Sample records for cesium elution process

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.

    This report summarizes the work performed to evaluate multiple, cesium loading, and elution cycles for small columns containing SRF resin using a simple, high-level waste (HLW) simulant. Cesium ion exchange loading and elution curves were generated for a nominal 5 M Na, 2.4E-05 M Cs, 0.115 M Al loading solution traced with 134Cs followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with 137Cs. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small ({approx}15.7 mL) bed of SRF resin withmore » a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45 C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with 29+ BVs of HNO3 processed at 25 C and at 1.4 BV/h. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium leakage) to help establish acid strength and purity requirements.« less

  2. REMOVAL OF CESIUM BY SORPTION FROM AQUEOUS SOLUTIONS

    DOEpatents

    Ames, L.L.

    1962-01-16

    ABS>A process is given for selectively removing cesium from acid aqueous solutions containing cesium in microquantities and other cations in macroquantities by absorption on clinoptilolite. The cesium can be eluted from the clinoptilolite with a solution of ammonia, potassium hydroxide, or rubidium hydroxide. (AEC)

  3. The Effect of Carbonate, Oxalate and Peroxide on the Cesium Loading of Ionsiv IE-910 and IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.F.

    2000-12-19

    The Savannah River Site (SRS) continues to examine three processes for the removal of radiocesium from high-level waste. One option involves the use of crystalline silicotitanate (CST) as a non-elutable ion exchange medium. The process uses CST in its engineered form - IONSIV IE-911 made by UOP, LLC. - in a column to contact the liquid waste. Cesium exchanges with sodium ions residing inside the CST particles. The design disposes of the cesium-loaded CST by vitrification within the Defense Waste Processing Facility.

  4. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry

    NASA Astrophysics Data System (ADS)

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-09-01

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash.

  5. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry

    PubMed Central

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-01-01

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash. PMID:25192495

  6. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry.

    PubMed

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-09-05

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash.

  7. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials havemore » been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires handling and evaporation of cesium eluates, disposal of spent organic resin, and handling of the various liquid wash and regenerate solutions used. In both cases, the DSS will be immobilized in a low activity waste form. It appears that both technologies are mature, well studied, and generally suitable for this application. Technology selection will likely be based on downstream impacts or preferences between the various processing options for the two materials rather than on some unacceptable performance property identified for one material. As a result, the following detailed technical review and summary of the two technologies should be useful to assist in technology selection for SCIX.« less

  8. An Engineering Evaluation of Spherical Resorcinol Formaldehyde Resin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birdwell Jr, Joseph F; Lee, Denise L; Taylor, Paul Allen

    2010-09-01

    A small column ion exchange (SCIX) system has been proposed for removal of cesium from caustic, supernatant, and dissolved salt solutions stored or generated from high-level tank wastes at the US Department of Energy (DOE) Hanford Site and Savannah River Sites. In both instances, deployment of SCIX systems, either in-tank or near-tank, is a means of expediting waste pretreatment and dispositioning with minimal or no new infrastructure requirements. Conceptually, the treatment approach can utilize a range of ion exchange media. Previously, both crystalline silicotitanate (CST), an inorganic, nonelutable sorbent, and resorcinol-formaldehyde (RF), an organic, elutable resin, have been considered formore » cesium removal from tank waste. More recently, Pacific Northwest National Laboratory (PNNL) evaluated use of SuperLig{reg_sign} 644, an elutable ion exchange medium, for the subject application. Results of testing indicate hydraulic limitations of the SuperLig{reg_sign} resin, specifically a high pressure drop through packed ion exchange columns. This limitation is likely the result of swelling and shrinkage of the irregularly shaped (granular) resin during repeated conversions between sodium and hydrogen forms as the resin is first loaded then eluted. It is anticipated that a similar flow limitation would exist in columns packed with conventional, granular RF resin. However, use of spherical RF resin is a likely means of mitigating processing limitations due to excessive pressure drop. Although size changes occur as the spherical resin is cycled through loading and elution operations, the geometry of the resin is expected to effectively mitigate the close packing that leads to high pressure drops across ion exchange columns. Multiple evaluations have been performed to determine the feasibility of using spherical RF resin and to obtain data necessary for design of an SCIX process. The work performed consisted of examination of radiation effects on resin performance, quantification of cesium adsorption performance as a function of operating temperature and pH, and evaluation of sodium uptake (titration) as function of pH and counteranion concentration. The results of these efforts are presented in this report. Hydraulic performance of the resin and the use of eluant alternatives to nitric acid have also been evaluated and have been reported elsewhere (Taylor 2009, Taylor and Johnson 2009).« less

  9. Fire Safety Tests for Cesium-Loaded Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang; Schweiger, Michael J.; Peterson, Reid A.

    2012-09-01

    A draft safety evaluation of the scenario for spherical resorcinol formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI) through a subcontract managed by Pacific Northwest National Laboratory (PNNL). The results of initial fire safety tests on themore » SRF resin were documented in a previous report (WTP-RPT-218). The present report summarizes the results of additional tests performed by SwRI on the cesium-loaded SRF resin. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. The as-received SwRI report is attached to this report in the Appendix A. Where applicable, the precision and bias of each test method, as given by each American Society for Testing and Materials (ASTM) standard procedure, are included and compared with the SwRI test results of the cesium-loaded SRF resin.« less

  10. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  11. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  12. The role of silica colloids on facilitated cesium transport through glass bead columns and modeling

    NASA Astrophysics Data System (ADS)

    Noell, Alan L.; Thompson, Joseph L.; Corapcioglu, M. Yavuz; Triay, Inés R.

    1998-05-01

    Groundwater colloids can act as a vector which enhances the migration of contaminants. While sorbed to mobile colloids, contaminants can be held in the aqueous phase which prevents them from interacting with immobile aquifer surfaces. In this study, an idealized laboratory set-up was used to examine the influence of amorphous silica colloids on the transport of cesium. Synthetic groundwater and saturated glass bead columns were used to minimize the presence of natural colloidal material. The columns were assembled in replicate, some packed with 150-210 μm glass bead and others packed with 355-420 μm glass beads. The colloids used in these experiments were 100 nm amorphous silica colloids from Nissan Chemical Company. In the absence of these colloids, the retardation factor for cesium was 8.0 in the 150-210 μm glass bead columns and 3.6 in the 355-420 μm glass bead columns. The influence of anthropogenic colloids was tested by injecting 0.09 pore volume slugs of an equilibrated suspension of cesium and colloids into the colloid-free columns. Although there was little noticeable facilitation in the smaller glass bead columns, there was a slight reduction in the retardation of cesium in the larger glass bead columns. This was attributed to cesium having less of a retention time in the larger glass bead columns. When cesium was injected into columns with a constant flux of colloids, the retardation of cesium was reduced by 14-32% in the 150-210 μm glass bead columns and by 38-51% in the 355-420 μm glass bead columns. A model based on Corapcioglu and Jiang (1993) [Corapcioglu, M.Y., Jiang, S., 1993. Colloid-facilitated groundwater contaminant transport, Water Resour. Res., 29 (7) 2215-2226] was compared with the experimental elution data. When equilibrium sorption expressions were used and the flux of colloids through the glass bead columns was constant, the colloid facilitated transport of cesium was able to be described using an effective retardation coefficient. Fully kinetic simulations, however, more accurately described the colloid facilitated transport of cesium.

