Science.gov

Sample records for cervical intervertebral disc

  1. MRI evaluation of spontaneous intervertebral disc degeneration in the alpaca cervical spine.

    PubMed

    Stolworthy, Dean K; Bowden, Anton E; Roeder, Beverly L; Robinson, Todd F; Holland, Jacob G; Christensen, S Loyd; Beatty, Amanda M; Bridgewater, Laura C; Eggett, Dennis L; Wendel, John D; Stieger-Vanegas, Susanne M; Taylor, Meredith D

    2015-12-01

    Animal models have historically provided an appropriate benchmark for understanding human pathology, treatment, and healing, but few animals are known to naturally develop intervertebral disc degeneration. The study of degenerative disc disease and its treatment would greatly benefit from a more comprehensive, and comparable animal model. Alpacas have recently been presented as a potential large animal model of intervertebral disc degeneration due to similarities in spinal posture, disc size, biomechanical flexibility, and natural disc pathology. This research further investigated alpacas by determining the prevalence of intervertebral disc degeneration among an aging alpaca population. Twenty healthy female alpacas comprised two age subgroups (5 young: 2-6 years; and 15 older: 10+ years) and were rated according to the Pfirrmann-grade for degeneration of the cervical intervertebral discs. Incidence rates of degeneration showed strong correlations with age and spinal level: younger alpacas were nearly immune to developing disc degeneration, and in older animals, disc degeneration had an increased incidence rate and severity at lower cervical levels. Advanced disc degeneration was present in at least one of the cervical intervertebral discs of 47% of the older alpacas, and it was most common at the two lowest cervical intervertebral discs. The prevalence of intervertebral disc degeneration encourages further investigation and application of the lower cervical spine of alpacas and similar camelids as a large animal model of intervertebral disc degeneration.

  2. Fatigue responses of the human cervical spine intervertebral discs.

    PubMed

    Yoganandan, Narayan; Umale, Sagar; Stemper, Brain; Snyder, Bryan

    2017-05-01

    Numerous studies have been conducted since more than fifty years to understand the behavior of the human lumbar spine under fatigue loading. Applications have been largely driven by low back pain and human body vibration problems. The human neck also sustains fatigue loading in certain type of civilian occupational and military operational activities, and research is very limited in this area. Being a visco-elastic structure, it is important to determine the stress-relaxation properties of the human cervical spine intervertebral discs to enable accurate simulations of these structures in stress-analysis models. While finite element models have the ability to incorporate viscoelastic material definitions, data specific to the cervical spine are limited. The present study was conducted to determine these properties and understand the responses of the human lower cervical spine discs under large number of cyclic loads in the axial compression mode. Eight disc segments consisting of the adjacent vertebral bodies along with the longitudinal ligaments were subjected to compression, followed by 10,000 cycles of loading at 2 or 4Hz frequency by limiting the axial load to approximately 150 N, and subsequent to resting period, subjected to compression to extract the stress-relaxation properties using the quasi-linear viscoelastic (QLV) material model. The coefficients of the model and disc displacements as a function of cycles and loading frequency are presented. The disc responses demonstrated a plateauing effect after the first 2000 to 4000 cycles, which were highly nonlinear. The paper compares these responses with the "work hardening" phenomenon proposed in clinical literature for the lumbar spine to explain the fatigue behavior of the discs. The quantitative results in terms of QLV coefficients can serve as inputs to complex finite element models of the cervical spine to delineate the local and internal load-sharing responses of the disc segment. Published by Elsevier

  3. Higher risk for cervical herniated intervertebral disc in physicians

    PubMed Central

    Liu, Cheng; Huang, Chien-Cheng; Hsu, Chien-Chin; Lin, Hung-Jung; Guo, How-Ran; Su, Shih-Bin; Wang, Jhi-Joung; Weng, Shih-Feng

    2016-01-01

    Abstract There is no study about cervical herniated intervertebral disc (cervical HIVD) in physicians in the literature; therefore, we conceived a retrospective nationwide, population-based cohort study to elucidate the topic. We identified 26,038 physicians, 33,057 non-physician healthcare providers (HCPs), and identical numbers of non-HCP references (i.e., general population). All cohorts matched a 1:1 ratio with age and gender, and each were chosen from the Taiwan National Health Insurance Research Database (NHIRD). We compared cervical HIVD risk among physicians, nonphysician HCPs, and non-HCP references and performed a follow-up between 2007 and 2011. We also made comparisons among physician specialists. Both physicians and nonphysician HCPs had higher cervical HIVD risk than non-HCP references (odds ratio [OR]: 1.356; 95% confidence interval (CI): 1.162–1.582; OR: 1.383; 95% CI: 1.191–1.605, respectively). There was no significant difference of cervical HIVD risk between physicians and nonphysician HCPs. In the comparison among physician specialists, orthopedists had a higher cervical HIVD risk than other specialists, but the difference was not statistically significant (adjusted OR: 1.547; 95% CI: 0.782–3.061). Physicians are at higher cervical HIVD risk than the general population. Because unknown confounders could exist, further prospective studies are needed to identify possible causation. PMID:27741118

  4. [Biomechanical research on morphometric changes in adjacent inferior cervical intervertebral foramen after artificial disc replacement].

    PubMed

    Wang, Bin; Zhang, Zhigang; Li, Kanghua

    2007-10-01

    To explore changes in the height and width of the cervical intervertebral foramina of C6.7 before and after the C5.6 discetomy, the replacement or the anterior intervertebral fusion so as to provide the theoretical basis for the clinical practice. Eleven fresh cervical spinal specimens were obtained from young adult cadavers. The specimens of C5.6 were divided into the integrity group, the discectomy group, the artificial disc replacement group, and the intervertebral fusion group. The range of variety (ROV) of the C6.7 intervertebral foramen dimensions (height, width) before and after the loading tests (0.75, 1.50 Nm) were measured in the 4 groups. The C6.7 intervetebral foramen height and width increased significantly during flexion (P < 0.01) but decreased significantly during extension (P < 0.01). There was a significant difference between the two test conditions in each of the 4 groups (P < 0.01). However, in the two test conditions there was no significant difference in ROV of the C6,7 intervetebral foramen height and width during flexion and extension between the integrity group, the discectomy, and the artificial disc replacement group (P > 0.05), but a significant difference in the above changes existed in the intervertebral fusion group when compared with the other 3 groups (P < 0.05). In the same group and under the same conditions, the ROV of the C6.7 intervetebral foramen height and width was significantly different in the two test conditions (P < 0.01). The results have indicated that artificial disc replacement can meet the requirements of the normal cervical vitodynamics. The adjacent inferior cervical intervetebral foramen increases during flexion but decreases during extension. The intervertebral fusion is probably one of the causes for the cervical degeneration or the accelerated degeneration and for the cervical spondylotic radiculopathy and the brachial plexus compression.

  5. Comparison of the intervertebral disc spaces between axial and anterior lean cervical traction

    PubMed Central

    Chung, Chin-Teng; Tsai, Sen-Wei; Chen, Chun-Jung; Wu, Ting-Chung; Wang, David; Lan, Haw-Chang H.

    2009-01-01

    The insufficient investigations on the changes of spinal structures during traction prevent further exploring the possible therapeutic mechanism of cervical traction. A blind randomized crossover-design study was conducted to quantitatively compare the intervertebral disc spaces between axial and anterior lean cervical traction in sitting position. A total of 96 radiographic images from the baseline measurements, axial and anterior lean tractions in 32 asymptomatic subjects were digitized for further analysis. The intra- and inter-examiner reliabilities for measuring the intervertebral disc spaces were in good ranges (ICCs = 0.928–0.942). With the application of anterior lean traction, the statistical increases were detected both in anterior and in posterior disc spaces compared to the baseline (0.29 mm and 0.24 mm; both P < 0.01) and axial traction (0.16 mm and 0.35 mm; both P < 0.01). The greater intervertebral disc spaces obtained during anterior lean traction might be associated with the more even distribution of traction forces over the anterior and posterior neck structures. The neck extension moment through mandible that generally occurred in the axial traction could be counteracted by the downward force of head weight during anterior lean traction. This study quantitatively demonstrated that anterior lean traction in sitting position provided more intervertebral disc space enlargements in both anterior and posterior aspects than axial traction did. These findings may serve as a therapeutic reference when cervical traction is suggested. PMID:19533177

  6. Qualitative and quantitative assessment of degeneration of cervical intervertebral discs and facet joints.

    PubMed

    Walraevens, Joris; Liu, Baoge; Meersschaert, Joke; Demaerel, Philippe; Delye, Hans; Depreitere, Bart; Vander Sloten, Jos; Goffin, Jan

    2009-03-01

    Degeneration of intervertebral discs and facet joints is one of the most frequently encountered spinal disorders. In order to describe and quantify degeneration and evaluate a possible relationship between degeneration and biomechanical parameters, e.g., the intervertebral range of motion and intradiscal pressure, a scoring system for degeneration is mandatory. However, few scoring systems for the assessment of degeneration of the cervical spine exist. Therefore, two separate objective scoring systems to qualitatively and quantitatively assess the degree of cervical intervertebral disc and facet joint degeneration were developed and validated. The scoring system for cervical disc degeneration consists of three variables which are individually scored on neutral lateral radiographs: "height loss" (0-4 points), "anterior osteophytes" (0-3 points) and "endplate sclerosis" (0-2 points). The scoring system for facet joint degeneration consists of four variables which are individually scored on neutral computed tomography scans: "hypertrophy" (0-2 points), "osteophytes" (0-1 point), "irregularity" on the articular surface (0-1 point) and "joint space narrowing" (0-1 point). Each variable contributes with varying importance to the overall degeneration score (max 9 points for the scoring system of cervical disc degeneration and max 5 points for facet joint degeneration). Degeneration of 20 discs and facet joints of 20 patients was blindly assessed by four raters: two neurosurgeons (one senior and one junior) and two radiologists (one senior and one junior), firstly based on first subjective impression and secondly using the scoring systems. Measurement errors and inter- and intra-rater agreement were determined. The measurement error of the scoring system for cervical disc degeneration was 11.1 versus 17.9% of the subjective impression results. This scoring system showed excellent intra-rater agreement (ICC = 0.86, 0.75-0.93) and excellent inter-rater agreement (ICC = 0

  7. Correlation between T2∗ (T2 star) relaxation time and cervical intervertebral disc degeneration

    PubMed Central

    Huang, Minghua; Guo, Yong; Ye, Qiong; Chen, Lei; Zhou, Kai; Wang, Qingjun; Shao, Lixin; Shi, Qinglei; Chen, Chun

    2016-01-01

    Abstract Purpose: To demonstrate the potential benefits of T2∗ relaxation time of intervertebral discs (IVDs) regarding the detection and grading of degenerative disc disease using 3.0-T magnetic resonance imaging (MRI) in a clinical setting. Materials and Methods: Cervical sagittal T2-weighted, T2∗ relaxation MRI was performed at 3.0-T in 61 subjects, covering discs C2–3 to C6–7. All discs were morphologically assessed based on the Pfirrmann grade, and regions of interests (ROIs) were drawn over the T2∗ mapping. Receiver operating characteristic (ROC) analysis was performed among grades to determine the cut-off values. Results: Cervical intervertebral discs (IVDs) of patients were commonly determined to be at Pfirrmann grades III to V. The nucleus pulposus (NP) values did not differ significantly between sexes at the same anatomic level (P > 0.05). In the NP, the T2∗ values tended to decrease with increasing grade (P < 0.000), and a significant difference was found in the T2 values between grades I to V (P < 0.05). T2∗ values based on disc degeneration level classification were as follows: grade I (>30 milliseconds), grade II (24.55–29.99 milliseconds), grade III (21.65–24.54 milliseconds), grade IV (18.35–21.64 milliseconds), and grade V (<18.34 milliseconds). Conclusion: Our standardized method of region-specific quantitative T2∗ relaxation time evaluation seems capable of characterizing different degrees of disc degeneration quantitatively. The T2∗ values obtained in these cervical IVDs may serve as baseline values for future T2∗ measurements in both healthy and degenerated cervical discs. PMID:27893652

  8. Cervical intervertebral disc herniation treatment via radiofrequency combined with low-dose collagenase injection into the disc interior using an anterior cervical approach

    PubMed Central

    Wang, Zhi-Jian; Zhu, Meng-Ye; Liu, Xiao-Jian; Zhang, Xue-Xue; Zhang, Da-Ying; Wei, Jian-Mei

    2016-01-01

    Abstract This study aimed to determine the therapeutic effect of radiofrequency combined with low-dose collagenase injected into the disc interior via an anterior cervical approach for cervical intervertebral disc herniation. Forty-three patients (26–62-year old; male/female ratio: 31/12) with cervical intervertebral disc herniation received radiofrequency combined with 60 to 100 U of collagenase, injected via an anterior cervical approach. The degree of nerve function was assessed using the current Japanese Orthopaedic Association (JOA) scoring system at 3 and 12 months postoperation. A visual analogue scale (VAS) was used to evaluate the degree of pain preoperation and 7 days postoperation. The preoperative and 3 month postoperative protrusion areas were measured and compared via magnetic resonance imaging (MRI) and picture archiving and communication systems (PACS). Compared with the preoperative pain scores, the 7-day postoperative pain was significantly reduced (P <0.01). The excellent and good rates of nerve function amelioration were 93.0% and 90.7% at 3 and 12 months postoperation, respectively, which was not significantly different. Twenty-seven cases exhibited a significantly reduced protrusion area (P <0.01) at 3 months postoperation. No serious side effects were noted. To our knowledge, this is the first study to demonstrate that the use of radiofrequency combined with low-dose collagenase injection into the disc interior via an anterior cervical approach is effective and safe for the treatment of cervical intervertebral disc herniation. PMID:27336892

  9. Study of the influence of degenerative intervertebral disc changes on the deformation behavior of the cervical spine segment in flexion

    NASA Astrophysics Data System (ADS)

    Kolmakova, Tatyana V.

    2016-11-01

    The paper describes the model of the cervical spine segment (C3-C4) and the calculation results of the deformation behavior of the segment under degenerative changes of the intervertebral disc. The segment model was built based on the experimental literature data taking into account the presence of the cortical and cancellous bone tissue of vertebral bodies. The calculation results show that degenerative changes of the intervertebral disc cause the immobility of the C3 vertebra at flexion.

  10. Cervical intervertebral foraminal disc extrusion in dogs: clinical presentation, MRI characteristics and outcome after medical management.

    PubMed

    Bersan, E; McConnell, F; Trevail, R; Behr, S; De Decker, S; Volk, H A; Smith, P M; Gonçalves, R

    2015-06-06

    The aim of the present study was to retrospectively evaluate the clinical signs, MRI characteristics, interobserver agreement and outcome after medical treatment in dogs affected by cervical intervertebral foraminal disc extrusion (CIFDE). The medical records of three referral institutions were searched for dogs diagnosed with CIFDE between 2010 and 2012. Thirteen dogs were identified with CIFDE; affected dogs often had a normal neurological examination, with cervical hyperaesthesia and lameness as the most common clinical signs. On MRI, sagittal images showed no evidence of compression of the spinal cord; CIFDE could be identified only on transverse sections in all cases. An excellent interobserver agreement was found in the localisation of the affected intervertebral disc space, and a substantial agreement was found on the detection of CIFDE versus foraminal stenosis caused by overgrowing articular processes. All but two dogs recovered completely, and they were considered free of clinical signs without analgesia within a median of 7.5 weeks (range: 2-20) after medical management was started. The remaining two dogs were surgically treated followed by complete recovery. In view of our findings, the importance of a thorough MRI investigation in dogs presenting with cervical hyperaesthesia as the sole clinical sign should be highlighted. British Veterinary Association.

  11. EVALUATION OF TERMINAL VERTEBRAL PLATE ON CERVICAL SPINE AT DIFFERENT AGE GROUPS AND ITS CORRELATION WITH INTERVERTEBRAL DISC THICKNESS

    PubMed Central

    Luiz Vieira, Juliano Silveira; da Silva Herrero, Carlos Fernando Pereira; Porto, Maximiliano Aguiar; Nogueira Barbosa, Marcello Henrique; Garcia, Sérgio Britto; Zambelli Ramalho, Leandra Náira; Aparecido Defino, Helton Luiz

    2015-01-01

    To evaluate, by means of histomorphometry, terminal vertebral plate thickness, intervertebral disc thickness and its correlation on different age groups, seeking to identify its correlation. Methods: C4-C5 and C5-C6 cervical segments removed from human cadavers of both genders were assessed and divided into five groups of 10-year age intervals, from 21 years old. TVP and intervertebral disc thickness evaluation was made by means of histomorphometry of histological slides stained with hematoxylin and eosyn. Lower C4 TVP, upper C5 TVP, and upper C6 TVP de were compared between each other and to the interposed intervertebral disc thickness between relevant TVP. Results: The thickness of terminal vertebral plates adjacent to the same ID did not show statistic differences. However, the comparison of upper and lower vertebral plates thickness on the same cervical vertebra (C5), showed statistical difference on all age groups studied. We found a statistical correlation coefficient above 80% between terminal vertebral plate and adjacent intervertebral disc, with a proportional thickness reduction of both structures on the different cervical levels studied, and also on the different age groups assessed. Conclusion: Terminal vertebral plate shows a morphologic correlation with the intervertebral disc next to it, and does not show correlation with the terminal vertebral plate on the same vertebra. PMID:26998448

  12. Effects of Ge Gen Decoction on PGE2 content and COX activity in the degenarated cervical intervertebral discs of rats.

    PubMed

    Jun, Zhou; Fang, Suping; Huo, Hairu; Qi, Yun; Guo, Shuying; Jiang, Tingliang; Shi, Qi

    2005-09-01

    After the rat model of cervical spondylosis was developed for 6 months, the PGE2 content and COX activity in the cervical intervertebral discs were determined respectively by radioimmunoassay and catalytic activity assay. The results indicated that the PGE2 content and COX activity in the model rat increased significantly, and that Ge Gen Decoction could down-regulate the PGE2 content and inhibit COX activity. This is possibly one of the mechanisms of Ge Gen Decoction for treating cervical spondylosis.

  13. Prolonged upright posture induces degenerative changes in intervertebral discs of rat cervical spine.

    PubMed

    Liang, Qian-Qian; Cui, Xue-Jun; Xi, Zhi-Jie; Bian, Qin; Hou, Wei; Zhao, Yong-Jian; Shi, Qi; Wang, Yong-Jun

    2011-01-01

    An in vivo study of the cervical intervertebral discs (IVDs) response to upright posture was performed using an amputated bipedal rat model. To investigate the effects of upright posture on IVDs of rat cervical spine. The distinct arrangement of human neck muscle from that of cat and rhesus indicated that in the evolution process, upright posture might have affected cervical spine of human ancestors. However, the effects of upright posture on cervical spine have not been assessed. Forty-one-month-old rats were randomly divided into 5-month-control, 5-month-surgery, 7-month-control, and 7-month surgery group (n = 10 per group). Both forelimbs of 2 surgery group rats were amputated, and those rats were then induced to be upright in the custom-made cages. Two control group rats were kept in regular cages. These rats were respectively killed at the fifth and seventh month after surgery and the IVD samples of lumbar spine were harvested for histologic and immunohistochemical studies. Total RNA isolated from these samples were used for real-time polymerase chain reaction of type II collagen (Col2a1), type X collagen, matrix metalloproteinase 13 (MMP-13), MMP-3, aggre-can, and aggrecanase-2 (ADAMTS-5). Upright posture affects histologic changes of the cervical IVDs such as fissures of anulus fibrosus and decreased height of disc, decreased protein level of Col2a1 at nucleus pulposus and anulus fibrosus, up-regulated MMP-13, MMP-3, ADAMTS-5, and type X collagen mRNA expression, and downregulated mRNA expression of Col2a1 and aggrecan. Upright stance accelerates cervical disc degeneration in rats.

  14. Complete cervical intervertebral disc extrusion with spinal cord injury in the absence of facet dislocation: a case report.

    PubMed

    Yue, James J; Lawrence, Brandon D; Sutton, Karen M; Strugar, John J; Haims, Andrew H

    2004-05-01

    Complete cervical disc complex extrusion, defined as the extrusion of both cartilaginous end-plates, the entire nucleus pulposus, and portions of the anulus fibrosus, is rare. A case of complete cervical disc complex extrusion with spinal cord injury in the absence of facet dislocation or subluxation in an obtunded patient is reported. To report an unusual presentation of spinal cord injury and the occurrence of complete traumatic cervical disc complex extrusion in the absence of facet dislocation and normal plain radiographic findings. Traumatic cervical disc herniation occurs in 54% to 80% of patients with facet dislocation. A report of complete extrusion of a cervical intervertebral disc complex (cartilaginous endplate, anulus, and nucleus pulposus) with spinal cord injury in the absence of dislocation has not been described, to the best of the authors' knowledge. A clinical and radiographic review of such a case of complete traumatic cervical disc complex herniation in the absence of dislocation was performed. Plain radiographic imaging did not show any injury. A nondisplaced fracture of the left inferior facet joint was evident on computed tomography. The diagnosis of C4-C5 intervertebral disc extrusion was made only after magnetic resonance imaging. The vacuum effect of complete disc extrusion created a "white-out" appearance to the disc space on the sagittal T2 magnetic resonance image. The patient underwent anterior cervical discectomy and fusion with additional posterior cervical fusion. He subsequently regained functional strength against gravity in two of four limbs. He remains completely paraparetic in the left upper extremity and partially paraparetic in the left lower extremity. The case report highlights the occurrence of complete traumatic cervical disc extrusion in the absence of facet dislocation with normal plain radiographic findings and consequent spinal cord injury, which can accompany such an injury.

  15. Ranges of Cervical Intervertebral Disc Deformation during an In-Vivo Dynamic Flexion-Extension of the Neck.

    PubMed

    Yu, Yan; Mao, Haiqing; Li, Jing-Sheng; Tsai, Tsung-Yuan; Cheng, Liming; Wood, Kirkham B; Li, Guoan; Cha, Thomas D

    2017-03-23

    While abnormal loading is widely believed to cause cervical spine disc diseases, in-vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in-vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system and MRI based 3D modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6 and C6/7). Five points (anterior, center, posterior, left and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.

  16. Cervical intervertebral disc calcification combined with ossification of posterior longitudinal ligament in an-11-year old girl: case report and review of literature.

    PubMed

    Wang, Guoqiang; Kang, Yijun; Chen, Fei; Wang, Bing

    2016-02-01

    To present the clinical feature, radiographic characteristic, treatment and prognosis of an 11 years old girl with cervical intervertebral disc calcification combined with ossification of posterior longitudinal ligament(OPLL). Calcification is the degeneration of intervertebral disc, mostly occurs in the cervical segment. The pediatric cervical intervertebral disc calcification associated with OPLL is very rare. The etiology and treatment guidelines of this complex are poorly known. An 11 years old girl experienced neck pain for 3 months,aggravated for half a month. Neurological examination revealed the limitation of cervical spine motion and numbness of the upper left extremity. The spine radiograph, computed tomography and magnetic resonance imaging confirmed the diagnosis of cervical intervertebral disc calcification accompanied with OPLL. Conservative intervention was performed, followed up with an observation for 6 months. On admission, the spine radiograph and computed tomography found the calcified intervertebral disc of C5/6 and ossified posterior longitudinal ligament at C5/6,C6 level, leading to spinal canal stenosis and spine cord compression. After a two-week in-hospital conservative treatment, the patient's neurologic symptoms were relieved. Two months later, the computed tomography confirmed the calcification of C5/6 intervertebral disc and ossified mass decreased significantly, spinal stenosis subsided. Six months later, the patient felt no discomfort, the computed tomography showed the ossified mass completely disappeared, only a small calcification remained at C5/6 intervertebral disc. Intervertebral disc calcification associated with OPLL is extremely rare in children. In this case, OPLL is a temporary condition highly related to the disease process of Intervertebral disc calcification. The patient has a satisfactory recovery after non-surgical intervention. Conservative treatment is a prospective choice.

  17. Correlation between T2* (T2 star) relaxation time and cervical intervertebral disc degeneration: An observational study.

    PubMed

    Huang, Minghua; Guo, Yong; Ye, Qiong; Chen, Lei; Zhou, Kai; Wang, Qingjun; Shao, Lixin; Shi, Qinglei; Chen, Chun

    2016-11-01

    To demonstrate the potential benefits of T2 relaxation time of intervertebral discs (IVDs) regarding the detection and grading of degenerative disc disease using 3.0-T magnetic resonance imaging (MRI) in a clinical setting. Cervical sagittal T2-weighted, T2 relaxation MRI was performed at 3.0-T in 61 subjects, covering discs C2-3 to C6-7. All discs were morphologically assessed based on the Pfirrmann grade, and regions of interests (ROIs) were drawn over the T2 mapping. Receiver operating characteristic (ROC) analysis was performed among grades to determine the cut-off values. Cervical intervertebral discs (IVDs) of patients were commonly determined to be at Pfirrmann grades III to V. The nucleus pulposus (NP) values did not differ significantly between sexes at the same anatomic level (P > 0.05). In the NP, the T2 values tended to decrease with increasing grade (P < 0.000), and a significant difference was found in the T2 values between grades I to V (P < 0.05). T2 values based on disc degeneration level classification were as follows: grade I (>30 milliseconds), grade II (24.55-29.99 milliseconds), grade III (21.65-24.54 milliseconds), grade IV (18.35-21.64 milliseconds), and grade V (<18.34 milliseconds). Our standardized method of region-specific quantitative T2 relaxation time evaluation seems capable of characterizing different degrees of disc degeneration quantitatively. The T2 values obtained in these cervical IVDs may serve as baseline values for future T2 measurements in both healthy and degenerated cervical discs.

  18. Intervertebral disc calcifications in children.

    PubMed

    Beluffi, G; Fiori, P; Sileo, C

    2009-03-01

    This study was done to assess the presence of both asymptomatic and symptomatic intervertebral disc calcifications in a large paediatric population. We retrospectively reviewed the radiographs taken during the past 26 years in children (age 0-18 years) undergoing imaging of the spine or of other body segments in which the spine was adequately depicted, to determine possible intervertebral disc calcifications. The following clinical evaluation was extrapolated from the patients' charts: presence of spinal symptoms, history of trauma, suspected or clinically evident scoliosis, suspected or clinically evident syndromes, bone dysplasias, and pre- or postoperative chest or abdominal X-rays. We detected intervertebral disc calcifications in six patients only. Five calcifications were asymptomatic (one newborn baby with Patau syndrome; three patients studied to rule out scoliosis, hypochondroplasia and syndromic traits; one for dyspnoea due to sunflower seeds inhalation). Only one was symptomatic, with acute neck pain. Calcifications varied in number from one in one patient to two to five in the others. Apart from the calcification in the patient with cervical pain, all calcifications were asymptomatic and constituted an incidental finding (particularly those detected at the thoracic level in the patient studied for sunflower-seed inhalation). Calcification shapes were either linear or round. Our series confirms that intervertebral disc calcifications are a rare finding in childhood and should not be a source of concern: symptomatic calcifications tend to regress spontaneously within a short time with or without therapy and immobilisation, whereas asymptomatic calcifications may last for years but disappear before the age of 20 years. Only very few cases, such as those of medullary compression or severe dysphagia due to anterior herniation of cervical discs, may require surgical procedures.

  19. Viscoelastic finite element analysis of the cervical intervertebral discs in conjunction with a multi-body dynamic model of the human head and neck.

    PubMed

    Esat, V; Acar, M

    2009-02-01

    This article presents the effects of the frontal and rear-end impact loadings on the cervical spine components by using a multi-body dynamic model of the head and neck, and a viscoelastic finite element (FE) model of the six cervical intervertebral discs. A three-dimensional multi-body model of the human head and neck is used to simulate 15 g frontal and 8.5 g rear-end impacts. The load history at each intervertebral joint from the predictions of the multi-body model is used as dynamic loading boundary conditions for the FE model of the intervertebral discs. The results from the multi-body model simulations, such as the intervertebral disc loadings in the form of compressive, tensile, and shear forces and moments, and from the FE analysis such as the von Mises stresses in the intervertebral discs are analysed. This study shows that the proposed approach that uses dynamic loading conditions from the multi-body model as input to the FE model has the potential to investigate the kinetics and the kinematics of the cervical spine and its components together with the biomechanical response of the intervertebral discs under the complex dynamic loading history.

  20. Clinical and magnetic resonance imaging features of compressive cervical myelopathy with traumatic intervertebral disc herniation in cynomolgus macaque (Macaca fascicularis)

    PubMed Central

    Choi, Yun-Jung; Park, Hye-Jin; Sohn, Chul-Ho; Jung, Kyeong Cheon; Park, Seong Hoe

    2016-01-01

    Intervertebral disc herniation (IVDH) with nucleus pulposus extrusion, traumatic or not, is a devastating clinical condition accompanied by neurological problems. Here we report a cynomolgus macaque suffering from acute and progressive neurological dysfunction by a blunt trauma due to neck collar, an animal handling device. Tetraplegia, urinary incontinence, decreased proprioception, and imperception of pain were shown on physical and neurological examinations. MRI sagittal T2 weighted sequences revealed an extensive protrusion of disc material between C2 and C3 cervical vertebra, and this protrusion resulted in central stenosis of the spinal cord. Histopathologic findings showed a large number of inflammatory cells infiltrated at sites of spinal cord injury (SCI). This case is the first report of compressive cervical SCI caused by IVDH associated with blunt trauma. PMID:28053621

  1. Clinical and magnetic resonance imaging features of compressive cervical myelopathy with traumatic intervertebral disc herniation in cynomolgus macaque (Macaca fascicularis).

    PubMed

    Choi, Yun-Jung; Park, Hye-Jin; Sohn, Chul-Ho; Jung, Kyeong Cheon; Park, Seong Hoe; Lee, Jae-Il

    2016-12-01

    Intervertebral disc herniation (IVDH) with nucleus pulposus extrusion, traumatic or not, is a devastating clinical condition accompanied by neurological problems. Here we report a cynomolgus macaque suffering from acute and progressive neurological dysfunction by a blunt trauma due to neck collar, an animal handling device. Tetraplegia, urinary incontinence, decreased proprioception, and imperception of pain were shown on physical and neurological examinations. MRI sagittal T2 weighted sequences revealed an extensive protrusion of disc material between C2 and C3 cervical vertebra, and this protrusion resulted in central stenosis of the spinal cord. Histopathologic findings showed a large number of inflammatory cells infiltrated at sites of spinal cord injury (SCI). This case is the first report of compressive cervical SCI caused by IVDH associated with blunt trauma.

  2. Reliable Magnetic Resonance Imaging Based Grading System for Cervical Intervertebral Disc Degeneration

    PubMed Central

    Chen, Antonia F.; Kang, James D.; Lee, Joon Y.

    2016-01-01

    Study Design Observational. Purpose To develop a simple and comprehensive grading system for cervical discs that precisely, consistently and meaningfully presents radiologic and morphologic data. Overview of Literature The Thompson grading system is commonly used to classify the severity of degenerative lumbar discs on magnetic resonance imaging (MRI). Inherent differences in the morphological and physiological characteristics of cervical discs have hindered development of precise classification systems. Other grading systems have been developed for degenerating cervical discs, but their versatility and feasibility in the clinical setting is suboptimal. Methods MRIs of 46 human cervical discs were de-identified and displayed in PowerPoint format. Each slide depicted a single disc with a normal (grade 0) disc displayed in the top right corner for reference. The presentation was given to 25 physicians comprising attending spine surgeons, spine fellows, orthopaedic residents, and two attending musculoskeletal radiologists. The grading system included Grade 0 (normal height compared to C2–3, mid cleft still visible), grade 1 (dark disc, normal height), grade 2 (collapsed disc, few osteophytes), and grade 3 (collapsed disc, many osteophytes). The ease of use of the system was gauged in the participants and the interobserver reliability was calculated. Results The intraclass correlation coefficient for interobserver reliability was 0.87, and 0.94 for intraobserver reliability, indicating excellent reliability. Ninety-five percent and 85 percent of the clinicians judged the grading system to be clinically feasible and useful in daily practice, respectively. Conclusions The grading system is easy to use, has excellent reliability, and can be used for precise and consistent clinician communication. PMID:26949461

  3. Radiography and biomechanics of sixth and seventh cervical vertebrae segments after disc fenestration and after insertion of an intervertebral body spacer. A canine cadaveric study.

    PubMed

    Moissonnier, P; Desquilbet, L; Fitzpatrick, D; Bernard, F

    2014-01-01

    To study the radiographic characteristics and the biomechanical properties of the sixth and seventh cervical (C6-C7) vertebral motion unit (VMU) with an intact disc, after disc fenestration, and after placement of an intervertebral body spacer (IVBS). Six cadaveric C6-C7 VMU were retrieved from six Greyhound cadavers. Each VMU was loaded at 3 Nm of torque sequentially in flexion, extension, and in right and left lateral bending. The range-of-motion (ROM) was measured with a Zebris 3D® system. The intervertebral disc cross-sectional area was measured on lateral and ventro-dorsal radiographs. Biomechanical testing and radiographic measurements were performed with an intact disc, after disc fenestration, and after IVBS placement. Data were reported as mean±SD. The intervertebral disc cross-sectional area was significantly decreased after disc fenestration and increased after IVBS placement, but remained significantly smaller than the area of intact disc in some of the tested conditions. The ROM with an intact disc, after disc fenestration and after IVBS placement, in flexion were 11.5°±1.0, 15.2°±2.3, and 10.9°±4.7, respectively, and in extension were 15.6°±3.7, 24.7°±6.2, 21.9°±4.0, respectively. There was a significant increase in extension ROM after disc fenestration. Intervertebral body spacer placement significantly decreased ROM in flexion but ROM in extension was not different from disc fenestration. No significant changes in lateral bending ROM were detected. The use of an IVBS reduced disc space collapse but did not restore stability of the VMU to normal values in extension after cervical disc fenestration.

  4. Mechanotransduction in intervertebral discs

    PubMed Central

    Tsai, Tsung-Ting; Cheng, Chao-Min; Chen, Chien-Fu; Lai, Po-Liang

    2014-01-01

    Mechanotransduction plays a critical role in intracellular functioning—it allows cells to translate external physical forces into internal biochemical activities, thereby affecting processes ranging from proliferation and apoptosis to gene expression and protein synthesis in a complex web of interactions and reactions. Accordingly, aberrant mechanotransduction can either lead to, or be a result of, a variety of diseases or degenerative states. In this review, we provide an overview of mechanotransduction in the context of intervertebral discs, with a focus on the latest methods of investigating mechanotransduction and the most recent findings regarding the means and effects of mechanotransduction in healthy and degenerative discs. We also provide some discussion of potential directions for future research and treatments. PMID:25267492

  5. Estrogens and the intervertebral disc.

    PubMed

    Calleja-Agius, J; Muscat-Baron, Y; Brincat, M P

    2009-09-01

    Intervertebral discs are an integral part of the vertebral column. It has been shown that menopause has a negative effect on bone and on intervertebral discs. Estrogen has a beneficial effect of preserving the health of collagen-containing tissues, including the intervertebral disc. The intervertebral disc allows for mobility of the spine, and maintains a uniform stress distribution of the area of the vertebral endplates. Also, the disc influences spinal height. The disc tissue is adapted for this biomechanical function. The function of the spine is impaired if there is a loss of disc tissue. Narrowing of the disc space due to degeneration of intervertebral discs is associated with a significantly increased risk of vertebral fractures. Estrogen should be seen as the first-choice therapy for bones and other collagen-rich tissues, such as intervertebral discs, because it maintains homeostasis of the bone-remodelling unit. Unlike bisphosphonates, estrogen is unique in its ability to regenerate bone collagen after its disintegration, apart from suppressing osteoclastic activity. Besides, there is insufficient data on deterioration in bone qualities and micro-cracks in patients on long-term bisphosphonates.

  6. A 20-year-old female with Hirayama disease complicated with dysplasia of the cervical vertebrae and degeneration of intervertebral discs

    PubMed Central

    Hashimoto, Masaya; Yoshioka, Masayuki; Sakimoto, Yoshihiro; Suzuki, Masahiko

    2012-01-01

    A 20-year-old female patient was presented with a 1-year history of progressive weakness of the left hand. Examination on admission showed atrophy of the muscles of the left forearm, cold paralysis and minipolymyoclonus. MR images of the cervical cord showed anterior transfer of the cervical cord on anterior flexion and cervical cord compression at the site of cervical kyphosis, confirming the diagnosis of Hirayama disease. Many features of the present case are unusual: the patient is a female (who are rarely afflicted by this disease), with cervical kyphosis and a history of exercise involving cervical vertebral loading, suggesting a potential involvement of the latter two factors in the disease onset. The findings suggest that cervical vertebral dysplasia and intervertebral disc degeneration may influence cervical kyphosis, and be involved in the onset of Hirayama disease. PMID:23144342

  7. The biomechanical impact of facet tropism on the intervertebral disc and facet joints in the cervical spine.

    PubMed

    Rong, Xin; Wang, Beiyu; Ding, Chen; Deng, Yuxiao; Chen, Hua; Meng, Yang; Yan, Weijie; Liu, Hao

    2017-07-13

    Facet tropism is defined as the angular difference between the left and the right facet orientation. Facet tropism was suggested to be associated with the disc degeneration and facet degeneration in the lumbar spine. However, little is known about the relationship between facet tropism and pathologic changes in the cervical spine and the mechanism behind. This study was conducted to investigate the biomechanical impact of facet tropism on the intervertebral disc and facet joints. A finite element analysis study. The computed tomography (CT) scans of a 28-year-old male volunteer was used to construct the finite element model. First, a symmetrical cervical model from C2 to C7 was constructed. The facet orientations at each level were simulated using the data from our previously published study. Second, the facet orientations at the C5-C6 level were altered to simulate facet tropism with respect to the sagittal plane. The angular difference of the moderate facet tropism model was set to be 7 degrees, whereas the severe facet tropism model was set to be 14 degrees. The inferior of the C7 vertebra was fixed. A 75 N follower loading was applied to simulate the weight of the head. A 1.0 N⋅m moments was applied on the odontoid process of the C2 to simulate flexion, extension, lateral bending, and axial rotation. The intradiscal pressure (IDP) at the C5-C6 level of the severe facet tropism model increased by 49.02%, 57.14%, 39.06%, and 30.67%, under flexion, extension, lateral bending, and axial rotation moments, in comparison with the symmetrical model. The contact force of the severe facet tropism model increased by 35.64%, 31.74%, 79.26%, and 59.47% from the symmetrical model under flexion, extension, lateral bending, and axial rotation, respectively. Facet tropism with respect to the sagittal plane at the C5-C6 level increased the IDP and facet contact force under flexion, extension, lateral bending, and axial rotation. The results suggested that facet tropism might

  8. Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    DTIC Science & Technology

    2014-01-01

    images of IVDs and dynamic vertebral motion in-vivo during simulated tasks relevant to acute and chronic cervical spine injury and disease. A semi...of cervical vertebrae. Dynamic IVD displacements of vertebrae C4-5 measured by US were consistent with direct measurements. For motion frequencies...We developed a diagnostic system that applies dynamic cyclic loads to cervical spine over a range of programmable frequencies and amplitudes that

  9. Biomechanics of a Fixed–Center of Rotation Cervical Intervertebral Disc Prosthesis

    PubMed Central

    Crawford, Neil R.; Baek, Seungwon; Sawa, Anna G.U.; Safavi-Abbasi, Sam; Sonntag, Volker K.H.; Duggal, Neil

    2012-01-01

    Background Past in vitro experiments studying artificial discs have focused on range of motion. It is also important to understand how artificial discs affect other biomechanical parameters, especially alterations to kinematics. The purpose of this in vitro investigation was to quantify how disc replacement with a ball-and-socket disc arthroplasty device (ProDisc-C; Synthes, West Chester, Pennsylvania) alters biomechanics of the spine relative to the normal condition (positive control) and simulated fusion (negative control). Methods Specimens were tested in multiple planes by use of pure moments under load control and again in displacement control during flexion-extension with a constant 70-N compressive follower load. Optical markers measured 3-dimensional vertebral motion, and a strain gauge array measured C4-5 facet loads. Results Range of motion and lax zone after disc replacement were not significantly different from normal values except during lateral bending, whereas plating significantly reduced motion in all loading modes (P < .002). Plating but not disc replacement shifted the location of the axis of rotation anteriorly relative to the intact condition (P < 0.01). Coupled axial rotation per degree of lateral bending was 25% ± 48% greater than normal after artificial disc replacement (P = .05) but 37% ± 38% less than normal after plating (P = .002). Coupled lateral bending per degree of axial rotation was 37% ± 21% less than normal after disc replacement (P < .001) and 41% ± 36% less than normal after plating (P = .001). Facet loads did not change significantly relative to normal after anterior plating or arthroplasty, except that facet loads were decreased during flexion in both conditions (P < .03). Conclusions In all parameters studied, deviations from normal biomechanics were less substantial after artificial disc placement than after anterior plating. PMID:25694869

  10. High-Definition Video Telescope-Assisted Ventral Slot Decompression Surgery for Cervical Intervertebral Disc Herniation in 30 Dogs.

    PubMed

    Rossetti, Diego; Ragetly, Guillaume R; Poncet, Cyrill M

    2016-10-01

    To describe the use of a video telescope operating monitor (VITOM™) for ventral slot decompression and to report its clinical applications using preoperative and postoperative computed tomography (CT) myelography. Prospective case series. Consecutive dogs presented with cervical intervertebral disc disease requiring surgical decompression (n = 30). Demographic data, preoperative neurological status, localization and lateralization of the compression, total operative time, surgical complications, ventral slot size and orientation, hospitalization time, and postoperative outcome were recorded. Preoperative and postoperative spinal cord area at the compression site and ratios of compressed to normal spinal cord area were calculated by CT myelography. French Bulldogs were the most common breed of dogs (n = 15; 50%) and neck pain was the most common neurological sign (n = 18; 60%). Postoperative CT myelography confirmed that spinal cord decompression, postoperative spinal cord area, and the ratios of compressed to normal spinal cord area improved significantly compared with preoperative measurements (P = .01). Sinus bleeding occurred in 20% of dogs. The mean ratios (± SD) of ventral slot length and width compared with vertebral body length and width were 0.21 ± 0.08 and 0.31 ± 0.07, respectively. The mean postoperative hospitalization time was 3.0 ± 0.6 days and all dogs showed clinical improvement and an excellent outcome. The VITOM™ ventral slot decompression technique was fast and easy to perform. It allowed a minimally invasive approach with a small ventral slot while improving spinal cord visualization. The results of this study support the use of the VITOM™ technique in spinal veterinary surgery. © Copyright 2016 by The American College of Veterinary Surgeons.

  11. Development of Ultrasound to Measure In-Vivo Dynamic Cervical Spine Intervertebral Disc Mechanics

    DTIC Science & Technology

    2016-01-01

    and aging. To reduce the risk of cervical spine disease , there is a need to measure the effect by helmet, equipment and seating. However, in-vivo...to slightly diseased specimen, were selected. The posterior elements and facets of the segment were removed as per the protocol explained in the...dynamic vertebral motion in-vivo during simulated tasks relevant to acute and chronic cervical spine injury and disease . Software was developed to

  12. Intervertebral disc replacement. Experimental study.

    PubMed

    Kostuik, J P

    1997-04-01

    Arthrodesis of the lumbosacral spine, although satisfactory for a majority of patients, has long term sequelae in 30% of patients. This is particularly true for adjacent segment degeneration. Numerous attempts at providing a mobile motion segment have been made in the past. The current status of the development of dynamic intervertebral prosthesis, including biomechanical and clinical data have been presented. The relevant material properties of plastics, ceramics, and metal are presented with the conclusion that metals currently present with the greatest longevity without undue fatigue and wear as many as 100,000,000 cycles (40 years use) as an alternative to spinal fusion. An analysis of the kinematics of the motion segment have resulted, together with the material properties in the development of a dynamic intervertebral disc for use in the lumbar spine. The disc resembles a normal motion segment. In motion stiffness and center of rotation, wear debris development in 1/300 equivalent to that of a total hip prosthesis for the same given time. Safety features include immediate screw fixation to prevent displacement, a wedge elastic (spring) shape, and a bony porous ingrowth surface. The prosthesis is constructed of cobalt chromium and titanium with minimal corrosive properties on long term testing.

  13. Genetics Home Reference: intervertebral disc disease

    MedlinePlus

    ... link) National Institute of Neurological Disorders and Stroke: Low Back Pain Fact Sheet Educational Resources (8 links) American Association ... MalaCards: intervertebral disc disease Merck Manual Consumer Version: Low Back Pain Merck Manual Consumer Version: Neck Pain The Children's ...

  14. Spectroscopic Parameters of Lumbar Intervertebral Disc Material

    NASA Astrophysics Data System (ADS)

    Terbetas, G.; Kozlovskaja, A.; Varanius, D.; Graziene, V.; Vaitkus, J.; Vaitkuviene, A.

    2009-06-01

    There are numerous methods of investigating intervertebral disc. Visualization methods are widely used in clinical practice. Histological, imunohistochemical and biochemical methods are more used in scientific research. We propose that a new spectroscopic investigation would be useful in determining intervertebral disc material, especially when no histological specimens are available. Purpose: to determine spectroscopic parameters of intervertebral disc material; to determine emission spectra common for all intervertebral discs; to create a background for further spectroscopic investigation where no histological specimen will be available. Material and Methods: 20 patients, 68 frozen sections of 20 μm thickness from operatively removed intervertebral disc hernia were excited by Nd:YAG microlaser STA-01-TH third harmonic 355 nm light throw 0, 1 mm fiber. Spectrophotometer OceanOptics USB2000 was used for spectra collection. Mathematical analysis of spectra was performed by ORIGIN multiple Gaussian peaks analysis. Results: In each specimen of disc hernia were found distinct maximal spectral peaks of 4 types supporting the histological evaluation of mixture content of the hernia. Fluorescence in the spectral regions 370-700 nm was detected in the disc hernias. The main spectral component was at 494 nm and the contribution of the components with the peak wavelength values at 388 nm, 412 nm and 435±5 nm were varying in the different groups of samples. In comparison to average spectrum of all cases, there are 4 groups of different spectral signatures in the region 400-500 nm in the patient groups, supporting a clinical data on different clinical features of the patients. Discussion and Conclusion: besides the classical open discectomy, new minimally invasive techniques of treating intervertebral disc emerge (PLDD). Intervertebral disc in these techniques is assessed by needle, no histological specimen is taken. Spectroscopic investigation via fiber optics through the

  15. Hybrid Strategy of Two-Level Cervical Artificial Disc and Intervertebral Cage: Biomechanical Effects on Tissues and Implants.

    PubMed

    Chung, Tzu-Tsao; Hueng, Dueng-Yuan; Lin, Shang-Chih

    2015-11-01

    This numerical study aimed to evaluate tissue and implant responses to the hybrid surgery (HS) of cervical artificial disc replacement (C-ADR) and anterior cervical discectomy and fusion (ACDF).Four hybrid strategies of two-level C-ADR and ACDF were compared in terms of adjacent segment degeneration (ASD) and implant failure.The rotary C-ADR and semirigid ACDF have been extensively used in the multilevel treatment of cervical instability and degeneration, but the constrained mobility at the ACDF segments can induce postoperative ASD problems. Hybrid surgery of C-ADR and ACDF has been an alternative to provide the optimal tradeoff between surgical cost and ASD problems. The biomechanical effects of hybrid strategies warrant thorough investigation for the two-level instrumentation.Based on computed tomography imaging, a nonlinear C2-C7 model was developed and validated by cadaveric and numerical data. Four strategies of inserting the C-ADR and ACDF into the C4-C6 segments were systematically arranged as PP (2 peek cages), AA (2 artificial discs), PA, and AP. The biomechanical behavior of these 4 strategies was evaluated in terms of motion and stresses of discs, facet forces, stresses of C-ADR and ACDF, and C-ADR motion.The constrained mobility of the ACDF segment worsened the kinematic and mechanical demands of the adjacent segments and artificial discs. The C-ADR articulation provided higher mobility than the replaced disc of the intact construct, making it an effective buffer to accommodate the compensated mobility and load from the ACDF segment. Consequently, the ASD progression of the AA construct was most restricted, followed by the PA, AP, and PP construct.The PA strategy is a tradeoff to preserve mobility and reduce cost. The C-ADR of the PA construct preserves the mobility of the C5/C6 segment and shares the transferred motion and loads of the fused C4/C5 segment. The PA construct shows optimal biomechanical results for minimizing ASD and implant failure

  16. Pediatric intervertebral disc calcification: A no touch lesion.

    PubMed

    Garg, Monika; Kumar, Sanyal; Satija, Bhawna; Gupta, Rajat

    2012-01-01

    Intervertebral disc calcification (IVDC), though rare, remains an important differential of pediatric spinal pain. A 7-year-old boy presented with sudden-onset severe neck pain and restricted movements. There was no definite history of trauma or infection. Imaging of the cervical spine showed calcification of the intervertebral disc at C2-3 level, with significant posterior protrusion into the spinal canal causing compression of the cervical spinal cord. The child was kept on conservative management. The calcification and posterior protrusion showed near-complete resolution on 3-month follow-up. This case report emphasizes that childhood IVDC is a benign condition which commonly resolves spontaneously, without any surgical intervention and neurological sequelae.

  17. [Case-control study on Zero-profile implant for anterior cervical discectomy and fusion and conventional cage plate internal fixation for the treatment of single segmental cervical intervertebral disc herniation].

    PubMed

    Shao, Hai-yu; Zhang, Jun; Yang, Di; Chen, Jin-ping; Huang, Ya-zeng

    2016-06-01

    To compare clinical efficacy of Zero-profile implant for anterior cervical discectomy and fusion and conventional titanium plate with cage internal fixation for the treatment of single segmental cervical intervertebral disc herniation. From August 2011 to March 2014, clinical data of 139 patients with single cervical disc herniation treated with anterior cervical discectomy and interbody fusion with internal fixation were retrospectively analyzed. The patients were divided into two groups according to its operation method. There were 63 patients in group A which performed anterior discectomy and interbody fusion with Zero-profile;76 patients in group B which performed anterior cervical discectomy and cage plate internal fixation. JOA score and Odom functional rating between two groups were compared before and after operation. Videofluorographic swallowing study (VFSS) were used to evaluate thickness of prevertebral soft tissue. Bazaz dysphagia score were used to assess incidence of dysphagia. Postoperative AP X-ray and CT of cervical vertebra at 12 months were applied for evaluating bone graft fusion. Postoperative MRI was applied for evaluating the incidence of adjacent segment degeneration. Blood loss,operative time, preoperative and postoperative JOA score, Odom functional rating and VFSS score, Bazaz score, fusion rate between vertebral bodies and incidence of adjacent segment degeneration were compared between two groups. There were no statistical meaning between two groups in JOA score, Odom functional rating before and after operation (P > 0.05); and no significant meaning in VFSS score between two groups before operation (P > 0.05); There were no significant difference in operative time and blood loss. There was statistical meaning in VFSS, Bazaz dysphagia score at 2 days, and 6 months after operation (P < 0.05). All patients obtained bone union at 1 year after operation, and no obvious meaning in fusion rate (P > 0.05). Eight patients (12.7%) in group A

  18. Roentgenographic measurement of lumbar intervertebral disc height.

    PubMed

    Andersson, G B; Schultz, A; Nathan, A; Irstam, L

    1981-01-01

    The influences of differences in both intervertebral motion segment orientations and in reader judgments on measurements of the apparent intervertebral disc heights in lateral roentgenographs of the lumbar spine were examined. Forty-nine roentgenographs were obtained of nine discs that were titled laterally up to +/- 10 degrees, and rotated longitudinally up to +/- 20 degrees. Three orthopaedic surgeons and three radiologists measured disc heights from five of these roentgenographs, all using the same measurement method. The differences in apparent height that resulted from the orientation changes and differences in judgments among the six readers were considerable, usually of the order of one half of the nominal disc height. The results show that, while roentgenographic measurements can be used to estimate disc height, accurate measurements cannot readily be made from routine roentgenographs, and the interpretation should always be cautious.

  19. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  20. Validation of Sodium MRI of Intervertebral Disc

    PubMed Central

    Wang, Chenyang; McArdle, Erin; Fenty, Matthew; Witschey, Walter; Elliott, Mark; Sochor, Matthew; Reddy, Ravinder; Borthakur, Arijitt

    2009-01-01

    Study Design This study demonstrated the diagnostic potential of sodium MRI for non-invasive quantification of PG in the intervertebral discs. Objective To determine the existence of a linear correlation between intervertebral disc [Na] measured from sodium MRI and [PG] measurement from DMMB assay. Summary of Background Data Previous studies have shown the possibility of quantifying [Na] in vivo using sodium MRI, however none has shown a direct linear correlation between [Na] measured from sodium MRI and [PG]. Methods 3D sodium MRI images of bovine discs were acquired and converted into [Na] maps. Samples were systematically removed from the discs for DMMB assay. The removal locations were photographically recorded and applied to the [Na] maps to extract the [Na] measurements for comparison. In vivo sodium MRI scans were also carried out on a pair of symptomatic and asymptomatic subjects. Results The linear regression fit of [Na] versus [PG] data yielded a significant linear correlation coefficient of 0.71. The in vivo sodium MRI image of the symptomatic subject showed significant [Na] decrease when compared to that of the asymptomatic subject. Conclusion Sodium MRI's specificity for PG in the intervertebral discs makes it a promising diagnostic tool for the earlier phase of disc degeneration. PMID:20147881

  1. Spontaneous lumbar intervertebral disc protrusion in cats: literature review and case presentations.

    PubMed

    Kathmann, I; Cizinauskas, S; Rytz, U; Lang, J; Jaggy, A

    2000-12-01

    Reports on intervertebral disc disease in cats are rare in the veterinary literature. It has been postulated that intervertebral disc protrusion is a frequent finding during necropsy in cats, without having any clinical relevance (King and Smith 1958, King & Smith 1960a, King & Smith 1960b). However, a total of six cases with disc protrusions and clinically significant neurological deficits have been reported over the past decade. (Heavner 1971, Seim & Nafe 1981, Gilmore 1983, Littlewood et al 1984, Sparkes & Skerry 1990, Bagley et al 1995). As in dogs, there are also two types of intervertebral disc disease in cats: Hansen's type I (extrusion), and type II (herniation). Cervical spinal cord involvement was more commonly recognised in cats than the lumbar or the thoraco lumbar area. Cats over 15 years were mainly affected (King & Smith 1958, King & Smith 1960a, King & Smith 1960b). We describe two cats with lumbar intervertebral disc protrusions. Emphasis is placed on differential diagnoses, treatment and follow-up.

  2. Radiofrequency stimulation of intervertebral discs.

    PubMed

    Rosen, Steven; Falco, Frank

    2003-10-01

    The etiology of discogenic pain is poorly understood. The most accepted theory has been that nociceptors in the outer one-third of the annulus fibrosis are responsible for transmitting pain secondary to internal disc disruptions. The concept of "neoneuralization" after disc injury has been disseminated. It has been noted that disc degeneration and injury are associated with ingrowth of neural fibers into the disc annulus. One mechanism of Intradiscal Electrodothermal Therapy (IDET) has been thought to be lesioning of these nociceptors. Five consecutive patients were studied using an intraannular electrode. The Radionics discTRODE was used. It was found impossible to selectively stimulate axial pain fibers using this system. Radicular stimulation was noted in all patients at all levels studied. The implication of these findings concerning the concept of neoneuralization, mechanism of IDET, and possible strategies to decrease discogenic pain are discussed.

  3. [Biology and mechanobiology of the intervertebral disc].

    PubMed

    González Martínez, Emilio; García-Cosamalón, José; Cosamalón-Gan, Iván; Esteban Blanco, Marta; García-Suarez, Olivia; Vega, José A

    2017-01-24

    The intervertebral disc (IVD) is noted for its low cell content, and being the largest avascular structure of human body. The low amount of cells in the disc have to adapt to an anaerobic metabolism with low oxygen pressure and acidic pH. Apart from surviving in an adverse microenvironment, they are exposed to a high level of mechanical stress. The biological adaptation of cells to acidosis and hyperosmolarity conditions are regulated by mechanoproteins, which are responsible for converting a mechanical signal into a cellular response, thus modifying its gene expression. Mechanobiology helps us to better understand the pathophysiology of IVD and its potential biological repair.

  4. Analysis of rabbit intervertebral disc physiology based on water metabolism. II. Changes in normal intervertebral discs under axial vibratory load

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Itoh, T.; Sano, A.

    1988-11-01

    Metabolic changes induced by axial vibratory load to the spine were investigated based on water metabolism in normal intervertebral discs of rabbits with or without pentobarbital anesthesia. Tritiated water concentration in the intervertebral discs of unanesthetized rabbits was reduced remarkably by axial vibration for 30 minutes using the vibration machine developed for this study. Repeated vibratory load for 18 and 42 hours duration showed the recovery of /sup 3/H/sub 2/O concentration of the intervertebral disc without anesthesia. Computer simulation suggested a reduction of blood flow surrounding the intervertebral disc following the vibration stress. However, no reduction of the /sup 3/H/sub 2/O concentration in the intervertebral disc was noted under anesthesia. Emotional stress cannot be excluded as a factor in water metabolism in the intervertebral disc.

  5. Propriospinal Myoclonus Induced by a Herniated Lumbar Intervertebral Disc at a Young Age: A Case Report

    PubMed Central

    Song, Kwan Su; Kim, Chang Hyun; Lee, Ho Kook

    2011-01-01

    The cause of propriospinal myoclonus (PSM) is idiopathic. Cervical trauma, ischemic myelopathy secondary to a spinal dural arteriovenous fistula, syringomyelia, Lyme neuroborreliosis, human immunodeficiency virus central nervous system infection, and cervical disc herniation can be the cause of PSM, but lumbar herniated intervertebral disc (HIVD) induced PSM has not been reported. We describe a patient who presented with PSM induced by HIVD and was treated with an epidural steroid injection using a transforaminal approach. PMID:26064150

  6. Intervertebral disc properties: challenges for biodevices.

    PubMed

    Costi, John J; Freeman, Brian J C; Elliott, Dawn M

    2011-05-01

    Intervertebral disc biodevices that employ motion-preservation strategies (e.g., nucleus replacement, total disc replacement and posterior stabilization devices) are currently in use or in development. However, their long-term performance is unknown and only a small number of randomized controlled trials have been conducted. In this article, we discuss the following biodevices: interbody cages, nuclear pulposus replacements, total disc replacements and posterior dynamic stabilization devices, as well as future biological treatments. These biodevices restore some function to the motion segment; however, contrary to expectations, the risk of adjacent-level degeneration does not appear to have been reduced. The short-term challenge is to replicate the complex biomechanical function of the motion segment (e.g., biphasic, viscoelastic behavior and nonlinearity) to improve the quality of motion and minimize adjacent level problems, while ensuring biodevice longevity for the younger, more active patient. Biological strategies for regeneration and repair of disc tissue are being developed and these offer exciting opportunities (and challenges) for the longer term. Responsible introduction and rigorous assessment of these new technologies are required. In this article, we will describe the properties of the disc, explore biodevices currently in use for the surgical treatment of low back pain (with an emphasis on lumbar total disc replacement) and discuss future directions for biological treatments. Finally, we will assess the challenges ahead for the next generation of biodevices designed to replace the disc.

  7. Decellularized allogeneic intervertebral disc: natural biomaterials for regenerating disc degeneration

    PubMed Central

    Hu, Zhijun; Chen, Kai; Shan, Zhi; Chen, Shuai; Wang, Jiying; Mo, Jian; Ma, Jianjun; Xu, Wenbing; Qin, An; Fan, Shunwu

    2016-01-01

    Intervertebral disc degeneration is associated with back pain and disc herniation. This study established a modified protocol for intervertebral disc (IVD) decellularization and prepared its extracellular matrix (ECM). By culturing mesenchymal stem cells (MSCs)(3, 7, 14 and 21 days) and human degenerative IVD cells (7 days) in the ECM, implanting it subcutaneously in rabbit and injecting ECM microparticles into degenerative disc, the biological safety and efficacy of decellularized IVD was evaluated both in vitro and in vivo. Here, we demonstrated that cellular components can be removed completely after decellularization and maximally retain the structure and biomechanics of native IVD. We revealed that allogeneic ECM did not evoke any apparent inflammatory reaction in vivo and no cytotoxicity was found in vitro. Moreover, IVD ECM can induce differentiation of MSCs into IVD-like cells in vitro. Furthermore, allogeneic ECM microparticles are effective on the treatment of rabbit disc degeneration in vivo. In conclusion, our study developed an optimized method for IVD decellularization and we proved decellularized IVD is safe and effective for the treatment of degenerated disc diseases. PMID:26933821

  8. The molecular basis of intervertebral disc degeneration.

    PubMed

    Kepler, Christopher K; Ponnappan, Ravi K; Tannoury, Chadi A; Risbud, Marakand V; Anderson, David G

    2013-03-01

    Intervertebral disc (IVD) degeneration remains a clinically important condition for which treatment is costly and relatively ineffective. The molecular basis of degenerative disc disease has been an intense focus of research recently, which has greatly increased our understanding of the biology underlying this process. To review the current understanding of the molecular basis of disc degeneration. Review article. A literature review was performed to identify recent investigations and current knowledge regarding the molecular basis of IVD degeneration. The unique structural requirements and biochemical properties of the disc contribute to its propensity toward degeneration. Mounting evidence suggests that genetic factors account for up to 75% of individual susceptibility to IVD degeneration, far more than the environmental factors such as occupational exposure or smoking that were previously suspected to figure prominently in this process. Decreased extracellular matrix production, increased production of degradative enzymes, and increased expression of inflammatory cytokines contribute to the loss of structural integrity and accelerate IVD degeneration. Neurovascular ingrowth occurs, in part, because of the changing degenerative phenotype. A detailed understanding of the biology of IVD degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Although significant advances have been made in explaining the biologic mediators of disc degeneration, the inhospitable biochemical environment of the IVD remains a challenging environment for biological therapies. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. [Pediatric intervertebral disc calcification: A rare cause of acquired torticollis. Case report].

    PubMed

    Cuevas, Yerko; Schonhaut, Luisa; Espinoza, Aníbal; Schonstedt, Valeria; Aird, Alejandra; Castoldi, Francesca

    2015-01-01

    Pain and cervical muscle spasm are common reasons why parents bring children to the pediatric emergency department. The first steps are the gathering of medical history of the patient and a physical examination. If musculoskeletal damage is suspected, cervical spine x-rays should be obtained. An intervertebral disc calcification finding, in the absence of other radiological lesions should suggest pediatric intervertebral disc calcification. To present a case of intervertebral disc calcification, a rare condition that must be considered in the differential diagnosis of torticollis and neck pain in childhood. A seven-year-old male patient without morbid history and no history of trauma or rough sport practice. He consulted the emergency room for pain and cervical contracture for the last six days. C reactive protein and red cell sedimentatio rates were slightly elevated. Imaging studies showed calcification of the C5-C6 intrvertebral disc and anterior disc protrusion. The patient was hospitalized for evaluation and pain management, with good clinical response and continue afterwards with non-steroidal anti-inflammatory drugs and a soft collar. At the 6-month-follow up, the patient had resolved symptoms and calcifications. Pediatric intervertebral disc calcification is a rare cause of acquired torticollis, with a benign and self-limited outcome. Conservative management, as well as clinical and imaging follow-up is recommended. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. Cervical disc hernia operations through posterior laminoforaminotomy

    PubMed Central

    Yolas, Coskun; Ozdemir, Nuriye Guzin; Okay, Hilmi Onder; Kanat, Ayhan; Senol, Mehmet; Atci, Ibrahim Burak; Yilmaz, Hakan; Coban, Mustafa Kemal; Yuksel, Mehmet Onur; Kahraman, Umit

    2016-01-01

    Objective: The most common used technique for posterolateral cervical disc herniations is anterior approach. However, posterior cervical laminotoforaminomy can provide excellent results in appropriately selected patients with foraminal stenosis in either soft disc prolapse or cervical spondylosis. The purpose of this study was to present the clinical outcomes following posterior laminoforaminotomy in patients with radiculopathy. Materials and Methods: We retrospectively evaluated 35 patients diagnosed with posterolateral cervical disc herniation and cervical spondylosis with foraminal stenosis causing radiculopathy operated by the posterior cervical keyhole laminoforaminotomy between the years 2010 and 2015. Results: The file records and the radiographic images of the 35 patients were assessed retrospectively. The mean age was 46.4 years (range: 34-66 years). Of the patients, 19 were males and 16 were females. In all of the patients, the neurologic deficit observed was radiculopathy. The posterolaterally localized disc herniations and the osteophytic structures were on the left side in 18 cases and on the right in 17 cases. In 10 of the patients, the disc level was at C5-6, in 18 at C6-7, in 2 at C3-4, in 2 at C4-5, in 1 at C7-T1, in 1 patient at both C5-6 and C6-7, and in 1 at both C4-5 and C5-6. In 14 of these 35 patients, both osteophytic structures and protruded disc herniation were present. Intervertebral foramen stenosis was present in all of the patients with osteophytes. Postoperatively, in 31 patients the complaints were relieved completely and four patients had complaints of neck pain and paresthesia radiating to the arm (the success of operation was 88.5%). On control examinations, there was no finding of instability or cervical kyphosis. Conclusion: Posterior cervical laminoforaminotomy is an alternative appropriate choice in both cervical soft disc herniations and cervical stenosis. PMID:27217655

  11. Inflammation in intervertebral disc degeneration and regeneration

    PubMed Central

    Molinos, Maria; Almeida, Catarina R.; Caldeira, Joana; Cunha, Carla; Gonçalves, Raquel M.; Barbosa, Mário A.

    2015-01-01

    Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players. PMID:25673296

  12. Genetic Factors in Intervertebral Disc Degeneration

    PubMed Central

    Feng, Yi; Egan, Brian; Wang, Jinxi

    2016-01-01

    Low back pain (LBP) is a major cause of disability and imposes huge economic burdens on human society worldwide. Among many factors responsible for LBP, intervertebral disc degeneration (IDD) is the most common disorder and is a target for intervention. The etiology of IDD is complex and its mechanism is still not completely understood. Many factors such as aging, spine deformities and diseases, spine injuries, and genetic factors are involved in the pathogenesis of IDD. In this review, we will focus on the recent advances in studies on the most promising and extensively examined genetic factors associated with IDD in humans. A number of genetic defects have been correlated with structural and functional changes within the intervertebral disc (IVD), which may compromise the disc’s mechanical properties and metabolic activities. These genetic and proteomic studies have begun to shed light on the molecular basis of IDD, suggesting that genetic factors are important contributors to the onset and progression of IDD. By continuing to improve our understanding of the molecular mechanisms of IDD, specific early diagnosis and more effective treatments for this disabling disease will be possible in the future. PMID:27617275

  13. Incidental extraspinal findings on magnetic resonance imaging of intervertebral discs.

    PubMed

    Dilli, Alper; Ayaz, Umit Yasar; Turanlı, Sevim; Saltas, Hakan; Karabacak, Osman Raif; Damar, Cagrı; Hekimoglu, Baki

    2014-08-29

    We aimed to evaluate pathological extraspinal findings and congenital anomalies/anatomical variations that were incidentally detected on the magnetic resonance imaging (MRI) scans of intervertebral discs, to find the frequencies of these incidental findings, and to emphasise the clinical importance of them. A retrospective study including 1031 consecutive patients (730 females and 301 males, with a median age of 46 years) was conducted by evaluating a total of 1106 MRI examinations of intervertebral discs. Examinations were performed with a 1.5 T MRI unit. Incidental findings were classified as pathological findings and congenital anomalies/anatomical variations. The percentages of incidental extraspinal pathological findings and congenital anomalies/anatomical variations were 16.6% (95% confidence interval (CI): 14.4-18.8) and 3.7% (95% CI: 2.6-4.3), respectively. The percentage of incidental extraspinal pathological findings on cervical spinal MRI was 25.7% (95% CI: 20.1-31.7), thyroid nodules being the most common incidental findings. On thoracic spinal MRI (n = 19), inferior pole thyroid nodules were demonstrated as incidental extraspinal pathological findings, with a percentage of 10.5% (95% CI: 9.6-11.5). On lumbar spinal MRI, incidental pathological findings were detected with a percentage of 14.2% (95% CI: 11.9-16.6), while the percentage of congenital anomalies/anatomical variations was 4.8% (95% CI: 3.4-6.3). Eventually, 6.5% (95% CI: 2.6-9.4) of all cases with incidental extraspinal pathological findings underwent surgery. On MRI examination of intervertebral discs, paying attention to incidentally detected pathological extraspinal findings and congenital anomalies/anatomical variations is very important due to the fact that they can alter the treatment of the patient or affect the patient's life.

  14. Incidental extraspinal findings on magnetic resonance imaging of intervertebral discs

    PubMed Central

    Ayaz, Umit Yasar; Turanlı, Sevim; Saltas, Hakan; Karabacak, Osman Raif; Damar, Cagrı; Hekimoglu, Baki

    2014-01-01

    Introduction We aimed to evaluate pathological extraspinal findings and congenital anomalies/anatomical variations that were incidentally detected on the magnetic resonance imaging (MRI) scans of intervertebral discs, to find the frequencies of these incidental findings, and to emphasise the clinical importance of them. Material and methods A retrospective study including 1031 consecutive patients (730 females and 301 males, with a median age of 46 years) was conducted by evaluating a total of 1106 MRI examinations of intervertebral discs. Examinations were performed with a 1.5 T MRI unit. Incidental findings were classified as pathological findings and congenital anomalies/anatomical variations. Results The percentages of incidental extraspinal pathological findings and congenital anomalies/anatomical variations were 16.6% (95% confidence interval (CI): 14.4–18.8) and 3.7% (95% CI: 2.6–4.3), respectively. The percentage of incidental extraspinal pathological findings on cervical spinal MRI was 25.7% (95% CI: 20.1–31.7), thyroid nodules being the most common incidental findings. On thoracic spinal MRI (n = 19), inferior pole thyroid nodules were demonstrated as incidental extraspinal pathological findings, with a percentage of 10.5% (95% CI: 9.6–11.5). On lumbar spinal MRI, incidental pathological findings were detected with a percentage of 14.2% (95% CI: 11.9–16.6), while the percentage of congenital anomalies/anatomical variations was 4.8% (95% CI: 3.4–6.3). Eventually, 6.5% (95% CI: 2.6–9.4) of all cases with incidental extraspinal pathological findings underwent surgery. Conclusions On MRI examination of intervertebral discs, paying attention to incidentally detected pathological extraspinal findings and congenital anomalies/anatomical variations is very important due to the fact that they can alter the treatment of the patient or affect the patient's life. PMID:25276162

  15. The traction angle and cervical intervertebral separation.

    PubMed

    Wong, A M; Leong, C P; Chen, C M

    1992-02-01

    Seventeen normal young adults were evaluated for cervical intervertebral separation under different traction angles through motorized intermittent traction in the supine position. In all cases, the anterior and posterior intervertebral spaces were increased by traction at neutral position and in 30 degrees flexion, but not in 15 degrees extension. The effects of separation were 1) neutral position: anterior intervertebral separation C4-5 (12%) greater than C3-4 (8%), posterior intervertebral separation C6-7 (37%) greater than C3-4 (22%) greater than C4-5 (19%); and 2) 30 degrees flexion: anterior intervertebral separation C2-3 (21%) greater than C4-5 (16%) greater than C5-6 (15%) greater than C3-4 (10%), posterior intervertebral separation C6-7 (20%) greater than C5-6 (19%) greater than C4-5 (17%). There was a significant decrease in intervertebral separation posteriorly in extension traction, especially at C6-7 (-50%), C5-6 (-37%), C4-5 (-26%), and C3-4 (-14%). The separation of facet joint surfaces was found after traction at 15 degrees extension, but not in the neutral or flexion positions.

