from all over the world need to collaborate with CERN on a daily basis. They must be able to communicate effectively on their joint projects at any time; as a result telephone conferences have become indispensable and widely used. Managed by 6 operators, CERN already has more than 20000 hours and 5700 audio-conferences per year. However, the traditional telephone based audio-conference system needed to be modernized in three ways. Firstly, to provide the participants with more autonomy in the organization of their conferences; secondly, to eliminate the constraints of manual intervention by operators; and thirdly, to integrate the audio-conferences into a collaborative working framework. The large number, and hence cost, of the conferences prohibited externalization and so the CERN telecommunications team drew up a specification to implement a new system. It was decided to use a new commercial collaborative audio-conference solution based on the SIP protocol. The system was tested as the first European pilot and several improvements (such as billing, security, redundancy...) were implemented based on CERN's recommendations. The new automatic conference system has been operational since the second half of 2006. It is very popular for the users and has doubled the number of conferences in the past two years.

  5. CERN openlab: Engaging industry for innovation in the LHC Run 3-4 R&D programme

    NASA Astrophysics Data System (ADS)

    Girone, M.; Purcell, A.; Di Meglio, A.; Rademakers, F.; Gunne, K.; Pachou, M.; Pavlou, S.

    2017-10-01

    LHC Run3 and Run4 represent an unprecedented challenge for HEP computing in terms of both data volume and complexity. New approaches are needed for how data is collected and filtered, processed, moved, stored and analysed if these challenges are to be met with a realistic budget. To develop innovative techniques we are fostering relationships with industry leaders. CERN openlab is a unique resource for public-private partnership between CERN and leading Information Communication and Technology (ICT) companies. Its mission is to accelerate the development of cutting-edge solutions to be used by the worldwide HEP community. In 2015, CERN openlab started its phase V with a strong focus on tackling the upcoming LHC challenges. Several R&D programs are ongoing in the areas of data acquisition, networks and connectivity, data storage architectures, computing provisioning, computing platforms and code optimisation and data analytics. This paper gives an overview of the various innovative technologies that are currently being explored by CERN openlab V and discusses the long-term strategies that are pursued by the LHC communities with the help of industry in closing the technological gap in processing and storage needs expected in Run3 and Run4.

  6. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    NASA Astrophysics Data System (ADS)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  7. Screening for thyroid cancer in survivors of childhood and young adult cancer treated with neck radiation.

    PubMed

    Tonorezos, Emily S; Barnea, Dana; Moskowitz, Chaya S; Chou, Joanne F; Sklar, Charles A; Elkin, Elena B; Wong, Richard J; Li, Duan; Tuttle, R Michael; Korenstein, Deborah; Wolden, Suzanne L; Oeffinger, Kevin C

    2017-06-01

    The optimal method of screening for thyroid cancer in survivors of childhood and young adult cancer exposed to neck radiation remains controversial. Outcome data for a physical exam-based screening approach are lacking. We conducted a retrospective review of adult survivors of childhood and young adult cancer with a history of neck radiation followed in the Adult Long-Term Follow-Up Clinic at Memorial Sloan Kettering between November 2005 and August 2014. Eligible patients underwent a physical exam of the thyroid and were followed for at least 1 year afterwards. Ineligible patients were those with prior diagnosis of benign or malignant thyroid nodules. During a median follow-up of 3.1 years (range 0-9.4 years), 106 ultrasounds and 2277 physical exams were performed among 585 patients. Forty survivors had an abnormal thyroid physical exam median of 21 years from radiotherapy; 50% of those with an abnormal exam were survivors of Hodgkin lymphoma, 60% had radiation at ages 10-19, and 53% were female. Ultimately, 24 underwent fine needle aspiration (FNA). Surgery revealed papillary carcinoma in seven survivors; six are currently free of disease and one with active disease is undergoing watchful waiting. Among those with one or more annual visits, representing 1732 person-years of follow-up, no cases of thyroid cancer were diagnosed within a year of normal physical exam. These findings support the application of annual physical exam without routine ultrasound for thyroid cancer screening among survivors with a history of neck radiation. Survivors with a history of neck radiation may not require routine thyroid ultrasound for thyroid cancer screening. Among adult survivors of childhood and young adult cancer with a history of radiation therapy to the neck, annual physical exam is an acceptable thyroid cancer screening strategy.

  8. Physical Activity Pattern of Malaysian Preschoolers: Environment, Barriers, and Motivators for Active Play.

    PubMed

    Lee, Shoo Thien; Wong, Jyh Eiin; Ong, Wei Wen; Ismail, Mohd Noor; Deurenberg, Paul; Poh, Bee Koon

    2016-07-01

    Children's physical activity has been correlated with child characteristics and social or physical environment. This study aimed to compare preschoolers' physical activity among various sociodemographic characteristics and to determine barriers, motivators, and environmental factors for active play. A total of 835 preschoolers were included in this analysis. Time spent on active play, quiet play, and screen time was reported by parents. Boys spent significantly more time on active play and screen time than girls. Time spent on quiet play was highest in East Coast Peninsular Malaysia and lowest in Sarawak. Some 40% of children achieved active play recommendation while 27% exceeded daily screen time recommendation. Most parents reported that their child played actively in the house area; and that the main barrier and motivator to active play were safety and child's enjoyment, respectively. These findings demonstrate that sociodemographic characteristics and environment should be considered in designing physical activity intervention programs. © 2016 APJPH.

  9. Memorial W.Gentner

    ScienceCinema

    None

    2018-05-25

    The DG H. Schopper gives an introduction for the commemoration and ceremony of the life and work of Professor Wolfgang Gentner. W. Gentner, German physicist, born in 1906 in Frankfurt and died in September 1980 in Heidelberg, was director of CERN from 1955 to 1960, president of the Scientific Policy Committee from 1968 to 1971 and president of the Council of CERN from 1972 to 1974. He was one of the founders of CERN and four people who knew him well pay tribute to him, among others one of his students, as well as J.B. Adams and O. Sheffard.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The DG H. Schopper gives an introduction for the commemoration and ceremony of the life and work of Professor Wolfgang Gentner. W. Gentner, German physicist, born in 1906 in Frankfurt and died in September 1980 in Heidelberg, was director of CERN from 1955 to 1960, president of the Scientific Policy Committee from 1968 to 1971 and president of the Council of CERN from 1972 to 1974. He was one of the founders of CERN and four people who knew him well pay tribute to him, among others one of his students, as well as J.B. Adams and O. Sheffard.

  11. OPERA - First Beam Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M.

    2008-02-21

    OPERA is a long base-line neutrino oscillation experiment to detect tau-neutrino appearance and to prove that the origin of the atmospheric muon neutrino deficit observed by Kamiokande is the neutrino oscillation. A Hybrid emulsion detector, of which weight is about 1.3 kton, has been installed in Gran Sasso laboratory. New muon neutrino beam line, CNGS, has been constructed at CERN to send neutrinos to Gran Sasso, 730 km apart from CERN. In 2006, first neutrinos were sent from CERN to LNGS and were detected by the OPERA detector successfully as planned.

  12. From Particle Physics to Medical Applications

    NASA Astrophysics Data System (ADS)

    Dosanjh, Manjit

    2017-06-01

    CERN is the world's largest particle physics research laboratory. Since it was established in 1954, it has made an outstanding contribution to our understanding of the fundamental particles and their interactions, and also to the technologies needed to analyse their properties and behaviour. The experimental challenges have pushed the performance of particle accelerators and detectors to the limits of our technical capabilities, and these groundbreaking technologies can also have a significant impact in applications beyond particle physics. In particular, the detectors developed for particle physics have led to improved techniques for medical imaging, while accelerator technologies lie at the heart of the irradiation methods that are widely used for treating cancer. Indeed, many important diagnostic and therapeutic techniques used by healthcare professionals are based either on basic physics principles or the technologies developed to carry out physics research. Ever since the discovery of x-rays by Roentgen in 1895, physics has been instrumental in the development of technologies in the biomedical domain, including the use of ionizing radiation for medical imaging and therapy. Some key examples that are explored in detail in this book include scanners based on positron emission tomography, as well as radiation therapy for cancer treatment. Even the collaborative model of particle physics is proving to be effective in catalysing multidisciplinary research for medical applications, ensuring that pioneering physics research is exploited for the benefit of all.