  13. Effective removal of cesium from wastewater solutions using an innovative low-cost adsorbent developed from sewage sludge molten slag.

    PubMed

    Khandaker, Shahjalal; Toyohara, Yusaku; Kamida, Seiya; Kuba, Takahiro

    2018-06-01

    This study investigates the effective removal of cesium (Cs) from aqueous solution using sewage sludge molten (SSM) slag that has undergone the surface modification with alkali (NaOH) hydrothermal treatment. The raw and modified slags were characterised systematically using the BET method, the FESEM, the XRF, the XRD spectroscopy and the CEC analysis to understand the physicochemical changes of the materials, and its sensitivity to Cs ions adsorption. Batch adsorption experiments were carried out to investigate the effects of adsorbent dose, contact time, solution pH, different initial Cs concentrations, temperature and the effect of competitive ions on Cs adsorption. The adsorption isotherm, kinetic and thermodynamic studies were also evaluated based on the experimental results. A higher Cs removal efficiency of almost 100% (for 20-100 mg/L of initial concentration) was achieved by the modified SSM slag, and the maximum adsorption capacity was found to be 52.36 mg/g. Several types of synthetic zeolites such as zeolite X, zeolite Y, zeolite A, and sodalite were formed on surface of the modified slag through the modification process which might be enhanced the Cs adsorption capacity. Kinetic parameters were fitted by the pseudo-second order model. The adsorption isotherms data of modified slag were well-fitted to the Langmuir (R 2  = 0.989) and Freundlich isotherms (R 2  = 0.988). The thermodynamic studies indicated that the adsorption process by the modified slag was spontaneous and exothermic. In the competitive ions effect, the modified slag effectively captured the Cs ion in the presence of Na + and K + , especially at their lower concentrations. Moreover, the modified slag was reused for several cycles after the successful elution process with an appropriate eluting agent (0.5 M H 2 SO 4 ), without deterioration of its original performance. Therefore, the SSM modified slag could be effectively used as a low-cost potential adsorbent for high Cs adsorption from wastewater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent.

    PubMed

    Awual, Md Rabiul; Yaita, Tsuyoshi; Taguchi, Tomitsugu; Shiwaku, Hideaki; Suzuki, Shinichi; Okamoto, Yoshihiro

    2014-08-15

    Conjugate materials can provide chemical functionality, enabling an assembly of the ligand complexation ability to metal ions that are important for applications, such as separation and removal devices. In this study, we developed ligand immobilized conjugate adsorbent for selective cesium (Cs) removal from wastewater. The adsorbent was synthesized by direct immobilization of dibenzo-24-crown-8 ether onto inorganic mesoporous silica. The effective parameters such as solution pH, contact time, initial Cs concentration and ionic strength of Na and K ion concentrations were evaluated and optimized systematically. This adsorbent was exhibited the high surface area-to-volume ratios and uniformly shaped pores in case cavities, and its active sites kept open functionality to taking up Cs. The obtained results revealed that adsorbent had higher selectivity toward Cs even in the presence of a high concentration of Na and K and this is probably due to the Cs-π interaction of the benzene ring. The proposed adsorbent was successfully applied for radioactive Cs removal to be used as the potential candidate in Fukushima nuclear wastewater treatment. The adsorbed Cs was eluted with suitable eluent and simultaneously regenerated into the initial form for the next removal operation after rinsing with water. The adsorbent retained functionality despite several cycles during sorption-elution-regeneration operations. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Purification of Bacteriophages Using Anion-Exchange Chromatography.

    PubMed

    Vandenheuvel, Dieter; Rombouts, Sofie; Adriaenssens, Evelien M

    2018-01-01

    In bacteriophage research and therapy, most applications ask for highly purified phage suspensions. The standard technique for this is ultracentrifugation using cesium chloride gradients. This technique is cumbersome, elaborate and expensive. Moreover, it is unsuitable for the purification of large quantities of phage suspensions.The protocol described here, uses anion-exchange chromatography to bind phages to a stationary phase. This is done using an FLPC system, combined with Convective Interaction Media (CIM ® ) monoliths. Afterward, the column is washed to remove impurities from the CIM ® disk. By using a buffer solution with a high ionic strength, the phages are subsequently eluted from the column and collected. In this way phages can be efficiently purified and concentrated.This protocol can be used to determine the optimal buffers, stationary phase chemistry and elution conditions, as well as the maximal capacity and recovery of the columns.

  16. Development of a Chemical Process for Production of Cesium Chloride from a Canadian Pollucite Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, H. W.; Vezina, J. A.; Simard, R.

    1963-01-01

    A chemical process was developed for the production of a high-purity cesium chioride from a pollucite (cesium aluminum silicate) ore from the Manitoba deposit of Chemalloy Minerais Ltd. The history of the deposit, and the present and possible future uses of cesium are briefly reviewed. Laboratory and piiot plant investigations on this ore have shown that a cyclic sulphuric acid leach followed by fractional crystallization will produce a rubidiumfree cesium alum, which can be converted to cesium chloride by thermal decomposition and ion exchange. On the basis of these findings it is concluded that the process is applicable to themore » tonnage production of cesium chloride. Reagent consumption was found to be 3.3 sulphuric acid and 0.3 lb hydrochloric acid per pound of cesium extracted. Overall extraction of cesium was 95 to 96%. (auth)« less

  17. Groundwork for Universal Canister System Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Laura L.; Gross, Mike; Prouty, Jeralyn L.