  16. Lumbar intervertebral disc degeneration and related factors in Korean firefighters

    PubMed Central

    Jang, Tae-Won; Ahn, Yeon-Soon; Byun, Junsu; Lee, Jong-In; Kim, Kun-Hyung; Kim, Youngki; Song, Han-Soo; Lee, Chul-Gab; Kwon, Young-Jun; Yoon, Jin-Ha; Jeong, Kyoungsook

    2016-01-01

    Objectives The job of firefighting can cause lumbar burden and low back pain. This study aimed to identify the association between age and lumbar intervertebral disc degeneration and whether the association differs between field and administrative (non-field) firefighters. Methods Subjects were selected using a stratified random sampling method. Firefighters were stratified by geographic area, gender, age and type of job. First, 25 fire stations were randomly sampled considering regional distribution. Then firefighters were stratified by gender, age and their job and randomly selected among the strata. A questionnaire survey and MRI scans were performed, and then four radiologists used Pfirrmann classification methods to determine the grade of lumbar intervertebral disc degeneration. Results Pfirrmann grade increased with lumbar intervertebral disc level. Analysis of covariance showed that age was significantly associated with lumbar intervertebral disc degeneration (p<0.05). The value of β (parameter estimate) was positive at all lumbar intervertebral disc levels and was higher in the field group than in the administrative group at each level. In logistic regression analysis, type of job was statistically significant only with regard to the L4–5 intervertebral disc (OR 3.498, 95% CI 1.241 to 9.860). Conclusions Lumbar intervertebral disc degeneration is associated with age, and field work such as firefighting, emergency and rescue may accelerate degeneration in the L4–5 intervertebral disc. The effects of field work on lumbar intervertebral disc degeneration were not clear in discs other than at the level L4–5. PMID:27354080

  17. Angiogenesis in the degeneration of the lumbar intervertebral disc

    PubMed Central

    David, Gh; Iencean, SM; Mohan, A

    2010-01-01

    The goal of the study is to show the histological and biochemical changes that indicate the angiogenesis of the intervertebral disc in lumbar intervertebral disc hernia and the existence of epidemiological correlations between these changes and the risk factors of lumbar intervertebral disc hernia, as well as the patient's quality of life (QOL). We have studied 50 patients aged between 18 and 73 years old, who have undergone lumbar intervertebral disc hernia surgery, making fibroblast growth factor and vascular endothelial growth factor level measurements, as elements in the process of appreciating the disc angiogenesis. Also, pre–surgery and post–surgery QOL has been measured, as well as the intensity of the pain syndrome. We have identified factors capable of stimulating vascular endothelial growth (VEGF, FGF–2) for the examined disc material, but histological examination did not show angiogenesis. The process of angiogenesis at the degenerated intervertebral disc level affects the patient's quality of life both pre and postoperatively, and may be a predictive factor for the post–operative results. Patients can prevent the appearance of angiogenesis type degenerative processes of the intervertebral disc by avoiding angiogenesis correlated factors (weight control, physical effort, and smoking). PMID:20968201

  18. Can Exercise Positively Influence the Intervertebral Disc?

    PubMed

    Belavý, Daniel L; Albracht, Kirsten; Bruggemann, Gert-Peter; Vergroesen, Pieter-Paul A; van Dieën, Jaap H

    2016-04-01

    To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.

  19. Human umbilical cord derivatives regenerate intervertebral disc.

    PubMed

    Beeravolu, Naimisha; Brougham, Jared; Khan, Irfan; McKee, Christina; Perez-Cruet, Mick; Chaudhry, G Rasul

    2016-09-30

    Intervertebral disc (IVD) degeneration is characterized by the loss of nucleus pulposus (NP), which is a common cause for lower back pain. Although, currently, there is no cure for the degenerative disc disease, stem cell therapy is increasingly being considered for its treatment. In this study, we investigated the feasibility and efficacy of human umbilical cord mesenchymal stem cells (MSCs) and chondroprogenitor cells (CPCs) derived from those cells to regenerate damaged IVD in a rabbit model. Transplanted cells survived, engrafted and dispersed into NP in situ. Significant improvement in the histology, cellularity, extracellular matrix proteins, and water and glycosaminoglycan contents in IVD recipients of CPCs was observed compared to MSCs. In addition, IVDs receiving CPCs exhibited higher expression of NP-specific human markers, SOX9, aggrecan, collagen 2, FOXF1 and KRT19. The novelty of the study is that in vitro differentiated CPCs derived from umbilical cord MSCs, demonstrated far greater capacity to regenerate damaged IVDs, which provides basis and impetus for stem cell based clinical studies to treat degenerative disc disease. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Engineering alginate for intervertebral disc repair.

    PubMed

    Bron, Johannes L; Vonk, Lucienne A; Smit, Theodoor H; Koenderink, Gijsje H

    2011-10-01

    Alginate is frequently studied as a scaffold for intervertebral disc (IVD) repair, since it closely mimics mechanical and cell-adhesive properties of the nucleus pulposus (NP) of the IVD. The aim of this study was to assess the relation between alginate concentration and scaffold stiffness and find preparation conditions where the viscoelastic behaviour mimics that of the NP. In addition, we measured the effect of variations in scaffold stiffness on the expression of extracellular matrix molecules specific to the NP (proteoglycans and collagen) by native NP cells. We prepared sample discs of different concentrations of alginate (1%-6%) by two different methods, diffusion and in situ gelation. The stiffness increased with increasing alginate concentration, while the loss tangent (dissipative behaviour) remained constant. The diffusion samples were ten-fold stiffer than samples prepared by in situ gelation. Sample discs prepared from 2% alginate by diffusion closely matched the stiffness and loss tangent of the NP. The stiffness of all samples declined upon prolonged incubation in medium, especially for samples prepared by diffusion. The biosynthetic phenotype of native cells isolated from NPs was preserved in alginate matrices up to 4 weeks of culturing. Gene expression levels of extracellular matrix components were insensitive to alginate concentration and corresponding matrix stiffness, likely due to the poor adhesiveness of the cells to alginate. In conclusion, alginate can mimic the viscoelastic properties of the NP and preserve the biosynthetic phenotype of NP cells but certain limitations like long-term stability still have to be addressed.

  1. Infections of cervical disc space after dental extractions

    PubMed Central

    Feigenbaum, J. A.; Stern, W. E.

    1974-01-01

    Two patients with infections of the cervical intervertebral disc space after dental procedures carried out by the same oral surgeon exhibited similar clinical courses and radiographic appearances. Both had bacteriological confirmation of infection by needle aspiration and were treated with appropriate antibiotics and bracing of the neck. The presumed aetiology and the possible pathogenesis are described. Evidence suggests that the two infections were the result of needle injection of a contaminated solution, the organisms of which haematogenously lodged in the intervertebral discs in the cervical region. Lymph drainage from the gums and teeth is suggested as a possible route of inoculation. Images PMID:4449000

  2. Material considerations for intervertebral disc replacement implants.

    PubMed

    Taksali, Sudeep; Grauer, Jonathan N; Vaccaro, Alexander R

    2004-01-01

    Cervical and lumbar disc replacements are being performed with increasing frequency. Much of the background for the development for these implants is drawn from the literature of other joint replacements that have been in evolution and use for decades. Important variables for the function and longevity of such disc arthroplasty implants are clearly defined by the material properties of the components used for their production. The most frequently considered materials are cobalt-chrome alloys, titanium alloys, stainless steels, polyethylene, polyurethane and ceramics. In addition to implant materials, the interfaces of such materials must be considered. The bearing surfaces of an implant, in particular, are at risk of wear and failure. Overall, successful, long-term total disc arthroplasty requires a thorough understanding of biomaterials and how they can be used to achieve their desired goals.

  3. Hybrid cervical disc arthroplasty.

    PubMed

    Tu, Tsung-Hsi; Wu, Jau-Ching; Cheng, Henrich; Mummaneni, Praveen V

    2017-01-01

    For patients with multilevel cervical stenosis at nonadjacent segments, one of the traditional approaches has included a multilevel fusion of the abnormal segments as well as the intervening normal segment. In this video we demonstrate an alternative treatment plan with tailored use of a combination of anterior cervical discectomy and fusion (ACDF) and cervical disc arthroplasty (CDA) with an intervening skipped level. The authors present the case of a 72-year-old woman with myeloradiculopathy and a large disc herniation with facet joint degeneration at C3-4 and bulging disc at C5-6. After nonoperative treatment failed, she underwent a single-level ACDF at C3-4 and single-level arthroplasty at C5-6, which successfully relieved her symptoms. No intervention was performed at the normal intervening C4-5 segment. By using ACDF combined with arthroplasty, the authors have avoided a 3-level fusion for this patient and maintained the range of motion of 2 disc levels. The video can be found here: https://youtu.be/OrxcPUBvqLk .

  4. Propionibacterium acnes, Coagulase-Negative Staphylococcus, and the “Biofilm-like” Intervertebral Disc

    PubMed Central

    Coscia, Michael F.; Denys, Gerald A.; Wack, Matthew F.

    2016-01-01

    Study Design. Patients scheduled for spinal surgery were screened prospectively for a microbial presence associated with intervertebral disc specimens. Inclusion was limited to patients requiring surgery for any of five conditions: study patients with cervical spine intervertebral herniation (IVH), lumbar spine IVH, lumbar spine discogenic pain, and control patients with idiopathic scoliosis/Scheurermann's kyphosis or trauma/neuromuscular deformity. Exclusion criteria included ongoing systemic infection, abnormal pre-operative white cell counts, documented or suspected spinal infection, or previous surgery to the involved disc. Objective. The aim of this study was to test for an association between the presence of a bacterial entity in operated discs and a diagnosis of pathologic disc disease. Summary of Background Data. An association has been described between microbial colonization and progressive intervertebral disc degeneration in 36 herniation patients undergoing microdiscectomies. A total of 19 patients had positive cultures on long-term incubation, with Propionibacterium acnes present in 84% of discs. Materials and Methods. Discs were harvested during surgery, using strict sterile technique. Each disc was divided, with half the sample sealed in a sterile, commercially prepared anaerobic culture transport container, and half fixed in formalin. Live specimens were cultured for bacteria at a university-affiliated laboratory in a blinded fashion. Fixed pathologic specimens were gram-stained and read by a board-certified pathologist. Results. A total of 169 intervertebral discs from 87 patients were evaluated (46 males, 41 females). Positive cultures were noted in 76 of 169 discs (45%), with 34 discs positive for P. acnes and 30 discs positive for Staphylococcus. No pathologic evidence was seen of microorganisms, acute or chronic inflammation, or infection. Pooling the IVH and discogenic pain patients and contrasting them with control patients showed a

  5. [Idiopathic intervertebral disc calcification in children: the role of diagnostic imaging. A case report].

    PubMed

    Falcone, Lorenzo; Rossiello, Pasquale; D'Addetta, Ignazio; Martino, Fabio

    2006-01-01

    The idiopathic calcification of the intervertebral disc in childhood is a rare syndrome with unknown aetiology. This pathology is more frequent in males, with predominant localization to cervical spine. The natural evolution of the syndrome is the progressive and spontaneous resorption of the calcific deposit, with symptom regression. We report a case of an acute and worsening torticollis in a 10-year-old child, with reference to a recent minor cervical distortion, resistant to analgesic treatment. X-ray evaluation, executed after a week from the appearance of torticollis, showed an oval calcification in the nucleus pulposus of the C6-C7 intervertebral disc. The CT and especially the MRI concurred to recognize a disc hernia and an adjacent osteo-ligamentous pathologic participation. In particular, MRI showed the adjacent vertebral spongy bone edema and the active enthesiopathy of the posterior longitudinal ligament.

  6. Cervical Total Disc Arthroplasty

    PubMed Central

    Basho, Rahul; Hood, Kenneth A.

    2012-01-01

    Symptomatic adjacent segment degeneration of the cervical spine remains problematic for patients and surgeons alike. Despite advances in surgical techniques and instrumentation, the solution remains elusive. Spurred by the success of total joint arthroplasty in hips and knees, surgeons and industry have turned to motion preservation devices in the cervical spine. By preserving motion at the diseased level, the hope is that adjacent segment degeneration can be prevented. Multiple cervical disc arthroplasty devices have come onto the market and completed Food and Drug Administration Investigational Device Exemption trials. Though some of the early results demonstrate equivalency of arthroplasty to fusion, compelling evidence of benefits in terms of symptomatic adjacent segment degeneration are lacking. In addition, non-industry-sponsored studies indicate that these devices are equivalent to fusion in terms of adjacent segment degeneration. Longer-term studies will eventually provide the definitive answer. PMID:24353955

  7. Cell therapy for the degenerating intervertebral disc.

    PubMed

    Tong, Wei; Lu, Zhouyu; Qin, Ling; Mauck, Robert L; Smith, Harvey E; Smith, Lachlan J; Malhotra, Neil R; Heyworth, Martin F; Caldera, Franklin; Enomoto-Iwamoto, Motomi; Zhang, Yejia

    2017-03-01

    Spinal conditions related to intervertebral disc (IVD) degeneration cost billions of dollars in the US annually. Despite the prevalence and soaring cost, there is no specific treatment that restores the physiological function of the diseased IVD. Thus, it is vital to develop new treatment strategies to repair the degenerating IVD. Persons with IVD degeneration without back pain or radicular leg pain often do not require any intervention. Only patients with severe back pain related to the IVD degeneration or biomechanical instability are likely candidates for cell therapy. The IVD progressively degenerates with age in humans, and strategies to repair the IVD depend on the stage of degeneration. Cell therapy and cell-based gene therapy aim to address moderate disc degeneration; advanced stage disease may require surgery. Studies involving autologous, allogeneic, and xenogeneic cells have all shown good survival of these cells in the IVD, confirming that the disc niche is an immunologically privileged site, permitting long-term survival of transplanted cells. All of the animal studies reviewed here reported some improvement in disc structure, and 2 studies showed attenuation of local inflammation. Among the 50 studies reviewed, 25 used some type of scaffold, and cell leakage is a consistently noted problem, though some studies showed reduced cell leakage. Hydrogel scaffolds may prevent cell leakage and provide biomechanical support until cells can become established matrix producers. However, these gels need to be optimized to prevent this leakage. Many animal models have been leveraged in this research space. Rabbit is the most frequently used model (28 of 50), followed by rat, pig, and dog. Sheep and goat IVDs resemble those of humans in size and in the absence of notochordal cells. Despite this advantage, there were only 2 sheep and 1 goat studies of 50 studies in this cohort. It is also unclear if a study in large animals is needed before clinical trials since

  8. Aquaporin expression in the human intervertebral disc.

    PubMed

    Richardson, S M; Knowles, R; Marples, D; Hoyland, J A; Mobasheri, A

    2008-06-01

    The nucleus pulposus (NP) of the human intervertebral disc (IVD) is a hyperosmotic tissue that is subjected to daily dynamic compressive loads. In order to survive within this environment the resident chondrocyte-like cells must be able to control their cell volume, whilst also controlling the anabolism and catabolism of their extra-cellular matrix. Recent studies have demonstrated expression of a range of bi-directional, transmembrane water and solute transporters, named aquaporins (AQPs), within chondrocytes of articular cartilage. The aim of this study was to use immunohistochemsitry to investigate the expression of aquaporins 1, 2 and 3 within the human IVD. Results demonstrated expression of both AQP-1 and -3 by cells within the NP and inner annulus fibrosus (AF), while outer AF cells lacked expression of AQP-1 and showed very low numbers of AQP-3 immunopositive cells. Cells from all regions were negative for AQP-2. Therefore this study demonstrates similarities in the phenotype of NP cells and articular chondrocytes, which may be due to similarities in tissue osmolarity and mechanobiology. The decrease in expression of AQPs from the NP to the outer AF may signify changes in cellular phenotype in response to differences in mechanbiology, osmolarity and hydration between the gelatinous NP and the fibrous AF.

  9. Paraplegia by acute cervical disc protrusion after lumbar spine surgery.

    PubMed

    Chen, Sheng-Huan; Hui, Yu-Ling; Yu, Chong-Ming; Niu, Chi-Chien; Lui, Ping-Wing

    2005-04-01

    Non-traumatic paraplegia caused by herniation of the cervical intervertebral disc is an uncommon postoperative complication. A patient with claudication and radiculopathy was scheduled for lumbar laminectomy due to spinal stenosis. Postoperatively, numbness below T6 was found in his both legs of the patient. MRI showed a protruded intervertebral disc between C6 and C7. Despite urgent disectomy, the patient's lower extremities remained paralyzed without significant improvement for 3 months. Loss of muscle support during general anesthesia, excessive neck extension during endotracheal intubation and positioning, as well as bucking and agitation are believed as triggering factors for the protrusion of the cervical disc. We suggest that a complete history taking and physical examination be accomplished in patients scheduled for lumbar spine surgery in order to exclude coexisting cervical spine disorders. In addition, skillful endotracheal intubation and careful neck positioning are mandatory for patients receiving surgery in the prone position.

  10. In situ oxygen utilization in the rat intervertebral disc

    PubMed Central

    Lee, Deanna C; Adams, Christopher S; Albert, Todd J; Shapiro, Irving M; Evans, Sydney M; Koch, Cameron J

    2007-01-01

    Nucleus pulposus cells of the intervertebral disc have no endogenous vasculature and have thus been hypothesized to be hypoxic. This hypothesis was tested using 2-nitroimidazole, EF5, a drug that at low oxygen concentrations forms covalent adducts with cellular proteins. After administrating EF5 to rats, sections of the intervertebral disc were analysed for EF5 adducts. Drug adducts were quantified in tissue sections using a fluorescent monoclonal antibody. Although the level of EF5 fluorescence in all intervertebral disc tissues was low, the transition zone at the periphery of the nucleus pulposus exhibited the highest level of EF5 binding. To substantiate this result, tissue nitroreductase levels and drug pharmacology were evaluated. Nitroreductase levels were measured in whole discs under severe hypoxia. We noted that there was robust EF5 binding to cells in the annulus fibrosus and transition zone with modest binding to cells of the nucleus pulposus and endplate. High-performance liquid chromatography analysis indicated limitations in EF5 access to the nucleus pulposus, most probably related to the lack of vasculature and slow drug distribution through the gel-like interior of the disc. However, despite diffusion problems, the drug dose was determined to be sufficient to report the oxygen status of the nucleus pulposus cells. Based on these findings, we conclude that despite poor vascularization, the disc cells accommodate to the local environment by displaying a limited need for oxygen. Accordingly, the cells of the intervertebral disc are not severely hypoxic. PMID:17331178

  11. Notochord Cells in Intervertebral Disc Development and Degeneration

    PubMed Central

    McCann, Matthew R.; Séguin, Cheryle A.

    2016-01-01

    The intervertebral disc is a complex structure responsible for flexibility, multi-axial motion, and load transmission throughout the spine. Importantly, degeneration of the intervertebral disc is thought to be an initiating factor for back pain. Due to a lack of understanding of the pathways that govern disc degeneration, there are currently no disease-modifying treatments to delay or prevent degenerative disc disease. This review presents an overview of our current understanding of the developmental processes that regulate intervertebral disc formation, with particular emphasis on the role of the notochord and notochord-derived cells in disc homeostasis and how their loss can result in degeneration. We then describe the role of small animal models in understanding the development of the disc and their use to interrogate disc degeneration and associated pathologies. Finally, we highlight essential development pathways that are associated with disc degeneration and/or implicated in the reparative response of the tissue that might serve as targets for future therapeutic approaches. PMID:27252900

  12. Histological Identification of Propionibacterium acnes in Nonpyogenic Degenerated Intervertebral Discs

    PubMed Central

    Yuan, Ye; Zhou, Zezhu; Jiao, Yucheng; Zheng, Yuehuan; Lin, Yazhou; Xiao, Jiaqi

    2017-01-01

    Purpose. Low-virulence anaerobic bacteria, especially the Propionibacterium acnes (P. acnes), have been thought to be a new pathogeny for a series of disc diseases. However, until now, there has been no histological evidence to confirm this link. The purpose of this study was to confirm the presence of P. acnes in nonpyogenic intervertebral discs via histological observation. Method. Degenerated intervertebral discs were harvested from 76 patients with low back pain and/or sciatica but without any symptoms of discitis or spondylodiscitis. The samples were cultured under anaerobic conditions and then examined using 16S rDNA PCR to screen for P. acnes. Samples found to be positive for P. acnes were stained with hematoxylin-eosin (HE) and modified Brown-Brenn staining and observed under a microscope. Results. Here, 16 intervertebral discs were found to be positive for P. acnes via 16S rDNA PCR and the prevalence was 21.05% (16/76). Among them, 7 samples had visible microbes stained with HE and modified Brown-Brenn staining. Morphological examination showed the bacteria to be Gram-positive and rod-shaped, so they were considered P. acnes. Conclusion. P. acnes is capable of colonizing some degenerated intervertebral discs without causing discitis, and its presence could be further confirmed by histological evidence. Targeting these bacteria may be a promising therapy method for some disc diseases. PMID:28401158

  13. Imaging of post-operative spine in intervertebral disc pathology.

    PubMed

    Splendiani, A; D'Orazio, F; Patriarca, L; Arrigoni, F; Caranci, F; Fonio, P; Brunese, L; Barile, A; Di Cesare, E; Masciocchi, C

    2017-03-01

    This work is an imaging review of spine after surgery with special regard to imaging modality in intervertebral disc pathology. Advances in imaging technology can be evaluated. Depending on the clinical question is asked to the radiologist, it is possible to evaluate post-operative patients with conventional radiology (X-ray), computed tomography and magnetic resonance. Main indications for each technique are analysed. Imaging is important in the diagnosis of many forms of spine pathology and plays a fundamental role in evaluating post-surgical effects of treatments, according to the imaging method which is used, both on spine and on its surrounding tissues (intervertebral discs, spinal cord, muscles and vessels).

  14. [Principles of intervertebral disc assessment in private accident insurance].

    PubMed

    Steinmetz, M; Dittrich, V; Röser, K

    2015-09-01

    Due to the spread of intervertebral disc degeneration, insurance companies and experts are regularly confronted with related assessments of insured persons under their private accident insurance. These claims pose a particular challenge for experts, since, in addition to the clinical assessment of the facts, extensive knowledge of general accident insurance conditions, case law and current study findings is required. Each case can only be properly assessed through simultaneous consideration of both the medical and legal facts. These guidelines serve as the basis for experts and claims.managers with respect to the appropriate individual factual assessment of intervertebral disc degeneration in private accident insurance.

  15. Herniated Cervical Disc

    MedlinePlus

    ... center of the disc may start to lose water content, making the disc less effective as a cushion. As a disc deteriorates, the outer layer can also tear. This can allow displacement of the disc's center (called a herniated or ...

  16. Analysis of rabbit intervertebral disc physiology based on water metabolism. I. Factors influencing metabolism of the normal intervertebral discs

    SciTech Connect

    Hirano, N.; Tsuji, H.; Ohshima, H.; Kitano, S.; Sano, A.

    1988-11-01

    Basic factors influencing the metabolism of intervertebral discs of rabbits were quantitatively analyzed based on the water metabolism. The blood flow surrounding the intervertebral disc was calculated using pharmacokinetic concepts from the data obtained by time-related tritiated water distribution analyses. The blood flow was estimated as 0.056 (mg/min/mg tissue) in the anterior annulus, 0.106 in the posterior annulus, 0.120 in the lateral annulus, and 0.084 in the nucleus pulposus, respectively (Experiment 1). Water content and fixed charge density in the intervertebral disc fractions also were measured (Experiment 2). The cations and uncharged small solutes transported into the disc tissue ranged in descending order from nucleus pulposus, lateral annulus, posterior annulus, to anterior annulus. The authors also calculated theoretically the swelling pressure of the proteoglycan in the intervertebral disc fractions from the results of Experiment 2. It was concluded that swelling pressure was highest in the nucleus pulposus, and lowest in the anterior annulus. The water in the posterior annulus is less exchangeable than in the other disc tissue fractions.

  17. Inflammatory profiles in canine intervertebral disc degeneration.

    PubMed

    Willems, Nicole; Tellegen, Anna R; Bergknut, Niklas; Creemers, Laura B; Wolfswinkel, Jeannette; Freudigmann, Christian; Benz, Karin; Grinwis, Guy C M; Tryfonidou, Marianna A; Meij, Björn P

    2016-01-13

    Intervertebral disc (IVD) disease is a common spinal disorder in dogs and degeneration and inflammation are significant components of the pathological cascade. Only limited studies have studied the cytokine and chemokine profiles in IVD degeneration in dogs, and mainly focused on gene expression. A better understanding is needed in order to develop biological therapies that address both pain and degeneration in IVD disease. Therefore, in this study, we determined the levels of prostaglandin E2 (PGE2), cytokines, chemokines, and matrix components in IVDs from chondrodystrophic (CD) and non-chondrodystrophic (NCD) dogs with and without clinical signs of IVD disease, and correlated these to degeneration grade (according to Pfirrmann), or herniation type (according to Hansen). In addition, we investigated cyclooxygenase 2 (COX-2) expression and signs of inflammation in histological IVD samples of CD and NCD dogs. PGE2 levels were significantly higher in the nucleus pulposus (NP) of degenerated IVDs compared with non-degenerated IVDs, and in herniated IVDs from NCD dogs compared with non-herniated IVDs of NCD dogs. COX-2 expression in the NP and annulus fibrosus (AF), and proliferation of fibroblasts and numbers of macrophages in the AF significantly increased with increased degeneration grade. GAG content did not significantly change with degeneration grade or herniation type. Cytokines interleukin (IL)-2, IL-6, IL-7, IL-8, IL-10, IL-15, IL-18, immune protein (IP)-10, tumor necrosis factor (TNF)-α, and granulocyte macrophage colony-stimulating factor (GM-CSF) were not detectable in the samples. Chemokine (C-C) motif ligand (CCL)2 levels in the NP from extruded samples were significantly higher compared with the AF of these samples and the NP from protrusion samples. PGE2 levels and CCL2 levels in degenerated and herniated IVDs were significantly higher compared with non-degenerated and non-herniated IVDs. COX-2 expression in the NP and AF and reactive changes in the

  18. The effect of posture on diffusion into lumbar intervertebral discs.

    PubMed Central

    Adams, M A; Hutton, W C

    1986-01-01

    The diffusion of small solutes into the intervertebral discs of cadaveric lumbar motion segments was measured using a radioactive tracer technique. The motion segments were wedged and loaded to simulate erect posture and flexed sitting postures. The results show that erect posture favours diffusion into the anterior half of the disc compared to the posterior half. Flexed posture, by deforming the annulus fibrosus, reverses this imbalance. PMID:3693067

  19. MECHANICAL DESIGN CRITERIA FOR INTERVERTEBRAL DISC TISSUE ENGINEERING

    PubMed Central

    Nerurkar, Nandan L.; Elliott, Dawn M.; Mauck, Robert L.

    2009-01-01

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviour, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying measures where functional equivalence was achieved, and others where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. PMID:20080239

  20. [Research advances in animal models of intervertebral disc degeneration].

    PubMed

    Zhang, Wenli; Liu, Hao; Li, Tanzhu

    2007-11-01

    To review the research advances in animal models of human disc degeneration. The relative articles in recent years were extensively reviewed. Studies both at home and abroad were analyzed and classified. The advantages and disadvantages of each method were compared. Studies were classified as either experimentally induced models or spontaneous models. The induced models were subdivided as mechanical (alteration of forces on the normal disc), structural (injury or chemical alteration) and genetically induced models. Spontaneous models included those animals that naturally developed degenerative disc disease. Animal model of intervertebral disc degeneration is an important path for revealing the pathogenesis of human disc degeneration, and play an important role in testing novel interventions. With recent advances in the relevance of animal models and humans, it has a great prospect in study of human disc degeneration.

  1. The effectiveness of percutaneous laser disc decompression for the prolapsed lumbar intervertebral disc

    NASA Astrophysics Data System (ADS)

    Mu, Ming Wei; Liu, Wei; Feng, Wei; Ma, Nan

    2009-07-01

    Objective: to investigate the role of associated factors in the effectiveness of laser treatment for prolapsed lumber intervertebral disc. Method: 302 prolapsed lumber intervertebral discs in 212 patients were treated with percutaneous laser disc decompression (PLDD). Patients were followed up by 12month, the associated factors which affecting the effectiveness of treatment, ie age, duration of illness were analyzed. Results: Punctual Success rate was 100%. After 12 month's follow up, 86% successful outcomes were obtained, in which 93% successful outcomes were obtained in patients less than 50 years old, 92% successful outcomes was obtained in the patients whose duration of illness less than 1 year.

  2. Immune cascades in human intervertebral disc: the pros and cons

    PubMed Central

    Sun, Zhen; Zhang, Ming; Zhao, Xu-Hong; Liu, Zhi-Heng; Gao, Yang; Samartzis, Dino; Wang, Hai-Qiang; Luo, Zhuo-Jing

    2013-01-01

    The unique structural hallmark of the intervertebral disc has made its central composition, the nucleus pulposus (NP), excluded from the immunologic tolerance. Consequently, the intervertebral disc is identified as an immune-privileged organ. Traditionally, local detrimental immune activities caused by NP at the lesion sites of the disc are noted as a significant factor contributing to disc degeneration. However, given the beneficial activities of immune cells in other immune-privileged sites on basis of current evidence, the degenerate disc might need the assistance of a subpopulation of immune cells to restore its structure and lessen inflammation. In addition, the beneficial impact of immune cells can be seen in the absorption of the herniated NP, which is an important factor causes the mechanical compression of nerve roots. Consequently, a modulated immune network in degenerate disc is essential for the restoration of this immune-privileged organ. Until now, the understandings of immune response in disc degeneration still rest on the harmful aspect. Further studies are needed to explore its beneficial influence. Accordingly, there are no absolutely the pros and cons in terms of immune reactions caused by NP. PMID:23696917

  3. Immune cascades in human intervertebral disc: the pros and cons.

    PubMed

    Sun, Zhen; Zhang, Ming; Zhao, Xu-Hong; Liu, Zhi-Heng; Gao, Yang; Samartzis, Dino; Wang, Hai-Qiang; Luo, Zhuo-Jing

    2013-01-01

    The unique structural hallmark of the intervertebral disc has made its central composition, the nucleus pulposus (NP), excluded from the immunologic tolerance. Consequently, the intervertebral disc is identified as an immune-privileged organ. Traditionally, local detrimental immune activities caused by NP at the lesion sites of the disc are noted as a significant factor contributing to disc degeneration. However, given the beneficial activities of immune cells in other immune-privileged sites on basis of current evidence, the degenerate disc might need the assistance of a subpopulation of immune cells to restore its structure and lessen inflammation. In addition, the beneficial impact of immune cells can be seen in the absorption of the herniated NP, which is an important factor causes the mechanical compression of nerve roots. Consequently, a modulated immune network in degenerate disc is essential for the restoration of this immune-privileged organ. Until now, the understandings of immune response in disc degeneration still rest on the harmful aspect. Further studies are needed to explore its beneficial influence. Accordingly, there are no absolutely the pros and cons in terms of immune reactions caused by NP.

  4. Accuracy of survey radiographic diagnosis of intervertebral disc protrusion in dogs.

    PubMed

    Lamb, C R; Nicholls, A; Targett, M; Mannion, P

    2002-01-01

    To assess the diagnostic accuracy of survey radiography for canine thoracolumbar intervertebral disc protrusion, survey radiographs (lateral and ventrodorsal) of 64 dogs with surgically-confirmed thoracolumbar intervertebral disc protrusion, 51 dogs with negative myelograms and 29 dogs with various spinal conditions other than disc protrusion were reviewed by three independent observers who were unaware of any clinical information. There were marked differences in observer performance for diagnosis of intervertebral disc protrusion, although there were no significant differences in intraobserver diagnostic accuracy for small vs. large dogs. Accuracy of observers for determining sites of intervertebral disc protrusion using survey radiography was in the range 51-61%. All observers had low accuracy for identification of second sites of intervertebral disc protrusion. The most useful radiographic sign, narrowed intervertebral space, had only moderate sensitivity (range 64-69%) and moderate predictive value (range 63-71%) for intervertebral disc protrusion. Vacuum phenomenon was an infrequent but accurate sign of intervertebral disc protrusion. Recognition of multiple radiographic signs of intervertebral disc protrusion at one site was associated with increased accuracy of diagnosis. No observer was accurate enough to justify attempting targeted surgical treatment of intervertebral disc protrusion without myelography.

  5. Molecular Mechanisms of Biological Aging in Intervertebral Discs

    PubMed Central

    Vo, Nam V.; Hartman, Robert A.; Patil, Prashanti R.; Risbud, Makarand V.; Kletsas, Dimitris; Iatridis, James C.; Hoyland, Judith A.; Le Maitre, Christine L.; Sowa, Gwendolyn A.; Kang, James D.

    2016-01-01

    Advanced age is the greatest risk factor for the majority of human ailments, including spine-related chronic disability and back pain, which stem from age-associated intervertebral disc degeneration (IDD). Given the rapid global rise in the aging population, understanding the biology of intervertebral disc aging in order to develop effective therapeutic interventions to combat the adverse effects of aging on disc health is now imperative. Fortunately, recent advances in aging research have begun to shed light on the basic biological process of aging. Here we review some of these insights and organize the complex process of disc aging into three different phases to guide research efforts to understand the biology of disc aging. The objective of this review is to provide an overview of the current knowledge and the recent progress made to elucidate specific molecular mechanisms underlying disc aging. In particular, studies over the last few years have uncovered cellular senescence and genomic instability as important drivers of disc aging. Supporting evidence comes from DNA repair-deficient animal models that show increased disc cellular senescence and accelerated disc aging. Additionally, stress-induced senescent cells have now been well documented to secrete catabolic factors, which can negatively impact the physiology of neighboring cells and ECM. These along with other molecular drivers of aging are reviewed in depth to shed crucial insights into the underlying mechanisms of age-related disc degeneration. We also highlight molecular targets for novel therapies and emerging candidate therapeutics that may mitigate age-associated IDD. PMID:26890203

  6. Solute transport in intervertebral disc: experiments and finite element modeling.

    PubMed

    Das, D B; Welling, A; Urban, J P G; Boubriak, O A

    2009-04-01

    Loss of nutrient supply to the human intervertebral disc (IVD) cells is thought to be a major cause of disc degeneration in humans. To address this issue, transport of molecules of different size have been analyzed by a combination of experimental and modeling studies. Solute transport has been compared for steady-state and transient diffusion of several different solutes with molecular masses in the range 3-70 kDa, injected into parts of the disc where degeneration is thought most likely to occur first and into the blood supply to the disc. Diffusion coefficients of fluorescently tagged dextran molecules of different molecular weights have been measured in vitro using the concentration gradient technique in thin specimens of disc outer annulus and nucleus pulposus. Diffusion coefficients were found to decrease with molecular weight following a nonlinear relationship. Diffusion coefficients changed more rapidly for solutes with molecular masses less than 10 kDa. Although unrealistic or painful, solutes injected directly into the disc achieve the largest disc coverage with concentrations that would be high enough to be of practical use. Although more practical, solutes injected into the blood supply do not penetrate to the central regions of the disc and their concentrations dissipate more rapidly. Injection into the disc would be the best method to get drugs or growth factors to regions of degeneration in IVDs quickly; else concentrations of solute must be kept at a high value for several hours in the blood supply to the discs.

  7. Fibroblast Transplantation Results to the Degenerated Rabbit Lumbar Intervertebral Discs.

    PubMed

    Ural, Ibrahim Halil; Alptekin, Kerem; Ketenci, Aysegul; Solakoglu, Seyhun; Alpak, Hasan; Özyalçın, Süleyman

    2017-01-01

    Our study is an analysis of the histological and radiological changes in degenerated lumbar intervertebral discs, after transplantation of fibroblasts in rabbits. With that study we aimed to show the viability of the fibroblasts injected to the degenerated discs, and observe their potential for further studies. The apoptosis of the cell is one of the factors at the disc degeneration process. Fibroblasts may act as mesenchymal stem cells at the tissue to which they are injected and they may replace the apoptotic cells. The nucleus pulposus of the discs from eight rabbits were aspirated under scopic guidance to induce disc degeneration. One month later, cultured fibroblasts, which had been taken from the skin, were injected into the disc. The viability and the potential of the injected cells for reproduction were studied histologically and radiologically. Cellular formations and organizations indicating to the histological recovery were observed at the discs to which fibroblasts were transplanted. The histological findings of the discs to which no fibroblasts were transplanted, did not show any histological recovery. Radiologically, no finding of the improvement was found in both groups. The fibroblasts injected to the degenerated discs are viable. The findings of improvement, observed in this study, suggest that fibroblast transplantation could be an effective method of therapy for the prevention or for the retardation of the degenerative disease of the discs.

  8. Fibroblast Transplantation Results to the Degenerated Rabbit Lumbar Intervertebral Discs

    PubMed Central

    Ural, Ibrahim Halil; Alptekin, Kerem; Ketenci, Aysegul; Solakoglu, Seyhun; Alpak, Hasan; Özyalçın, Süleyman

    2017-01-01

    Background: Our study is an analysis of the histological and radiological changes in degenerated lumbar intervertebral discs, after transplantation of fibroblasts in rabbits. With that study we aimed to show the viability of the fibroblasts injected to the degenerated discs, and observe their potential for further studies. Method: The apoptosis of the cell is one of the factors at the disc degeneration process. Fibroblasts may act as mesenchymal stem cells at the tissue to which they are injected and they may replace the apoptotic cells. The nucleus pulposus of the discs from eight rabbits were aspirated under scopic guidance to induce disc degeneration. Results: One month later, cultured fibroblasts, which had been taken from the skin, were injected into the disc. The viability and the potential of the injected cells for reproduction were studied histologically and radiologically. Cellular formations and organizations indicating to the histological recovery were observed at the discs to which fibroblasts were transplanted. The histological findings of the discs to which no fibroblasts were transplanted, did not show any histological recovery. Radiologically, no finding of the improvement was found in both groups. The fibroblasts injected to the degenerated discs are viable. Conclusion: The findings of improvement, observed in this study, suggest that fibroblast transplantation could be an effective method of therapy for the prevention or for the retardation of the degenerative disease of the discs. PMID:28603572

  9. Measurement of intervertebral disc pressure with T 1ρ MRI.

    PubMed

    Wang, Chenyang; Witschey, Walter; Elliott, Mark A; Borthakur, Arijitt; Reddy, Ravinder

    2010-12-01

    The aim of this study is to demonstrate T(1ρ) MRI's capability for measuring intervertebral disc osmotic pressure. Self-coregistered sodium and T(1ρ) -weighted MR images were acquired on ex vivo bovine intervertebral discs (N = 12) on a 3 T clinical MRI scanner. The sodium MR images were used to calculate effective nucleus pulposus fixed-charge-density (mean = 138.2 ± 27.6 mM) and subsequently osmotic pressure (mean = 0.53 ± 0.18 atm), whereas the T(1ρ) -weighted images were used to compute T(1ρ) relaxation maps. A significant linear correlation (R = 0.56, P < 0.01) between nucleus pulposus fixed-charge-density and T(1ρ) relaxation time constant was observed. More importantly, a significant power correlation (R = 0.72, P < 0.01) between nucleus pulposus osmotic pressure as predicted by sodium MRI and T(1ρ) relaxation time constant was also observed. The current clinical method for assessing disc pressure is discography, which is an invasive procedure that has been shown to have negative effects on disc biomechanical and biochemical properties. In contrast, T(1ρ) MRI is noninvasive and can be easily implemented in a clinical setting due to its superior signal-to-noise ratio compared with sodium MRI. Therefore, T(1ρ) MRI may serve as a noninvasive clinical tool for the longitudinal evaluation of disc osmotic pressure. Copyright © 2010 Wiley-Liss, Inc.

  10. Effect of collagen fibre orientation on intervertebral disc torsion mechanics.

    PubMed

    Yang, Bo; O'Connell, Grace D

    2017-07-21

    The intervertebral disc is a complex fibro-cartilaginous material, consisting of a pressurized nucleus pulposus surrounded by the annulus fibrosus, which has an angle-ply structure. Disc injury and degeneration are noted by significant changes in tissue structure and function, which significantly alters stress distribution and disc joint stiffness. Differences in fibre orientation are thought to contribute to changes in disc torsion mechanics. Therefore, the objective of this study was to evaluate the effect of collagen fibre orientation on internal disc mechanics under compression combined with axial rotation. We developed and validated a finite element model (FEM) to delineate changes in disc mechanics due to fibre orientation from differences in material properties. FEM simulations were performed with fibres oriented at [Formula: see text] throughout the disc (uniform by region and fibre layer). The initial model was validated by published experimental results for two load conditions, including [Formula: see text] axial compression and [Formula: see text] axial rotation. Once validated, fibre orientation was rotated by [Formula: see text] or [Formula: see text] towards the horizontal plane, resulting in a decrease in disc joint torsional stiffness. Furthermore, we observed that axial rotation caused a sinusoidal change in disc height and radial bulge, which may be beneficial for nutrient transport. In conclusion, including anatomically relevant fibre angles in disc joint FEMs is important for understanding stress distribution throughout the disc and will be important for understanding potential causes for disc injury. Future models will include regional differences in fibre orientation to better represent the fibre architecture of the native disc.

  11. Intervertebral disc segmentation and volumetric reconstruction from peripheral quantitative computed tomography imaging.

    PubMed

    Wong, Alexander; Mishra, Akshaya; Yates, Justin; Fieguth, Paul; Clausi, David A; Callaghan, Jack P

    2009-11-01

    An automatic system for segmenting and constructing volumetric representations of excised intervertebral discs from peripheral quantitative computed tomography (PQCT) imagery is presented. The system is designed to allow for automatic quantitative analysis of progressive herniation damage to the intervertebral discs under flexion/extension motions combined with a compressive load. Automatic segmentation and volumetric reconstruction of intervertebral disc from PQCT imagery is a very challenging problem due to factors such as streak artifacts and unclear material density separation between contrasted intervertebral disc and surrounding bone in the PQCT imagery, as well as the formation of multiple contrasted regions under axial scans. To address these factors, a novel multiscale level set approach based on the Mumford-Shah energy functional in iterative bilateral scale space is employed to segment the intervertebral disc regions from the PQCT imagery. A Delaunay triangulation is then performed based on the set of points associated with the intervertebral disc regions to construct the volumetric representation of the intervertebral disc. Experimental results show that the proposed system achieves segmentation and volumetric reconstructions of intervertebral discs with mean absolute distance error below 0.8 mm when compared to ground truth measurements. The proposed system is currently in operational use as a visualization tool for studying progressive intervertebral disc damage.

  12. Anisotropic ion diffusivity in intervertebral disc: an electrical conductivity approach.

    PubMed

    Jackson, Alicia; Yao, Hai; Brown, Mark D; Yong Gu, Wei

    2006-11-15

    Investigation of the transport behavior of ions in intervertebral disc using an electrical conductivity method. To determine the electrical conductivity and ion diffusivity of nucleus pulposus and anulus fibrosus in 3 major directions (axial, circumferential, and radial). Knowledge of diffusivity of small molecules is important for understanding nutrition supply in intervertebral disc and disc degeneration. However, little is known on the anisotropic behaviors of ion diffusivity and of electrical conductivity in intervertebral disc. Electrical conductivity measurement was performed on 24 axial, circumferential, and radial anulus fibrosus specimens and 24 axial nucleus pulposus specimens from bovine coccygeal discs. The diffusivity of Na and Cl were estimated by the analysis of conductivity data. The electrical conductivity (mean +/- standard deviation; n = 24) of the bovine anulus fibrosus was 4.70 +/- 1.08 mS/cm in the axial, 2.86 +/- 0.83 mS/cm in the radial, and 4.38 +/- 1.25 mS/cm in the circumferential direction. For nucleus pulposus, the electrical conductivity (mean +/- standard deviation; n = 24) was 8.95 +/- 0.89 mS/cm. The mean value for nucleus pulposus was significantly higher than that of anulus fibrosus (t test, P < 0.05). For anulus fibrosus, the conductivity in the radial direction was significantly lower than in axial or circumferential directions. Similar trends were found for both Na and Cl diffusivities. Both electrical conductivity and ion diffusivity were highly sensitive to water content. Electrical conductivity and ion diffusivity of anulus fibrosus are anisotropic.

  13. Disc in Flames: Roles of TNF-α and IL-1β in Intervertebral Disc Degeneration

    PubMed Central

    Johnson, Zariel I.; Schoepflin, Zachary R.; Choi, Hyowon; Shapiro, Irving M.; Risbud, Makarand V.

    2016-01-01

    The intervertebral disc is an important mechanical structure that allows range of motion of the spinal column. Degeneration of the intervertebral disc, incited by aging, traumatic insult, genetic predisposition, or other factors, is often defined by functional and structural changes in the tissue, including excessive breakdown of the extracellular matrix, increased disc cell senescence and death, and compromised biomechanical function of the tissue. Intervertebral disc degeneration is strongly correlated with low back pain, which is a highly prevalent and costly condition, significantly contributing to loss in productivity and health care costs. Disc degeneration is a chronic, progressive condition, and current therapies are limited and often focused on symptomatic pain relief rather than curtailing the progression of the disease. Inflammatory processes, exacerbated by cytokines TNF-α and IL-1β are believed to be key mediators of disc degeneration and low back pain. In this review, we describe the contributions of TNF-α and IL-1β to changes seen during disc degeneration at the cellular and tissue level, new evidence suggesting a link between infection of the spine and low back pain, and the emerging therapeutic modalities aimed at combating these processes. PMID:26388614

  14. Three-dimensional assessment of the intervertebral kinematics after Mobi-C total disc replacement at the cervical spine in vivo using the EOS stereoradiography system.

    PubMed

    Rousseau, Marc-Antoine; Laporte, Sébastien; Dufour, Thierry; Steib, Jean-Paul; Lazennec, Jean-Yves; Skalli, Wafa

    2011-01-01

    Because 3-dimensional computed tomography and magnetic resonance imaging analysis of the spinal architecture is done with the patient in the supine position, stereoradiography may be more clinically relevant for the measurement of the relative displacements of the cervical vertebrae in vivo in the upright position. The innovative EOS stereoradiography system was used for measuring the relative angular displacements of the cervical vertebrae in a limited population to determine its feasibility. The precision and accuracy of the method were investigated. In 9 patients with 16 Mobi-C prostheses (LDR Medical, Troyes, France) and 12 healthy subjects, EOS stereoradiography of the lower cervical spine (C3-7) was performed in the neutral upright position of the neck, flexion, extension, left and right lateral bending, and left and right axial rotation. The angular displacements were measured from the neutral position to every other posture. The random error was studied in terms of reproducibility. In addition, an in vitro protocol was performed in 6 specimens to investigate accuracy. The reproducibility and the accuracy variables varied similarly between 1.2° and 3.2° depending on the axis and direction of rotation under consideration. The Mobi-C group showed less mobility than the control group, whereas the pattern of coupling was similar. Overall, the feasibility of dynamic EOS stereoradiography was shown. The prosthesis replicates the pattern of motion of the normal cervical spine.

  15. ROS: Crucial Intermediators in the Pathogenesis of Intervertebral Disc Degeneration

    PubMed Central

    Yang, Minghui; Lan, Minghong; Liu, Chang; Zhang, Yang; Huang, Bo

    2017-01-01

    Excessive reactive oxygen species (ROS) generation in degenerative intervertebral disc (IVD) indicates the contribution of oxidative stress to IVD degeneration (IDD), giving a novel insight into the pathogenesis of IDD. ROS are crucial intermediators in the signaling network of disc cells. They regulate the matrix metabolism, proinflammatory phenotype, apoptosis, autophagy, and senescence of disc cells. Oxidative stress not only reinforces matrix degradation and inflammation, but also promotes the decrease in the number of viable and functional cells in the microenvironment of IVDs. Moreover, ROS modify matrix proteins in IVDs to cause oxidative damage of disc extracellular matrix, impairing the mechanical function of IVDs. Consequently, the progression of IDD is accelerated. Therefore, a therapeutic strategy targeting oxidative stress would provide a novel perspective for IDD treatment. Various antioxidants have been proposed as effective drugs for IDD treatment. Antioxidant supplementation suppresses ROS production in disc cells to promote the matrix synthesis of disc cells and to prevent disc cells from death and senescence in vitro. However, there is not enough in vivo evidence to support the efficiency of antioxidant supplementation to retard the process of IDD. Further investigations based on in vivo and clinical studies will be required to develop effective antioxidative therapies for IDD. PMID:28392887

  16. Advancing the cellular and molecular therapy for intervertebral disc disease.

    PubMed

    Sakai, Daisuke; Grad, Sibylle

    2015-04-01

    The healthy intervertebral disc (IVD) fulfils the essential function of load absorption, while maintaining multi-axial flexibility of the spine. The interrelated tissues of the IVD, the annulus fibrosus, the nucleus pulposus, and the cartilaginous endplate, are characterised by their specific niche, implying avascularity, hypoxia, acidic environment, low nutrition, and low cellularity. Anabolic and catabolic factors balance a slow physiological turnover of extracellular matrix synthesis and breakdown. Deviations in mechanical load, nutrient supply, cellular activity, matrix composition and metabolism may initiate a cascade ultimately leading to tissue dehydration, fibrosis, nerve and vessel ingrowth, disc height loss and disc herniation. Spinal instability, inflammation and neural sensitisation are sources of back pain, a worldwide leading burden that is challenging to cure. In this review, advances in cell and molecular therapy, including mobilisation and activation of endogenous progenitor cells, progenitor cell homing, and targeted delivery of cells, genes, or bioactive factors are discussed.

  17. Lumbosacral Sagittal Alignment in Association to Intervertebral Disc Diseases

    PubMed Central

    Maleki, Farid; Meybodi, Ali Tayebi; Mahdavi, Ali; Saberi, Hooshang

    2014-01-01

    Study Design A cross-sectional case-control study was designed to compare the sagittal alignment of lumbosacral regions in two groups of patients suffering from low back pain, one with intervertebral disc pathologies and one without. Purpose To evaluate the correlation between lumbosacral sagittal alignment and disc degeneration. Overview of Literature Changes in lumbar lordosis and pelvic parameters in degenerative disc lesions have been assessed in few studies. Overall, patients with discopathy were shown to have lower lumbar lordosis and more vertical sacral profiles. Methods From patients with intractable low back pain undergoing lumbosacral magnetic resonance imaging, 50 subjects with disc degeneration and 50 controls with normal scans were consecutively enrolled. A method was defined with anterior tangent-lines going through anterior bodies of L1 and S1 to measure global lumbosacral angle, incorporating both lumbar lordosis and sacral slope. Global lumbosacral angle using the proposed method and lumbar lordosis using Cobb's method were measured in both groups. Results Lumbar lordosis based on Cobb's method was lower in group with discopathy (20°-67°; mean, 40.48°±9.89°) than control group (30°-62°; mean, 44.96°±7.68°), although it was not statistically significant. The proposed global lumbosacral angle in subject group (53°-103°; mean, 76.5°±11.018°) was less than control group (52°-101°; mean, 80.18°±9.95°), with the difference being statistically significant (p=0.002). Conclusions Patients with intervertebral disc lesions seem to have more straightened lumbosacral profiles, but it has not been proven which comes first: disc degeneration or changes in sagittal alignment. Finding an answer to this dilemma demands more comprehensive long-term prospective studies. PMID:25558325

  18. Bryan total disc arthroplasty: a replacement disc for cervical disc disease

    PubMed Central

    Wenger, Markus; Markwalder, Thomas-Marc

    2010-01-01

    Total disc arthroplasty is a new option in the treatment of cervical degenerative disc disease. Several types of cervical disc prostheses currently challenge the gold-standard discectomy and fusion procedures. This review describes the Bryan Cervical Disc System and presents the Bryan prosthesis, its indications, surgical technique, complications, and outcomes, as given in the literature. PMID:22915917

  19. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus.

    PubMed

    Iatridis, J C James C; ap Gwynn, Iolo

    2004-08-01

    Intervertebral disc degeneration results in disorganization of the laminate structure of the annulus that may arise from mechanical microfailure. Failure mechanisms in the annulus were investigated using composite lamination theory and other analyses to calculate stresses in annulus layers, interlaminar shear stress, and the region of stress concentration around a fiber break. Scanning electron microscopy (SEM) was used to evaluate failure patterns in the annulus and evaluate novel structural features of the disc tissue. Stress concentrations in the annulus due to an isolated fiber break were localized to approximately 5 microm away from the break, and only considered a likely cause of annulus fibrosus failure (i.e., radial tears in the annulus) under extreme loading conditions or when collagen damage occurs over a relatively large region. Interlaminar shear stresses were calculated to be relatively large, to increase with layer thickness (as reported with degeneration), and were considered to be associated with propagation of circumferential tears in the annulus. SEM analysis of intervertebral disc annulus fibrosus tissue demonstrated a clear laminate structure, delamination, matrix cracking, and fiber failure. Novel structural features noted with SEM also included the presence of small tubules that appear to run along the length of collagen fibers in the annulus and a distinct collagenous structure representative of a pericellular matrix in the nucleus region.

  20. In vivo experimental study of hat type cervical intervertebral fusion cage (HCIFC).

    PubMed

    Gu, Yu-tong; Yao, Zhen-jun; Jia, Lian-shun; Qi, Jin; Wang, Jun

    2010-12-01

    The purpose of this study was to compare the characteristics of interbody fusion achieved using the hat type cervical intervertebral fusion cage (HCIFC) with those of an autologous tricortical iliac crest graft, Harms cage and the carbon cage in a goat cervical spine model. Thirty-two goats underwent C3-4 discectomy and fusion. They were subdivided into four groups of eight goats each: group 1, autologous tricortical iliac crest bone graft; group 2, Harms cage filled with autologous iliac crest graft; group 3, carbon cage filled with autologous iliac bone; and group 4, HCIFC filled with autologous iliac graft. Radiography was performed pre- and postoperatively and after one, two, four, eight and 12 weeks. At the same time points, disc space height, intervertebral angle, and lordosis angle were measured. After 12 weeks, the goats were killed and fusion sites were harvested. Biomechanical testing was performed in flexion, extension, axial rotation, and lateral bending to determine the stiffness and range of motion. All cervical fusion specimens underwent histomorphological analyses. One week after operation, the disc space height (DSH), intervertebral angle (IVA) and lordosis angle (LA) of HCIFC and carbon cage were statistically greater than those of autologous iliac bone graft and Harms cage. Significantly higher values for DSH, IVA and LA were shown in cage-treated goats than in those that received bone graft over a 12-week period. The stiffness of Harms cage in axial rotation and lateral bending were statistically greater than that of other groups. Radiographic and histomorphological evaluation showed better fusion results in the cage groups than in the autologous bone group. HCIFC can provide a good intervertebral distractability and sufficient biomechanical stability for cervical fusion.

  1. Intervertebral disc transplantation: a biological approach to motion preservation.

    PubMed

    Luk, Keith D K; Ruan, D K

    2008-12-01

    Intervertebral disc transplantation was developed in a bipedal animal model through the stages of autograft, fresh allograft and fresh frozen allograft. Results showed that the allografts were able to survive through a deep freezing protocol and maintain cell viability after transplantation without significant immunoreaction. Although degeneration of the allograft appeared to be inevitable, it was able to maintain stability and mobility of the functional spinal unit. These findings were similarly reproduced in the human clinical trial with excellent mid-term clinical results at 5 years. The process of evolution and findings were summarized in this review.

  2. In Vivo Mouse Intervertebral Disc Degeneration Model Based on a New Histological Classification

    PubMed Central

    Ohnishi, Takashi; Sudo, Hideki; Iwasaki, Koji; Tsujimoto, Takeru; Ito, Yoichi M.; Iwasaki, Norimasa

    2016-01-01

    Although human intervertebral disc degeneration can lead to several spinal diseases, its pathogenesis remains unclear. This study aimed to create a new histological classification applicable to an in vivo mouse intervertebral disc degeneration model induced by needle puncture. One hundred six mice were operated and the L4/5 intervertebral disc was punctured with a 35- or 33-gauge needle. Micro-computed tomography scanning was performed, and the punctured region was confirmed. Evaluation was performed by using magnetic resonance imaging and histology by employing our classification scoring system. Our histological classification scores correlated well with the findings of magnetic resonance imaging and could detect degenerative progression, irrespective of the punctured region. However, the magnetic resonance imaging analysis revealed that there was no significant degenerative intervertebral disc change between the ventrally punctured and non-punctured control groups. To induce significant degeneration in the lumbar intervertebral discs, the central or dorsal region should be punctured instead of the ventral region. PMID:27482708

  3. Progranulin Knockout Accelerates Intervertebral Disc Degeneration in Aging Mice

    PubMed Central

    Zhao, Yun-peng; Tian, Qing-yun; Liu, Ben; Cuellar, Jason; Richbourgh, Brendon; Jia, Tang-hong; Liu, Chuan-ju

    2015-01-01

    Intervertebral disc (IVD) degeneration is a common degenerative disease, yet much is unknown about the mechanisms during its pathogenesis. Herein we investigated whether progranulin (PGRN), a chondroprotective growth factor, is associated with IVD degeneration. PGRN was detectable in both human and murine IVD. The levels of PGRN were upregulated in murine IVD tissue during aging process. Loss of PGRN resulted in an early onset of degenerative changes in the IVD tissue and altered expressions of the degeneration-associated molecules in the mouse IVD tissue. Moreover, PGRN knockout mice exhibited accelerated IVD matrix degeneration, abnormal bone formation and exaggerated bone resorption in vertebra with aging. The acceleration of IVD degeneration observed in PGRN null mice was probably due to the enhanced activation of NF-κB signaling and β-catenin signaling. Taken together, PGRN may play a critical role in homeostasis of IVD, and may serve as a potential molecular target for prevention and treatment of disc degenerative diseases. PMID:25777988

  4. Material properties of bovine intervertebral discs across strain rates.

    PubMed

    Newell, Nicolas; Grigoriadis, Grigorios; Christou, Alexandros; Carpanen, Diagarajen; Masouros, Spyros D

    2017-01-01

    The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10(-3)-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Hyper-elastic modelling of intervertebral disc polyurethane implant.

    PubMed

    Pawlikowski, Marek; Skalski, Konstanty; Sowiński, Tomasz

    2013-01-01

    Artificial materials including various kinds of polymers like polyurethanes are more and more widely used in different branches of science and also in biomedical engineering. The paper presents the process of creating a constitutive equation for a polyurethane nanocomposite which is considered to be hyper-elastic. The constitutive modelling was conducted within the range of application of the material as one of the components of lumbar intervertebral disc prosthesis. In the paper, the biomechanics of the lumbar spine and the most frequently applied intervertebral disc prostheses are described. Also a polyurethane nanocomposite as a new material to be applied in prostheses is presented. The way of formulating a constitutive equation by means of mathematical formulae is described. Four various hyper-elastic potential functions are considered, i.e., Ogden, Neo-Hookean, Yeoh and Mooney-Rivlin. On the basis of monotonic compression tests the best hyper-elastic model for the material considered was chosen and hyper-elastic constants were calibrated. Finally, the constitutive model was validated on the basis of FE analysis. The paper ends with a conclusion and presentation of further plans of research directed towards the development of a constitutive equation and its application in computer simulations by means of the finite element method.

  6. [Spontaneous regression from intervertebral disc herniation. Propos of a series of 37 cases].

    PubMed

    Martínez-Quiñones, J V; Aso-Escario, J; Consolini, F; Arregui-Calvo, R

    2010-04-01

    The intervertebral disc disease (IDD) is one of the most common muscle-skeletal disorders, causing both high work disability and elevated healthcare costs. There are two specific origins of disk disease that should be kept in mind: degenerative (DDD) and traumatic (TDD). Concerning the TDD, nowadays it has not been determined which patients could gradually improve and which ones will require surgery. Some studies indicate that about 85% of lumbar and 90% cervical acute disc herniation will get better in an average of 6 weeks. We conducted an observational, prospective study, over a group of 858 patients, with the following inclusion criteria: 1. MRI imaging indicating TDD, 2. No signs or symptoms requiring urgent surgical treatment (cauda equina syndrome, progressive or serious motor deficit or unbearable pain) and 3. Development of progressively spontaneous symptoms remission. All of the patients included in our study were treated in our Department of Neurosurgery from 2006 to 2007. Patients were tested for disc herniation regression with a second MRI study. A spontaneous regression of their hernia was appreciated as follow: 33 cases of lumbar hernia (29 male, 4 female), 3 cervical hernia (1 male, 2 female) and 1 dorsal hernia (male). Research about other reported series was done, and the different factors that could take place in disc spontaneous regression were analyzed: a) lodgement of the herniated disc back into the intervertebral space; b) disappearance of the herniated fragment due to dehydration and retraction mechanisms; c) gradual resorption of the herniated tissue by phagocytosis and enzymatic degradation induced by an inflammatory reaction that appeared as the disc (acting the extrusion itself as an foreign body) and, d) pulsion of cephaloarchidian liquid against the herniated portion. Disc herniation can regress, or even disappear, in a number of patients, rendering the radiological findings not to be taken as the only surgical indication criterium

  7. Morphological changes of the caudal cervical intervertebral foramina due to flexion-extension and compression-traction movements in the canine cervical vertebral column.

    PubMed

    Ramos, Renato M; da Costa, Ronaldo C; Oliveira, Andre L A; Kodigudla, Manoj K; Goel, Vijay K

    2015-08-06

    Previous studies in humans have reported that the dimensions of the intervertebral foramina change significantly with movement of the spine. Cervical spondylomyelopathy (CSM) in dogs is characterized by dynamic and static compressions of the neural components, leading to variable degrees of neurologic deficits and neck pain. Studies suggest that intervertebral foraminal stenosis has implications in the pathogenesis of CSM. The dimensions of the cervical intervertebral foramina may significantly change during neck movements. This could have implication in the pathogenesis of CSM and other diseases associated with radiculopathy such as intervertebral disc disease. The purpose of this study was to quantify the morphological changes in the intervertebral foramina of dogs during flexion, extension, traction, and compression of the canine cervical vertebral column. All vertebral columns were examined with magnetic resonance imaging prior to biomechanic testing. Eight normal vertebral columns were placed in Group 1 and eight vertebral columns with intervertebral disc degeneration or/and protrusion were assigned to Group 2. Molds of the left and right intervertebral foramina from C4-5, C5-6 and C6-7 were taken during all positions and loading modes. Molds were frozen and vertical (height) and horizontal (width) dimensions of the foramina were measured. Comparisons were made between neutral to flexion and extension, flexion to extension, and traction to compression in neutral position. Extension decreased all the foraminal dimensions significantly, whereas flexion increased all the foraminal dimensions significantly. Compression decreased all the foraminal dimensions significantly, and traction increased the foraminal height, but did not significantly change the foraminal width. No differences in measurements were seen between groups. Our results show movement-related changes in the dimensions of the intervertebral foramina, with significant foraminal narrowing in extension

  8. Protective effect of ligustrazine on lumbar intervertebral disc degeneration of rats induced by prolonged upright posture.

    PubMed

    Liang, Qian-Qian; Ding, Dao-Fang; Xi, Zhi-Jie; Chen, Yan; Li, Chen-Guang; Liu, Shu-Fen; Lu, Sheng; Zhao, Yong-Jian; Shi, Qi; Wang, Yong-Jun

    2014-01-01

    Most chronic low back pain is the result of degeneration of the lumbar intervertebral disc. Ligustrazine, an alkaloid from Chuanxiong, reportedly is able to relieve pain, suppress inflammation, and treat osteoarthritis and it has the protective effect on cartilage and chondrocytes. Therefore, we asked whether ligustrazine could reduce intervertebral disc degeneration. To determine the effect of ligustrazine on disc degeneration, we applied a rat model. The intervertebral disc degeneration of the rats was induced by prolonged upright posture. We found that pretreatment with ligustrazine for 1 month recovered the structural distortion of the degenerative disc; inhibited the expression of type X collagen, matrix metalloproteinase (MMP)-13, and MMP3; upregulated type II collagen; and decreased IL-1 β , cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) expression. In conclusion, ligustrazine is a promising agent for treating lumbar intervertebral disc degeneration disease.

  9. The avian intervertebral disc arises from rostral sclerotome and lacks a nucleus pulposus: Implications for evolution of the vertebrate disc

    PubMed Central

    Bruggeman, Bradley J.; Maier, Jennifer A.; Mohiuddin, Yasmin S.; Powers, Rae; Lo, YinTing; Guimarães-Camboa, Nuno; Evans, Sylvia M.; Harfe, Brian D.

    2012-01-01

    Deterioration of the intervertebral discs is an unfortunate consequence of aging. The intervertebral disc in mammals is composed of three parts: a jelly-like center called the nucleus pulposus, the cartilaginous annulus fibrosus and anterior and posterior endplates that attach the discs to vertebrae. In order to understand the origin of the disc, we have investigated the intervertebral region of chickens. Surprisingly, our comparison of mouse and chicken discs revealed that chicken discs lack nuclei pulposi. In addition, the notochord, which in mice forms nuclei pulposi, was found to persist as a rod-like structure and express Shh throughout chicken embryogenesis. Our fate mapping data indicates that cells originating from the rostral half of each somite are responsible for forming the avian disc while cells in the caudal region of each somite form vertebrae. A histological analysis of mammalian and non-mammalian organisms suggests that nuclei pulposi are only present in mammals. PMID:22354863

  10. Matrix-assisted cell transfer for intervertebral disc cell therapy.

    PubMed

    Bertram, Helge; Kroeber, Markus; Wang, Haili; Unglaub, Frank; Guehring, Thorsten; Carstens, Claus; Richter, Wiltrud

    2005-06-17

    Cell therapy seems to be a promising way to reconstitute degenerated discs. We elucidate the basic aspects of intervertebral disc (IVD) cell therapy to estimate its potential in disc regeneration. Cell transfer efficiency and survival was quantified by luciferase expression after injection of recombinant cells into healthy, nucleotomized or mechanically degenerated rabbit IVDs in vitro, in situ or in vivo. A two-component fibrin matrix was adapted to allow injection of a fluid cell suspension that quickly polymerizes in IVDs. Thirty-five to fifty percent of matrix injected cells remained in the nucleus and transition zone in contrast to a rapid loss of medium-injected cells. Nucleotomy, which reduces intradiscal pressure, was crucial to the survival of the transferred cells over 3 days and nutritional enrichment of the fibrin matrix with potent biomolecules from serum significantly enhanced cell viability. In conclusion, advanced matrix substitutes are needed for efficient transfer and improved cell survival in the low-nutrient intradiscal environment to further improve disc cell therapy.

  11. Prognosis of intervertebral disc loss from diagnosis of degenerative disc disease

    NASA Astrophysics Data System (ADS)

    Li, S.; Lin, A.; Tay, K.; Romano, W.; Osman, Said

    2015-03-01

    Degenerative Disc Disease (DDD) is one of the most common causes of low back pain, and is a major factor in limiting the quality of life of an individual usually as they enter older stages of life, the disc degeneration reduces the shock absorption available which in turn causes pain. Disc loss is one of the central processes in the pathogenesis of DDD. In this study, we investigated whether the image texture features quantified from magnetic resonance imaging (MRI) could be appropriate markers for diagnosis of DDD and prognosis of inter-vertebral disc loss. The main objective is to use simple image based biomarkers to perform prognosis of spinal diseases using non-invasive procedures. Our results from 65 subjects proved the higher success rates of the combination marker compared to the individual markers and in the future, we will extend the study to other spine regions to allow prognosis and diagnosis of DDD for a wider region.

  12. Acupuncture treatment for feline multifocal intervertebral disc disease.

    PubMed

    Choi, Keum Hwa; Hill, Sara A

    2009-08-01

    A 14-year-old male neutered domestic shorthair cat was admitted to the Veterinary Medical Center, University of Minnesota for evaluation of severe hind limb ataxia, atrophy and paresis. Diagnosis based on physical examination, neurological assessment and magnetic resonance imaging (MRI) was multifocal intervertebral disc disease (IVDD) with dorsal disc protrusion throughout the thoracic and cranial lumbar spine. The Oriental Medicine (OM) diagnosis (pattern identification) was painful obstruction (Bi) syndrome caused by phlegm-heat accumulation with blood stagnation in the spine. High dose prednisolone therapy (1.25mg/kg PO, once daily) initially did not show any significant improvement in clinical signs. The cat was then treated with several modes of acupuncture treatment including dry needle acupuncture, electro-acupuncture and scalp acupuncture along with Tui-Na (hand manipulation in OM) and physical therapy. Significant improvements in mobility, proprioception and spinal posture were noticed and the cat was able to rise, walk and run 4 months after starting acupuncture treatments. This is the first case report of feline IVDD with multiple sites of disc compression which was successfully treated with several modes of acupuncture treatment.

  13. Evaluation of canine intervertebral disc degeneration in colour-coded computed tomography.

    PubMed

    Harder, Lisa K; Galindo-Zamora, Vladimir; Beyerbach, Martin; Nolte, Ingo; Wefstaedt, Patrick

    2015-01-01

    Canine intervertebral disc degeneration can lead to intervertebral disc disease. Mild degenerative changes in the structure of the canine intervertebral disc can be identified in magnetic resonance images, whereas these changes are not visible in computed tomographic images. Therefore, one aim of this study was to detect whether colour-coded computed tomography enhances the visibility of mild degenerative changes in the canine disc structure compared to non-contrast computed tomography. Furthermore, the study aimed to detect if intervertebral disc degeneration could be classified with a higher reliability in colour-coded images than in non-contrast images. Computed tomographic image studies of 144 canine intervertebral discs were coloured using three different lookup tables. Canine intervertebral disc degeneration was evaluated by three observers using a 5-grade classification system and compared to the evaluation of non-contrast CT and MRI images. A moderate to almost perfect intraobserver and a moderate to substantial interobserver agreement were found depending on the used colour code. On comparing non-contrast and colour-coded CT significant differences were found by one observer only. Significant differences in evaluation were found in grading intervertebral disc degeneration in MRI and colour-coded CT. Intervertebral disc degeneration could not be classified with a higher reliability on colour-coded images compared to non-contrast images. Furthermore, colour-coded CT did not enhance the visibility of mild degenerative changes in disc structure compared to non-contrast CT. However, the better intraobserver agreement and the subjective impression of the observers highlighted that the usage of colour encoded CT data sets with a wide range of tonal values of few primary and secondary colours may facilitate evaluation.

  14. Biomechanical study of a hat type cervical intervertebral fusion cage.

    PubMed

    Gu, Yu-Tong; Jia, Lian-Shun; Chen, Tong-Yi

    2007-02-01

    The purpose of this study was to evaluate the biomechanical effect of a hat type cervical intervertebral fusion cage (HCIFC). In this in vitro biomechanical study, 48 goat cervical spines (C2-5) were tested in flexion, extension, axial rotation, and lateral bending with a nondestructive stiffness method using a nonconstrained testing apparatus, and three-dimensional displacement was measured. Autologous iliac bone and cervical spine intervertebral fusion cage were implanted according to manufacturers' information after complete discectomy (C3-4). Eight spines in each of the following groups were tested: intact, autologous iliac bone graft, Harms cage, SynCage C, carbon cage, and HCIFC. The mean apparent stiffness values were calculated from the corresponding load-displacement curves. Additionally, cage volume and volume-related stiffness were determined. The stiffness of the SynCage C was statistically greatest in all directions. After implantation of the HCIFC, flexion stiffness increased compared with that of the intact motion segment. There was no significant difference in stiffness between the HCIFC and carbon cage. The stiffness of the HCIFC was statistically higher than that of the Harms cage in axial rotation and significantly lower in flexion, extension, and lateral bending. Volume-related stiffness of all cages was higher than that of iliac bone graft. The Harms cage was highest in volume-related stiffness in all directions. The HCIFC can provide enough primary stability for cervical intervertebral fusion.

  15. The effect of kyphoscoliosis on intervertebral disc degeneration in dogs.

    PubMed

    Faller, Kiterie; Penderis, Jacques; Stalin, Catherine; Guevar, Julien; Yeamans, Carmen; Gutierrez-Quintana, Rodrigo

    2014-06-01

    In people, abnormalities in vertebral column conformation, such as kyphoscoliosis, induce degenerative changes in adjacent intervertebral disc (IVD) structure and composition. It was hypothesised that canine IVDs adjacent to a vertebral malformation undergo early degeneration. In a blinded retrospective study, thoracic IVD degeneration was evaluated in 14 dogs on magnetic resonance images using Pfirrmann's grade. IVDs adjacent to a vertebral malformation had higher grades of degeneration than non-adjacent IVDs (P < 0.0001). There was an age-dependency, with dogs between 1 and 4 years showing higher grade of degeneration in adjacent than non-adjacent IVDs (P < 0.0001). Conversely, in older dogs, all IVDs - including the non-adjacents - showed degenerative signs, possibly due to normal aging. These results suggest that congenital vertebral malformation results in early degeneration of adjacent IVDs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. [LOCATION CHANGE OF ROTATION CENTER AFTER SINGLE SEGMENTAL CERVICAL DISC REPLACEMENT WITH ProDisc-C].