  13. Tier One Performance Screen Initial Operational Test and Evaluation: Early Results

    DTIC Science & Technology

    2011-04-01

    Requirement: In addition to educational, physical , and moral screens, the U.S. Army relies on a composite score from the Armed Services Vocational Aptitude...analyses suggest that the individual TAPAS scales significantly predict a number of criteria of interest. Most notably, the Physical Conditioning scale...predicted Soldiers’ self-reported Army Physical Fitness Test (APFT) scores, number of restarts in training, adjustment to Army life, and 3-month

  14. 36th International Conference on High Energy Physics

    NASA Astrophysics Data System (ADS)

    The Australian particle physics community was honoured to host the 36th ICHEP conference in 2012 in Melbourne. This conference has long been the reference event for our international community. The announcement of the discovery of the Higgs boson at the LHC was a major highlight, with huge international press coverage. ICHEP2012 was described by CERN Director-General, Professor Rolf Heuer, as a landmark conference for our field. In additional to the Higgs announcement, important results from neutrino physics, from flavour physics, and from physics beyond the standard model also provided great interest. There were also updates on key accelerator developments such as the new B-factories, plans for the LHC upgrade, neutrino facilities and associated detector developments. ICHEP2012 exceeded the promise expected of the key conference for our field, and really did provide a reference point for the future. Many thanks to the contribution reviewers: Andy Bakich, Csaba Balazs, Nicole Bell, Catherine Buchanan, Will Crump, Cameron Cuthbert, Ben Farmer, Sudhir Gupta, Elliot Hutchison, Paul Jackson, Geng-Yuan Jeng, Archil Kobakhidze, Doyoun Kim, Tong Li, Antonio Limosani (Head Editor), Kristian McDonald, Nikhul Patel, Aldo Saavedra, Mark Scarcella, Geoff Taylor, Ian Watson, Graham White, Tony Williams and Bruce Yabsley.

  15. Academic Performance and Lifestyle Behaviors in Australian School Children: A Cluster Analysis.

    PubMed

    Dumuid, Dorothea; Olds, Timothy; Martín-Fernández, Josep-Antoni; Lewis, Lucy K; Cassidy, Leah; Maher, Carol

    2017-12-01

    Poor academic performance has been linked with particular lifestyle behaviors, such as unhealthy diet, short sleep duration, high screen time, and low physical activity. However, little is known about how lifestyle behavior patterns (or combinations of behaviors) contribute to children's academic performance. We aimed to compare academic performance across clusters of children with common lifestyle behavior patterns. We clustered participants (Australian children aged 9-11 years, n = 284) into four mutually exclusive groups of distinct lifestyle behavior patterns, using the following lifestyle behaviors as cluster inputs: light, moderate, and vigorous physical activity; sedentary behavior and sleep, derived from 24-hour accelerometry; self-reported screen time and diet. Differences in academic performance (measured by a nationally administered standardized test) were detected across the clusters, with scores being lowest in the Junk Food Screenies cluster (unhealthy diet/high screen time) and highest in the Sitters cluster (high nonscreen sedentary behavior/low physical activity). These findings suggest that reduction in screen time and an improved diet may contribute positively to academic performance. While children with high nonscreen sedentary time performed better academically in this study, they also accumulated low levels of physical activity. This warrants further investigation, given the known physical and mental benefits of physical activity.

  16. Neighbourhood urban form and individual-level correlates of leisure-based screen time in Canadian adults

    PubMed Central

    McCormack, Gavin R; Mardinger, Cynthia

    2015-01-01

    Objectives Despite evidence for an association between the built environment and physical activity, less evidence exists regarding relations between the built environment and sedentary behaviour. This study investigated the extent to which objectively assessed and self-reported neighbourhood walkability, in addition to individual-level characteristics, were associated with leisure-based screen time in adults. We hypothesised that leisure-based screen time would be lower among adults residing in objectively assessed and self-reported ‘high walkable’ versus ‘low walkable’ neighbourhoods. Setting The study was undertaken in Calgary, Alberta, Canada in 2007/2008. Participants A random cross-section of adults who provided complete telephone interview and postal survey data (n=1906) was included. Captured information included leisure-based screen time, moderate-intensity and vigorous-intensity physical activity, perceived neighbourhood walkability, sociodemographic characteristics, self-reported health status, and self-reported height and weight. Based on objectively assessed built characteristics, participant's neighbourhoods were identified as being low, medium or high walkable. Primary and secondary outcome measures Using multiple linear regression, hours of leisure-based screen time per day was regressed on self-reported and objectively assessed walkability adjusting for sociodemographic and health-related covariates. Results Compared to others, residing in an objectively assessed high walkable neighbourhood, women, having a college education, at least one child at home, a household income ≥$120 000/year, and a registered motor vehicle at home, reporting very good-to-excellent health and healthy weight, and achieving 60 min/week of vigorous-intensity physical activity were associated (p<0.05) with less leisure-based screen time. Marital status, dog ownership, season, self-reported walkability and achieving 210 min of moderate-intensity physical activity were not significantly associated with leisure-based screen time. Conclusions Improving neighbourhood walkability could decrease leisure-based television and computer screen time. Programmes aimed at reducing sedentary behaviour may want to consider an individual's sociodemographic characteristics, physical activity level, health status and weight status, in addition to the walkability of their neighbourhood as these factors were found to be important independent correlates of leisure-based screen time. PMID:26608640

  17. Membership Finland

    ScienceCinema

    None

    2018-05-18

    The DG C. Rubbia and the vice president of the council of CERN gives a warm welcome to the membership of Finland, as the 15th member of CERN since January 1 1991 in the presence of the Secretary-General and the ambassador.

  18. Visit CD

    ScienceCinema

    None

    2017-12-09

    Le DG H.Schopper souhaite la bienvenue aux ambassadeurs des pays membres et aux représentants des pays avec lesquels le Cern entretient des relations proches et fait un exposé sur les activités au Cern

  19. Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED

    NASA Astrophysics Data System (ADS)

    Cavaier, R. Formento; Haddad, F.; Sounalet, T.; Stora, T.; Zahi, I.

    A new facility, named CERN-MEDICIS, is under construction at CERN to produce radionuclides for medical applications. In parallel, the MEDICIS-PROMED, a Marie Sklodowska-Curie innovative training network of the Horizon 2020 European Commission's program, is being coordinated by CERN to train young scientists on the production and use of innovative radionuclides and develop a network of experts within Europe. One program within MEDICIS-PROMED is to determine the feasibility of producing innovative radioisotopes for theranostics using a commercial middle-sized high-current cyclotron and the mass separation technology developed at CERN-MEDICIS. This will allow the production of high specific activity radioisotopes not achievable with the common post-processing by chemical separation. Radioisotopes of scandium, copper, arsenic and terbium have been identified. Preliminary studies of activation yield and irradiation parameters optimization for the production of Tb-149 will be described.

  20. Cryogenic Control System Migration and Developments towards the UNICOS CERN Standard at INFN

    NASA Astrophysics Data System (ADS)

    Modanese, Paolo; Calore, Andrea; Contran, Tiziano; Friso, Alessandro; Pengo, Marco; Canella, Stefania; Burioli, Sergio; Gallese, Benedetto; Inglese, Vitaliano; Pezzetti, Marco; Pengo, Ruggero

    The cryogenic control systems at Laboratori Nazionali di Legnaro (LNL) are undergoing an important and radical modernization, allowing all the plants controls and supervision systems to be renewed in a homogeneous way towards the CERN-UNICOS standard. Before the UNICOS migration project started there were as many as 7 different types of PLC and 7 different types of SCADA, each one requiring its own particular programming language. In these conditions, even a simple modification and/or integration on the program or on the supervision, required the intervention of a system integrator company, specialized in its specific control system. Furthermore it implied that the operators have to be trained to learn the different types of control systems. The CERN-UNICOS invented for LHC [1] has been chosen due to its reliability and planned to run and be maintained for decades on. The complete migration is part of an agreement between CERN and INFN.

  1. PREFACE: High Energy Particle Physics Workshop (HEPPW2015)

    NASA Astrophysics Data System (ADS)

    Cornell, Alan S.; Mellado, B.