    2015-09-01

    The mission of the United States Department of Energy's Office of Environmental Management is to complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and go vernment - sponsored nuclear energy re search. S ome of the waste s that that must be managed have be en identified as good candidates for disposal in a deep borehole in crystalline rock (SNL 2014 a). In particular, wastes that can be disposed of in a small package are good candidates for this disposal concept. A canister - based system that can be used formore » handling these wastes during the disposition process (i.e., storage, transfers, transportation, and disposal) could facilitate the eventual disposal of these wastes. This report provides information for a program plan for developing specifications regarding a canister - based system that facilitates small waste form packaging and disposal and that is integrated with the overall efforts of the DOE's Office of Nuclear Energy Used Fuel Dis position Camp aign's Deep Borehole Field Test . Groundwork for Universal Ca nister System Development September 2015 ii W astes to be considered as candidates for the universal canister system include capsules containing cesium and strontium currently stored in pools at the Hanford Site, cesium to be processed using elutable or nonelutable resins at the Hanford Site, and calcine waste from Idaho National Laboratory. The initial emphasis will be on disposal of the cesium and strontium capsules in a deep borehole that has been drilled into crystalline rock. Specifications for a universal canister system are derived from operational, performance, and regulatory requirements for storage, transfers, transportation, and disposal of radioactive waste. Agreements between the Department of Energy and the States of Washington and Idaho, as well as the Deep Borehole Field Test plan provide schedule requirements for development of the universal canister system . Future work includes collaboration with the Hanford Site to move the cesium and strontium capsules into dry storage, collaboration with the Deep Borehole Field Tes t to develop surface handling and emplacement techniques and to develop the waste package design requirements, developing universal canister system design options and concepts of operations, and developing system analysis tools. Areas in which f urther research and development are needed include material properties and structural integrity, in - package sorbents and fillers, waste form tolerance to heat and postweld stress relief, waste package impact limiters, sensors, cesium mobility under downhol e conditions, and the impact of high pressure and high temperature environment on seals design.« less

  18. Deployment of Cesium Recovered from High Level Liquid Waste for Irradiation - Indian Scenario - 13128

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, Tessy; Shah, J.G.; Kumar, Amar

    2013-07-01

    Recovery of Cs-137 from HLW and its utilisation as source pencil in place of Co-60 is vital for medical and sewage treatment applications in India. For separation of Cs, specific ion exchange resins as well as 'Calyx crown' solvent have been developed and synthesized indigenously. A flow sheet involving separation of Cs from acidic HLW using Ammonium Molybdo Phosphate (AMP) resins, recovery of Cs from the loaded AMP column by dissolving it in alkali, ion exchange purification of Cs rich alkaline solution using Resorcinol-Formaldehyde Poly condensate (RF) resins and its elution in cesium nitrate form was developed and demonstrated. Solventmore » extraction route employing 0.03 Molar, 1-3-octyl oxy Calyx (4) arene crown-6 in 30% isodecyl alcohol and dodecane was also established using mixer settlers. Cesium lithium borosilicate glass based formulations have been considered as a glass matrix for Cs irradiation pencils. While choosing this vitreous matrix, attributes addressing maximum possible Cs-137 loading, low glass pouring temperature to minimise Cs volatility, reasonably good mechanical strength and good chemical durability have been considered. Recovered cesium nitrate solution was vitrified along with glass additives in an induction heated metallic melter and subsequently poured into 12 numbers of Cs irradiation pencils positioned on turn-table equipped with the load cell. The complete cycle involving recovery of Cs from HLW followed by its conversion into Cs pencil was demonstrated. (authors)« less

  19. Development of the chromatographic partitioning of cesium and strontium utilizing two macroporous silica-based calix[4]arene-crown and amide impregnated polymeric composites: PREC partitioning process.

    PubMed

    Zhang, Anyun; Kuraoka, Etsushu; Kumagai, Mikio

    2007-07-20

    To partition effectively Cs(I) and Sr(II), two harmful heat emitting nuclides, from a highly active liquid waste by extraction chromatography, two kinds of macroporous silica-based polymeric materials, Calix[4]arene-R14/SiO(2)-P and TODGA/SiO(2)-P, were synthesized. Two chelating agents, 1,3-[(2,4-diethyl-heptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14), an excellent supramolecular compound having molecular recognition ability for Cs(I), and N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) were impregnated and immobilized into the pores of SiO(2)-P particles support by a vacuum sucking technique. The loading and elution of 11 typical simulated fission and non-fission products from 4.0M or 2.0M HNO(3) were performed at 298K. It was found that in the first column packed with the Calix[4]arene-R14/SiO(2)-P, all of the simulated elements were separated effectively into two groups: (1) Na(I), K(I), Sr(II), Fe(III), Ba(II), Ru(III), Pd(II), Zr(IV), and Mo(VI) (noted as Sr-group); (2) Cs(I)-Rb(I) (Cs-group) by eluting with 4.0M HNO(3) and distilled water, respectively. The harmful element Cs(I) flowed into the second group along with Rb(I) because of their close sorption and elution properties towards Calix[4]arene-R14/SiO(2)-P, while Sr(II) showed no sorption and flowed into Sr-containing group. In the second column packed with TODGA/SiO(2)-P, the Sr-group was separated into (1) Ba(II), Ru(III), Na(I), K(I), Fe(III), and Mo(VI) (non-sorption group); (2) Sr(II); (3) Pd(II); and (4) Zr(IV) by eluting with 2.0M HNO(3), 0.01M HNO(3), 0.05M DTPA-pH 2.5, and 0.5M H(2)C(2)O(4), respectively. Sr(II) adsorbed towards TODGA/SiO(2)-P flowed into the second group and showed the excellent separation efficiency from others. Based on the elution behavior of the tested elements, an advanced PREC (Partitioning and Recovery of two heat generators from an acidic HLW (high activity liquid waste) by Extraction Chromatography) process was proposed.

  20. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enokida, Y.; Tanada, Y.; Hirabayashi, D.

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged applicationmore » is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)« less

  1. Distribution of radioactive cesium ((134)Cs Plus(137)Cs) in a contaminated Japanese soybean cultivar during the preparation of tofu, natto, and nimame (Boiled Soybean).

    PubMed

    Hachinohe, Mayumi; Kimura, Keitarou; Kubo, Yuji; Tanji, Katsuo; Hamamatsu, Shioka; Hagiwara, Shoji; Nei, Daisuke; Kameya, Hiromi; Nakagawa, Rikio; Matsukura, Ushio; Todoriki, Setsuko; Kawamoto, Shinichi

    2013-06-01

    We investigated the fate of radioactive cesium ((134)Cs plus (137)Cs) during the production of tofu, natto, and nimame (boiled soybean) from a contaminated Japanese soybean cultivar harvested in FY2011. Tofu, natto, and nimame were made from soybean grains containing radioactive cesium (240 to 340 Bq/kg [dry weight]), and the radioactive cesium in the processed soybean foods and in by-product fractions such as okara, broth, and waste water was measured with a germanium semiconductor detector. The processing factor is the ratio of radioactive cesium concentration of a product before and after processing. For tofu, natto, nimame, and for the by-product okara, processing factors were 0.12, 0.40, 0.20, and 0.18, respectively; this suggested that these three soybean foods and okara, used mainly as an animal feed, can be considered safe for human and animal consumption according to the standard limit for radioactive cesium of soybean grains. Furthermore, the ratio of radioactive cesium concentrations in the cotyledon, hypocotyl, and seed coat portions of the soybean grain was found to be approximately 1:1:0.4.