    PubMed

    Lou, Jigang; Liu, Hao; Rong, Xin; Gong, Quan; Song, Yueming; Li, Tao

    2015-01-01

    To evaluate the effectiveness of the single segmental cervical disc replacement with ProDisc-C, and to explore the location change of the flexion/extension center of rotation (COR) of the target level as well as its clinical significance. Between June 2010 and February 2012, 23 patients underwent single segmental cervical disc replacement with ProDisc-C, and the clinical data were retrospectively analyzed. Of 23 patients, 9 were male, and 14 were female with the age range from 27 to 65 years (mean, 45 years), and the disease duration ranged from 10 to 84 months (mean, 25 months). There were 15 patients with radiculopathy, 5 patients with myelopathy, and 3 patients with mixed cervical spondylosis. The involved segments were C4,5 in 5 cases, C5,6 in 14 cases, and C6,7 in 4 cases. Japanese Orthopaedic Association (JOA) score and neck disability index (NDI) were adopted to evaluate the effectiveness. Preoperative and Postoperative radiographic parameters, such as cervical overall range of motion (ROM), target segmental ROM, the adjacent segmental ROM, and intervertebral height were compared. Besides, the location changes of the COR of the target level were further analyzed by the alteration of its coordinates (COR-X, COR-Y), and the relationships between the location changes of the COR and the effectiveness or the radiographic results were analyzed. All the operations were completed successfully; 1 case had hoarseness after operation, which disappeared at 3 months after operation. All cases were followed up 18.3 months on average (range, 6-36 months). There was no device migration, loosening, subsidence, or fracture at last follow-up. The JOA score increased significantly and the NDI score decreased significantly at last follow-up when compared with preoperative scores (P < 0.05). No difference was found in the cervical overall ROM, target segmental ROM, the adjacent segmental ROM, and the COR-Y of the target level between pre-operation and last follow-up (P > 0

  17. Differential expression of proteoglycan epitopes by ovine intervertebral disc cells

    PubMed Central

    MELROSE, JAMES; SMITH, SUSAN; GHOSH, PETER

    2000-01-01

    The alginate bead culture system has been utilised by several groups to examine the in vitro proteoglycan (PG) metabolism of chondrocytes and intervertebral disc cells, but the nature of the PGs produced has not been examined in detail. This is largely due to the difficulty of separating the anionically charged sodium alginate support matrix from PGs which are similarly charged. In the present study ovine annulus fibrosus, transitional zone and nucleus pulposus cells were dissociated enzymatically from their respective matrices by sequential digestion with pronase/clostridial collagenase and DNAase and then cultured in alginate beads for 10 d. The beads were solubilised and subjected to DEAE Sepharose CL6B anion exchange chromatography to separate the sodium alginate bead support matrix material quantitatively from the disc cell PGs. The alginate free bead PGs were then subjected to composite agarose polyacrylamide gel electrophoresis to resolve PG populations and the PGs were transferred to nitrocellulose membranes by semidry electroblotting. The PGs were identified by probing the blots with a panel of antibodies to defined PG core protein and glycosaminoglycan side chain epitopes. Alginate beads of disc cells were also embedded in paraffin wax and 4μm sections cut to immunolocalise decorin, biglycan, versican, and the 7-D-4 PG epitope within the beads. Decorin and biglycan had similar distributions in the beads, being localised on the cell surface whereas versican and the 7-D-4 PG epitope were immunolocalised interterritoriarly. This study is the first to demonstrate that ovine disc cells synthesise versican in alginate bead culture. Furthermore the immunoblotting studies also showed that a proportion of the 7-D-4 PG epitope was colocalised with versican. PMID:11005711

  18. Location change of center of rotation after single-level cervical total disc replacement with ProDisc-C.

    PubMed

    Lou, Jigang; Li, Huibo; Rong, Xin; Wu, Wenjie; Liu, Hao

    2016-01-01

    Previous studies reported that the location of the center of rotation (COR) at instrumented level after cervical total disc replacement (TDR) deviated from its preoperative location. However, currently, it is unknown whether the deviated COR is linked to the range of motion (ROM) at instrumented level. The purpose of this study was to evaluate the clinical outcomes after cervical TDR with ProDisc-C (Synthes, West Chester, PA, USA), as well as investigate the location change of COR at instrumented level and its clinical significance. A total of 23 patients who underwent single-level cervical TDR with ProDisc-C were included. Japanese Orthopaedic Association (JOA) score and Neck Disability Index (NDI) were used to assess clinical outcomes. Radiographic parameters such as cervical ROM, instrumented segmental ROM, adjacent segmental ROM, and intervertebral height were analyzed. Additionally, the location change of COR at instrumented level and its clinical significance were further analyzed by the alteration of its coordinates (COR-X, COR-Y). JOA scores increased significantly, while NDI scores decreased at final follow-up. No differences were found in cervical global ROM, instrumented segmental ROM, adjacent segmental ROM, and COR-Y at instrumented level between preoperative and final follow-up measurements (p>0.05); however, intervertebral height and COR-X increased significantly (p<0.05). Cervical global ROM, instrumented segmental ROM, and adjacent segmental ROM could be effectively maintained, and intervertebral height was increased after TDR with ProDisc-C. The location of COR at instrumented level shifted forward after cervical TDR.

  19. Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats

    PubMed Central

    Issy, A.C.; Castania, V.; Castania, M.; Salmon, C.E.G.; Nogueira-Barbosa, M.H.; Bel, E. Del; Defino, H.L.A.

    2013-01-01

    Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration. PMID:23532265

  20. Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats.

    PubMed

    Issy, A C; Castania, V; Castania, M; Salmon, C E G; Nogueira-Barbosa, M H; Bel, E Del; Defino, H L A

    2013-03-01

    Animal models of intervertebral disc degeneration play an important role in clarifying the physiopathological mechanisms and testing novel therapeutic strategies. The objective of the present study is to describe a simple animal model of disc degeneration involving Wistar rats to be used for research studies. Disc degeneration was confirmed and classified by radiography, magnetic resonance and histological evaluation. Adult male Wistar rats were anesthetized and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7 and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s. To grade the severity of intervertebral disc degeneration, we measured the intervertebral disc height from radiographic images 7 and 30 days after the injury, and the signal intensity T2-weighted magnetic resonance imaging. Histological analysis was performed with hematoxylin-eosin and collagen fiber orientation using picrosirius red staining and polarized light microscopy. Imaging and histological score analyses revealed significant disc degeneration both 7 and 30 days after the lesion, without deaths or systemic complications. Interobserver histological evaluation showed significant agreement. There was a significant positive correlation between histological score and intervertebral disc height 7 and 30 days after the lesion. We conclude that the tail disc puncture method using Wistar rats is a simple, cost-effective and reproducible model for inducing disc degeneration.

  1. Effects of controlled dynamic disc distraction on degenerated intervertebral discs: an in vivo study on the rabbit lumbar spine model.

    PubMed

    Kroeber, Markus; Unglaub, Frank; Guehring, Thorsten; Guegring, Thorsten; Nerlich, Andreas; Hadi, Tamer; Lotz, Jeffrey; Carstens, Claus

    2005-01-15

    An in vivo study on the rabbit lumbar spine model. Effects of temporary dynamic distraction on intervertebral discs were studied on the lumbar spine rabbit model to characterize the changes associated with disc distraction and to evaluate feasibility of temporary disc distraction to previously compressed discs in order to stimulate disc regeneration. Studies have shown that accelerated degeneration of the intervertebral disc results from altered mechanical loading conditions. The development of methods for the prevention of disc degeneration and the restoration of disc tissue that has already degenerated are needed. New Zealand white rabbits (n = 32) were used for this study. The rabbits were randomly assigned to one of five groups. In 12 animals, the discs were first loaded for 28 days using a custom-made external loading device to stimulate disc degeneration. After 28 days loading time, the discs in six animals were distracted for 7 days and in six animals for 28 days using the same external device, however, modified as dynamic distraction device. In six animals, the discs were distracted for 28 days without previous loading; and in six animals, the discs were loaded for 28 days and afterwards the loading device removed for 28 days for recovery without distraction. Six animals were sham operated. The external device was situated; however, the discs remained undistracted and they also served as controls. After 28 to 56 days loading and distraction time, the animals were killed and the lumbar spine was harvested for examination. Disc height, disc morphology, cell viability, relative neutral zone, and tangent modulus were measured. After 28 days of loading, the discs demonstrated a significant decrease in disc space. Histologically, disorganization of the architecture of the anulus occurred. The number of dead cells increased significantly in the anulus and cartilage endplate. These changes were reversible after 28 days of distraction. The disc thickness increased

  2. Modelling creep behaviour of the human intervertebral disc.

    PubMed

    van der Veen, Albert J; Bisschop, Arno; Mullender, Margriet G; van Dieën, Jaap H

    2013-08-09

    The mechanical behaviour of an intervertebral disc is time dependent. In literature different constitutive equations have been used to describe creep. It is unsure whether these different approaches yield valid predictions. In this study, we compared the validity of different equations for the prediction of creep behaviour. To this end, human thoracic discs were preloaded at 0.1 MPa for 12h, compressed (0.8 MPa) for 24h and finally unloaded (0.1 MPa) for 24h. A Kohlrausch-Williams-Watts (KWW) model and a Double-Voight (DV) model were fitted to the creep data. Model parameters were calculated for test durations of 4, 8, 12, 16, 20 and 24h. Both models described the measured data well, but parameters were highly sensitive to test duration. The estimated time constant varied with test duration from 3.6 to 17h. When extrapolating beyond test duration, the DV model under-estimated and the KWW model over-estimated creep. The 24h experiment was still too short for an accurate determination of the parameters. Therefore, parameters obtained in this paper can be used to describe normal behaviour, but are not suitable for extrapolation beyond the test duration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Mechanosignaling activation of TGFβ maintains intervertebral disc homeostasis

    PubMed Central

    Bian, Qin; Ma, Lei; Jain, Amit; Crane, Janet L; Kebaish, Khaled; Wan, Mei; Zhang, Zhengdong; Edward Guo, X; Sponseller, Paul D; Séguin, Cheryle A; Riley, Lee H; Wang, Yongjun; Cao, Xu

    2017-01-01

    Intervertebral disc (IVD) degeneration is the leading cause of disability with no disease-modifying treatment. IVD degeneration is associated with instable mechanical loading in the spine, but little is known about how mechanical stress regulates nucleus notochordal (NC) cells to maintain IVD homeostasis. Here we report that mechanical stress can result in excessive integrin αvβ6-mediated activation of transforming growth factor beta (TGFβ), decreased NC cell vacuoles, and increased matrix proteoglycan production, and results in degenerative disc disease (DDD). Knockout of TGFβ type II receptor (TβRII) or integrin αv in the NC cells inhibited functional activity of postnatal NC cells and also resulted in DDD under mechanical loading. Administration of RGD peptide, TGFβ, and αvβ6-neutralizing antibodies attenuated IVD degeneration. Thus, integrin-mediated activation of TGFβ plays a critical role in mechanical signaling transduction to regulate IVD cell function and homeostasis. Manipulation of this signaling pathway may be a potential therapeutic target to modify DDD. PMID:28392965

  4. Text-mining network analysis of the response to osmotic stimuli in the intervertebral disc.

    PubMed

    Xu, X; Liu, L; Lu, Q Y

    2013-05-13

    Intervertebral disc cells experience a broad range of physical stimuli under physiologic conditions, including alterations in their osmotic environment. The purpose of this study was to construct a text-mining network of the genes induced during the response to osmotic stimuli in the intervertebral disc. We obtained a gene expression profile of human intervertebral disc cells from the National Center for Biotechnology Information, after culture under hyper- and hypo-osmotic conditions compared to iso-osmotic conditions, and we identified 65 differentially expressed genes of intervertebral disc cells. We constructed a text-mining network using Biblio-MetReS between the differentially expressed genes and other genes that were included in the same document as the differentially expressed genes. Then, we performed pathway-enrichment analysis to identify the most relevant pathways for the response to osmotic stimuli in intervertebral disc cells. Our data provide a comprehensive bioinformatics analysis of genes and pathways that may be involved in the response to osmotic stimuli in the intervertebral disc.

  5. Prediction of glycosaminoglycan synthesis in intervertebral disc under mechanical loading.

    PubMed

    Gao, Xin; Zhu, Qiaoqiao; Gu, Weiyong

    2016-09-06

    The loss of glycosaminoglycan (GAG) content is a major biochemical change during intervertebral disc (IVD) degeneration. Abnormal mechanical loading is one of the major factors causing disc degeneration. In this study, a multiscale mathematical model was developed to quantify the effect of mechanical loading on GAG synthesis. This model was based on a recently developed cell volume dependent GAG synthesis theory that predicts the variation of GAG synthesis rate of a cell under the influence of mechanical stimuli, and the biphasic theory that describes the deformation of IVD under mechanical loading. The GAG synthesis (at the cell level) was coupled with the mechanical loading (at the tissue level) via a cell-matrix unit approach which established a relationship between the variation of cell dilatation and the local tissue dilatation. This multiscale mathematical model was used to predict the effect of static load (creep load) on GAG synthesis in bovine tail discs. The predicted results are in the range of experimental results. This model was also used to investigate the effect of static (0.2MPa) and diurnal loads (0.1/0.3MPa and 0.15/0.25MPa in 12/12 hours shift with an average of 0.2MPa over a cycle) on GAG synthesis. It was found that static load and diurnal loads have different effects on GAG synthesis in a diurnal cycle, and the diurnal load effects depend on the amplitude of the load. The model is important to understand the effect of mechanical loading at the tissue level on GAG synthesis at the cellular level, as well as to optimize the mechanical loading in growing engineered tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Role of Cytokines in Intervertebral Disc Degeneration: Pain and Disc-content

    PubMed Central

    Risbud, Makarand V.; Shapiro, Irving. M

    2014-01-01

    Degeneration of the intervertebral disc is the major contributor to back/neck and radicular pain. It is characterized by an elevation in levels of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1 α/β, IL-6 and IL-17 secreted by the disc cells themselves; these cytokines promote matrix degradation, chemokine production and changes in cell phenotype. The resulting imbalance between catabolic and anabolic responses leads to degeneration, as well as herniation and radicular pain. Release of chemokines from degenerating discs promote infiltration and activation of T and B cells, macrophages, neutrophils, and mast cells further amplifying the inflammatory cascade. Immunocyte migration into the disc is accompanied by the appearance of microvasculature and nerve fibers arising from the dorsal root ganglion (DRG). In this inflammatory milieu, neurogenic factors in particular nerve growth factor (NGF) and brain-derive neurotrophic factor (BDNF) generated by disc and immune cells induce expression of pain associated cation channels in DRGs. Depolarization of these channels is likely to promote discogenic and radicular pain and reinforce the cytokine-mediated degenerative cascade. Taken together, the enhanced understanding of the contribution of cytokines and immune cells to catabolic and nociceptive processes provide new targets for treating symptomatic disc disease. PMID:24166242

  7. Are Modic changes associated with intervertebral disc cytokine profiles?

    PubMed

    Schroeder, Gregory D; Markova, Dessislava Z; Koerner, John D; Rihn, Jeffery A; Hilibrand, Alan S; Vaccaro, Alexander R; Anderson, D Greg; Kepler, Christopher K

    2017-01-01

    Degenerative changes including Modic changes (MCs) are commonly observed in patients with chronic low back pain. Although intervertebral disc (IVD) cytokine expression has been shown to be associated with low back pain, the cytokine profile for degenerative IVD with and without MC has not been compared. This study aimed to evaluate the potential association between IVD cytokine expression and MCs. A laboratory study was carried out. The IVD tissue samples from 10 patients with type II MCs and10 patients without MCs who underwent an anterior lumbar interbody and fusion for significant low back pain were collected. The expression levels of 42 cytokines were determined using a RayBio Human Cytokine Antibody Array 3 (RayBiotech Inc, Norcross, GA, USA) and the results were verified with enzyme-linked immunosorbent assay (ELISA). The cytokine array demonstrated a statistically significant increase in the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) (p=.001) and epithelial-derived neutrophil-activating peptide 78 (ENA-78) (p=.04), and a trend toward an increase in interleukin-1β (IL-1β) (p=.12) and tumor necrosis factor-α (TNF-α) (p=.22) in IVDs associated with type II MCs. These results were validated with ELISA which demonstrated a 3.85-fold increase in the GM-CSF level between IVDs with type II MCs compared with those without MCs (p=.03). Similarly there was a significant increase in the level of both ENA-78 (3.68-fold, p=.02) and IL-1β (2.11-fold, p=.01) in IVDs with type II MCs. Lastly, there was a trend (p=.07) toward an increase in TNF-α in IVDs with type II MCs (4.4-fold). Intervertebral discs with type II MCs demonstrate a significant increase in IL-1β, GM-CSF, and ENA-78, and there is a trend toward an increase in TNF-α. These results further strengthen the association between MCs and low back pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Reoperations Following Cervical Disc Replacement

    PubMed Central

    Skovrlj, Branko; Lee, Dong-Ho; Caridi, John Michael

    2015-01-01

    Cervical disc replacement (CDR) has emerged as an alternative surgical option to cervical arthrodesis. With increasing numbers of patients and longer follow-ups, complications related to the device and/or aging spine are growing, leaving us with a new challenge in the management and surgical revision of CDR. The purpose of this study is to review the current literature regarding reoperations following CDR and to discuss about the approaches and solutions for the current and future potential complications associated with CDR. The published rates of reoperation (mean, 1.0%; range, 0%-3.1%), revision (mean, 0.2%; range, 0%-0.5%), and removal (mean, 1.2%; range, 0%-1.9%) following CDR are low and comparable to the published rates of reoperation (mean, 1.7%; range; 0%-3.4%), revision (mean, 1.5%; range, 0%-4.7%), and removal (mean, 2.0%; range, 0%-3.4%) following cervical arthrodesis. The surgical interventions following CDR range from the repositioning to explantation followed by fusion or the reimplantation to posterior foraminotomy or fusion. Strict patient selection, careful preoperative radiographic review and surgical planning, as well as surgical technique may reduce adverse events and the need for future intervention. Minimal literature and no guidelines exist for the approaches and techniques in revision and for the removal of implants following CDR. Adherence to strict indications and precise surgical technique may reduce the number of reoperations, revisions, and removals following CDR. Long-term follow-up studies are needed, assessing the implant survivorship and its effect on the revision and removal rates. PMID:26097667

  9. Feasibility of a stem cell therapy for intervertebral disc degeneration.

    PubMed

    Sobajima, Satoshi; Vadala, Gianluca; Shimer, Adam; Kim, Joseph S; Gilbertson, Lars G; Kang, James D

    2008-01-01

    Different strategies to supplement/replenish the disc cell population have been proposed. Recently, adult stem cells have shown promise as a cell source for a variety of tissue engineering and cell therapy applications. A stem cell can renew itself through cell division and can be induced to develop into many different specialized cell types. Moreover, stem cells have shown ability to migrate and engraft within various tissues, as well as to exert stimulatory effects on other cell types through various mechanisms (eg, paracrine effects, cell-cell interactions). These characteristics make stem cells worthy of investigation as a source of cells for intervertebral disc (IVD) tissue engineering and cell therapy. To determine feasibility of a stem cell therapy of IVD degeneration. In vitro studies of adult human cells to examine interactions between nucleus pulposus cells (NPCs) and mesenchymal stem cells (MSCs) at different ratios in 3-D pellet culture. In vivo studies of healthy adult rabbit discs injected with allogenic adult rabbit MSCs to examine stem cell survival and engraftment in living disc tissue. In vitro study: Human NPCs were cocultured with human MSCs in different ratios (75:25, 50:50, 25:75) for 2 weeks in pellet culture, for comparison with pure NPC (100:0) and pure MSC (0:100) pellet cultures. Proteoglycan synthesis rate and glycosaminoglycan (GAG) content were measured by radioactive sulfate incorporation and dimethylmethylene blue assay, respectively. In vivo study: MSCs were isolated from the bone marrow of a New Zealand White (NZW) rabbit, retrovirally transduced with the lacZ marker gene, and injected into the nucleus pulposi of the L2-3, L3-4, and L4-5 lumbar discs of 12 other NZW rabbits. Three rabbits each were sacrificed at 3, 6, 12, or 24 weeks after cell implantation, and X-Gal staining was done to assess survival and localization of MSCs in the disc tissues. In vitro study: the 75:25 and 50:50 NPC:MSC cocultures yielded the greatest

  10. (*) In Vitro Generated Intervertebral Discs: Toward Engineering Tissue Integration.

    PubMed

    Iu, Jonathan; Massicotte, Eric; Li, Shu-Qiu; Hurtig, Mark B; Toyserkani, Ehsan; Santerre, J Paul; Kandel, Rita A

    2017-09-01

    The intervertebral disc (IVD) is composed of nucleus pulposus (NP) surrounded by multilamellated annulus fibrosus (AF), and is located between the vertebral bodies. Current treatments for chronic neck or low back pain do not completely restore the functionality of degenerated IVDs. Thus, developing biological disc replacements is an approach of great interest. Given the complex structure of the IVD, tissue engineering of the individual IVD components and then combining them together may be the only way to achieve this. The engineered disc must then be able to integrate into the host spine to ensure mechanical stability. The goal of this study was to generate an integrated model of an IVD in vitro. Multilamellated AF tissues were generated in vitro using aligned nanofibrous polycarbonate urethane scaffolds and AF cells. After 3 weeks in culture, it was placed around NP tissue formed on and integrated with a porous bone substitute material (calcium polyphosphate). The two tissues were cocultured to fabricate the IVD model. The AF tissue composed of six lamellae containing type I collagen-rich extracellular matrix (ECM) and the NP tissue had type II collagen- and aggrecan-rich ECM. Immunofluorescence studies showed both type I and II collagen at the AF-NP interface. There was evidence of integration of the tissues. The peel test for AF lamellae showed an interlamellar shear stress of 0.03 N/mm. The AF and NP were integrated as the pushout test demonstrated that the AF-NP interface had significantly increased mechanical stability by 2 weeks of coculture. To evaluate if these tissues remained integrated, allogeneic IVD model constructs were implanted into defects freshly made in the NP-inner AF and bone of the bovine coccygeal spine. One month postimplantation, the interfaces between the AF lamellae remained intact and there was integration with the host AF tissue. No inflammatory reaction was noted at this time period. In summary, an engineered IVD implant with

  11. The presence of pleiotrophin in the human intervertebral disc is associated with increased vascularization: an immunohistologic study.

    PubMed

    Johnson, William E B; Patterson, Angela M; Eisenstein, Stephen M; Roberts, Sally

    2007-05-20

    An immunohistological study of surgical specimens of human intervertebral disc. To examine the presence of pleiotrophin in diseased or damaged intervertebral disc tissue and the association between its presence and the extent of tissue vascularization and innervation. Increased levels of pleiotrophin, a growth and differentiation factor that is active in various pathophysiologic processes, including angiogenesis, has been associated with osteoarthritic changes of human articular cartilage. The association between pleiotrophin expression and pathologic conditions of the human intervertebral disc is unknown. Specimens of human lumbar intervertebral discs, obtained following surgical discectomy, were divided into 3 groups: non-degenerated discs (n = 7), degenerated discs (n = 6), and prolapsed discs (n = 11). Serial tissue sections of each specimen were immunostained to determine the presence of pleiotrophin, blood vessels (CD34-positive endothelial cells), and nerves (neurofilament 200 kDa [NF200]-positive nerve fibers). Pleiotrophin immunoreactivity was seen in disc cells, endothelial cells, and in the extracellular matrix in most specimens of intervertebral disc but was most prevalent in vascularized tissue in prolapsed discs. There was a significant correlation between the presence of pleiotrophin-positive disc cells and that of CD34-positive blood vessels. NF200-positive nerves were seen in vascularized areas of more degenerated discs, but nerves did not appear to codistribute with blood vessels or pleiotrophin positivity in prolapsed discs. Pleiotrophin is present in pathologic human intervertebral discs, and its prevalence and distribution suggest that it may play a role in neovascularization of diseased or damaged disc tissue.

  12. Minimally invasive photopolymerization in intervertebral disc tissue cavities

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Gantenbein-Ritter, Benjamin; Chan, Samantha; Bonél, Harald Marcel; Bourban, Pierre-Etienne; Mânson, Jan Anders; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2014-03-01

    Photopolymerized hydrogels are commonly used for a broad range of biomedical applications. As long as the polymer volume is accessible, gels can easily be hardened using light illumination. However, in clinics, especially for minimally invasive surgery, it becomes highly challenging to control photopolymerization. The ratios between polymerizationvolume and radiating-surface-area are several orders of magnitude higher than for ex-vivo settings. Also tissue scattering occurs and influences the reaction. We developed a Monte Carlo model for photopolymerization, which takes into account the solid/liquid phase changes, moving solid/liquid-boundaries and refraction on these boundaries as well as tissue scattering in arbitrarily designable tissue cavities. The model provides a tool to tailor both the light probe and the scattering/absorption properties of the photopolymer for applications such as medical implants or tissue replacements. Based on the simulations, we have previously shown that by adding scattering additives to the liquid monomer, the photopolymerized volume was considerably increased. In this study, we have used bovine intervertebral disc cavities, as a model for spinal degeneration, to study photopolymerization in-vitro. The cavity is created by enzyme digestion. Using a custom designed probe, hydrogels were injected and photopolymerized. Magnetic resonance imaging (MRI) and visual inspection tools were employed to investigate the successful photopolymerization outcomes. The results provide insights for the development of novel endoscopic light-scattering polymerization probes paving the way for a new generation of implantable hydrogels.

  13. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions.

    PubMed

    Sakai, Daisuke; Andersson, Gunnar B J

    2015-04-01

    Intervertebral disc (IVD) degeneration is frequently associated with low back and neck pain, which accounts for disability worldwide. Despite the known outcomes of the IVD degeneration cascade, the treatment of IVD degeneration is limited in that available conservative and surgical treatments do not reverse the pathology or restore the IVD tissue. Regenerative medicine for IVD degeneration, by injection of IVD cells, chondrocytes or stem cells, has been extensively studied in the past decade in various animal models of induced IVD degeneration, and has progressed to clinical trials in the treatment of various spinal conditions. Despite preliminary results showing positive effects of cell-injection strategies for IVD regeneration, detailed basic research on IVD cells and their niche indicates that transplanted cells are unable to survive and adapt in the avascular niche of the IVD. For this therapeutic strategy to succeed, the indications for its use and the patients who would benefit need to be better defined. To surmount these obstacles, the solution will be identified only by focused research, both in the laboratory and in the clinic.

  14. Mesenchymal stem cell tracking in the intervertebral disc

    PubMed Central

    Handley, Charles; Goldschlager, Tony; Oehme, David; Ghosh, Peter; Jenkin, Graham

    2015-01-01

    Low back pain is a common clinical problem, which leads to significant social, economic and public health costs. Intervertebral disc (IVD) degeneration is accepted as a common cause of low back pain. Initially, this is characterized by a loss of proteoglycans from the nucleus pulposus resulting in loss of tissue hydration and hydrostatic pressure. Conservative management, including analgesia and physiotherapy often fails and surgical treatment, such as spinal fusion, is required. Stem cells offer an exciting possible regenerative approach to IVD disease. Preclinical research has demonstrated promising biochemical, histological and radiological results in restoring degenerate IVDs. Cell tracking provides an opportunity to develop an in-depth understanding of stem cell survival, differentiation and migration, enabling optimization of stem cell treatment. Magnetic Resonance Imaging (MRI) is a non-invasive, non-ionizing imaging modality with high spatial resolution, ideally suited for stem cell tracking. Furthermore, novel MRI sequences have the potential to quantitatively assess IVD disease, providing an improved method to review response to biological treatment. Superparamagnetic iron oxide nanoparticles have been extensively researched for the purpose of cell tracking. These particles are biocompatible, non-toxic and act as excellent MRI contrast agents. This review will explore recent advances and issues in stem cell tracking and molecular imaging in relation to the IVD. PMID:25621106

  15. Studies of human intervertebral disc cell function in a constrained in vitro tissue culture system.

    PubMed

    Le Maitre, Christine Lyn; Hoyland, Judith Alison; Freemont, Anthony J

    2004-06-01

    This is a laboratory-based study examining a novel in vitro culture system for intervertebral disc tissue. Address the hypothesis that "the novel culture system will preserve intervertebral disc tissue matrix and cell function and prevent cellular apoptosis for periods up to 21 days." Studies of cell function in human intervertebral disc tissue are scarce. In vivo study of human intervertebral disc cells remains impracticable; in situ molecular biology in histologic sections lacks a dynamic dimension; and as for in vitro studies, cell culture often lacks physiologic relevance and explant cultures are subject to loss of tissue integrity and altered cell behavior. There is a biologic and therapeutic need for a satisfactory explant culture system for studying human intervertebral disc tissue in a controlled environment. Samples of human intervertebral disc tissue, obtained at surgery, were examined for a number of tissue and cell parameters immediately after excision (controls) and following culture of tissue samples either in a plastic ring or unconstrained in tissue culture medium for up to 3 weeks. Data were compared between cultured tissue and controls. By comparison with control tissue, unconstrained explants swelled, tissue structure was disturbed, and there were profound changes in cell function. By contrast, tissue cultured in plastic rings maintained tissue structure, and after 3 weeks, the cellular parameters were the same as in controls. This is the first reported system to preserve cell function of human discal explants for long periods in tissue culture. It will be a useful tool for a wide range of investigations of intervertebral disc biology that have not hitherto been possible.

  16. Standards of Practice: Quality Assurance Guidelines for Percutaneous Treatments of Intervertebral Discs

    SciTech Connect

    Kelekis, Alexis D. Filippiadis, Dimitris K.; Martin, Jean-Baptiste; Brountzos, Elias

    2010-10-15

    Percutaneous treatments are used in the therapy of small- to medium-sized hernias of intervertebral discs to reduce the intradiscal pressure in the nucleus and theoretically create space for the herniated fragment to implode inward, thus reducing pain and improving mobility and quality of life. These techniques involve the percutaneous removal of the nucleus pulposus by using a variety of chemical, thermal, or mechanical techniques and consist of removal of all or part of nucleus pulposus to induce more rapid healing of the abnormal lumbar disc. These guidelines are written to be used in quality improvement programs for assessing fluoroscopy- and/or computed tomography-guided percutaneous intervertebral disc ablative techniques.

  17. Factors associated with lumbar intervertebral disc degeneration in the elderly.

    PubMed

    Hangai, Mika; Kaneoka, Koji; Kuno, Shinya; Hinotsu, Shiro; Sakane, Masataka; Mamizuka, Naotaka; Sakai, Shinsuke; Ochiai, Naoyuki

    2008-01-01

    Lumbar intervertebral disc degeneration (DD) precedes degenerative diseases of the lumbar spine. Various factors in addition to normal aging are reported to be associated with DD, and recently atherosclerosis and risk factors for cardiovascular diseases (cardiovascular risk factors) have received much attention; however, the links between these risk factors and DD are unclear. By correlating magnetic resonance images (MRI) with suspected degenerative disc risk factors such as obesity, cardiovascular risk factors, and atherosclerosis, we hope to clarify the factors associated with DD. An observational study. Two hundred seventy adults (51-86 years old) who participated in a health promotion program. DD evaluated based on the signal intensity of MR T2-weighted mid-sagittal images of the lumbar spine. Age, gender, body mass index (BMI), low-density lipoprotein cholesterol (LDLc), triglyceride (TG), glycosylated hemoglobin (HbA(1c)), brachial-ankle pulse wave velocity (baPWV) as an index of atherosclerosis, osteo-sono-assessment index (OSI) calculated from quantitative ultrasound assessment of the calcaneus as an index of bone mineral density (BMD), history of low back pain (LBP), smoking and drinking habits, and physical loading related to occupations and sports were assessed. The univariate relationships between DD and the variables were evaluated, and finally, odds ratios (OR) and 95% confidence intervals (CI) for the associations of each factor with DD were calculated using logistic regression at each disc level. Aging correlated significantly with DD of L1/2 (OR, 2.14), L2/3 (OR, 3.56), L3/4 (OR, 2.84), and L4/5 (OR, 3.05); high BMI, with L2/3 (OR, 2.98), L3/4 (OR, 3.58), L4/5 (OR, 2.32), and L5/S1 (OR, 3.34); high LDLc, with L4/5 (OR, 2.65); occupational lifting, with L1/2 (OR, 4.25); and sports activities, with L5/S1 (OR, 3.36). Aging, high BMI, high LDLc, occupational lifting, and sports activities are associated with DD. The results of this study raise our

  18. Determination of the intervertebral disc space from CT images of the lumbar spine

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Å tern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-03-01

    Degenerative changes of the intervertebral disc are among the most common causes of low back pain, where for individuals with significant symptoms surgery may be needed. One of the interventions is the total disc replacement surgery, where the degenerated disc is replaced by an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study we propose a method for the determination of the intervertebral disc space from three-dimensional (3D) computed tomography (CT) images of the lumbar spine. The first step of the proposed method is the construction of a model of vertebral bodies in the lumbar spine. For this purpose, a chain of five elliptical cylinders is initialized in the 3D image and then deformed to resemble vertebral bodies by introducing 25 shape parameters. The parameters are obtained by aligning the chain to the vertebral bodies in the CT image according to image intensity and appearance information. The determination of the intervertebral disc space is finally achieved by finding the planes that fit the endplates of the obtained parametric 3D models, and placing points in the space between the planes of adjacent vertebrae that enable surface reconstruction of the intervertebral disc space. The morphometric analysis of images from 20 subjects yielded 11:3 +/- 2:6, 12:1 +/- 2:4, 12:8 +/- 2:0 and 12:9 +/- 2:7 cm3 in terms of L1-L2, L2-L3, L3-L4 and L4-L5 intervertebral disc space volume, respectively.

  19. Cervical disc arthroplasty: Pros and cons

    PubMed Central

    Moatz, Bradley; Tortolani, P. Justin

    2012-01-01

    Background: Cervical disc arthroplasty has emerged as a promising potential alternative to anterior cervical discectomy and fusion (ACDF) in appropriately selected patients. Despite a history of excellent outcomes after ACDF, the question as to whether a fusion leads to adjacent segment degeneration remains unanswered. Numerous US investigational device exemption trials comparing cervical arthroplasty to fusion have been conducted to answer this question. Methods: This study reviews the current research regarding cervical athroplasty, and emphasizes both the pros and cons of arthroplasty as compared with ACDF. Results: Early clinical outcomes show that cervical arthroplasty is as effective as the standard ACDF. However, this new technology is also associated with an expanding list of novel complications. Conclusion: Although there is no definitive evidence that cervical disc replacement reduces the incidence of adjacent segment degeneration, it does show other advantages; for example, faster return to work, and reduced need for postoperative bracing. PMID:22905327

  20. The influence of cervical traction, compression, and spurling test on cervical intervertebral foramen size.

    PubMed

    Takasaki, Hiroshi; Hall, Toby; Jull, Gwendolen; Kaneko, Shouta; Iizawa, Takeshi; Ikemoto, Yoshikazu

    2009-07-15

    A comparative measurement design investigating the C4-Th1 intervertebral foramen under simulated clinical tests for cervical radiculopathy using magnetic resonance imaging. The purpose of this study was to evaluate functional changes in the cervical intervertebral foramen during the axial compression test (ACT), axial distraction test (DT), and Spurling test (SST). Although alterations of the cross-sectional area of the cervical intervertebral foramen during flexion/extension and rotation have been reported, there are no studies that have measured functional changes in foramen cross-sectional area (FCSA) or shape during the simulation of clinical tests for cervical radiculopathy. 23 participants (12 men, age: 24.52 years) without history of significant spinal disorders were studied. The 3-dimensional sequence of the magnetic resonance imaging of the foramen was performed with a 0.2-T horizontally open unit. Measurements were taken of FCSA and foramen shape (ratio of foramen height to FCSA). These measurements were conducted under 4 different conditions; control-resting in supine, DT-neck in neutral with a 12 kg distraction force, ACT-neck in neutral with a 7 kg axial compression force, SST-the cervical spine was extended (12.79 degrees ), rotated (63.36 degrees ), and laterally flexed (28.49 degrees ), in a standardized manner. At all levels except for C7-Th1, the FCSA significantly increased (P < 0.05) during the DT to around 120% of control. In contrast, FCSA significantly decreased to approximately 70% of control (P < 0.05) at all levels during the SST. In addition, there were significant differences (P > 0.05) in foramen shape between the ACT and SST condition, but only at the C4-C5 and C5-C6 levels. During 3 clinical tests for cervical radiculopathy functional, relevant, and changes in the cervical intervertebral foramen were evident particularly in the middle cervical spine.

  1. Heme oxygenase-1 modulates degeneration of the intervertebral disc after puncture in Bach 1 deficient mice.

    PubMed

    Ohta, Ryo; Tanaka, Nobuhiro; Nakanishi, Kazuyoshi; Kamei, Naosuke; Nakamae, Toshio; Izumi, Bunichiro; Fujioka, Yuki; Ochi, Mitsuo

    2012-09-01

    Intervertebral disc degeneration is considered to be a major feature of low back pain. Furthermore, oxidative stress has been shown to be an important factor in degenerative diseases such as osteoarthritis and is considered a cause of intervertebral disc degeneration. The purpose of this study was to clarify the correlation between oxidative stress and intervertebral disc degeneration using Broad complex-Tramtrack-Bric-a-brac and cap'n'collar homology 1 deficient (Bach 1-/-) mice which highly express heme oxygenase-1 (HO-1). HO-1 protects cells from oxidative stress. Caudal discs of 12-week-old and 1-year-old mice were evaluated as age-related models. Each group and period, 5 mice (a total of 20 mice, a total of 20 discs) were evaluated as age-related model. C9-C10 caudal discs in 12-week-old Bach 1-/- and wild-type mice were punctured using a 29-gauge needle as annulus puncture model. Each group and period, 5 mice (a total of 60 mice, a total of 60 discs) were evaluated. The progress of disc degeneration was evaluated at pre-puncture, 1, 2, 4, 8 and 12 weeks post-puncture. Radiographic, histologic and immunohistologic analysis were performed to compare between Bach 1-/- and wild-type mice. In the age-related model, there were no significant differences between Bach 1-/- and wild-type mice radiologically and histologically. However, in the annulus puncture model, histological scoring revealed significant difference at 8 and 12 weeks post-puncture. The number of HO-1 positive cells was significantly greater in Bach 1-/- mice at every period. The apoptosis rate was significantly lower at 1 and 2 weeks post-puncture in Bach 1-/- mice. Oxidative stress prevention may avoid the degenerative process of the intervertebral disc after puncture, reducing the number of apoptosis cells. High HO-1 expression may also inhibit oxidative stress and delay the process of intervertebral disc degeneration.

  2. Association between apparent diffusion coefficient and intervertebral disc degeneration in patients with ankylosing spondylitis

    PubMed Central

    Resorlu, Mustafa; Gokmen, Ferhat; Resorlu, Hatice; Adam, Gurhan; Akbal, Ayla; Cevizci, Sibel; Sariyildirim, Abdullah; Savas, Yilmaz; Guven, Mustafa; Aras, Adem Bozkurt

    2015-01-01

    Purpose: To assess the relation between ankylosing spondylitis (AS) and degenerative disc disease emerging in association with various intrinsic and extrinsic factors and to evaluate the correlation between degree of degeneration in intervertebral discs and apparent diffusion coefficient (ADC) values. Methods: Thirty-five patients with AS and a control group of 35 patients were included in the study. Three hundred fifty intervertebral discs were assessed in terms of degeneration by analyzing signal intensities and morphologies on T2 weighted series of a 1.5 Tesla magnetic resonance scanner. ADC values were determined in diffusion weighted images (DWI) using a “b value of 500 s/mm2”. Patients in the AS and control groups were compared in terms of intervertebral disc degeneration, and association between degree of degeneration and ADC values was analyzed. Results: The mean of total degeneration degrees for five lumbar intervertebral discs was significantly higher in the patients with AS compared to the control group (16.77±4.67 vs 13.00±4.08, respectively; P=0.001). When intervertebral discs were analyzed separately, disc degeneration was again significantly higher in patients with AS compared to the control group, with the exception of L5-S1. Age, cholesterol level, triglyceride level, duration of disease and BASFI index were significantly associated with degree of degeneration in patients with AS. A negative correlation was determined between disc degeneration and ADC value. Conclusion: AS is a risk factor for degenerative disc disease due to its systemic effects, the fact it leads to posture impairment and its inflammatory effects on the vertebrae. A decrease in ADC values is observed as degeneration worsens in degenerative disc disease. PMID:25785119

  3. Association Between Measures of Vertebral Endplate Morphology and Lumbar Intervertebral Disc Degeneration.

    PubMed

    Duran, Semra; Cavusoglu, Mehtap; Hatipoglu, Hatice Gul; Sozmen Cılız, Deniz; Sakman, Bulent

    2017-05-01

    The aim of this study was to evaluate the association between vertebral endplate morphology and the degree of lumbar intervertebral disc degeneration via magnetic resonance imaging (MRI). In total, 150 patients who met the inclusion criteria and were 20-60 years of age were retrospectively evaluated. Patients were evaluated for the presence of intervertebral disc degeneration or herniation, and the degree of degeneration was assessed at all lumbar levels. Vertebral endplate morphology was evaluated based on the endplate sagittal diameter, endplate sagittal concave angle (ECA), and endplate sagittal concave depth (ECD) on sagittal MRI. The association between intervertebral disc degeneration or herniation and endplate morphological measurements was analysed. In MRI, superior endplates (ie, inferior endplates of the superior vertebra) were concave and inferior endplates (ie, superior endplates of the inferior vertebra) were flat at all disc levels. A decrease in ECD and an increase in ECA were detected at all lumbar levels as disc degeneration increased (P < .05). At the L4-L5 and L5-S1 levels, a decrease in ECD and an increase in ECA were detected in the group with herniated lumbar discs (P < .05). There was no association between lumbar disc degeneration or herniation and endplate sagittal diameter at lumbar intervertebral levels (P > .05). At all levels, ECD of women was significantly lesser than that of men and ECA of women was significantly greater than that of men (P < .05). There is an association between vertebral endplate morphology and lumbar intervertebral disc degeneration. Vertebral endplates at the degenerated disc level become flat; the severity of this flattening is correlated with the degree of disc degeneration. Copyright © 2016 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  4. A Review of Animal Models of Intervertebral Disc Degeneration: Pathophysiology, Regeneration, and Translation to the Clinic

    PubMed Central

    Ghosh, Peter

    2016-01-01

    Lower back pain is the leading cause of disability worldwide. Discogenic pain secondary to intervertebral disc degeneration is a significant cause of low back pain. Disc degeneration is a complex multifactorial process. Animal models are essential to furthering understanding of the degenerative process and testing potential therapies. The adult human lumbar intervertebral disc is characterized by the loss of notochordal cells, relatively large size, essentially avascular nature, and exposure to biomechanical stresses influenced by bipedalism. Animal models are compared with regard to the above characteristics. Numerous methods of inducing disc degeneration are reported. Broadly these can be considered under the categories of spontaneous degeneration, mechanical and structural models. The purpose of such animal models is to further our understanding and, ultimately, improve treatment of disc degeneration. The role of animal models of disc degeneration in translational research leading to clinical trials of novel cellular therapies is explored. PMID:27314030

  5. Intervertebral disc regeneration: from the degenerative cascade to molecular therapy and tissue engineering.

    PubMed

    Vadalà, Gianluca; Russo, Fabrizio; Di Martino, Alberto; Denaro, Vincenzo

    2015-06-01

    Low back pain is one of the major health problems in industrialized countries, as a leading source of disability in the working population. Intervertebral disc degeneration has been identified as its main cause, being a progressive process mainly characterized by alteration of extracellular matrix composition and water content. Many factors are involved in the degenerative cascade, such as anabolism/catabolism imbalance, reduction of nutrition supply and progressive cell loss. Currently available treatments are symptomatic, and surgical procedures consisting of disc removal are often necessary. Recent advances in our understanding of intervertebral disc biology led to an increased interest in the development of novel biological treatments aimed at disc regeneration. Growth factors, gene therapy, stem cell transplantation and biomaterials-based tissue engineering might support intervertebral disc regeneration by overcoming the limitation of the self-renewal mechanism. The aim of this paper is to overview the literature discussing the current status of our knowledge from the degenerative cascade of the intervertebral disc to the latest molecular, cell-based therapies and tissue-engineering strategies for disc regeneration.

  6. Changes in intervertebral disc cross-sectional area with bed rest and space flight

    NASA Technical Reports Server (NTRS)

    LeBlanc, A. D.; Evans, H. J.; Schneider, V. S.; Wendt, R. E. 3rd; Hedrick, T. D.

    1994-01-01

    STUDY DESIGN. We measured the cross-sectional area of the intervertebral discs of normal volunteers after an overnight rest; before, during, and after 5 or 17 weeks of bed rest; and before and after 8 days of weightlessness. OBJECTIVES. This study sought to determine the degree of expansion of the lumbar discs resulting from bed rest and space flight. SUMMARY OF BACKGROUND DATA. Weightlessness and bed rest, an analog for weightlessness, reduce the mechanical loading on the musculoskeletal system. When unloaded, intervertebral discs will expand, increasing the nutritional diffusion distance and altering the mechanical properties of the spine. METHODS. Magnetic resonance imaging was used to measure the cross-sectional area and transverse relaxation time (T2) of the intervertebral discs. RESULTS. Overnight or longer bed rest causes expansion of the disc area, which reaches an equilibrium value of about 22% (range 10-40%) above baseline within 4 days. Increases in disc area were associated with modest increases in disc T2. During bed rest, disc height increased approximately 1 mm, about one-half of previous estimates based on body height measurements. After 5 weeks of bed rest, disc area returned to baseline within a few days of ambulation, whereas after 17 weeks, disc area remained above baseline 6 weeks after reambulation. After 8 days of weightlessness, T2, disc area, and lumbar length were not significantly different from baseline values 24 hours after landing. CONCLUSIONS. Significant adaptive changes in the intervertebral discs can be expected during weightlessness. These changes, which are rapidly reversible after short-duration flights, may be an important factor during and after long-duration missions.

  7. Piezoresistive pressure sensors in the measurement of intervertebral disc hydrostatic pressure.

    PubMed

    Moore, Michael Kevin; Fulop, Steven; Tabib-Azar, Massood; Hart, David J

    2009-12-01

    An implantable, freestanding, minimally invasive, intervertebral disc pressure sensor would vastly improve the knowledge of spinal biomechanics and the understanding of spinal disease. Additionally, it would improve clinical indications for surgical interventions in disc-related pathology. Adaptation of current commercially available materials, technology, and microfabrication techniques may now make the production of such a device feasible. To determine if piezoresistive pressure sensor (PPS) technology could be applied as the functional sensing element in an intervertebral disc microsensor. Commercially available PPS chips were modified, producing sensor chips measuring 0.8 cm(2) by 0.3 cm with an internal sensing element measuring 0.15 cm(2) by 0.1cm. A needle-mounted pressure sensor functionally identical to those used in discography procedures was also tested in parallel as a control. Both sensors were calibrated for hydrostatic pressure using a purpose-built pressure chamber and then tested in human functional spinal units. Methods were developed to implant the sensor and measure the intervertebral disc pressure in response to axial compressive loads. Modified commercially available PPS elements were functionally adapted to measure intervertebral disc pressures. Both the PPS and the needle-mounted sensor measured a linear increase in hydrostatic disc pressure with applied axial load. Fluctuations between the slopes of the output versus load curves were observed in the PPS sensor experimental trials. These fluctuations were attributed to the large size of our working model and its impact on the hydrostatic and mechanical properties of the disc. It is hypothesized that future miniaturization of this working model will eliminate mechanical disruption within the disc and the fluctuations in the slope of sensor output that this induces. It should be possible to construct an implantable sensor for the intervertebral disc. This may provide valuable clinical and

  8. Intraspinal cyst communicating with the intervertebral disc in the lumbar spine: discal cyst.

    PubMed

    Chiba, K; Toyama, Y; Matsumoto, M; Maruiwa, H; Watanabe, M; Nishizawa, T

    2001-10-01

    A retrospective case study of patients with intraspinal cyst having a distinct connection with the corresponding intervertebral disc. To propose a new clinical entity, "discal cyst," by clarifying the clinical, radiographic, and histologic aspects of the disease. Several types of intraspinal cysts with different pathogenesis, causing symptoms indistinguishable from those of lumbar disc herniation, have been reported, such as perineural cysts, synovial cysts, and ganglion cysts. However, to the authors' knowledge, no detailed analysis has been made of cysts that have a distinct connection with the corresponding intervertebral disc. Clinical pictures, radiographic findings, and surgical and histologic findings in eight surgically treated patients with intraspinal cyst having a distinct connection with the intervertebral disc were reviewed. Possible pathogenesis and a proposal for nomenclature were also discussed. This disease can be characterized by (1) clinical symptoms indistinguishable from those of typical disc herniation, manifesting as a unilateral single nerve root lesion; (2) incidence at slightly younger age and at upper intervertebral levels than with typical disc herniation; (3) T1 low signal and T2 high signal intensity, round to oval mass lesion on magnetic resonance imaging, compatible with a liquid-containing cyst; (4) minimal degeneration of the involved disc, either on discography/computed tomographic discography or magnetic resonance imaging; (5) a connection between the cyst and the corresponding intervertebral discs on discograms with severe radiating pain in the affected leg at the time of injection; (6) immediate relief of symptoms after simple removal of the cyst; (7) cyst wall consisting of dense fibrous connective tissue containing bloody to clear serous discharge; and (8) absence of disc materials and a specific lining cell layer on histologic examination. Although the exact cause is unknown, underlying minor disc injury may serve as a basis

  9. Exploring interactions between force, repetition and posture on intervertebral disc height loss and bulging in isolated porcine cervical functional spinal units from sub-acute-failure magnitudes of cyclic compressive loading.

    PubMed

    Gooyers, Chad E; Callaghan, Jack P

    2015-10-15

    Most in vitro studies are limited in the ability to partition intervertebral disc (IVD) height loss from total specimen height loss since the net changes in the actuator position of the materials testing system simply reflect net changes to functional spinal units (FSUs) used for testing. Three levels of peak compressive force, three cycle rates and two dynamic postural conditions were examined using a full-factorial design. Cyclic compressive force was applied using a time-varying waveform with synchronous flexion/extension for 5000 cycles. Surface scans from the anterior aspect of the IVD were recorded in a neutral and flexed posture before and after the cyclic loading protocol using a 3D laser scanner to characterise changes in IVD height loss and bulging. A significant three-way interaction (p=0.0092) between the magnitude of peak compressive force, cycle rate and degree of postural deviation was observed in cycle-varying specimen height loss data. A significant main effect of peak compressive force (p=0.0003) was also observed in IVD height loss calculated from the surface profiles of the IVD. The relative contribution of IVD height loss (measured on the anterior surface) to total specimen height loss across experimental conditions varied considerably, ranging from 19% to 58%. Postural deviation was the only factor that significantly affected the magnitude of peak AF bulge (p=0.0016). This investigation provides evidence that total specimen height loss is not an accurate depiction of cycle-varying changes in the IVD across a range of in vivo scenarios that were replicated with in vitro testing.

  10. Thermal phantom of the intervertebral disc for evaluating intradiscal electrothermal therapies.

    PubMed

    Fitch, David A; de Ana, Javier

    2011-01-15

    a silicone material was evaluated as an intervertebral disc thermal phantom. Temperature mapping was performed during the intradiscal electrothermal therapy (IDET) procedure and compared with results from the cadaver studies. to determine whether a silicone material can be used as an intervertebral disc thermal phantom for evaluating thermal distributions of intradiscal electrothermal therapies and for reducing the need for cadaver and animal studies. studies mapping thermal profiles of intradiscal heating therapies have been performed in cadavers and animal models. These studies are expensive, require special facilities and institutional reviews, and are susceptible to intercadaver and/or interanimal variation. A search of published data yielded no proposed thermal phantoms of the intervertebral disc. METHODS.: The thermal conductivity of a silicone material was measured and compared with that of an intervertebral disc. Thermal distributions were mapped in the material during the IDET procedure and compared with the distributions seen in cadaver studies. Logarithmic regression was performed to predict temperatures at certain distances from the IDET catheter. Mapping and regression were also performed for a decompression catheter. the thermal conductivity of the silicone material, 0.587 W/m · °C, was similar to that previously reported for the intervertebral disc, 0.595 W/m · °C. Thermal distributions during the IDET procedure were comparable with those seen in previous cadaver studies. Logarithmic regression analysis predicted temperatures greater than 42°C and 60°C at distances of 14.10 and 2.31 mm, respectively, for the IDET catheter. These distances were 12.98 and 3.30 mm, respectively, for the decompression catheter. the silicone material has a thermal conductivity similar to that of intervertebral disc. Temperature distributions in the material during IDET treatment are similar to that seen in cadaver studies. The material provides an alternative to

  11. Protective effects of cannabidiol on lesion-induced intervertebral disc degeneration.

    PubMed

    Silveira, João W; Issy, Ana Carolina; Castania, Vitor A; Salmon, Carlos E G; Nogueira-Barbosa, Marcello H; Guimarães, Francisco S; Defino, Helton L A; Del Bel, Elaine

    2014-01-01

    Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content. Cannabidiol is the main non-psychotropic component of the Cannabis sativa with protective and anti-inflammatory properties. However, possible therapeutic effects of cannabidiol on intervertebral disc degeneration have not been investigated yet. The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI) and histological analyses. Disc injury was induced in the tail of male Wistar rats via a single needle puncture. The discs selected for injury were punctured percutaneously using a 21-gauge needle. MRI and histological evaluation were employed to assess the results. The effects of intradiscal injection of cannabidiol (30, 60 or 120 nmol) injected immediately after lesion were analyzed acutely (2 days) by MRI. The experimental group that received cannabidiol 120 nmol was resubmitted to MRI examination and then to histological analyses 15 days after lesion/cannabidiol injection. The needle puncture produced a significant disc injury detected both by MRI and histological analyses. Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration.

  12. Protective Effects of Cannabidiol on Lesion-Induced Intervertebral Disc Degeneration

    PubMed Central

    Silveira, João W.; Issy, Ana Carolina; Castania, Vitor A.; Salmon, Carlos E. G.; Nogueira-Barbosa, Marcello H.; Guimarães, Francisco S.; Defino, Helton L. A.; Bel, Elaine Del

    2014-01-01

    Disc degeneration is a multifactorial process that involves hypoxia, inflammation, neoinnervation, accelerated catabolism, and reduction in water and glycosaminoglycan content. Cannabidiol is the main non-psychotropic component of the Cannabis sativa with protective and anti-inflammatory properties. However, possible therapeutic effects of cannabidiol on intervertebral disc degeneration have not been investigated yet. The present study investigated the effects of cannabidiol intradiscal injection in the coccygeal intervertebral disc degeneration induced by the needle puncture model using magnetic resonance imaging (MRI) and histological analyses. Disc injury was induced in the tail of male Wistar rats via a single needle puncture. The discs selected for injury were punctured percutaneously using a 21-gauge needle. MRI and histological evaluation were employed to assess the results. The effects of intradiscal injection of cannabidiol (30, 60 or 120 nmol) injected immediately after lesion were analyzed acutely (2 days) by MRI. The experimental group that received cannabidiol 120 nmol was resubmitted to MRI examination and then to histological analyses 15 days after lesion/cannabidiol injection. The needle puncture produced a significant disc injury detected both by MRI and histological analyses. Cannabidiol significantly attenuated the effects of disc injury induced by the needle puncture. Considering that cannabidiol presents an extremely safe profile and is currently being used clinically, these results suggest that this compound could be useful in the treatment of intervertebral disc degeneration. PMID:25517414

  13. Acute intervertebral disc extrusion in a cat: clinical and MRI findings.

    PubMed

    Lu, D; Lamb, C R; Wesselingh, K; Targett, M P

    2002-03-01

    A 5 year old, neutered male, domestic shorthaired cat had acute left hemiparesis and Horner's syndrome. Magnetic resonance imaging (MRI) revealed a loss of the normal signal from the nucleus pulposus of the intervertebral disc at C3/4, narrowing of the ventral subarachnoid space and slight dorsal displacement of the spinal cord and a focal hyperintense lesion affecting the left side of the spinal cord at the same level. The presumptive diagnosis was focal spinal cord oedema associated with intervertebral disc extrusion. A traumatic aetiology was suspected. The cat was treated conservatively and improved gradually over a period of 6 months. Copyright 2002 ESFM and AAFP.

  14. Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    SciTech Connect

    Omel'chenko, A I; Sobol', E N

    2009-03-31

    The thermomechanical effect of 1.56-{mu}m fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs. (laser biology and medicine)

  15. Cartilage of the Intervertebral Disc Eng-Plate, A Histological, Histochemical, Fine Structure Study.

    DTIC Science & Technology

    1982-08-01

    degeneration (Nachemson et al., 1970). These and related studies consider the end-plates to be composed of hyaline cartilage and thus homologues of articular...HZSTOLO6ZCAL,-ETCfU) I AUG 82 N 5 NUSSBAUM IUNCLASSIFDATRL8R-1222NL.rnximommmB~iIEND2 AFAMRL-TR-81 - 122 " CARTILAGE OF THE INTERVERTEBRAL DISC END-PLATE A...AFAMRL-TR-81- 122 & ow 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED CARTILAGE OF THE INTERVERTEBRAL DISC END-PLATE Technical Report 1

  16. Endplate degeneration may be the origination of the vacuum phenomenon in intervertebral discs.

    PubMed

    Li, Fang-Cai; Zhang, Ning; Chen, Wei-Shan; Chen, Qi-Xin

    2010-08-01

    The intravertebral vacuum phenomenon (VP) is usually associated with degenerative disc disease, which could be related to the low back pain. Various theories related to the pathogenesis of VP have been proposed, but these theories have not been critically examined and remain hypothetical. In this article, we review the possible role of endplate degeneration in the pathogenesis of VP, and discuss several pathways possibly linked to them. Due to the endplate calcification and activated cytokines, the transport pathway of the nutrition for the intervertebral disc was blocked, resulting in the metabolic unbalance and decrease of the synthesis of matrix structural proteins. It could promote the matrix decomposition, causing the decrease of the quantity of matrix and the changes of stress distribution in intervertebral disc. As a result, the structure of intervertebral discs became increasingly unstable. While compression happened, the intravertebral cleft could occur and be gradually filled with gas, which may cause low back pain and aggravate the intervertebral discs degeneration. As outlined above, we hypothesize that endplate degeneration might be the origination of the vacuum phenomenon.

  17. Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs

    PubMed Central

    Schaaf, Rainer; Wälchli, Beat; Boos, Norbert

    2006-01-01

    While there is consensus in the literature that blood vessels are confined to the outer anulus fibrosus of normal adult intervertebral disc, debate continues whether there is a vascular in-growths into inner parts of the intervertebral disc during degeneration. We therefore tested the hypothesis that vascular in-growth is not a distinct feature of disc degeneration. The specific endothelial cell marker CD 31 (PECAM) was used to immunohistochemically investigate 42 paraffin-embedded complete mid-sagittal human intervertebral disc sections of various ages (0–86 years) and varying extent of histomorphological degeneration. Additionally, 20 surgical disc samples from individuals (26–69 years) were included in this study. In discs of fetal to infantile age, blood vessels perforated the cartilaginous end plate and extended into the inner and outer anulus fibrosus, but not into the nucleus pulposus. In adolescents and adults, no blood vessels were seen except for the outer zone of the anulus fibrosus adjacent to the insertion to ligaments. The cartilaginous end plate remained free of vessels, except for areas with circumscribed destruction of the end plate. In advanced disc degeneration, no vessels were observed except for those few cases with complete, scar-like disc destruction. However, some rim lesions and occasionally major clefts were surrounded by a small network of capillary blood vessels extending into deeper zones of the anulus fibrosus. A subsequent morphometric analysis, revealed slightly “deeper” blood vessel extension in juvenile/adolescent discs when compared to young, mature and senile adult individuals with significantly “deeper” extension in the posterior than anterior anulus. The analysis of the surgical specimens showed that only sparse capillary blood vessels which did not extend into the nucleus pulposus even in major disc disruption. Our results show that vascular invasion deeper than the periphery was not observed during disc

  18. Low-level vibrations maintain the intervertebral disc during unloading

    NASA Astrophysics Data System (ADS)

    Holguin, Nilsson

    Changes in intervertebral disc (IVD) biochemistry, morphology and mechanics have been characterized only incompletely in the rat hindlimb unloading (HU) model. Although exposure to chronic vibrations can be damaging, low-magnitude vibrations can attenuate the geometric changes of the IVD due to altered spinal loading. Here, we tested the hypothesis that low-magnitude, high-frequency vibrations will mitigate the hypotrophy, biochemical degradation and deconditioning of the IVD during HU. When applied as whole-body vibrations through all four paws, Sprague-Dawley rats were subjected to HU and exposed to daily periods (15min/d) of either ambulatory activities (HU+AMB) or whole body vibrations superimposed upon ambulation (HU+WBV; WBV at 45Hz, 0.3g). After 4wks and, compared to age-matched control rats (AC), the lumbar IVD of HU+AMB had a 22% smaller glycosaminoglycans/collagen ratio, 12% smaller posterior IVD height, and 13% smaller cross-sectional area. Compared to HU+AMB rats, the addition of low-level vibratory loading did not significantly alter IVD biochemistry, posterior height, area, or volume, but directionally altered IVD geometry. When subjected to upright vibrations through the hindpaws, rats were HU for 4wks. A subset of HU rats stood in an upright posture on a vertically oscillating plate (0.2g) at 45- or 90-Hz (HU+45 or HU+90). After 4wks, regardless of sham (HU+SC) loading (HU+/-SC) and, compared to AC, IVD of HU+/-SC had 10% less height, 39% smaller nucleus pulposus area, less glycosaminoglycans in the nucleus pulposus (21%), anterior annulus fibrosus (16%) and posterior annulus fibrosus (19%), 76% less tension-compression neutral zone (NZ) modulus, 26% greater compressive modulus, 25% greater initial elastic damping modulus, 26% less torsional NZ stiffness, no difference in collagen content and a weaker relationship between tension-compression NZ modulus and posterior height change. Exogenously introduced oscillations maintained the morphology

  19. Microstructure-based fiber optic pressure sensor for measurements in lumbar intervertebral discs

    NASA Astrophysics Data System (ADS)

    Hoejer, Svante; Krantz, Martin; Ekstroem, Lars; Kaigle, Allison; Holm, Sten

    1999-01-01

    A fiberoptic system with a microstructure sensor element was used for measuring lumbar intervertebral disc pressure in a porcine model. The fiberoptic pressure sensor was inserted in the disc using a guiding needle. A reference sensor was also introduced into the same area of an adjacent disc. The fiberoptic sensor detected pressures from 0.7-8 bar in the disc. Dynamic measurements were carried out at frequencies between 2 and 10 Hz. No phase lag was observed between the applied force and the measured pressures. Sensitivity, dynamic response and available pressure range are all important design characteristics for which this fiberoptic sensor has a competitive edge.

  20. Fusion versus Bryan Cervical Disc in two-level cervical disc disease: a prospective, randomised study

    PubMed Central

    Nie, Lin; Zhang, Li; Hou, Yong

    2008-01-01

    In this prospective study, our aim was to compare the functional results and radiographic outcomes of fusion and Bryan Cervical Disc replacement in the treatment of two-level cervical disc disease. A total of 65 patients with two-level cervical disc disease were randomly assigned to two groups, those operated on with Bryan Cervical Disc replacement (31) and those operated on with anterior cervical fusion with an iliac crest autograft and plate (34). Clinical evaluation was carried out using the visual analogue scale (VAS), the Short Form 36 (SF-36) and the neck disability index (NDI) during a two year follow-up. Radiological evaluation sought evidence of range of motion, stability and subsidence of the prosthesis. Substantial reduction in NDI scores occurred in both groups, with greater percent improvement in the Bryan group (P = 0.023). The arm pain VAS score improvement was substantial in both groups. Bryan artificial cervical disc replacement seems reliable and safe in the treatment of patients with two-level cervical disc disease. PMID:18956190

  1. The Effect of Substance P on an Intervertebral Disc Rat Organ Culture Model.

    PubMed

    Koerner, John D; Markova, Dessislava Z; Schroeder, Gregory D; Rihn, Jeffery A; Hilibrand, Alan S; Vaccaro, Alexander R; Anderson, D Greg; Kepler, Christopher K

    2016-12-15

    Laboratory study. Evaluate the effect of substance P (SP) on an intervertebral disc rat organ culture model. Monolayer cell experiments have demonstrated that exposure intervertebral disc tissue cells to SP leads to upregulation in inflammatory cytokine expression; however, this has not been evaluated in a more complex organ culture model. Forty-eight intervertebral discs from eight rats were used in an organ culture model. Intervertebral discs were divided into three groups: control, SP-treated group, and a group treated with an SP antagonist followed by SP. Cytokine antibody array was used to quantify expression patterns, which were confirmed using ELISA and real-time polymerase chain reaction. The cytokine array demonstrated a 3.40 ±  0.59-fold increase in interleukin 6 (IL-6) expression in the SP group (P = 0.004), and the effect of SP was mitigated by the SP antagonist (P = 0.03). These results were verified as ELISA demonstrated a significant difference in the IL-6 level between the control group and SP group (0.73 vs. 5.80 ng/mL, P < 0.001), and there was a significant difference in the IL-6 level between the SP and the SP antagonist group (5.80 vs. 4.02 ng/mL, P = 0.01). Similarly, the real-time polymerase chain reaction demonstrated that the discs treated with SP had a 4.77-fold increase in IL-6 levels (P = 0.01) compared to controls, and a significantly greater increase in IL-6 levels between the intervertebral discs in the SP group and those in the SP antagonist group versus control (4.77 vs. 1.57, P = 0.02). SP lead to the activation of an inflammatory pathway by increasing expression of IL-6 in an intervertebral disc organ culture model. These results provide evidence that SP may be an important factor in the link between intervertebral disc degeneration and low back pain. N/A.

  2. Intervertebral Fusion with Mobile Microendoscopic Discectomy for Lumbar Degenerative Disc Disease.

    PubMed

    Xu, Bao-Shan; Liu, Yue; Xu, Hai-Wei; Yang, Qiang; Ma, Xin-Long; Hu, Yong-Cheng

    2016-05-01

    The aim of this article is to introduce a technique for lumbar intervertebral fusion that incorporates mobile microendoscopic discectomy (MMED) for lumbar degenerative disc disease. Minimally invasive transforaminal lumbar interbody fusion is frequently performed to treat degenerative diseases of the lumbar spine; however, the scope of such surgery and vision is limited by what the naked eye can see through the expanding channel system. To expand the visual scope and reduce trauma, we perform lumbar intervertebral fusion with the aid of a MMED system that provides a wide field through freely tilting the surgical instrument and canals. We believe that this technique is a good option for treating lumbar degenerative disc disease that requires lumbar intervertebral fusion. © 2016 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  3. [Dorsal extrusion of intervertebral disc as a cause of cauda equina syndrome].

    PubMed

    Jusić, Aldin; Skomorac, Rasim; Beculić, Hakija

    2011-01-01

    We have presented a case of rare dorsally sequestrated lumbar disc herniation manifesting as cauda equina syndrome. The patient was admitted to the Neurological Department of Canton Hospital Zenica due to urinary retention and weakness in both lower extremities. Magnetic resonance imaging showed a compressing mass located in the dorsal extradural space at the L2-L3 level. An extruded intervertebral disc was found intraoperatively. The decompression was followed by good recovery.

  4. Effects of psoralen on chondrocyte degeneration in lumbar intervertebral disc of rats.

    PubMed

    Yang, Libin; Sun, Xiaohui; Geng, Xiaolin

    2015-03-01

    Discuss the internal mechanism of delaying degeneration of lumber intervertebral disc. The cartilage of lumbar intervertebral disc of SD rats was selected in vitro, then cultured by tissue explant method, and identified by HE staining, toluidine blue staining and immunofluorescence. The optimal concentration of psoralen was screened by cell proliferation assay and RT-PCR method. The cells in third generation with good growth situation is selected and placed in 6-well plate at concentration of 1×10(5)/well and its expression was tested. Compared to concentration of 0, the mRNA expression of Col2al (Collagen Ⅱ) secreted by was up regulated chondrocyte of lumbar intervertebral disc at the concentration of 12.5 and 25μM (P<0.0 or P<0.01). The aggrecan mRNA of psoralen group was higher than blank control group (P<0.01); compared with IL-1β induced group, the mRNA expression of Col2al was significantly increased but the mRNA expression of ADAMTS-5 was significantly decreased in psoralen group (P<0.01). These findings suggest that, psoralen can remit the degeneration of lumbar intervertebral disc induced by IL-1β to some extent, and affect the related factors of IL-1β signaling pathway.

  5. The collagen structure of bovine intervertebral disc studied using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Matcher, Stephen J.; Winlove, C. Peter; Gangnus, Sergei V.

    2004-04-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is used to measure the birefringence properties of bovine intervertebral disc and equine flexor tendon. For equine tendon the birefringence Dgrn is (6.0 ± 0.2) × 10-3 at a wavelength of 1.3 µm. This is somewhat larger than the values reported for bovine tendon. The surface region of the annulus fibrosus of a freshly excised intact bovine intervertebral disc displays an identical value of birefringence, Dgrn = (6.0 ± 0.6) × 10-3 at 1.3 µm. The nucleus pulposus does not display birefringence, the measured apparent value of Dgrn = (0.39 ± 0.01) × 10-3 being indistinguishable from the effects of depolarization due to multiple scattering. A clear difference is found between the depth-resolved retardance of equine tendon and that of bovine intervertebral disc. This apparently relates to the lamellar structure of the latter tissue, in which the collagen fibre orientation alternates between successive lamellae. A semi-empirical model based on Jones calculus shows that the measurements are in reasonable agreement with previous optical and x-ray data. These results imply that PS-OCT could be a useful tool to study collagen organization within the intervertebral disc in vitro and possibly in vivo and its variation with applied load and disease.

  6. Comparison of two methods for RNA extraction from the nucleus pulposus of intervertebral discs.

    PubMed

    Gan, M F; Yang, H L; Qian, J L; Wu, C S; Yuan, C X; Li, X F; Zou, J

    2016-06-03

    RNA extraction from the nucleus pulposus of intervertebral discs has been extensively used in orthopedic studies. We compared two methods for extracting RNA from the nucleus pulposus: liquid nitrogen grinding and enzyme digestion. The RNA was detected by agarose gel electrophoresis, and the purity was evaluated by absorbance ratio using a spectrophotometer. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression was assayed by reverse transcription-polymerase chain reaction (RT-PCR). Thirty human lumbar intervertebral discs were used in this study. The liquid nitrogen-grinding method was used for RNA extraction from 15 samples, and the mean RNA concentration was 491.04 ± 44.16 ng/mL. The enzyme digestion method was used on 15 samples, and the mean RNA concentration was 898.42 ± 38.64 ng/mL. The statistical analysis revealed that there was a significant difference in concentration between the different methods. Apparent 28S, 18S, and 5S bands were detectable in RNA extracted using the enzyme digestion method, whereas no 28S or 18S bands were detected in RNA extracted using the liquid nitrogen-grinding method. The GAPDH band was visible, and no non-specific band was detected in the RT-PCR assay by the enzyme digestion method. Therefore, the enzyme digestion method is an efficient and easy method for RNA extraction from the nucleus pulposus of intervertebral discs for further intervertebral disc degeneration-related studies.