    2015-10-01

    The motivation for this workshop began with the discovery of the Higgs boson three years ago, and the realisation that many problems remain in particle physics, such as why there is more matter than anti-matter, better determining the still poorly measured parameters of the strong force, explaining possible sources for dark matter, naturalness etc. While the newly discovered Higgs boson seems to be compatible with the Standard Model, current experimental accuracy is far from providing a definitive statement with regards to the nature of this new particle. There is a lot of room for physics beyond the Standard Model to emerge in the exploration of the Higgs boson. Recent measurements in high-energy heavy ion collisions at the LHC have shed light on the complex dynamics that govern high-density quark-gluon interactions. An array of results from the ALICE collaboration have been highlighted in a recent issue of CERN courier. The physics program of high-energy heavy ion collisions promises to further unveil the intricacies of high-density quark-gluon plasma physics. The great topicality of high energy physics research has also seen a rapid increase in the number of researchers in South Africa pursuing such studies, both experimentally through the ATLAS and ALICE colliders at CERN, and theoretically. Young researchers and graduate students largely populate these research groups, with little experience in presenting their work, and few support structures (to their knowledge) to share experiences with. Whilst many schools and workshops have sought to educate these students on the theories and tools they will need to pursue their research, few have provided them with a platform to present their work. As such, this workshop discussed the various projects being pursued by graduate students and young researchers in South Africa, enabling them to develop networks for future collaboration and discussion. The workshop took place at the iThemba Laboratories - North facility, in Gauteng, from the 11th to the 13th of February 2015, where excellent conference facilities with outdoors and indoor tea areas for discussions and interactions were provided, along with a state-of-the-art remote access to the conference venue such that those who were unable to attend the workshop in person could also be present. The laboratory is located next door to the Wits Professional Development Hub (on the corner of Jan Smuts Avenue and Empire Road), which provided the catering for this workshop. A morning plenary session, followed 15+10 minute presentations, was the format across our three days. The topics covered being in high-energy theory and phenomenology (heavy ions, pp, ep, ee collisions), ATLAS physics and ALICE physics. The workshop website is http://hep.wits.ac.za/HEPPW2015.php

  2. Recruitment, screening, and baseline participant characteristics in the WALK 2.0 study: A randomized controlled trial using web 2.0 applications to promote physical activity.

    PubMed

    Caperchione, Cristina M; Duncan, Mitch J; Rosenkranz, Richard R; Vandelanotte, Corneel; Van Itallie, Anetta K; Savage, Trevor N; Hooker, Cindy; Maeder, Anthony J; Mummery, W Kerry; Kolt, Gregory S

    2016-04-15

    To describe in detail the recruitment methods and enrollment rates, the screening methods, and the baseline characteristics of a sample of adults participating in the Walk 2.0 Study, an 18 month, 3-arm randomized controlled trial of a Web 2.0 based physical activity intervention. A two-fold recruitment plan was developed and implemented, including a direct mail-out to an extract from the Australian Electoral Commission electoral roll, and other supplementary methods including email and telephone. Physical activity screening involved two steps: a validated single-item self-report instrument and the follow-up Active Australia Questionnaire. Readiness for physical activity participation was also based on a two-step process of administering the Physical Activity Readiness Questionnaire and, where needed, further clearance from a medical practitioner. Across all recruitment methods, a total of 1244 participants expressed interest in participating, of which 656 were deemed eligible. Of these, 504 were later enrolled in the Walk 2.0 trial (77% enrollment rate) and randomized to the Walk 1.0 group (n = 165), the Walk 2.0 group (n = 168), or the Logbook group (n = 171). Mean age of the total sample was 50.8 years, with 65.2% female and 79.1% born in Australia. The results of this recruitment process demonstrate the successful use of multiple strategies to obtain a diverse sample of adults eligible to take part in a web-based physical activity promotion intervention. The use of dual screening processes ensured safe participation in the intervention. This approach to recruitment and physical activity screening can be used as a model for further trials in this area.

  3. Associations of discretionary screen time with mortality, cardiovascular disease and cancer are attenuated by strength, fitness and physical activity: findings from the UK Biobank study.

    PubMed

    Celis-Morales, Carlos A; Lyall, Donald M; Steell, Lewis; Gray, Stuart R; Iliodromiti, Stamatina; Anderson, Jana; Mackay, Daniel F; Welsh, Paul; Yates, Thomas; Pell, Jill P; Sattar, Naveed; Gill, Jason M R

    2018-05-24

    Discretionary screen time (time spent viewing a television or computer screen during leisure time) is an important contributor to total sedentary behaviour, which is associated with increased risk of mortality and cardiovascular disease (CVD). The aim of this study was to determine whether the associations of screen time with cardiovascular disease and all-cause mortality were modified by levels of cardiorespiratory fitness, grip strength or physical activity. In total, 390,089 participants (54% women) from the UK Biobank were included in this study. All-cause mortality, CVD and cancer incidence and mortality were the main outcomes. Discretionary television (TV) viewing, personal computer (PC) screen time and overall screen time (TV + PC time) were the exposure variables. Grip strength, fitness and physical activity were treated as potential effect modifiers. Altogether, 7420 participants died, and there were 22,210 CVD events, over a median of 5.0 years follow-up (interquartile range 4.3 to 5.7; after exclusion of the first 2 years from baseline in the landmark analysis). All discretionary screen-time exposures were significantly associated with all health outcomes. The associations of overall discretionary screen time with all-cause mortality and incidence of CVD and cancer were strongest amongst participants in the lowest tertile for grip strength (all-cause mortality hazard ratio per 2-h increase in screen time (1.31 [95% confidence interval: 1.22-1.43], p < 0.0001; CVD 1.21 [1.13-1.30], p = 0.0001; cancer incidence 1.14 [1.10-1.19], p < 0.0001) and weakest amongst those in the highest grip-strength tertile (all-cause mortality 1.04 [0.95-1.14], p = 0.198; CVD 1.05 [0.99-1.11], p = 0.070; cancer 0.98 [0.93-1.05], p = 0.771). Similar trends were found for fitness (lowest fitness tertile: all-cause mortality 1.23 [1.13-1.34], p = 0.002 and CVD 1.10 [1.02-1.22], p = 0.010; highest fitness tertile: all-cause mortality 1.12 [0.96-1.28], p = 0.848 and CVD 1.01 [0.96-1.07], p = 0.570). Similar findings were found for physical activity for all-cause mortality and cancer incidence. The associations between discretionary screen time and adverse health outcomes were strongest in those with low grip strength, fitness and physical activity and markedly attenuated in those with the highest levels of grip strength, fitness and physical activity. Thus, if these associations are causal, the greatest benefits from health promotion interventions to reduce discretionary screen time may be seen in those with low levels of strength, fitness and physical activity.

  4. Prevention. How much harm? How much benefit? 3. Physical, psychological and social harm.

    PubMed Central

    Marshall, K G

    1996-01-01

    Harm caused by preventive programs may be physical, psychological, social or, if informed consent has not been obtained, ethical. Adverse effects of preventive screening programs may occur at any of the three levels of the "screening cascade", the screening procedure itself, the investigation of abnormal results of screening tests or the treatment of detected abnormalities or diseases. The greatest harm occurs at the second and third levels. Examples of procedures that may cause physical harm are venipuncture, mammography, colonoscopy, breast biopsy, transrectal ultrasonography, prostate biopsy, weight-reducing and cholesterol-lowering diets and radical prostatectomy. The psychological and social harm of preventive programs involves anticipated discomfort or perception of adverse effects of preventive interventions; unpleasant interactions with health care workers, time required for preventive programs, excessive overall awareness of health, anxiety over the results of a screening test implications of a positive screening test, consequences of being labelled as "sick" or "at risk," psychopathologic effects induced directly by preventive programs and, in the case of a false-negative test result, false assurance of disease-free status. Since the positive predictive value of screening tests in the general population is always low, most abnormal test results are "false-positive," these engender a great deal of psychological discuss among patients. PMID:8800074

  5. Updating ACSM's Recommendations for Exercise Preparticipation Health Screening.

    PubMed

    Riebe, Deborah; Franklin, Barry A; Thompson, Paul D; Garber, Carol Ewing; Whitfield, Geoffrey P; Magal, Meir; Pescatello, Linda S

    2015-11-01

    The purpose of the American College of Sports Medicine's (ACSM) exercise preparticipation health screening process is to identify individuals who may be at elevated risk for exercise-related sudden cardiac death and/or acute myocardial infarction. Recent studies have suggested that using the current ACSM exercise preparticipation health screening guidelines can result in excessive physician referrals, possibly creating a barrier to exercise participation. In addition, there is considerable evidence that exercise is safe for most people and has many associated health and fitness benefits; exercise-related cardiovascular events are often preceded by warning signs/symptoms; and the cardiovascular risks associated with exercise lessen as individuals become more physically active/fit. Consequently, a scientific roundtable was convened by the ACSM in June 2014 to evaluate the current exercise preparticipation health screening recommendations. The roundtable proposed a new evidence-informed model for exercise preparticipation health screening on the basis of three factors: 1) the individual's current level of physical activity, 2) presence of signs or symptoms and/or known cardiovascular, metabolic, or renal disease, and 3) desired exercise intensity, as these variables have been identified as risk modulators of exercise-related cardiovascular events. Identifying cardiovascular disease risk factors remains an important objective of overall disease prevention and management, but risk factor profiling is no longer included in the exercise preparticipation health screening process. The new ACSM exercise preparticipation health screening recommendations reduce possible unnecessary barriers to adopting and maintaining a regular exercise program, a lifestyle of habitual physical activity, or both, and thereby emphasize the important public health message that regular physical activity is important for all individuals.