  2. Process for cesium decontamination and immobilization

    DOEpatents

    Komarneni, Sridhar; Roy, Rustum

    1989-01-01

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time.

  3. Process for cesium decontamination and immobilization

    DOEpatents

    Komarneni, S.; Roy, R.

    1988-04-25

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time. 6 figs., 2 tabs.

  4. Biosorption behavior and mechanism of cesium-137 on Rhodosporidium fluviale strain UA2 isolated from cesium solution.

    PubMed

    Lan, Tu; Feng, Yue; Liao, Jiali; Li, Xiaolong; Ding, Congcong; Zhang, Dong; Yang, Jijun; Zeng, Junhui; Yang, Yuanyou; Tang, Jun; Liu, Ning

    2014-08-01

    In order to identify a more efficient biosorbent for (137)Cs, we have investigated the biosorption behavior and mechanism of (137)Cs on Rhodosporidium fluviale (R. fluviale) strain UA2, one of the dominant species of a fungal group isolated from a stable cesium solution. We observed that the biosorption of (137)Cs on R. fluviale strain UA2 was a fast and pH-dependent process in the solution composed of R. fluviale strain UA2 (5 g/L) and cesium (1 mg/L). While a Langmuir isotherm equation indicated that the biosorption of (137)Cs was a monolayer adsorption, the biosorption behavior implied that R. fluviale strain UA2 adsorbed cesium ions by electrostatic attraction. The TEM analysis revealed that cesium ions were absorbed into the cytoplasm of R. fluviale strain UA2 across the cell membrane, not merely fixed on the cell surface, which implied that a mechanism of metal uptake contributed largely to the cesium biosorption process. Moreover, PIXE and EPBS analyses showed that ion-exchange was another biosorption mechanism for the cell biosorption of (137)Cs, in which the decreased potassium ions were replaced by cesium ions. All the above results implied that the biosorption of (137)Cs on R. fluviale strain UA2 involved a two-step process. The first step is passive biosorption that cesium ions are adsorbed to cells surface by electrostatic attraction; after that, the second step is active biosorption that cesium ions penetrate the cell membrane and accumulate in the cytoplasm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Efficient non-linear two-photon effects from the Cesium 6D manifold

    NASA Astrophysics Data System (ADS)

    Haluska, Nathan D.; Perram, Glen P.; Rice, Christopher A.

    2018-02-01

    We report several non-linear process that occur when two-photon pumping the cesium 6D states. Cesium vapor possess some of the largest two-photon pump cross sections in nature. Pumping these cross sections leads to strong amplified spontaneous emission that we observe on over 17 lasing lines. These new fields are strong enough to couple with the pump to create additional tunable lines. We use a heat pipe with cesium densities of 1014 to 1016 cm-3 and 0 to 5 Torr of helium buffer gas. The cesium 6D States are interrogated by both high energy pulses and low power CW sources. We observe four-wave mixing, six-wave mixing, potential two-photon lasing, other unknown nonlinear processes, and the persistence of some processes at low thresholds. This system is also uniquely qualified to support two-photon lasing under the proper conditions.

  6. Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions.

    PubMed

    Yakout, Sobhy M; Hassan, Hisham S

    2014-07-01

    Zirconia powder was synthesized via a sol gel method and placed in a batch reactor for cesium removal investigation. X-ray analysis and Fourier transform infrared spectroscopy were utilized for the evaluation of the developed adsorbent. The adsorption process has been investigated as a function of pH, contact time and temperature. The adsorption is strongly dependent on the pH of the medium whereby the removal efficiency increases as the pH turns to the alkaline range. The process was initially very fast and the maximum adsorption was attained within 60 min of contact. A pseudo-second-order model and homogeneous particle diffusion model (HPDM) were found to be the best to correlate the diffusion of cesium into the zirconia particles. Furthermore, adsorption thermodynamic parameters, namely the standard enthalpy, entropy, and Gibbs free energy, were calculated. The results indicate that cesium adsorption by zirconia is an endothermic (ΔH>0) process and good affinity of cesium ions towards the sorbent (ΔS>0) was observed.

  7. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOEpatents

    Lee, Lien-Mow; Kilpatrick, Lester L.

    1984-01-01

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  8. Precipitation-adsorption process for the decontamination of nuclear waste supernates

    DOEpatents

    Lee, L.M.; Kilpatrick, L.L.

    1982-05-19

    High-level nuclear waste supernate is decontaminated of cesium by precipitation of the cesium and potassium with sodium tetraphenyl boron. Simultaneously, strontium-90 is removed from the waste supernate sorption of insoluble sodium titanate. The waste solution is then filtered to separate the solution decontaminated of cesium and strontium.

  9. Recovery of cesium and palladium from nuclear reactor fuel processing waste

    DOEpatents

    Campbell, David O.

    1976-01-01

    A method of recovering cesium and palladium values from nuclear reactor fission product waste solution involves contacting the solution with a source of chloride ions and oxidizing palladium ions present in the solution to precipitate cesium and palladium as Cs.sub.2 PdCl.sub.6.

  10. Fluoro-alcohol phase modifiers and process for cesium solvent extraction

    DOEpatents

    Bonnesen, Peter V.; Moyer, Bruce A.; Sachleben, Richard A.

    2003-05-20

    The invention relates to a class of phenoxy fluoro-alcohols, their preparation, and their use as phase modifiers and solvating agents in a solvent composition for the extraction of cesium from alkaline solutions. These phenoxy fluoro-alcohols comply with the formula: ##STR1## in which n=2 to 4; X represents a hydrogen or a fluorine atom, and R.sup.2 -R.sup.6 are hydrogen or alkyl substituents. These phenoxy fluoro-alcohol phase modifiers are a necessary component to a robust solvent composition and process useful for the removal of radioactive cesium from alkaline nuclear waste streams. The fluoro-alcohols can also be used in solvents designed to extract other cesium from acidic or neutral solutions.

  11. Long Duration Responses in Squid Giant Axons Injected with 134Cesium Sulfate Solutions

    PubMed Central

    Sjodin, R. A.