  7. Apparent diffusion coefficient in normal and abnormal pattern of intervertebral lumbar discs: initial experience☆

    PubMed Central

    Niu, Gang; Yu, Xuewen; Yang, Jian; Wang, Rong; Zhang, Shaojuan; Guo, Youmin

    2011-01-01

    The aim of the present study was to compare the relationship of morphologically defined non-bulging/herniated, bulging and herniated intervertebral lumbar discs with quantitative apparent diffusion coefficient (ADC). Thirty-two healthy volunteers and 28 patients with back pain or sciatica were examined by MRI. All intervertebral lumbar discs from L1 to S1 were classified according to morphological abnormality and degenerated grades. The ADC values of nucleus pulposus (NP) were measured and recorded. The significant differences about mean ADC values of NP were found between non-bulging/herniated discs and bulging discs as well as herniated discs (P < 0.05), whereas there were no significant differences in ADC values between bulging and herniated discs (P > 0.05). Moreover, statistically significant relationship was found in the mean ADC values of NP between “non-bulging/herniated and non-degenerated discs” and “non-bulging/herniated degenerated discs” as well as herniated discs (P < 0.05). Linear regression analysis between ADC value and disc level revealed an inverse correlation (r = -0.18). The ADC map of the NP is a potentially useful tool for the quantitative assessment of componential and molecular alterations accompanied with lumbar disc abnormalities. PMID:23554690

  8. Intervertebral disc degeneration: evidence for two distinct phenotypes

    PubMed Central

    Adams, Michael A; Dolan, Patricia

    2012-01-01

    We review the evidence that there are two types of disc degeneration. ‘Endplate-driven’ disc degeneration involves endplate defects and inwards collapse of the annulus, has a high heritability, mostly affects discs in the upper lumbar and thoracic spine, often starts to develop before age 30 years, usually leads to moderate back pain, and is associated with compressive injuries such as a fall on the buttocks. ‘Annulus-driven’ disc degeneration involves a radial fissure and/or a disc prolapse, has a low heritability, mostly affects discs in the lower lumbar spine, develops progressively after age 30 years, usually leads to severe back pain and sciatica, and is associated with repetitive bending and lifting. The structural defects which initiate the two processes both act to decompress the disc nucleus, making it less likely that the other defect could occur subsequently, and in this sense the two disc degeneration phenotypes can be viewed as distinct. PMID:22881295

  9. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load

    SciTech Connect

    Ohshima, H.; Tsuji, H.; Hirano, N.; Ishihara, H.; Katoh, Y.; Yamada, H. )

    1989-11-01

    The behavior of water in the intervertebral disc of pig tail and its physiologic and biomechanical properties were investigated in relation to compression load. The water content, chemical composition, and swelling pressure in the intervertebral disc were measured, and the mechanism of the generation of the swelling pressure in relation to compression load stress was studied. The swelling pressure, through regulation of the water content of the disc and the resistance of the external load, differs with the region of the intervertebral disc. In the nucleus pulposus and the inner layer of the anulus fibrosus, the swelling pressure rises in proportion to the load, but few changes occur in the outer layer of the anulus fibrosus, and the constant pressure environment is thus maintained. The tritiated water (3H2O) uptake of the disc under various loads was measured. The molar partition coefficient of tritiated water is almost equal to 1 even under a compression load, which suggests that water is freely exchangeable. The diffusion of 3H2O in the intervertebral disc was traced using two pathway models: the perianular route and the end-plate route. The diffusion of water in the unloaded disc for both uptake and washout was about 2 to 3 times larger in the perianular route than in the end-plate route. Under load, the water diffusion was inhibited in both pathways. The relation between the load and displacement revealed viscoelastic properties indicating creep and stress relaxation. Young's modulus and the stiffness increased with a rise in load speed.

  10. Atomic Absorption Spectrometry Analysis of Trace Elements in Degenerated Intervertebral Disc Tissue

    PubMed Central

    Kubaszewski, Łukasz; Zioła-Frankowska, Anetta; Frankowski, Marcin; Nowakowski, Andrzej; Czabak-Garbacz, Róża; Kaczmarczyk, Jacek; Gasik, Robert

    2014-01-01

    Background Few studies have investigated trace elements (TE) in human intervertebral disc (IVD) tissue. Trace element presence can have diverse meanings: essential TE show the metabolic modalities of the tissue, while environmentally-related TE indicate pollution and tissue-specific absorption and accumulation. IVD is a highly specific compartment with impaired communication with adjacent bone. Analysis of TE in IVD provides new insights regarding tissue metabolism and IVD communication with other tissues. Material/Methods Thirty intervertebral discs were acquired from 22 patients during surgical treatment for degenerative disease. Atomic absorption spectrometry was used to evaluate the concentrations of Al, Cd, Pb, Cu, Ni, Mo, Mg, and Zn. Results Al, Pb, Cu, Mg, and Zn were detected in all samples. Pb was significantly positively correlated with age, and Ni concentration was weakly correlated with population count in the patient’s place of residence. Only Cu was observed in higher concentrations in IVD compared to in other tissues. Significant positive correlations were observed between the following pairs: Mg/Zn, Mg/Al, Mg/Pb, Zn/Al, Zn/Pb, and Al/Pb. Negative correlations were observed between Mg/Cd, Zn/Cd, Mg/Mo, and Mo/Pb. Conclusions This study is one of few to profile the elements in intervertebral discs in patients with degenerative changes. We report significant differences between trace element concentrations in intervertebral discs compared to in other tissues. Knowledge of the TE accumulation pattern is vital for better understanding intervertebral disc nutrition and metabolism. PMID:25366266

  11. Diaphragm paralysis from cervical disc lesions.

    PubMed

    Cloward, R B

    1988-01-01

    An opera singer, who "made her living with her diaphragm", developed a post-traumatic unilateral radiculopathy due to cervical disc lesions, C3 to C6. During one year of severe neck and left arm pain she gradually lost the ability to sing difficult operatic passages which brought an end to her music career. Following a three level anterior cervical decompression and fusion, the neck and arm pain was immediately relieved. One week later her voice and singing ability returned to its full strength and power permitting her to resume her activities as a vocalist. The diagnosis of paresis of the left hemi-diaphragm as part of the cervical disc syndrome was implied by postoperative retrospective inference.

  12. Material Science in Cervical Total Disc Replacement

    PubMed Central

    Pham, Martin H.; Mehta, Vivek A.; Tuchman, Alexander; Hsieh, Patrick C.

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation. PMID:26523281

  13. Material Science in Cervical Total Disc Replacement.

    PubMed

    Pham, Martin H; Mehta, Vivek A; Tuchman, Alexander; Hsieh, Patrick C

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation.

  14. Metabolic Syndrome Components Are Associated with Intervertebral Disc Degeneration: The Wakayama Spine Study

    PubMed Central

    Teraguchi, Masatoshi; Yoshimura, Noriko; Hashizume, Hiroshi; Muraki, Shigeyuki; Yamada, Hiroshi; Oka, Hiroyuki; Minamide, Akihito; Ishimoto, Yuyu; Nagata, Keiji; Kagotani, Ryohei; Tanaka, Sakae; Kawaguchi, Hiroshi; Nakamura, Kozo; Akune, Toru; Yoshida, Munehito

    2016-01-01

    Objective The objective of the present study was to examine the associations between metabolic syndrome (MS) components, such as overweight (OW), hypertension (HT), dyslipidemia (DL), and impaired glucose tolerance (IGT), and intervertebral disc degeneration (DD). Design The present study included 928 participants (308 men, 620 women) of the 1,011 participants in the Wakayama Spine Study. DD on magnetic resonance imaging was classified according to the Pfirrmann system. OW, HT, DL, and IGT were assessed using the criteria of the Examination Committee of Criteria for MS in Japan. Results Multivariable logistic regression analysis revealed that OW was significantly associated with cervical, thoracic, and lumbar DD (cervical: odds ratio [OR], 1.28; 95% confidence interval [CI], 0.92–1.78; thoracic: OR, 1.75; 95% CI, 1.24–2.51; lumbar: OR, 1.87; 95% CI, 1.06–3.48). HT and IGT were significantly associated with thoracic DD (HT: OR, 1.54; 95% CI, 1.09–2.18; IGT: OR, 1.65; 95% CI, 1.12–2.48). Furthermore, subjects with 1 or more MS components had a higher OR for thoracic DD compared with those without MS components (vs. no component; 1 component: OR, 1.58; 95% CI, 1.03–2.42; 2 components: OR, 2.60; 95% CI, 1.62–4.20; ≥3 components: OR, 2.62; 95% CI, 1.42–5.00). Conclusion MS components were significantly associated with thoracic DD. Furthermore, accumulation of MS components significantly increased the OR for thoracic DD. These findings support the need for further studies of the effects of metabolic abnormality on DD. PMID:26840834

  15. Percutaneous cervical nucleoplasty in the treatment of cervical disc herniation

    PubMed Central

    Li, Jian; Zhang, Zai-Heng

    2008-01-01

    Percutaneous disc decompression procedures have been performed in the past. Various percutaneous techniques such as percutaneous discectomy, laser discectomy, and nucleoplasty have been successful. Our prospective study was directly to evaluate the results of percutaneous cervical nucleoplasty (PCN) surgery for cervical disc herniation, and illustrate the effectiveness of PCN in symptomatic patients who had cervical herniated discs. From July of 2002 to June of 2005, 126 consecutive patients with contained cervical disc herniations have presented at the authors’ clinic and treated by PCN. The patients’ gender distribution for PCN was 65 male, 61 female. The age of patients ranged from 34 to 66 years (mean 51.9 ± 10.2 years). The levels of involvement were 21 cases at C3–4, 30 cases at C4–5, 40 cases at C5–6, and 35 cases at C6–7. The clinical outcomes, pain reduction and the segment stability were all recorded during this study. A clinical outcome was quantified by the Macnab standard and using VAS. The angular displacement (AD) ≥11° or horizontal displacement (HD) ≥3 mm was considered to be radiographically unstable. In the results of this study, puncture of the needle into the disc space was accurately performed under X-ray guidance in all cases. There was one case where the Perc-D Spine Wand had broken in the disc space during the procedure. The partial Perc-D Spine Wand, which had broken in the disc space could not be removed by the percutaneous cervical discectomy and thus remained there. There were no recurrent cases or complications in our series. Macnab standard results were excellent in 62 cases, good in 41 cases and fair in 23 cases. The rate of excellent and good was 83.73%. The VAS scores demonstrated statistically significant improvement in PCN at the 2-week, 1, 3, 6, and 12-month follow-up visits when compared to preoperational values (P < 0.01). There were no cases of instability following the PCN procedure. There was no

  16. Effect of frozen storage on the creep behavior of human intervertebral discs.

    PubMed

    Dhillon, N; Bass, E C; Lotz, J C

    2001-04-15

    A biomechanical study of the compressive creep behavior of the human intervertebral disc before and after frozen storage. To determine whether frozen storage alters the time-dependent response of the intact human intervertebral disc. The biomechanical properties of the intervertebral disc are generally determined using specimens that have been previously frozen. Although it is well established that freezing does not alter the elastic response of the disc, recent data demonstrate that freezing permanently alters the time-dependent mechanical behavior of porcine discs. Twenty lumbar motion segments from 10 human spines were harvested between 12 and 36 hours postmortem. The specimens were randomly assigned to one of two groups: Group 1 was tested promptly, stored frozen for 3 weeks, then thawed, and tested a second time; Group 2 was stored frozen for 3 weeks, thawed, and then tested. Each specimen was subjected to 5 cycles of compressive creep under 1 MPa for 20 minutes, followed by a 40-minute recovery under no load. After testing each specimen was graded on a degeneration scale. A fluid transport model was used to parameterize the creep data. There was no statistically significant effect of freezing on the elastic or creep response of the discs. The degree of pre-existing degeneration had a significant effect on the creep response, with the more degenerated discs appearing more permeable. Frozen storage for a reasonable time with a typical method does not significantly alter the creep response of human lumbar discs. Freezing may produce subtle effects, but these potential artifacts do not appear to alter the discs' time-dependent behavior in any consequential way. These results may not apply to tissue kept frozen for long durations and with poor packaging.

  17. Histological Features of the Degenerating Intervertebral Disc in a Goat Disc-injury Model

    PubMed Central

    Zhang, Yejia; Drapeau, Susan; An, Howard S.; Markova, Dessislava; Lenart, Brett A.; Anderson, D. Greg

    2010-01-01

    Study Design An in vivo study to develop a goat large-animal model for intervertebral disc (IVD) degeneration. Objectives To determine an optimal method for inducing goat IVD degeneration suitable for testing disc regeneration therapies. Summary of Background Data Although rodent, rabbit, and other small animal studies are useful, the narrow dimensions of IVDs in these species limit studies requiring injection of a relevant volume of therapeutics or implantation of engineered tissue constructs. For this study, the goat was selected because the size and shape of their IVDs are comparable to those of adult humans. Methods A minimally invasive approach that did not cause significant morbidity or mortality to adult goats (n = 6) was used. Under fluoroscopic guidance, goat lumbar IVDs were injured with a 4.5 mm drill bit or #15 or #10 surgical blades. Two months post-injury, the goats were euthanized and their IVDs with adjacent endplates were isolated, decalcified and stained. Results A numerical histological scale to categorize the degree of goat IVD degeneration was developed based on the histological features of rabbit IVDs previously described by Masuda et al., goat IVDs described by Hoogendoorn et al., and human IVDs described by Boos et al. The inter-rater agreement of our scoring system was assessed (weighted Kappa value = 0.6646). Mann-Whitney tests were used to compare the injured IVDs with uninjured control. A 4.5 mm drill bit inserted to a 15 mm depth resulted in a significantly higher histological score compared to uninjured controls (p = 0.01). Injury with a #15 or #10 blade did not result in increased histological scores compared with uninjured controls. Conclusions A comparison of the various injuries inflicted showed that the use of a 4.5 mm drill bit resulted in the most significant histological changes. PMID:21245789

  18. Prolonged upright posture induces degenerative changes in intervertebral discs in rat lumbar spine.

    PubMed

    Liang, Qian-Qian; Zhou, Quan; Zhang, Min; Hou, Wei; Cui, Xue-Jun; Li, Chen-Guang; Li, Tian-Fang; Shi, Qi; Wang, Yong-Jun

    2008-09-01

    Both forelimbs of rats were amputated, and these rats were kept in the custom-made cages that kept the rats in prolonged upright posture. Pathologic changes were observed in the lumbar spine at different time points after the surgery. To investigate the effect of upright posture on intervertebral discs of rat lumbar spine. Previous studies have shown that increased axial forces on the spine can decrease the height of the intervertebral disc, but there are no data to indicate whether or not long-term and repeated assumption of the upright posture could result in degenerative changes. The forelimbs of 30 rats were amputated when they were 1-month old. These rats were kept in the custom-made cages and were forced to stand upright on their hind-limbs and tails to obtain water and food. Normal rats of the same ages kept in regular cages were used as control. The rats were killed at 5, 7, and 9 months after the surgery, and the intervertebral discs samples of lumbar spine were harvested for histologic and immunohistochemical studies. Total RNA isolated from these samples was used for real-time PCR of type II collagen (Col2alpha1), type X collagen (Col10alpha1), matrix metalloproteinase-13 (MMP-13), aggrecan, and disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5). RESULTS.: Histologic analysis showed degenerative changes of the intervertebral discs after surgery such as disordered collagen structure of endplate cartilage, fragmentation of annulus fibrosus, and decreased height of disc. Immunostaining revealed decreased protein level of type II collagen and increased protein expression of type X collagen. Real-time PCR showed upregulated expression of MMP 13, ADAMTS-5, and Col10alpha1 mRNA and downregulated mRNA expression of Col2alpha1 and aggrecan. Long-term and repeated assumption of the upright stance accelerates disc degeneration in rats.

  19. Intervertebral disc magnetic resonance image: correlation with gross morphology and biochemical composition

    PubMed Central

    Bishop, Paul B

    1993-01-01

    The magnetic resonance image, gross morphology, and biochemical composition of the intervertebral disc nucleus pulposus (NP), anulus fibrosus (AF) and cartilaginous endplates (CEP) from two groups of three human lumbar spines were compared. Group I consisted of all healthy discs from young donors (Grade I) and group II was comprised of discs that had undergone degeneration and age-related changes (average Grade 4). The gross morphological changes in the individual disc tissues associated with ageing/degeneration were consistent with specific changes in the characteristics of the magnetic resonance image. In particular, the mid-nuclear band of decreased magnetic resonance signal intensity seen in Grade 4 discs was associated with the appearance of clefts and fissures as well as a region of mucinous infiltration. The results of the biochemical analysis suggest that the changes in signal intensity are not due merely to changes in water content, but are also associated with changes in proteoglycan content. The changes associated with ageing/degeneration in the magnetic resonance image of the disc were related to a decrease in the proteoglycan content of the AF and NP. The water content of the NP also decreased. There was no clear association between the biochemical composition of the CEP and the magnetic resonance image. These results demonstrate that magnetic resonance imaging is an effective technique for evaluating subtle morphological changes in the intervertebral disc tissues and may be a sensitive indicator of the proteoglycan content of the AF and NP. ImagesFigure 1Figure 2

  20. Comparison of stand-alone polyetheretherketone cages and iliac crest autografts for the treatment of cervical degenerative disc diseases.

    PubMed

    Zhou, Jian; Xia, Qing; Dong, Jian; Li, Xilei; Zhou, Xiaogang; Fang, Taolin; Lin, Hong

    2011-01-01

    Anterior cervical decompression and fusion (ACDF) is a widely accepted surgical procedure for the treatment of cervical degenerative disc diseases. This retrospective study was designed to analyze and compare the efficacy and outcomes of anterior cervical fusion using stand-alone polyetheretherketone (PEEK) cages and autogenous iliac crest grafts with the anterior cervical plating system. A total of 72 consecutive patients suffering from cervical degenerative disc diseases treated with ACDF from June 2005 to Dec 2008 were enrolled in the study. Patients in group A (40 patients, 64 segments) had anterior interbody fusion with stand-alone PEEK cages and patients in group B (32 patients, 51 segments) with autogenous iliac crest graft combined with anterior plate fixation. The operative time and intraoperative blood loss were recorded. Clinical outcomes were evaluated using the Japanese Orthopaedic Association (JOA) scoring system; cervical lordosis, intervertebral height, and cervical fusion status were assessed on X-ray and computed tomography. The mean follow-up period was 17.3 months in the stand-alone cage group and 23.2 months in the autologous iliac crest graft group. The operative time and intraoperative blood loss in group A were much less than those in group B (p < 0.05). All the patients in both groups got complete interbody fusion. Postoperative JOA scores in both group A and group B were more than the preoperative ones with significant differences, and the improvement rate of JOA scores had no statistical differences between group A and group B. Postoperative cervical physiological curvature and intervertebral height in both groups were better than the preoperative ones with statistical significances. The stand-alone PEEK cage is a good substitute for fusion in patients with cervical disc disease; it can effectively restore the cervical physiological curvature and the intervertebral height, facilitate radiological follow-up, cause few complications, and

  1. Distinct Intervertebral Disc Cell Populations Adopt Similar Phenotypes in Three-Dimensional Culture

    PubMed Central

    Chou, Alice I.; Reza, Anna T.

    2008-01-01

    Tissue engineering strategies have the potential to improve upon current techniques for intervertebral disc repair. However, determining a suitable biomaterial scaffold for disc regeneration is difficult due to the complex fibrocartilaginous structure of the tissue. In this study, cells isolated from three distinct regions of the intervertebral disc, the outer and inner annulus fibrosus and nucleus pulposus, were expanded and seeded on resorbable polyester fiber meshes and encapsulated in calcium crosslinked alginate hydrogels, both chosen to approximate the native tissue architecture. Three-dimensional (3D) constructs were cultured for 14 days in vitro and evaluated histologically and quantitatively for gene expression and production of types I and II collagen and proteoglycans. During monolayer expansion, the cell populations maintained their distinct phenotypic morphology and gene expression profiles. However, after 14 days in 3D culture, there were no significant differences in morphology, gene expression, or protein production between all three cell populations grown in either alginate or polyester fiber meshes. The results of this study indicate that the culture environment may have a greater impact on cellular behavior than the intrinsic origin of the cells, and suggest that only a single-cell type may be required for intervertebral disc regenerative therapies. PMID:18636941

  2. Experimental Application of Bone Marrow Mesenchymal Stem Cells for the Repair of Intervertebral Disc Annulus Fibrosus

    PubMed Central

    Li, Xiaohe; Zhang, Yunfeng; Song, Bin; En, He; Gao, Shang; Zhang, Shaojie; Cai, Yongqiang; Li, Zhi-jun; Li, Cunbao; Wang, Weiping; Wang, Xin; Wang, Haiyan; Wang, Zhiqiang; Zhang, Qi; Ma, Jierong

    2016-01-01

    Background This study provides experimental results on the applicability of bone marrow mesenchymal stem cells (BMSCs) for the repair of intervertebral disc annulus fibrosus in rabbits. Material/Method Thirty healthy rabbits were randomized into an observation group (n=15) and a control group (n=15). Both groups underwent degeneration of intervertebral disc annulus fibrosus. The observation group was treated with a solution of BMSCs and dexamethasone sodium phosphate, while the control group was treated with dexamethasone sodium phosphate only. Results The two groups were compared for efficacy and pathological conditions after treatment. Both disc height index and level of type II collagen in nucleus pulposus were significantly higher in the observation group than in the control group at 2, 4, 8, and 12 weeks after degeneration (p<0.05 for all comparisons). The percentages of grade 0 and grade 1 were significantly higher in the observation group than in the control group (p<0.05 for both grade 0 and 1 comparisons), while the percentage of grade 4 and grade 5 were significantly lower in the observation group than in the control group (p<0.05 for both grade 4 and 5 comparisons). Conclusions BMSCs cultured in vitro can effectively repair intervertebral disc annulus fibrosus, which is of positive significance, and thus is clinically recommended. PMID:27857031

  3. Parametric modeling of the intervertebral disc space in 3D: application to CT images of the lumbar spine.

    PubMed

    Korez, Robert; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-10-01

    Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. Although conservative treatment for low back pain may provide relief to most individuals, surgical intervention may be required for individuals with significant continuing symptoms, which is usually performed by replacing the degenerated intervertebral disc with an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study, we propose a method for parametric modeling of the intervertebral disc space in three dimensions (3D) and show its application to computed tomography (CT) images of the lumbar spine. The initial 3D model of the intervertebral disc space is generated according to the superquadric approach and therefore represented by a truncated elliptical cone, which is initialized by parameters obtained from 3D models of adjacent vertebral bodies. In an optimization procedure, the 3D model of the intervertebral disc space is incrementally deformed by adding parameters that provide a more detailed morphometric description of the observed shape, and aligned to the observed intervertebral disc space in the 3D image. By applying the proposed method to CT images of 20 lumbar spines, the shape and pose of each of the 100 intervertebral disc spaces were represented by a 3D parametric model. The resulting mean (±standard deviation) accuracy of modeling was 1.06±0.98mm in terms of radial Euclidean distance against manually defined ground truth points, with the corresponding success rate of 93% (i.e. 93 out of 100 intervertebral disc spaces were modeled successfully). As the resulting 3D models provide a description of the shape of intervertebral disc spaces in a complete parametric form, morphometric analysis was straightforwardly enabled and allowed the computation of the corresponding

  4. Transplantation of human mesenchymal stems cells into intervertebral discs in a xenogeneic porcine model.

    PubMed

    Henriksson, Helena B; Svanvik, Teresia; Jonsson, Marianne; Hagman, Margret; Horn, Michael; Lindahl, Anders; Brisby, Helena

    2009-01-15

    Experimental and descriptive study of a xenotransplantation model in minipigs. To study survival and function of human mesenchymal stem cells (hMSCs) after transplantation into injured porcine spinal discs, as a model for cell therapy. Biologic treatment options of the intervertebral disc are suggested for patients with chronic low back pain caused by disc degeneration. Three lumbar discs in each of 9 minipigs were injured by aspiration of the nucleus pulposus (NP), 2 weeks later hMSCs were injected in F12 media suspension (cell/med) or with a hydrogel carrier (Puramatrix) (cell/gel). The animals were sacrificed after 1, 3, or 6 months. Disc appearance was visualized by magnetic resonance imaging. Immunohistochemistry methods were used to detect hMSCs by antihuman nuclear antibody staining, and further performed for Collagen II, Aggrecan, and Collagen I. SOX 9, Aggrecan, Versican, Collagen IA, and Collagen IIA and Collagen IIB human mRNA expression was analyzed by real-time PCR. At magnetic resonance imaging all injured discs demonstrated degenerative signs. Cell/gel discs showed fewer changes compared with cell/med discs and only injured discs at later time points. hMSCs were detected in 9 of 10 of the cell/gel discs and in 8 of 9 of the cell/med discs. Immunostaining for Aggrecan and Collagen type II expression were observed in NP after 3 and 6 months in gel/cell discs and colocalized with the antihuman nuclear antibody. mRNA expression of Collagen IIA, Collagen IIB, Versican, Collagen 1A, Aggrecan, and SOX9 were detected in both cell/med and cell/gel discs at the time points 3 and 6 months by real-time PCR. hMSCs survive in the porcine disc for at least 6 months and express typical chondrocyte markers suggesting differentiation toward disc-like cells. As in autologous animal models the combination with a three-dimensional-hydrogel carrier seems to facilitate differentiation and survival of MSCs in the disc. Xenotransplantation seems to be valuable in evaluating

  5. Increased Risk for Adhesive Capsulitis of the Shoulder following Cervical Disc Surgery

    PubMed Central

    Kang, Jiunn-Horng; Lin, Herng-Ching; Tsai, Ming-Chieh; Chung, Shiu-Dong

    2016-01-01

    Shoulder problems are common in patients with a cervical herniated intervertebral disc (HIVD). This study aimed to explore the incidence and risk of shoulder capsulitis/tendonitis following cervical HIVD surgery. We used data from the Taiwan “Longitudinal Health Insurance Database”. We identified all patients who were hospitalized with a diagnosis of displacement of a cervical HIVD and who underwent cervical surgery (n = 1625). We selected 8125 patients who received cervical HIVD conservative therapy only as the comparison group matched with study patients. We individually tracked these sampled patients for 6 months to identify all patients who received a diagnosis of shoulder tendonitis/capsulitis. We found that incidence rates of shoulder tendonitis/capsulitis during the 6-month follow-up period were 3.69 (95% CI: 2.49~5.27) per 100 person-years for the study group and 2.33 (95% CI: 1.89~2.86) per 100 person-years for the comparison group. Cox proportional hazard regressions showed that the adjusted hazard ratio for shoulder tendonitis/capsulitis among patients who underwent cervical disc surgery was 1.66 (95% CI = 1.09~2.53) when compared to comparison group. We concluded that patients who underwent surgery for a cervical HIVD had a significantly higher risk of developing shoulder capsulitis/tendonitis in 6 months follow-up compared to patients who received cervical HIVD conservative therapy only. PMID:27231090

  6. The response of the nucleus pulposus of the lumbar intervertebral discs to functionally loaded positions.

    PubMed

    Alexander, Lyndsay A; Hancock, Elizabeth; Agouris, Ioannis; Smith, Francis W; MacSween, Alasdair

    2007-06-15

    Asymptomatic volunteers underwent magnetic resonance imaging to investigate how different positions affect lumbar intervertebral discs. To quantify sagittal migration of the lumbar nucleus pulposus in 6 functional positions. Previous studies of the intervertebral disc response in the sagittal plane were limited to imaging of recumbent positions. Developments of upright magnetic resonance imaging permit investigation of functional weight-bearing positions. T2-weighted sagittal scans of the L1-L2 to L5-S1 discs were taken of 11 volunteers in standing, sitting (upright, flexed, and in extension), supine, and prone extension. Sagittal migration of the nucleus pulposus was measured (mm) as distance from anterior disc boundary to peak pixel intensity. Lumbar lordosis (Cobb angle) was measured in each position. Fifteen comparisons between positions showed significant positional effects (14 at L4-L5, L5-S1, the most mobile segments). Prone extension and supine lying induced significantly less posterior migration than sitting. Flexed and upright sitting, significantly more than standing at L4-L5, as did flexed sitting compared with extended. These results support for the first time the validity of clinical assumptions about disc behavior in functional positions: sitting postures may increase risk of posterior derangement, and prone and supine may be therapeutic for symptoms caused by posterior disc displacement.

  7. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration.

    PubMed

    Kroeber, Markus W; Unglaub, Frank; Wang, Haili; Schmid, Carsten; Thomsen, Marc; Nerlich, Andreas; Richter, Wiltrud

    2002-12-01

    A new rabbit model was developed that produces disc degeneration through the application of controlled and quantified axial mechanical load. To characterize the changes associated with disc degeneration, and to evaluate the feasibility of local transfer of agents to the compressed discs to stimulate disc regeneration. Studies have shown that accelerated degeneration of the intervertebral disc results from altered mechanical loading conditions. The development of methods for the prevention of disc degeneration and the restoration of disc tissue that has already degenerated is needed. New Zealand white rabbits (n = 33) were used for this study. The discs in five animals remained unloaded and served as controls, whereas in 28 animals the discs were axially compressed using a custom-made external loading device. After 1 (n = 7), 14 (n = 7), and 28 (n = 7) days of dynamic loading, or 28 (n = 7) days of loading followed by 28 days of unloaded recovery time, the animals were killed and the lumbar spine was harvested for tissue preparation. Disc height, disc morphology, cell viability, disc stiffness, and load to failure were measured. Recombinant adenovirus encoding for two different marker genes (Ad-Luciferase and Ad-LacZ) was injected into the discs in loaded specimens and the gene expression was measured. The unloaded intervertebral discs of the rabbits consisted of a layered anulus fibrosus, a cartilaginous endplate, and a nucleus pulposus comparable with those of humans. After 14 and 28 days of loading, the discs demonstrated a significant decrease in disc space. Histologically, disorganization of the architecture of the anulus occurred. The number of dead cells increased significantly in the anulus and cartilage endplate. These changes were not reversible after 28 days of unloading. The stiffness and the load to failure did not change significantly in the discs after 28 days of loading, as compared with the unloaded control discs. Adenovirus-mediated gene transfer

  8. Evidence for an Important Role of Smad-7 in Intervertebral Disc Degeneration

    PubMed Central

    Li, Bo; Su, Yi-Jun; Zheng, Xin-Feng; Yang, Yue-Hua; Jiang, Sheng-Dan

    2015-01-01

    Smad-7 inhibited the transforming growth factor beta (TGF-β)-induced proteoglycan synthesis in chondrocytes and completely antagonized the effect of TGF-β on the proliferation of the cells. The aim of this study was to evaluate the contribution of Smad-7 to the pathophysiology of disc degeneration by determining the expression of Smad-7 in the degenerative intervertebral discs and its effect on the extracellular matrix metabolism of disc cells. Instability of the lumbar spine produced by imbalanced dynamic and static forces was used to induce intervertebral disc degeneration in rats. The expression of Smad-7 was assessed by the immunohistochemical method. Disc cell apoptosis was detected by in situ TUNEL staining. The effect of Smad-7 overexpression on the matrix metabolism of disc cells was analyzed in vitro by real-time polymerase chain reaction (PCR) and Western blotting. Finally, intradiscal injection of the Smad-7 overexpression lentivirus was performed to evaluate the in vivo effect of Smad-7 on disc degeneration. Radiographic and histomorphological examinations showed that lumbar disc degeneration became more and more severe in the rats with induced instability. Immunohistochemical observation demonstrated increasing protein expression of Smad-7 in the degenerative discs. A significantly positive correlation was found between Smad-7 expression and the degree of disc degeneration and between Smad-7 expression and disc cell apoptosis. Overexpression of Smad-7 in disc cells inhibited the expression of TGF-β1, collagen type-I, collagen type-II, and aggrecan and promoted the expression of MMP-13, but did not change the expression of ADAMTS-5. The in vivo findings illustrated that intradiscal injection of lentivirus vector with Smad-7 overexpression accelerated the progress of disc degeneration. In conclusion, Smad-7 was highly expressed in the degenerative discs. Overexpression of Smad-7 weakened the protective role of TGF-β and accelerated the progress of

  9. A Histopathological Scheme for the Quantitative Scoring of Intervertebral Disc Degeneration and the Therapeutic Utility of Adult Mesenchymal Stem Cells for Intervertebral Disc Regeneration

    PubMed Central

    Shu, Cindy C.; Smith, Margaret M.; Smith, Susan M.; Dart, Andrew J.; Little, Christopher B.; Melrose, James

    2017-01-01

    The purpose of this study was to develop a quantitative histopathological scoring scheme to evaluate disc degeneration and regeneration using an ovine annular lesion model of experimental disc degeneration. Toluidine blue and Haematoxylin and Eosin (H&E) staining were used to evaluate cellular morphology: (i) disc structure/lesion morphology; (ii) proteoglycan depletion; (iii) cellular morphology; (iv) blood vessel in-growth; (v) cell influx into lesion; and (vi) cystic degeneration/chondroid metaplasia. Three study groups were examined: 5 × 5 mm lesion; 6 × 20 mm lesion; and 6 × 20 mm lesion plus mesenchymal stem cell (MSC) treatment. Lumbar intervertebral discs (IVDs) were scored under categories (i–vi) to provide a cumulative score, which underwent statistical analysis using STATA software. Focal proteoglycan depletion was associated with 5 × 5 mm annular rim lesions, bifurcations, annular delamellation, concentric and radial annular tears and an early influx of blood vessels and cells around remodeling lesions but the inner lesion did not heal. Similar features in 6 × 20 mm lesions occurred over a 3–6-month post operative period. MSCs induced a strong recovery in discal pathology with a reduction in cumulative histopathology degeneracy score from 15.2 to 2.7 (p = 0.001) over a three-month recovery period but no recovery in carrier injected discs. PMID:28498326

  10. Effectiveness of cervical hemilaminectomy in canine Hansen Type I and Type II disc disease: a retrospective study.

    PubMed

    Schmied, Oliver; Golini, Lorenzo; Steffen, Frank

    2011-01-01

    Medical records of 41 dogs, including 15 small breed dogs (<15 kg) and 26 large breed dogs (>15 kg), with cervical intervertebral disc disease (IVDD) that underwent a hemilaminectomy were reviewed. Dogs were diagnosed using myelography, computed tomography/myelography, or MRI, and dogs were classified as having either Hansen Type I disc extrusion or Hansen Type II disc protrusion located ventrally, ventrolaterally, or laterally within the cervical spinal canal. The most common clinical presentation was ambulatory tetraparesis and/or lameness (44%). The most affected sites for cervical IVDD were between the sixth and seventh cervical vertebrae (C6-C7; 78% of Hansen Type II discs) and C2-C3 (86% of Hansen Type I discs). Treatment was effective in 88% of dogs. Five large breed dogs (12%) did not improve. In dogs with a Hansen Type I disc extrusion, clinical signs improved in 96% of the cases. In dogs with a Hansen Type II disc protrusion, an excellent and good outcome was seen in 47% and 32% of cases, respectively. Outcome was significantly better for small breed dogs and dogs with Hansen Type I disc disease compared with large breed dogs and dogs with Hansen Type II disc disease.

  11. Continuous lumbar hemilaminectomy for intervertebral disc disease in an Amur tiger (Panthera tigris altaica).

    PubMed

    Flegel, Thomas; Böttcher, Peter; Alef, Michaele; Kiefer, Ingmar; Ludewig, Eberhard; Thielebein, Jens; Grevel, Vera

    2008-09-01

    A 13-yr-old Amur tiger (Panthera tigris altaica) was presented for an acute onset of paraplegia. Spinal imaging that included plain radiographs, myelography, and computed tomography performed under general anesthesia revealed lateralized spinal cord compression at the intervertebral disc space L4-5 caused by intervertebral disc extrusion. This extrusion was accompanied by an extensive epidural hemorrhage from L3 to L6. Therefore, a continuous hemilaminectomy from L3 to L6 was performed, resulting in complete decompression of the spinal cord. The tiger was ambulatory again 10 days after the surgery. This case suggests that the potential benefit of complete spinal cord decompression may outweigh the risk of causing clinically significant spinal instability after extensive decompression.

  12. Can vertebral density changes be explained by intervertebral disc degeneration?

    PubMed

    Homminga, Jasper; Aquarius, Rene; Bulsink, Vera E; Jansen, Christiaan T J; Verdonschot, Nico

    2012-05-01

    One of the major problems facing the elderly spine is the occurrence of vertebral fractures due to low bone mass. Although typically attributed to osteoporosis, disc degeneration has also been suggested to play a role in vertebral fractures. Existing bone adaptation theories and simulations may explain the biomechanical pathway from a degenerated disc to an increased fracture risk. A finite element model of a lumbar segment was created and calibrated. Subsequently the disc properties were varied to represent either a healthy or degenerated disc and the resulting bone adaptation was simulated. Disc degeneration resulted in a shift of load from the nucleus to the annulus. The resulting bone adaptation led to a dramatically reduced density of the trabecular core and to an increased density in the vertebral walls. Degeneration of just the nucleus, and in particular the dehydration of the nucleus, resulted in most of this bone density change. Additional annulus degeneration had much less of an effect on the density values. The density decrease in the trabecular core as seen in this study matches clinical observations. Therefore, bone remodeling theories can assists in explaining the potential synergistic effects of disc degeneration and osteoporotis in the occurrence of vertebral fractures. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  13. Lovastatin prevents discography-associated degeneration and maintains the functional morphology of intervertebral discs.

    PubMed

    Hu, Ming-Hsiao; Yang, Kai-Chiang; Chen, Yeong-Jang; Sun, Yuan-Hui; Yang, Shu-Hua

    2014-10-01

    Discography is an important diagnostic approach to identify the painful discs. However, the benefit of discography, a procedure involving needle puncture and injection of the diagnostic agent into the intervertebral disc, is controversial and has been reported to be associated with accelerated degeneration. To investigate the effect of lovastatin on the prevention of degeneration caused by a discography simulation procedure in rat caudal discs. In vivo study using rat caudal discs. A single flexible 27-gauge needle puncture into rat caudal discs was performed under fluoroscopic monitoring. Different concentrations (0.1, 1, 5, and 10 μM) of lovastatin were prepared and injected into randomly chosen caudal discs. RNA expression of selected genes, histologic, and immunohistochemical staining were performed to evaluate the phenotypic effects of lovastatin on rat caudal discs. Simulation of the discography procedure by puncturing the rat caudal discs with a 27-gauge needle and injection of saline solution induced degenerative changes in the nucleus pulposus with minimal damage to the annulus fibrosus. Aggrecan, Type II collagen, and SOX9 expressions were upregulated, whereas Type I collagen expression was significantly suppressed in discs treated with 5 and 10 μM lovastatin. Discs treated with 5 and 10 μM lovastatin were subjected to alcian blue staining and immunohistochemistry that revealed higher levels of glycosaminoglycans and an increase in the number of cells producing S-100 proteins, Type II collagen, and bone morphogenetic protein-2 (BMP-2), respectively. The most effective phenotypic repair was observed in discs treated with 10 μM lovastatin. Intradiscal administration of lovastatin solution upregulated the expressions of BMP-2 and SOX9 and promoted chondrogenesis of rat caudal discs after needle puncture and substance injection. Therefore, we suggest that lovastatin promotes disc repair and can be used as a potential therapeutic agent for biological

  14. Intervertebral disc extrusion and spinal decompression in a binturong (Arctictis binturong).

    PubMed

    Spriggs, Maria; Arble, Jason; Myers, Gwen

    2007-03-01

    A 10-yr-old binturong (Arctictis binturong) developed an acute onset of hind limb paralysis. Neurological examination revealed sensorimotor paraplegia. Myelography and computed tomography demonstrated a ventrolateral extradural compression of the spinal cord centered over the L3-L4 intervertebral disc space. Spinal decompression was performed via hemilaminectomy and excision of degenerate nucleus pulposus, confirmed by histopathologic examination. The binturong regained slight motor function by day 8 postoperatively but succumbed to pancreatitis 19 days postoperatively.

  15. [Results of surgical treatment for the intervertebral disc protrusion within thoracic spine].

    PubMed

    Malawski, S; Lukawski, S

    1998-01-01

    Results of surgical treatment for intervertebral disc protrusion within thoracic spine in 4 cases are presented. Protrusion had caused spinal compression resulting in neurological impairment (plegia). There were 3 females and 1 male, all in their forties or fifties. Two cases are presented in details, with radiological investigations included. Lateral approach was used at surgery. Neurological deficits subsided completely in all cases. Follow-up ranged from 1-15 years, mean 8 years.

  16. Horner's syndrome secondary to intervertebral disc herniation at the level of T1-2.

    PubMed

    Spacey, Kate; Zaidan, Ammar; Dannawi, Zaher; Khazim, Rabi; Khazim, R; Dannawi, Zaher; Dannawi, Z

    2014-06-05

    A 54-year-old Caucasian woman presented with a 6 week history of periscapular pain and a T1 radiculopathy associated with Horner's syndrome. MRI of her cervicothoracic spine revealed an intervertebral disc herniation at the level of T1-2. During investigation she experienced some improvement in her symptoms and a conservative approach was pursued. At 6 months her pain and radiculopathy had resolved, and there was mild residual ptosis. 2014 BMJ Publishing Group Ltd.

  17. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs.

    PubMed

    Ghannam, Malik; Jumah, Fareed; Mansour, Shaden; Samara, Amjad; Alkhdour, Saja; Alzuabi, Muayad A; Aker, Loai; Adeeb, Nimer; Massengale, Justin; Oskouian, Rod J; Shane Tubbs, R

    2017-03-01

    The intervertebral disc (IVD) is a joint unique in structure and functions. Lying between adjacent vertebrae, it provides both the primary support and the elasticity required for the spine to move stably. Various aspects of the IVD have long been studied by researchers seeking a better understanding of its dynamics, aging, and subsequent disorders. In this article, we review the surgical anatomy, imaging modalities, and molecular biology of the lumbar IVD. Clin. Anat. 30:251-266, 2017. © 2017 Wiley Periodicals, Inc.

  18. Changes in intervertebral disc morphology persist 5 mo after 21-day bed rest.

    PubMed

    Belavý, Daniel L; Bansmann, P Martin; Böhme, Gisela; Frings-Meuthen, Petra; Heer, Martina; Rittweger, Jörn; Zange, Jochen; Felsenberg, Dieter

    2011-11-01

    As part of the nutrition-countermeasures (NUC) study in Cologne, Germany in 2010, seven healthy male subjects underwent 21 days of head-down tilt bed rest and returned 153 days later to undergo a second bout of 21-day bed rest. As part of this model, we aimed to examine the recovery of the lumbar intervertebral discs and muscle cross-sectional area (CSA) after bed rest using magnetic resonance imaging and conduct a pilot study on the effects of bed rest in lumbar muscle activation, as measured by signal intensity changes in T(2)-weighted images after a standardized isometric spinal extension loading task. The changes in intervertebral disc volume, anterior and posterior disc height, and intervertebral length seen after bed rest did not return to prebed-rest values 153 days later. While recovery of muscle CSA occurred after bed rest, increases (P ≤ 0.016) in multifidus, psoas, and quadratus lumborum muscle CSA were seen 153 days after bed rest. A trend was seen for greater activation of the erector spinae and multifidus muscles in the standardized loading task after bed rest. Greater reductions of multifidus and psoas CSA muscle and greater increases in multifidus signal intensity with loading were associated with incidence of low back pain in the first 28 days after bed rest (P ≤ 0.044). The current study contributes to our understanding of the recovery of the lumbar spine after 21-day bed rest, and the main finding was that a decrease in spinal extensor muscle CSA recovers within 5 mo after bed rest but that changes in the intervertebral discs persist.

  19. Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy.

    PubMed

    Capoor, Manu N; Ruzicka, Filip; Schmitz, Jonathan E; James, Garth A; Machackova, Tana; Jancalek, Radim; Smrcka, Martin; Lipina, Radim; Ahmed, Fahad S; Alamin, Todd F; Anand, Neel; Baird, John C; Bhatia, Nitin; Demir-Deviren, Sibel; Eastlack, Robert K; Fisher, Steve; Garfin, Steven R; Gogia, Jaspaul S; Gokaslan, Ziya L; Kuo, Calvin C; Lee, Yu-Po; Mavrommatis, Konstantinos; Michu, Elleni; Noskova, Hana; Raz, Assaf; Sana, Jiri; Shamie, A Nick; Stewart, Philip S; Stonemetz, Jerry L; Wang, Jeffrey C; Witham, Timothy F; Coscia, Michael F; Birkenmaier, Christof; Fischetti, Vincent A; Slaby, Ondrej

    2017-01-01

    In previous studies, Propionibacterium acnes was cultured from intervertebral disc tissue of ~25% of patients undergoing microdiscectomy, suggesting a possible link between chronic bacterial infection and disc degeneration. However, given the prominence of P. acnes as a skin commensal, such analyses often struggled to exclude the alternate possibility that these organisms represent perioperative microbiologic contamination. This investigation seeks to validate P. acnes prevalence in resected disc cultures, while providing microscopic evidence of P. acnes biofilm in the intervertebral discs. Specimens from 368 patients undergoing microdiscectomy for disc herniation were divided into several fragments, one being homogenized, subjected to quantitative anaerobic culture, and assessed for bacterial growth, and a second fragment frozen for additional analyses. Colonies were identified by MALDI-TOF mass spectrometry and P. acnes phylotyping was conducted by multiplex PCR. For a sub-set of specimens, bacteria localization within the disc was assessed by microscopy using confocal laser scanning and FISH. Bacteria were cultured from 162 discs (44%), including 119 cases (32.3%) with P. acnes. In 89 cases, P. acnes was cultured exclusively; in 30 cases, it was isolated in combination with other bacteria (primarily coagulase-negative Staphylococcus spp.) Among positive specimens, the median P. acnes bacterial burden was 350 CFU/g (12 - ~20,000 CFU/g). Thirty-eight P. acnes isolates were subjected to molecular sub-typing, identifying 4 of 6 defined phylogroups: IA1, IB, IC, and II. Eight culture-positive specimens were evaluated by fluorescence microscopy and revealed P. acnes in situ. Notably, these bacteria demonstrated a biofilm distribution within the disc matrix. P. acnes bacteria were more prevalent in males than females (39% vs. 23%, p = 0.0013). This study confirms that P. acnes is prevalent in herniated disc tissue. Moreover, it provides the first visual evidence of P

  20. Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy

    PubMed Central

    Ruzicka, Filip; Schmitz, Jonathan E.; James, Garth A.; Machackova, Tana; Jancalek, Radim; Smrcka, Martin; Lipina, Radim; Ahmed, Fahad S.; Alamin, Todd F.; Anand, Neel; Baird, John C.; Bhatia, Nitin; Demir-Deviren, Sibel; Eastlack, Robert K.; Fisher, Steve; Garfin, Steven R.; Gogia, Jaspaul S.; Gokaslan, Ziya L.; Kuo, Calvin C.; Lee, Yu-Po; Mavrommatis, Konstantinos; Michu, Elleni; Noskova, Hana; Raz, Assaf; Sana, Jiri; Shamie, A. Nick; Stewart, Philip S.; Stonemetz, Jerry L.; Wang, Jeffrey C.; Witham, Timothy F.; Coscia, Michael F.; Birkenmaier, Christof; Fischetti, Vincent A.; Slaby, Ondrej

    2017-01-01

    Background In previous studies, Propionibacterium acnes was cultured from intervertebral disc tissue of ~25% of patients undergoing microdiscectomy, suggesting a possible link between chronic bacterial infection and disc degeneration. However, given the prominence of P. acnes as a skin commensal, such analyses often struggled to exclude the alternate possibility that these organisms represent perioperative microbiologic contamination. This investigation seeks to validate P. acnes prevalence in resected disc cultures, while providing microscopic evidence of P. acnes biofilm in the intervertebral discs. Methods Specimens from 368 patients undergoing microdiscectomy for disc herniation were divided into several fragments, one being homogenized, subjected to quantitative anaerobic culture, and assessed for bacterial growth, and a second fragment frozen for additional analyses. Colonies were identified by MALDI-TOF mass spectrometry and P. acnes phylotyping was conducted by multiplex PCR. For a sub-set of specimens, bacteria localization within the disc was assessed by microscopy using confocal laser scanning and FISH. Results Bacteria were cultured from 162 discs (44%), including 119 cases (32.3%) with P. acnes. In 89 cases, P. acnes was cultured exclusively; in 30 cases, it was isolated in combination with other bacteria (primarily coagulase-negative Staphylococcus spp.) Among positive specimens, the median P. acnes bacterial burden was 350 CFU/g (12 - ~20,000 CFU/g). Thirty-eight P. acnes isolates were subjected to molecular sub-typing, identifying 4 of 6 defined phylogroups: IA1, IB, IC, and II. Eight culture-positive specimens were evaluated by fluorescence microscopy and revealed P. acnes in situ. Notably, these bacteria demonstrated a biofilm distribution within the disc matrix. P. acnes bacteria were more prevalent in males than females (39% vs. 23%, p = 0.0013). Conclusions This study confirms that P. acnes is prevalent in herniated disc tissue. Moreover, it

  1. A role for TNFα in intervertebral disc degeneration: A non-recoverable catabolic shift

    SciTech Connect

    Purmessur, D.; Walter, B.A.; Roughley, P.J.; Laudier, D.M.; Hecht, A.C.; Iatridis, James

    2013-03-29

    Highlights: ► TNFα induced catabolic changes similar to human intervertebral disc degeneration. ► The metabolic shift induced by TNFα was sustained following removal. ► TNFα induced changes suggestive of cell senescence without affecting cell viability. ► Interventions are required to stimulate anabolism and increase cell proliferation. -- Abstract: This study examines the effect of TNFα on whole bovine intervertebral discs in organ culture and its association with changes characteristic of intervertebral disc degeneration (IDD) in order to inform future treatments to mitigate the chronic inflammatory state commonly found with painful IDD. Pro-inflammatory cytokines such as TNFα contribute to disc pathology and are implicated in the catabolic phenotype associated with painful IDD. Whole bovine discs were cultured to examine cellular (anabolic/catabolic gene expression, cell viability and senescence using β-galactosidase) and structural (histology and aggrecan degradation) changes in response to TNFα treatment. Control or TNFα cultures were assessed at 7 and 21 days; the 21 day group also included a recovery group with 7 days TNFα followed by 14 days in basal media. TNFα induced catabolic and anti-anabolic shifts in the nucleus pulposus (NP) and annulus fibrosus (AF) at 7 days and this persisted until 21 days however cell viability was not affected. Data indicates that TNFα increased aggrecan degradation products and suggests increased β-galactosidase staining at 21 days without any recovery. TNFα treatment of whole bovine discs for 7 days induced changes similar to the degeneration processes that occur in human IDD: aggrecan degradation, increased catabolism, pro-inflammatory cytokines and nerve growth factor expression. TNFα significantly reduced anabolism in cultured IVDs and a possible mechanism may be associated with cell senescence. Results therefore suggest that successful treatments must promote anabolism and cell proliferation in

  2. Porcine Intervertebral Disc Repair Using Allogeneic Juvenile Articular Chondrocytes or Mesenchymal Stem Cells

    PubMed Central

    Acosta, Frank L.; Metz, Lionel; Adkisson, Huston Davis; Liu, Jane; Carruthers-Liebenberg, Ellen; Milliman, Curt; Maloney, Michael

    2011-01-01

    Tissue engineering strategies for intervertebral disc repair have focused on the use of autologous disc-derived chondrocytes. Difficulties with graft procurement, harvest site morbidity, and functionality, however, may limit the utility of this cell source. We used an in vivo porcine model to investigate allogeneic non-disc-derived chondrocytes and allogeneic mesenchymal stem cells (MSCs) for disc repair. After denucleation, lumbar discs were injected with either fibrin carrier alone, allogeneic juvenile chondrocytes (JCs), or allogeneic MSCs. Discs were harvested at 3, 6, and 12 months, and cell viability and functionality were assessed qualitatively and quantitatively. JC-treated discs demonstrated abundant cartilage formation at 3 months, and to a lesser extent at 6 and 12 months. For the carrier and MSC-treated groups, however, there was little evidence of proteoglycan matrix or residual notochordal/chondrocyte cells, but rather a type I/II collagen-enriched scar tissue. By contrast, JCs produced a type II collagen-rich matrix that was largely absent of type I collagen. Viable JCs were observed at all time points, whereas no evidence of viable MSCs was found. These data support the premise that committed chondrocytes are more appropriate for use in disc repair, as they are uniquely suited for survival in the ischemic disc microenvironment. PMID:21910592

  3. Difference in Energy Metabolism of Annulus Fibrosus and Nucleus Pulposus Cells of the Intervertebral Disc

    PubMed Central

    Salvatierra, Jessica Czamanski; Yuan, Tai Yi; Fernando, Hanan; Castillo, Andre; Gu, Wei Yong; Cheung, Herman S.; Huant, C.-Y. Charles

    2011-01-01

    Low back pain is associated with intervertebral disc degeneration. One of the main signs of degeneration is the inability to maintain extracellular matrix integrity. Extracellular matrix synthesis is closely related to production of adenosine triphosphate (i.e. energy) of the cells. The intervertebral disc is composed of two major anatomical regions: annulus fibrosus and nucleus pulposus, which are structurally and compositionally different, indicating that their cellular metabolisms may also be distinct. The objective of this study was to investigate energy metabolism of annulus fibrosus and nucleus pulposus cells with and without dynamic compression, and examine differences between the two cell types. Porcine annulus and nucleus tissues were harvested and enzymatically digested. Cells were isolated and embedded into agarose constructs. Dynamically loaded samples were subjected to a sinusoidal displacement at 2 Hz and 15% strain for 4 h. Energy metabolism of cells was analyzed by measuring adenosine triphosphate content and release, glucose consumption, and lactate/nitric oxide production. A comparison of those measurements between annulus and nucleus cells was conducted. Annulus and nucleus cells exhibited different metabolic pathways. Nucleus cells had higher adenosine triphosphate content with and without dynamic loading, while annulus cells had higher lactate production and glucose consumption. Compression increased adenosine triphosphate release from both cell types and increased energy production of annulus cells. Dynamic loading affected energy metabolism of intervertebral disc cells, with the effect being greater in annulus cells. PMID:21625336

  4. Current insights and controversies in the pathogenesis and diagnosis of disc-associated cervical spondylomyelopathy in dogs.

    PubMed

    De Decker, S; da Costa, R C; Volk, H A; Van Ham, L M L

    2012-11-24

    Disc-associated cervical spondylomyelopathy (DA-CSM) is the most common cause of cervical spondylomyelopathy in dogs. In this condition, progressive caudal cervical spinal cord compression is typically caused by protrusion of one or more intervertebral discs. This disc-associated compression is sometimes seen in combination with mild vertebral abnormalities and dorsal compression resulting from ligamentum flavum hypertrophy. The intervertebral disc space between the sixth (C6) and seventh (C7) cervical vertebrae is most commonly affected. Although several large breed dogs can be affected, the adult to older dobermann is overrepresented. Clinical signs vary from cervical hyperaesthesia to tetraplegia. Dogs can present with a chronic progressive or an acute onset of clinical signs. Many aspects of this multifactorial neurological syndrome are not completely understood and are the subject of controversy and debate. Although several factors have been proposed, the underlying pathology and aetiology remain unknown. Recently, new insights have been gained in the pathogenesis, diagnosis and treatment of this challenging neurological syndrome. This review outlines current controversies and new developments concerning the pathogenesis and diagnosis of DA-CSM.

  5. Transcript Levels of Major Interleukins in Relation to the Clinicopathological Profile of Patients with Tuberculous Intervertebral Discs and Healthy Controls

    PubMed Central

    Liu, Chong; Zhan, Xinli; Xiao, Zengming; Fan, Qie; Deng, Li; Cui, Mingxing; Xiong, Chunxiang; Xue, Jingbo; Xie, Xiangtao

    2014-01-01

    Objectives The purpose of the present study was to simultaneously examine the transcript levels of a large number of interleukins (ILs; IL-9, IL-10, IL-12, IL-13, IL-16, IL-17, IL-18, IL-26, and IL-27) and investigate their correlation with the clinicopathological profiles of patients with tuberculous intervertebral discs. Methods Clinical data were collected from 150 patients participating in the study from January 2013 to December 2013. mRNA expression levels in 70 tuberculous, 70 herniated, and 10 control intervertebral disc specimens were determined by real-time polymerase chain reaction. Results IL-10, IL-16, IL-17, IL-18, and IL-27 displayed stronger expression in tuberculous spinal disc tissue than in normal intervertebral disc tissue (P<0.05). Our results illustrated multiple correlations among IL-10, IL-16, IL-17, IL-18, and IL-27 mRNA expression in tuberculous samples. Smoking habits were found to have a positive correlation with IL-17 transcript levels and a negative correlation with IL-10 transcript levels (P<0.05). Pain intensity, symptom duration, C-reactive protein levels, and the erythrocyte sedimentation rate exhibited multiple correlations with the transcript levels of several ILs (P<0.05). Conclusions The experimental data imply a double-sided effect on the activity of ILs in tuberculous spinal intervertebral discs, suggesting that they may be involved in intervertebral discs destruction. Our findings also suggest that smoking may affect the intervertebral discs destruction process of spinal tuberculosis. However, further studies are necessary to elucidate the exact role of ILs in the intervertebral discs destruction process of spinal tuberculosis. PMID:24971599

  6. Transcript levels of major interleukins in relation to the clinicopathological profile of patients with tuberculous intervertebral discs and healthy controls.

    PubMed

    Liu, Chong; Zhan, Xinli; Xiao, Zengming; Fan, Qie; Deng, Li; Cui, Mingxing; Xiong, Chunxiang; Xue, Jingbo; Xie, Xiangtao

    2014-01-01

    The purpose of the present study was to simultaneously examine the transcript levels of a large number of interleukins (ILs; IL-9, IL-10, IL-12, IL-13, IL-16, IL-17, IL-18, IL-26, and IL-27) and investigate their correlation with the clinicopathological profiles of patients with tuberculous intervertebral discs. Clinical data were collected from 150 patients participating in the study from January 2013 to December 2013. mRNA expression levels in 70 tuberculous, 70 herniated, and 10 control intervertebral disc specimens were determined by real-time polymerase chain reaction. IL-10, IL-16, IL-17, IL-18, and IL-27 displayed stronger expression in tuberculous spinal disc tissue than in normal intervertebral disc tissue (P<0.05). Our results illustrated multiple correlations among IL-10, IL-16, IL-17, IL-18, and IL-27 mRNA expression in tuberculous samples. Smoking habits were found to have a positive correlation with IL-17 transcript levels and a negative correlation with IL-10 transcript levels (P<0.05). Pain intensity, symptom duration, C-reactive protein levels, and the erythrocyte sedimentation rate exhibited multiple correlations with the transcript levels of several ILs (P<0.05). The experimental data imply a double-sided effect on the activity of ILs in tuberculous spinal intervertebral discs, suggesting that they may be involved in intervertebral discs destruction. Our findings also suggest that smoking may affect the intervertebral discs destruction process of spinal tuberculosis. However, further studies are necessary to elucidate the exact role of ILs in the intervertebral discs destruction process of spinal tuberculosis.

  7. Coexistence of intervertebral disc herniation with intradural schwannoma in a lumbar segment: a case report.

    PubMed

    Pan, Jianjiang; Wang, Yue; Huang, Yazeng

    2016-04-18

    Lumbar intervertebral disc herniation and spinal tumor are major pathologies that may cause back pain and radiculopathy. Neurological symptoms resulting from disc herniation and intradural spinal tumor together, however, are very rare. We report a case of lumbar disc herniation which coexists with intradural schwannoma at the same spinal level in a 67-year-old man. The patient presented with persistent low back pain, sciatica, and weakness of the lower limbs. Contrast lumbar spine magnetic resonance (MR) imaging clearly delineated an intradural lesion and an extradural herniated disc at L3/4 level. Using a single posterior approach, both pathologies were addressed. Pathological studies confirmed the intradural lesion was schwannoma. The case report highlights a rare concomitance of two symptomatic pathologies in a lumbar spine, which deserves clinical attention. Complete history, careful physical examination, and investigative measures, such as contrast MR imaging, are helpful to establish throughout diagnoses.

  8. Nutrition of the intervertebral disc: effect of fluid flow on solute transport

    SciTech Connect

    Urban, J.P.; Holm, S.; Maroudas, A.; Nachemson, A.

    1982-10-01

    Adult dogs were injected intravenously with /sup 35/S-sulphate, and moderately exercised for one to six hours to measure isotope concentrations and profiles throughout the intervertebral discs. The isotope profiles were also observed in control animals that had been under anesthesia between injections and death. In both sets of animals, the profiles were in agreement with those expected for isotope transport by diffusion. This agreement indicates that fluid pumping during movement has an insignificant effect on transport of nutrients into the disc. Small solutes, e.g., O/sub 2/, glucose, and sulphate, are transported into the disc chiefly by diffusion. However, calculations show that because of their low diffusivities, pumping may increase the rate of transport of large solutes into the disc, as it does in articular cartilage.

  9. IL-20 may contribute to the pathogenesis of human intervertebral disc herniation.

    PubMed

    Huang, Kuo-Yuan; Lin, Ruey-Mo; Chen, Wei-Yu; Lee, Chia-Lin; Yan, Jing-Jou; Chang, Ming-Shi

    2008-09-01

    The gene expression of interleukin (IL)-20 on human herniated intervertebral disc. OBJECTIVE.: To elucidate the role of novel cytokine IL-20 in the pathogenesis of human intervertebral disc (IVD) herniation. IL-20 is involved in inflammatory diseases such as psoriasis, atherosclerosis, and rheumatoid arthritis, etc. However, IL-20 is never reported to be associated with the pathogenesis of human disc herniation. Twenty consecutive patients who were diagnosed with IVD herniation and received open discectomy were included in this study. The retrieved disc material specimens and the isolated primarily cultured disc cells were immunohistochemically stained to detect the expression of IL-20 and its receptor subunits (IL-20R1, IL-20R2, and IL-22R1). Besides, to investigate the in vitro response of IL-20 on human herniated intervertebral disc, we analyzed the effects of IL-20 alone, in combination with IL-1beta, and IL-1beta alone on the gene expression and protein levels of various cytokines, chemokines, matrix metalloproteinases (MMPs), etc. IL-20 and its receptors were detectable in human herniated disc tissues and isolated disc cells. In vitro, IL-1beta induced the expression of IL-20. Furthermore, IL-20 induced transcripts of IL-1beta, IL-6, vascular endothelial growth factor (VEGF), MMP-3, and monocyte chemoattractant protein (MCP-1) on primarily cultured human disc cells. IL-1beta induced transcripts of IL-1beta, IL-6, IL-8, VEGF, MMP3, and MCP-1. IL-20 combined with IL-1beta induced transcripts of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, IL-6, IL-8, MMP-3, and MCP-1 to a level higher than those found in cells treated with IL-20 or IL-1beta alone.Enzyme-linked immunosorbent assay, analysis also showed that IL-20 combined with IL-1beta up-regulated the secretion of TNF-alpha, IL-6, IL-8, and MCP-1. IL-20 induces proinflammatory, chemotaxtic, and matrix degradative responses in IVD cells especially in combination with IL-1beta. Our study suggests that IL-20

  10. A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc

    NASA Astrophysics Data System (ADS)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.

    2017-01-01

    Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.

  11. Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis.

    PubMed

    Ponrartana, Skorn; Fisher, Carissa L; Aggabao, Patricia C; Chavez, Thomas A; Broom, Alexander M; Wren, Tishya A L; Skaggs, David L; Gilsanz, Vicente

    2016-09-01

    When compared to boys, girls have smaller vertebral cross-sectional area, which conveys a greater spinal flexibility, and a higher prevalence of adolescent idiopathic scoliosis. To test the hypothesis that small vertebral cross-sectional area and tall intervertebral disc height are structural characteristics of patients with adolescent idiopathic scoliosis. Using multiplanar imaging techniques, measures of vertebral cross-sectional area, vertebral height and intervertebral disc height in the lumbar spine were obtained in 35 pairs of girls and 11 pairs of boys with and without adolescent idiopathic scoliosis of the thoracic spine matched for age, height and weight. Compared to adolescents without spinal deformity, girls and boys with adolescent idiopathic scoliosis had, on average, 9.8% (6.68 ± 0.81 vs. 7.40 ± 0.99 cm(2); P = 0.0007) and 13.9% (8.22 ± 0.84 vs. 9.55 ± 1.61 cm(2); P = 0.009) smaller vertebral cross-sectional dimensions, respectively. Additionally, patients with adolescent idiopathic scoliosis had significantly greater values for intervertebral disc heights (9.06 ± 0.85 vs. 7.31 ± 0.62 mm and 9.09 ± 0.87 vs. 7.61 ± 1.00 mm for girls and boys respectively; both P ≤ 0.011). Multiple regression analysis indicated that the presence of scoliosis was negatively associated with vertebral cross-sectional area and positively with intervertebral disc height, independent of sex, age and body mass index. We provide new evidence that girls and boys with adolescent idiopathic scoliosis have significantly smaller vertebral cross-sectional area and taller intervertebral disc heights - two major structural determinants that influence trunk flexibility. With appropriate validation, these findings may have implications for the identification of children at the highest risk for developing scoliosis.

  12. Simulating the sensitivity of cell nutritive environment to composition changes within the intervertebral disc

    NASA Astrophysics Data System (ADS)

    Wills, C. Ruiz; Malandrino, A.; van Rijsbergen, MM.; Lacroix, D.; Ito, K.; Noailly, J.

    2016-05-01

    Altered nutrition in the intervertebral disc affects cell viability and can generate catabolic cascades contributing to extracellular matrix (ECM) degradation. Such degradation is expected to affect couplings between disc mechanics and nutrition, contributing to accelerate degenerative processes. However, the relation of ECM changes to major biophysical events within the loaded disc remains unclear. A L4-L5 disc finite element model including the nucleus (NP), annulus (AF) and endplates was used and coupled to a transport-cell viability model. Solute concentrations and cell viability were evaluated along the mid-sagittal plane path. A design of experiment (DOE) was performed. DOE parameters corresponded to AF and NP biochemical tissue measurements in discs with different degeneration grades. Cell viability was not affected by any parameter combinations defined. Nonetheless, the initial water content was the parameter that affected the most the solute contents, especially glucose. Calculations showed that altered NP composition could negatively affect AF cell nutrition. Results suggested that AF and NP tissue degeneration are not critical to nutrition-related cell viability at early-stage of disc degeneration. However, small ECM degenerative changes may alter significantly disc nutrition under mechanical loads. Coupling disc mechano-transport simulations and enzyme expression studies could allow identifying spatiotemporal sequences related to tissue catabolism.

  13. Molecular regulation of CCN2 in the intervertebral disc: lessons learned from other connective tissues.

    PubMed

    Tran, Cassie M; Shapiro, Irving M; Risbud, Makarand V

    2013-08-08

    Connective tissue growth factor (CCN2/CTGF) plays an important role in extracellular matrix synthesis, especially in skeletal tissues such as cartilage, bone, and the intervertebral disc. As a result there is a growing interest in examining the function and regulation of this important molecule in the disc. This review discusses the regulation of CCN2 by TGF-β and hypoxia, two critical determinants that characterize the disc microenvironment, and discusses known functions of CCN2 in the disc. The almost ubiquitous regulation of CCN2 by TGF-β, including that seen in the disc, emphasizes the importance of the TGF-β-CCN2 relationship, especially in terms of extracellular matrix synthesis. Likewise, the unique cross-talk between CCN2 and HIF-1 in the disc highlights the tissue and niche specific mode of regulation. Taken together the current literature supports an anabolic role for CCN2 in the disc and its involvement in the maintenance of tissue homeostasis during both health and disease. Further studies of CCN2 in this tissue may reveal valuable targets for the biological therapy of disc degeneration.

  14. Aging and age related stresses: a senescence mechanism of intervertebral disc degeneration.

    PubMed

    Wang, F; Cai, F; Shi, R; Wang, X-H; Wu, X-T

    2016-03-01

    Intervertebral disc (IVD) degeneration is a complicated process that involves both age-related change and tissue damage caused by multiple stresses. In a degenerative IVD, cellular senescence accumulates and is associated with reduced proliferation, compromised self-repair, increased inflammatory response, and enhanced catabolic metabolism. In this review, we decipher the senescence mechanism of IVD degeneration (IVDD) by interpreting how aging coordinates with age-related, microenvironment-derived stresses in promoting disc cell senescence and accelerating IVDD. After chronic and prolonged replication, cell senescence may occur as a natural part of the disc aging process, but can potentially be accelerated by growth factor deficiency, oxidative accumulation, and inflammatory irritation. While acute disc injury, excessive mechanical overloading, diabetes, and chronic tobacco smoking contribute to the amplification of senescence-inducing stresses, the avascular nature of IVD impairs the immune-clearance of the senescent disc cells, which accumulate in cell clusters, demonstrate inflammatory and catabolic phenotypes, deteriorate disc microenvironment, and accelerate IVDD. Anti-senescence strategies, including telomerase transduction, supply of growth factors, and blocking cell cycle inhibitors, have been shown to be feasible in rescuing disc cells from early senescence, but their efficiency for disc regeneration requires more in vivo validations. Guidelines dedicated to avoiding or alleviating senescence-inducing stresses might decelerate cellular senescence and benefit patients with IVD degenerative diseases. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  15. Cervical spine intervertebral kinematics with respect to the head are different during flexion and extension motions

    PubMed Central

    Anderst, William J.; Donaldson, William F.; Lee, Joon Y.; Kang, James D.

    2013-01-01

    Previous dynamic imaging studies of the cervical spine have focused entirely on intervertebral kinematics while neglecting to investigate the relationship between head motion and intervertebral motion. Specifically, it is unknown if the relationship between head and intervertebral kinematics is affected by movement direction. We tested the hypothesis that there would be no difference in sagittal plane intervertebral angles at identical head orientations during the flexion and extension movements. Nineteen asymptomatic subjects performed continuous head flexion-extension movements while biplane radiographs were collected at 30 images per second. A previously validated model-based volumetric tracking process determined three-dimensional vertebral position with sub-millimeter accuracy throughout the flexion–extension motion. Head movement was recorded at 60 Hz using conventional motion analysis and reflective markers. Intervertebral angles were determined at identical head orientations during the flexion and extension movements. Cervical motion segments were in a more extended orientation during flexion and in a more flexed orientation during extension for any given head orientation. The results suggest that static radiographs cannot accurately represent vertebral orientation during dynamic motion. Further, data should be collected during both flexion and extension movements when investigating intervertebral kinematics with respect to global head orientation. Also, in vitro protocols that use intervertebral total range of motion as validation criteria may be improved by assessing model fidelity using continuous intervertebral kinematics in flexion and in extension. Finally, musculoskeletal models of the head and cervical spine should account for the direction of head motion when determining muscle moment arms because vertebral orientations (and therefore muscle attachment sites) are dependent on the direction of head motion. PMID:23540377

  16. Thalamic Pain Misdiagnosed as Cervical Disc Herniation.

    PubMed

    Lim, Tae Ha; Choi, Soo Il; Yoo, Jee In; Choi, Young Soon; Lim, Young Su; Sang, Bo Hyun; Bang, Yun Sic; Kim, Young Uk

    2016-04-01

    Thalamic pain is a primary cause of central post-stroke pain (CPSP). Clinical symptoms vary depending on the location of the infarction and frequently accompany several pain symptoms. Therefore, correct diagnosis and proper examination are not easy. We report a case of CPSP due to a left acute thalamic infarction with central disc protrusion at C5-6. A 45-year-old-male patient experiencing a tingling sensation in his right arm was referred to our pain clinic under the diagnosis of cervical disc herniation. This patient also complained of right cramp-like abdominal pain. After further evaluations, he was diagnosed with an acute thalamic infarction. Therefore detailed history taking should be performed and examiners should always be aware of other symptoms that could suggest a more dangerous disease.

  17. Calcification in the ovine intervertebral disc: a model of hydroxyapatite deposition disease

    PubMed Central

    Burkhardt, D.; Taylor, T. K. F.; Dillon, C. T.; Read, R.; Cake, M.; Little, C. B.

    2009-01-01

    The study design included a multidisciplinary examination of the mineral phase of ovine intervertebral disc calcifications. The objective of the study was to investigate the mineral phase and its mechanisms of formation/association with degeneration in a naturally occurring animal model of disc calcification. The aetiology of dystrophic disc calcification in adult humans is unknown, but occurs as a well-described clinical disorder with hydroxyapatite as the single mineral phase. Comparable but age-related pathology in the sheep could serve as a model for the human disorder. Lumbar intervertebral discs (n = 134) of adult sheep of age 6 years (n = 4), 8 years (n = 12) and 11 years (n = 2) were evaluated using radiography, morphology, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray powder diffraction, histology, immunohistology and proteoglycan analysis. Half of the 6-year, 84% of the 8-year and 86% of the 11-year-old discs had calcific deposits. These were not well delineated by plain radiography. They were either: (a) punctate deposits in the outer annulus, (b) diffuse deposits in the transitional zone or inner annulus fibrosus with occasional deposits in the nucleus, or (c) large deposits in the transitional zone extending variably into the nucleus. Their maximal incidence was in the lower lumbar discs (L4/5–L6/7) with no calcification seen in the lumbosacral or lower thoracic discs. All deposits were hydroxyapatite with large crystallite sizes (800–1,300 Å) compared to cortical bone (300–600 Å). No type X-collagen, osteopontin or osteonectin were detected in calcific deposits, although positive staining for bone sialoprotein was evident. Calcified discs had less proteoglycan of smaller hydrodynamic size than non-calcified discs. Disc calcification in ageing sheep is due to hydroxyapatite deposition. The variable, but large, crystal size and lack of protein markers indicate that this does not occur by

  18. Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    PubMed Central

    2012-01-01

    Background Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue. Methods A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured in vitro and in vivo in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific in situ hybridization was performed to discriminate between cells of human and murine origin in xenotransplants. Results The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. In vitro and in vivo (subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels in vitro and in vivo, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of

  19. Homing of mesenchymal stem cells in induced degenerative intervertebral discs in a whole organ culture system.

    PubMed

    Illien-Jünger, Svenja; Pattappa, Girish; Peroglio, Marianna; Benneker, Lorin M; Stoddart, Martin J; Sakai, Daisuke; Mochida, Joji; Grad, Sibylle; Alini, Mauro

    2012-10-15

    Homing of human bone marrow-derived mesenchymal stem cells (BMSCs) was studied using ex vivo cultured bovine caudal intervertebral discs (IVDs). To investigate in a whole organ culture whether metabolic and mechanical challenges can induce BMSC recruitment into the IVD. Cells from injured tissues release cytokines and mediators that enable the recruitment of progenitor cells. BMSCs have the ability to survive within the IVD. Bovine IVDs with or without endplates were cultured for 1 week under simulated physiological or degenerative conditions; disc cells were analyzed for cell viability and gene expression, whereas media was analyzed for nitric oxide production and chemotaxis. Homing of BMSCs was investigated by supplying PKH-labeled human BMSCs onto cultured IVDs (1 × 10(6) cells/disc on d 8, 10, and 12 of culture); on day 14, the number of homed BMSCs was microscopically assessed. Moreover, a comparative study was performed between transduced BMSCs (transduced with an adenovirus encoding for insulin-like growth factor 1 [IGF-1]) and nontransduced BMSCs. Disc proteoglycan synthesis rate was quantified via (35)S incorporation. The secretion of IGF-1 was evaluated by enzyme-linked immunosorbent assay on both simulated physiological and degenerative discs. Discs cultured under degenerative conditions showed reduced cell viability, upregulation of matrix degrading enzymes, and increased nitric oxide production compared with simulated physiological discs. Greater homing occurred under degenerative compared with physiological conditions with or without endplate. Media of degenerative discs demonstrated a chemoattractive activity toward BMSCs. Finally, discs homed with IGF-1-transduced BMSCs showed increased IGF-1 secretion and significantly higher proteoglycan synthesis rate than discs supplied with nontransduced BMSCs. We have demonstrated for the first time that degenerative conditions induce the release of factors promoting BMSC recruitment in an ex vivo organ

  20. Simulation of the Progression of Intervertebral Disc Degeneration due to Decreased Nutrition Supply

    PubMed Central

    Gu, Weiyong; Zhu, Qiaoqiao; Gao, Xin; Brown, Mark D.