  6. Advanced Accelerator Concepts Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtele, Jonathan S.

    2014-05-13

    A major focus of research supported by this Grant has been on the ALPHA antihydrogen trap. We first trapped antihydrogen in 2010 and soon thereafter demonstrated trapping for 1000s. We now have observed resonant quantum interactions with antihydrogen. These papers in Nature and Nature Physics report the major milestones in anti-atom trapping. The success was only achieved through careful work that advanced our understanding of collective dynamics in charged particle systems, the development of new cooling and diagnostics, and in- novation in understanding how to make physics measurements with small numbers of anti-atoms. This research included evaporative cooling, autoresonant excitationmore » of longitudinal motion, and centrifugal separation. Antihydrogen trapping by ALPHA is progressing towards the point when a important theories believed by most to hold for all physical systems, such as CPT (Charge-Parity-Time) invariance and the Weak Equivalence Principle (matter and antimatter behaving the same way under the influence of gravity) can be directly tested in a new regime. One motivation for this test is that most accepted theories of the Big Bang predict that we should observe equal amounts of matter and antimatter. However astrophysicists have found very little antimatter in the universe. Our experiment will, if successful over the next seven years, provide a new test of these ideas. Many earlier detailed and beautiful tests have been made, but the trapping of neutral antimatter allows us to explore the possibility of direct, model-independent tests. Successful cooling of the anti atoms, careful limits on systematics and increased trapping rates, all planned for our follow-up experiment (ALPHA-II) will reach unrivaled precision. CPT invariance implies that the spectra of hydrogen and antihydrogen should be identical. Spectra can be measured in principle with great precision, and any di erences we might observe would revolutionize fundamental physics. This is the physics motivation for our experiment, one that requires only a few dozen researchers but must effectively integrate plasma, accelerator, atomic, and fundamental physics, as well as combine numerous technologies in the control, manipulation, and measurement of neutral and non-neutral particles. The ELENA ring (to which we hope to contribute, should funding be provided) is expect, when completed, to significantly enhance the performance of antihydrogen trapping by increasing by a factor of 100 the number of antiprotons that can be successfully trapped and cooled. ELENA operation is scheduled to commence in 2017. In collaboration with LBNL scientists, we proposed a frictional cooling scheme. This is an alternative cooling method to that used by ELENA. It is less complicated, experimentally unproven, and produces a lower yield of cold antiprotons. Students and postdoctoral researchers work on the trapping, cooling, transport, and nonlinear dynamics of antiprotons bunches that are provided by the AD to ALPHA; they contribute to the operation of the experiment, to software development, and to the design and operation of experiments. Students are expected to spend at summers at CERN while taking courses; after completion of courses they typically reside at CERN for most of the half-year run. The Antiproton Decelerator [AD] at CERN, along with its experiments, is the only facility in the world where antiprotons can be trapped and cooled and combined with positrons to form cold antihydrogen, with the ultimate goal of studying CPT violation and, subsequently, gravitational interactions of antimatter. Beyond the ALPHA experiment, the group worked on beam physics problems including limits on the average current in a time-dependent period cathode and new methods to create longitudinally coherent high repetition rate soft x-ray sources and wide bandwidth mode locked x-ray lasers. We completed a detailed study of quantum mechanical effects in the transit time cooling of muons.« less

  7. Offering Global Collaboration Services beyond CERN and HEP

    NASA Astrophysics Data System (ADS)

    Fernandes, J.; Ferreira, P.; Baron, T.

    2015-12-01

    The CERN IT department has built over the years a performant and integrated ecosystem of collaboration tools, from videoconference and webcast services to event management software. These services have been designed and evolved in very close collaboration with the various communities surrounding the laboratory and have been massively adopted by CERN users. To cope with this very heavy usage, global infrastructures have been deployed which take full advantage of CERN's international and global nature. If these services and tools are instrumental in enabling the worldwide collaboration which generates major HEP breakthroughs, they would certainly also benefit other sectors of science in which globalization has already taken place. Some of these services are driven by commercial software (Vidyo or Wowza for example), some others have been developed internally and have already been made available to the world as Open Source Software in line with CERN's spirit and mission. Indico for example is now installed in 100+ institutes worldwide. But providing the software is often not enough and institutes, collaborations and project teams do not always possess the expertise, or human or material resources that are needed to set up and maintain such services. Regional and national institutions have to answer needs, which are growingly global and often contradict their operational capabilities or organizational mandate and so are looking at existing worldwide service offers such as CERN's. We believe that the accumulated experience obtained through the operation of a large scale worldwide collaboration service combined with CERN's global network and its recently- deployed Agile Infrastructure would allow the Organization to set up and operate collaborative services, such as Indico and Vidyo, at a much larger scale and on behalf of worldwide research and education institutions and thus answer these pressing demands while optimizing resources at a global level. Such services would be built over a robust and massively scalable Indico server to which the concept of communities would be added, and which would then serve as a hub for accessing other collaboration services such as Vidyo, on the same simple and successful model currently in place for CERN users. This talk will describe this vision, its benefits and the steps that have already been taken to make it come to life.

  8. Parents' perspectives of change in child physical activity & screen-viewing between Y1 (5-6) & Y4 (8-9) of primary school: implications for behaviour change.

    PubMed

    Jago, Russell; Solomon-Moore, Emma; Toumpakari, Zoi; Lawlor, Deborah A; Thompson, Janice L; Sebire, Simon J

    2018-04-19

    The aim of this study was to explore parents' responses to changes in children's physical activity and screen-time between Year 1 (5-6 years) and Year 4 (8-9 years of age) of primary school. A secondary aim was to identify how parents adapt their parenting to rapidly changing screen-based technology. Data were from the longitudinal B-Proact1v Study. Semi-structured telephone interviews were conducted between July and October 2016 with a sub-sample of 51 parents who participated in the study at Year 4. The sample was drawn from 1223 families who took part in the B-Proact1v in which the children wore an accelerometer for 5 days and mean minutes of moderate to vigorous intensity physical activity (MVPA) and sedentary minutes per day were derived. This sample was stratified according to the child's MVPA and sedentary (SED) minutes per day, and by child gender. Data were thematically analysed. Analysis yielded five main themes: 1) Parents reported how children's interests change with free play decreasing and structured activity increasing. 2) Parents highlighted how their children's independence and ability to make choices in relation to physical activity and screen-viewing increase, and that parental influence decreased, as the child gets older. 3) Parents reported that the transition from Year 1 to Year 4 appeared to be a time of substantial change in the screen-based devices that children used and the content that they viewed. 4) Parents reported that managing screen-viewing was harder compared to three years ago and a third of parents expressed concerns about the difficulty of managing screen-viewing in the future. 5) Parents reported using general principles for managing children's screen-viewing including engaging the children with rule setting and encouraging self-regulation. Parents reported that children's physical activity and sedentary screen behaviours change between Year 1 and Year 4 with children obtaining increased licence to influence the type, location and frequency with which they are active or sedentary. These changes and rapid advances in screen-viewing technology are a challenge for parents to negotiate and highlight a need to develop innovative and flexible strategies to help parents adapt to a rapidly changing environment.