    1966-01-01

    Giant axons from the squid were injected with 1.5 M cesium sulfate solutions containing the radioactive isotopes 42K and 134Cs. These axons, when stimulated, gave characteristic long duration action potentials lasting between 5 and 45 msec. The effluxes of 42K and 134Cs were measured both under resting conditions and during periods of repetitive stimulation. During the lengthened responses there were considerable increases in potassium efflux but only small increases in cesium efflux. The selectivity of the delayed rectification process was about 9 times greater for potassium ions than for cesium ions. The data suggest that internal cesium ions inhibit the outward potassium movement occurring during an action potential. The extra potassium effluxes taking place during excitation appear to be reduced in the presence of cesium ions to values between 7 and 22% of those expected in the absence of cesium inhibition. PMID:11526828

  12. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration.

    PubMed

    Han, Fei; Zhang, Guang-Hui; Gu, Ping

    2012-07-30

    Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3μg/L, the dosage of CuFC was 40mg/L and the adsorption time was 20min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75μg/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  14. Investigations of negative and positive cesium ion species

    NASA Technical Reports Server (NTRS)

    Chanin, L. M.

    1978-01-01

    A direct test is provided of the hypothesis of negative ion creation at the anode or collector of a diode operating under conditions simulating a cesium thermionic converter. The experimental technique involves using direct ion sampling through the collector electrode with mass analysis using a quadrupole mass analyzer. Similar measurements are undertaken on positive ions extracted through the emitter electrode. Measurements were made on a variety of gases including pure cesium, helium-cesium mixtures and cesium-hydrogen as well as cesium-xenon mixtures. The gas additive was used primarily to aid in understanding the negative ion formation processes. Measurements were conducted using emitter (cathode) temperatures up to about 1000 F. The major negative ion identified through the collector was Cs(-) with minor negative ion peaks tentatively identified as H(-), H2(-), H3(-), He(-) and a mass 66. Positive ions detected were believed to be Cs(+), Cs2(+) and Cs3(+).

  15. Sericitization of illite decreases sorption capabilities for cesium

    NASA Astrophysics Data System (ADS)

    Choung, S.; Hwang, J.; Han, W.; Shin, W.

    2017-12-01

    Release of radioactive cesium (137Cs) to environment occurs through nuclear accidents such as Chernobyl and Fukushima. The concern is that 137Cs has long half-life (t1/2 = 30.2 years) with chemical toxicity and γ-radiation. Sorption techniques are mainly applied to remove 137Cs from aquatic environment. In particular, it has been known well that clay minerals (e.g, illite) are effective and economical sorbents for 137Cs. Illite that was formed by hydrothermal alteration exist with sericite through "sericitization" processes. Although sericite has analogous composition and lattice structure with illite, the sorptive characteristics of illite and sericite for radiocesium could be different. This study evaluated the effects of hydrothermal alteration and weathering process on illite cesium sorption properties. Natural illite samples were collected at Yeongdong area in Korea as the world-largest hydrothermal deposits for illite. The samples were analyzed by XRF, XRD and SEM-EDX to determine mineralogy, chemical compositions and morphological characteristics, and used for batch sorption experiments. The Yeongdong illites predominantly consist of illite, sericite, quartz, and albite. The measured cesium sorption distribution coefficients (Kd,Cs) of reference illite and sericite were approximately 6000 and 400 L kg-1 at low aqueous concentration (Cw 10-7 M), respectively. In contrast, Kd,Cs values for the Yeongdong illite samples ranged from 500 to 4000 L kg-1 at identical concentration. The observed narrow and sharp XRD peak of sericite indicated that the sericite has better crystallinity compared to illite. These experimental results suggested that sericitization processes of illite can decline the sorption capabilities of illite for cesium under various hydrothermal conditions. In particular, weathering experiments raised the cesium sorption to illite, which seems to be related to the increase of preferential sorption sites for cesium through crystallinity destruction (i.e., frayed edge sites).

  16. Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate.

    PubMed

    Zhang, Chang-Ping; Gu, Ping; Zhao, Jun; Zhang, Dong; Deng, Yue

    2009-08-15

    The removal of cesium from an aqueous solution by an adsorption-microfiltration (AMF) process was investigated in jar tests and lab-scale tests. The adsorbent was K(2)Zn(3)[Fe(CN)(6)](2). The obtained cesium data in the jar test fit a Freundlich-type isotherm well. In the lab-scale test, the mean cesium concentration of the raw water and the effluent were 106.87 microg/L and 0.59 microg/L, respectively, the mean removal of cesium was 99.44%, and the mean decontamination factors (DF) and concentration factors (CF) were 208 and 539, respectively. The removal of cesium in the lab-scale test was better than that in the jar test because the old adsorbents remaining in the reactor still had adsorption capacity with the premise of no significant desorption being observed, and the continuous renewal of the adsorbent surface improved the adsorption capacity of the adsorbent. Some of the suspended solids were deposited on the bottom of the reactor, which would affect the mixing of adsorbents with the raw water and the renewing of the adsorbent surface. Membrane fouling was the main physical fouling mechanism, and the cake layer was the main filtration resistance. Specific flux (SF) decreased step by step during the whole period of operation due to membrane fouling and concentration polarization. The quality of the effluent was good and the turbidity remained lower than 0.1NTU, and the toxic anion, CN(-), could not be detected because of its low concentration, this indicated that the effluent was safe. The AMF process was feasible for practical application in the treatment of liquid waste containing cesium.

  17. Cesium Eluate Physical Property Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baich, M.A.

    2001-02-13

    Two bench-scale process simulations of the proposed cesium eluate evaporation process of concentrating eluate produced in the Hanford Site Waste Treatment Plant were conducted. The primary objective of these experiments was to determine the physical properties and the saturation concentration of the eluate evaporator bottoms while producing condensate approximately 0.50 molar HN03.

  18. The Purification and Concentration of Hog Cholera Virus*

    PubMed Central

    Cunliffe, H. R.; Rebers, P. A.

    1968-01-01

    Partial purification of hog cholera virus (HCV) using a simple batch-type chromatographic procedure with magnetic ferric oxide (MFO) is described. Infectious HCV was adsorbed from isotonic solutions to MFO and was eluted under conditions of low ionic strength and high pH. Aqueous solutions of 0.01 M sodium cyanide or 0.0003 M ammonium hydroxide effectively dissociated MFO-HCV complexes. The data indicate that 50 to 100% of the original HCV infectivity was recovered concomitant with a 90 to 95% reduction of extraneous organic nitrogen. MFO-purified HCV was concentrated by density gradient type centrifugations in buffered solutions of cesium chloride and sucrose. Prolonged isodensity centrifugations of concentrated MFO-purified HCV indicated a buoyant density of 1.14 to 1.15 gm/ml for the strain of virus used. PMID:15846899

  19. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOEpatents

    Anderson, D.F.; Kwan, S.W.