    2014-01-01

    Study Design Simulate the progression of human disc degeneration. Objective The objective of this study was to quantitatively analyze and simulate the changes in cell density, nutrition level, proteoglycan content, water content, and volume change during human disc degeneration using a numerical method. Summary of Background Data Understanding the etiology and progression of intervertebral disc (IVD) degeneration is crucial for developing effective treatment strategies for IVD-degeneration related diseases. During tissue degeneration, the disc undergoes losses of cell viability and activities, changes in extracellular matrix composition and structure, and compromise of the tissue-level integrity and function, which is significantly influenced by the inter-coupled biological, chemical, electrical, and mechanical signals in the disc. Characterizing these signals in human discs in vivo is difficult. Methods A realistic 3D finite element model of the human IVD was developed based on biomechano-electrochemical continuum mixture theory. The theoretical framework and the constitutive relationships were all biophysics based. All the material properties were obtained from experimental results. The cell-mediated disc degeneration process caused by lowered nutrition levels at disc boundaries was simulated and validated by comparing with experimental results. Results Cell density reached equilibrium state in 30 days after reduced nutrition supply at the disc boundary, while the proteoglycan (PG) and water contents reached a new equilibrium state in 55 years. The simulated results for the distributions of PG and water contents within the disc were consistent with the results measured in the literature, except for the distribution of PG content in the sagittal direction. Conclusions Poor nutrition supply has a long-term effect on disc degeneration. PMID:25188596

  1. Influence of spine morphology on intervertebral disc loads and stresses in asymptomatic adults: implications for the ideal spine.

    PubMed

    Keller, Tony S; Colloca, Christopher J; Harrison, Deed E; Harrison, Donald D; Janik, Tadeusz J

    2005-01-01

    Sagittal profiles of the spine have been hypothesized to influence spinal coupling and loads on spinal tissues. To assess the relationship between thoracolumbar spine sagittal morphology and intervertebral disc loads and stresses. A cross-sectional study evaluating sagittal X-ray geometry and postural loading in asymptomatic men and women. Sixty-seven young and asymptomatic subjects (chiropractic students) formed the study group. Morphological data derived from radiographs (anatomic angles and sagittal balance parameters) and biomechanical parameters (intervertebral disc loads and stresses) derived from a postural loading model. An anatomically accurate, sagittal plane, upright posture, quadrilateral element model of the anterior spinal column (C2-S1) was created by digitizing lateral full-spine X-rays of 67 human subjects (51 males, 16 females). Morphological measurements of sagittal curvature and balance were compared with intervertebral disc loads and stresses obtained using a quadrilateral element postural loading model. In this young (mean 26.7, SD 4.8 years), asymptomatic male and female population, the neutral posture spine was characterized by an average thoracic angle (T1-T12) = +43.7 degrees (SD 11.4 degrees ), lumbar angle (T12-S1) = -63.2 degrees (SD 10.0 degrees ), and pelvic angle = +49.4 degrees (SD 9.9 degrees ). Sagittal curvatures exhibited relatively broad frequency distributions, with the pelvic angle showing the least variance and the thoracic angle showing the greatest variance. Sagittal balance parameters, C7-S1 and T1-T12, showed the best average vertical alignment (5.3 mm and -0.04 mm, respectively). Anterior and posterior disc postural loads were balanced at T8-T9 and showed the greatest difference at L5-S1. Disc compressive stresses were greatest in the mid-thoracic region of the spine, whereas shear stresses were highest at L5-S1. Significant linear correlations (p < .001) were found between a number of biomechanical and morphological

  2. [Stimulation of degenerative changes in the intervertebral disc through axial compression. Radiologic, histologic and biomechanical research in an animal model].

    PubMed

    Unglaub, F; Lorenz, H; Nerlich, A; Richter, W; Kroeber, M W

    2003-01-01

    Degeneration of the intervertebral disc is a common disease in the adults, especially at advanced age. A causal therapy is not known, but the progress in new therapeutic strategies, for example in tissue engineering, shows new possibilities. The goal of our study was to develop a new animal model that stimulates a load induced degeneration of the disc. We used the New Zealand rabbit, because morphology is similar to the human intervertebral disc. The degeneration was induced by axial compression of the disc L4 - L5 with an external fixateur. After different loading intervals, the animals were sacrified and the discs examined by radiology, histology, apoptosis and biomechanical testing. Radiography showed a significant decrease of the disc thickness in all loaded groups. Morphologically the intervertebral discs of loaded rabbits showed degenerative changes which were comparable to those in humans. A significantly increased number of dead cells in the annulus occurred after 14 and 28 days loading compared to the controls. The bending stress measured as the load to failure was not significantly different between the unloaded discs and the 28 days loaded discs. The results show that our animal modell can create degeneration. Four weeks compression leads to significant degeneration. Degeneration of the discs persisted in animals that were allowed a recovery time of 28 days after 28 days of loading.

  3. Artificial Cervical Vertebra and Intervertebral Complex Replacement through the Anterior Approach in Animal Model: A Biomechanical and In Vivo Evaluation of a Successful Goat Model

    PubMed Central

    Qin, Jie; He, Xijing; Wang, Dong; Qi, Peng; Guo, Lei; Huang, Sihua; Cai, Xuan; Li, Haopeng; Wang, Rui

    2012-01-01

    This was an in vitro and in vivo study to develop a novel artificial cervical vertebra and intervertebral complex (ACVC) joint in a goat model to provide a new method for treating degenerative disc disease in the cervical spine. The objectives of this study were to test the safety, validity, and effectiveness of ACVC by goat model and to provide preclinical data for a clinical trial in humans in future. We designed the ACVC based on the radiological and anatomical data on goat and human cervical spines, established an animal model by implanting the ACVC into goat cervical spines in vitro prior to in vivo implantation through the anterior approach, and evaluated clinical, radiological, biomechanical parameters after implantation. The X-ray radiological data revealed similarities between goat and human intervertebral angles at the levels of C2-3, C3-4, and C4-5, and between goat and human lordosis angles at the levels of C3-4 and C4-5. In the in vivo implantation, the goats successfully endured the entire experimental procedure and recovered well after the surgery. The radiological results showed that there was no dislocation of the ACVC and that the ACVC successfully restored the intervertebral disc height after the surgery. The biomechanical data showed that there was no significant difference in range of motion (ROM) or neural zone (NZ) between the control group and the ACVC group in flexion-extension and lateral bending before or after the fatigue test. The ROM and NZ of the ACVC group were greater than those of the control group for rotation. In conclusion, the goat provides an excellent animal model for the biomechanical study of the cervical spine. The ACVC is able to provide instant stability after surgery and to preserve normal motion in the cervical spine. PMID:23300816

  4. Glucosamine Supplementation Demonstrates a Negative Effect On Intervertebral Disc Matrix in an Animal Model of Disc Degeneration

    PubMed Central

    Jacobs, Lloydine; Vo, Nam; Coehlo, J. Paulo; Dong, Qing; Bechara, Bernard; Woods, Barrett; Hempen, Eric; Hartman, Robert; Preuss, Harry; Balk, Judith; Kang, James; Sowa, Gwendolyn

    2013-01-01

    Study Design Laboratory based controlled in vivo study Objective To determine the in vivo effects of oral glucosamine sulfate on intervertebral disc degeneration Summary of Background Data Although glucosamine has demonstrated beneficial effect in articular cartilage, clinical benefit is uncertain. A CDC report from 2009 reported that many patients are using glucosamine supplementation for low back pain (LBP), without significant evidence to support its use. Because disc degeneration is a major contributor of LBP, we explored the effects of glucosamine on disc matrix homeostasis in an animal model of disc degeneration. Methods Eighteen skeletally mature New Zealand White rabbits were divided into four groups: control, annular puncture, glucosamine, and annular puncture+glucosamine. Glucosamine treated rabbits received daily oral supplementation with 107mg/day (weight based equivalent to human 1500mg/day). Annular puncture surgery involved puncturing the annulus fibrosus (AF) of 3 lumbar discs with a 16G needle to induce degeneration. Serial MRIs were obtained at 0, 4, 8, 12, and 20 weeks. Discs were harvested at 20 weeks for determination of glycosaminoglycan(GAG) content, relative gene expression measured by RT-PCR, and histological analyses. Results The MRI index and NP area of injured discs of glucosamine treated animals with annular puncture was found to be lower than that of degenerated discs from rabbits not supplemented with glucosamine. Consistent with this, decreased glycosaminoglycan was demonstrated in glucosamine fed animals, as determined by both histological and GAG content. Gene expression was consistent with a detrimental effect on matrix. Conclusions These data demonstrate that the net effect on matrix in an animal model in vivo, as measured by gene expression, MRI, histology, and total proteoglycan is anti-anabolic. This raises concern over this commonly used supplement, and future research is needed to establish the clinical relevance of these

  5. Transplantation of goat bone marrow stromal cells to the degenerating intervertebral disc in a goat disc-injury model

    PubMed Central

    Zhang, Yejia; Drapeau, Susan; An, Howard S.; Thonar, Eugene J-M.A.; Anderson, D. Greg

    2010-01-01

    Study Design In vivo randomized controlled study in the goat intervertebral disc (IVD) injury model. Objective To define the effects of allogeneic bone marrow-derived stromal cell injected into the degenerating goat IVDs. Summary of Background Data Transplantation of bone marrow stromal cells to the degenerating disc has been suggested as a means to correct the biologic incompetence of the disc. However, large animal models with IVDs similar in shape and size to those of humans are needed to define the efficacy and safety of this approach. Methods Goat IVD degeneration was induced by stabbing with a #15 blade. One month after disc injury, the injured discs were randomly selected to receive goat bone marrow-derived stromal cell (suspended in hydrogel), saline (control), or hydrogel (control) injections. Three and 6 months after stem cell transplantation, goats were euthanized and the IVD were examined for biochemical content and tissue morphology. MR images at 3- and 6-month time points were also examined. Results The goat large animal model shows early degenerative changes following disc injury. Degenerating IVDs injected with bone marrow stromal cells showed significantly increased proteoglycan (PG) accumulation within their nucleus pulposus (NP) region. However, collagen content, MRI grade and histology did not show statistically significant differences between the cell-treated and control IVDs. Conclusions Following transplantation of bone marrow stromal cells, NP tissue contained more PG than control discs. Although this result was promising, the rate and severity of degeneration in this goat disc injury were modest, suggesting that a more severe injury and a larger sample size is indicated for future studies to better define the utility of cell therapies in this model. PMID:20890267

  6. Effects of pulsed electromagnetic field on intervertebral disc cell apoptosis in rats.

    PubMed

    Reihani Kermani, Hamed; Pourghazi, Mehdi; Mahani, Saeed Esmaeili

    2014-09-01

    Despite numerous studies on pulsed electromagnetic field (PEMF) application, its effects of PEMF on intervertebral disc (IVD) have not yet been investigated in vivo. Accordingly, the effects of PEMF upon IVD in rats were evaluated through molecular surveys. Rats were divided into six groups: Group I and II were exposed to low and high frequency of PEMF (LF and HF, respectively). Group III and IV underwent induced disc degeneration and were exposed to low and high frequency of PEMF (LF/IDD and HF/IDD, respectively). Group V underwent induced disc degeneration (IDD), and group VI was control. The values of caspase 3, Bax, Bcl-2 and β-actin band density, as cell apoptotic markers, were obtained from band densitometry. Our results showed that the value of cleaved caspase-3 of cells and Bax/Bcl-2 ratio in IDD group increased significantly compared to the control group (p < 0.001). The value of cleaved caspase-3 and Bax/Bcl-2 ratio decreased significantly in LF/IDD and HF/IDD groups compared to IDD group (p < 0.05). No significant increase was seen in the cell apoptotic markers in the groups just exposed to PEMF compared to the control group. There was also no significant decrease in the Bax/Bcl-2 ratio in HF/IDD and LF/IDD groups compared to the control group. These data suggest that PEMF attenuates degenerative processes in rat's intervertebral discs and has no effect on normal discs. Regulations of the expression of apoptotic proteins may be one of the mechanisms by which PEMF is effective in reduce disc degeneration.

  7. Retroperitoneal oblique corridor to the L2-S1 intervertebral discs: an MRI study.

    PubMed

    Molinares, Diana M; Davis, Timothy T; Fung, Daniel A

    2015-10-09

    OBJECT The purpose of this study was to analyze MR images of the lumbar spine and document: 1) the oblique corridor at each lumbar disc level between the psoas muscle and the great vessels, and 2) oblique access to the L5-S1 disc space. Access to the lumbar spine without disruption of the psoas muscle could translate into decreased frequency of postoperative neurological complications observed after a transpsoas approach. The authors investigated the retroperitoneal oblique corridor of L2-S1 as a means of surgical access to the intervertebral discs. This oblique approach avoids the psoas muscle and is a safe and potentially superior alternative to the lateral transpsoas approach used by many surgeons. METHODS One hundred thirty-three MRI studies performed between May 4, 2012, and February 27, 2013, were randomly selected from the authors' database. Thirty-three MR images were excluded due to technical issues or altered lumbar anatomy due to previous spine surgery. The oblique corridor was defined as the distance between the left lateral border of the aorta (or iliac artery) and the anterior medial border of the psoas. The L5-S1 oblique corridor was defined transversely from the midsagittal line of the inferior endplate of L-5 to the medial border of the left common iliac vessel (axial view) and vertically to the first vascular structure that crossed midline (sagittal view). RESULTS The oblique corridor measurements to the L2-5 discs have the following mean distances: L2-3 = 16.04 mm, L3-4 = 14.21 mm, and L4-5 = 10.28 mm. The L5-S1 corridor mean distance was 10 mm between midline and left common iliac vessel, and 10.13 mm from the first midline vessel to the inferior endplate of L-5. The bifurcation of the aorta and confluence of the vena cava were also analyzed in this study. The aortic bifurcation was found at the L-3 vertebral body in 2% of the MR images, at the L3-4 disc in 5%, at the L-4 vertebral body in 43%, at the L4-5 disc in 11%, and at the L-5 vertebral

  8. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen

  9. Static and dynamic compression application and removal on the intervertebral discs of growing rats.

    PubMed

    Ménard, Anne-Laure; Grimard, Guy; Massol, Elise; Londono, Irène; Moldovan, Florina; Villemure, Isabelle

    2016-02-01

    Fusionless implants are used to correct pediatric progressive spinal deformities, most of them spanning the intervertebral disc. This study aimed at investigating the effects of in vivo static versus dynamic compression application and removal on discs of growing rats. A microloading device applied compression. 48 immature rats (28 d.o.) were divided into two groups (43d, 53d). Each group included four subgroups: control (no surgery), sham (device installed without loading), static (0.2 MPa) and dynamic compressions (0.2 MPa ± 30% with 0.1 Hz). In 43d subgroups, compression was applied for 15 days. In 53d subgroups, compression was followed by 10 days without loading. Disc heights, nucleus/annulus volumetric proportions and nucleus proteoglycan contents were analyzed using one-way ANOVA and post-hoc Tukey comparisons (p < 0.05). Disc heights of 43d and 53d static and dynamic loading rats were lower than shams (p < 0.05). Volumetric proportions remained similar. At 43d, nucleus proteoglycan contents increased in both static and dynamic loading rats. However, at 53d, static loading rats had lower proteoglycan content than dynamic loading rats (p < 0.05). Disc structure is altered following static compression removal, but nucleus proteoglycan content remaining elevated in dynamic group. Dynamic fusionless implants would better preserve disc integrity.

  10. Genotoxic stress accelerates age-associated degenerative changes in intervertebral discs

    PubMed Central

    Nasto, Luigi A.; Wang, Dong; Robinson, Andria R.; Clauson, Cheryl L.; Ngo, Kevin; Dong, Qing; Roughley, Peter; Epperly, Michael; Huq, Saiful M.; Pola, Enrico; Sowa, Gwendolyn; Robbins, Paul D.; Kang, James; Niedernhofer, Laura J.; Vo, Nam V.

    2013-01-01

    Intervertebral disc degeneration (IDD) is the leading cause of debilitating spinal disorders such as chronic lower back pain. Aging is the greatest risk factor for IDD. Previously, we demonstrated IDD in a murine model of a progeroid syndrome caused by reduced expression of a key DNA repair enzyme. This led us to hypothesize that DNA damage promotes IDD. To test our hypothesis, we chronically exposed adult wild-type (Wt) and DNA repair-deficient Ercc1−/Δ mice to the cancer therapeutic agent mechlorethamine (MEC) or ionization radiation (IR) to induce DNA damage and measured the impact on disc structure. Proteoglycan, a major structural matrix constituent of the disc, was reduced 3-5x in the discs of MEC- and IR-exposed animals compared to untreated controls. Expression of the protease ADAMTS4 and aggrecan proteolytic fragments were significantly increased. Additionally, new PG synthesis was reduced 2-3x in MEC- and IR-treated discs compared to untreated controls. Both cellular senescence and apoptosis were increased in discs of treated animals. The effects were more severe in the DNA repair-deficient Ercc1−/Δ mice than in Wt littermates. Local irradiation of the vertebra in Wt mice elicited a similar reduction in PG. These data demonstrate that genotoxic stress drives degenerative changes associated with IDD. PMID:23262094

  11. 1980 Volvo award in basic science. Proteoglycans in experimental intervertebral disc degeneration.

    PubMed

    Lipson, S J; Muir, H

    1981-01-01

    An animal model of intervertebral disc degeneration induced surgically by ventral nuclear herniation in the rabbit produces morphologic changes of disc degeneration. Histologic characteristics and proteoglycan changes have been studied at various times after herniation. After injury, there was metaplasia into fibrocartilage originating from the cells along the margins of the annular wound, with proliferation of cells changing almost the entire disc space into fibrocartilage. A vertebral osteophyte occurred through an endochondral ossification sequence. Aggregating proteoglycans had two periods of repletion in the early course of degeneration. The water content of the disc was rapidly but only transiently restored in the first two days after herniation, whilst the changes in the total proteoglycan content of the disc paralleled these changes. Hyaluronic acid content decreased rapidly after herniation, but the size of the proteoglycan monomers did not change with degeneration. It is suggested that loss of confined fluid mechanics signals an abortive repair attempt rather than that of biochemical changes in proteoglycans initiate disc degeneration.

  12. The role of cryopreservation in the biomechanical properties of the intervertebral disc.

    PubMed

    Lam, S K L; Chan, S C W; Leung, V Y L; Lu, W W; Cheung, K M C; Luk, K D K

    2011-12-17

    Implantation of intervertebral disc (IVD) allograft or tissue engineered disc constructs in the spine has emerged as an alternative to artificial disc replacement for the treatment of severe degenerative disc disease (DDD). Establishment of a bank of cryopreserved IVD allografts enables size matching and facilitates logistics for effective clinical management. However, the biomechanical properties of cryopreserved IVDs have not been previously reported. This study aimed to assess if cryopreservation with different concentrations of cryopreservant agents (CPA) would affect the dynamic viscoelastic properties of the IVD. Whole porcine lumbar IVDs (n = 40) were harvested and processed using various concentrations of CPA, 0 % CPA, 10 % CPA and 20 % CPA. The discs were cryopreserved using a stepwise freezing protocol and stored in liquid nitrogen. After four weeks of storage, the cryopreserved IVDs were quickly thawed at 37 °C for dynamic viscoelastic testing. The apparent modulus, elastic modulus (G'), viscous modulus (G") and loss modulus (G"/G') were calculated and compared to a fresh control group. Cryopreserved IVD without cryopreservants was significantly stiffer than the control. In the dynamic viscoelastic testing, cryopreservation with the use of CPA was able to preserve both G' and G" of an IVD. No significant differences were found between fresh IVD and IVD cryopreserved with 10 % CPA or 20 % CPA. This study demonstrated that CPAs at an optimal concentration could preserve the mechanical properties of the IVD allograft and can provide further credence for the application of long-term storage of IVD allografts for disc transplantation or tissue engineered construct applications.

  13. A prospective morphological study of facet joint integrity following intervertebral disc replacement with the CHARITE Artificial Disc.

    PubMed

    Trouillier, Hans; Kern, P; Refior, H J; Müller-Gerbl, M

    2006-02-01

    In degenerative disc disease (DDD), increased loading in the posterior column increases facet joint subchondral bone density and may lead to facet joint degeneration. While spinal fusion is commonly used to treat patients with symptomatic DDD, increased stress at the levels adjacent to fusion may accelerate facet joint and adjacent segment degeneration. Artificial disc replacements have been developed as an alternative to fusion. In this prospective study, the effects of disc replacement with the CHARITE Artificial Disc on facet joint loading and integrity were evaluated. Thirteen patients aged <50 years with symptomatic DDD were recruited. Computed tomography (CT) osteoabsorptiometry was performed prior to the implantation of the CHARITE Artificial Disc and six months after. With this technique, increases or decreases in facet joint loading and integrity are indicated by corresponding changes in subchondral bone density. Changes in the distribution of load alter the distribution of the areas of maximum bone density. Clinical outcome was also assessed at pre-operative and 6 and 12 month post-operative visits using the Visual Analogue Scale back and leg pain scores, the Oswestry Disability Index and the Short Form-36 (SF-36) questionnaire. The height of the intervertebral space at the operated level was monitored by lateral X-ray. Subchondral bone density was evaluated in the facet joints of all 13 patients at the operated level, 12 patients at the level above the operated segment, and five patients at the level below the operated segment. Quantitative measurements revealed no significant increases (> or =3%) in subchondral bone density of the facet joints at any level in any patient. Significant decreases (> or =3%) in subchondral bone density were measured at the operated level in 10/13 patients, at the level above the operated segment in 6/12 patients, and at the level below the operated segment in 3/5 patients. There were no changes in the distribution of the

  14. Temperature Distributions of the Lumbar Intervertebral Disc during Laser Annuloplasty : A Cadaveric Study

    PubMed Central

    Lee, Min Hyung; Hong, Jae Taek; Sung, Jae Hoon; Lee, Sang Won; Kim, Daniel H.

    2016-01-01

    Objective Low back pain, caused intervertebral disc degeneration has been treated by thermal annuloplasty procedure, which is a non-surgical treatement. The theoretical backgrounds of the annuloplasty are thermal destruct of nociceptor and denaturization of collagen fiber to induce contraction, to shrink annulus and thus enhancing stability. This study is about temperature and its distribution during thermal annuloplasty using 1414 nm Nd : YAG laser. Methods Thermal annuloplasty was performed on fresh human cadaveric lumbar spine with 20 intact intervertebral discs in a 37℃ circulating water bath using newly developed 1414 nm Nd : YAG laser. Five thermocouples were attached to different locations on the disc, and at the same time, temperature during annuloplasty was measured and analyzed. Results Thermal probe's temperature was higher in locations closer to laser fiber tip and on lateral locations, rather than the in depth locations. In accordance with the laser fiber tip and the depth, temperatures above 45.0℃ was measured in 3.0 mm depth which trigger nociceptive ablation in 16 levels (80%), in accordance with the laser fiber end tip and laterality, every measurement had above 45.0℃, and also was measured temperature over 60.0℃, which can trigger collagen denaturation at 16 levels (80%). Conclusion When thermal annuloplasty is needed in a selective lesion, annuloplasty using a 1414 nm Nd : YAG laser can be one of the treatment options. PMID:27847567

  15. Paraspinal muscle activation in accordance with mechanoreceptors in the intervertebral discs.

    PubMed

    Kim, Young Eun; Choi, Hae Won

    2013-02-01

    Paraspinal muscle forces were derived computationally based on the hypothesis that the intervertebral disc has a transducer function and the muscle is activated according to a sensor-driving control mechanism. A three-dimensional finite element model of the musculoskeletal system, which consisted of a detailed whole lumbar spine, pelvis, simplified trunk model, and muscles, was developed and combined with an optimization technique to calculate muscle forces in isometric forward flexed and erect standing postures. Minimization of deviations in the nucleus pressure and averaged tensile stress in the annulus fibers at five discs was used for muscle force calculations. The results indicated that all the muscles were properly activated to maintain posture and stabilize the lumbar spine. The nucleus pressure difference was decreased during the iterative calculations and its resulting value at the L4/L5 level was consistent with in vivo measurements. Muscle activation produced vertebra motion, which resulted in a relatively uniform stress distribution in the intervertebral discs. This can minimize the risk of injury at a specific level and increase the ability of the spine to sustain a load.

  16. Low Intensity Pulsed Ultrasound (LIPUS) for the treatment of intervertebral disc degeneration

    NASA Astrophysics Data System (ADS)

    Horne, Devante; Jones, Peter; Salgaonkar, Vasant; Adams, Matt; Ozilgen, B. Arda; Zahos, Peter; Tang, Xinyan; Liebenberg, Ellen; Coughlin, Dezba; Lotz, Jeffrey; Diederich, Chris

    2017-02-01

    Discogenic back pain presents a major public health issue, with current therapeutic interventions limited to short-term symptom relief without providing regenerative remedies for diseased intervertebral discs (IVD). Many of these interventions are invasive and can diminish the biomechanical integrity of the IVDs. Low intensity pulsed ultrasound (LIPUS) is a potential treatment option that is both non-invasive and regenerative. LIPUS has been shown to be a clinically effective method for the enhancement of wound and fracture healing. Recent in vitro studies have shown that LIPUS stimulation induces an upregulation functional matrix proteins and downregulation of inflammatory factors in cultured IVD cells. However, we do not know the effects of LIPUS on an in vivo model for intervertebral disc degeneration. The objective of this study was to show technical feasibility of building a LIPUS system that can target the rat tail IVD and apply this setup to a model for acute IVD degeneration. A LIPUS exposimetry system was built using a 1.0 MHz planar transducer and custom housing. Ex vivo intensity measurements demonstrated LIPUS delivery to the center of the rat tail IVD. Using an established stab-incision model for disc degeneration, LIPUS was applied for 20 minutes daily for five days. For rats that displayed a significant injury response, LIPUS treatment caused significant upregulation of Collagen II and downregulation of Tumor Necrosis Factor - α gene expression. Our preliminary studies indicate technical feasibility of targeted delivery of ultrasound to a rat tail IVD for studies of LIPUS biological effects.

  17. Loading-Induced Heat-Shock Response in Bovine Intervertebral Disc Organ Culture

    PubMed Central

    Chooi, Wai Hon; Chan, Samantha Chun Wai; Gantenbein, Benjamin; Chan, Barbara Pui

    2016-01-01

    Mechanical loading has been shown to affect cell viability and matrix maintenance in the intervertebral disc (IVD) but there is no investigation on how cells survive mechanical stress and whether the IVD cells perceive mechanical loading as stress and respond by expression of heat shock proteins. This study investigates the stress response in the IVD in response to compressive loading. Bovine caudal disc organ culture was used to study the effect of physiological range static loading and dynamic loading. Cell activity, gene expression and immunofluorescence staining were used to analyze the cell response. Cell activity and cytoskeleton of the cells did not change significantly after loading. In gene expression analysis, significant up-regulation of heat shock protein-70 (HSP70) was observed in nucleus pulposus after two hours of loading. However, the expression of the matrix remodeling genes did not change significantly after loading. Similarly, expressions of stress response and matrix remodeling genes changed with application and removal of the dynamic loading. The results suggest that stress response was induced by physiological range loading without significantly changing cell activity and upregulating matrix remodeling. This study provides direct evidence on loading induced stress response in IVD cells and contributes to our understanding in the mechanoregulation of intervertebral disc cells. PMID:27580124

  18. Method for obtaining simple shear material properties of the intervertebral disc under high strain rates.

    PubMed

    Ott, Kyle A; Armiger, Robert S; Wickwire, Alexis C; Carneal, Catherine M; Trexler, Morgana M; Lennon, Andrew M; Zhang, Jiangyue; Merkle, Andrew C

    2012-01-01

    Predicting spinal injury under high rates of vertical loading is of interest, but the success of computational models in modeling this type of loading scenario is highly dependent on the material models employed. Understanding the response of these biological materials at high strain rates is critical to accurately model mechanical response of tissue and predict injury. While data exists at lower strain rates, there is a lack of the high strain rate material data that are needed to develop constitutive models. The Split Hopkinson Pressure Bar (SHPB) has been used for many years to obtain properties of various materials at high strain rates. However, this apparatus has mainly been used for characterizing metals and ceramics and is difficult to apply to softer materials such as biological tissue. Recently, studies have shown that modifications to the traditional SHPB setup allow for the successful characterization of mechanical properties of biological materials at strain rates and peak strain values that exceed alternate soft tissue testing techniques. In this paper, the previously-reported modified SHPB technique is applied to characterize human intervertebral disc material under simple shear. The strain rates achieved range from 5 to 250 strain s-1. The results demonstrate the sensitivity to the disc composition and structure, with the nucleus pulposus and annulus fibrosus exhibiting different behavior under shear loading. Shear tangent moduli are approximated at varying strain levels from 5 to 20% strain. This data and technique facilitates determination of mechanical properties of intervertebral disc materials under shear loading, for eventual use in constitutive models.

  19. Loading-Induced Heat-Shock Response in Bovine Intervertebral Disc Organ Culture.

    PubMed

    Chooi, Wai Hon; Chan, Samantha Chun Wai; Gantenbein, Benjamin; Chan, Barbara Pui

    2016-01-01

    Mechanical loading has been shown to affect cell viability and matrix maintenance in the intervertebral disc (IVD) but there is no investigation on how cells survive mechanical stress and whether the IVD cells perceive mechanical loading as stress and respond by expression of heat shock proteins. This study investigates the stress response in the IVD in response to compressive loading. Bovine caudal disc organ culture was used to study the effect of physiological range static loading and dynamic loading. Cell activity, gene expression and immunofluorescence staining were used to analyze the cell response. Cell activity and cytoskeleton of the cells did not change significantly after loading. In gene expression analysis, significant up-regulation of heat shock protein-70 (HSP70) was observed in nucleus pulposus after two hours of loading. However, the expression of the matrix remodeling genes did not change significantly after loading. Similarly, expressions of stress response and matrix remodeling genes changed with application and removal of the dynamic loading. The results suggest that stress response was induced by physiological range loading without significantly changing cell activity and upregulating matrix remodeling. This study provides direct evidence on loading induced stress response in IVD cells and contributes to our understanding in the mechanoregulation of intervertebral disc cells.

  20. Graph cuts with invariant object-interaction priors: application to intervertebral disc segmentation.

    PubMed

    Ben Ayed, Ismail; Punithakumar, Kumaradevan; Garvin, Gregory; Romano, Walter; Li, Shuo

    2011-01-01

    This study investigates novel object-interaction priors for graph cut image segmentation with application to intervertebral disc delineation in magnetic resonance (MR) lumbar spine images. The algorithm optimizes an original cost function which constrains the solution with learned prior knowledge about the geometric interactions between different objects in the image. Based on a global measure of similarity between distributions, the proposed priors are intrinsically invariant with respect to translation and rotation. We further introduce a scale variable from which we derive an original fixed-point equation (FPE), thereby achieving scale-invariance with only few fast computations. The proposed priors relax the need of costly pose estimation (or registration) procedures and large training sets (we used a single subject for training), and can tolerate shape deformations, unlike template-based priors. Our formulation leads to an NP-hard problem which does not afford a form directly amenable to graph cut optimization. We proceeded to a relaxation of the problem via an auxiliary function, thereby obtaining a nearly real-time solution with few graph cuts. Quantitative evaluations over 60 intervertebral discs acquired from 10 subjects demonstrated that the proposed algorithm yields a high correlation with independent manual segmentations by an expert. We further demonstrate experimentally the invariance of the proposed geometric attributes. This supports the fact that a single subject is sufficient for training our algorithm, and confirms the relevance of the proposed priors to disc segmentation.

  1. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering

    PubMed Central

    Choy, Andrew Tsz Hang; Chan, Barbara Pui

    2015-01-01

    Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD) degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs), two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor) of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering. PMID:26115332

  2. Prevalence and breed predisposition for thoracolumbar intervertebral disc disease in cats.

    PubMed

    De Decker, Steven; Warner, Anne-Sophie; Volk, Holger A

    2017-04-01

    Objectives The objective was to evaluate the prevalence and possible breed predilections for thoracolumbar intervertebral disc disease (IVDD) in cats. Methods Medical records and imaging studies of cats diagnosed with thoracolumbar IVDD between January 2008 and August 2014 were retrospectively reviewed and compared with the general hospital population. The association between type of IVDD (ie, intervertebral disc extrusion [IVDE] or intervertebral disc protrusion [IVDP]) and breed, age, sex, and duration and severity of clinical signs was also evaluated. Results Of 12,900 cats presented during the study period, 31 (0.24%) were diagnosed with IVDD, including 17 purebred and 14 non-purebred cats. Of all presented purebred cats, 0.52% were diagnosed with thoracolumbar IVDD. More specifically, 1.29% of all British Shorthairs and 1.83% of all presented Persians were diagnosed with IVDD. Compared with the general hospital population, purebred cats ( P = 0.0001), British Shorthairs ( P <0.0001) and Persians ( P = 0.0006) were significantly overrepresented with thoracolumbar IVDD. Affected purebred cats were younger than affected non-purebred cats ( P = 0.02). Of 31 cats with IVDD, 19 were diagnosed with IVDE and 12 with IVDP. Cats with IVDE had a significantly shorter duration of clinical signs ( P = 0.0002) and demonstrated more severe neurological deficits ( P = 0.04) than cats with IVDP. Conclusions and relevance Although thoracolumbar IVDD is an uncommon condition in cats, purebred cats, British Shorthairs and Persians, were overrepresented. It is currently unclear if this represents a true breed predisposition or a higher likelihood of owners of purebred cats seeking referral for advanced diagnostic imaging procedures.

  3. The Effects of Glucosamine Sulfate on Intervertebral Disc Annulus Fibrosus Cells in Vitro

    PubMed Central

    Sowa, Gwendolyn; Coelho, J. Paulo; Jacobs, Lloydine; Komperda, Kasey; Sherry, Nora; Vo, Nam; Preuss, Harry; Balk, Judith; Kang, Jame

    2014-01-01

    Background context Glucosamine has gained widespread use among patients, despite inconclusive efficacy data. Inconsistency in the clinical literature may be related to lack of understanding of the effects of glucosamine on the intervertebral disc, and therefore, improper patient selection. Purpose The goal of our study was to investigate the effects of glucosamine on intervertebral disc cells in vitro under the physiological conditions of inflammation and mechanical loading. Study Design Controlled in vitro laboratory setting Methods Intervertebral disc cells isolated from the rabbit annulus fibrosus were exposed to glucosamine sulfate in the presence and absence of interleukin-1beta and tensile strain. Outcome measures included gene expression, measurement of total glycosaminoglycans, new proteoglycan synthesis, prostaglandin E2 production, and matrix metalloproteinase activity. The study was funded by NIH/NCCAM and the authors have no conflicts of interest. Results Under conditions of inflammatory stimulation alone, glucosamine demonstrated a dose dependent effect in decreasing inflammatory and catabolic mediators and increasing anabolic genes. However, under conditions of mechanical stimulation, although inflammatory gene expression was decreased, PGE2 was not. In addition, MMP-3 gene expression was increased and aggrecan expression decreased, both of which would have a detrimental effect on matrix homeostasis. Consistent with this, measurement of total glycosaminoglycans and new proteoglycan synthesis demonstrated detrimental effects of glucosamine under all conditions tested. Conclusions These results may in part help to explain the conflicting reports of efficacy, as there is biological plausibility for a therapeutic effect under conditions of predominate inflammation, but not under conditions where mechanical loading is present or in which matrix synthesis is needed. PMID:24361347

  4. Fluoroscopy-guided intervertebral disc biopsy with a coaxial drill system.

    PubMed

    Wallace, Adam N; Pacheco, Rafael A; Vyhmeister, Ross; Tomasian, Anderanik; Chang, Randy O; Jennings, Jack W

    2016-02-01

    Percutaneous biopsy of discitis-osteomyelitis is performed to isolate the causative microorganism and exclude alternative diagnoses. We compared drill-assisted and manual fluoroscopy-guided intervertebral disc biopsies with respect to conscious sedation requirements and histologic quality of obtained specimens. Medical records of all single-level, fluoroscopy-guided intervertebral disc biopsies supervised by one of two musculoskeletal radiologists between January 2010 and March 2015 were reviewed. Duration and cumulative medication doses required for each biopsy were recorded. Pathology reports were reviewed to determine whether the obtained specimens were adequate for histopathologic evaluation. Microbiology reports were reviewed to determine whether the causative organism was isolated from the biopsy specimen. During the study period, 21 drill-assisted and 20 manual biopsies were performed. The median duration of conscious sedation for drill-assisted biopsies was 30 min (range, 17-40 min) compared with 39 min (range, 20-90 min) for manual biopsies (p < 0.01). Drill-assisted biopsies also required lower median cumulative doses of intravenous midazolam [2 mg (range, 0-5 mg) vs. 3 mg (range, 0-9 mg); p = 0.02]. All drill-assisted biopsy specimens were adequate for histopathologic evaluation. One manual biopsy specimen (5 %; 1/20) was inadequate for histopathologic evaluation owing to crush artifact. The microbiology yields of drill-assisted and manual biopsies were comparable [14 % (3/21) vs. 20 % (4/20); p = 0.62]. Fluoroscopically-guided intervertebral disc biopsies performed with drill assistance require less conscious sedation compared with manual biopsies and yield specimens that are adequate for histopathologic evaluation.

  5. CT and MRI Determination of Intermuscular Space within Lumbar Paraspinal Muscles at Different Intervertebral Disc Levels

    PubMed Central

    Wang, Shidong; Zhang, Yu; Han, Hui; Zheng, Dengquan; Ding, Zihai; Wong, Kelvin K. L.

    2015-01-01

    Background Recognition of the intermuscular spaces within lumbar paraspinal muscles is critically important for using the paramedian muscle-splitting approach to the lumbar spine. As such, it is important to determine the intermuscular spaces within the lumbar paraspinal muscles by utilizing modern medical imaging such as computed tomography (CT) and magnetic resonance imaging (MRI). Methods A total of 30 adult cadavers were studied by sectional anatomic dissection, and 60 patients were examined using CT (16 slices, 3-mm thickness, 3-mm intersection gap, n = 30) and MRI (3.0T, T2-WI, 5-mm thickness, 1-mm intersection gap, n = 30). The distances between the midline and the superficial points of the intermuscular spaces at different intervertebral disc levels were measured. Results Based on study of our cadavers, the mean distances from the midline to the intermuscular space between multifidus and longissimus, from intervertebral disc levels L1–L2 to L5–S1, were 0.9, 1.1, 1.7, 3.0, and 3.5 cm, respectively. Compared with the upper levels (L1–L3), the superficial location at the lower level (L4–S1) is more laterally to the midline (P<0.05). The intermuscular space between sacrospinalis and quadratus lumborum, and that between longissimus and iliocostalis did not exist at L4–S1. The intermuscular spaces in patients also varied at different levels of the lumbar spine showing a low discontinuous density in CT and a high signal in MRI. There were no significant differences between the observations in cadavers and those made using CT and MRI. Conclusion The intermuscular spaces within the paraspinal muscles vary at different intervertebral disc levels. Preoperative CT and MRI can facilitate selection of the muscle-splitting approach to the lumbar spine. This paper demonstrates the efficacy of medical imaging techniques in surgical planning. PMID:26458269

  6. High incidence of persistence of sacral and coccygeal intervertebral discs in South Indians – a cadaveric study

    PubMed Central

    Satheesha Nayak, B; Ashwini Aithal, P; Kumar, Naveen; George, Bincy M; Deepthinath, R; Shetty, Surekha D

    2016-01-01

    The sacrum, by virtue of its anatomic location plays a key role in providing stability and strength to the pelvis. Presence of intervertebral discs in sacrum and coccyx is rare. Knowledge of its variations is of utmost importance to surgeons and radiologists. The current study focused on the presence of intervertebral discs between the sacral and coccygeal vertebrae in south Indian cadaveric pelvises. We observed 56 adult pelvises of which, 34 (61%) pelvises showed the presence of intervertebral discs between the sacral vertebrae and between the coccygeal vertebrae, while 22 (39%) pelvises did not have the intervertebral discs either in the sacrum or the coccyx. We also found that most of the specimens had discs between S1 and S2 vertebrae (39%), followed by, between S4 and S5 (18%), between S2–S3 (14%) and least being between S3–S4 (13%). In the coccyx it was found that 7% of pelvises had disc between Co1-Co2, 4% of them had between Co2-Co3 and 4% had between Co3-Co4. Knowledge regarding such anatomic variations in the sacro-coccygeal region is important to note because they require alterations in various instrumentation procedures involving the sacrum. PMID:27385838

  7. Is a purpose of REM sleep atonia to help regenerate intervertebral disc volumetric loss?

    PubMed Central

    Fryer, Jerome CJ

    2009-01-01

    The nature of atonia in sleep continues to be enigmatic. This article discusses a new hypothesis for complete core muscle relaxation in REM sleep, suggesting a bottom-up recuperative perspective. That is, does the atonia in REM sleep provide a utility to help restore the mechanobiology and respective diurnal intervertebral disc hydraulic loss? By combining the effects of gravity with current compressive concepts in spinal stability, this article looks at vertebral approximation as a deleterious experience with an intrinsic biological need to keep vertebrae separated. Methods using polysomnography and recumbent MRI are discussed. PMID:19123938

  8. [Research advances of three-dimension printing technology in vertebrae and intervertebral disc tissue engineering].

    PubMed

    Yang, Zechuan; Li, Chunde; Sun, Haolin

    2016-03-01

    Three-dimensional (3D) printing technology is characterized by "inside-out" stack manufacturing. Compared with conventional technologies, 3D printing has the advantage of personalization and precision. Therefore, the shape and internal structure of the scaffolds made by 3D printing technology are highly biomimetic. Besides, 3D bioprinting can precisely deposit the biomaterials, seeding cells and cytokines at the same time, which is a breakthrough in printing technique and material science. With the development of 3D printing, it will make great contributions to the reconstruction of vertebrae and intervertebral disc in the future.

  9. The nerve supply of the lumbar intervertebral disc.

    PubMed

    Edgar, M A

    2007-09-01

    The anatomical studies, basic to our understanding of lumbar spine innervation through the sinu-vertebral nerves, are reviewed. Research in the 1980s suggested that pain sensation was conducted in part via the sympathetic system. These sensory pathways have now been clarified using sophisticated experimental and histochemical techniques confirming a dual pattern. One route enters the adjacent dorsal root segmentally, whereas the other supply is non-segmental ascending through the paravertebral sympathetic chain with re-entry through the thoracolumbar white rami communicantes. Sensory nerve endings in the degenerative lumbar disc penetrate deep into the disrupted nucleus pulposus, insensitive in the normal lumbar spine. Complex as well as free nerve endings would appear to contribute to pain transmission. The nature and mechanism of discogenic pain is still speculative but there is growing evidence to support a 'visceral pain' hypothesis, unique in the muscloskeletal system. This mechanism is open to 'peripheral sensitisation' and possibly 'central sensitisation' as a potential cause of chronic back pain.

  10. Effect of calcitonin pretreatment on naturally occurring intervertebral disc degeneration in guinea pig

    PubMed Central

    Jiang, Xiaohua; Tian, Faming; Wang, Wenya; Yan, Jinyin; Liu, Huanjiang; Liu, Binbin; Song, Huiping; Zhang, Yingze; Shen, Yong; Zhang, Liu

    2015-01-01

    Introduction: Our previous study suggested protective effects of calcitonin (CT) on experimental osteoarthritis. The aim of the present study was to provide evidence of whether CT pretreatment could prevent naturally occurring intervertebral disc degeneration in guinea pigs. Methods: Forty-two 3 months old female guinea pigs were randomly assigned into 2 groups as follows: Twenty-four were treated by normal saline as control group and sacrificed at 3, 6, 9 and 12 months of age (6 animals at each time point), the other 18 were received salmon CT (8 ug/kg/day, everyday) treatment at 3 months of age and sacrificed at the age of 6, 9 and 12 months respectively. Van Gieson stain and the histological score were used to identify the histological changes of the lumbar intervertebral discs. The disc height and vertebral body height were measured. Immunohistochemistry measurements for glycosaminoglycan, type II collagen, and matrix metalloprotease (MMP)-1 expressions were performed. Bone quality and microstructural changes in the L3-6 lumbar vertebral bodies were assessed by bone mineral density (BMD), micro-CT analysis and biomechanical testing. Results: Histological analysis indicated significantly higher disc degeneration scores in 9-month-old guinea pigs in comparison with younger animals, and grew higher with increasing age. CT treatment significantly reduced the histological score, and increased the disc height and the ratio to vertebral body height in 12 months old animals, as well as upregulated the glycosaminoglycan, type II collagen and inhibited the MMP-1 expression. Micro-CT analysis showed decreased percent bone volume (BV/TV) and increased trabecular separation (Tb.Sp), structural model index (SMI) in 12 months old animals in comparison with the younger animals. Markedly increased BV/TV and decreased Tb.Sp were observed in CT treated animals when compared with control animals. The biomechanical properties including maximum load, maximum stress, yield stress and

  11. Selection of the appropriate surgical approach for intervertebral disc disease.

    PubMed

    Bitetto, W V; Brown, N O

    1989-01-01

    In no other area of veterinary surgery is the selection and performance of the appropriate surgical approach more important than neurosurgery. An adequate, atraumatic, and anatomically sound exposure is an important part of the battle in most orthopaedic procedures and is an even more important consideration when related to neurosurgery. The delicate and often unforgiving nature of the tissue involved dictates that careful planning and attention to detail become high priority concerns for the veterinary neurosurgeon. Most veterinarians recommend surgery for dogs with severe impairment, recurrent disease, and progressively deteriorating neurologic signs. Difficulties remain in the timing of surgery and in the choice of what surgical approach is most appropriate for the neurologically impaired dog in question. Surgical approaches in the cervical region include ventral and dorsal. In the thoracolumbar spine, either dorsal or dorsolateral approaches are used. In the lumbosacral region, a dorsal approach is preferred. The objective of this chapter will be to compare and contrast each of these approaches and to guide the reader in the selection of the appropriate approach for each patient.

  12. 75 FR 54345 - Determination of Regulatory Review Period for Purposes of Patent Extension; BRYAN CERVICAL DISC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... Patent Extension; BRYAN CERVICAL DISC SYSTEM AGENCY: Food and Drug Administration, HHS. ACTION: Notice... CERVICAL DISC SYSTEM and is publishing this notice of that determination as required by law. FDA has made... device BRYAN CERVICAL DISC SYSTEM. BRYAN CERVICAL DISC SYSTEM is indicated in skeletally mature patients...

  13. Effects of Tobacco Smoking on the Degeneration of the Intervertebral Disc: A Finite Element Study.

    PubMed

    Elmasry, Shady; Asfour, Shihab; de Rivero Vaccari, Juan Pablo; Travascio, Francesco

    2015-01-01

    Tobacco smoking is associated with numerous pathological conditions. Compelling experimental evidence associates smoking to the degeneration of the intervertebral disc (IVD). In particular, it has been shown that nicotine down-regulates both the proliferation rate and glycosaminoglycan (GAG) biosynthesis of disc cells. Moreover, tobacco smoking causes the constriction of the vascular network surrounding the IVD, thus reducing the exchange of nutrients and anabolic agents from the blood vessels to the disc. It has been hypothesized that both nicotine presence in the IVD and the reduced solute exchange are responsible for the degeneration of the disc due to tobacco smoking, but their effects on tissue homeostasis have never been quantified. In this study, a previously presented computational model describing the homeostasis of the IVD was deployed to investigate the effects of impaired solute supply and nicotine-mediated down-regulation of cell proliferation and biosynthetic activity on the health of the disc. We found that the nicotine-mediated down-regulation of cell anabolism mostly affected the GAG concentration at the cartilage endplate, reducing it up to 65% of the value attained in normal physiological conditions. In contrast, the reduction of solutes exchange between blood vessels and disc tissue mostly affected the nucleus pulposus, whose cell density and GAG levels were reduced up to 50% of their normal physiological levels. The effectiveness of quitting smoking on the regeneration of a degenerated IVD was also investigated, and showed to have limited benefit on the health of the disc. A cell-based therapy in conjunction with smoke cessation provided significant improvements in disc health, suggesting that, besides quitting smoking, additional treatments should be implemented in the attempt to recover the health of an IVD degenerated by tobacco smoking.

  14. Effects of Tobacco Smoking on the Degeneration of the Intervertebral Disc: A Finite Element Study

    PubMed Central

    Elmasry, Shady; Asfour, Shihab; de Rivero Vaccari, Juan Pablo; Travascio, Francesco

    2015-01-01

    Tobacco smoking is associated with numerous pathological conditions. Compelling experimental evidence associates smoking to the degeneration of the intervertebral disc (IVD). In particular, it has been shown that nicotine down-regulates both the proliferation rate and glycosaminoglycan (GAG) biosynthesis of disc cells. Moreover, tobacco smoking causes the constriction of the vascular network surrounding the IVD, thus reducing the exchange of nutrients and anabolic agents from the blood vessels to the disc. It has been hypothesized that both nicotine presence in the IVD and the reduced solute exchange are responsible for the degeneration of the disc due to tobacco smoking, but their effects on tissue homeostasis have never been quantified. In this study, a previously presented computational model describing the homeostasis of the IVD was deployed to investigate the effects of impaired solute supply and nicotine-mediated down-regulation of cell proliferation and biosynthetic activity on the health of the disc. We found that the nicotine-mediated down-regulation of cell anabolism mostly affected the GAG concentration at the cartilage endplate, reducing it up to 65% of the value attained in normal physiological conditions. In contrast, the reduction of solutes exchange between blood vessels and disc tissue mostly affected the nucleus pulposus, whose cell density and GAG levels were reduced up to 50% of their normal physiological levels. The effectiveness of quitting smoking on the regeneration of a degenerated IVD was also investigated, and showed to have limited benefit on the health of the disc. A cell-based therapy in conjunction with smoke cessation provided significant improvements in disc health, suggesting that, besides quitting smoking, additional treatments should be implemented in the attempt to recover the health of an IVD degenerated by tobacco smoking. PMID:26301590

  15. Analysis of cell viability in intervertebral disc: Effect of endplate permeability on cell population.

    PubMed

    Shirazi-Adl, A; Taheri, M; Urban, J P G

    2010-05-07

    Responsible for making and maintaining the extracellular matrix, the cells of intervertebral discs are supplied with essential nutrients by diffusion from the blood supply through mainly the cartilaginous endplates (CEPs) and disc tissue. Decrease in transport rate and increase in cellular activity may adversely disturb the intricate supply-demand balance leading ultimately to cell death and disc degeneration. The present numerical study aimed to introduce for the first time cell viability criteria into nonlinear coupled nutrition transport equations thereby evaluating the dynamic nutritional processes governing viable cell population and concentrations of oxygen, glucose and lactic acid in the disc as CEP exchange area dropped from a fully permeable condition to an almost impermeable one. A uniaxial model of an in vitro cell culture analogue of the disc is first employed to examine and validate cell viability criteria. An axisymmetric model of the disc with four distinct regions was subsequently used to investigate the survival of cells at different CEP exchange areas. In agreement with measurements, predictions of the diffusion chamber model demonstrated substantial cell death as essential nutrient concentrations fell to levels too low to support cells. Cells died away from the nutrient supply and at higher cell densities. In the disc model, the nucleus region being farthest away from supply sources was most affected; cell death initiated first as CEP exchange area dropped below approximately 40% and continued exponentially thereafter to depletion as CEP calcified further. In cases with loss of endplate permeability and/or disruptions therein, as well as changes in geometry and fall in diffusivity associated with fluid outflow, the nutrient concentrations could fall to levels inadequate to maintain cellular activity or viability, resulting in cell death and disc degeneration.

  16. Localization and Segmentation of 3D Intervertebral Discs in MR Images by Data Driven Estimation.

    PubMed

    Chen, Cheng; Belavy, Daniel; Yu, Weimin; Chu, Chengwen; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-08-01

    This paper addresses the problem of fully-automatic localization and segmentation of 3D intervertebral discs (IVDs) from MR images. Our method contains two steps, where we first localize the center of each IVD, and then segment IVDs by classifying image pixels around each disc center as foreground (disc) or background. The disc localization is done by estimating the image displacements from a set of randomly sampled 3D image patches to the disc center. The image displacements are estimated by jointly optimizing the training and test displacement values in a data-driven way, where we take into consideration both the training data and the geometric constraint on the test image. After the disc centers are localized, we segment the discs by classifying image pixels around disc centers as background or foreground. The classification is done in a similar data-driven approach as we used for localization, but in this segmentation case we are aiming to estimate the foreground/background probability of each pixel instead of the image displacements. In addition, an extra neighborhood smooth constraint is introduced to enforce the local smoothness of the label field. Our method is validated on 3D T2-weighted turbo spin echo MR images of 35 patients from two different studies. Experiments show that compared to state of the art, our method achieves better or comparable results. Specifically, we achieve for localization a mean error of 1.6-2.0 mm, and for segmentation a mean Dice metric of 85%-88% and a mean surface distance of 1.3-1.4 mm.

  17. Multipoint determination of pressure-volume curves in human intervertebral discs.

    PubMed Central

    Ranu, H S

    1993-01-01

    To gain further insight into the biomechanics of the human intervertebral disc and to determine a potential mechanism for causation and relief of symptoms related to a herniated disc, the pressure-volume relation was determined within the nucleus pulposus. Pressure was measured continuously within the nucleus pulposus in 17 intact lumbar discs from human cadavers by means of a miniature strain gauge at the tip of a size 4 French (1.3 mm) catheter inserted into the nucleus pulposus. The volume of the nucleus pulposus was increased at the slow, continuous rate of 0.034 ml/min by the pump regulated infusion of saline coloured with methylene blue. In 12 unloaded discs, nucleus pulposus pressure rose in a linear fashion (linear r = 0.96) from an initial mean pressure of 174 (SD 81) kPa. The mean rate of pressure rise was 327 (SD 109) kPa/ml volume increase. The peak pressure measured was 550 kPa; this was slightly higher than the capability of the transducer. Similar linear relations were obtained during infusion of saline into five vertically loaded discs fixed at the deformation produced by a 9.1 kg weight. The data define the pressure-volume relation within the disc and show that the nucleus pulposus, surrounded by the relatively inelastic annulus and the solid vertebral end plates, has the properties of a tight hydraulic space in which a large pressure rise will regularly result from a small increase in volume. Presumably the opposite is also true. The data may provide a biomechanical basis for the physiological variation in symptoms related to the disc, and for any benefits obtained from interventions designed to remove disc tissue. PMID:8447694

  18. LASER BIOLOGY AND MEDICINE: Effect of repetitive laser pulses on the electrical conductivity of intervertebral disc tissue

    NASA Astrophysics Data System (ADS)

    Omel'chenko, A. I.; Sobol', E. N.

    2009-03-01

    The thermomechanical effect of 1.56-μm fibre laser pulses on intervertebral disc cartilage has been studied using ac conductivity measurements with coaxial electrodes integrated with an optical fibre for laser radiation delivery to the tissue. The observed time dependences of tissue conductivity can be interpreted in terms of hydraulic effects and thermomechanical changes in tissue structure. The laserinduced changes in the electrical parameters of the tissue are shown to correlate with the structural changes, which were visualised using shadowgraph imaging. Local ac conductivity measurements in the bulk of tissue can be used to develop a diagnostic/monitoring system for laser regeneration of intervertebral discs.

  19. 1980 Volvo award winner in basic science. Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique.

    PubMed

    Ogata, K; Whiteside, L A

    1981-01-01

    The pathways of material transfer to the intervertebral disc were studied in adult dogs by measuring diffusion of hydrogen molecules in the nucleus pulposus before and after disruption of the route through the annulus fibrosus and before and after disruption of the end-plate route. The interfaces was only in the central two-thirds of one side, caused significantly greater decrease in the rate of hydrogen washout than the disruption of the annulus route. Histologically, the bone-cartilage interface was frequently perforated by marrow cavity and vascular buds. These findings suggest that the end-plate route is a major pathway for material transfer to the intervertebral disc.

  20. Quantification of intervertebral disc volume properties below spine fusion, using magnetic resonance imaging, in adolescent idiopathic scoliosis surgery.

    PubMed

    Violas, Philippe; Estivalezes, Erik; Briot, Jérome; Sales de Gauzy, Jérome; Swider, Pascal

    2007-07-01

    Prospective clinical study. A quantification of volume and hydration variation of the intervertebral discs, using magnetic resonance imaging (MRI), in the lumbar spine before and after surgery performed in adolescent idiopathic scoliosis (AIS). To evaluate an objective quantification of volume and hydration of intervertebral discs below spine fusion in scoliosis surgery. Repercussion of long spine fusion on the free lower lumbar spine is one of the major concerns of scoliosis surgery. However, the evolution of lumbar intervertebral disc below thoracolumbar fusions remains unknown. MRI performed in the clinical protocol, concerned 28 patients having an idiopathic scoliosis. They underwent posterior instrumentations. MRI was obtained before surgery, after surgery at 3 months and for 15 patients at 1 year. MRI data were posttreated using a custom-made image processing software to semiautomatically derive volume properties of disc, anulus fibrosus, and nucleus pulposus. The nucleus-disc volume ratio was also an indicator of the hydration level. The reliability of the three-dimensional reconstruction process was initially verified using an intraoperator reproducibility test. Original preoperative data on disc volume properties were then derived. Postoperative volume variations were quantified in discs below spine fusion taking into account the level of the arthrodesis and the disc location. It showed that the postoperative volume criteria increased significantly for nucleus, disc, and nucleus-disc volume ratio and some magnitude modulation could be conditioned by the location of surgical instrumentation. Some stabilization or reduction depending on disc level and arthrodesis size between 3 months and 1 year is observed in the follow-up. It tended to prove that the recovery of balance physiologic positioning and inherent biomechanical loads could induce a restored hydration of disc, which should favor the remodeling of free segments. This work was the first report

  1. Cement plug technique for the management of disc-associated cervical spondylopathy in 52 Dobermann Pinscher dogs.

    PubMed

    McKee, W Malcolm; Pink, Jonathan J; Gemmill, Toby J

    2016-05-18

    To report the radiographic and clinical outcome of an intervertebral bone cement plug technique for the management of disc-associated cervical spondylopathy in Dobermann Pinscher dogs. Retrospective study of 52 Dobermann Pinscher dogs. A variable degree of cement plug subsidence with loss of vertebral distraction was evident in all dogs (n = 40) that were radiographed >6 weeks postoperatively. In no case was there definitive evidence of vertebral body fusion. Eight dogs had a sudden deterioration in neurological status, cervical hyperaesthesia, or both between three days and 12 weeks following surgery that was considered to be implant-associated; six of these dogs were euthanatized. Following surgery, 43/52 dogs were considered to be neurologically normal or to have improved, however, nine of 43 subsequently deteriorated due to adjacent segment disease. At the long-term follow-up, 34 dogs were considered to be neurologically normal or to have improved. Twenty-nine dogs were dead by the end of the study period. Intervertebral bone cement plug surgery results in an initial improvement in clinical signs in the majority of Dobermann Pinschers with disc-associated cervical spondylopathy. However, it fails to maintain vertebral distraction or achieve vertebral body fusion, and is associated with acute implant complications, additional cervical disc protrusions or mortality in a significant proportion of cases.

  2. Total Disc Arthroplasty and Anterior Cervical Discectomy and Fusion in Cervical Spine: Competitive or Complimentary? Review of the Literature

    PubMed Central

    Jawahar, Ajay; Nunley, Pierce

    2012-01-01

    Anterior cervical discectomy and arthrodesis has come to represent standard of care for patients with persistent radicular and/or myelopathic symptoms that have failed to improve with conservative treatments. One potential complication of the procedure is the accelerated degeneration of the vertebrae and the intervertebral discs adjacent to the level fused and the effects of fusion on those levels. The concern that fusion may be a contributing factor to accelerated adjacent segment degeneration led to increased interest in cervical disc replacement after anterior decompressive surgery. Several studies analyzing the short-term outcomes of the disc replacement procedure have been published since then, and the pros and cons of both procedures continue to remain a topic of debate among the scientific community. The analysis of published literature and our own experience has convinced us that the overall longer-term clinical outcomes after anterior cervical discectomy and fusion (ACDF) and total disc replacement (TDR) in the general patient population are not significantly different in terms of symptomatic improvement, neurological improvement, and restoration to better quality of life. Age of the patients and number of affected levels may impact the outcomes and hence determine the choice of optimum procedure. To definitely compare the incidence of adjacent segment disease after these procedures, multi-institutional studies with predetermined and unanimously agreed upon clinical and radiological criteria should be undertaken and the results analyzed in an unbiased fashion. Until that time, it is reasonable to assume that ACDF as well as cervical TDR are both safe and effective procedures that may have outcome benefits in specific patient subgroups based upon demographics and clinical/radiological parameters at the time of surgery. PMID:24353966

  3. Dose-Dependent Response of Tissue-Engineered Intervertebral Discs to Dynamic Unconfined Compressive Loading

    PubMed Central

    Hudson, Katherine D.; Mozia, Robert I.

    2015-01-01

    Because of the limitations of current surgical methods in the treatment of degenerative disc disease, tissue-engineered intervertebral discs (TE-IVDs) have become an important target. This study investigated the biochemical and mechanical responses of composite TE-IVDs to dynamic unconfined compression. TE-IVDs were manufactured by floating an injection molded alginate nucleus pulposus (NP) in a type I collagen annulus fibrosus (AF) that was allowed to contract for 2 weeks before loading. The discs were mechanically stimulated at a range of strain amplitude (1–10%) for 2 weeks with a duty cycle of 1 h on–1 h off–1 h on before being evaluated for their biochemical and mechanical properties. Mechanical loading increased all properties in a dose-dependent manner. Glycosaminoglycans (GAGs) increased between 2.8 and 2.2 fold in the AF and NP regions, respectively, whereas the hydroxyproline content increased between 1.2 and 1.8 fold. The discs also experienced a 2-fold increase in the equilibrium modulus and a 4.3-fold increase in the instantaneous modulus. Full effects for all properties were seen by 5% strain amplitude. These data suggest that dynamic loading increases the functionality of our TE-IVDs with region-dependent responses using a method that may be scaled up to larger disc models to expedite maturation for implantation. PMID:25277703

  4. Collagen fibrillogenesis in the development of the annulus fibrosus of the intervertebral disc.

    PubMed

    Hayes, Anthony J; Isaacs, Marc D; Hughes, C; Caterson, B; Ralphs, J R

    2011-10-11

    The annulus fibrosus of the intervertebral disc is a complex, radial-ply connective tissue consisting of concentric lamellae of oriented collagen. Whilst much is known of the structure of the mature annulus, less is known of how its complex collagenous architecture becomes established; an understanding of which could inform future repair/regenerative strategies. Here, using a rat disc developmental series, we describe events in the establishment of the collagenous framework of the annulus at light and electron microscopic levels and examine the involvement of class I and II small leucine rich proteoglycans (SLRPs) in the matrix assembly process. We show that a period of sustained, ordered matrix deposition follows the initial cellular differentiation/orientation phase within the foetal disc. Fibrillar matrix is deposited from recesses within the plasma membrane into compartments of interstitial space within the outer annulus - the orientation of the secreted collagen reflecting the initial cellular orientation of the laminae. Medially, we demonstrate the development of a reinforcing 'cage' of collagen fibre bundles around the foetal nucleus pulpous. This derives from the fusion of collagen bundles between presumptive end-plate and inner annulus. By birth, the distinct collagenous architectures are established and the disc undergoes considerable enlargement to maturity. We show that fibromodulin plays a prominent role in foetal development of the annulus and its attachment to vertebral bodies. With the exception of keratocan, the other SLRPs appear associated more with cartilage development within the vertebral column, but all become more prominent within the disc during its growth and differentiation.

  5. Ultrastructure of inclusion bodies in annulus cells in the degenerating human intervertebral disc.

    PubMed

    Gruber, H E; Hanley, E N

    2009-06-01

    The rough endoplasmic reticulum (rER) of the cell has an architectural editing function that checks whether protein structure and three-dimensional assembly have occurred properly prior to export of newly synthesized material out of the cell. If these have been faulty, the material is retained within the rER as an inclusion body. Inclusion bodies have been identified previously in chondrocytes and osteoblasts in chondrodysplasias and osteogenesis imperfecta. Inclusion bodies in intervertebral disc cells, however, have only recently been recognized. Our objectives were to use transmission electron microscopy to analyze more fully inclusion bodies in the annulus pulposus and to study the extracellular matrix (ECM) surrounding cells containing inclusion bodies. ECM frequently encapsulated cells with inclusion bodies, and commonly contained prominent banded aggregates of Type VI collagen. Inclusion body material had several morphologies, including relatively smooth, homogeneous material, or a rougher, less homogeneous feature. Such findings expand our knowledge of the fine structure of the human disc cell and ECM during disc degeneration, and indicate the potential utility of ultrastructural identification of discs with intracellular inclusion bodies as a screening method for molecular studies directed toward identification of defective gene products in degenerating discs.

  6. [Research progress of cellular senescence and senescent secretary phenotype in intervertebral disc degeneration].

    PubMed

    Wang, Feng; Zheng, Chenjingmei; Wu, Xiaotao

    2012-12-01

    To summarize the role of cellular senescence and senescent secretary phenotype in the intervertebral disc (IVD) degeneration. Relevant articles that discussed the roles of cellular senescence in the IVD degeneration were extensively reviewed, and retrospective and comprehensive analysis was performed. The senescent phenomenon during IVD degeneration, senescent secretary phenotype of the disc cells, senescent pathways within the IVD microenvironment, as well as the anti-senescent approaches for IVD regeneration were systematically reviewed. During aging and degeneration, IVD cells gradually and/or prematurely undergo senescence by activating p53-p21-retinoblastoma (RB) or p161NK4A-RB senescent pathways. The accumulation of senescent cells not only decreases the self-renewal ability of IVD, but also deteriorates the disc microenvironment by producing more inflammatory cytokines and matrix degrading enzymes. More specific senescent biomarkers are required to fully understand the phenotype change of senescent disc cells during IVD degeneration. Molecular analysis of the senescent disc cells and their intracellular signaling pathways are needed to get a safer and more efficient anti-senescence strategy for IVD regeneration. Cellular senescence is an important mechanism by which IVD cells decrease viability and degenerate biological behaviors, which provide a new thinking to understand the pathogenesis of IVD degeneration.

  7. Mechanical Vibrations Reduce the Intervertebral Disc Swelling and Muscle Atrophy from Bed Rest

    NASA Technical Reports Server (NTRS)

    Holguin, Nilsson; Muir, Jesse; Evans, Harlan J.; Qin, Yi-Xian; Rubin, Clinton; Wagshul, Mark; Judex, Stefan

    2007-01-01

    Loss of functional weight bearing, such as experienced during space flight or bed rest (BR), distorts intervertebral disc (IVD) and muscle morphology. IVDs are avascular structures consisting of cells that may derive their nutrition and waste removal from the load induced fluid flow into and out of the disc. A diurnal cycle is produced by forces related to weight bearing and muscular activity, and comprised of a supine and erect posture over a 24 hr period. A diurnal cycle will include a disc volume change of approx. 10-13%. However, in space there are little or no diurnal changes because of the microgravity, which removes the gravitational load and compressive forces to the back muscles. The BR model and the etiology of the disc swelling and muscle atrophy could provide insight into those subjects confined to bed for chronic disease/injury and aging. We hypothesize that extremely low-magnitude, high frequency mechanical vibrations will abate the disc degeneration and muscle loss associated with long-term BR.

  8. The cellular and molecular biology of the intervertebral disc: A clinician's primer.

    PubMed

    Erwin, W Mark; Hood, Katherine E

    2014-09-01

    Clinicians routinely encounter patients suffering from both degenerative and acute spinal pain, often as a consequence of pathology affecting the intervertebral disc (IVD). The IVD is a complex structure essential to spinal function and is subject to degenerative disease and injury. However, due to the complexity of spinal pain syndromes it is often difficult to determine the extent of the IVD's contribution to the genesis of spinal pain. The location of the IVD is within close proximity to vital neural elements and may in the event of pathological change or injury compromise those structures. It is therefore important that clinicians performing manual therapy understand the cellular and molecular biology of the IVD as well as its clinical manifestation of degeneration/injury in order to safely manage and appreciate the role played by the disc in the development of mechanical spinal pain syndromes.

  9. Cell and molecular biology of intervertebral disc degeneration: current understanding and implications for potential therapeutic strategies.

    PubMed

    Wang, S Z; Rui, Y F; Lu, J; Wang, C

    2014-10-01

    Intervertebral disc degeneration (IDD) is a chronic, complex process associated with low back pain; mechanisms of its occurrence have not yet been fully elucidated. Its process is not only accompanied by morphological changes, but also by systematic changes in its histological and biochemical properties. Many cellular and molecular mechanisms have been reported to be related with IDD and to reverse degenerative trends, abnormal conditions of the living cells and altered cell phenotypes would need to be restored. Promising biological therapeutic strategies still rely on injection of active substances, gene therapy and cell transplantation. With advanced study of tissue engineering protocols based on cell therapy, combined use of seeding cells, bio-active substances and bio-compatible materials, are promising for IDD regeneration. Recently reported progenitor cells within discs themselves also hold prospects for future IDD studies. This article describes the background of IDD, current understanding and implications of potential therapeutic strategies.

  10. [Progress and challenges in tissue engineering of intervertebral disc annulus fibrosus].

    PubMed

    Zhou, Pinghui; Guo, Qianping; Ling, Feng; Qian, Zhonglai; Li, Bin

    2016-03-01

    Degenerative disc disease (DDD) is a leading cause of low back pain, which severely affects the quality of life and incurs significant medical cost. Annulus fibrosus(AF) injuries can lead to substantial deterioration of intervertebral disc degeneration. However, the AF repair/regeneration remains a challenge due to the intrinsic cellular, biochemical and biomechanical heterogeneity of AF tissue. Tissue engineering would be a promising approach for AF regeneration. This article aims to provide a brief overview of the fundamental aspects of AF, the current achievements and future challenges of AF tissue engineering. A multidisciplinary approach is proposed for future studies to fully mimic the native AF tissue and its microenvironment, including choosing adequate cell source, preparing scaffolds with hierarchical microstructures, supplementing appropriate growth factors, and enforcing suitable mechanical stimulation. Hopefully, the engineered AF tissues would be effectively used to facilitate the treatment of DDD in the future.

  11. The cellular and molecular biology of the intervertebral disc: A clinician’s primer

    PubMed Central

    Erwin, W. Mark; Hood, Katherine E.