  9. Design, construction and tests of a 3 GHz proton linac booster (LIBO) for cancer therapy

    NASA Astrophysics Data System (ADS)

    Berra, Paolo

    2007-12-01

    In the last ten years the use of proton beams in radiation therapy has become a clinical tool for treatment of deep-seated tumours. LIBO is a RF compact and low cost proton linear accelerator (SCL type) for hadrontherapy. It is conceived by TERA Foundation as a 3 GHz Linac Booster, to be mounted downstream of an existing cyclotron in order to boost the energy of the proton beam up to 200 MeV, needed for deep treatment (~25 cm) in the human body. With this solution it is possible to transform a low energy commercial cyclotron, normally used for eye melanoma therapy, isotope production and nuclear physics research, into an accelerator for deep-seated tumours. A prototype module of LIBO has been built and successfully tested with full RF power at CERN and with proton beam at INFN Laboratori Nazionali del Sud (LNS) in Catania, within an international collaboration between TERA Foundation, CERN, the Universities and INFN groups of Milan and Naples. The mid-term aim of the project is the technology transfer of the accumulated know-how to a consortium of companies and to bring this novel medical tool to hospitals. The design, construction and tests of the LIBO prototype are described in detail.

  10. Big data analytics for the Future Circular Collider reliability and availability studies

    NASA Astrophysics Data System (ADS)

    Begy, Volodimir; Apollonio, Andrea; Gutleber, Johannes; Martin-Marquez, Manuel; Niemi, Arto; Penttinen, Jussi-Pekka; Rogova, Elena; Romero-Marin, Antonio; Sollander, Peter

    2017-10-01

    Responding to the European Strategy for Particle Physics update 2013, the Future Circular Collider study explores scenarios of circular frontier colliders for the post-LHC era. One branch of the study assesses industrial approaches to model and simulate the reliability and availability of the entire particle collider complex based on the continuous monitoring of CERN’s accelerator complex operation. The modelling is based on an in-depth study of the CERN injector chain and LHC, and is carried out as a cooperative effort with the HL-LHC project. The work so far has revealed that a major challenge is obtaining accelerator monitoring and operational data with sufficient quality, to automate the data quality annotation and calculation of reliability distribution functions for systems, subsystems and components where needed. A flexible data management and analytics environment that permits integrating the heterogeneous data sources, the domain-specific data quality management algorithms and the reliability modelling and simulation suite is a key enabler to complete this accelerator operation study. This paper describes the Big Data infrastructure and analytics ecosystem that has been put in operation at CERN, serving as the foundation on which reliability and availability analysis and simulations can be built. This contribution focuses on data infrastructure and data management aspects and presents case studies chosen for its validation.

  11. From e+e- to Heavy Ion Collisions - Proceedings of the XXX International Symposium on Multiparticle Dynamics

    NASA Astrophysics Data System (ADS)

    Csörgő, Tamás Hegyi, Sándor Kittel, Wolfram

    The Table of Contents for the book is as follows: * Preface * QCD IN MULTIPARTICLE PRODUCTION * QCD and multiparticle production - The status of the perturbative cascade * Test of QCD predictions for multiparticle production at LEP * Multijet final states in e+e- annihilation * Tests of QCD in two photon physics at LEP * Interplay between perturbative and non-perturbative QCD in three-jet events * QCD and hadronic final states at the LHC * Transverse energy and minijets in high energy collisions * Multiparticle production at RHIC and LHC: A classical point of view * High energy interaction with the nucleus in the perturbative QCD with Nc → ∞ * DIFFRACTIVE PRODUCTION AND SMALL-x * Introduction to low-x physics and diffraction * Low-x physics at HERA * Diffractive structure functions at the Tevatron * What is the experimental evidence for the BFKL Pomeron? * Self-organized criticality in gluon systems and its consequences * Scale anomaly and dipole scattering in QCD * Pomeron and AdS/CFT correspondence for QCD * INTERPLAY BETWEEN SOFT AND HARD PHENOMENA * Inclusive jet cross sections and BFKL dynamics searches in dijet cross sections * Soft and hard interactions in p bar{p} Collisions at √ s = 1800 and 630 GeV * Recent results on particle production from OPAL * New results on αs and optimized scales * Preliminary results of the standard model Higgs boson search at LEP 2 in 2000 * Ways to go between hard and soft QCD * Alternative scenarios for fragmentation of a gluonic Lund String * A simultaneous measurement of the QCD colour charges and the strong coupling from LEP multijet data * Branching processes and Koenigs function * Soft and hard QCD dynamics in J/ψ hadroproduction * HADRONIC FINAL STATES IN 1+1, 1+h AND h+h REACTIONS * Universality in hadron production in electron-positron, lepton-hadron and hadron-hadron reactions * Search for gluonic mesons in gluon jets * Vector-to-pseudoscalar and meson-to-baryon ratios in hadronic Z decays at LEP * Polarization and spin alignment in multihadronic Z0 decays * Jet physics at HERA * Final state studies at HERA * A gauge-invariant subtraction technique for non-inclusive observables in QCD * Baryon transport in dual models and the possibility of a backward peak in diffraction * ASTROPARTICLE PHYSICS * Cosmic rays in the energy range of the knee - Recent results from KASCADE * Imaging atmospheric Čerenkov telescopes: Techniques and results * Extensive air shower simulations with CORSIKA and the influence of high-energy hadronic interaction models * Future directions in astroparticle physics and the AUGER experiment * p+A COLLISIONS * pp and pA collisions at CERN SPS * Charmonium attenuation and the quark-gluon plasma * Gluon depletion and J/ψ suppression in pA collisions * CORRELATIONS AND FLUCTUATIONS - EXPERIMENT * Experimental correlation analysis: Foundations and practice * Intermittency and correlations at LEP and at HERA * Moments of the charged-particle multiplicity distribution in Z decays at LEP * On the scale of visible jets in high energy electron-positron collisions * HBT in relativistic heavy ion collisions * Comparison of the pion emission function in hadron-hadron and heavy ion collisions * Multiparticle correlations at LEP1 * Inter-W Bose-Einstein correlations ellipse ... or not? * Colour reconnection at LEP2 * CORRELATIONS AND FLUCTUATIONS - THEORY * Correlations and fluctuations - introduction * Coherence and incoherence in Bose-Einstein correlations * Bose-Einstein correlations in cascade processes and non-extensive statistics * A systematic approach to anomalous phenomena at high energies * Reconstruction of hadronization stage in Pb+Pb collisions at 158A GeV/c * Status of ring-like correlations and wavelets * Fluctuation probes of quark deconfinement * PQCD structure and hadronization in jets and heavy-ion collisions * Net-baryon fluctuations at the QCD critical point * Fractional Fokker-Planck equation in time variable and oscillation of cumulant moments * QCD and multiplicity scaling * RELATIVISTIC HEAVY ION COLLISIONS - EXPERIMENT * Introduction to multiparticle dynamics at RHIC * First results from the STAR experiment at RHIC * Preliminary results from the PHENIX experiment at RHIC * Forward energy and multiplicity in Au-Au reactions at √ {s_{nn} } = 130{text{GeV}} * Results from the PHOBOS experiment on Au+Au collisions at RHIC * Strangeness production in Pb-Pb collisions at the CERN SPS: Results from the WA97 experiment * Direct photon production in 158A GeV 208Pb+208Pb collisions * Search for critical phenomena in Pb+Pb collisions * Recent NA49 results on Pb+Pb collisions at CERN SPS * J/ψ suppression in Pb+Pb collisions at CERN SPS * RELATIVISTIC HEAVY ION COLLISIONS - THEORY * Hyperon ratios at RHIC and the coalescence predictions at mid-rapidity * Dynamics of nuclear collisions and the dependence of the onset of anomalous J/ψ suppression on nucleon numbers of colliding nuclei * Multi-boson effects in Bose-Einstein interferometry * The source of the "third flow component" * Collective flow and multiparticle azimuthal correlations * Microscopic strangeness enhancement mechanisms at the SPS * Jet quenching at finite opacity and its application at RHIC energy * Particle rapidity density and collective phenomena in heavy ion collisions * Elliptic flow from an on-shell parton cascade * Dilepton production in ultrarelativistic heavy ion collisions * Coulomb and core/halo corrections to Bose-Einstein n-particle correlations * CP VIOLATION IN MULTIPARTICLE DYNAMICS * New results from NA48 experiment on neutral kaon rare decays * Measurement of direct CP violation by the NA48 experiment at CERN * Aspects of parity, CP, and time reversal violation in hot QCD * Decay of parity odd bubbles * Parity and time reversal studies at RHIC * Constraining CP-violating TGCS and measuring W-polarization at OPAL * Buckyballs of QCD: Gluon junction networks * List of participants

  12. Simple Screening Test for Exercise-Induced Bronchospasm in the Middle School Athlete

    ERIC Educational Resources Information Center

    Weiss, Tyler J.; Baker, Rachel H.; Weiss, Jason B.; Weiss, Michelle M.