    1999-03-30

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10{sup {minus}4} Torr and about 10{sup {minus}7} Torr, (b) increasing the vacuum to at least about 10{sup {minus}8} Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters. 2 figs.

  20. Process for making a cesiated diamond film field emitter and field emitter formed therefrom

    DOEpatents

    Anderson, David F.; Kwan, Simon W.

    1999-01-01

    A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10.sup.-4 Torr and about 10.sup.-7 Torr, (b) increasing the vacuum to at least about 10.sup.-8 Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters.

  1. Analysis of the effects of stirring condition of separation of thorium in the elution process of monazite partial solution by solvent impregnated resin method

    NASA Astrophysics Data System (ADS)

    Prassanti, R.; Putra, D. S.; Kusuma, B. P.; Nawawi, F. W.

    2018-01-01

    Monazite is a natural mineral which contains abundant valuable element such as Radioactive Element and Rare Earth Element(REE). In this experiment, it is proven that solution of residual Thorium Sulfate from Monazite mineral process, can be seperated selectively by using extracting method of Solvent Impregnated Resin(SIR), with the elutant solution HNO3. In the earlier process, Thorium solution is conditioned at PH 1 by using H2SO4. Then REE, Thorium and Uranium elements are seperated. This seperation is conducted by using adsorption method by Amberlite XAD-16 Resin, which has been impregnated by Tributhyl Phosphate extractant. It is continued with elution process, which is aimed to obtain Thorium solution of a higher level of concentration. This elution process is conducted by using HNO3, with the elution variables of the lenght of mixing and amount concentration elutant. Based on this experiment, SIR extracting method is able to dissolve Thorium solution until 63,2%grade and a higher level of %grade about 92,40%. It can be concluded that this SIR method can extracted Thorium elements selectively, improve extracting process recovery, and determine optimum stripping condition in the 45th minutes with elutant concentration of 1,0M HNO3.

  2. Purification of bacteriophage M13 by anion exchange chromatography.

    PubMed

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Experimental and theoretical investigation for the suppression of the plasma arc drop in the thermionic converter

    NASA Technical Reports Server (NTRS)

    Shaw, D. T.; Manikopoulos, C. N.; Chang, T.; Lee, C. H.; Chiu, N.

    1977-01-01

    Ion generation and recombination mechanisms in the cesium plasma as they pertain to the advanced mode thermionic energy converter were studied. The decay of highly ionized cesium plasma was studied in the near afterglow to examine the recombination processes. Very low recombination in such a plasma may prove to be of considerable importance in practical converters. The approaches of external cesium generation were vibrationally excited nitrogen as an energy source of ionization of cesium ion, and microwave power as a means of resonant sustenance of the cesium plasma. Experimental data obtained so far show that all three techniques - i.e., the non-LTE high-voltage pulsing, the energy transfer from vibrationally excited diatomic gases, and the external pumping with a microwave resonant cavity - can produce plasmas with their densities significantly higher than the Richardson density. The implication of these findings as related to Lam's theory is discussed.

  4. Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests.

    PubMed

    Fujii, Kengo; Ochi, Kotaro; Ohbuchi, Atsushi; Koike, Yuya

    2018-07-01

    After the Fukushima Daiichi-Nuclear Power Plant accident, environmental recovery was a major issue because a considerable amount of municipal solid waste incineration (MSWI) fly ash was highly contaminated with radioactive cesium. To the best of our knowledge, only a few studies have evaluated the detailed physicochemical properties of radioactive cesium in MSWI fly ash to propose an effective method for the solidification and reuse of MSWI fly ash. In this study, MSWI fly ash was sampled in Fukushima Prefecture. The physicochemical properties of radioactive cesium in MSWI fly ash were evaluated by particle size classification (less than 25, 25-45, 45-100, 100-300, 300-500, and greater than 500 μm) and the Japanese leaching test No. 13 called "JLT-13". These results obtained from the classification of fly ash indicated that the activity concentration of radioactive cesium and the content of the coexisting matter (i.e., chloride and potassium) temporarily change in response to the particle size of fly ash. X-ray diffraction results indicated that water-soluble radioactive cesium exists as CsCl because of the cooling process and that insoluble cesium is bound to the inner sphere of amorphous matter. These results indicated that the distribution of radioactive cesium depends on the characteristics of MSWI fly ash. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. REMOVAL OF CESIUM FROM AQUEOUS SOLUTIONS BY ADSORPTION

    DOEpatents

    Knoll, K.C.

    1963-07-16

    A process of removing microquantities of cesium from aqueous solutions also containing macroquantities of other ions by adsorption on clinoptilolite is described. The invention resides in the pretreatment of the clinoptilolite by heating at 400 deg C and cooling prior to use. (AEC)

  6. Stable and radioactive cesium: A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants' potential for bioremediation.

    PubMed

    Burger, Anna; Lichtscheidl, Irene

    2018-03-15

    Radiocesium in water, soil, and air represents a severe threat to human health and the environment. It either acts directly on living organisms from external sources, or it becomes incorporated through the food chain, or both. Plants are at the base of the food chain; it is therefore essential to understand the mechanisms of plants for cesium retention and uptake. In this review we summarize investigations about sources of stable and radioactive cesium in the environment and harmful effects caused by internal and external exposure of plants to radiocesium. Uptake of cesium into cells occurs through molecular mechanisms such as potassium and calcium transporters in the plasma membrane. In soil, bioavailability of cesium depends on the chemical composition of the soil and physical factors such as pH, temperature and tilling as well as on environmental factors such as soil microorganisms. Uptake of cesium occurs also from air through interception and absorption on leaves and from water through the whole submerged surface. We reviewed information about reducing cesium in the vegetation by loss processes, and we extracted transfer factors from the available literature and give an overview over the uptake capacities of 72 plants for cesium from the substratum to the biomass. Plants with high uptake potential could be used to remediate soil and water from radiocesium by accumulation and rhizofiltration. Inside plants, cesium distributes fast between the different plant organs and cells, but cesium in soil is extremely stable and remains for decades in the rhizosphere. Monitoring of contaminated soil therefore has to continue for many decades, and edible plants grown on such soil must continuously be monitored. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. INTERACTIONS BETWEEN CESIUM AND DISPERSED KAOLINITE POWDERS AT HIGH TEMPERATURES FOR TREATMENT OF MIXED WASTES

    EPA Science Inventory

    Kaolinite sorbents were found to manage emissions of vapor phase cesium, when the kaolinite was injected into the combustor, having maximum value between 1400 and 1500 K. The mechanism of this process and its quantification await further research.