    2014-01-01

    Clinicians routinely encounter patients suffering from both degenerative and acute spinal pain, often as a consequence of pathology affecting the intervertebral disc (IVD). The IVD is a complex structure essential to spinal function and is subject to degenerative disease and injury. However, due to the complexity of spinal pain syndromes it is often difficult to determine the extent of the IVD’s contribution to the genesis of spinal pain. The location of the IVD is within close proximity to vital neural elements and may in the event of pathological change or injury compromise those structures. It is therefore important that clinicians performing manual therapy understand the cellular and molecular biology of the IVD as well as its clinical manifestation of degeneration/injury in order to safely manage and appreciate the role played by the disc in the development of mechanical spinal pain syndromes. PMID:25202152

  12. Discoscopic Findings of High Signal Intensity Zones on Magnetic Resonance Imaging of Lumbar Intervertebral Discs

    PubMed Central

    Sugiura, Kosuke; Tonogai, Ichiro; Matsuura, Tetsuya; Higashino, Kosaku; Sakai, Toshinori; Suzue, Naoto; Nishisho, Toshihiko; Goda, Yuichiro; Sato, Ryosuke; Kondo, Kenji; Tezuka, Fumitake; Mineta, Kazuaki; Takeuchi, Makoto; Takahashi, Mitsuhiko; Egawa, Hiroshi; Sairyo, Koichi

    2014-01-01

    A 32-year-old man underwent radiofrequency thermal annuloplasty (TA) with percutaneous endoscopic discectomy (PED) under local anesthesia for chronic low back pain. His diagnosis was discogenic pain with a high signal intensity zone (HIZ) in the posterior corner of the L4-5 disc. Flexion pain was sporadic, and steroid injection was given twice for severe pain. After the third episode of strong pain, PED and TA were conducted. The discoscope was inserted into the posterior annulus and revealed a migrated white nucleus pulposus which was stained blue. Then, after moving the discoscope to the site of the HIZ, a migrated slightly red nucleus pulposus was found, suggesting inflammation and/or new vessels penetrating the mass. After removing the fragment, the HIZ site was ablated by TA. To our knowledge, this is the first report of the discoscopic findings of HIZ of the lumbar intervertebral disc. PMID:24963428

  13. Upregulation of intervertebral disc-cell matrix synthesis by pulsed electromagnetic field is mediated by bone morphogenetic proteins.

    PubMed

    Okada, Motohiro; Kim, Jin Hwan; Hutton, William C; Yoon, Sangwook Tim

    2013-05-01

    An in vitro study on the effects of pulsed electromagnetic field (PEMF) on intervertebral disc-cell matrix synthesis. The objective of the study was to determine whether (1) PEMF can upregulate intervertebral disc-cell matrix synthesis and (2) any upregulation obtained is through transforming growth factor (TGF)-β or bone morphogenetic proteins (BMPs). PEMF has been reported to produce cell proliferation, enhance cell function, and upregulate matrix synthesis in cell types such as osteoblasts, chondroblasts, endothelial cells, and fibroblasts through the upregulation of several growth factors. PEMF has been used clinically in the treatment of delayed bone union. However, PEMF has never been tested on human intervertebral disc cells. The PEMF signal used was similar to that used in the clinical treatment of delayed fracture healing. Human disc cells were treated with PEMF for 8 hours per day for 3 days. Quantitative real-time polymerase chain reaction was performed to determine mRNA expression levels of aggrecan, collagen-2, TGF-β, BMP-2, and BMP-7. Sulfated glycosaminoglycan synthesis was analyzed using the dimethylmethylene blue (DMMB) method. Western blot analysis was performed to determine the protein levels of TGF-β, BMP-2, and BMP-7. To determine whether any action of PEMF was through BMP, recombinant human Noggin was used at a dose of 100 ng/mL to block BMP. PEMF could upregulate intervertebral disc-cell matrix synthesis. BMP-7 was markedly upregulated by PEMF and was upregulated much more than BMP-2. TGF-β was not upregulated by PEMF. The effect of PEMF on disc-cell matrix was entirely inhibited in the presence of Noggin. PEMF acts through BMPs to upregulate intervertebral disc-cell matrix synthesis.

  14. Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation.

    PubMed

    Clouthier, Allison L; Hosseini, Hadi S; Maquer, Ghislain; Zysset, Philippe K

    2015-06-01

    Vertebral compression fractures are becoming increasingly common. Patient-specific nonlinear finite element (FE) models have shown promise in predicting yield strength and damage pattern but have not been experimentally validated for clinically relevant vertebral fractures, which involve loading through intervertebral discs with varying degrees of degeneration up to large compressive strains. Therefore, stepwise axial compression was applied in vitro on segments and performed in silico on their FE equivalents using a nonlocal damage-plastic model including densification at large compression for bone and a time-independent hyperelastic model for the disc. The ability of the nonlinear FE models to predict the failure pattern in large compression was evaluated for three boundary conditions: healthy and degenerated intervertebral discs and embedded endplates. Bone compaction and fracture patterns were predicted using the local volume change as an indicator and the best correspondence was obtained for the healthy intervertebral discs. These preliminary results show that nonlinear finite element models enable prediction of bone localisation and compaction. To the best of our knowledge, this is the first study to predict the collapse of osteoporotic vertebral bodies up to large compression using realistic loading via the intervertebral discs.

  15. Artificial Discs for Lumbar and Cervical Degenerative Disc Disease –Update

    PubMed Central

    2006-01-01

    Executive Summary Objective To assess the safety and efficacy of artificial disc replacement (ADR) technology for degenerative disc disease (DDD). Clinical Need Degenerative disc disease is the term used to describe the deterioration of 1 or more intervertebral discs of the spine. The prevalence of DDD is roughly described in proportion to age such that 40% of people aged 40 years have DDD, increasing to 80% among those aged 80 years or older. Low back pain is a common symptom of lumbar DDD; neck and arm pain are common symptoms of cervical DDD. Nonsurgical treatments can be used to relieve pain and minimize disability associated with DDD. However, it is estimated that about 10% to 20% of people with lumbar DDD and up to 30% with cervical DDD will be unresponsive to nonsurgical treatments. In these cases, surgical treatment is considered. Spinal fusion (arthrodesis) is the process of fusing or joining 2 bones and is considered the surgical gold standard for DDD. Artificial disc replacement is the replacement of the degenerated intervertebral disc with an artificial disc in people with DDD of the lumbar or cervical spine that has been unresponsive to nonsurgical treatments for at least 6 months. Unlike spinal fusion, ADR preserves movement of the spine, which is thought to reduce or prevent the development of adjacent segment degeneration. Additionally, a bone graft is not required for ADR, and this alleviates complications, including bone graft donor site pain and pseudoarthrosis. It is estimated that about 5% of patients who require surgery for DDD will be candidates for ADR. Review Strategy The Medical Advisory Secretariat conducted a computerized search of the literature published between 2003 and September 2005 to answer the following questions: What is the effectiveness of ADR in people with DDD of the lumbar or cervical regions of the spine compared with spinal fusion surgery? Does an artificial disc reduce the incidence of adjacent segment degeneration (ASD

  16. Artificial discs for lumbar and cervical degenerative disc disease -update: an evidence-based analysis.

    PubMed

    2006-01-01

    To assess the safety and efficacy of artificial disc replacement (ADR) technology for degenerative disc disease (DDD). Degenerative disc disease is the term used to describe the deterioration of 1 or more intervertebral discs of the spine. The prevalence of DDD is roughly described in proportion to age such that 40% of people aged 40 years have DDD, increasing to 80% among those aged 80 years or older. Low back pain is a common symptom of lumbar DDD; neck and arm pain are common symptoms of cervical DDD. Nonsurgical treatments can be used to relieve pain and minimize disability associated with DDD. However, it is estimated that about 10% to 20% of people with lumbar DDD and up to 30% with cervical DDD will be unresponsive to nonsurgical treatments. In these cases, surgical treatment is considered. Spinal fusion (arthrodesis) is the process of fusing or joining 2 bones and is considered the surgical gold standard for DDD. Artificial disc replacement is the replacement of the degenerated intervertebral disc with an artificial disc in people with DDD of the lumbar or cervical spine that has been unresponsive to nonsurgical treatments for at least 6 months. Unlike spinal fusion, ADR preserves movement of the spine, which is thought to reduce or prevent the development of adjacent segment degeneration. Additionally, a bone graft is not required for ADR, and this alleviates complications, including bone graft donor site pain and pseudoarthrosis. It is estimated that about 5% of patients who require surgery for DDD will be candidates for ADR. The Medical Advisory Secretariat conducted a computerized search of the literature published between 2003 and September 2005 to answer the following questions: What is the effectiveness of ADR in people with DDD of the lumbar or cervical regions of the spine compared with spinal fusion surgery?Does an artificial disc reduce the incidence of adjacent segment degeneration (ASD) compared with spinal fusion?What is the rate of major

  17. Is cervical disc arthroplasty good for congenital cervical stenosis?

    PubMed

    Chang, Peng-Yuan; Chang, Hsuan-Kan; Wu, Jau-Ching; Huang, Wen-Cheng; Fay, Li-Yu; Tu, Tsung-Hsi; Wu, Ching-Lan; Cheng, Henrich

    2017-05-01

    OBJECTIVE Cervical disc arthroplasty (CDA) has been demonstrated to be as safe and effective as anterior cervical discectomy and fusion (ACDF) in the management of 1- and 2-level degenerative disc disease (DDD). However, there has been a lack of data to address the fundamental discrepancy between the two surgeries (CDA vs ACDF), and preservation versus elimination of motion, in the management of cervical myelopathy associated with congenital cervical stenosis (CCS). Although younger patients tend to benefit more from motion preservation, it is uncertain if CCS caused by multilevel DDD can be treated safely with CDA. METHODS Consecutive patients who underwent 3-level anterior cervical discectomy were retrospectively reviewed. Inclusion criteria were age less than 50 years, CCS (Pavlov ratio ≤ 0.82), symptomatic myelopathy correlated with DDD, and stenosis limited to 3 levels of the subaxial cervical (C3-7) spine. Exclusion criteria were ossification of the posterior longitudinal ligament, previous posterior decompression surgery (e.g., laminoplasty or laminectomy), osteoporosis, previous trauma, or other rheumatic diseases that might have caused the cervical myelopathy. All these patients who underwent 3-level discectomy were divided into 2 groups according to the strategies of management: preservation or elimination of motion (the hybrid-CDA group and the ACDF group). The hybrid-CDA group underwent 2-level CDA plus 1-level ACDF, whereas the ACDF group underwent 3-level ACDF. Clinical assessment was measured by the visual analog scales (VAS) for neck and arm pain, Japanese Orthopaedic Association (JOA) scores, and Nurick grades. Radiographic outcomes were measured using dynamic radiographs for evaluation of range of motion (ROM). RESULTS Thirty-seven patients, with a mean (± SD) age of 44.57 ± 5.10 years, were included in the final analysis. There was a male predominance in this series (78.4%, 29 male patients), and the mean follow-up duration was 2.37 ± 1

  18. Methodology to Calibrate Disc Degeneration in the Cervical Spine During Cyclic Fatigue Loading.

    PubMed

    Masoudi, Aidin; Fama, Daniel; Yoganandan, Narayan; Snyder, Brian

    2015-01-01

    Prolonged exposure to vibrational working conditions can cause neck, back, and shoulder pain. Mechanical degradation of soft tissues resulting from this type of fatigue was experimentally shown to contribute to endplate and compression fractures. However, effects of repetitive subfailure loading on intervertebral disc (IVD) behavior have not been well defined. This manuscript describes a methodology to experimentally characterize changes in cervical spine IVD material properties under fatigue. Bone-disc-bone spinal units with intact ligaments obtained from human cervical spines were obtained and a lack of bony or soft tissue degeneration was confirmed using X-ray and MRI scans. Cranial and caudal specimen extents were fixed in PMMA to facilitate attachment to testing devices. Baseline response was quantified using flexion/extension pure moment protocols. Specimens were immersed in a 34-deg-C saline bath and allowed to acclimate for one hour. A stress-relaxation test was then performed and viscoelasticity quantified using a quasi linear viscoelastic (QLV) material model. Fatigue testing was performed for up to 50,000 cycles with intermittent viscoelasticity, pure moment testing, and imaging scans performed to quantify cycle-dependent changes in disc properties. Preliminary results demonstrated progressive changes in viscoelasticity and bending response of cervical spine segments with increasing number of load cycles. This procedure will be used to quantify degradation of the IVD under repetitive compressive loads, focusing on effects of loading magnitude and frequency.

  19. Comparison of disability duration of lumbar intervertebral disc disorders among types of insurance in Korea.

    PubMed

    Lee, Choong Ryeol; Kim, Joon Youn; Hong, Young Seoub; Lim, Hyun Sul; Lee, Yong Hwan; Lee, Jong Tae; Moon, Jai Dong; Jeong, Baek Geun

    2005-10-01

    The incidence of work-related musculoskeletal disorder including low back pain sharply increased since 2000 in Korea. The objectives of the present study are to compare disability duration of lumbar intervertebral disc displacement among types of insurances, and to obtain its appropriate duration. The medical records of all patients whose final diagnosis in discharge summary of chart was lumber specified intervertebral disc displacement (LIVD) in 6 large general hospitals in Korea were reviewed to compare the length of admission and disability among different types of insurances. The information on age, gender, the length of admission, the length of follow-up for LIVD, occupation, operation, combined musculoskeletal diseases, and type of insurance was investigated. 552 cases were selected and analyzed to calculate arithmetic mean, median, mode, and geometric mean of disability duration. There was a significant difference in the length of admission and disability among types of insurance after controlling covariates such as age and combined diseases by the analysis of covariance. The length of admission in cases of IACI and AI was much longer than that of HI, and the length of disability in cases of IACI was much longer than that of HI. Prolonged duration of admission and disability was not assumed due to combined diseases, complication or other unexplainable personal factors in cases of those with industrial accidents compensation insurance and automobile insurance. This means that proper management of evidence-based disability duration guidelines is urgently needed in Korea.

  20. [Study on risk factors and predictive model for lumbar intervertebral disc herniation in the rural population].

    PubMed

    Zhang, Si-yu; Huang, Peng; Huang, Xin; Chen, Ting; Zhao, Xin; Liang, Cui-min; Li, Lin-xiang; Tan, Hong-zhuan

    2009-11-01

    To explore the risk factors on the symptoms of lumbar intervertebral disc herniation so as to develop a predictive model for the disease. With a population-based case-control study, 303 of 50 123 residents were diagnosed as having lumbar intervertebral disc herniation symptoms. 152 cases and 167 healthy controls, matched by gender and age, were randomly chosen as case and control groups. Questionnaires were used to collect information on the exposure to risk factors and logistic predictive model was then established. Through non-conditional logistic regression analysis, data showed that the positive family history of lumbar vertebra disorder, lumbar treatment or surgery, mental stress, acute low back injury, permanent work pose, and body mass index >/= 23.0 kg/m(2) were the risk factors among residents from the countryside. The area under the receiver operator characteristic curve of logistic predictive model was 0.809. When 0.4 was set as the classification cutoff, the total predictive correct rate, sensitivity, and specificity were 74.0%, 73.7%, and 74.3% respectively. The occurrence of lumbar disk herniation can in countryside population was affected by multi-variables including genetic and environmental, and could be predicted with the logistic regression model established by our group. The positive predictive results could be used to alarm the patients and doctors for prevention and treatment of the disease.

  1. Effect of Expectations on Treatment Outcome for Lumbar Intervertebral Disc Herniation.

    PubMed

    Lurie, Jon D; Henderson, Eric R; McDonough, Christine M; Berven, Sigurd H; Scherer, Emily A; Tosteson, Tor D; Tosteson, Anna N A; Hu, Serena S; Weinstein, James N

    2016-05-01

    Secondary analysis of randomized and nonrandomized prospective cohorts. To examine the effect of patient treatment expectations on treatment outcomes for patients with intervertebral disc herniation. Patient expectations about treatment effectiveness may have important relationships with clinical outcomes. Subgroup and reanalysis of the Spine Patient Outcomes Research Trial, a randomized trial and comprehensive cohort study enrolling patients between March 2000 and November 2004 from 13 multidisciplinary spine clinics in 11 US states. Overall, 501 randomized and 744 observational patients (1244 total) who were surgical candidates with radiculopathy and imaging confirmed lumbar intervertebral disc herniation were enrolled. The primary study compared surgical discectomy to usual nonoperative care; this subgroup analysis reassessed outcomes on the basis of treatment expectations at baseline. Expectations about symptomatic and functional improvement for both surgery and nonoperative care were assessed on 5-point scales (1="No Chance (0%)" to 5="Certain (100%)"). Outcomes were assessed using longitudinal regression models analyzed by treatment received. Among 1244 IDH SPORT participants, 1168 provided data on both outcomes and baseline expectations and were included in the current analysis: 467 from the randomized and 701 from the observational cohort. Low expectations of outcomes with surgery predicted poorer outcome regardless of treatment. High expectations of outcomes with nonoperative care predicted better nonoperative outcomes but did not affect surgical results. These differences were of similar magnitude to the difference in outcomes between surgery and nonoperative care. High expectations of treatment benefit had clinically significant positive associations with outcomes. 2.

  2. Cordycepin inhibits LPS-induced inflammatory and matrix degradation in the intervertebral disc

    PubMed Central

    Mao, Lu; Han, Xiuguo; Zhang, Kai; Zhao, Changqing

    2016-01-01

    Cordycepin is a component of the extract obtained from Cordyceps militaris and has many biological activities, including anti-cancer, anti-metastatic and anti-inflammatory effects. Intervertebral disc degeneration (IDD) is a degenerative disease that is closely related to the inflammation of nucleus pulposus (NP) cells. The effect of cordycepin on NP cells in relation to inflammation and degeneration has not yet been studied. In our study, we used a rat NP cell culture and an intervertebral disc (IVD) organ culture model to examine the inhibitory effects of cordycepin on lipopolysaccharide (LPS)-induced gene expression and the production of matrix degradation enzymes (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and oxidative stress-associated factors (nitric oxide and PGE2). We found a protective effect of cordycepin on NP cells and IVDs against LPS-induced matrix degradation and macrophage infiltration. In addition, western blot and luciferase assay results demonstrated that pretreatment with cordycepin significantly suppressed the LPS-induced activation of the NF-κB pathway. Taken together, the results of our research suggest that cordycepin could exert anti-inflammatory and anti-degenerative effects on NP cells and IVDs by inhibiting the activation of the NF-κB pathway. Therefore, cordycepin may be a potential treatment for IDD in the future. PMID:27190710

  3. Towards an affordable deep learning system: automated intervertebral disc detection in x-ray images

    NASA Astrophysics Data System (ADS)

    Sa, Ruhan; Owens, William; Wiegand, Raymond; Chaudhary, Vipin

    2017-03-01

    Adult Spinal Deformity is a prominent medical issue with about 68% of the elderly population suffering from the disease.1 Detailed biomechanical assessment is needed both in the presurgical planning of structural spinal deformity as well as in early functional biomechanical compensation in ambulatory spinal pain patients. When considering automation of this process, we have to look at photographic intervertebral disc detection technique as a way to produce a detailed model of the spine with appropriate measurements required to make efficient and accurate decisions on patient care. Deep convolutional neural network (CNN) has given remarkable results in object recognition tasks in recent years. However, massive training data, computational resources and long training time is needed for both training a deep network from scratch or finetuning a network. Using pretrained model as feature extractor has shown promising result for moderate sized medical data.2 However, most work have extracted features from the last layer and little has been explored in terms of the number of convolutional layers needed for best performance. In this work we trained Support Vector Machine (SVM) classifiers on different layers of CaffeNet3 features to show that deeper the better concept does not hold for task such as intervertebral disc detection. Furthermore, our experimental results show the potential of using very small training data, such as 15 annotated medical images in our experiment, to yield satisfactory classification performance with accuracy up to 97.2%.

  4. Elevated interleukin-6 expression levels are associated with intervertebral disc degeneration

    PubMed Central

    DENG, XIAO; ZHAO, FENG; KANG, BAOLIN; ZHANG, XIN

    2016-01-01

    The present study aimed to investigate whether serum interleukin-6 (IL-6) expression levels were associated with the onset and progression of intervertebral disc degeneration (IDD). A comprehensive meta-analysis of the scientific literature from numerous electronic databases was performed, in order to obtain published studies associated with the topic of interest. Relevant case-control studies that had previously assessed a correlation between IL-6 expression levels and IDD were identified using predetermined inclusion and exclusion criteria. The STATA version 12.0 software was used for statistical analysis of the extracted data. A total of 112 studies were initially retrieved, with eight studies meeting the inclusion criteria. These contained a total of 392 subjects, of which 263 were patients with IDD and 129 were healthy controls. A meta-analysis of the eight studies demonstrated that serum IL-6 protein expression levels may be associated with IDD, and this was irrespective of IDD subtype (bulging, protrusion, or sequestration). Notably, serum expression levels of the IL-6 protein were upregulated in intervertebral disc (IVD) protrusion tissue, as compared with normal IVD tissue; thus suggesting that IL-6 may have an important role in the pathophysiological process of IDD. PMID:27073460

  5. The role of interleukin-1 in the pathogenesis of human Intervertebral disc degeneration

    PubMed Central

    Le Maitre, Christine Lyn; Freemont, Anthony J; Hoyland, Judith Alison

    2005-01-01

    In this study, we investigated the hypotheses that in human intervertebral disc (IVD) degeneration there is local production of the cytokine IL-1, and that this locally produced cytokine can induce the cellular and matrix changes of IVD degeneration. Immunohistochemistry was used to localize five members of the IL-1 family (IL-1α, IL-1β, IL-1Ra (IL-1 receptor antagonist), IL-1RI (IL-1 receptor, type I), and ICE (IL-1β-converting enzyme)) in non-degenerate and degenerate human IVDs. In addition, cells derived from non-degenerate and degenerate human IVDs were challenged with IL-1 agonists and the response was investigated using real-time PCR for a number of matrix-degrading enzymes, matrix proteins, and members of the IL-1 family. This study has shown that native disc cells from non-degenerate and degenerate discs produced the IL-1 agonists, antagonist, the active receptor, and IL-1β-converting enzyme. In addition, immunopositivity for these proteins, with the exception of IL-1Ra, increased with severity of degeneration. We have also shown that IL-1 treatment of human IVD cells resulted in increased gene expression for the matrix-degrading enzymes (MMP 3 (matrix metalloproteinase 3), MMP 13 (matrix metalloproteinase 13), and ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs)) and a decrease in the gene expression for matrix genes (aggrecan, collagen II, collagen I, and SOX6). In conclusion we have shown that IL-1 is produced in the degenerate IVD. It is synthesized by native disc cells, and treatment of human disc cells with IL-1 induces an imbalance between catabolic and anabolic events, responses that represent the changes seen during disc degeneration. Therefore, inhibiting IL-1 could be an important therapeutic target for preventing and reversing disc degeneration. PMID:15987475

  6. Concomitance of fibromyalgia syndrome and cervical disc herniation

    PubMed Central

    Güler, Mustafa; Aydın, Teoman; Akgöl, Erdal; Taşpınar, Özgür

    2015-01-01

    [Purpose] Fibromyalgia syndrome (FMS) and cervical disc herniation (CDH) are a common diseases commonly encountered in physical therapy clinics. There are also patients who have both of these diseases. In this study we aim to investigated whether FMS is a risk factor for cervical disc herniation and the frequency of their coincident occurrence. [Subjects and Methods] Thirty-five patients having a primary FMS diagnosis according to the American Rheumatism Association criteria are taken into consideration and a control group were the subjects of this study. The two groups were compared with respect to cervical disc hernia using cervical region MRI. [Results] The distribution of disc hernia of 6 fibromyalgia patients who had cervical discopathy was: 16.6% C2–3, 16.6% C5–6, 16.6% C6–7, 33.3% C4–5, C5–6 (two levels in two patients) and 16.6% C4–5, C5–6, C7–1 (three levels in one patient) . The herniation directions were given as: central in 5 levels, right paramedian in 1 level, and left paramedian disc hernia in 1 level. There were 4 cervical disk hernia in the control group. The herniation direction were central in two, right paramedian in one, and left paramedian in one patient. [Conclusion] In this study, the existence of cervical disc herniation in fibromyalgia patients was found to be not different from the normal population. PMID:25931731

  7. Feasibility of minimally-invasive fiber-based evaluation of chondrodystrophoid canine intervertebral discs by light absorption and scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanyuan; McKeirnan, Kelci; Piao, Daqing; Bartels, Kenneth E.

    2011-03-01

    Extrusion or protrusion of an intervertebral disc is a common, frequently debilitating, painful, and sometimes fatal neurologic disease in the chondrodystrophic dog (dachshund, Pekingese, etc.). A similar condition of intervertebral disc degeneration with extrusion/protrusion is also a relatively common neurologic condition in human patients. Degeneration of the relatively avascular chondrodystrophoid intervertebral disc is associated with loss of water content, increased collagen, and deposits of calcified mineral in the nucleus pulposus. Current diagnostic methods have many limitations for providing accurate information regarding disc composition in situ prior to surgical intervention. Disc composition (i.e., mineralization), can influence the type of treatment regime and potentially prognosis and recurrence rates. The objective of this study is to investigate the feasibility of using a fiber-needle spectroscopy sensor to analyze the changes of tissue compositions involved in the chondrodystrophoid condition of the canine intervertebral disc. The nucleous pulposus, in which the metaplastic process / degeneration develops, is approximately 2mm thick and 5mm in diameter in the dachshund-sized dog. It lies in the center of the disc, surrounded by the annulus fibrosis and is enclosed by cartilaginous vertebral endplates cranially and caudally. This "shallow-and-small-slab" geometry limits the configuration of a fiber probe to sense the disc tissue volume without interference from the vertebrae. A single-fiber sensor is inserted into a 20 gauge myelographic spinal needle for insertion into the disc in situ and connected via a bifurcated fiber to the light source and a spectrometer. A tungsten light source and a 940nm light-emitting-diode are combined for spectral illumination covering VIS/NIR with expected improved sensitivity to water. Analysis of the reflectance spectra is expected to provide information of scattering and absorption compositions of tissue in

  8. Role of biomechanics on intervertebral disc degeneration and regenerative therapies: What needs repairing in the disc and what are promising biomaterials for its repair?

    PubMed Central

    Iatridis, James C.; Nicoll, Steven B.; Michalek, Arthur J.; Walter, Benjamin A.; Gupta, Michelle S.

    2013-01-01

    Background Context Degeneration and injuries of the intervertebral disc result in large alterations in biomechanical behaviors. Repair strategies using biomaterials can be optimized based on biomechanical and biological requirements. Purpose To review current literature on 1) effects of degeneration, simulated degeneration, and injury on biomechanics of the intervertebral disc with special attention paid to needle puncture injuries which are a pathway for diagnostics and regenerative therapies; and 2) promising biomaterials for disc repair with a focus on how those biomaterials may promote biomechanical repair. Study Design/Setting A narrative review to evaluate the role of biomechanics on disc degeneration and regenerative therapies with a focus on what biomechanical properties need to be repaired and how to evaluate and accomplish such repairs using biomaterials. Model systems for screening of such repair strategies are also briefly described. Methods Papers were selected from two main Pubmed searches using keywords: intervertebral AND biomechanics (1823 articles) and intervertebral AND biomaterials (361 articles). Additional keywords (injury, needle puncture, nucleus pressurization, biomaterials, hydrogel, sealant, tissue engineering) were used to narrow articles to the topics most relevant to this review. Results Degeneration and acute disc injuries have the capacity to influence nucleus pulposus pressurization and annulus fibrosus integrity, which are necessary for effective disc function, and therefore, require repair. Needle injection injuries are of particular clinical relevance with potential to influence disc biomechanics, cellularity, and metabolism, yet these effects are localized or small, and more research is required to evaluate and reduce potential clinical morbidity using such techniques. NP replacement strategies, such as hydrogels, are required to restore NP pressurization or lost volume. AF repair strategies, including crosslinked hydrogels

  9. An In Vivo Model of Reduced Nucleus Pulposus Glycosaminoglycan Content in the Rat Lumbar Intervertebral Disc

    PubMed Central

    Boxberger, John I.; Auerbach, Joshua D.; Sen, Sounok; Elliott, Dawn M.

    2009-01-01

    Study Design An in vivo model resembling early stage disc degeneration in the rat lumbar spine. Objective Simulate the reduced glycosaminoglycan content and altered mechanics observed in intervertebral disc degeneration using a controlled injection of chondroitinase ABC (ChABC). Summary of Background Data Nucleus glycosaminoglycan reduction occurs early during disc degeneration; however, mechanisms through which degeneration progresses from this state are unknown. Animal models simulating this condition are essential for understanding disease progression and for development of therapies aimed at early intervention. Methods ChABC was injected into the nucleus pulposus, and discs were evaluated via micro-CT, mechanical testing, biochemical assays, and histology 4 and 12 weeks after injection. Results At 4 weeks, reductions in nucleus glycosaminoglycan level by 43%, average height by 12%, neutral zone modulus by 40%, and increases in range of motion by 40%, and creep strain by 25% were found. Neutral zone modulus and range of motion were correlated with nucleus glycosaminoglycan. At 12 weeks, recovery of some mechanical function was detected as range of motion and creep returned to control levels; however, this was not attributed to glycosaminoglycan restoration, because mechanics were no longer correlated with glycosaminoglycan. Conclusion An in vivo model simulating physiologic levels of glycosaminoglycan loss was created to aid in understanding the relationships between altered biochemistry, altered mechanics, and altered cellular function in degeneration. PMID:18197098

  10. The Effects of Platelet-Rich Plasma on Halting the Progression in Porcine Intervertebral Disc Degeneration.

    PubMed

    Cho, Hongsik; Holt, David C; Smith, Richard; Kim, Song-Ja; Gardocki, Raymond J; Hasty, Karen A

    2016-02-01

    Disc degeneration and the subsequent herniation and/or rupture of the intervertebral disc (IVD) are due to a failure of the extracellular matrix of the annulus to contain the contents of the nucleus. This results from inadequate maintenance of the matrix components as well as the proteolytic activity of matrix metalloproteinases (MMPs) that degrade matrix molecules. Arresting progression of disc degeneration in the annulus holds greater clinical potential at this point than prevention of its onset in the nucleus. Therefore, in this study, we have therapeutic aims that would decrease levels of the cytokines and growth factors that indirectly lead to disc degeneration via stimulating MMP and increase levels of several beneficial growth factors, such as transforming growth factor-β, with the addition of platelet-rich plasma (PRP) that would stimulate cell growth and matrix synthesis. For this study, we attempted to address these imbalances of metabolism by using tumor necrosis factor-α treated annulus fibrosus cells isolated from porcine IVD tissue and incubating the cells in a growth factor rich environment with PRP. These results indicate that the PRP in vitro increased the production of the major matrix components (type II collagen and aggrecan) and decreased the inhibitory collagenase MMP-1. This application will address a therapeutic approach for intervening early in the degenerative process.

  11. Hyaluronic Acid (HA)-Polyethylene glycol (PEG) as injectable hydrogel for intervertebral disc degeneration patients therapy

    NASA Astrophysics Data System (ADS)

    Putri Kwarta, Cityta; Widiyanti, Prihartini; Siswanto

    2017-05-01

    Chronic Low Back Pain (CLBP) is one health problem that is often encountered in a community. Inject-able hydrogels are the newest way to restore the disc thickness and hydration caused by disc degeneration by means of minimally invasive surgery. Thus, polymers can be combined to improve the characteristic properties of inject-able hydrogels, leading to use of Hyaluronic Acid (a natural polymer) and Polyethylene glycol (PEG) with Horse Radish Peroxide (HRP) cross linker enzymes. The swelling test results, which approaches were the ideal disc values, were sampled with variation of enzyme concentrations of 0.25 µmol/min/mL. The enzyme concentrations were 33.95%. The degradation test proved that the sample degradation increased along with the decrease of the HRP enzyme concentration. The results of the cytotoxicity assay with MTT assay method showed that all samples resulted in the 90% of living cells are not toxic. In vitro injection, models demonstrated that higher concentration of the enzymes was less state of gel which would rupture when released from the agarose gel. The functional group characterization shows the cross linking bonding in sample with enzyme adding. The conclusion of this study is PEG-HA-HRP enzyme are safe polymer composites which have a potential to be applied as an injectable hydrogel for intervertebral disc degeneration.

  12. MSC response to pH levels found in degenerating intervertebral discs

    SciTech Connect

    Wuertz, Karin Godburn, Karolyn; Iatridis, James C.

    2009-02-20

    Painful degenerative disc disease is a major health problem and for successful tissue regeneration, MSCs must endure and thrive in a harsh disc microenvironment that includes matrix acidity as a critical factor. MSCs were isolated from bone marrow of Sprague-Dawley rats from two different age groups (<1 month, n = 6 and 4-5 months, n = 6) and cultured under four different pH conditions representative of the healthy, mildly or severely degenerated intervertebral disc (pH 7.4, 7.1, 6.8, and 6.5) for 5 days. Acidity caused an inhibition of aggrecan, collagen-1, and TIMP-3 expression, as well as a decrease in proliferation and viability and was associated with a change in cell morphology. Ageing had generally minor effects but young MSCs maintained greater mRNA expression levels. As acidic pH levels are typical of increasingly degenerated discs, our findings demonstrate the importance of early interventions and predifferentiation when planning to use MSCs for reparative treatments.

  13. Mechanism of parathyroid hormone-mediated suppression of calcification markers in human intervertebral disc cells.

    PubMed

    Madiraju, P; Gawri, R; Wang, H; Antoniou, J; Mwale, F

    2013-05-02

    In degenerative intervertebral discs (IVD), type X collagen (COL X) expression (associated with hypertrophic differentiation) and calcification has been demonstrated. Suppression of COL X expression and calcification during disc degeneration can be therapeutic. In the present study we investigated the potential of human parathyroid hormone 1-34 (PTH) in suppressing indicators of calcification potential (alkaline phosphatase (ALP), Ca(2+), inorganic phosphate (Pi)), and COL X expression. Further, we sought to elucidate the mechanism of PTH action in annulus fibrosus (AF) and nucleus pulposus (NP) cells from human lumbar IVDs with moderate to advanced degeneration. Mitogen activated protein kinase (MAPK) signalling and alterations in the markers of calcification potential were analysed. PTH increased type II collagen (COL II) expression in AF (~200 %) and NP cells (~163 %) and decreased COL X levels both in AF and NP cells (~75 %). These changes in the expression of collagens were preceded by MAPK phosphorylation, which was increased in both AF and NP cells by PTH after 30 min. MAPK signalling inhibitor U0126 and protein kinase-A inhibitor H-89 DCH attenuated PTH stimulated COL II expression in both cell types. PTH decreased ALP activity and increased Ca(2+) release only in NP cells. The present study demonstrates that PTH can potentially retard IVD degeneration by stimulating matrix synthesis and suppressing markers of calcification potential in degenerated disc cells via both MAPK and PKA signalling pathways. Inhibition of further mineral deposition may therefore be a viable therapeutic option for improving the status of degenerating discs.

  14. DISTRIBUTION AND SHORT- AND LONG-TERM EFFECTS OF INJECTED GELIFIED ETHANOL INTO THE LUMBOSACRAL INTERVERTEBRAL DISC IN HEALTHY DOGS.

    PubMed

    Mackenzie, Shawn D; Brisson, Brigitte A; Gaitero, Luis; Caswell, Jeff L; Liao, Penting; Sinclair, Melissa; Chalmers, Heather J

    2016-01-01

    Radiopaque gelified ethanol preparation has been described as a useful agent for treatment of humans with intervertebral disc protrusion. The material is injected into the nucleus pulposus under image guidance with intention to cause the protruded disc material to recede. Because treatment options for dogs with chronic protrusions are limited, new and minimally invasive treatments are desirable. The aim of this experimental, descriptive, prospective study was to assess the feasibility and safety of percutaneous injection of gelified ethanol into the lumbosacral intervertebral disc of dogs. Lumbosacral intervertebral discs of normal dogs (n = 9) were imaged with magnetic resonance imaging and then injected with gelified ethanol using image guidance. The accuracy of gelified ethanol placement in the nucleus pulposus and presence of leakage of the injected material were documented. Postinjection computed tomography (CT) findings (n = 9), short-term (n = 9) and long-term (n = 4) follow-up magnetic resonance imaging and CT findings were compared to document the distribution of the injected preparation and identify effects on adjacent tissues. Percutaneous injection of the intervertebral disc was successful in delivering radiopaque gelified ethanol to the nucleus pulposus in all dogs. Leakage of the injected material into the vertebral canal was present in three dogs immediately following injection and in another additional dog at 1 year following injection. All dogs tolerated the injection well and had no clinical adverse reactions within the study period. Findings indicated that injection of the nucleus pulposus of healthy dogs was well tolerated, even in the presence of mild leakage of material from the intervertebral disc. © 2015 American College of Veterinary Radiology.

  15. Herb formula "Fufangqishe-Pill" prevents upright posture-induced intervertebral disc degeneration at the lumbar in rats.

    PubMed

    Liang, Qian-Qian; Xi, Zhi-Jie; Bian, Qin; Cui, Xue-Jun; Li, Chen-Guang; Hou, Wei; Shi, Qi; Wang, Yong-Jun

    2010-01-01

    Degeneration of the lumbar spine plays an important role in most chronic low back pain. Prevention of lumbar intervertebral disc (IVD) degeneration is therefore a high research priority. Both our previous multicenter clinical trials and pharmacological research showed that Fufangqishe-Pill (FFQSP), a newly patented traditional Chinese medicine, could effectively relieve the symptoms of neck pain and prevent cervical degeneration. To clarify the effect of FFQSP on lumbar IVD degeneration, we applied a lumbar IVD degeneration rat model induced by prolonged upright posture. Pretreatment of FFQSP for one month prevented the histological changes indicating IVD disorganization; increased type II-collagen level, decreased type X-collagen protein level, and increased Col2alpha1 mRNA expression at all time points; and decreased Col10alpha1, matrix metalloproteinase (MMP)-3, MMP13, and Interleukin (IL)-1beta mRNA expression induced by upright posture for 7 and 9 months. These results suggest that FFQSP prevents lumbar IVD degeneration induced by upright posture. FFQSP is a promising medicine for lumbar IVD degeneration disease.

  16. Commentary on research of bone morphogenetic protein discussed in review article: Genetic advances in the regeneration of the intervertebral disc.

    PubMed

    Epstein, Nancy E

    2013-01-01

    In Maerz, Herkowitz and Baker's review, Molecular and Genetic Advances in the Regeneration of the Intervertebral Disc, they also included an assessment of both in vivo and in vitro complications attributed to Bone Morphogenetic Protein ((BMP): BMP-2, BMP-7). This topic is of particular interest to spinal surgeons, as INFUSE/BMP (Medtronic, Memphis, TN, USA) is utilized, mostly off-label in the cervical, thoracic, and lumbar spine, where it has been associated with significant perioperative and postoperative complications. BMP-2 and BMP-7 are the only human recombinant growth factors approved by the Food and Drug Administration (FDA) for anterior lumbar interbody fusion (ALIF) in combination with the Lumbar Tapered Fusion Device (LT Cage: Medtronic, Memphis, TN, USA). BMP, however, is more typically utilized "off-label" in many other areas of the spine, where it has been associated with numerous complications. Maerz, et al. documented multiple in vivo and in vitro laboratory-based animal studies dating back to the early 2000's in which BMP (INFUSE is the clinically available product: Medtronic, Memphis, TN) contributed to multiple complications, especially when utilized at higher doses. These complications included; inflammation/inflammatory processes, increased vascularity, fibroblastic proliferation, and catabolism. Maerz, et al. reviewed the increased risks associated with utilizing high dose BMP=INFUSE in spinal surgery, particularly when utilized "off-label". The authors clearly indicate that BMP/INFUSE should be further investigated (based on the old and new findings) to better determine/confirm its safety, efficacy, and dosing.

  17. Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T.

    PubMed

    Trattnig, Siegfried; Stelzeneder, David; Goed, Sabine; Reissegger, Michael; Mamisch, Tallal C; Paternostro-Sluga, Tatjana; Weber, Michael; Szomolanyi, Pavol; Welsch, Goetz H

    2010-11-01

    To assess the relationship of morphologically defined lumbar disc abnormalities with quantitative T2 mapping. Fifty-three patients, mean age 39 years, with low back pain were examined by MRI at 3 T (sagittal T1-fast spin echo (FSE), three-plane T2-FSE for morphological MRI, multi-echo spin echo for T2 mapping). All discs were classified morphologically. Regions of interest (ROIs) for the annulus were drawn. The space in between was defined as the nucleus pulposus (NP). To evaluate differences between the classified groups, univariate ANOVA with post hoc Games-Howell and paired two-tailed t tests were used. In 265 discs we found 39 focal herniations, 10 annular tears, 123 bulging discs and 103 "normal discs". T2 values of the NP between discs with annular tear and all other groups were statistically significantly different (all p ≤ 0.01). Discs with annular tears showed markedly lower NP T2 values than discs without. The difference in NP T2 values between discs with focal herniation and normal discs (p = 0.005) was statistically significant. There was no difference in NP T2 values between bulging and herniated discs (p = 0.11) Quantitative T2 mapping of the nucleus pulposus of the intervertebral disc in the lumbar spine at 3 T reveals significant differences in discs with herniation and annular tears compared with discs without these abnormalities.

  18. Spinal Epidural Varices, a great Mimic of Intervertebral Disc Prolapse - A Case Series

    PubMed Central

    V, Raghavendra; Haridas, Papanaik; Kumar, Anand; K, Ajith

    2014-01-01

    Introduction: Epidural venous plexus enlargement, presenting with low back pain and radiculopathy, is an uncommon cause of nerve roots impingement. This condition commonly mimics a herniated nucleus pulposus radiologically. The radiological diagnosis is often missed and the diagnosis is made during the surgery. We are hereby presenting 2 such cases of epidural varices mimicking intervertebral disc prolapse with lumbar radiculopathy. Case Report: Case 1: 43 yr old female presented with acute exacerbation of low back ache and significant right L5–S1 radiculopathy without neurological deficit. MRI reported as L5-S1 disc prolapse. Intra-operatively engorged dilated epidural vein seen compressing S1 nerve root. Associated Disc bulge removed and Coagulative ablation of the dilated epidural vein was performed Case 2: 45 year old male manual labourer presented with backache with left sided sciatica since 8 months, increased in severity since past 1month associated with sensory blunting in L5 and S1 dermatomes. Neurologic examination revealed normal muscle power in his lower extremities. Sensations was blunted in L5 and S1 dermatomes. MRI was reported as L5-S1 disc prolapsed compressing left S1 nerve root. Decompression of the L5–S1 intervertebral space was performed through a left –sidelaminotomy. Large, engorged serpentine epidural veins was found in the axilla of S1 nerve root, compressing it. Coagulative ablation of the dilated epidural vein was performed. Retrospectively, features of epidural varices were noted in the preoperative magnetic resonance imaging scans. Both patients had significant improvement in radiculopathy immediate postoperatively, and sensory symptoms resolved over the next 6 weeks in second case. At recent follow up, both patients had significant relief of symptoms and no recurrent radicular symptoms. Conclusion: An abnormal dilated epidural venous plexus that mimics a herniated lumbar disc is a rare entity. This pathology should be always kept

  19. Discover cervical disc arthroplasty versus anterior cervical discectomy and fusion in symptomatic cervical disc diseases: A meta-analysis

    PubMed Central

    Shangguan, Lei; Ning, Guang-Zhi; Tang, Yu; Wang, Zhe; Luo, Zhuo-Jing; Zhou, Yue

    2017-01-01

    Objective Symptomatic cervical disc disease (SCDD) is a common degenerative disease, and Discover artificial cervical disc, a new-generation nonconstrained artificial disk, has been developed and performed gradually to treat it. We performed this meta-analysis to compare the efficacy and safety between Discover cervical disc arthroplasty (DCDA) and anterior cervical discectomy and fusion (ACDF) for SCDD. Methods An exhaustive literature search of PubMed, EMBASE, and the Cochrane Library was conducted to identify randomized controlled trials that compared DCDA with ACDF for patients suffering SCDD. A random-effect model was used. Results were reported as standardized mean difference or risk ratio with 95% confidence interval. Results Of 33 articles identified, six studies were included. Compared with ACDF, DCDA demonstrated shorter operation time (P < 0.0001), and better range of motion (ROM) at the operative level (P < 0.00001). But no significant differences were observed in blood loss, neck disability index (NDI) scores, neck and arm pain scores, Japanese orthopaedic association (JOA) scores, secondary surgery procedures and adverse events (P > 0.05). Subgroup analyses did not demonstrated significant differences. Conclusion In conclusion, DCDA presented shorter operation time, and better ROM at the operative level. However, no significant differences were observed in blood loss, NDI scores, neck and arm pain scores, JOA scores, secondary surgery procedures and adverse events between the two groups. Additionally, more studies of high quality with mid- to long-term follow-up are required in future. PMID:28358860

  20. Expression of semaphorin 3A and its receptors in the human intervertebral disc: potential role in regulating neural ingrowth in the degenerate intervertebral disc

    PubMed Central

    2010-01-01

    Introduction Intervertebral disc (IVD) degeneration is considered a major underlying factor in the pathogenesis of chronic low back pain. Although the healthy IVD is both avascular and aneural, during degeneration there is ingrowth of nociceptive nerve fibres and blood vessels into proximal regions of the IVD, which may contribute to the pain. The mechanisms underlying neural ingrowth are, however, not fully understood. Semaphorin 3A (sema3A) is an axonal guidance molecule with the ability to repel nerves seeking their synaptic target. This study aimed to identify whether members of the Class 3 semaphorins were expressed by chondrocyte-like cells of the IVD addressing the hypothesis that they may play a role in repelling axons surrounding the healthy disc, thus maintaining its aneural condition. Methods Human IVD samples were investigated using reverse transcription polymerase chain reaction (RT-PCR) to identify gene expression of sema3A, 3F and their receptors: neuropilins (1 and 2) and plexins (A1-4). Sema3A protein was also localised within sections of normal and degenerate human IVD and immunopositivity quantified. Serial sections were stained using PGP9.5 and CD31 to correlate semaphorin 3A expression with nerve and blood vessel ingrowth, respectively. Results Sema3A protein was expressed highly in the healthy disc, primarily localised to the outer annulus fibrosus. In degenerate samples, sema3A expression decreased significantly in this region, although cell clusters within the degenerate nucleus pulposus exhibited strong immunopositivity. mRNA for sema3A receptors was also identified in healthy and degenerate tissues. CD31 and PGP9.5 were expressed most highly in degenerate tissues correlating with low expression of sema3A. Conclusions This study is the first to establish the expression of semaphorins and their receptors in the human IVD with a decrease seen in the degenerate painful IVD. Sema3A may therefore, amongst other roles, act as a barrier to

  1. Adipose-Derived Stromal Cells Protect Intervertebral Disc Cells in Compression: Implications for Stem Cell Regenerative Disc Therapy

    PubMed Central

    Sun, Zhen; Luo, Beier; Liu, Zhi-Heng; Samartzis, Dino; Liu, Zhongyang; Gao, Bo; Huang, Liangliang; Luo, Zhuo-Jing

    2015-01-01

    Introduction: Abnormal biomechanics plays a role in intervertebral disc degeneration. Adipose-derived stromal cells (ADSCs) have been implicated in disc integrity; however, their role in the setting of mechanical stimuli upon the disc's nucleus pulposus (NP) remains unknown. As such, the present study aimed to evaluate the influence of ADSCs upon NP cells in compressive load culture. Methods: Human NP cells were cultured in compressive load at 3.0MPa for 48 hours with or without ADSCs co-culture (the ratio was 50:50). We used flow cytometry, live/dead staining and scanning electron microscopy (SEM) to evaluate cell death, and determined the expression of specific apoptotic pathways by characterizing the expression of activated caspases-3, -8 and -9. We further used real-time (RT-) PCR and immunostaining to determine the expression of the extracellular matrix (ECM), mediators of matrix degradation (e.g. MMPs, TIMPs and ADAMTSs), pro-inflammatory factors and NP cell phenotype markers. Results: ADSCs inhibited human NP cell apoptosis via suppression of activated caspase-9 and caspase-3. Furthermore, ADSCs protected NP cells from the degradative effects of compressive load by significantly up-regulating the expression of ECM genes (SOX9, COL2A1 and ACAN), tissue inhibitors of metalloproteinases (TIMPs) genes (TIMP-1 and TIMP-2) and cytokeratin 8 (CK8) protein expression. Alternatively, ADSCs showed protective effect by inhibiting compressive load mediated increase of matrix metalloproteinases (MMPs; MMP-3 and MMP-13), disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs; ADAMTS-1 and 5), and pro-inflammatory factors (IL-1beta, IL-6, TGF-beta1 and TNF-alpha). Conclusions: Our study is the first in vitro study assessing the impact of ADSCs on NP cells in an un-physiological mechanical stimulation culture environment. Our study noted that ADSCs protect compressive load induced NP cell death and degradation by inhibition of activated caspase-9 and -3

  2. Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration

    PubMed Central

    O'Connell, Grace D.; Jacobs, Nathan T.; Sen, Sounok; Vresilovic, Edward J.; Elliott, Dawn M.

    2011-01-01

    The intervertebral disc maintains a balance between externally applied loads and internal osmotic pressure. Fluid flow plays a key role in this process, causing fluctuations in disc hydration and height. The objectives of this study were to quantify and model the axial creep and recovery responses of nondegenerate and degenerate human lumbar discs. Two experiments were performed. First, a slow compressive ramp was applied to 2000 N, unloaded to allow recovery for up to 24 hours, and re-applied. The linear-region stiffness and disc height were within 5% of the initial condition for recovery times greater than 8 hours. In the second experiment, a 1000 N creep load was applied for four hours, unloaded recovery monitored for 24 hours, and the creep load repeated. A viscoelastic model comprised of a “fast” and “slow” exponential response was used to describe the creep and recovery, where the fast response is associated with flow in the nucleus pulposus (NP) and endplate, while the slow response is associated with the annulus fibrosus (AF). The study demonstrated that recovery is 3-4X slower than loading. The fast response was correlated with degeneration, suggesting larger changes in the NP with degeneration compared to the AF. However, the fast response comprised only 10-15% of the total equilibrium displacement, with the AF-dominated slow response comprising 40-70%. Finally, the physiological loads and deformations and their associated long equilibrium times confirm that diurnal loading does not represent “equilibrium” in the disc, but that over time the disc is in steady-state. PMID:21783103

  3. Stress - Strain Response of the Human Spine Intervertebral Disc As an Anisotropic Body. Mathematical Modeling and Computation

    NASA Astrophysics Data System (ADS)

    Minárová, Mária; Sumec, Jozef

    2016-01-01

    The paper deals with the biomechanical investigation on the human lumbar intervertebral disc under the static load. The disc is regarded as a two - phased ambient consisting of a fibrous outer part called annulus fibrosis and a liquid inner part nucleus pulposus. Due to the fibrous structure, the annulus fibrosis can be treated by using a special case of anisotropy - transversal isotropy. In the paper the corresponding tensor of material constants is derived. The tensor consequently incomes to the constitutive equations determining the stress - strain relation in the material. In order to study the mechanical behaviour the disc is observed within the motion segment, the basic unit for motion tracing. The motion segment involves two neighbouring vertebrae and the intervertebral disc between them that connect them both. When constitutive equations are accomplished, they can be incorporated in the finite element analysis. The illustrative example of the intervertebral disc L2/L3, the disc between the second and the third lumbar vertebrae the lumbar part of spine, with its computer implementation is performed. Finally the comparison of the results of using anisotropic and homogenized approach is provided. The comparison illustrates the eligibility of such a kind of approach.

  4. Puncture of a lumbar intervertebral disc induces changes in spontaneous pain behavior: an experimental study in rats.

    PubMed

    Olmarker, Kjell

    2008-04-15

    Changes in spontaneous behavior was studied in rats after a controlled puncture of a lumbar intervertebral disc. To study if puncture of a lumbar disc would induce recordable changes in spontaneous pain behavior. Anular tears are common and may be found both in patients with low back pain and in asymptomatic patients. It has been suggested that anular injury may relate to low back pain either by stimulation of local sensory receptors in the posterior part of the anulus fibrosus or by ingrowth of newly formed nerve fibers into the deeper parts of the disc. The objective of the study was to analyze if a controlled puncture of a lumbar intervertebral disc might induce recordable changes in spontaneous behavior of rats. After anesthesia, the L4-L5 disc was punctured in 10 rats. Ten other rats received sham surgery. Spontaneous behavior was assessed at days 1, 3, 7, 14, and 21 after surgery. Statistically significant differences in behavior were seen at all days analyzed. Most consistent were increases in "grooming" and in "wet-dog shakes." Puncture of a lumbar intervertebral disc in the rat produces changes in spontaneous behavior mainly seen as increased "grooming" and "wet-dog shakes," 2 behaviors that have been suggested to indicate stress and pain.

  5. Structural and Ultrastructural Analysis of the Cervical Discs of Young and Elderly Humans.

    PubMed

    Fontes, Ricardo Braganca de Vasconcellos; Baptista, Josemberg Silva; Rabbani, Said Rahnamaye; Traynelis, Vincent C; Liberti, Edson Aparecido

    2015-01-01

    Several studies describing the ultrastructure and extracellular matrix (ECM) of intervertebral discs (IVDs) involve animal models and specimens obtained from symptomatic individuals during surgery for degenerative disease or scoliosis, which may not necessarily correlate to changes secondary to normal aging in humans. These changes may also be segment-specific based on different load patterns throughout life. Our objective was to describe the ECM and collagen profile of cervical IVDs in young (G1 - <35 years) and elderly (G2 - >65 years) presumably-asymptomatic individuals. Thirty cervical discs per group were obtained during autopsies of presumably-asymptomatic individuals. IVDs were analyzed with MRI, a morphological grading scale, light microscopy, scanning electron microscopy (SEM) and immunohistochemistry (IHC) for collagen types I, II, III, IV, V, VI, IX and X. Macroscopic degenerative features such as loss of annulus-nucleus distinction and fissures were found in both groups and significantly more severe in G2 as expected. MRI could not detect all morphological changes when compared even with simple morphological inspection. The loose fibrocartilaginous G1 matrix was replaced by a denser ECM in G2 with predominantly cartilaginous characteristics, chondrocyte clusters and absent elastic fibers. SEM demonstrated persistence of an identifiable nucleus and Sharpey-type insertion of cervical annulus fibers even in highly-degenerated G2 specimens. All collagen types were detected in every disc sector except for collagen X, with the largest area stained by collagens II and IV. Collagen detection was significantly decreased in G2: although significant intradiscal differences were rare, changes may occur faster or earlier in the posterior annulus. These results demonstrate an extensive modification of the ECM with maintenance of basic ultrastructural features despite severe macroscopic degeneration. Collagen analysis supports there is not a "pathologic" collagen type

  6. [Correlation between shape and direction of small articular surface in lower lumbar vertebrae and degeneration of intervertebral disc].

    PubMed

    Tan, L; Bai, X; Li, D

    1997-01-01

    To assess the possible correlation between the shape and the direction of the small articular surface in the lower lumbar vertebrae and the degeneration of the intervertebral disc, we investigated with computed tomography (CT) and evaluated with statistics the small articular surface and the transverse interface-joint angle (TIFA) of the L4-5 and the L5-S1 in 152 cases who had normal or degenerative discs verified through CT, MRI or operation. The small articular surface was found arc in 69.1% of the L4-5 and in 23.0% of the L5-S1. The TIFA of the L4-5 was less than that of the L5-S1. There was no correlation between the ratio of degeneration of the intervertebral disc at the L4-5 and the TIFA of the L4-5 and the L5-S1, but the ratio of degeneration of the intervertebral disc at the L5-S1 had postive correlation with the TIFA of the L4-5, negative correlation with the TIFA of the L5-S1, and particular correlation with the TIFA of the L5-S1 and L4-5. These results suggest that the shape and direction of the lower lumbar facet joint are related to the lumbar degeneration of intervertebral disc and the causes of degeneration at the L4-5 disc differ from those at the L5-S1 disc in biomechanics.

  7. Cervical total disc replacement with the Mobi-C cervical artificial disc compared with anterior discectomy and fusion for treatment of 2-level symptomatic degenerative disc disease: a prospective, randomized, controlled multicenter clinical trial: clinical article.

    PubMed

    Davis, Reginald J; Kim, Kee D; Hisey, Michael S; Hoffman, Gregory A; Bae, Hyun W; Gaede, Steven E; Rashbaum, Ralph F; Nunley, Pierce Dalton; Peterson, Daniel L; Stokes, John K

    2013-11-01

    Cervical total disc replacement (TDR) is intended to treat neurological symptoms and neck pain associated with degeneration of intervertebral discs in the cervical spine. Anterior cervical discectomy and fusion (ACDF) has been the standard treatment for these indications since the procedure was first developed in the 1950s. While TDR has been shown to be a safe and effective alternative to ACDF for treatment of patients with degenerative disc disease (DDD) at a single level of the cervical spine, few studies have focused on the safety and efficacy of TDR for treatment of 2 levels of the cervical spine. The primary objective of this study was to rigorously compare the Mobi-C cervical artificial disc to ACDF for treatment of cervical DDD at 2 contiguous levels of the cervical spine. This study was a prospective, randomized, US FDA investigational device exemption pivotal trial of the Mobi-C cervical artificial disc conducted at 24 centers in the US. The primary clinical outcome was a composite measure of study success at 24 months. The comparative control treatment was ACDF using allograft bone and an anterior plate. A total of 330 patients were enrolled, randomized, and received study surgery. All patients were diagnosed with intractable symptomatic cervical DDD at 2 contiguous levels of the cervical spine between C-3 and C-7. Patients were randomized in a 2:1 ratio (TDR patients to ACDF patients). A total of 225 patients received the Mobi-C TDR device and 105 patients received ACDF. At 24 months only 3.0% of patients were lost to follow-up. On average, patients in both groups showed significant improvements in Neck Disability Index (NDI) score, visual analog scale (VAS) neck pain score, and VAS arm pain score from preoperative baseline to each time point. However, the TDR patients experienced significantly greater improvement than ACDF patients in NDI score at all time points and significantly greater improvement in VAS neck pain score at 6 weeks, and at 3, 6, and

  8. Can the pattern of vertebral marrow oedema differentiate intervertebral disc infection from degenerative changes?

    PubMed

    Shrot, S; Sayah, A; Berkowitz, F

    2017-07-01

    To evaluate whether various patterns of bone marrow oedema could be used to discriminate between infection and degenerative change. Seventy patients with imaging features suspicious for discitis and available clinical follow-up were blindly reviewed for vertebral marrow oedema on sagittal short-tau inversion recovery (STIR) images according to the following patterns: I, vertebra oedema is adjacent to the intervertebral space and sharply-marginated; II, vertebral oedema is adjacent to the intervertebral space but not sharply marginated from normal marrow or involves the entire vertebral body; and III, vertebral oedema is distant from the endplate with intervening hypointense marrow signal. Of 45 patients with a clinical diagnosis of discitis, pattern II was the most common oedema pattern (64%). Approximately 20% and 9% of discitis patients showed patterns I and III, respectively. In patients with degenerative changes, 44% patients showed pattern I, 32% showed pattern II, and 24% showed pattern III. Pattern II had a sensitivity, specificity, and positive predictive value of 0.64, 0.68, and 0.78 for diagnosing spine infection, respectively. Although bone marrow oedema in infective discitis most often extends from the disc space and has indistinct margins, the oedema may also have sharp margins or be remote from the involved intervertebral space. Bone marrow oedema patterns of infective discitis overlap with those of degenerative disease and are not sufficiently reliable to exclude infection in cases with magnetic resonance imaging findings suggestive of discitis. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Bootstrap prediction bands for cervical spine intervertebral kinematics during in vivo three-dimensional head movements.

    PubMed

    Anderst, William J

    2015-05-01

    There is substantial inter-subject variability in intervertebral range of motion (ROM) in the cervical spine. This makes it difficult to define "normal" ROM, and to assess the effects of age, injury, and surgical procedures on spine kinematics. The objective of this study was to define normal intervertebral kinematics in the cervical spine during dynamic functional loading. Twenty-nine participants performed dynamic flexion\\extension, axial rotation, and lateral bending while biplane radiographs were collected at 30 images/s. Vertebral motion was tracked with sub-millimeter accuracy using a validated volumetric model-based tracking process that matched subject-specific CT-based bone models to the radiographs. Gaussian point-by-point and bootstrap techniques were used to determine 90% prediction bands for the intervertebral kinematic curves at 1% intervals of each movement cycle. Cross validation was performed to estimate the true achieved coverage for each method. For a targeted coverage of 90%, the estimated true coverage using bootstrap prediction bands averaged 86±5%, while the estimated true coverage using Gaussian point-by-point intervals averaged 56±10% over all movements and all motion segments. Bootstrap prediction bands are recommended as the standard for evaluating full ROM cervical spine kinematic curves. The data presented here can be used to identify abnormal motion in patients presenting with neck pain, to drive computational models, and to assess the biofidelity of in vitro loading paradigms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Role of load history in intervertebral disc mechanics and intradiscal pressure generation.

    PubMed

    Hwang, David; Gabai, Adam S; Yu, Miao; Yew, Alvin G; Hsieh, Adam H

    2012-01-01

    Solid-fluid interactions play an important role in mediating viscoelastic behaviour of biological tissues. In the intervertebral disc, water content is governed by a number of factors, including age, disease and mechanical loads, leading to changes in stiffness characteristics. We hypothesized that zonal stress distributions depend on load history, or the prior stresses experienced by the disc. To investigate these effects, rat caudal motion segments were subjected to compressive creep biomechanical testing in vitro using a protocol that consisted of two phases: a Prestress Phase (varied to represent different histories of load) followed immediately by an Exertion Phase, identical across all Prestress groups. Three analytical models were used to fit the experimental data in order to evaluate load history effects on gross and zonal disc mechanics. Model results indicated that while gross transient response was insensitive to load history, there may be changes in the internal mechanics of the disc. In particular, a fluid transport model suggested that the role of the nucleus pulposus in resisting creep during Exertion depended on Prestress conditions. Separate experiments using similarly defined load history regimens were performed to verify these predictions by measuring intradiscal pressure with a fibre optic sensor. We found that the ability for intradiscal pressure generation was load history-dependent and exhibited even greater sensitivity than predicted by analytical models. A 0.5 MPa Exertion load resulted in 537.2 kPa IDP for low magnitude Prestress compared with 373.7 kPa for high magnitude Prestress. Based on these measurements, we developed a simple model that may describe the pressure-shear environment in the nucleus pulposus. These findings may have important implications on our understanding of how mechanical stress contributes to disc health and disease etiology.

  11. A novel approach for the annulus needle puncture model of intervertebral disc degeneration in rabbits

    PubMed Central

    Lei, Tao; Zhang, Yuan; Zhou, Qiang; Luo, Xiaoji; Tang, Ke; Chen, Rongsheng; Yu, Chang; Quan, Zhengxue

    2017-01-01

    Objective: To create the rabbit animal model of intervertebral disc (IVD) degeneration by the annulus needle puncture technique through a novel transabdominal approach. Methods: Thirteen New Zealand White rabbits underwent annular puncture at the L3/4, L4/5, and L5/6 discs through a transabdominal approach. For a longitudinal study to assess changes in disc height over time, serial X-rays, T2-weighted magnetic resonance imaging (MRI) (T2WI), and T2 mapping MRI were performed pre-operation and at 2, 4, and 6 weeks after puncture. Three rabbits were randomly selected for histological evaluation at 4 weeks post-operation. In addition, the remaining rabbits underwent a second surgery at 6 weeks after puncture. Results: All rabbits underwent the initial and second surgeries successfully without nerve-related complications. The operations had no significant effects on the rabbit body weight, and partial mild intra-abdominal adhesions were found in only 1 rabbit. The punctured discs were confirmed to be those of interest post-surgery and displayed progressive degeneration in disc height index (%), T2WI, and T2 relaxation time over time. At 4 weeks after puncture, a histological analysis revealed notochordal cell loss from the nucleus pulposus, fibrocartilage filling the nucleus pulposus space, and annulus fibrosus disorganization. Conclusion: The annular needle puncture model established through a transabdominal approach, which demonstrates better visualization, exact identification, consistent degeneration degrees and minimal complications, is radiologically and histologically consistent with human IVD degeneration. T2 mapping MRI can quantitatively discriminate between grades of mild degeneration. PMID:28386320

  12. [Clinical application of percutaneous laser disc decompression in the treatment of cervical disc herniation].

    PubMed

    Li, Kangren; Qin, Hui; Chen, Jian

    2007-05-01

    To evaluate the clinical effect of percutaneous laser disc decompression (PLDD) in the treatment of cervical disc herniation. From March 2003 to December 2005, 47 patients with cervical disc herniation (96 cervical disc) were treated with PLDD. There were 25 males and 22 females with an average age of 56 years, ranging from 37 to 72 years. The lesion were located at the levels of C3,4 in 20 discs, C4,5 in 27 discs, C5,6 in 31 discs, C6,7 in 18 discs. The laser fiber was introduced into the center of the herniated disc space by percutaneous puncture from anterior neck surface under fluoroscopic guidance. Laser reduced the intra-disc pressure through the vaporization of disc nucleu. The adopted laser was semi-conducted with a wavelength of 810 nm. Each laser output power was 15 W with 1 s emission and 2 s interval. The total laser output power was decided depending on the degenerative degree of the disc and the reactive process of heat, ranging from 300 to 1 000 J. Of 47 patients, 42 were followed up for 3 to 31 months (mean 13 months). The clinical evaluation was classified as excellent in 18 cases (42.9%), good in 14 cases (33.3%), fair in 6 cases (14.3%) and poor in 4 cases (9.5%). The general response rate was 90.5%. The excellent and good rate was 76.2%. No complications occurred. PLDD can relieve the symptoms and signs of patients suffering from cervical disc herniation with less complication. The manipulation of PLDD is easy, safe and mini-invasive.

  13. Intervertebral disc responses during spinal loading with MRI-compatible spinal compression apparatus

    NASA Astrophysics Data System (ADS)

    Mitsui, Iwane; Yamada, Yoshiya

    2004-07-01

    This study addresses the development of an MRI-compatible spinal compression harness for use as a research and diagnostic tool. This apparatus adds valuable information to MRI imaging regarding the physiology/biomechanics of intervertebral discs and pathophysiology of back pain in patients and astronauts in space. All materials of the spinal compression apparatus are non-metallic for MRI compatibility. The compact design fits into standard MRI or CT scanners and loading is adjusted to specific percentages of BW with elastic cords. Previously this capability has not been available. Three healthy male subjects were fitted with a spinal compression harness and placed supine in a MRI scanner. Longitudinal distance between T7/8 and L5/S1 discs decreased 5.6 mm with 50% BW compression. Lumbosacral angle increased 17.2 degrees. T2 values of nucleus pulposus from L1/2 to L5/S1 discs increased 18.2+/-6.1% (+/-SD) during 50% BW compression and 25.3+/-7.4% (+/-SD) during 75% BW compression.

  14. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair.

    PubMed

    Schek, R M; Michalek, A J; Iatridis, J C

    2011-04-18

    Treatment of damaged intervertebral discs is a significant clinical problem and, despite advances in the repair and replacement of the nucleus pulposus, there are few effective strategies to restore defects in the annulus fibrosus. An annular repair material should meet three specifications: have a modulus similar to the native annulus tissue, support the growth of disc cells, and maintain adhesion to tissue under physiological strain levels. We hypothesized that a genipin crosslinked fibrin gel could meet these requirements. Our mechanical results showed that genipin crosslinked fibrin gels could be created with a modulus in the range of native annular tissue. We also demonstrated that this material is compatible with the in vitro growth of human disc cells, when genipin:fibrin ratios were 0.25:1 or less, although cell proliferation was slower and cell morphology more rounded than for fibrin alone. Finally, lap tests were performed to evaluate adhesion between fibrin gels and pieces of annular tissue. Specimens created without genipin had poor handling properties and readily delaminated, while genipin crosslinked fibrin gels remained adhered to the tissue pieces at strains exceeding physiological levels and failed at 15-30%. This study demonstrated that genipin crosslinked fibrin gels show promise as a gap-filling adhesive biomaterial with tunable material properties, yet the slow cell proliferation suggests this biomaterial may be best suited as a sealant for small annulus fibrosus defects or as an adhesive to augment large annulus repairs. Future studies will evaluate degradation rate, fatigue behaviors, and long-term biocompatibility.

  15. Spatial and structural dependence of mechanical properties of porcine intervertebral disc.

    PubMed

    Causa, F; Manto, L; Borzacchiello, A; De Santis, R; Netti, P A; Ambrosio, L; Nicolais, L

    2002-12-01

    Structure-function relationship of natural tissues is crucial to design a device mimicking the structures present in human body. For this purpose, to provide guidelines to design an intervertebral disc (IVD) substitute, in this study the influence of the spatial location and structural components on the mechanical properties of porcine IVD was investigated. Local compressive stiffness (LCS) was measured on the overall disc, also constrained between the two adjacent vertebrae: the dependence on the lumbar position was evaluated. The compliance values in the anterior position (A) were higher than both in the central posterior (CP) and in the lateral-posterior (RP, LP) locations. The values of Young's Modulus (74.67+/-6.03 MPa) and compression break load (1.36x10(4)+/-0.09x10(4)N) of the disc were also evaluated by distributed compression test. The NP rheological behavior was typical of weak-gels, with elastic modulus G' always higher than viscous modulus G" all over the frequency range investigated (G' and G" respectively equal to 320 and 85 Pa at 1 Hz) and with the moduli trends were almost parallel to each other.

  16. Intervertebral disc biomechanical analysis using the finite element modeling based on medical images.

    PubMed

    Li, Haiyun; Wang, Zheng

    2006-01-01

    In this paper, a 3D geometric model of the intervertebral and lumbar disks has been presented, which integrated the spine CT and MRI data-based anatomical structure. Based on the geometric model, a 3D finite element model of an L1-L2 segment was created. Loads, which simulate the pressure from above were applied to the FEM, while a boundary condition describing the relative L1-L2 displacement is imposed on the FEM to account for 3D physiological states. The simulation calculation illustrates the stress and strain distribution and deformation of the spine. The method has two characteristics compared to previous studies: first, the finite element model of the lumbar are based on the data directly derived from medical images such as CTs and MRIs. Second, the result of analysis will be more accurate than using the data of geometric parameters. The FEM provides a promising tool in clinical diagnosis and for optimizing individual therapy in the intervertebral disc herniation.

  17. Mohawk promotes the maintenance and regeneration of the outer annulus fibrosus of intervertebral discs

    PubMed Central

    Nakamichi, Ryo; Ito, Yoshiaki; Inui, Masafumi; Onizuka, Naoko; Kayama, Tomohiro; Kataoka, Kensuke; Suzuki, Hidetsugu; Mori, Masaki; Inagawa, Masayo; Ichinose, Shizuko; Lotz, Martin K.; Sakai, Daisuke; Masuda, Koichi; Ozaki, Toshifumi; Asahara, Hiroshi

    2016-01-01

    The main pathogenesis of intervertebral disc (IVD) herniation involves disruption of the annulus fibrosus (AF) caused by ageing or excessive mechanical stress and the resulting prolapse of the nucleus pulposus. Owing to the avascular nature of the IVD and lack of understanding the mechanisms that maintain the IVD, current therapies do not lead to tissue regeneration. Here we show that homeobox protein Mohawk (Mkx) is a key transcription factor that regulates AF development, maintenance and regeneration. Mkx is mainly expressed in the outer AF (OAF) of humans and mice. In Mkx−/− mice, the OAF displays a deficiency of multiple tendon/ligament-related genes, a smaller OAF collagen fibril diameter and a more rapid progression of IVD degeneration compared with the wild type. Mesenchymal stem cells overexpressing Mkx promote functional AF regeneration in a mouse AF defect model, with abundant collagen fibril formation. Our results indicate a therapeutic strategy for AF regeneration. PMID:27527664

  18. New approaches to magnetic resonance imaging of intervertebral discs, tendons, ligaments, and menisci.

    PubMed

    Bydder, Graeme M

    2002-06-15

    This review article discusses new magnetic resonance techniques for imaging collagen containing structures such as intervertebral discs, tendons, and ligaments. The semisolid collagen in tendons and ligaments is not normally demonstrable with magnetic resonance imaging but may be visualized with magic angle imaging and other techniques. This allows these structures to be studied with methods used for other tissues and organs. The ordered nature of collagen provides a directional signature for the tissues that may be of diagnostic value. Solute transport in these avascular or partially avascular structures can be observed with gadolinium chelates. The time scale of this process is much slower than for other tissues of the body. Solid state imaging techniques applied in applied in material sciences may provide other new approaches to diagnosis of disease in these structures.