    2013-01-01

    This article recommends and provides results from a simple screening test that could be incorporated into a standardized school evaluation for all children participating in sports and physical education classes. The test can be employed by physical educators utilizing their own gym to identify children who demonstrate signs of exercise-induced…

  13. Breast Cancer Screening by Physical Examination: Randomized Trial in the Phillipines

    DTIC Science & Technology

    2005-10-01

    J -4327 TITLE: Breast Cancer Screening by Physical Examination: Randomized Trial in the Phillipines...Examination: Randomized Trial in the 5a. CONTRACT NUMBER Phillipines 5b. GRANT NUMBER DAMD17-94- J -4327 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Grant DAMD17-94- J -4327 3 Table of

  14. A Collaborative Model for Community-Based Health Care Screening of Homeless Adolescents.

    ERIC Educational Resources Information Center

    Busen, Nancy H.; Beech, Bettina

    1997-01-01

    A multidisciplinary team from community organizations serving the homeless and from universities collaborated in screening 150 homeless adolescents for psychosocial and physical risks. The population had a history of physical, sexual, and substance abuse as well as high rates of HIV and hepatitis B. Case management by advanced practice nurses was…

  15. The ATLAS Experiment at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.

    2008-08-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  16. CERN IRRADIATION FACILITIES.

    PubMed

    Pozzi, Fabio; Garcia Alia, Ruben; Brugger, Markus; Carbonez, Pierre; Danzeca, Salvatore; Gkotse, Blerina; Richard Jaekel, Martin; Ravotti, Federico; Silari, Marco; Tali, Maris

    2017-09-28

    CERN provides unique irradiation facilities for applications in dosimetry, metrology, intercomparison of radiation protection devices, benchmark of Monte Carlo codes and radiation damage studies to electronics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Is a Perceived Activity-Friendly Environment Associated with More Physical Activity and Fewer Screen-Based Activities in Adolescents?

    PubMed

    Kopcakova, Jaroslava; Dankulincova Veselska, Zuzana; Madarasova Geckova, Andrea; Bucksch, Jens; Nalecz, Hanna; Sigmundova, Dagmar; van Dijk, Jitse P; Reijneveld, Sijmen A

    2017-01-03

    Background: The aim of this study is to explore if perception of an activity-friendly environment is associated with more physical activity and fewer screen-based activities among adolescents. Methods: We collected self-reported data in 2014 via the Health Behavior in School-aged Children cross-sectional study from four European countries ( n = 13,800, mean age = 14.4, 49.4% boys). We explored the association of perceived environment (e.g., "There are other children nearby home to go out and play with") with physical activity and screen-based activities using a binary logistic regression model adjusted for age, gender, family affluence and country. Results: An environment perceived as activity-friendly was associated with higher odds that adolescents meet recommendations for physical activity (odds ratio (OR) for one standard deviation (SD) change = 1.11, 95% confidence interval (CI) 1.05-1.18) and lower odds for excessive screen-based activities (OR for 1 SD better = 0.93, 95% CI 0.88-0.98). Conclusions: Investment into an activity-friendly environment may support the promotion of active life styles in adolescence.

  18. Screen time and physical violence in 10 to 16-year-old Canadian youth.

    PubMed

    Janssen, Ian; Boyce, William F; Pickett, William

    2012-04-01

    To examine the independent associations between television, computer, and video game use with physical violence in youth. The study population consisted of a representative cross-sectional sample of 9,672 Canadian youth in grades 6-10 and a 1-year longitudinal sample of 1,861 youth in grades 9-10. The number of weekly hours watching television, playing video games, and using a computer was determined. Violence was defined as engagement in ≥2 physical fights in the previous year and/or perpetration of ≥2-3 monthly episodes of physical bullying. Logistic regression was used to examine associations. In the cross-sectional sample, computer use was associated with violence independent of television and video game use. Video game use was associated with violence in girls but not boys. Television use was not associated with violence after controlling for the other screen time measures. In the longitudinal sample, video game use was a significant predictor of violence after controlling for the other screen time measures. Computer and video game use were the screen time measures most strongly related to violence in this large sample of youth.

  19. Predicting child physical activity and screen time: parental support for physical activity and general parenting styles.

    PubMed

    Langer, Shelby L; Crain, A Lauren; Senso, Meghan M; Levy, Rona L; Sherwood, Nancy E

    2014-07-01

    To examine relationships between parenting styles and practices and child moderate-to-vigorous physical activity (MVPA) and screen time. Participants were children (6.9 ± 1.8 years) with a body mass index in the 70-95th percentile and their parents (421 dyads). Parent-completed questionnaires assessed parental support for child physical activity (PA), parenting styles and child screen time. Children wore accelerometers to assess MVPA. Parenting style did not predict MVPA, but support for PA did (positive association). The association between support and MVPA, moreover, varied as a function of permissive parenting. For parents high in permissiveness, the association was positive (greater support was related to greater MVPA and therefore protective). For parents low in permissiveness, the association was neutral; support did not matter. Authoritarian and permissive parenting styles were both associated with greater screen time. Parenting practices and styles should be considered jointly, offering implications for tailored interventions. © The Author 2014. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Towards a 21st century telephone exchange at CERN

    NASA Astrophysics Data System (ADS)

    Valentín, F.; Hesnaux, A.; Sierra, R.; Chapron, F.

    2015-12-01

    The advent of mobile telephony and Voice over IP (VoIP) has significantly impacted the traditional telephone exchange industry—to such an extent that private branch exchanges are likely to disappear completely in the near future. For large organisations, such as CERN, it is important to be able to smooth this transition by implementing new multimedia platforms that can protect past investments and the flexibility needed to securely interconnect emerging VoIP solutions and forthcoming developments such as Voice over LTE (VoLTE). We present the results of ongoing studies and tests at CERN of the latest technologies in this area.

  1. Ageing Studies on the First Resistive-MicroMeGaS Quadruplet at GIF++ Preliminary Results

    NASA Astrophysics Data System (ADS)

    Alvarez Gonzalez, B.; Bianco, M.; Farina, E.; Iengo, P.; Kuger, F.; Lin, T.; Longo, L.; Sekhniaidze, G.; Sidiropoulou, O.; Schott, M.; Valderanis, C.; Wotschack, J.

    2018-02-01

    A resistive-MicroMeGaS quadruplet built at CERN has been installed at the new CERN Gamma Irradiation Facility (GIF++) with the aim of carrying out a long-term ageing study. Two smaller resistive bulk-MicroMeGaS produced at the CERN PCB workshop have also been installed at GIF++ in order to provide a comparison of the ageing behavior with the MicroMeGaS quadruplet. We give an overview of the ongoing tests at GIF++ in terms of particle rate, integrated charge and spatial resolution of the MicroMeGaS detectors.

  2. Media Training

    ScienceCinema

    None

    2017-12-09

    With the LHC starting up soon, the world's media are again turning their attention to CERN. We're all likely to be called upon to explain what is happening at CERN to media, friends and neighbours. The seminar will be given by BBC television news journalists Liz Pike and Nadia Marchant, and will deal with the kind of questions we're likely to be confronted with through the restart period. The training is open for everybody. Make sure you arrive early enough to get a seat - there are only 200 seats in the Globe. The session will also be webcast: http://webcast.cern.ch/

  3. The significance of Cern

    ScienceCinema

    None

    2017-12-09

    Le Prof. V.Weisskopf, DG du Cern de 1961 à 1965, est né à Vienne, a fait ses études à Göttingen et a une carrière académique particulièrement riche. Il a travaillé à Berlin, Copenhague et Berlin et est parti aux Etats Unis pour participer au projet Manhattan et était Prof. au MTT jusqu'à 1960. Revenu en Europe, il a été DG du Cern et lui a donné l'impulsion que l'on sait.