  8. HIGH TEMPERATURE SORPTION OF CESIUM AND STRONTIUM ON DISPERSED KAOLINITE POWDERS

    EPA Science Inventory

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high-temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, nonradioactive aq...

  9. Synergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium

    PubMed Central

    Jang, Sung-Chan; Kang, Sung-Min; Haldorai, Yuvaraj; Giribabu, Krishnan; Lee, Go-Woon; Lee, Young-Chul; Hyun, Moon Seop; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2016-01-01

    A novel microporous three-dimensional pomegranate-like micro-scavenger cage (P-MSC) composite has been synthesized by immobilization of iron phyllosilicates clay onto a Prussian blue (PB)/alginate matrix and tested for the removal of radioactive cesium from aqueous solution. Experimental results show that the adsorption capacity increases with increasing the inactive cesium concentration from 1 ppm to 30 ppm, which may be attributed to greater number of adsorption sites and further increase in the inactive cesium concentration has no effect. The P-MSC composite exhibit maximum adsorption capacity of 108.06 mg of inactive cesium per gram of adsorbent. The adsorption isotherm is better fitted to the Freundlich model than the Langmuir model. In addition, kinetics studies show that the adsorption process is consistent with a pseudo second-order model. Furthermore, at equilibrium, the composite has an outstanding adsorption capacity of 99.24% for the radioactive cesium from aqueous solution. This may be ascribed to the fact that the AIP clay played a substantial role in protecting PB release from the P-MSC composite by cross-linking with alginate to improve the mechanical stability. Excellent adsorption capacity, easy separation, and good selectivity make the adsorbent suitable for the removal of radioactive cesium from seawater around nuclear plants and/or after nuclear accidents. PMID:27917913

  10. Synergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium.

    PubMed

    Jang, Sung-Chan; Kang, Sung-Min; Haldorai, Yuvaraj; Giribabu, Krishnan; Lee, Go-Woon; Lee, Young-Chul; Hyun, Moon Seop; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2016-12-05

    A novel microporous three-dimensional pomegranate-like micro-scavenger cage (P-MSC) composite has been synthesized by immobilization of iron phyllosilicates clay onto a Prussian blue (PB)/alginate matrix and tested for the removal of radioactive cesium from aqueous solution. Experimental results show that the adsorption capacity increases with increasing the inactive cesium concentration from 1 ppm to 30 ppm, which may be attributed to greater number of adsorption sites and further increase in the inactive cesium concentration has no effect. The P-MSC composite exhibit maximum adsorption capacity of 108.06 mg of inactive cesium per gram of adsorbent. The adsorption isotherm is better fitted to the Freundlich model than the Langmuir model. In addition, kinetics studies show that the adsorption process is consistent with a pseudo second-order model. Furthermore, at equilibrium, the composite has an outstanding adsorption capacity of 99.24% for the radioactive cesium from aqueous solution. This may be ascribed to the fact that the AIP clay played a substantial role in protecting PB release from the P-MSC composite by cross-linking with alginate to improve the mechanical stability. Excellent adsorption capacity, easy separation, and good selectivity make the adsorbent suitable for the removal of radioactive cesium from seawater around nuclear plants and/or after nuclear accidents.

  11. Synergistically strengthened 3D micro-scavenger cage adsorbent for selective removal of radioactive cesium

    NASA Astrophysics Data System (ADS)

    Jang, Sung-Chan; Kang, Sung-Min; Haldorai, Yuvaraj; Giribabu, Krishnan; Lee, Go-Woon; Lee, Young-Chul; Hyun, Moon Seop; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2016-12-01

    A novel microporous three-dimensional pomegranate-like micro-scavenger cage (P-MSC) composite has been synthesized by immobilization of iron phyllosilicates clay onto a Prussian blue (PB)/alginate matrix and tested for the removal of radioactive cesium from aqueous solution. Experimental results show that the adsorption capacity increases with increasing the inactive cesium concentration from 1 ppm to 30 ppm, which may be attributed to greater number of adsorption sites and further increase in the inactive cesium concentration has no effect. The P-MSC composite exhibit maximum adsorption capacity of 108.06 mg of inactive cesium per gram of adsorbent. The adsorption isotherm is better fitted to the Freundlich model than the Langmuir model. In addition, kinetics studies show that the adsorption process is consistent with a pseudo second-order model. Furthermore, at equilibrium, the composite has an outstanding adsorption capacity of 99.24% for the radioactive cesium from aqueous solution. This may be ascribed to the fact that the AIP clay played a substantial role in protecting PB release from the P-MSC composite by cross-linking with alginate to improve the mechanical stability. Excellent adsorption capacity, easy separation, and good selectivity make the adsorbent suitable for the removal of radioactive cesium from seawater around nuclear plants and/or after nuclear accidents.

  12. PROCESSING ALTERNATIVES FOR DESTRUCTION OF TETRAPHENYLBORATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D; Thomas Peters, T; Samuel Fink, S

    Two processes were chosen in the 1980's at the Savannah River Site (SRS) to decontaminate the soluble High Level Waste (HLW). The In Tank Precipitation (ITP) process (1,2) was developed at SRS for the removal of radioactive cesium and actinides from the soluble HLW. Sodium tetraphenylborate was added to the waste to precipitate cesium and monosodium titanate (MST) was added to adsorb actinides, primarily uranium and plutonium. Two products of this process were a low activity waste stream and a concentrated organic stream containing cesium tetraphenylborate and actinides adsorbed on monosodium titanate (MST). A copper catalyzed acid hydrolysis process wasmore » built to process (3, 4) the Tank 48H cesium tetraphenylborate waste in the SRS's Defense Waste Processing Facility (DWPF). Operation of the DWPF would have resulted in the production of benzene for incineration in SRS's Consolidated Incineration Facility. This process was abandoned together with the ITP process in 1998 due to high benzene in ITP caused by decomposition of excess sodium tetraphenylborate. Processing in ITP resulted in the production of approximately 1.0 million liters of HLW. SRS has chosen a solvent extraction process combined with adsorption of the actinides to decontaminate the soluble HLW stream (5). However, the waste in Tank 48H is incompatible with existing waste processing facilities. As a result, a processing facility is needed to disposition the HLW in Tank 48H. This paper will describe the process for searching for processing options by SRS task teams for the disposition of the waste in Tank 48H. In addition, attempts to develop a caustic hydrolysis process for in tank destruction of tetraphenylborate will be presented. Lastly, the development of both a caustic and acidic copper catalyzed peroxide oxidation process will be discussed.« less

  13. Adsorption of cesium on cement mortar from aqueous solutions.

    PubMed

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  14. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Goodall, C.A.