  19. lncRNAs: novel players in intervertebral disc degeneration and osteoarthritis.

    PubMed

    Chen, Wen-Kang; Yu, Xiao-Hua; Yang, Wei; Wang, Cheng; He, Wen-Si; Yan, Yi-Guo; Zhang, Jian; Wang, Wen-Jun

    2017-02-01

    The term long non-coding RNA (lncRNA) refers to a group of RNAs with length more than 200 nucleotides, limited protein-coding potential, and having widespread biological functions, including regulation of transcriptional patterns and protein activity, formation of endogenous small interfering RNAs (siRNAs) and natural microRNA (miRNA) sponges. Intervertebral disc degeneration (IDD) and osteoarthritis (OA) are the most common chronic, prevalent and age-related degenerative musculoskeletal disorders. Numbers of lncRNAs are differentially expressed in human degenerative nucleus pulposus tissue and OA cartilage. Moreover, some lncRNAs have been shown to be involved in multiple pathological processes during OA, including extracellular matrix (ECM) degradation, inflammatory responses, apoptosis and angiogenesis. In this review, we summarize current knowledge concerning lncRNAs, from their biogenesis, classification and biological functions to molecular mechanisms and therapeutic potential in IDD and OA.

  20. Patient preferences and expectations for care: determinants in patients with lumbar intervertebral disc herniation.

    PubMed

    Lurie, Jon D; Berven, Sigurd H; Gibson-Chambers, Jennifer; Tosteson, Tor; Tosteson, Anna; Hu, Serena S; Weinstein, James N

    2008-11-15

    Prospective observational cohort. To describe the baseline characteristics of patients with a diagnosis of intervertebral disc herniation who had different treatment preferences and the relationship of specific expectations with those preferences. Data were gathered from the observational cohort of the Spine Patient Outcomes Research Trial (SPORT). Patients in the observational cohort met eligibility requirements identical to those of the randomized cohort, but declined randomization, receiving instead the treatment of their choice. Baseline preference and expectation data were acquired at the time of enrollment of the patient, before exposure to the informed consent process. Univariate analyses were performed using a t test for continuous variables and chi for categorical variables. Multivariate analyses were also performed with ANCOVA for continuous variables and logistic regression for categorical variables. Multiple logistic regression models were developed in a forward stepwise fashion using blocks of variables. More patients preferred operative care: 67% preferred surgery, 28% preferred nonoperative treatment, and 6% were unsure; 53% of those preferring surgery stated a definite preference, whereas only 18% of those preferring nonoperative care had a definite preference. Patients preferring surgery were younger, had lower levels of education, and higher levels of unemployment/disability. This group also reported higher pain, worse physical and mental functioning, more back pain related disability, a longer duration of symptoms, and more opiate use. Gender, race, comorbidities, and use of other therapies did not differ significantly across preference groups. Patients' expectations regarding improvement with nonoperative care was the strongest predictor of preference. Patient expectations, particularly regarding the benefit of nonoperative treatment, are the primary determinant of surgery preference among patients with lumbar intervertebral disc herniation

  1. Apoptosis, senescence, and autophagy in rat nucleus pulposus cells: Implications for diabetic intervertebral disc degeneration.

    PubMed

    Jiang, Libo; Zhang, Xiaolei; Zheng, Xuhao; Ru, Ao; Ni, Xiao; Wu, Yaosen; Tian, Naifeng; Huang, Yixing; Xue, Enxing; Wang, Xiangyang; Xu, Huazi

    2013-05-01

    This research was aimed to study the mechanisms by which diabetes aggravates intervertebral disc degeneration (IDD) and to discuss the relationship between autophagy and IDD in nucleus pulposus (NP) cells. Sixteen weeks after injecting streptozotocin (STZ), the intervertebral discs (IVDs) were studied by histology, Alcian blue, 1,9-dimethylmethylene blue (DMMB), immunohistochemistry, and RT-PCR to explore the IDD. The apoptosis and senescence of NP cells was investigated by terminal deoxyribonucleotidyl transferase (TDT)-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay, immunohistochemistry, and Western blot for caspase3, caspase8, caspase9, and p16lnk4A (increased in cellular senescence). The level of autophagy in NP cells was detected by Western blot, immunohistochemistry, and transmission electron microscopy (TEM). The proteoglycan and collagen II in the extracellular matrix and the aggrecan and collagen II mRNA expression in NP cells of diabetic rats were decreased compared with the control group. Diabetes increased apoptosis of NP cells and led to activations of initiators of intrinsic (caspases-9) and extrinsic (caspase-8) pathways as well as their common executioner (caspase-3). Cellular senescence was increased about twofold in NP of diabetic rats. In addition, the Western blot, immunohistochemistry, and TEM demonstrated higher level of autophagy in NP cells of diabetic rats than control rats to a statistically significant extent. These findings support that diabetes induced by STZ can cause IDD by accelerating the apoptosis and senescence of NP cells excluding the overweight influence. And the results suggest that the autophagy may be a response mechanism to the change of NP cells in diabetic rats. Copyright © 2012 Orthopaedic Research Society.

  2. The Effect of Expectations on Treatment Outcome for Lumbar Intervertebral Disc Herniation

    PubMed Central

    Lurie, Jon D.; Henderson, Eric R.; McDonough, Christine M.; Berven, Sigurd H.; Scherer, Emily A.; Tosteson, Tor D.; Tosteson, Anna N. A.; Hu, Serena S.; Weinstein, James N.

    2015-01-01

    Study Design Secondary analysis of randomized and non-randomized prospective cohorts. Objective To examine the effect of patient treatment expectations on treatment outcomes for patients with intervertebral disc herniation. Summary of Background Data Patient expectations about treatment effectiveness may have important relationships with clinical outcomes. Methods Sub-group and re-analysis of the Spine Patient Outcomes Research Trial, a randomized trial and comprehensive cohort study enrolling patients between March 2000 and November 2004 from 13 multidisciplinary spine clinics in 11 US states. Overall 501 randomized and 744 observational patients (1244 total) who were surgical candidates with radiculopathy and imaging confirmed lumbar intervertebral disc herniation were enrolled. The primary study compared surgical discectomy to usual non-operative care; this sub-group analysis reassessed outcomes based on treatment expectations at baseline. Expectations about symptomatic and functional improvement for both surgery and non-operative care were assessed on 5-point scales (1="No Chance (0%)" to 5="Certain (100%)"). Outcomes were assessed using longitudinal regression models analyzed by treatment received. Results Among 1244 IDH SPORT participants, 1168 provided data on both outcomes and baseline expectations and were included in the current analysis: 467 from the randomized and 701 from the observational cohort. Low expectations of outcomes with surgery predicted poorer outcome regardless of treatment. High expectations of outcomes with non-operative care predicted better non-operative outcomes but did not affect surgical results. These differences were of similar magnitude to the difference in outcomes between surgery and non-operative care. Conclusions High expectations of treatment benefit had clinically significant positive associations with outcomes. PMID:26641853

  3. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation.

    PubMed

    Vadalà, Gianluca; Sowa, Gwendolyn; Hubert, Mark; Gilbertson, Lars G; Denaro, Vincenzo; Kang, James D

    2012-05-01

    Recent studies have shown that mesenchymal stem cell (MSC)-based therapy might be an effective approach for the treatment of intervertebral disc degeneration (IDD). However, many unanswered questions remain before clinical translation, such as the most effective stem cell type, a reliable transplantation method, including the carrier choice, and the fate of stem cells after misdirected delivery, among others. The objective of the study was to evaluate the fate and effect of allogenic bone marrow MSCs after transplantation into an IDD model. The L2-3, L3-4 and L4-5 intervertebral discs (IVDs) of four rabbits were stabbed to create IDD. Rabbit MSCs were expanded in vitro and in part transduced with retrovirus/eGFP. After 3 weeks, 1 × 10(5) MSCs were injected into the IVDs. The rabbits were followed by X-ray and MRI 3 and 9 weeks after injection. Then the animals were sacrificed and the spines analysed histologically. MRI showed no signs of regeneration. X-ray and gross anatomy inspection demonstrated large anterolateral osteophytes. Histological analysis showed that the osteophytes were composed of mineralized tissue surrounded by chondrocytes, with the labelled MSCs among the osteophyte-forming cells. The labelled MSCs were not found in the nucleus. Inflammatory cells were not observed in any injected IVDs. These results raise concern that MSCs can migrate out of the nucleus and undesirable bone formation may occur. While cause cannot be inferred from this study, the presence of MSCs in the osteophytes suggests a potential side-effect with this approach. IVD regeneration strategies need to focus on cell carrier systems and annulus-sealing technologies to avoid pitfalls.

  4. Traumatic Migration of the Bryan Cervical Disc Arthroplasty.

    PubMed

    Wagner, Scott C; Kang, Daniel G; Helgeson, Melvin D

    2016-02-01

    Study Design Case study. Objective To describe a case of dislodgment and migration of the Bryan Cervical Disc (Medtronic Sofamor Danek, Memphis, Tennessee, United States) arthroplasty more than 6 months after implantation secondary to low-energy trauma. Methods The inpatient, outpatient, and radiographic medical records of a patient with traumatic migration of the Bryan Cervical Disc arthroplasty were reviewed. The authors have no relevant disclosures to report. Results A 36-year-old man with chronic left upper extremity radiculopathy underwent uncomplicated Bryan Cervical Disc arthroplasty at C5-C6, with complete resolution of his symptoms. Approximately 6 months after his index procedure, he sustained low-energy trauma to the posterior cervical spine, after being struck by a book falling from a shelf. The injury forced his neck into flexion, and though he did not have recurrence of his radiculopathy symptoms, radiographs demonstrated anterior migration of the arthroplasty device. He underwent revision to anterior cervical diskectomy and fusion. Conclusions Although extremely rare, it is imperative that surgeons consider the potential for failure of osseous integration in patients undergoing cervical disk arthroplasty, even beyond 3 to 6 months postoperatively. This concern is especially relevant to press-fit or milled devices like the Bryan Cervical Disc arthroplasty, which lack direct fixation into adjacent vertebral bodies. We are considering modification of our postoperative protocol to improve protection of the device after implantation, even beyond 3 months postoperatively.

  5. Traumatic Migration of the Bryan Cervical Disc Arthroplasty

    PubMed Central

    Wagner, Scott C.; Kang, Daniel G.; Helgeson, Melvin D.

    2015-01-01

    Study Design Case study. Objective To describe a case of dislodgment and migration of the Bryan Cervical Disc (Medtronic Sofamor Danek, Memphis, Tennessee, United States) arthroplasty more than 6 months after implantation secondary to low-energy trauma. Methods The inpatient, outpatient, and radiographic medical records of a patient with traumatic migration of the Bryan Cervical Disc arthroplasty were reviewed. The authors have no relevant disclosures to report. Results A 36-year-old man with chronic left upper extremity radiculopathy underwent uncomplicated Bryan Cervical Disc arthroplasty at C5–C6, with complete resolution of his symptoms. Approximately 6 months after his index procedure, he sustained low-energy trauma to the posterior cervical spine, after being struck by a book falling from a shelf. The injury forced his neck into flexion, and though he did not have recurrence of his radiculopathy symptoms, radiographs demonstrated anterior migration of the arthroplasty device. He underwent revision to anterior cervical diskectomy and fusion. Conclusions Although extremely rare, it is imperative that surgeons consider the potential for failure of osseous integration in patients undergoing cervical disk arthroplasty, even beyond 3 to 6 months postoperatively. This concern is especially relevant to press-fit or milled devices like the Bryan Cervical Disc arthroplasty, which lack direct fixation into adjacent vertebral bodies. We are considering modification of our postoperative protocol to improve protection of the device after implantation, even beyond 3 months postoperatively. PMID:26835211

  6. Outcomes following cervical disc arthroplasty: a retrospective review.

    PubMed

    Cody, John P; Kang, Daniel G; Tracey, Robert W; Wagner, Scott C; Rosner, Michael K; Lehman, Ronald A

    2014-11-01

    Cervical disc arthroplasty has emerged as a viable technique for the treatment of cervical radiculopathy and myelopathy, with the proposed benefit of maintenance of segmental range of motion. There are relatively few, non-industry sponsored studies examining the outcomes and complications of cervical disc arthroplasty. Therefore, we set out to perform a single center evaluation of the outcomes and complications of cervical disc arthroplasty. We performed a retrospective review of all patients from a single military tertiary medical center undergoing cervical disc arthroplasty from August 2008 to August 2012. The clinical outcomes and complications associated with the procedure were evaluated. A total of 219 consecutive patients were included in the review, with an average follow-up of 11.2 (±11.0)months. Relief of pre-operative symptoms was noted in 88.7% of patients, and 92.2% of patients were able to return to full pre-operative activity. There was a low rate of complications related to the anterior cervical approach (3.2% with recurrent laryngeal nerve injury, 8.9% with dysphagia), with no device/implant related complications. Symptomatic cervical radiculopathy is a common problem in both the civilian and active duty military populations and can cause significant disability leading to loss of work and decreased operational readiness. There exist several surgical treatment options for appropriately indicated patients. Based on our findings, cervical disc arthroplasty is a safe and effective treatment for symptomatic cervical radiculopathy and myelopathy, with a low incidence of complications and high rate of symptom relief.

  7. A rat tail temporary static compression model reproduces different stages of intervertebral disc degeneration with decreased notochordal cell phenotype.

    PubMed

    Hirata, Hiroaki; Yurube, Takashi; Kakutani, Kenichiro; Maeno, Koichiro; Takada, Toru; Yamamoto, Junya; Kurakawa, Takuto; Akisue, Toshihiro; Kuroda, Ryosuke; Kurosaka, Masahiro; Nishida, Kotaro

    2014-03-01

    The intervertebral disc nucleus pulposus (NP) has two phenotypically distinct cell types-notochordal cells (NCs) and non-notochordal chondrocyte-like cells. In human discs, NCs are lost during adolescence, which is also when discs begin to show degenerative signs. However, little evidence exists regarding the link between NC disappearance and the pathogenesis of disc degeneration. To clarify this, a rat tail disc degeneration model induced by static compression at 1.3 MPa for 0, 1, or 7 days was designed and assessed for up to 56 postoperative days. Radiography, MRI, and histomorphology showed degenerative disc findings in response to the compression period. Immunofluorescence displayed that the number of DAPI-positive NP cells decreased with compression; particularly, the decrease was notable in larger, vacuolated, cytokeratin-8- and galectin-3-co-positive cells, identified as NCs. The proportion of TUNEL-positive cells, which predominantly comprised non-NCs, increased with compression. Quantitative PCR demonstrated isolated mRNA up-regulation of ADAMTS-5 in the 1-day loaded group and MMP-3 in the 7-day loaded group. Aggrecan-1 and collagen type 2α-1 mRNA levels were down-regulated in both groups. This rat tail temporary static compression model, which exhibits decreased NC phenotype, increased apoptotic cell death, and imbalanced catabolic and anabolic gene expression, reproduces different stages of intervertebral disc degeneration.

  8. A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs.

    PubMed

    Nikkhoo, Mohammad; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin

    2013-06-01

    Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The meta-model analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the anulus fibrosus and nucleus pulposus is critical for the quality of the simulation. We developed a material property updating protocol, which is basically a fitting algorithm consisted of finite element simulations and a quadratic response surface regression. This protocol was used to find the material properties, such as the hydraulic permeability, elastic modulus, and Poisson's ratio, of intact and degenerated porcine discs. The results showed that the in vitro disc experimental deformations were well fitted with limited finite element simulations and a quadratic response surface regression. The comparison of material properties of intact and degenerated discs showed that the hydraulic permeability significantly decreased but Poisson's ratio significantly increased for the degenerated discs. This study shows that the developed protocol is efficient and effective in defining material properties of a complex structure such as the intervertebral disc.

  9. Biomechanical and rheological characterization of mild intervertebral disc degeneration in a large animal model.

    PubMed

    Detiger, Suzanne E L; Hoogendoorn, Roel J W; van der Veen, Albert J; van Royen, Barend J; Helder, Marco N; Koenderink, Gijsje H; Smit, Theo H

    2013-05-01

    Biomechanical properties of healthy and degenerated nucleus pulposus (NP) are thought to be important for future regenerative strategies for intervertebral disc (IVD) repair. However, which properties are pivotal as design criteria when developing NP replacement materials is ill understood. Therefore, we determined and compared segmental biomechanics and NP viscoelastic properties in normal and mildly degenerated discs. In eight goats, three lumbar IVDs were chemically degenerated using chondroitinase ABC (CABC), confirmed with radiography and MRI after euthanasia 12 weeks post-operative. Neutral zone (NZ) stiffness and range of motion (ROM) were determined sagitally, laterally, and rotationally for each spinal motion segment (SMS) using a mechanical testing device. NPs were isolated for oscillatory shear experiments; elastic and viscous shear moduli followed from the ratio between shear stress and strain. Water content was quantified by weighing before and after freeze-drying. Disc height on radiographs and signal intensity on MRI decreased (6% and 22%, respectively, p < 0.01) after CABC treatment, confirming that chemical degeneration provides a good model of disc degeneration. Furthermore, CABC-injected IVDs had significantly lower NZ stiffness and larger ROM in lateral bending (LB) and axial rotation (AR) than controls. Rheometry consistently revealed significantly lower (10-12%) viscoelastic moduli after mild degeneration within goats, though the inter-animal differences were relatively large (complex modulus ∼12 to 41 kPa). Relative water content in the NP was unaffected by CABC, remaining at ∼75%. These observations suggest that viscoelastic properties have a marginal influence on mechanical behavior of the whole SMS. Therefore, when developing replacement materials the focus should be on other design criteria, such as biochemical cues and swelling pressure. Copyright © 2012 Orthopaedic Research Society.

  10. Mitochondrial-derived reactive oxygen species (ROS) play a causal role in aging-related intervertebral disc degeneration.

    PubMed

    Nasto, Luigi A; Robinson, Andria R; Ngo, Kevin; Clauson, Cheryl L; Dong, Qing; St Croix, Claudette; Sowa, Gwendolyn; Pola, Enrico; Robbins, Paul D; Kang, James; Niedernhofer, Laura J; Wipf, Peter; Vo, Nam V

    2013-07-01

    Oxidative damage is a well-established driver of aging. Evidence of oxidative stress exists in aged and degenerated discs, but it is unclear how it affects disc metabolism. In this study, we first determined whether oxidative stress negatively impacts disc matrix metabolism using disc organotypic and cell cultures. Mouse disc organotypic culture grown at atmospheric oxygen (20% O(2)) exhibited perturbed disc matrix homeostasis, including reduced proteoglycan synthesis and enhanced expression of matrix metalloproteinases, compared to discs grown at low oxygen levels (5% O(2)). Human disc cells grown at 20% O(2) showed increased levels of mitochondrial-derived superoxide anions and perturbed matrix homeostasis. Treatment of disc cells with the mitochondria-targeted reactive oxygen species (ROS) scavenger XJB-5-131 blunted the adverse effects caused by 20% O(2). Importantly, we demonstrated that treatment of accelerated aging Ercc1(-/Δ) mice, previously established to be a useful in vivo model to study age-related intervertebral disc degeneration (IDD), also resulted in improved disc total glycosaminoglycan content and proteoglycan synthesis. This demonstrates that mitochondrial-derived ROS contributes to age-associated IDD in Ercc1(-/Δ) mice. Collectively, these data provide strong experimental evidence that mitochondrial-derived ROS play a causal role in driving changes linked to aging-related IDD and a potentially important role for radical scavengers in preventing IDD.

  11. Targeting the extracellular matrix: matricellular proteins regulate cell-extracellular matrix communication within distinct niches of the intervertebral disc.

    PubMed

    Bedore, Jake; Leask, Andrew; Séguin, Cheryle A

    2014-07-01

    The so-called "matricellular" proteins have recently emerged as important regulators of cell-extracellular matrix (ECM) interactions. These proteins modulate a variety of cell functions through a range of interactions with cell-surface receptors, hormones, proteases and structural components of the ECM. As such, matricellular proteins are crucial regulators of cell phenotype, and consequently tissue function. The distinct cell types and microenvironments that together form the IVD provide an excellent paradigm to study how matricellular proteins mediate communication within and between adjacent tissue types. In recent years, the role of several matricellular proteins in the intervertebral disc has been explored in vivo using mutant mouse models in which the expression of target matricellular proteins was deleted from either one or all compartments of the intervertebral disc. The current review outlines what is presently known about the roles of the matricellular proteins belonging to the CCN family, SPARC (Secreted Protein, Acidic, and Rich in Cysteine), and thrombospondin (TSP) 2 in regulating intervertebral disc cell-ECM interactions, ECM synthesis and disc tissue homeostasis using genetically modified mouse models. Furthermore, we provide a brief overview of recent preliminary studies of other matricellular proteins including, periostin (POSTN) and tenascin (TN). Each specific tissue type of the IVD contains a different matricellular protein signature, which varies based on the specific stage of development, maturity or disease. A growing body of direct genetic evidence links IVD development, maintenance and repair to the coordinate interaction of matricellular proteins within their respective niches and suggests that several of these signaling modulators hold promise in the development of diagnostics and/or therapeutics targeting intervertebral disc aging and/or degeneration.

  12. A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties

    PubMed Central

    Galbusera, Fabio; Jonas, René; Schlager, Benedikt; Wilke, Hans-Joachim; Villa, Tomaso

    2017-01-01

    The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep that may help to refine the understanding of parallel in vitro experiments and that can be used to predict when mechanical failure occurs. Anisotropic hyperelastic material properties were assigned to the annulus fibrosus and factorial optimization analyses were performed to find out the optimal parameters of the ground substance and of the collagen fibers. For the ground substance of the annulus fibrosus the investigation was based on experimental data taken from the literature, while for the collagen fibers tensile tests on annulus specimens were conducted. Flexibility analysis in flexion-extension, lateral bending and axial rotation were conducted. Different material properties for the anterior, lateral and posterior regions of the annulus were found. The posterior part resulted the stiffest region in compression whereas the anterior one the stiffest region in tension. Since the flexibility outcomes were in a good agreement with the literature data, we considered this model suitable to be used in conjunction with in vitro and in vivo tests to investigate the mechanical behaviour of the ovine lumbar disc. PMID:28472100

  13. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    PubMed

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  14. Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications.

    PubMed

    Growney Kalaf, Emily A; Flores, Reynaldo; Bledsoe, J Gary; Sell, Scott A

    2016-06-01

    Reversal of intervertebral disc degeneration can have a potentially monumental effect on spinal health. As such, the goal of this research is to create an injectable, cellularized alginate-based nucleus pulposus that will restore disc function; with the primary goal of creating an alginate gel with tailorable rates of gelation to improve functionality over standard CaCl2 crosslinking techniques. Gelation characteristics of 1% sodium alginate were analyzed over various molar concentrations of a 1:2 ratio of CaCO3:glucono-δ-lactone (GDL), with 10% CaCl2 as the control crosslinker. Alginate construct characterization for all concentrations was performed via ultimate and cyclic compressive testing over a 28day degradation period in PBS. Dehydration, swell testing, and albumin release kinetics were determined, and cytotoxicity and cell homogeneity tests showed promise for cellularization strategies. Overall, the 30 and 60mM GDL alginate concentrations presented the most viable option for use in further studies, with a gelation time between 10 and 30min, low hysteresis over control, low percent change in thickness and weight under both PBS degradation and swelling conditions, and stable mechanical properties over 28days in vitro.

  15. Unique glycosignature for intervertebral disc and articular cartilage cells and tissues in immaturity and maturity

    PubMed Central

    Collin, E. C.; Kilcoyne, M.; White, S. J.; Grad, S.; Alini, M.; Joshi, L.; Pandit, A. S.

    2016-01-01

    In this study, on/off markers for intervertebral disc (IVD) and articular cartilage (AC) cells (chondrocytes) and distinct glycoprofiles of cell and tissue-types were identified from immaturity to maturity. Three and eleven month-old ovine IVD and AC tissues were histochemically profiled with a panel of lectins and antibodies. Relationships between tissue and cell types were analysed by hierarchical clustering. Chondroitin sulfate (CS) composition of annulus fibrosus (AF), nucleus pulposus (NP) and AC tissues was determined by HPLC analysis. Clear on/off cell type markers were identified, which enabled the discrimination of chondrocytes, AF and NP cells. AF and NP cells were distinguishable using MAA, SNA-I, SBA and WFA lectins, which bound to both NP cells and chondrocytes but not AF cells. Chondrocytes were distinguished from NP and AF cells with a specific binding of LTA and PNA lectins to chondrocytes. Each tissue showed a unique CS composition with a distinct switch in sulfation pattern in AF and NP tissues upon disc maturity while cartilage maintained the same sulfation pattern over time. In conclusion, distinct glycoprofiles for cell and tissue-types across age groups were identified in addition to altered CS composition and sulfation patterns for tissue types upon maturity. PMID:26965377

  16. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging

    PubMed Central

    Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-01-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging’s basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs. PMID:26807369

  17. T1ρ magnetic resonance: basic physics principles and applications in knee and intervertebral disc imaging.

    PubMed

    Wáng, Yì-Xiáng J; Zhang, Qinwei; Li, Xiaojuan; Chen, Weitian; Ahuja, Anil; Yuan, Jing

    2015-12-01

    T1ρ relaxation time provides a new contrast mechanism that differs from T1- and T2-weighted contrast, and is useful to study low-frequency motional processes and chemical exchange in biological tissues. T1ρ imaging can be performed in the forms of T1ρ-weighted image, T1ρ mapping and T1ρ dispersion. T1ρ imaging, particularly at low spin-lock frequency, is sensitive to B0 and B1 inhomogeneity. Various composite spin-lock pulses have been proposed to alleviate the influence of field inhomogeneity so as to reduce the banding-like spin-lock artifacts. T1ρ imaging could be specific absorption rate (SAR) intensive and time consuming. Efforts to address these issues and speed-up data acquisition are being explored to facilitate wider clinical applications. This paper reviews the T1ρ imaging's basic physic principles, as well as its application for cartilage imaging and intervertebral disc imaging. Compared to more established T2 relaxation time, it has been shown that T1ρ provides more sensitive detection of proteoglycan (PG) loss at early stages of cartilage degeneration. T1ρ has also been shown to provide more sensitive evaluation of annulus fibrosis (AF) degeneration of the discs.

  18. Rheology of intervertebral disc: an ex vivo study on the effect of loading history, loading magnitude, fatigue loading, and disc degeneration.

    PubMed

    Kuo, Ya-Wen; Wang, Jaw-Lin

    2010-07-15

    An ex vivo biomechanical study on the rheological properties of healthy porcine and degenerated human intervertebral disc. To quantify the effect of loading history, loading magnitude, fatigue loading, and degeneration on disc rheology. Disc rheological parameters, i.e., the aggregate modulus (HA) and hydraulic permeability (k) regulate the mechanical and biologic function of disc. The knowledge of effects of loading condition and degeneration on disc rheology can be beneficial for the design of new disc/nucleus implants or therapy. The following 4 phases of experiments were conducted to find the changes of disc rheological properties: (1) Effect of loading history during 1-hour creep (640 N) and relaxation (20% strain) test. (2) Effect of loading magnitude (420 N vs. 640 N) during the creep test. (3) Effect of fatigue loading (420 N, 5 Hz for 0.5, 1, and 2 hours) on the creep loading behavior. (4) Difference of healthy porcine and degenerated human discs during creep loading. The experimental data were fitted with linear biphasic model. The aggregate modulus increased but hydraulic permeability decreased during creep loading. The aggregate modulus decreased but the hydraulic permeability did not change significantly during relaxation loading. The higher creep loading increased the aggregate modulus but decreased the hydraulic permeability. The fatigue loading did not change the aggregate modulus significantly, but decreased hydraulic permeability. Comparing the degenerated human disc to the healthy porcine disc, the aggregate modulus was higher but the hydraulic permeability was lower. The external loading and degeneration induce disc structural changes, e.g., the disc water content and interstitial matrix porosity, hence affect the disc rheological properties. The increase of aggregate modulus may be due to the reduction of disc hydration level, whereas the decrease of hydraulic permeability may be because of the shrinkage of disc matrix pores.

  19. Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration.

    PubMed

    Cunha, Carla; Almeida, Catarina R; Almeida, Maria Inês; Silva, Andreia M; Molinos, Maria; Lamas, Sofia; Pereira, Catarina L; Teixeira, Graciosa Q; Monteiro, António T; Santos, Susana G; Gonçalves, Raquel M; Barbosa, Mário A

    2016-10-11

    : Cell therapies for intervertebral disc (IVD) regeneration presently rely on transplantation of IVD cells or stem cells directly to the lesion site. Still, the harsh IVD environment, with low irrigation and high mechanical stress, challenges cell administration and survival. In this study, we addressed systemic transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) intravenously into a rat IVD lesion model, exploring tissue regeneration via cell signaling to the lesion site. MSC transplantation was performed 24 hours after injury, in parallel with dermal fibroblasts as a control; 2 weeks after transplantation, animals were killed. Disc height index and histological grading score indicated less degeneration for the MSC-transplanted group, with no significant changes in extracellular matrix composition. Remarkably, MSC transplantation resulted in local downregulation of the hypoxia responsive GLUT-1 and in significantly less herniation, with higher amounts of Pax5+ B lymphocytes and no alterations in CD68+ macrophages within the hernia. The systemic immune response was analyzed in the blood, draining lymph nodes, and spleen by flow cytometry and in the plasma by cytokine array. Results suggest an immunoregulatory effect in the MSC-transplanted animals compared with control groups, with an increase in MHC class II+ and CD4+ cells, and also upregulation of the cytokines IL-2, IL-4, IL-6, and IL-10, and downregulation of the cytokines IL-13 and TNF-α. Overall, our results indicate a beneficial effect of systemically transplanted MSCs on in situ IVD regeneration and highlight the complex interplay between stromal cells and cells of the immune system in achieving successful tissue regeneration. This study assesses the effects of bone marrow-derived mesenchymal stem cells (MSCs) transplanted systemically for intervertebral (IVD) regeneration into a rat IVD lesion model. It demonstrates systemic MSC transplantation is effective in inhibiting disc

  20. MRI signal distribution within the intervertebral disc as a biomarker of adolescent idiopathic scoliosis and spondylolisthesis

    PubMed Central

    2012-01-01

    Background Early stages of scoliosis and spondylolisthesis entail changes in the intervertebral disc (IVD) structure and biochemistry. The current clinical use of MR T2-weighted images is limited to visual inspection. Our hypothesis is that the distribution of the MRI signal intensity within the IVD in T2-weighted images depends on the spinal pathology and on its severity. Therefore, this study aims to develop the AMRSID (analysis of MR signal intensity distribution) method to analyze the 3D distribution of the MR signal intensity within the IVD and to evaluate their sensitivity to scoliosis and spondylolisthesis and their severities. Methods This study was realized on 79 adolescents who underwent a MRI acquisition (sagittal T2-weighted images) before their orthopedic or surgical treatment. Five groups were considered: low severity scoliosis (Cobb angle ≤50°), high severity scoliosis (Cobb angles >50°), low severity spondylolisthesis (Meyerding grades I and II), high severity spondylolisthesis (Meyerding grades III, IV and V) and control. The distribution of the MRI signal intensity within the IVD was analyzed using the descriptive statistics of histograms normalized by either cerebrospinal fluid or bone signal intensity, weighted centers and volume ratios. Differences between pathology and severity groups were assessed using one- and two-way ANOVAs. Results There were significant (p < 0.05) variations of indices between scoliosis, spondylolithesis and control groups and between low and high severity groups. The cerebrospinal fluid normalization was able to detect differences between healthy and pathologic IVDs whereas the bone normalization, which reflects both bone and IVD health, detected more differences between the severities of these pathologies. Conclusions This study proves for the first time that changes in the intervertebral disc, non visible to the naked eye on sagittal T2-weighted MR images of the spine, can be detected from specific indices

  1. The effect of sustained compression on oxygen metabolic transport in the intervertebral disc decreases with degenerative changes.

    PubMed

    Malandrino, Andrea; Noailly, Jérôme; Lacroix, Damien

    2011-08-01

    Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such

  2. Three-dimensional intervertebral range of motion in the cervical spine: Does the method of calculation matter?

    PubMed

    Anderst, William J; Aucie, Yashar

    2017-03-01

    Intervertebral range of motion (ROM) is commonly calculated using ordered rotations or projection angles. Ordered rotations are sequence-dependent, and projection angles are dependent upon on which orientation vectors are projected. This study assessed the effect of calculation method on intervertebral ROM in the subaxial cervical spine (C3-C7) during in vivo dynamic, three-dimensional, functional movement. Biplane radiographs were collected at 30 images per second while 29 participants performed full ROM flexion/extension, axial rotation and lateral bending movements of their cervical spine. In vivo bone motion was tracked with sub-millimeter accuracy using a validated volumetric model-based tracking technique. Intervertebral rotations were calculated using six Cardan angle sequences and two projection angle combinations. Within-subject comparisons revealed significant differences in intervertebral ROM among calculation methods (all p<0.002). Group mean ROM differences were small, but significantly different among calculation methods (p<0.001). A resampling technique demonstrated that as group size increases, the differences between calculation methods decreases substantially. It is concluded that the method used to calculate intervertebral rotations of the sub-axial cervical spine can significantly affect within-subject and between group comparisons of intervertebral ROM.

  3. Minimally Invasive Anterior Cervical Discectomy Without Fusion to Treat Cervical Disc Herniations in Patients with Previous Cervical Fusions.

    PubMed

    Jacobson, Robert E; Granville, Michelle; Berti, Aldo

    2017-04-03

    Adjacent level cervical disc disease and secondarily progressive disc space degeneration that develops years after previously successful anterior cervical fusion at one or more levels is a common, but potentially complex problem to manage. The patient is faced with the option of further open surgery which involves adding another level of disc removal with fusion, posterior decompression, and stabilization, or possibly replacing the degenerated disc with an artificial disc construct. These three cases demonstrate that some patients, especially after minor trauma, may have small herniated discs as the cause for their new symptoms rather than progressive segmental degeneration. Each patient became symptomatic after minor trauma three to six years after the original fusion and had no or minimal radiologic changes of narrowing of the disc or spur formation commonly seen in adjacent level disease, but rather had magnetic resonance imaging (MRI) findings typical of small herniated discs. After failing multiple months of conservative treatment they were offered surgery as an option. Subsequently, all three were successfully treated with minimal anterior discectomy without fusion. There are no reports in the literature of using minimal anterior cervical discectomy without fusion in previous fused patients. This report reviews the background of adjacent level cervical disease, the various biomechanical explanations for developing a new disc herniation rather than progressive segmental degeneration, and how anterior cervical discectomy without fusion can be an option in these patients.

  4. GENIPIN-CROSSLINKED FIBRIN HYDROGELS AS A POTENTIAL ADHESIVE TO AUGMENT INTERVERTEBRAL DISC ANNULUS REPAIR

    PubMed Central

    Schek, R.M.; Michalek, A.J.; Iatridis, J.C.

    2011-01-01

    Treatment of damaged intervertebral discs is a significant clinical problem and, despite advances in the repair and replacement of the nucleus pulposus, there are few effective strategies to restore defects in the annulus fibrosus. An annular repair material should meet three specifications: have a modulus similar to the native annulus tissue, support the growth of disc cells, and maintain adhesion to tissue under physiological strain levels. We hypothesized that a genipin crosslinked fibrin gel could meet these requirements. Our mechanical results showed that genipin crosslinked fibrin gels could be created with a modulus in the range of native annular tissue. We also demonstrated that this material is compatible with the in vitro growth of human disc cells, when genipin:fibrin ratios were 0.25:1 or less, although cell proliferation was slower and cell morphology more rounded than for fibrin alone. Finally, lap tests were performed to evaluate adhesion between fibrin gels and pieces of annular tissue. Specimens created without genipin had poor handling properties and readily delaminated, while genipin crosslinked fibrin gels remained adhered to the tissue pieces at strains exceeding physiological levels and failed at 15–30%. This study demonstrated that genipin crosslinked fibrin gels show promise as a gap-filling adhesive biomaterial with tunable material properties, yet the slow cell proliferation suggests this biomaterial may be best suited as a sealant for small annulus fibrosus defects or as an adhesive to augment large annulus repairs. Future studies will evaluate degradation rate, fatigue behaviors, and long-term biocompatibility. PMID:21503869

  5. Quantitative T2 mapping to characterize the process of intervertebral disc degeneration in a rabbit model.

    PubMed

    Sun, Wei; Zhang, Kai; Zhao, Chang-qing; Ding, Wei; Yuan, Jun-jie; Sun, Qi; Sun, Xiao-jiang; Xie, You-zhuan; Li, Hua; Zhao, Jie

    2013-12-18

    To investigate the potential of T2 mapping for characterizing the process of intervertebral disc degeneration (IDD) in a rabbit model. Thirty-five rabbits underwent an annular stab to the L4/5 discs (L5/6 discs served as internal normal controls). Degenerative changes were graded according to the modified Thompson classification and quantified in T2 respectively at pre-operation, 1, 3, 6, 12 and 24 weeks postoperatively. After MRI analysis, expression analysis of aggrecan and type II collagen gene in nucleus pulposus (NP) was performed using real time polymerase chain reaction (real-time PCR). The longitudinal changes in NP T2 and gene expressions were studied by repeated measures and ANOVA, linear regression was performed for their correlations through the process of IDD. The reliability analysis of method of measurement of NP T2 was also performed. There was a strong inverse correlation between NP T2 and Thompson grades (r = -0.85). The decline of L4/5 NP T2 through 24 weeks was nonlinear, the most significant decrease was observed in 3 weeks postoperatively (P<0.05). The tendency was confirmed at gene expression levels. NP T2 correlated strongly with aggrecan (R² = 0.85, P<0.01) and type II collagen (R² = 0.78, P<0.01) gene expressions. The intraclass correlation coefficients for interobserver and intraobserver reliability were 0.963 and 0.977 respectively. NP T2 correlates well with aggrecan and type II collagen gene expressions. T2 mapping could act as a sensitive, noninvasive tool for quantitatively characterizing the process of IDD in longitudinal study, help better understanding of the pathophysiology of IDD, assist us to detect the degenerative cascade, and develop a T2-based quantification scale for evaluation of IDD and efficacy of therapeutic interventions.

  6. Identifying molecular phenotype of nucleus pulposus cells in human intervertebral disc with aging and degeneration.

    PubMed

    Tang, Xinyan; Jing, Liufang; Richardson, William J; Isaacs, Robert E; Fitch, Robert D; Brown, Christopher R; Erickson, Melissa M; Setton, Lori A; Chen, Jun

    2016-08-01

    Previous study claimed that disc degeneration may be preceded by structure and matrix changes in the intervertebral disc (IVD) which coincide with the loss of distinct notochordally derived nucleus pulposus (NP) cells. However, the fate of notochordal cells and their molecular phenotype change during aging and degeneration in human are still unknown. In this study, a set of novel molecular phenotype markers of notochordal NP cells during aging and degeneration in human IVD tissue were revealed with immunostaining and flow cytometry. Furthermore, the potential of phenotype juvenilization and matrix regeneration of IVD cells in a laminin-rich pseudo-3D culture system were evaluated at day 28 by immunostaining, Safranin O, and type II collagen staining. Immunostaining and flow cytometry demonstrated that transcriptional factor Brachyury T, neuronal-related proteins (brain abundant membrane attached signal protein 1, Basp1; Neurochondrin, Ncdn; Neuropilin, Nrp-1), CD24, and CD221 were expressed only in juvenile human NP tissue, which suggested that these proteins may be served as the notochordal NP cell markers. However, the increased expression of CD54 and CD166 with aging indicated that they might be referenced as the potential biomarker for disc degeneration. In addition, 3D culture maintained most of markers in juvenile NP, and rescued the expression of Basp1, Ncdn, and Nrp 1 that disappeared in adult NP native tissue. These findings provided new insight into molecular profile that may be used to characterize the existence of a unique notochordal NP cells during aging and degeneration in human IVD cells, which will facilitate cell-based therapy for IVD regeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1316-1326, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. A retrospective study evaluating the correlation between the severity of intervertebral disc injury and the anteroposterior type of thoracolumbar vertebral fractures

    PubMed Central

    Su, Yunshan; Ren, Dong; Zou, Yan; Lu, Jian; Wang*, Pengcheng

    2016-01-01

    OBJECTIVE: To evaluate the correlation between the severity of intervertebral disc injury and the anteroposterior type of thoracolumbar vertebral fractures. METHODS: Fifty-six cases of thoracolumbar vertebral fractures treated in our trauma center from October 2012 to October 2013 were included in this study. The fractures were classified by the anteroposterior classification, whereas the severity of intervertebral disc injury was evaluated using magnetic resonance imaging. The Spearman correlation coefficient was used to analyze the correlation between the severity of intervertebral disc injury and the anteroposterior type of thoracolumbar fractures, whereas a χ2 test was adopted to measure the variability between different fracture types and upper and lower adjacent disc injuries. RESULTS: The Spearman correlation coefficients between fracture types and the severity of the upper and lower adjacent disc injuries were 0.739 (PU<0.001) and 0.368 (PL=0.005), respectively. It means that the more complex Arbeitsgemeinschaft für Osteosynthesefragen (AO) classifications are the disc injury is more severe. There was also a significant difference in the severity of injury between the upper and lower adjacent discs near the fractured vertebrae (p<0.001). CONCLUSIONS: In thoracolumbar spinal fractures, the severity of the adjacent intervertebral disc injury is positively correlated with the anteroposterior fracture type. The injury primarily involves intervertebral discs near the fractured end plate, with more frequent and severe injuries observed in the upper than in the lower discs. The presence of intervertebral disc injury, along with its severity, may provide useful information during the clinical decision-making process. PMID:27438561

  8. Cervical Deuk Laser Disc Repair®: A novel, full-endoscopic surgical technique for the treatment of symptomatic cervical disc disease

    PubMed Central

    Deukmedjian, Ara J.; Cianciabella, Augusto; Cutright, Jason; Deukmedjian, Arias

    2012-01-01

    Background: Cervical Deuk Laser Disc Repair® is a novel full-endoscopic, anterior cervical, trans-discal, motion preserving, laser assisted, nonfusion, outpatient surgical procedure to safely treat symptomatic cervical disc diseases including herniation, spondylosis, stenosis, and annular tears. Here we describe a new endoscopic approach to cervical disc disease that allows direct visualization of the posterior longitudinal ligament, posterior vertebral endplates, annulus, neuroforamina, and herniated disc fragments. All patients treated with Deuk Laser Disc Repair were also candidates for anterior cervical discectomy and fusion (ACDF). Methods: A total of 142 consecutive adult patients with symptomatic cervical disc disease underwent Deuk Laser Disc Repair during a 4-year period. This novel procedure incorporates a full-endoscopic selective partial decompressive discectomy, foraminoplasty, and posterior annular debridement. Postoperative complications and average volume of herniated disc fragments removed are reported. Results: All patients were successfully treated with cervical Deuk Laser Disc Repair. There were no postoperative complications. Average volume of herniated disc material removed was 0.09 ml. Conclusions: Potential benefits of Deuk Laser Disc Repair for symptomatic cervical disc disease include lower cost, smaller incision, nonfusion, preservation of segmental motion, outpatient, faster recovery, less postoperative analgesic use, fewer complications, no hardware failure, no pseudoarthrosis, no postoperative dysphagia, and no increased risk of adjacent segment disease as seen with fusion. PMID:23230523

  9. Artificial Cervical Disc Arthroplasty (ACDA): tips and tricks

    PubMed Central

    Khadivi, Masoud; Rahimi Movaghar, Vafa; Abdollahzade, Sina

    2012-01-01

    Abstract: Background: Anterior cervical discectomy and fusion (ACDF) is currently treatment of choice for managing medical therapy refractory cervical degenerative disc disease. Numerous studies have demonstrated the effectiveness of ACDF; patients generally experience rapid recoveries, and dramatic improvement in their pain and quality of life. However, as several studies reported symptomatic adjacent segment disease attributed to fusions’ altered kinematics, cervical disc arthroplasty emerged as a new motion-sparing alternative to fusion. Fusion at one level increases motion at adjacent levels along with increased intradiscal pressures. This phenomenon can result in symptomatic adjacent level degeneration, which can necessitate reoperation at these levels. The era of cervical arthroplasty began in Europe in the late 1990s. In recent years, artificial cervical disc arthroplasty (ACDA) has been increasingly used by spine surgeons for degenerative cervical disc disease. There have been several reports of safety, efficacy and indications of ACDA. Cervical arthroplasty offers several theoretical advantages over anterior cervical discectomy and fusion (ACDF) in the treatment of selected patients with medically refractory cervical radiculopathy. Preserving motion at the operated level, cervical TDR has the potential to decrease the occurrence of adjacent segment degeneration. There are a few studies on the efficacy and effectiveness of ACDA compared to cervical fusion. However, the true scenery of cervical arthroplasty yet to be identified. Objective: This study is intended to define patients' characteristics and outcomes of ACDA by a single surgeon in Iran. Methods: This retrospective study was performed in two general Hospitals in Tehran, Iran from 2005 To 2010. All patients were operated by one senior neurospine surgeon. One hundred fifty three patients were operated in this period. All patients signed the informed consent form prior to surgery. All patients

  10. Interrelationship between silicon, aluminum, and elements associated with tissue metabolism and degenerative processes in degenerated human intervertebral disc tissue.

    PubMed

    Zioła-Frankowska, Anetta; Kubaszewski, Łukasz; Dąbrowski, Mikołaj; Frankowski, Marcin

    2017-07-07

    There is a growing body of evidence concerning the significant role of silicon in development and composition of both connective and bone tissue. Bio-essential silicon shows strong chemical and biological affinity to aluminum, which is toxic and biologically inessential element. The presence of silicon was confirmed in a variety of tissues; however, it has never been examined in intervertebral disc tissue, neither in healthy nor in degenerated one. In this paper, for the first time in the literature, we present the content of silicon in the degenerated intervertebral disc tissue. We also compared the results of silicon analysis with aluminum values in degenerated intervertebral disc tissue in humans. We used chemometric methods to find correlations and similarities between silicon, aluminum, and elements associated with tissue metabolism (Mg) and degenerative processes (Zn and Cu). The presence of silicon was confirmed in all 30 samples harvested from 22 patients operated on due to degenerative changes. Its concentration was within the range of 5.37-12.8 μg g(-1) d.w., with the mean concentration of 7.82 μg g(-1) d.w. The analysis showed significant correlation between Si and both Al and Mg and weak or negative correlation with Zn and Cu, where the latter was probably the result of degenerative processes. Although silicon is considered essential in glycosaminoglycan and collagen synthesis in connective tissue, it did not show any correlation nor similarities with elements reflecting changes associated with the degenerative process of the intervertebral disc. Silicon showed significant correlation with aluminum, similar to those observed in other human tissues.

  11. Elastic, permeability and swelling properties of human intervertebral disc tissues: A benchmark for tissue engineering.

    PubMed

    Cortes, Daniel H; Jacobs, Nathan T; DeLucca, John F; Elliott, Dawn M

    2014-06-27

    The aim of functional tissue engineering is to repair and replace tissues that have a biomechanical function, i.e., connective orthopaedic tissues. To do this, it is necessary to have accurate benchmarks for the elastic, permeability, and swelling (i.e., biphasic-swelling) properties of native tissues. However, in the case of the intervertebral disc, the biphasic-swelling properties of individual tissues reported in the literature exhibit great variation and even span several orders of magnitude. This variation is probably caused by differences in the testing protocols and the constitutive models used to analyze the data. Therefore, the objective of this study was to measure the human lumbar disc annulus fibrosus (AF), nucleus pulposus (NP), and cartilaginous endplates (CEP) biphasic-swelling properties using a consistent experimental protocol and analyses. The testing protocol was composed of a swelling period followed by multiple confined compression ramps. To analyze the confined compression data, the tissues were modeled using a biphasic-swelling model, which augments the standard biphasic model through the addition of a deformation-dependent osmotic pressure term. This model allows considering the swelling deformations and the contribution of osmotic pressure in the analysis of the experimental data. The swelling stretch was not different between the disc regions (AF: 1.28±0.16; NP: 1.73±0.74; CEP: 1.29±0.26), with a total average of 1.42. The aggregate modulus (Ha) of the extra-fibrillar matrix was higher in the CEP (390kPa) compared to the NP (100kPa) or AF (30kPa). The permeability was very different across tissue regions, with the AF permeability (64 E(-16)m(4)/Ns) higher than the NP and CEP (~5.5 E(-16)m(4)/Ns). Additionally, a normalized time-constant (3000s) for the stress relaxation was similar for all the disc tissues. The properties measured in this study are important as benchmarks for tissue engineering and for modeling the disc's mechanical

  12. Determination and comparison of specifics of nucleus pulposus cells of human intervertebral disc in alginate and chitosan–gelatin scaffolds

    PubMed Central

    Renani, Hamid Bahramian; Ghorbani, Masood; Beni, Batool Hashemibeni; Karimi, Z; Mirhosseini, MM; Zarkesh, H; Kabiri, A

    2012-01-01

    Introduction: Low back pain is a major economical and social problem nowadays. Intervertebral disc herniation and central degeneration of disc are two major reasons of low back pain that occur because of structural impairment of disc. The intervertebral disc contains three parts as follows : Annulus fibrosus, transitional region, and nucleus pulposus, which forms the central nucleus of the disc. The reduction of cell count and extracellular matrix, especially in nucleus pulposus, causes disc degeneration. Different scaffolds (natural and synthetic) have been used for tissue repairing and regeneration of the intervertebral disc in tissue engineering. Most scaffolds have biodegradable and biocompatible characteristics and also prepare a fine condition for proliferation and migration of cells. In this study, proliferation of NP cells of human intervertebral disc compromised in Chitosan-gelatin scaffold with alginate scaffold was studied. Materials and Methods: NP cells derived from nucleus pulposus by collagenase enzymatic hydrolysis. They were derived from patients who undergoing open surgery for discectomy in the Isfahan Alzahra hospital. Chitosan was blended with gelatin and glutaraldehyde was used for cross linking the two polymers. Then, alginate scaffold was prepared. Cellular suspension with 1 × 105 transferred to each scaffold and cultured for 21 days. Cell viability and proliferation investigated by trypan blue and (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Scanning electron microscope (SEM) was used to assert the porosity and to survey structure of scaffold. Results: MTT assay dem1onstrated that cell viability of third day had significant difference in contrast by first day in both scaffolds. Accordingly, there was a significant decreased in cellular viability from day 3 to 21. Results of the cell count showed a punctual elevation cell numbers for alginate scaffold but there was no similar result for chitosan

  13. The Effects of Age, Gender, Ethnicity, and Spinal Level on the Rate of Intervertebral Disc Degeneration. A review of 1712 Intervertebral Discs

    PubMed Central

    Siemionow, Krzysztof; An, Howard; Masuda, Koichi; Andersson, Gunnar; Cs-Szabo, Gabriella

    2010-01-01

    Study Design A gross anatomical and magnetic resonance imaging (MRI) study of intervertebral disc (IVD) degeneration in fresh cadaveric lumbar spines. Objective The purpose of this study was to find the rate of IVD degeneration. Summary of Background Data Age, sex, race, and lumbar level are among some of the factors that play a role in IVD degeneration. The rate at which IVDs degenerate is unknown. Methods Complete lumbar spine segments (T11/12 to S1) were received within 24 hours of death. The nucleus pulposus, annulus fibrosus, cartilaginous and bony end-plate, and the peripheral verterbral body were assessed with MRI and IVD degeneration was graded by two observers from grade 1(nondegenerated) to grade 5(severely degenerated) based on a scale developed by Tanaka et al. The specimens were then sectioned and gross anatomical evaluation was performed according to Thompson et al. Results 433 donors and 1712 IVDs were analyzed. There were 366 Caucasians, 47 Africans, 16 Hispanics, 4 Asian. There were 306 males and 127 females. The age range was 14–81 years, (average 60.5+/−11.3). For donors greater than age 40, the L5/S1 IVD degenerated at a significantly faster rate of 0.043/year compared to 0.031, 0.034, 0.033, 0.027 for L12, L23, L34, L45, respectively. For donors younger than 40, L5/S1 IVD degenerated at a significantly faster rate of 0.141/year compared to 0.033,0.021, 0.031, 0.050 for L12, L23, L34, L45, respectively. Multiple regression analysis revealed that gender had no significant effect on IVD degeneration whereas African ethnicity was associated with lower Thompson score at L12, L23, L34, L45 when compared to Caucasians. Conclusions The relatively early degeneration at L5-S1 in all races and lower Thompson grade in donors of African ethnicity needs further investigation. Factors such as sagittal alignment, facet joint arthritis, and genetics potentially play a role in IVD degeneration. PMID:21217432

  14. Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric magnetic resonance imaging.

    PubMed

    Recuerda, Maximilien; Périé, Delphine; Gilbert, Guillaume; Beaudoin, Gilles

    2012-10-12

    The treatment planning of spine pathologies requires information on the rigidity and permeability of the intervertebral discs (IVDs). Magnetic resonance imaging (MRI) offers great potential as a sensitive and non-invasive technique for describing the mechanical properties of IVDs. However, the literature reported small correlation coefficients between mechanical properties and MRI parameters. Our hypothesis is that the compressive modulus and the permeability of the IVD can be predicted by a linear combination of MRI parameters. Sixty IVDs were harvested from bovine tails, and randomly separated in four groups (in-situ, digested-6h, digested-18h, digested-24h). Multi-parametric MRI acquisitions were used to quantify the relaxation times T1 and T2, the magnetization transfer ratio MTR, the apparent diffusion coefficient ADC and the fractional anisotropy FA. Unconfined compression, confined compression and direct permeability measurements were performed to quantify the compressive moduli and the hydraulic permeabilities. Differences between groups were evaluated from a one way ANOVA. Multi linear regressions were performed between dependent mechanical properties and independent MRI parameters to verify our hypothesis. A principal component analysis was used to convert the set of possibly correlated variables into a set of linearly uncorrelated variables. Agglomerative Hierarchical Clustering was performed on the 3 principal components. Multilinear regressions showed that 45 to 80% of the Young's modulus E, the aggregate modulus in absence of deformation HA0, the radial permeability kr and the axial permeability in absence of deformation k0 can be explained by the MRI parameters within both the nucleus pulposus and the annulus pulposus. The principal component analysis reduced our variables to two principal components with a cumulative variability of 52-65%, which increased to 70-82% when considering the third principal component. The dendograms showed a natural

  15. The effects of short-term load duration on anabolic and catabolic gene expression in the rat tail intervertebral disc.

    PubMed

    MacLean, Jeffery J; Lee, Cynthia R; Alini, Mauro; Iatridis, James C

    2005-09-01

    The goal of this study was to determine the time-dependent response of the intervertebral disc cells to in vivo dynamic compression. Forty-seven skeletally mature Wistar rats (>12 months old) were instrumented with an Ilizarov-type device spanning caudal disc 8-9. Using a load magnitude (1 MPa) and frequency (1.0 Hz) that were previously shown to significantly alter mRNA levels in the disc, the effects of 0.5 and 4 h of loading were investigated and compared to a sham group and our previous 2 h results. Annulus and nucleus tissue of loaded (c8-9) and internal control discs (c6-7 and c10-11) were separately analyzed by real-time RT-PCR for levels of mRNA coding for various anabolic (collagen-1A1, collagen-2A1, aggrecan) and catabolic (MMP-3, MMP-13, ADAMTs-4) proteins. In the annulus, mRNA levels increased for Collagen types I & II, and MMP 3 & 13 with increasing load duration. In contrast, the nucleus had the largest increases in aggrecan, ADAMTs-4, MMP-3 and MMP-13 after 2 h of loading, with aggrecan and MMP-13 mRNA levels returning to control values after 4 h of loading. Taken in context with our previous studies, we conclude that intervertebral disc cells from the nucleus and annulus have distinct responses to dynamic mechanical compression in vivo with sensitivity to compression magnitude, frequency and duration.

  16. A multi-component fiber-reinforced PHEMA-based hydrogel/HAPEX™ device for customized intervertebral disc prosthesis.

    PubMed

    Gloria, Antonio; De Santis, Roberto; Ambrosio, Luigi; Causa, Filippo; Tanner, K Elizabeth

    2011-05-01

    Spinal disease due to intervertebral disc degeneration represents a serious medical problem which affects many people worldwide. Disc arthroplasty may be considered the future ''gold standard'' of back pain treatment, even if problems related to available disc prostheses are considered. Hence, the aim of the present study was to improve the artificial disc technology by proposing the engineering of a pilot-scale device production process for a total multi-component intervertebral disc prosthesis. The device is made up of a poly(2-hydroxyethyl methacrylate)/poly(methyl methacrylate) (PHEMA/PMMA) (80/20 w/w) semi-interpenetrating polymer network (s-IPN) composite hydrogel reinforced with poly(ethylene terephthalate) (PET) fibers as annulus/nucleus substitute, and two hydroxyapatite-reinforced polyethylene composite (HAPEX™) endplates in order to anchor the multi-component device to the vertebral bodies. Static and dynamic-mechanical characterization show appropriate mechanical behavior. An example of engineering of a suitable pilot-scale device production process is also proposed in order to manufacture custom made implants.

  17. Risk factors for lumbar intervertebral disc height narrowing: a population-based longitudinal study in the elderly.

    PubMed

    Akeda, Koji; Yamada, Tomomi; Inoue, Nozomu; Nishimura, Akinobu; Sudo, Akihiro

    2015-11-09

    The progression of disc degeneration is generally believed to be associated with low back pain and/or degenerative lumbar diseases, especially in the elderly. The purpose of this study was to quantitatively evaluate changes in lumbar disc height using radiographic measurements and to investigate risk factors for development of disc height narrowing of the elderly. From 1997 to 2007, 197 village inhabitants at least 65 years-old who participated in baseline examinations and more than four follow-up examinations conducted every second year were chosen as subjects for this study. Using lateral lumbar spine radiographs of each subject, L1-L2 to L5-S1 disc heights were measured. The subjects were divided into two groups according to the rate of change in disc height: mildly decreased (≤20 % decrease) and severely decreased (>20 % decrease). A stepwise multiple logistic regression analysis was used to select those factors significantly associated with disc height narrowing. Disc height at each intervertebral disc (IVD) level decreased gradually over ten years (p < 0.01, an average 5.8 % decrease of all disc levels). There was no significant difference in the rate of change in disc height among the IVD levels. Female gender, radiographic knee osteoarthritis and low back pain at baseline were associated with increased risk for disc height narrowing. We conducted the first population-based cohort study of the elderly that quantitatively evaluated lumbar disc height using radiographic measurements. The risk factors identified in this study would contribute to a further understanding the pathology of disc degeneration.

  18. Cervical disc replacement - emerging equivalency to anterior cervical discectomy and fusion.

    PubMed

    Buckland, Aaron J; Baker, Joseph F; Roach, Ryan P; Spivak, Jeffrey M

    2016-06-01

    Cervical disc replacement has become an acceptable alternative to anterior cervical fusion for the surgical treatment of cervical spine spondylosis resulting in radiculopathy or myelopathy following anterior discectomy and decompression. This concise overview considers the current state of knowledge regarding the continued debate of the role of cervical disc replacement with an update in light of the latest clinical trial results. A literature review was performed identifying clinical trials pertaining to the use of cervical disc replacement compared to cervical discectomy and fusion. Single level disease and two level disease were considered. Outcome data from the major clinical trials was reviewed and salient points identified. With lengthier follow-up data becoming available, the equivalence of CDR in appropriately selected cases is becoming clear. This is chiefly manifested by reduced re-operation rates and reduced incidence of adjacent level disease in those treated with arthroplasty. Cervical disc replacement shows emerging equivalence in outcomes compared to the gold standard anterior cervical discectomy and fusion. Further longer term results are anticipated to confirm this trend.

  19. Magnetic Resonance Classification System of Cervical Intervertebral Disk Degeneration: Its Validity and Meaning.

    PubMed

    Suzuki, Akinobu; Daubs, Michael D; Hayashi, Tetsuo; Ruangchainikom, Monchai; Xiong, Chenjie; Phan, Kevin; Scott, Trevor P; Wang, Jeffery C

    2017-06-01

    Retrospective analysis of kinetic magnetic resonance images (kMRIs). (1) To analyze the changes seen on MRI related to disk degeneration and to develop a new grading system for cervical disk degeneration. (2) To evaluate the reliability and validity of the grading system. Few have studied the relationship between changes seen on MRI with cervical disk degeneration and the chronological order of disk degeneration. A few grading systems for cervical disk degeneration have been reported; however, there have been problems related to subjectivity and lack of a clear, reliable algorithm. A total of 300 cervical intervertebral disks were graded for nucleus color, structure, disk bulge, and disk height. On the basis of the analysis, a new grading system consisting of 4 grades (grade 0-III) and algorithm were developed. Intraobserver and interobserver reliabilities were assessed. A total of 2802 intervertebral disks were then evaluated using the grading system to correlate disk degeneration grades with patient age and function and to evaluate the validity of the new system. On the basis of cross-table analysis, disk degeneration presents in the following order: (1) decrease and/or change of nucleus intensity; (2) loss of distinction between nucleus and annulus; (3) positive disk bulge; and (4) disk height decrease. The κ-coefficients for intraobserver and interobserver agreements were 0.96 and 0.90, respectively. Severe disk degeneration is most common at C5/C6 followed by C6/C7 and C4/C5, and total disk degeneration grade is correlated with age (R=0.467). There was a decrease of angular motion in grades I-III and an increase in translational motion and decrease of space available for the cord in grades II-III. We developed a new classification system of cervical disk degeneration based on analysis of the changes seen on MRI. Reliability tests indicated high reproducibility of this system, and further analysis confirmed its validity and clinical significance.

  20. A method for quantitative measurement of lumbar intervertebral disc structures: an intra- and inter-rater agreement and reliability study

    PubMed Central

    2013-01-01

    Background There is a shortage of agreement studies relevant for measuring changes over time in lumbar intervertebral disc structures. The objectives of this study were: 1) to develop a method for measurement of intervertebral disc height, anterior and posterior disc material and dural sac diameter using MRI, 2) to evaluate intra- and inter-rater agreement and reliability for the measurements included, and 3) to identify factors compromising agreement. Methods Measurements were performed on MRIs from 16 people with and 16 without lumbar disc herniation, purposefully chosen to represent all possible disc contours among participants in a general population study cohort. Using the new method, MRIs were measured twice by one rater and once by a second rater. Agreement on the sagittal start- and end-slice was evaluated using weighted Kappa. Length and volume measurements were conducted on available slices between intervertebral foramens, and cross-sectional areas (CSA) were calculated from length measurements and slice thickness. Results were reported as Bland and Altman’s limits of agreement (LOA) and intraclass correlation coefficients (ICC). Results Weighted Kappa (Kw (95% CI)) for start- and end-slice were: intra-: 0.82(0.60;0.97) & 0.71(0.43;0.93); inter-rater: 0.56(0.29;0.78) & 0.60(0.35;0.81). For length measurements, LOA ranged from [−1.0;1.0] mm to [−2.0;2.3] mm for intra-; and from [−1.1; 1.4] mm to [−2.6;2.0] mm for inter-rater. For volume measurements, LOA ranged from [−293;199] mm3 to [−582;382] mm3 for intra-, and from [−17;801] mm3 to [−450;713] mm3 for inter-rater. For CSAs, LOA ranged between [−21.3; 18.8] mm2 and [−31.2; 43.7] mm2 for intra-, and between [−10.8; 16.4] mm2 and [−64.6; 27.1] mm2 for inter-rater. In general, LOA as a proportion of mean values gradually decreased with increasing size of the measured structures. Agreement was compromised by difficulties in identifying the vertebral corners, the anterior and

  1. Vitamin D Receptor Gene, Matrix Metalloproteinase 3 Polymorphisms and the Risk of Intervertebral Disc Degeneration Susceptibility: Meta-Analysis

    PubMed Central

    Huang, Yongjing; Zhao, Shujie; Xu, Nanwei

    2016-01-01

    Several studies have evaluated the association between vitamin D receptor, matrix metalloproteinase 3 (MMP-3) polymorphisms and the risk of intervertebral disc degeneration susceptibility. The findings were inconsistent. This meta-analysis aimed to systematically assess the association between vitamin D receptor, MMP-3 polymorphisms and the risk of intervertebral disc degeneration susceptibility. A search of various databases was done covering all papers published until December 31th, 2014. Eight, 4, 3 studies were finally included that addressed the risk of intervertebral disc degeneration susceptibility and vitamin D receptor FokI (rs2228570), ApaI (rs7975232), and MMP-3 (rs731236) polymorphisms, respectively. FokI (f vs. F: summary odds ratio [OR], 1.13; 95% confidence interval [CI], 0.76–1.69; ff vs. FF: OR, 1.02; 95% CI, 0.59–1.77; ff vs. Ff/FF: OR, 1.05; 95% CI, 0.70–1.58), ApaI (a vs. A: OR, 0.73; 95% CI, 0.45–1.19; aa vs. AA: OR, 0.53; 95% CI, 0.22–1.25 p=0.14; aa vs. AA/Aa: OR, 0.69; 95% CI, 0.53–0.89) in the vitamin D receptor gene and MMP3 polymorphisms (5A vs. 6A: OR, 1.92; 95% CI, 0.77–4.80; 5A5A vs. 6A6A: OR, 2.17; 95% CI, 0.75–6.24; 5A5A vs. 5A6A/6A6A: OR, 1.58; 95% CI, 0.72–3.44) were not obviously associated with risk of intervertebral disc degeneration susceptibility. FokI, ApaI polymorphisms in the vitamin D receptor gene and MMP-3 polymorphism are not obvious risk factors for intervertebral disc degeneration susceptibility. PMID:27790329

  2. IAPP modulates cellular autophagy, apoptosis, and extracellular matrix metabolism in human intervertebral disc cells

    PubMed Central

    Wu, Xinghuo; Song, Yu; Liu, Wei; Wang, Kun; Gao, Yong; Li, Shuai; Duan, Zhenfeng; Shao, Zengwu; Yang, Shuhua; Yang, Cao

    2017-01-01

    The pathogenic process of intervertebral disc degeneration (IDD) is characterized by imbalance in the extracellular matrix (ECM) metabolism. Nucleus pulposus (NP) cells have important roles in maintaining the proper structure and tissue homeostasis of disc ECM. These cells need adequate supply of glucose and oxygen. Islet amyloid polypeptide (IAPP) exerts its biological effects by regulating glucose metabolism. The purpose of this study was to investigate the expression of IAPP in degenerated IVD tissue, and IAPP modulation of ECM metabolism in human NP cells, especially the crosstalk mechanism between apoptosis and autophagy in these cells. We found that the expression of IAPP and Calcr-RAMP decreased considerably during IDD progression, along with the decrease in the expression of AG, BG, and Col2A1. Induction of IAPP in NP cells by transfection with pLV-IAPP enhanced the synthesis of aggrecan and Col2A1 and attenuated the expression of pro-inflammatory factors, tumor necrosis factor (TNF)-α, and interleukin (IL)-1. Upregulation of IAPP also affected the expression of the catabolic markers—matrix metalloproteinases (MMPs) 3, 9 and 13 and ADAMTS 4 and 5. Downregulation of IAPP by siRNA inhibited the expression of anabolic genes but increased the expression of catabolic genes and inflammatory factors. The expressions of autophagic and apoptotic markers in NP cells transfected with pLV-IAPP were upregulated, including BECLIN1, ATG5, ATG7, LC3 II/I and Bcl-2, while significantly increase in the expression of Bax and Caspase-3 in NP cells transfected with pLV-siIAPP. Mechanistically, PI3K/AKT-mTOR and p38/JNK MAPK signal pathways were involved. We propose that IAPP might play a pivotal role in the development of IDD, by regulating ECM metabolism and controlling the crosstalk between apoptosis and autophagy in NP, thus potentially offering a novel therapeutic approach to the treatment of IDD. PMID:28149534

  3. Differential expression of galectin-1 and its interactions with cells and laminins in the intervertebral disc.

    PubMed

    Jing, Liufang; So, Stephen; Lim, Shaun W; Richardson, William J; Fitch, Robert D; Setton, Lori A; Chen, Jun

    2012-12-01

    Galectin-1 (Gal-1), an endogenous β-galactoside-binding protein, binds to laminins, which are highly expressed in the nucleus pulposus (NP) of the intervertebral disc (IVD). The objective of this study is to evaluate the expression of Gal-1 protein in IVD tissues during aging and the effect of Gal-1 on IVD cell adhesion to laminins. Tissues from rat, porcine, and human (scoliosis or disc degeneration) IVDs were used to evaluate Gal-1 expression via immunostaining, RT-PCR, and Western blot analysis. Attachment of isolated IVD cells (porcine and human) on select laminin isoforms (LM-111 and LM-511) was compared with/without pre-incubation with exogenous Gal-1. A biotinylated Gal-1(B-Gal-1) was used to evaluate for binding to IVD cells and to select for IVD cells by magnetic activated cell sorting (MACS). NP cells expressed high levels of Gal-1 protein as compared to anulus fibrosus (AF) cells in immature tissues, while exogenous Gal-1 increased both NP and AF cell attachment to laminins and exhibited a similar binding to both cell types in vitro. With aging, Gal-1 levels in NP tissue appeared to decrease. In addition, incubation with B-Gal-1 was able to promote the retention of more than 50% of IVD cells via MACS. Our results provide new findings for the presence and functional role of Gal-1 within IVDs. Similar staining patterns for Gal-1 and LM-511 in IVD tissue suggest that Gal-1 may serve as an adhesion molecule to interact with both cells and laminins. This MACS protocol may be useful for selecting pure IVD cells from mixed cells of pathological tissue.

  4. A PHASED REHABILITATION PROTOCOL FOR ATHLETES WITH LUMBAR INTERVERTEBRAL DISC HERNIATION

    PubMed Central

    VanGelder, Leonard H.; Vaughn, Daniel W.

    2013-01-01

    Conservative non-surgical management of a herniated lumbar intervertebral disc (HLD) in athletes is a complex task due to the dramatic forces imparted on the spine during sport participation. The demands placed upon the athlete during rehabilitation and return to sport are unique not only from a sport specific perspective, but also regarding return to the sport strength and conditioning programs utilized for sport preparation. Many prescriptions fail to address postural and motor control faults specific to athletic development, which may prevent full return to sport after suffering a HLD or predispose the athlete to future exacerbations of a HLD. Strength exercises involving squatting, deadlifting, and Olympic power lifts are large components of the typical athlete's conditioning program, therefore some progressions are provided to address potential underlying problems in the athlete's technique that may have contributed to their HLD in the first place. The purpose of this clinical commentary is to propose a framework for rehabilitation that is built around the phases of healing of the disc. Phase I: Non-Rotational/Non-Flexion Phase (Acute Inflammatory Phase), Phase II: Counter rotation/Flexion Phase (Repair Phase), Phase III: Rotational Phase/Power development (Remodeling Phase), and Phase IV: Full return to sport. This clinical commentary provides a theoretical basis for these phases based on available literature as well as reviewing many popular current practice trends in the management of an HLD. The authors recognize the limits of any general exercise rehabilitation recommendation with regard to return to sport, as well as any general strength and conditioning program. It is vital that an individual assessment and prescription is made for every athlete which reviews and addresses movement in all planes of motion under all necessary extrinsic and intrinsic demands to that athlete. Level of Evidence: 5 PMID:24175134

  5. Resistin Promotes Intervertebral Disc Degeneration by Upregulation of ADAMTS-5 Through p38 MAPK Signaling Pathway.

    PubMed

    Liu, Caijun; Yang, Hao; Gao, Fei; Li, Xiang; An, Yan; Wang, Jianru; Jin, Anmin

    2016-09-15

    Rat nucleus pulposus (NP) cells were activated with resistin with or without p38 mitogen-activated protein kinase (MAPK) pathway inhibition. The expression of a disintegrin and metalloprotease with thrombospondin motif-5 (ADAMTS-5), which plays an important role in intervertebral disc degeneration (IDD), was determined. The aim of this study was to demonstrate whether resistin can influence the ADAMTS-5 expression and to further investigate the underlying mechanisms. Obesity has been demonstrated to promote IDD, whereas the exact mechanism remains poorly understood. Resistin, as an important adipokine, is increased with obesity and has been shown to play pro-inflammatory and catabolic role in cartilage metabolism. However, the effect of resistin on the catabolic enzymes within NP cells remains unknown. We exposed NP cells to resistin, and the transcriptional activity, gene expression, and protein levels of ADAMTS-5 were measured by luciferase reporter assay, qRT-polymerase chain reaction, immunofluorescence, and western blot, respectively. The activation of p38 MAPK pathways was detected using western blot analysis. Resistin had no effect on cell viability. Resistin increased ADAMTS-5 expression in rat NP cells time and dose dependently. The p38 MAPK signaling pathway was activated after exposure to resistin. Treatment with p38 inhibitor decreased the upregulation of ADAMTS-5 by resistin. The current study, for the first time, investigated the role of resistin in ADAMTS-5 regulation in IDD. These findings provide novel evidence supporting the causative role of obesity in IDD, which is important to develop novel preventative or therapeutic treatment in disc degenerative disorders. N/A.