  4. Building an organic block storage service at CERN with Ceph

    NASA Astrophysics Data System (ADS)

    van der Ster, Daniel; Wiebalck, Arne

    2014-06-01

    Emerging storage requirements, such as the need for block storage for both OpenStack VMs and file services like AFS and NFS, have motivated the development of a generic backend storage service for CERN IT. The goals for such a service include (a) vendor neutrality, (b) horizontal scalability with commodity hardware, (c) fault tolerance at the disk, host, and network levels, and (d) support for geo-replication. Ceph is an attractive option due to its native block device layer RBD which is built upon its scalable, reliable, and performant object storage system, RADOS. It can be considered an "organic" storage solution because of its ability to balance and heal itself while living on an ever-changing set of heterogeneous disk servers. This work will present the outcome of a petabyte-scale test deployment of Ceph by CERN IT. We will first present the architecture and configuration of our cluster, including a summary of best practices learned from the community and discovered internally. Next the results of various functionality and performance tests will be shown: the cluster has been used as a backend block storage system for AFS and NFS servers as well as a large OpenStack cluster at CERN. Finally, we will discuss the next steps and future possibilities for Ceph at CERN.

  5. Self-service for software development projects and HPC activities

    NASA Astrophysics Data System (ADS)

    Husejko, M.; Høimyr, N.; Gonzalez, A.; Koloventzos, G.; Asbury, D.; Trzcinska, A.; Agtzidis, I.; Botrel, G.; Otto, J.

    2014-05-01

    This contribution describes how CERN has implemented several essential tools for agile software development processes, ranging from version control (Git) to issue tracking (Jira) and documentation (Wikis). Running such services in a large organisation like CERN requires many administrative actions both by users and service providers, such as creating software projects, managing access rights, users and groups, and performing tool-specific customisation. Dealing with these requests manually would be a time-consuming task. Another area of our CERN computing services that has required dedicated manual support has been clusters for specific user communities with special needs. Our aim is to move all our services to a layered approach, with server infrastructure running on the internal cloud computing infrastructure at CERN. This contribution illustrates how we plan to optimise the management of our of services by means of an end-user facing platform acting as a portal into all the related services for software projects, inspired by popular portals for open-source developments such as Sourceforge, GitHub and others. Furthermore, the contribution will discuss recent activities with tests and evaluations of High Performance Computing (HPC) applications on different hardware and software stacks, and plans to offer a dynamically scalable HPC service at CERN, based on affordable hardware.

  6. Perspectives on Stress, Parenting, and Children's Obesity-Related Behaviors in Black Families.

    PubMed

    Parks, Elizabeth P; Kazak, Anne; Kumanyika, Shiriki; Lewis, Lisa; Barg, Frances K

    2016-12-01

    Objective In an effort to develop targets for childhood obesity interventions in non-Hispanic-Black (Black) families, this study examined parental perceptions of stress and identified potential links among parental stress and children's eating patterns, physical activity, and screen-time. Method Thirty-three self-identified Black parents or grandparents of a child aged 3 to 7 years were recruited from a large, urban Black church to participate in semistructured interviews. Interviews were audio-recorded, transcribed, and analyzed using thematic analysis. Results Parents/grandparents described a pathway between how stress affected them personally and their child's eating, structured (sports/dance) and unstructured (free-play) physical activity, and screen-time usage, as well as strategies to prevent this association. Five themes emerged: stress affects parent behaviors related to food and physical activity variably; try to be healthy even with stress; parent/grandparent stress eating and parenting; stress influences family cooking, food choices, and child free-play; and screen-time use to decrease parent stress. Negative parent/grandparent response to their personal stress adversely influenced food purchases and parenting related to child eating, free-play, and screen-time. Children of parents/grandparents who ate high-fat/high-sugar foods when stressed requested these foods. In addition to structured physical activity, cooking ahead and keeping food in the house were perceived to guard against the effects of stress except during parent cravings. Parent/child screen-time helped decrease parent stress. Conclusion Parents/grandparents responded variably to stress which affected the child eating environment, free-play, and screen-time. Family-based interventions to decrease obesity in Black children should consider how stress influences parents. Targeting parent cravings and coping strategies that utilize structure in eating and physical activity may be useful intervention strategies. © 2016 Society for Public Health Education.

  7. Perspectives on Stress, Parenting, and Children’s Obesity-Related Behaviors in Black Families

    PubMed Central

    Parks, Elizabeth P.; Kazak, Anne; Kumanyika, Shiriki; Lewis, Lisa; Barg, Frances K.

    2016-01-01

    Objective In an effort to develop targets for childhood obesity interventions in non-Hispanic-Black (Black) families, this study examined parental perceptions of stress and identified potential links among parental stress and children’s eating patterns, physical activity, and screen-time. Method Thirty-three self-identified Black parents or grandparents of a child aged 3 to 7 years were recruited from a large, urban Black church to participate in semistructured interviews. Interviews were audio-recorded, transcribed, and analyzed using thematic analysis. Results Parents/grandparents described a pathway between how stress affected them personally and their child’s eating, structured (sports/dance) and unstructured (free-play) physical activity, and screen-time usage, as well as strategies to prevent this association. Five themes emerged: stress affects parent behaviors related to food and physical activity variably; try to be healthy even with stress; parent/grandparent stress eating and parenting; stress influences family cooking, food choices, and child free-play; and screen-time use to decrease parent stress. Negative parent/grandparent response to their personal stress adversely influenced food purchases and parenting related to child eating, free-play, and screen-time. Children of parents/grandparents who ate high-fat/high-sugar foods when stressed requested these foods. In addition to structured physical activity, cooking ahead and keeping food in the house were perceived to guard against the effects of stress except during parent cravings. Parent/child screen-time helped decrease parent stress. Conclusion Parents/grandparents responded variably to stress which affected the child eating environment, free-play, and screen-time. Family-based interventions to decrease obesity in Black children should consider how stress influences parents. Targeting parent cravings and coping strategies that utilize structure in eating and physical activity may be useful intervention strategies. PMID:26733488

  8. Cardiovascular screening in adolescents and young adults: a prospective study comparing the Pre-participation Physical Evaluation Monograph 4th Edition and ECG.

    PubMed

    Fudge, Jessie; Harmon, Kimberly G; Owens, David S; Prutkin, Jordan M; Salerno, Jack C; Asif, Irfan M; Haruta, Alison; Pelto, Hank; Rao, Ashwin L; Toresdahl, Brett G; Drezner, Jonathan A

    2014-08-01

    This study compares the accuracy of cardiovascular screening in active adolescents and young adults using a standardised history, physical examination and resting 12-lead ECG. Participants were prospectively screened using a standardised questionnaire based on the Pre-participation Physical Evaluation Monograph 4th Edition (PPE-4), physical examination and ECG interpreted using modern standards. Participants with abnormal findings had focused echocardiography and further evaluation. Primary outcomes included disorders associated with sudden cardiac arrest (SCA). From September 2010 to July 2011, 1339 participants underwent screening: age 13-24 (mean 16) years, 49% male, 68% Caucasian, 17% African-American and 1071 (80%) participating in organised sports. Abnormal history responses were reported on 916 (68%) questionnaires. After physician review, 495/916 (54%) participants with positive questionnaires were thought to have non-cardiac symptoms and/or a benign family history and did not warrant additional evaluation. Physical examination was abnormal in 124 (9.3%) participants, and 72 (5.4%) had ECG abnormalities. Echocardiograms were performed in 586 (44%) participants for abnormal history (31%), physical examination (8%) or ECG (5%). Five participants (0.4%) were identified with a disorder associated with SCA, all with ECG-detected Wolff-Parkinson-White. The false-positive rates for history, physical examination and ECG were 31.3%, 9.3% and 5%, respectively. A standardised history and physical examination using the PPE-4 yields a high false-positive rate in a young active population with limited sensitivity to identify those at risk for SCA. ECG screening has a low false-positive rate using modern interpretation standards and improves detection of primary electrical disease at risk of SCA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Testicular Cancer Screening (PDQ®)—Health Professional Version

    Cancer.gov

    For testicular cancer, there is no standard or routine screening test. Review the limited evidence on the benefits and harms of screening for testicular cancer using ultrasound, physical examination, and self-examination in this expert-reviewed summary.

  10. Library fingerprints: a novel approach to the screening of virtual libraries.

    PubMed

    Klon, Anthony E; Diller, David J

    2007-01-01

    We propose a novel method to prioritize libraries for combinatorial synthesis and high-throughput screening that assesses the viability of a particular library on the basis of the aggregate physical-chemical properties of the compounds using a naïve Bayesian classifier. This approach prioritizes collections of related compounds according to the aggregate values of their physical-chemical parameters in contrast to single-compound screening. The method is also shown to be useful in screening existing noncombinatorial libraries when the compounds in these libraries have been previously clustered according to their molecular graphs. We show that the method used here is comparable or superior to the single-compound virtual screening of combinatorial libraries and noncombinatorial libraries and is superior to the pairwise Tanimoto similarity searching of a collection of combinatorial libraries.

  11. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    DOE PAGES

    Quigg, Chris

    2015-08-24

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. Then, a new round of experimentation is beginning, with the energy of the proton–proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. I summarize what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  12. The ALICE Pixel Detector

    NASA Astrophysics Data System (ADS)

    Mercado-Perez, Jorge

    2002-07-01

    The present document is a brief summary of the performed activities during the 2001 Summer Student Programme at CERN under the Scientific Summer at Foreign Laboratories Program organized by the Particles and Fields Division of the Mexican Physical Society (Sociedad Mexicana de Fisica). In this case, the activities were related with the ALICE Pixel Group of the EP-AIT Division, under the supervision of Jeroen van Hunen, research fellow in this group. First, I give an introduction and overview to the ALICE experiment; followed by a description of wafer probing. A brief summary of the test beam that we had from July 13th to July 25th is given as well.

  13. Hadron collider searches for diboson resonances

    NASA Astrophysics Data System (ADS)

    Dorigo, Tommaso

    2018-05-01

    This review covers results of searches for new elementary particles that decay into boson pairs (dibosons), performed at the CERN Large Hadron Collider in proton-proton collision data collected by the ATLAS and CMS experiments at 7-, 8-, and 13-TeV center-of-mass energy until the year 2017. The available experimental results of the analysis of final states including most of the possible two-object combinations of W and Z bosons, photons, Higgs bosons, and gluons place stringent constraints on a variety of theoretical ideas that extend the standard model, pushing into the multi-TeV region the scale of allowed new physics phenomena.

  14. Graphics Processing Units for HEP trigger systems

    NASA Astrophysics Data System (ADS)

    Ammendola, R.; Bauce, M.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Fantechi, R.; Fiorini, M.; Giagu, S.; Gianoli, A.; Lamanna, G.; Lonardo, A.; Messina, A.; Neri, I.; Paolucci, P. S.; Piandani, R.; Pontisso, L.; Rescigno, M.; Simula, F.; Sozzi, M.; Vicini, P.

    2016-07-01

    General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.

  15. Dissecting the Science of "Angels and Demons" or Antimatter and Other Matters (Vernon W. Hughes Memorial Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Howard

    2009-05-27

    Howard Gordon, a physicist from the U.S. Department of Energy’s Brookhaven National Laboratory, and local educators will separate the science facts from the science fiction of “Angels & Demons,” a major motion picture based on Dan Brown’s best-selling novel. The film, which opens nationally in theaters today, focuses on a plot to destroy the Vatican using antimatter stolen from the Large Hadron Collider (LHC) at the European particle physics laboratory CERN. Speakers will explain the real science of the LHC, including antimatter – oppositely charged cousins of ordinary matter with intriguing properties.

  16. Angels and Demons: The Science Behind the Scenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Norman

    Does antimatter really exist? How and why do scientists produce and use it? Does CERN exist and is there an underground complex deep beneath the Swiss/French border? Is truth stranger than fiction? Find out at the coming public lecture. On Tuesday, May 12, SLAC physicist Norman Graf will discuss the real science behind Angels & Demons, Dan Brown's blockbuster novel and the basis of an upcoming Tom Hanks movie. Graf's' talk is one in a series of public lectures across the U.S., Canada and Puerto Rico to share the science of antimatter and the Large Hadron Collider, and the excitementmore » of particle physics research.« less

  17. A measurement of hadron production cross sections for the simulation of accelerator neutrino beams and a search for muon-neutrino to electron-neutrino oscillations in the Δm 2 about equals 1-eV 2 region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, David W.

    2008-01-01

    A measurement of hadron production cross-sections for the simulation of accelerator neutrino beams and a search for muon neutrino to electron neutrino oscillations in the Δm 2 ~ 1 eV 2} region. This dissertation presents measurements from two different high energy physics experiments with a very strong connection: the Hadron Production (HARP) experiment located at CERN in Geneva, Switzerland, and the Mini Booster Neutrino Experiment (Mini-BooNE) located at Fermilab in Batavia, Illinois.

  18. The MPGD-based photon detectors for the upgrade of COMPASS RICH-1

    NASA Astrophysics Data System (ADS)

    Alexeev, M.; Azevedo, C. D. R.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Finger, M.; Finger, M.; Fischer, H.; Gobbo, B.; Gregori, M.; Hamar, G.; Herrmann, F.; Levorato, S.; Maggiora, A.; Makke, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A. B.; Santos, C. A.; Sbrizzai, G.; Schopferer, S.; Slunecka, M.; Steiger, L.; Sulc, M.; Tessarotto, F.; Veloso, J. F. C. A.

    2017-12-01

    The RICH-1 Detector of the COMPASS experiment at CERN SPS has undergone an important upgrade for the 2016 physics run. Four new photon detectors, based on Micro Pattern Gaseous Detector technology and covering a total active area larger than 1.2 m2 have replaced the previously used MWPC-based photon detectors. The upgrade answers the challenging efficiency and stability quest for the new phase of the COMPASS spectrometer physics programme. The new detector architecture consists in a hybrid MPGD combination of two Thick Gas Electron Multipliers and a MicroMegas stage. Signals, extracted from the anode pad by capacitive coupling, are read-out by analog F-E based on the APV25 chip. The main aspects of the COMPASS RICH-1 photon detectors upgrade are presented focussing on detector design, engineering aspects, mass production, the quality assessment and assembly challenges of the MPGD components. The status of the detector commissioning is also presented.

  19. First Operational Experience With a High-Energy Physics Run Control System Based on Web Technologies

    NASA Astrophysics Data System (ADS)

    Bauer, Gerry; Beccati, Barbara; Behrens, Ulf; Biery, Kurt; Branson, James; Bukowiec, Sebastian; Cano, Eric; Cheung, Harry; Ciganek, Marek; Cittolin, Sergio; Coarasa Perez, Jose Antonio; Deldicque, Christian; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Gulmini, Michele; Hatton, Derek; Hwong, Yi Ling; Loizides, Constantin; Ma, Frank; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Meyer, Andreas; Mommsen, Remigius K.; Moser, Roland; O'Dell, Vivian; Oh, Alexander; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Sumorok, Konstanty; Yoon, Andre Sungho

    2012-08-01

    Run control systems of modern high-energy particle physics experiments have requirements similar to those of today's Internet applications. The Compact Muon Solenoid (CMS) collaboration at CERN's Large Hadron Collider (LHC) therefore decided to build the run control system for its detector based on web technologies. The system is composed of Java Web Applications distributed over a set of Apache Tomcat servlet containers that connect to a database back-end. Users interact with the system through a web browser. The present paper reports on the successful scaling of the system from a small test setup to the production data acquisition system that comprises around 10.000 applications running on a cluster of about 1600 hosts. We report on operational aspects during the first phase of operation with colliding beams including performance, stability, integration with the CMS Detector Control System and tools to guide the operator.

  20. Search for Hidden Particles: a new experiment proposal

    NASA Astrophysics Data System (ADS)

    De Lellis, G.

    2015-08-01

    Searches for new physics with accelerators are being performed at the LHC, looking for high massive particles coupled to matter with ordinary strength. We propose a new experiment meant to search for very weakly coupled particles in the few GeV mass domain. The existence of such particles, foreseen in different models beyond the Standard Model, is largely unexplored from the experimental point of view. A beam dump facility, built at CERN in the north area, using 400 GeV protons is a copious factory of charmed hadrons and it could be used to probe the existence of such particles. The beam dump is also an ideal source of tau neutrinos, the less known particle in the Standard Model. In particular, tau anti-neutrinos have not been observed so far. We therefore propose an experiment to search for hidden particles and study tau neutrino physics at the same time.

Top