  6. Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration

    PubMed Central

    Almeida, Catarina R.; Almeida, Maria Inês; Silva, Andreia M.; Molinos, Maria; Lamas, Sofia; Pereira, Catarina L.; Teixeira, Graciosa Q.; Monteiro, António T.; Santos, Susana G.; Gonçalves, Raquel M.; Barbosa, Mário A.

    2016-01-01

    Abstract Cell therapies for intervertebral disc (IVD) regeneration presently rely on transplantation of IVD cells or stem cells directly to the lesion site. Still, the harsh IVD environment, with low irrigation and high mechanical stress, challenges cell administration and survival. In this study, we addressed systemic transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) intravenously into a rat IVD lesion model, exploring tissue regeneration via cell signaling to the lesion site. MSC transplantation was performed 24 hours after injury, in parallel with dermal fibroblasts as a control; 2 weeks after transplantation, animals were killed. Disc height index and histological grading score indicated less degeneration for the MSC‐transplanted group, with no significant changes in extracellular matrix composition. Remarkably, MSC transplantation resulted in local downregulation of the hypoxia responsive GLUT‐1 and in significantly less herniation, with higher amounts of Pax5+ B lymphocytes and no alterations in CD68+ macrophages within the hernia. The systemic immune response was analyzed in the blood, draining lymph nodes, and spleen by flow cytometry and in the plasma by cytokine array. Results suggest an immunoregulatory effect in the MSC‐transplanted animals compared with control groups, with an increase in MHC class II+ and CD4+ cells, and also upregulation of the cytokines IL‐2, IL‐4, IL‐6, and IL‐10, and downregulation of the cytokines IL‐13 and TNF‐α. Overall, our results indicate a beneficial effect of systemically transplanted MSCs on in situ IVD regeneration and highlight the complex interplay between stromal cells and cells of the immune system in achieving successful tissue regeneration. Stem Cells Translational Medicine 2017;6:1029–1039 PMID:28297581

  7. Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration.

    PubMed

    Cunha, Carla; Almeida, Catarina R; Almeida, Maria Inês; Silva, Andreia M; Molinos, Maria; Lamas, Sofia; Pereira, Catarina L; Teixeira, Graciosa Q; Monteiro, António T; Santos, Susana G; Gonçalves, Raquel M; Barbosa, Mário A

    2017-03-01

    Cell therapies for intervertebral disc (IVD) regeneration presently rely on transplantation of IVD cells or stem cells directly to the lesion site. Still, the harsh IVD environment, with low irrigation and high mechanical stress, challenges cell administration and survival. In this study, we addressed systemic transplantation of allogeneic bone marrow mesenchymal stem cells (MSCs) intravenously into a rat IVD lesion model, exploring tissue regeneration via cell signaling to the lesion site. MSC transplantation was performed 24 hours after injury, in parallel with dermal fibroblasts as a control; 2 weeks after transplantation, animals were killed. Disc height index and histological grading score indicated less degeneration for the MSC-transplanted group, with no significant changes in extracellular matrix composition. Remarkably, MSC transplantation resulted in local downregulation of the hypoxia responsive GLUT-1 and in significantly less herniation, with higher amounts of Pax5+ B lymphocytes and no alterations in CD68+ macrophages within the hernia. The systemic immune response was analyzed in the blood, draining lymph nodes, and spleen by flow cytometry and in the plasma by cytokine array. Results suggest an immunoregulatory effect in the MSC-transplanted animals compared with control groups, with an increase in MHC class II+ and CD4+ cells, and also upregulation of the cytokines IL-2, IL-4, IL-6, and IL-10, and downregulation of the cytokines IL-13 and TNF-α. Overall, our results indicate a beneficial effect of systemically transplanted MSCs on in situ IVD regeneration and highlight the complex interplay between stromal cells and cells of the immune system in achieving successful tissue regeneration. Stem Cells Translational Medicine 2017;6:1029-1039. © 2016 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  8. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy.

    PubMed

    Gantenbein, Benjamin; Illien-Jünger, Svenja; Chan, Samantha C W; Walser, Jochen; Haglund, Lisbet; Ferguson, Stephen J; Iatridis, James C; Grad, Sibylle

    2015-01-01

    In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.

  9. Acid-sensing ion channel 2 (asic 2) and trkb interrelationships within the intervertebral disc

    PubMed Central

    Cuesta, Antonio; Viña, Eliseo; Cabo, Roberto; Vázquez, Gorka; Cobo, Ramón; García-Suárez, Olivia; García-Cosamalón, José; Vega, José A

    2015-01-01

    The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. They express acid-sensing ion channels (ASICs), gated by extracellular protons and mechanical forces, as well as neurotrophins and their signalling receptors. In the nervous tissues some neurotrophins regulate the expression of ASICs. The expression of ASIC2 and TrkB in human normal and degenerated IVD was assessed using quantitative-PCR, Western blot, and immunohistochemistry. Moreover, we investigated immunohistochemically the expression of ASIC2 in the IVD of TrkB-deficient mice. ASIC2 and TrkB mRNAs were found in normal human IVD and both increased significantly in degenerated IVD. ASIC2 and TrkB proteins were also found co-localized in a variable percentage of cells, being significantly higher in degenerated IVD than in controls. The murine IVD displayed ASIC2 immunoreactivity which was absent in the IVD of TrkB-deficient mice. Present results demonstrate the occurrence of ASIC2 and TrkB in the human IVD, and the increased expression of both in pathological IVD suggest their involvement in IVD degeneration. These data also suggest that TrkB-ligands might be involved in the regulation of ASIC2 expression, and therefore in mechanisms by which the IVD cells accommodate to low pH and hypertonicity. PMID:26617738

  10. Thoracic Infectious Spondylitis After Surgical Treatments of Herniated Lumbar Intervertebral Disc

    PubMed Central

    Kim, Jin-Hyun; Kang, Jung-Il; Kim, Min Jeong; Lee, Jongmin; Lee, In-Sik; Jung, Heeyoune

    2013-01-01

    The postoperative infectious spondylitis has been reported to occur among every 1% to 12%. It is difficult to early diagnose in some cases. If the diagnosis is delayed, it can be a life-threatening condition. We report a 32-year-old male patient with postoperative infectious spondylitis. He had surgical treatments for traumatic intervertebral disc herniations in L3-4 and L4-5. Three weeks after surgery, he complained for fever and paraplegia. Cervicothoracic magnetic resonance imaging showed the collapsed T2 and T3 vertebral body with changes of bone marrow signal intensity. Moreover, it showed anterior and posterior epidural masses causing spinal cord compressions which suggested infectious spondylitis. After the use of antibiotics and surgical decompressions T2-T3, his general conditions were improved and muscle power of lower extremities began to be gradually restored. However, we could not identify the exact organisms that may be the cause of infectious spondylitis. It could be important that the infectious spondylitis, which is presented away from the primary operative level, should be observed in patients with fevers of unknown origin and paraplegia. PMID:24236263

  11. Experimental observation of human bone marrow mesenchymal stem cell transplantation into rabbit intervertebral discs

    PubMed Central

    Tao, Hao; Lin, Yazhou; Zhang, Guoqing; Gu, Rui; Chen, Bohua

    2016-01-01

    Allogeneic bone marrow mesenchymal stem cell (BMSC) transplantation has been investigated worldwide. However, few reports have addressed the survival status of human BMSCs in the intervertebral discs (IVDs) in vivo following transplantation. The current study aimed to observe the survival status of human BMSCs in rabbit IVDs. The IVDs of 15 New Zealand white rabbits were divided into three groups: Punctured blank control group (L1-2); punctured physiological saline control group (L2-3); and punctured human BMSCs transfected with green fluorescent protein (GFP) group (L3-4, L4-5 and L5-6). One, 2, 4, 6 and 8 weeks after transplantation the IVDs were removed and a fluorescence microscope was used to observe the density of GFP-positive human BMSCs. The results indicated that in the sections of specimens removed at 1, 2, 4, 6 and 8 weeks post-transplantation, no GFP-positive cells were observed in the control groups, whereas GFP-positive cells were apparent in the nucleus pulposus at all periods in the GFP-labeled human BMSCs group, and the cell density at 6 and 8 weeks was significantly less than that at 1, 2 and 4 weeks post-transplantation (P<0.001). Thus, it was identified that human BMSCs were able to survive in the rabbit IVDs for 8 weeks. PMID:27588177

  12. Dysuria due to discospondylitis and intervertebral disc herniation in a male alpaca (Vicugna pacos).

    PubMed

    Sickinger, Marlene; Hirz, Manuela; Schmidt, Martin J; Reinacher, Manfred

    2016-05-31

    Dysuria in camelids is usually associated with the presence of lower urinary tract disease such as urolithiasis. As another differential diagnosis, urine retention may be caused by neurological disturbances resulting from infections of the spinal cord, discospondylitis or trauma. A 2.5-year-old male Huacaya alpaca (Vicugna pacos) presented with dysuria due to damage of the lumbosacral intumescence of the spinal cord. On presentation the alpaca was recumbent. Clinical examination revealed abdominal pain, oliguria, leucopenia with neutrophilia, and slightly elevated creatinine kinase. Ultrasonography of the abdomen showed an irregularly shaped, dilated urinary bladder with hyperechoic serosa. Magnetic resonance imaging revealed discospondylitis of the fourth and fifth lumbar vertebrae and herniation of the intervertebral disc between these vertebrae and the spinal cord. Postmortem examination confirmed severe chronic purulent discospondylitis with ventral spondylosis and narrowing of the spinal canal. Urolithiasis could not be verified. Although rare, diseases of the spinal cord should be considered as a differential diagnosis for impaired micturition in camelids.

  13. In-situ photopolymerized and monitored implants: successful application to an intervertebral disc replacement

    NASA Astrophysics Data System (ADS)

    Schmocker, Andreas M.; Khoushabi, Azadeh; Bourban, Pierre-Etienne; Schizas, Constantin; Pioletti, Dominique; Moser, Christophe

    2016-02-01

    Photopolymerization is a common method to harden materials initially in a liquid state. A surgeon can directly trigger the solidification of a dental implant or a bone or tissue filler by using ultra-violet light. Traditionally, photopolymerization has been used mainly in dentistry. Over the last decade advances in material development including a wide range of biocompatible gel- and cement-systems open up a new avenue for in-situ photopolymerization. We designed a miniaturized light probe where a photoactive material can be 1) mixed, pressurized and injected 2) photopolymerized or photoactivated and 3) monitored during the chemical reaction. The device enables surgeries to be conducted through a hole smaller than 500 μm in diameter. Using a combination of Raman and fluorescence spectroscopy, the current state of the photopolymerization was inferred and monitored in real time within an in-vitro tissue model. It was also possible to determine roughly the position of the probe within the tissue cavity by analysing the fluorescence signal. Using the technique hydrogels were successfully implanted into a bovine intervertebral disc model. Mechanical tests could not obstruct the functionality of the implant. Finally, the device was also used for other application such as the implantation of a hydrogel into an aneurysm tissue cavity which will be presented at the conference.

  14. Interleukin 1 Polymorphisms Contribute to Intervertebral Disc Degeneration Risk: A Meta-Analysis

    PubMed Central

    Fu, Changfeng; Xu, Feng; Chen, Yong; Wang, Zhenyu; Liu, Yi

    2016-01-01

    Objective We performed a meta-analysis to assess association between interleukin 1 (IL-1) polymorphisms and the risk of Intervertebral Disc Degeneration (IDD). Background A series of studies have investigated the association between common single nucleotide polymorphisms in IL-1 and IDD risk; however, the overall results are inconclusive. Methods Two independent investigators conducted a systematic search for relevant available studies. Allele frequencies were extracted from each study. The association between the IL-1α (+889C/T) or IL-1β (+3954C/T) polymorphism and IDD risk was measured by odds ratios (OR) with 95% confidence intervals (95% CI). Results Five and six studies, respectively, were ultimately included in the meta-analysis for the IL-1α (+889C/T) and IL-1β (+3954C/T) polymorphism. The combined results showed that the IL-1α (+889C/T) polymorphism was significantly associated with increased susceptibility to IDD, particularly in Caucasians (TT versus CC: OR = 2.95, 95% CI: 1.45, 6.04; Pheterogeneity = 0.82; TT versus CC/CT: OR = 2.29, 95% CI: 1.18, 4.47; Pheterogeneity = 0.20). In contrast, the IL-1β (+3954C/T) polymorphism showed a trend towards increased risk in Caucasians but no association in Asians. Conclusion This meta-analysis suggested that the IL-1α (+889C/T) polymorphism is significantly associated with risk of IDD, especially in Caucasian populations. PMID:27253397

  15. Genome-Wide Identification of Long Noncoding RNAs in Human Intervertebral Disc Degeneration by RNA Sequencing

    PubMed Central

    Zhao, Bo; Lu, Minjuan; Wang, Dong; Li, Haopeng

    2016-01-01

    Long noncoding RNAs (lncRNAs) are emerging as crucial players in a myriad of biological processes. However, the precise mechanism and functions of most lncRNAs are poorly characterized. In this study, we presented genome-wide identification of lncRNAs in the patients with intervertebral disc degeneration (IDD) and spinal cord injury (control) using RNA sequencing (RNA-seq). A total of 124.6 million raw reads were yielded using Hiseq 2500 platform and approximately 88% clean reads could be aligned to human reference genome in both IDD and control groups. RNA-seq profiling indicated that 1,854 lncRNAs were differentially expressed (log2 fold change ≥ 1 or ≤−1, p < 0.05), in which 1,530 could potentially target 6,386 genes via cis-regulatory effects. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for these target genes suggested that lncRNAs were involved in diverse pathways, such as lysosome, focal adhesion, and MAPK signaling. In addition, a competing endogenous RNA (ceRNA) network was constructed for analyzing the function of lncRNAs. Further, quantitative real time PCR (qRT-PCR) was used to confirm the differentially expressed lncRNAs and ceRNA network. In conclusion, our results present the first global identification of lncRNAs in IDD and may provide candidate diagnostic biomarkers for IDD treatment. PMID:28097131

  16. The heterogeneity of the non-aggregating proteoglycans of the human intervertebral disc.

    PubMed Central

    DiFabio, J L; Pearce, R H; Caterson, B; Hughes, H

    1987-01-01

    Non-aggregating proteoglycans of differing average hydrodynamic volumes were prepared from nuclei pulposi and anuli fibrosi of three human lumbar spines and characterized by biochemical and immunochemical analyses. The hexose-to-hexuronate and protein-to-hexuronate ratios increased with decreasing hydrodynamic volume. Analysis by composite agarose/polyacrylamide-gel electrophoresis has demonstrated two aggregating subpopulations [McDevitt, Jahnke & Green (1982) Trans. Annu. Meet. Orthop. Res. Soc. 7, 50]. In the present study, electrophoresis of the non-aggregating pools has shown three additional subpopulations, here named bands III, IV and V. The two smallest proteoglycan pools from each tissue contained two and three components respectively. These components were isolated by preparative electrophoresis and analysed. Band III was a proteoglycan richer in keratan sulphate than in chondroitin sulphate; band IV was a proteoglycan richer in chondroitin sulphate than in keratan sulphate; band V contained only chondroitin sulphate. Unsaturated disaccharides prepared from the chondroitin sulphate of all bands were predominantly 6-sulphated, with only 5-15% 4-sulphated. The molecular masses of the chondroitin sulphate and keratan sulphate did not differ between the bands. The amino acid composition of band III differed from that of band IV. Thus three distinct subpopulations of non-aggregating proteoglycan were demonstrated in the human intervertebral disc. PMID:3117036

  17. The Involvement of Protease Nexin-1 (PN1) in the Pathogenesis of Intervertebral Disc (IVD) Degeneration

    PubMed Central

    Wu, Xinghuo; Liu, Wei; Duan, Zhenfeng; Gao, Yong; Li, Shuai; Wang, Kun; Song, Yu; Shao, Zengwu; Yang, Shuhua; Yang, Cao

    2016-01-01

    Protease nexin-1 (PN-1) is a serine protease inhibitor belonging to the serpin superfamily. This study was undertaken to investigate the regulatory role of PN-1 in the pathogenesis of intervertebral disk (IVD) degeneration. Expression of PN-1 was detected in human IVD tissue of varying grades. Expression of both PN-1 mRNA and protein was significantly decreased in degenerated IVD, and the expression levels of PN-1 were correlated with the grade of disc degeneration. Moreover, a decrease in PN-1 expression in primary NP cells was confirmed. On induction by IL-1β, the expression of PN-1 in NP cells was decreased at day 7, 14, and 21, as shown by western blot analysis and immunofluorescence staining. PN-1 administration decreased IL-1β-induced MMPs and ADAMTS production and the loss of Agg and Col II in NP cell cultures through the ERK1/2/NF-kB signaling pathway. The changes in PN-1 expression are involved in the pathogenesis of IVD degeneration. Our findings indicate that PN-1 administration could antagonize IL-1β-induced MMPs and ADAMTS, potentially preventing degeneration of IVD tissue. This study also revealed new insights into the regulation of PN-1 expression via the ERK1/2/NF-kB signaling pathway and the role of PN-1 in the pathogenesis of IVD degeneration. PMID:27460424

  18. Sesamin inhibits lipopolysaccharide-induced inflammation and extracellular matrix catabolism in rat intervertebral disc.

    PubMed

    Li, Kang; Li, Yan; Xu, Bo; Mao, Lu; Zhao, Jie

    2016-09-01

    Intervertebral disc (IVD) degeneration contributes to most spinal degenerative diseases, while treatment inhibiting IVD degeneration is still in the experimental stage. Sesamin, a bioactive component extracted from sesame, has been reported to exert chondroprotective and anti-inflammatory effects. Here, we analyzed the anti-inflammatory and anti-catabolic effects of sesamin on rat IVD in vitro and ex vivo. Results show that sesamin significantly inhibits the lipopolysaccharide (LPS)-induced expression of catabolic enzymes (MMP-1, MMP-3, MMP-13, ADAMTS-4, ADAMTS-5) and inflammation factors (IL-1β, TNF-α, iNOS, NO, COX-2, PGE2) in a dose-dependent manner in vitro. It is also proven that migration of macrophages induced by LPS can be inhibited by treatment with sesamin. Organ culture experiments demonstrate that sesamin protects the IVD from LPS-induced depletion of the extracellular matrix ex vivo. Moreover, sesamin suppresses LPS-induced activation of the mitogen-activated protein kinase (MAPK) pathway through inhibiting phosphorylation of JNK, the common downstream signaling pathway of LPS and IL-1β, which may be the potential mechanism of the effects of sesamin. In light of our results, sesamin protects the IVD from inflammation and extracellular matrix catabolism, presenting positive prospects in the treatment of IVD degenerative diseases.

  19. Sensitivity of MRI signal distribution within the intervertebral disc to image segmentation and data normalisation.

    PubMed

    Gervais, Julien; Périé, Delphine; Aubin, Carl-Éric

    2014-01-01

    There is a lack of early biomarkers of intervertebral disc (IVD) degeneration. Thus, the authors developed the analysis of magnetic resonance signal intensity distribution (AMRSID) method to analyse the 3D distribution of the T2-weighted MR signal intensity within the IVD using normalised histograms, weighted centres and volume ratios. The objective was to assess the sensitivity of the AMRSID method to the segmentation process and data normalisation. Repetition of the semi-automatic segmentation by the same operator did not influence the quality of the contour or our new MR distribution parameters whereas the skills of the operator influenced only the MR distribution parameters, and the instructions given prior to the segmentation influenced both the quality of the contour and the MR distribution parameters. Bone normalisation produces an index that jointly highlights IVD and bone health, whereas cerebrospinal fluid normalisation only suppresses the effect of the acquisition gain. This robust AMRSID method has the potential to improve the diagnostic with earlier biomarkers and the prognosis of evolution.

  20. A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development

    PubMed Central

    Sivakamasundari, V.; Kraus, Petra; Sun, Wenjie; Hu, Xiaoming; Lim, Siew Lan; Prabhakar, Shyam

    2017-01-01

    ABSTRACT Pax1 and Pax9 play redundant, synergistic functions in the patterning and differentiation of the sclerotomal cells that give rise to the vertebral bodies and intervertebral discs (IVD) of the axial skeleton. They are conserved in mice and humans, whereby mutation/deficiency of human PAX1/PAX9 has been associated with kyphoscoliosis. By combining cell-type-specific transcriptome and ChIP-sequencing data, we identified the roles of Pax1/Pax9 in cell proliferation, cartilage development and collagen fibrillogenesis, which are vital in early IVD morphogenesis. Pax1 is up-regulated in the absence of Pax9, while Pax9 is unaffected by the loss of Pax1/Pax9. We identified the targets compensated by a single- or double-copy of Pax9. They positively regulate many of the cartilage genes known to be regulated by Sox5/Sox6/Sox9 and are connected to Sox5/Sox6 by a negative feedback loop. Pax1/Pax9 are intertwined with BMP and TGF-B pathways and we propose they initiate expression of chondrogenic genes during early IVD differentiation and subsequently become restricted to the outer annulus by the negative feedback mechanism. Our findings highlight how early IVD development is regulated spatio-temporally and have implications for understanding kyphoscoliosis. PMID:28011632

  1. Small leucine-rich proteoglycans (SLRPs): characteristics and function in the intervertebral disc.

    PubMed

    Chen, Lili; Liao, Jingwen; Klineberg, Eric; Leung, Victor Yl; Huang, Shishu

    2017-03-01

    The intervertebral disc (IVD) is responsible for normal spinal motion and load distribution. However, degeneration may occur due to age- and non-age-related processes and is primarily characterized by a reduction in the number of chondrocyte-like cells and abnormal extracellular matrix (ECM) structure in the nucleus pulposus. Although IVD progenitor cells have been identified, the local microenvironment components regulating the behaviour of these progenitor cell populations remain unknown. Small leucine-rich proteoglycans (SLRPs) are bioactive components of the ECM associated with fibrillogenesis, cellular growth and apoptosis and tissue remodelling. SLRPs support the survival of IVD progenitor cells under hypoxic conditions via the activation of specific hypoxia-inducible factors. Additionally, SLRPs deficiency (biglycan) in knockout mice is sufficient to accelerate the IVD degenerative process. These data suggest that SLRPs play an important role in the homeostasis of IVD. Given their specific properties and physiological functions, we propose a role of SLRPs in IVD degeneration and potential application in its regeneration. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Intervertebral disc segmentation in MR images with 3D convolutional networks

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2017-02-01

    The vertebral column is a complex anatomical construct, composed of vertebrae and intervertebral discs (IVDs) supported by ligaments and muscles. During life, all components undergo degenerative changes, which may in some cases cause severe, chronic and debilitating low back pain. The main diagnostic challenge is to locate the pain generator, and degenerated IVDs have been identified to act as such. Accurate and robust segmentation of IVDs is therefore a prerequisite for computer-aided diagnosis and quantification of IVD degeneration, and can be also used for computer-assisted planning and simulation in spinal surgery. In this paper, we present a novel fully automated framework for supervised segmentation of IVDs from three-dimensional (3D) magnetic resonance (MR) spine images. By considering global intensity appearance and local shape information, a landmark-based approach is first used for the detection of IVDs in the observed image, which then initializes the segmentation of IVDs by coupling deformable models with convolutional networks (ConvNets). For this purpose, a 3D ConvNet architecture was designed that learns rich high-level appearance representations from a training repository of IVDs, and then generates spatial IVD probability maps that guide deformable models towards IVD boundaries. By applying the proposed framework to 15 3D MR spine images containing 105 IVDs, quantitative comparison of the obtained against reference IVD segmentations yielded an overall mean Dice coefficient of 92.8%, mean symmetric surface distance of 0.4 mm and Hausdorff surface distance of 3.7 mm.

  3. Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis.

    PubMed

    Gloria, Antonio; Causa, Filippo; De Santis, Roberto; Netti, Paolo Antonio; Ambrosio, Luigi

    2007-11-01

    Over the past years, a tremendous effort has been made to develop an intervertebral disc (IVD) prosthesis with suitable biological, mechanical and transport properties. However, it has been frequently reported that current prostheses undergo failure mainly due to the mismatch between the mechanical properties of the conventional device and the spine segment to be replaced. The aim of the present work was to develop a poly(2-hydroxyethyl methacrylate)/poly(methyl methacrylate) (PHEMA/PMMA) (80/20 w/w) semi-interpenetrating polymer network (s-IPN) composite hydrogel reinforced with poly(ethylene terephthalate) (PET) fibres, and to investigate the static and dynamic mechanical properties. Filament winding and moulding technologies were employed to obtain the composite IVD prostheses with the unique complex structure that is peculiar to the natural IVD. The compressive properties analysis showed the typical J-shaped stress-strain curve which is displayed by natural IVDs. Compressive modulus varied from 84 to 120 MPa, as a function of the strain rate, and stress was higher than 10 MPa. These values are in the range of those of the natural lumbar IVDs. No failure of the prostheses has occurred during fatigue test performed for ten million cycles in physiological solution. Dynamic mechanical tests have confirmed the composite IVD prostheses exhibited appropriate viscoelastic properties.

  4. Interleukin 1 Polymorphisms Contribute to Intervertebral Disc Degeneration Risk: A Meta-Analysis.

    PubMed

    Wang, Zheng; Qu, Zhigang; Fu, Changfeng; Xu, Feng; Chen, Yong; Wang, Zhenyu; Liu, Yi

    2016-01-01

    We performed a meta-analysis to assess association between interleukin 1 (IL-1) polymorphisms and the risk of Intervertebral Disc Degeneration (IDD). A series of studies have investigated the association between common single nucleotide polymorphisms in IL-1 and IDD risk; however, the overall results are inconclusive. Two independent investigators conducted a systematic search for relevant available studies. Allele frequencies were extracted from each study. The association between the IL-1α (+889C/T) or IL-1β (+3954C/T) polymorphism and IDD risk was measured by odds ratios (OR) with 95% confidence intervals (95% CI). Five and six studies, respectively, were ultimately included in the meta-analysis for the IL-1α (+889C/T) and IL-1β (+3954C/T) polymorphism. The combined results showed that the IL-1α (+889C/T) polymorphism was significantly associated with increased susceptibility to IDD, particularly in Caucasians (TT versus CC: OR = 2.95, 95% CI: 1.45, 6.04; Pheterogeneity = 0.82; TT versus OR = 2.29, 95% CI: 1.18, 4.47; Pheterogeneity = 0.20). In contrast, the IL-1β (+3954C/T) polymorphism showed a trend towards increased risk in Caucasians but no association in Asians. This meta-analysis suggested that the IL-1α (+889C/T) polymorphism is significantly associated with risk of IDD, especially in Caucasian populations.

  5. Intervertebral Disc Cells Produce Interleukins Found in Patients with Back Pain.

    PubMed

    Zhang, Yejia; Chee, Ana; Shi, Peng; Adams, Sherrill L; Markova, Dessislava Z; Anderson, David Greg; Smith, Harvey E; Deng, Youping; Plastaras, Christopher T; An, Howard S

    2016-06-01

    To examine the link between cytokines in intervertebral disc (IVD) tissues and axial back pain. In vitro study with human IVD cells cultured from cadaveric donors and annulus fibrosus (AF) tissues from patients. Cultured nucleus pulposus (NP) and AF cells were stimulated with interleukin (IL)-1β. IL-8 and IL-7 gene expression was analyzed using real-time polymerase chain reaction. IL-8 protein was quantified by enzyme-linked immunosorbent assay. After IL-1β stimulation, IL-8 gene expression increased 26,541 fold in NP cells and 22,429 fold in AF cells, whereas protein released by the NP and AF cells increased 2,389- and 1,784-fold, respectively. IL-7 gene expression increased 3.3-fold in NP cells (P < 0.05).Cytokine profiles in AF tissues collected from patients undergoing surgery for back pain (painful group) or scoliosis (controls) were compared by cytokine array. IL-8 protein in the AF tissues from patients with back pain was 1.81-fold of that in controls. IL-7 and IL-10 in AF tissues from the painful group were 6.87 and 4.63 times greater than the corresponding values in controls, respectively (P < 0.05). Inflammatory mediators found in AF tissues from patients with discogenic back pain are likely produced by IVD cells and may play a key role in back pain.

  6. Pulsed electromagnetic field (PEMF) treatment reduces expression of genes associated with disc degeneration in human intervertebral disc cells.

    PubMed

    Miller, Stephanie L; Coughlin, Dezba G; Waldorff, Erik I; Ryaby, James T; Lotz, Jeffrey C

    2016-06-01

    Pulsed electromagnetic field (PEMF) therapies have been applied to stimulate bone healing and to reduce the symptoms of arthritis, but the effects of PEMF on intervertebral disc (IVD) biology is unknown. The purpose of this study was to determine how PEMF affects gene expression of IVD cells in normal and inflammatory environments. This was an in vitro human cell culture and microarray gene expression study. Human annulus fibrosus (AF) and nucleus pulposus (NP) cells were separately encapsulated in alginate beads and exposed to interleukin 1α (IL-1α) (10 ng/mL) to stimulate the inflammatory environment associated with IVD degeneration and/or stimulated by PEMF for 4 hours daily for up to 7 days. RNA was isolated from each treatment group and analyzed via microarray to assess IL-1α- and PEMF-induced changes in gene expression. Although PEMF treatment did not completely inhibit the effects of IL-1α, PEMF treatment lessened the IL-1α-induced upregulation of genes expressed in degenerated IVDs. Consistent with our previous results, after 4 days, PEMF tended to reduce IL-1α-associated gene expression of IL-6 (25%, p=.07) in NP cells and MMP13 (26%, p=.10) in AF cells. Additionally, PEMF treatment significantly diminished IL-1α-induced gene expression of IL-17A (33%, p=.01) and MMP2 (24%, p=.006) in NP cells and NFκB (11%, p=.04) in AF cells. These results demonstrate that IVD cells are responsive to PEMF and motivate future studies to determine whether PEMF may be helpful for patients with IVD degeneration. Copyright © 2016. Published by Elsevier Inc.

  7. Comparison of cervical disc arthroplasty with anterior cervical discectomy and fusion for the treatment of cervical spondylotic myelopathy.

    PubMed

    Ding, Chen; Hong, Ying; Liu, Hao; Shi, Rui; Song, Yueming; Li, Tao

    2013-06-01

    The clinical outcome of cervical disc arthroplasty for cervical spondylotic myelopathy (CSM) is still controversial. The authors retrospectively compared the intermediate term clinical outcome of cervical disc arthroplasty and traditional anterior cervical discectomy and fusion (ACDF). Seventy-six cases of single-level CSM with a minimum follow-up of two years were retrospectively analyzed. Thirty-seven patients underwent single-level cervical disc arthroplasty (Bryan disc: 12 cases; Prestige LP disc: 25 cases), while the other 39 patients underwent single-level ACDF. Significant improvement in SF-36 physical/ mental component scores and NDI score was found in both groups (p < 0.05); however, the arthroplasty group had significantly greater score improvement at each follow-up time point (p < 0.05). The JOA score and Nurick grade improved significantly at each time point in both groups (p < 0.05), but there were no significant differences between the groups (p > 0.05). The range of motion (surgical level and C2C7) remained unchanged in the arthroplasty group (p > 0.05), whereas it decreased significantly in the ACDF group (p < 0.05). The arthroplasty group had a lower incidence of complications than the ACDF group. The intermediate outcomes of cervical disc arthroplasty compared favourably to those of ACDF. Arthroplasty avoids complications from spinal fusion by preserving mobility.

  8. [Influence of intraoperative cervical posture in single segmental cervical disc replacement on restoration of cervical curve in neutral position].

    PubMed

    Hong, Ying; Deng, Yuxiao; Liu, Hao; Gong, Renrong; An, Lingjing; Gong, Quan; Li, Tao; Song, Yueming

    2013-01-01

    To study the correlation between the cervical posture in the cervical disc replacement (CDR). Between January 2008 and August 2010, 51 and the cervical curve restoration in neutral position after surgery. patients underwent single segmental PRESTIGE LP replacement, and the clinical data were retrospectively analyzed. During the surgery, the patient was supinely placed and the lordosis of the cervical spine was mantained with a pillow placed beneath the neck. Of them, 28 were male and 23 were female, aged 30-64 years (mean, 45 years); 32 were diagnosed as having cervical spondylotic myelopathy, 7 having radiculopathy, and 12 having myelopathy and radiculopathy. The disease duration was 3-48 months (mean, 15 months). CDR was performed at C(4, 5) in 5 cases, at C(5, 6) in 42 cases, and at C(6, 7) in 4 cases. The Cobb angles of the cervical alignment, targeted functional spinal unit (FSU), and targeted disc were measured by sagittal X-ray film of the cervical spine in neutral position before and after surgery, as well as the intraoperative C-arm fluroscopy of the cervical spine. Linear correlation and regression were performed to analyze the relation between cervical Cobb angle difference at intraoperation and improvement of the Cobb angles at 3 months after operation. The cervical Cobb angles at intraoperation and 3 months after operation were larger than those at preoperation (P < 0.05). The difference of the Cobb angle between intra- and pre-operation was (6.72 +/- 9.13) degrees on cervical alignment, (2.10 +/- 5.12) degrees on targeted FSU, and (3.33 +/- 3.75) degrees on targeted disc. At 3 months after operation, the Cobb angle improvement of the cervical alignment, targeted FSU, and targeted disc was (6.30 +/- 7.28), (3.99 +/- 5.37), and (4.29 +/- 5.36) degrees, respectively. There was no significant difference in the Cobb angle improvement between the targeted FSU and the targeted disc (t = -4.391, P = 0.698), and between the targeted disc and the cervical

  9. Numerical exploration of the combined effect of nutrient supply, tissue condition and deformation in the intervertebral disc.

    PubMed

    Malandrino, Andrea; Noailly, Jérôme; Lacroix, Damien

    2014-04-11

    Novel strategies to heal discogenic low back pain could highly benefit from comprehensive biophysical studies that consider both mechanical and biological factors involved in intervertebral disc degeneration. A decrease in nutrient availability at the bone-disc interface has been indicated as a relevant risk factor and as a possible initiator of cell death processes. Mechanical behaviour of both healthy and degenerated discs could highly interact with cell death in these compromised situations. In the present study, a mechano-transport finite element model was used to investigate the nature of mechanical effects on cell death processes via load-induced metabolic transport variations. Cycles of static sustained compression were chosen to simulate daily human activity. Healthy and degenerated cases were simulated as well as a reduced supply of solutes and an increase in solute exchange area at the bone-disc interface. Results showed that a reduction in metabolite concentrations at the bone-disc boundaries induced cell death, even when the increased exchange area was simulated. Slight local mechanical enhancements of glucose in the disc centre were capable of decelerating cell death but occurred only with healthy mechanical properties. However, mechanical deformations were responsible for a worsening in terms of cell death in the inner annulus, a disadvantaged zone far from the boundary supply with both an increased cell demand and a strain-dependent decrease of diffusivity. Such adverse mechanical effects were more accentuated when degenerative properties were simulated. Overall, this study paves the way for the use of biophysical models for a more integrated understanding of intervertebral disc pathophysiology.

  10. A morphological and histological study of the postnatal development of intervertebral discs in the lumbar spine of the rabbit.

    PubMed Central

    Scott, N A; Harris, P F; Bagnall, K M

    1980-01-01

    Some basic features in the development of the structure of the annulus fibrosus and nucleus pulposus in the rabbit, as described by previous workers, have been confirmed in the present study. However, the greater thickness of the anterior part of the disc, as compared with the posterior region, and the distinctive arrangement of lamellae in the posterior part of the disc, cannot be attributed, as conventionally claimed from studies of the human spine, to a secondary curvature in the lumbar spine associated with an upright posture: for these features are present in the lumbar spine of the quadrupedal rabbit with its primary curvature. Secondary ossification produces a plate-like epiphysis separating the growth cartilage from the intervertebral disc. A distinct cartilaginous plate, limiting the nucleus pulposus in the rabbit intervertebral disc, only becomes apparent when collagen fibres cease to traverse the area above and below the nucleus pulposus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:6154031

  11. Return to Sports After Cervical Total Disc Replacement.

    PubMed

    Reinke, Andreas; Behr, Michael; Preuss, Alexander; Villard, Jimmy; Meyer, Bernhard; Ringel, Florian

    2017-01-01

    Total disc replacement (TDR) is typically indicated in young patients with a cervical soft disc herniation. There are few data on the activity level of patients after cervical TDR, in particular from young patients who are expected to have a high activity level with frequent exercising. The expectation is that returning to active sports after cervical TDR is not restricted. Fifty patients were treated with a monosegmental cervical TDR at our department between May 2006 and March 2012. Clinical status and radiographic parameters were evaluated preoperatively and during follow-up. In addition, information was gathered regarding neck disability index, pain, a questionnaire concerning athletic aspects, and a modified Tegner activity score. The study design was a prospective case series. All patients were treated with the Prestige artificial cervical disc for a single-level soft disc herniation with radiculopathy. The average age was 40 years, and the mean follow-up period was 53 months (range, 26-96). The median neck disability index during follow-up was 5, and median visual analog scale for pain was 2. Two professional athletes, 20 semiprofessionals, 24 hobby athletes, and 5 patients with a very low activity level were treated. The median time to resumption of sporting activity was 4 weeks after surgery. All professionals and semiprofessionals recovered to their previous activity level. All of the 20 hobby athletes recovered to resume their sport participation. The modified Tegner preoperative score was 4 and the postoperative score was 3.5 (P = 0.806). We found that cervical TDR did not prohibit sporting activities. All patients recovered and were able to take part in their previous activities at an appropriate intensity level. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Intervertebral disc regeneration using platelet-rich plasma-containing bone marrow-derived mesenchymal stem cells: A preliminary investigation

    PubMed Central

    WANG, SHAN-ZHENG; JIN, JI-YANG; GUO, YU-DONG; MA, LIANG-YU; CHANG, QING; PENG, XIN-GUI; GUO, FANG-FANG; ZHANG, HAI-XIANG; HU, XIN-FENG; WANG, CHEN

    2016-01-01

    Platelet-rich plasma (PRP) is a promising strategy for intervertebral disc degeneration (IDD). However, the short half-life of growth factors released from PRP cannot continuously stimulate the degenerated discs. Thus, the present study hypothesized that the combined use of PRP and bone marrow-derived mesenchymal stem cells (BMSCs) may repair the early degenerated discs in the long term for their synergistic reparative effect. In the present study, following the induction of early IDD by annular puncture in rabbits, PRP was prepared and mixed with BMSCs (PRP-BMSC group) for injection into the early degenerated discs. As controls, phosphate-buffered saline (PBS; PBS group) and PRP (PRP group) were similarly injected. Rabbits without any intervention served as a control group. At 8 weeks following treatment, histological changes of the injected discs were assessed. Magnetic resonance imaging (MRI) was used to detect the T2-weighted signal intensity of the targeted discs at weeks 1, 2 and 8 following treatment. Annular puncture resulted in disc narrowing and decreased T2-weighted signal intensity. At weeks 1 and 3, MRI examinations showed regenerative changes in the PRP-BMSC group and PRP group, whereas the PBS group exhibited a continuous degenerative process of the discs. At 8 weeks post-injection, the PRP-BMSCs induced a statistically significant restoration of discs, as shown by MRI (PRP-BMSCs, vs.PRP and PBS; P<0.05), which was also confirmed by histological evaluations. Thus, compared with PRP, the administration of PRP-containing BMSCs resulted in a superior regenerative effect on the early degenerated discs, which may be a promising therapeutic strategy for the restoration of early degenerated discs. PMID:26956080

  13. Posterior Epidural Migration of Sequestrated Cervical Disc Fragment: Case Series

    PubMed Central

    Kumar, Gopalan Senthil; Mahesha, Kanthila Bhat

    2011-01-01

    Study Design A retrospective study was undertaken to delineate the characteristics of non-traumatic sequestrated epidurally migrated cervical disc prolapse. Purpose To present first case series of eight such cases diagnosed preoperatively and to discuss their magnetic resonance imaging (MRI) characteristics and their management. Overview of Literature Non-traumatic spontaneous migration of the sequestrated disc fragment epidurally behind cervical vertebral body is rare. Only ten cases have been reported in literature. Methods Detailed clinico-radiological profiles of these 8 cases are presented. In six cases their clinical picture was suggestive of cervical myelopathy. MRI scan showed single level epidural migrated disc behind body of C4, C6, and C7 in six patients and two cases with multiple levels (C5-C6). In six cases, anterior corpectomy with excision of the disc was performed and the seventh patient underwent dorsal laminectomy. The eighth patient chose not to undergo surgery. Results T1 images of the MRI scan showed an isointense signal in all the 8 cases. T2 images revealed a varying intensity. In six cases who underwent anterior corpectomy, there was a rent in the posterior longitudinal ligament. Among those in two cases multiple disc fragments were seen. In the rest four cases, a single large fragment was observed. These patients improved after anterior corpectomy and disc excision. There was no improvement in the patient who had undergone dorsal laminectomy. The eighth patient who refused surgery progressively deteriorated. Conclusions We opine that MRI scan especially T1 images are useful in these cases. We prefer to treat these cases through anterior corpectomy with excision of the sequestrated disc which proved to result in excellent outcome. PMID:22164316

  14. Posterior epidural migration of sequestrated cervical disc fragment: case series.

    PubMed

    Srinivasan, Uddanapalli Sreeramulu; Kumar, Gopalan Senthil; Mahesha, Kanthila Bhat

    2011-12-01

    A retrospective study was undertaken to delineate the characteristics of non-traumatic sequestrated epidurally migrated cervical disc prolapse. To present first case series of eight such cases diagnosed preoperatively and to discuss their magnetic resonance imaging (MRI) characteristics and their management. Non-traumatic spontaneous migration of the sequestrated disc fragment epidurally behind cervical vertebral body is rare. Only ten cases have been reported in literature. Detailed clinico-radiological profiles of these 8 cases are presented. In six cases their clinical picture was suggestive of cervical myelopathy. MRI scan showed single level epidural migrated disc behind body of C4, C6, and C7 in six patients and two cases with multiple levels (C5-C6). In six cases, anterior corpectomy with excision of the disc was performed and the seventh patient underwent dorsal laminectomy. The eighth patient chose not to undergo surgery. T1 images of the MRI scan showed an isointense signal in all the 8 cases. T2 images revealed a varying intensity. In six cases who underwent anterior corpectomy, there was a rent in the posterior longitudinal ligament. Among those in two cases multiple disc fragments were seen. In the rest four cases, a single large fragment was observed. These patients improved after anterior corpectomy and disc excision. There was no improvement in the patient who had undergone dorsal laminectomy. The eighth patient who refused surgery progressively deteriorated. We opine that MRI scan especially T1 images are useful in these cases. We prefer to treat these cases through anterior corpectomy with excision of the sequestrated disc which proved to result in excellent outcome.

  15. Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model.

    PubMed

    Martin, John T; Milby, Andrew H; Chiaro, Joseph A; Kim, Dong Hwa; Hebela, Nader M; Smith, Lachlan J; Elliott, Dawn M; Mauck, Robert L

    2014-06-01

    Intervertebral disc degeneration has been implicated in the etiology of low back pain; however, the current surgical strategies for treating symptomatic disc disease are limited. A variety of materials have been developed to replace disc components, including the nucleus pulposus (NP), the annulus fibrosus (AF) and their combination into disc-like engineered constructs. We have previously shown that layers of electrospun poly(ε-caprolactone) scaffold, mimicking the hierarchical organization of the native AF, can achieve functional parity with native tissue. Likewise, we have combined these structures with cell-seeded hydrogels (as an NP replacement) to form disc-like angle-ply structures (DAPS). The objective of this study was to develop a model for the evaluation of DAPS in vivo. Through a series of studies, we developed a surgical approach to replace the rat caudal disc with an acellular DAPS and then stabilized the motion segment via external fixation. We then optimized cell infiltration into DAPS by including sacrificial poly(ethylene oxide) layers interspersed throughout the angle-ply structure. Our findings illustrate that DAPS are stable in the caudal spine, are infiltrated by cells from the peri-implant space and that infiltration is expedited by providing additional routes for cell migration. These findings establish a new in vivo platform in which to evaluate and optimize the design of functional disc replacements.

  16. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor.

    PubMed

    Tolonen, Jukka; Grönblad, Mats; Vanharanta, Heikki; Virri, Johanna; Guyer, Richard D; Rytömaa, Tapio; Karaharju, Erkki O

    2006-05-01

    Degenerated intervertebral disc has lost its normal architecture, and there are changes both in the nuclear and annular parts of the disc. Changes in cell shape, especially in the annulus fibrosus, have been reported. During degeneration the cells become more rounded, chondrocyte-like, whereas in the normal condition annular cells are more spindle shaped. These chondrocyte-like cells, often forming clusters, affect extracellular matrix turnover. In previous studies transforming growth factor beta (TGFbeta) -1 and -2, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) have been highlighted in herniated intervertebral disc tissue. In the present study the same growth factors are analysed immunohistochemically in degenerated intervertebral disc tissue. Disc material was obtained from 16 discs operated for painful degenerative disc disease. Discs were classified according to the Dallas Discogram Description. Different disc regions were analysed in parallel. As normal control disc tissue material from eight organ donors was used. Polyclonal antibodies against different growth factors and TGFbeta receptor type II were used, and the immunoreaction was detected by the avidin biotin complex method. All studied degenerated discs showed immunoreactivity for TGFbeta receptor type II and bFGF. Fifteen of 16 discs were immunopositive for TGFbeta-1 and -2, respectively, and none showed immunoreaction for PDGF. Immunopositivity was located in blood vessels and in disc cells. In the nucleus pulposus the immunoreaction was located almost exclusively in chondrocyte-like disc cells, whereas in the annular region this reaction was either in chondrocyte-like disc cells, often forming clusters, or in fibroblast-like disc cells. Chondrocyte-like disc cells were especially prevalent in the posterior disrupted area. In the anterior area of the annulus fibrosus the distribution was more even between these two cell types. bFGF was expressed in the anterior annulus

  17. Comparison of Posterior Lumbar Interbody Fusion and Posterolateral Lumbar Fusion in Monosegmental Vacuum Phenomenon within an Intervertebral Disc

    PubMed Central

    An, Ki-Chan; Kong, Gyu-Min; Park, Dae-Hyun; Youn, Ji-Hong; Lee, Woon-Seong

    2016-01-01

    Study Design Retrospective. Purpose To compare the clinical and radiological outcomes of posterolateral lumbar interbody fusion (PLIF) and posterolateral lumbar fusion (PLF) in monosegmental vacuum phenomenon within an intervertebral disc. Overview of Literature The vacuum phenomenon within an intervertebral disc is a serious form of degenerative disease that destabilizes the intervertebral body. Outcomes of PLIF and PLF in monosegmental vacuum phenomenon are unclear. Methods Monosegmental instrumented PLIF and PLF was performed on 84 degenerative lumbar disease patients with monosegmental vacuum phenomenon (PLIF, n=38; PLF, n=46). Minimum follow-up was 24 months. Clinical outcomes of leg and back pain were assessed using visual analogue scales for leg pain (LVAS) and back pain (BVAS), and the Oswestry disability index (ODI). The radiographic outcome was the estimated bony union rate. Results LVAS, BVAS, and ODI improved in both groups. There was no significant difference in the degree of these improvements between PLIF and PLF patients (p>0.05). Radiological union rate was 91.1% in PLIF group and 89.4% in PLF group at postoperative 24 months (p>0.05). Conclusions No significant differences in clinical results and union rates were found between PLIF and PLF patients. Selection of the operation technique will reflect the surgeon's preferences and patient condition. PMID:26949464

  18. Expression and regulation of toll-like receptors (TLRs) in human intervertebral disc cells.

    PubMed

    Klawitter, Marina; Hakozaki, Michiyuki; Kobayashi, Hiroshi; Krupkova, Olga; Quero, Lilian; Ospelt, Caroline; Gay, Steffen; Hausmann, Oliver; Liebscher, Thomas; Meier, Ullrich; Sekiguchi, Miho; Konno, Shin-ichi; Boos, Norbert; Ferguson, Stephen J; Wuertz, Karin

    2014-09-01

    Although inflammatory processes play an essential role in painful intervertebral disc (IVD) degeneration, the underlying regulatory mechanisms are not well understood. This study was designed to investigate the expression, regulation and importance of specific toll-like receptors (TLRs)--which have been shown to play an essential role e.g. in osteoarthritis--during degenerative disc disease. The expression of TLRs in human IVDs was measured in isolated cells as well as in normal or degenerated IVD tissue. The role of IL-1β or TNF-α in regulating TLRs (expression/activation) as well as in regulating activity of down-stream pathways (NF-κB) and expression of inflammation-related genes (IL-6, IL-8, HSP60, HSP70, HMGB1) was analyzed. Expression of TLR1/2/3/4/5/6/9/10 was detected in isolated human IVD cells, with TLR1/2/4/6 being dependent on the degree of IVD degeneration. Stimulation with IL-1β or TNF-α moderately increased TLR1/TLR4 mRNA expression (TNF-α only), and strongly increased TLR2 mRNA expression (IL-1β/TNF-α), with the latter being confirmed on the protein level. Stimulation with IL-1β, TNF-α or Pam3CSK4 (a TLR2-ligand) stimulated IL-6 and IL-8, which was inhibited by a TLR2 neutralizing antibody for Pam3CSK4; IL-1β and TNF-α caused NF-κB activation. HSP60, HSP70 and HMGB1 did not increase IL-6 or IL-8 and were not regulated by IL-1β/TNF-α. We provide evidence that several TLRs are expressed in human IVD cells, with TLR2 possibly playing the most crucial role. As TLRs mediate catabolic and inflammatory processes, increased levels of TLRs may lead to aggravated disc degeneration, chronic inflammation and pain development. Especially with the identification of more endogenous TLR ligands, targeting these receptors may hold therapeutic promise.

  19. Intervertebral disc lesions: visualisation with ultra-high field MRI at 11.7 T.

    PubMed

    Berger-Roscher, Nikolaus; Galbusera, Fabio; Rasche, Volker; Wilke, Hans-Joachim

    2015-11-01

    Tears and fissures in the intervertebral disc are probably influencing spinal stability. Discography investigations with the aim of fissure detection have been criticised and are discouraged. Therefore, alternative imaging methods, such as MRI, must be investigated. A custom-made device was used to insert six needles with different diameters (0.3-2.2 mm/30-14 G) into the annulus of six bovine tail discs (Cy2-Cy3). Directly after removal of the needles, the discs were scanned in an 11.7 T MRI (Res.: 0.059 × 0.059 × 0.625 mm(3), tscan: 31 min), in a 3 T MRI with a clinical and additionally with two experimental protocols (exp_HR: Res.: 0.3 mm(3), tscan: 97 min/exp_LR: Res.: 0.5 mm(3), tscan: 13.4 min). The obtained images were analysed for lesion volume and lesion length using a 3D-reconstruction software. At 11.7 T, all lesions were visible along with the lamellar structure of the annulus. In the clinical 3 T images, no lesions were visible at all. The 3 T experimental protocols revealed 4 (exp_HR) and 2 (exp_LR) of the 6 lesions. The reconstructed lesions did not have an ideal cylindrical shape. The measured volumes of the lesions ranged from 0.7 to 13.9 mm(3) (11.7 T), 0.1-11.4 mm(3) (exp_HR) and 0.0-12.4 mm(3) (exp_LR) and correlated, but were smaller than the corresponding needle size. The lengths of all needle lesions ranged from 2.9 to 12.3 mm (11.7 T), 0.8-9.7 mm (exp_HR) and 0.0-9.7 mm (exp_LR). Ultra-high field MRI at 11.7 T is a non-invasive tool to directly visualise annular lesions in vitro, while a 3 T MRI, even with experimental protocols and longer scanning times, demonstrates limited ability. In vivo, it is problematic with the clinical systems available today.

  20. Riboflavin crosslinked high-density collagen gel for the repair of annular defects in intervertebral discs: An in vivo study.

    PubMed

    Grunert, Peter; Borde, Brandon H; Towne, Sara B; Moriguchi, Yu; Hudson, Katherine D; Bonassar, Lawrence J; Härtl, Roger

    2015-10-01

    Open annular defects compromise the ability of the annulus fibrosus to contain nuclear tissue in the disc space, and therefore lead to disc herniation with subsequent degenerative changes to the entire intervertebral disc. This study reports the use of riboflavin crosslinked high-density collagen gel for the repair of annular defects in a needle-punctured rat-tail model. High-density collagen has increased stiffness and greater hydraulic permeability than conventional low-density gels; riboflavin crosslinking further increases these properties. This study found that treating annular defects with crosslinked high-density collagen inhibited the progression of disc degeneration over 18 weeks compared to untreated control discs. Histological sections of FITC-labeled collagen gel revealed an early tight attachment to host annular tissue. The gel was subsequently infiltrated by host fibroblasts which remodeled it into a fibrous cap that bridged the outer disrupted annular fibers and partially repaired the defect. This repair tissue enhanced retention of nucleus pulposus tissue, maintained physiological disc hydration, and preserved hydraulic permeability, according to MRI, histological, and mechanical assessments. Degenerative changes were partially reversed in treated discs, as indicated by an increase in nucleus pulposus size and hydration between weeks 5 and 18. The collagen gel appeared to work as an instant sealant and by enhancing the intrinsic healing capabilities of the host tissue.

  1. 1988 Volvo award in basic science. Proteoglycan synthesis in the human intervertebral disc. Variation with age, region and pathology.

    PubMed

    Bayliss, M T; Johnstone, B; O'Brien, J P

    1988-09-01

    Slices of human annulus fibrosus were cultured under conditions that controlled their hydration and prevented loss of proteoglycans from the extracellular matrix. A quantitative analysis of proteoglycan synthesis was carried out. Both the absolute rate of synthesis and the topographical variation in chondrocyte activity changed with age; the most active cells in the adult were found in the mid-annulus region, whereas in the fetal disc the cells in the inner annulus were the most active. The conditions under which the tissue was stored, and changes in hydration during culture, had considerable effects on synthesis. Pathological discs had a wide range of biological activity that reflected the heterogeneous properties of these specimens. It is suggested that this culture method provides a means of investigating the way in which the synthesis of the macromolecular components of the intervertebral disc are coordinated and subsequently incorporated into the extracellular matrix.

  2. Release of active and depot GDF-5 after adenovirus-mediated overexpression stimulates rabbit and human intervertebral disc cells.

    PubMed

    Wang, Haili; Kroeber, Markus; Hanke, Michael; Ries, Rainer; Schmid, Carsten; Poller, Wolfgang; Richter, Wiltrud

    2004-02-01

    To develop new therapeutic options for the treatment of disc degeneration we tested the possibility of overexpression of active growth and differentiation factor (GDF) 5 and of transforming growth factor (TGF) beta(1) by adenoviral gene transfer and characterized its effect on cell proliferation and matrix synthesis of cultured rabbit and human intervertebral disc cells. Recombinant adenovirus encoding for GDF-5 or TGF-beta(1) was developed and transgene expression characterized by RT-PCR, western blot and ELISA. Growth and matrix synthesis of transduced cells was measured by [(3)H]thymidine or [(35)S]sulfate incorporation. Disc cells expressed the receptors BMPR1A, BMPR1B, and BMPR2, which are relevant for GDF-5 action. Adenovirus efficiently transferred the GDF-5 gene or the TGF-beta(1) gene to rabbit and human intervertebral disc cells. About 50 ng GDF-5 protein/10(6 )cells per 24 h or 7 ng TGF-beta(1) protein/10(6 )cells per 24 h was produced. According to western blotting, two GDF-5 forms, with molecular weights consistent with the activated GDF-5 dimer and the proform, were secreted over the 3 weeks following gene transfer. Overexpressed GDF-5 and TGF-beta(1) were bioactive and promoted growth of rabbit disc cells in monolayer culture. Our results suggest that ex vivo gene delivery of GDF-5 and TGF-beta(1) is an attractive approach for the release of mature and pre-GDF-5 in surrounding tissue. This leads us to hope that it will prove possible to improve the treatment of degenerative disc disease by means of ex vivo gene transfer of single or multiple growth factors.

  3. Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery.

    PubMed

    Halic, Tansel; Kockara, Sinan; Bayrak, Coskun; Rowe, Richard

    2010-10-07

    registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure.

  4. Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery

    PubMed Central

    2010-01-01

    process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. Conclusions The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure PMID:20946594

  5. Morphologic differences in intervertebral foramina: a radiographic study of cervical spine positions in asymptomatic men.

    PubMed

    Sato, Tomonori; Masui, Kenji

    2013-06-01

    The purpose of this study was to investigate morphologic differences using plain film radiographs in cervical intervertebral foramina (IVF) for the following positions: neutral; flexion combined with lateral flexion to the right, rotation to the left (FLFR-RL); and flexion combined with lateral flexion to the right, rotation to the right (FLFR-RR.) Fifteen participants (male; age, 22-29 years) with no history of neck pain were recruited to participate in this study. Radiographs were taken with participants standing and their cervical spines positioned in neutral, in FLFR-RL, and in FLFR-RR. Foraminal height and width were measured at levels C5/6 and C6/7 by a radiologist. Differences in IVF sizes between positions were analyzed. The FLFR-RL position (flexion with contralateral rotation and lateral flexion) increased IVF height at C5/6 by 2.40 mm (24%; P<.01) and C6/7 by 2.64 mm (26%; P<.01) compared with the neutral position. However, no significant increase in foraminal width was observed compared with the neutral position (P>.05), and no significant difference in foraminal height and width increase was observed between FLFR-RL and FLFR-RR. The results of this study demonstrate that the cervical FLFR-RL position increases the height of the cervical IVF as measured on radiographs. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  6. Stand-alone cervical polyetheretherketone (PEEK) cage (cervios) for single to two-level degenerative disc disease.

    PubMed

    Iampreechakul, Prasert; Srisawat, Chaichan; Tirakotai, Wuttipong

    2011-02-01

    To study clinical and radiographic outcome of patients who underwent the Cervios cage-assisted anterior cervical discectomy and fusion (ACDF) without plate fixation in single to two-level degenerative disc disease (DDD). Sixty-seven patients suffering from cervical DDD with various symptoms such as radiculopathy, myelopathy, or both were retrospectively evaluated. The cervical DDD was confirmed by plain radiographs and MR imaging The patients underwent radiographic evaluation to assess cervical lordosis, intervertebral height (IH), fusion, and subsidence. Clinical assessment was graded using a visual analog scale (VAS), Modified JOA (Japanese Orthopedic Association) score, Neck Disability Index (NDI). There were ninety two ACFD in two levels of operation. Single-level ACDF was performed in 42 patients and two-level in 25. The outcomes revealed the significant improvement of clinical outcome and restoration of cervical lordosis. The fusion rate was 97%, whereas subsidence occurred 7.61% but produced no symptom. There was no anterior or posterior migration of the cage. Complications included transient dysphagia in three patients and superficial wound infection in two patients. The present study indicates that one- to two-level stand alone Cervios cage-assisted interbody fusion without plate fixation provides improvement of clinical outcomes, restoration of lordosis and high fusion rate. However subsidence occurred in 7.61% but did not cause clinical symptoms and the patients had to use the cervical collar postoperatively.

  7. [The intervertebral vacuum phenomenon as a computed-tomographic finding in the dog and its significance as an indicator for surgical treatment of vertebral disc herniations].

    PubMed

    Söffler, C; Karpenstein, H; Kramer, M

    2014-04-16

    The intervertebral vacuum phenomenon (VP) in the dog describes an accumulation of gas in the intervertebral disc space. It occurs primarily after vaporization of solute gases in the extracellular fluids in fissures of degenerative vertebral discs but can also arise following a sudden fall in pressure, for example, after a vertebral disc herniation. VPs are detectable using radiography, computed tomography (CT) and magnetic resonance imaging (MRI). Intervertebral VP occurrence is an indication for vertebral disc herniation. The aim of this study was to determine the frequency and localization of the VP in intervertebral disc spaces of dogs and further to correlate the incidence of intervertebral VP with vertebral disc herniation indicative for surgical treatment. We evaluated CT-studies of the vertebral column of dogs presented at the clinic between January 2007 and June 2012 (n = 693). In total, 529 cases fulfilled the inclusion criterion of a CT-study of the vertebral column from the first thoracic vertebra to the first sacral vertebra in the soft tissue and bone windows. The evaluation included an inter-observer comparison between observers with and without practical experience. Observers with and without practical experience identified intervertebral VP in 5.7% and 6.8% of the dogs, respectively, with a mean age of 7.7 ± 2.9 years and 7.3 ± 3.1 years, respectively. More male than female dogs were affected. In total, 66.7% and 63.9% of the dogs with VP, respectively, received surgical treatment of the vertebral column. The surgical site correlated with the location of the intervertebral VP in 55.0% and 65.2% of cases, respectively. Although intervertebral VP can indicate vertebral disc degeneration and herniation, it should not be considered a unique identifier. Localization for surgery should be based on clinical symptoms and CT- and/or MRI-findings showing vertebral disc herniation or compression of the spinal cord. Practical experience is unnecessary to

  8. [Traumatic cervical disc prolapse with severe neurological impact].

    PubMed

    Knudsen, Roland; Gundtoft, Per

    2014-12-15

    A 51-year-old male drove into a ditch on his scooter. Immediately after the trauma the patient complained of neck pain and decreased ability to feel and move his extremities. An initial trauma computed tomography (CT) of the columna showed normal conditions. Because the patient had neurological deficiencies, magnetic resonance imaging of the columna was performed 12 days later, and a disc prolapse at the C3/C4 level with spinal cord compression was visible. Despite decompression the patient did not recover. Traumatic cervical disc prolapse is a rare and positionally dangerous condition, which can be present despite a CT showing normal conditions.

  9. Hybrid Surgery Versus Anterior Cervical Discectomy and Fusion in Multilevel Cervical Disc Diseases

    PubMed Central

    Zhang, Jianfeng; Meng, Fanxin; Ding, Yan; Li, Jie; Han, Jian; Zhang, Xintao; Dong, Wei

    2016-01-01

    Abstract To investigate the outcomes and reliability of hybrid surgery (HS) versus anterior cervical discectomy and fusion (ACDF) for the treatment of multilevel cervical spondylosis and disc diseases. Hybrid surgery, combining cervical disc arthroplasty (CDA) with fusion, is a novel treatment to multilevel cervical degenerated disc disease in recent years. However, the effect and reliability of HS are still unclear compared with ACDF. To investigate the studies of HS versus ACDF in patients with multilevel cervical disease, electronic databases (Medline, Embase, Pubmed, Cochrane library, and Cochrane Central Register of Controlled Trials) were searched. Studies were included when they compared HS with ACDF and reported at least one of the following outcomes: functionality, neck pain, arm pain, cervical range of motion (ROM), quality of life, and incidence of complications. No language restrictions were used. Two authors independently assessed the methodological quality of included studies and extracted the relevant data. Seven clinical controlled trials were included in this study. Two trials were prospective and the other 5 were retrospective. The results of the meta-analysis indicated that HS achieved better recovery of NDI score (P = 0.038) and similar recovery of VAS score (P = 0.058) compared with ACDF at 2 years follow-up. Moreover, the total cervical ROM (C2–C7) after HS was preserved significantly more than the cervical ROM after ACDF (P = 0.000) at 2 years follow-up. Notably, the compensatory increase of the ROM of superior and inferior adjacent segments was significant in ACDF groups at 2-year follow-up (P < 0.01), compared with HS. The results demonstrate that HS provides equivalent outcomes and functional recovery for cervical disc diseases, and significantly better preservation of cervical ROM compared with ACDF in 2-year follow-up. This suggests the HS is an effective alternative invention for the treatment of multilevel cervical

  10. [Case-control study of the risk factors of lumbar intervertebral disc herniation in 5 northern provinces of China].

    PubMed

    Sun, Zheng-ming; Ling, Ming; Chang, Yan-hai; Liu, Zong-zhi; Xu, Hong-hai; Gong, Li-qun; Liu, Jian; Zhang, Yin-gang

    2010-11-01

    To explore the risk factors of lumbar intervertebral disc herniation in the 5 northern provinces of China. A total of 2010 patients with established diagnosis of lumbar disc herniation by CT and/or MRI and 2170 control subjects without a history of low back pain or sciatica were randomly selected from the community population and hospitalized patients. The family history of lumbar disc herniation, occupations, smoking status, and occupational psychosocial factors were investigated. The positivity of family history of lumbar disc herniation was the highest risk factor (OR=3.551) followed by lumbar load (OR=2.132) and hard work (OR=1.763). Physical exercises (OR=0.435) were significantly related with the disease, and the OR of the type of bed was 0.364. A family history of lumbar disc herniation, lumbar load and hard work are the major risk factors for lumbar disc herniation, and physical exercises and sleeping not in soft bed might be a protective factor against the disease.

  11. Up-regulation of niacinamide in intervertebral disc aggrecan in vitro.

    PubMed

    Xiong, Xiaoqian; Yang, Shuhua; Shao, Zengwu; Liu, Xin; Zhan, Zirui; Duan, Deyu

    2006-01-01

    The regulatory effects of niacinamide (Nia) on intervertebral disc (IVD) aggrecan in vitro was investigated. Chiba's 10 ng/mL interleukin-1 (IL-1)-induced rabbit IVD degeneration model in vitro was established. 0.5, 0.25 and 0.05 mg/mL Nia was added to normal and degenerated IVDs for intervention. On the first and second week after intervention, safranin O-fast green staining intensity and glycosaminoglycan (GS) content were measured. The expression of aggrecan core protein was detected by RT-PCR. The results showed: (1) After treatment with 0.5 mg/mL Nia for one week, the GS content in nucleus pulposus (NP) was increased by 44.8% as compared with control group (P < 0 01); The GS content in IL-1 induction groups was increased with the increase of Nia concentrations: After treatment with 0.5 mg/mL for one week, the GS content in NP was increased by 68.3% as compared with control group (P < 0.01). After two weeks, GS content in NP and fibrous rings was still higher than in control group at the same period (P < 0.01) and untreated group (P < 0.01). (2) Safranin O-fast green staining revealed that with the increase of Nia concentrations, staining density in NP and fibrous rings was increased and histological structure damage to IVDs by IL-1beta was alleviated. (3) RT-PCR showed that the expression of core protein gene in IL-1beta-induced degenerated IVDS was increased with the increase of Nia concentrations. It was concluded that under conditions in vitro, Nia could up-regulate the expression of aggrecan in IVDs and protect IVDs from IL-1beta-induced degeneration at least partially, which offers a potential choice for IVD degeneration clinical therapy.

  12. Mesenchymal stem cells in regenerative medicine: Focus on articular cartilage and intervertebral disc regeneration.

    PubMed

    Richardson, Stephen M; Kalamegam, Gauthaman; Pushparaj, Peter N; Matta, Csaba; Memic, Adnan; Khademhosseini, Ali; Mobasheri, Reza; Poletti, Fabian L; Hoyland, Judith A; Mobasheri, Ali

    2016-04-15

    Musculoskeletal disorders represent a major cause of disability and morbidity globally and result in enormous costs for health and social care systems. Development of cell-based therapies is rapidly proliferating in a number of disease areas, including musculoskeletal disorders. Novel biological therapies that can effectively treat joint and spine degeneration are high priorities in regenerative medicine. Mesenchymal stem cells (MSCs) isolated from bone marrow (BM-MSCs), adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs) show considerable promise for use in cartilage and intervertebral disc (IVD) repair. This review article focuses on stem cell-based therapeutics for cartilage and IVD repair in the context of the rising global burden of musculoskeletal disorders. We discuss the biology MSCs and chondroprogenitor cells and specifically focus on umbilical cord/Wharton's jelly derived MSCs and examine their potential for regenerative applications. We also summarize key components of the molecular machinery and signaling pathways responsible for the control of chondrogenesis and explore biomimetic scaffolds and biomaterials for articular cartilage and IVD regeneration. This review explores the exciting opportunities afforded by MSCs and discusses the challenges associated with cartilage and IVD repair and regeneration. There are still many technical challenges associated with isolating, expanding, differentiating, and pre-conditioning MSCs for subsequent implantation into degenerate joints and the spine. However, the prospect of combining biomaterials and cell-based therapies that incorporate chondrocytes, chondroprogenitors and MSCs leads to the optimistic view that interdisciplinary approaches will lead to significant breakthroughs in regenerating musculoskeletal tissues, such as the joint and the spine in the near future.

  13. Can proinflammatory cytokine gene expression explain multifidus muscle fiber changes after an intervertebral disc lesion?

    PubMed

    Hodges, Paul W; James, Gregory; Blomster, Linda; Hall, Leanne; Schmid, Annina B; Shu, Cindy; Little, Chris; Melrose, James

    2014-06-01

    Longitudinal case-controlled animal study. To investigate the effect of an intervertebral disc (IVD) lesion on the proportion of slow, fast, and intermediate muscle fiber types in the multifidus muscle in sheep, and whether muscle fiber changes were paralleled by local gene expression of the proinflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 1-β. Structure and behavior of the multifidus muscle change in acute and chronic back pain, but the mechanisms are surprisingly poorly understood and the link between structure and behavior is tenuous. Although changes in muscle fiber types have the potential to unify the observations, the effect of injury on muscle fiber distribution has not been adequately tested, and understanding of possible mechanisms is limited. The L1-L2, L3-L4, and L5-L6 IVDs of 11 castrated male sheep received anterolateral lesions. Six control sheep underwent no surgical procedures. Multifidus muscle tissue was harvested at L4 for muscle fiber analysis using immunohistochemistry and L2 for cytokine analysis with polymerase chain reaction for local gene expression of TNF-α and interleukin-1β. The proportion of slow muscle fibers in multifidus was significantly less in the lesioned animals both ipsilateral and contralateral to the IVD lesion. The greatest reduction in slow fibers was in the deep medial muscle region. A greater prevalence of intermediate fibers on the uninjured side implies a delayed fiber-type transformation on that side. TNF-α gene expression in multifidus was greater on both sides in the lesion animals than in the muscle of control animals. Interleukin-1β was increased only on the injured side. These data provide evidence of muscle fiber changes after induction of an IVD lesion and a parallel increase in TNF-α expression. Proinflammatory cytokine changes provide a novel mechanism to explain behavioral and structural changes in multifidus. N/A.

  14. C-Fos Regulation by the MAPK and PKC Pathways in Intervertebral Disc Cells

    PubMed Central

    Yokoyama, Katsuya; Hiyama, Akihiko; Arai, Fumiyuki; Nukaga, Tadashi; Sakai, Daisuke; Mochida, Joji

    2013-01-01

    Background The gene encoding c-fos is an important factor in the pathogenesis of joint disease in patients with osteoarthritis. However, it is unknown whether the signal mechanism of c-fos acts in intervertebral disc (IVD) cells. We investigated whether c-fos is activated in relation to mitogen-activated protein kinases (MAPKs) and the protein kinase C (PKC) pathway in nucleus pulposus (NP) cells. Methodology/Results Reverse transcription-polymerase chain reaction and western blotting analyses were used to measure the expression of c-fos in rat IVD cells. Transfections were performed to determine the effects of c-fos on target gene activity. The effect of c-fos protein expression was examined in transfection experiments and in a 3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide cell viability assay. Phorbol 12-myristate 13-acetate (PMA), the most commonly used phorbol ester, binds to and activates protein kinase C (PKC), causing a wide range of effects in cells and tissues. PMA induced the expression of c-fos gene transcription and protein expression, and led to activation of the MAPK pathways in NP cells. The c-fos promoter was suppressed completely in the presence of the MAPK inhibitor PD98059, an inhibitor of the MEK/ERK kinase cascade, but not in the presence of SKF86002, SB202190, or SP600125. The effects of the PKC pathway on the transcriptional activity of the c-fos were evaluated. PKCγ and PKCδ suppressed the promoter activity of c-fos. Treatment with c-fos inhibited aggrecan and Col2 promoter activities and the expression of these genes in NP cells. Conclusions This study demonstrated, for the first time, that the MAPK and PKC pathways had opposing effects on the regulation of c-fos in NP cells. Thus, the expression of c-fos can be suppressed in the extracellular matrix of NP cells. PMID:24023832

  15. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells.

    PubMed

    Walter, B A; Purmessur, D; Moon, A; Occhiogrosso, J; Laudier, D M; Hecht, A C; Iatridis, J C

    2016-07-19

    The mechanical behaviour and cellular metabolism of