    1960-09-13

    A process is given for precipitating cesium on zinc ferricyanide (at least 0.0004 M) from aqueous solutions containing mineral acid in a concentration of from 0.2 N acidity to 0.61 N acid-deficiency and advantageously, but not necessarily, also aluminum nitrate in a concentration of from l to 2.5 M.

  15. Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal.

    PubMed

    Korak, Julie A; Huggins, Richard; Arias-Paic, Miguel

    2017-07-01

    Due to stricter regulations, some drinking water utilities must implement additional treatment processes to meet potable water standards for hexavalent chromium (Cr(VI)), such as the California limit of 10 μg/L. Strong base anion exchange is effective for Cr(VI) removal, but efficient resin regeneration and waste minimization are important for operational, economic and environmental considerations. This study compared multiple regeneration methods on pilot-scale columns on the basis of regeneration efficiency, waste production and salt usage. A conventional 1-Stage regeneration using 2 N sodium chloride (NaCl) was compared to 1) a 2-Stage process with 0.2 N NaCl followed by 2 N NaCl and 2) a mixed regenerant solution with 2 N NaCl and 0.2 N sodium bicarbonate. All methods eluted similar cumulative amounts of chromium with 2 N NaCl. The 2-Stage process eluted an additional 20-30% of chromium in the 0.2 N fraction, but total resin capacity is unaffected if this fraction is recycled to the ion exchange headworks. The 2-Stage approach selectively eluted bicarbonate and sulfate with 0.2 N NaCl before regeneration using 2 N NaCl. Regeneration approach impacted the elution efficiency of both uranium and vanadium. Regeneration without co-eluting sulfate and bicarbonate led to incomplete uranium elution and potential formation of insoluble uranium hydroxides that could lead to long-term resin fouling, decreased capacity and render the resin a low-level radioactive solid waste. Partial vanadium elution occurred during regeneration due to co-eluting sulfate suppressing vanadium release. Waste production and salt usage were comparable for the 1- and 2-Stage regeneration processes with similar operational setpoints with respect to chromium or nitrate elution. Published by Elsevier Ltd.

  16. Transport of the radioisotopes iodine-131, cesium-134, and cesium-137 from the fallout following the accident at the Chernobyl nuclear reactor into cheesemaking products.

    PubMed

    Assimakopoulos, P A; Ioannides, K G; Pakou, A A; Papadopoulou, C V; Paradopoulou, C V

    1987-07-01

    The transport of radiation contamination from milk to products of the cheese making process has been studied. The concentration of radioactive iodine and cesium in samples of sheep milk and cheese (Gruyère) products was measured for 10 consecutive production d. Milk with concentration 100 Bq/L in each of the radionuclides 131I, 134Cs, and 137Cs cheese with concentration 82.2 +/- 3.9 Bq/kg in iodine and an average of 42.3 +/- 2.3 Bq/kg in the cesium isotopes is produced. The corresponding concentrations in cream extracted from the same milk are 26.7 +/- 2.8 Bq/kg (131I) and 18.6 +/- 1.9 Bq/kg (134Cs, 137Cs).

  17. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  18. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, L.A.; Burger, L.L.

    1994-03-29

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions. 3 figures.

  19. Method for aqueous radioactive waste treatment

    DOEpatents

    Bray, Lane A.; Burger, Leland L.

    1994-01-01

    Plutonium, strontium, and cesium found in aqueous waste solutions resulting from nuclear fuel processing are removed by contacting the waste solutions with synthetic zeolite incorporating up to about 5 wt % titanium as sodium titanate in an ion exchange system. More than 99.9% of the plutonium, strontium, and cesium are removed from the waste solutions.

  20. An Improvement to Low-Level Radioactive Waste Vitrification Processes.

    DTIC Science & Technology

    1986-05-01

    waste stream. 3 9 Sodium and Potassium tetraphenyl borates are both cited in the literature as having high cesium selectivity. 23󈧝󈧫 The thermal... Ferrate (II) Impregnated Zeolite for Cesium Removal from Radioactive Waste," Nuc. Tech., 58, p.242, ANS, La Grange Park, Illinois, (1982T. 29. F.V

  1. Use of charcoals and broiler litter biochar for removal of radioactive cesium (Cs-134 plus Cs-137) from contaminated water

    USDA-ARS?s Scientific Manuscript database

    Various charcoals (used in food processing and water treatment) and broiler litter biochar were examined for ability to adsorb water-soluble low-level radioactive cesium (ca. 200-250 Bq/kg) extracted from contaminated wheat bran. Among the materials tested, steam activated broiler litter biochar was...

  2. Removal of radioactive cesium (134Cs plus 137Cs) from low-level contaminated water by charcoal and broiler litter biochar

    USDA-ARS?s Scientific Manuscript database

    Various charcoals (used in food processing and water treatment) and broiler litter biochar were examined for ability to adsorb water-soluble low-level radioactive cesium (ca. 200-250 Bq/kg) extracted from contaminated wheat bran. Among the materials tested, steam activated broiler litter biochar was...

  3. Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Pankaj K.; Scully, Marlan O.; Princeton University, Princeton, New Jersey 08544

    2012-08-27

    Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.

  4. Cesium recovery from aqueous solutions

    DOEpatents

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  5. Extraction, scrub, and strip test results for the salt waste processing facility caustic side solvent extraction solvent example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.9, exceeding the required value of 8. This value is consistent with results from previousmore » ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less

  6. Versatile Poly(Diallyl Dimethyl Ammonium Chloride)-Layered Nanocomposites for Removal of Cesium in Water Purification.

    PubMed

    Jang, Sung-Chan; Kang, Sung-Min; Kim, Gi Yong; Rethinasabapathy, Muruganantham; Haldorai, Yuvaraj; Lee, Ilsong; Han, Young-Kyu; Renshaw, Joanna C; Roh, Changhyun; Huh, Yun Suk

    2018-06-12

    In this work, we elucidate polymer-layered hollow Prussian blue-coated magnetic nanocomposites as an adsorbent to remove radioactive cesium from environmentally contaminated water. To do this, Fe₃O₄ nanoparticles prepared using a coprecipitation method were thickly covered with a layer of cationic polymer to attach hollow Prussian blue through a self-assembly process. The as-synthesized adsorbent was confirmed through various analytical techniques. The adsorbent showed a high surface area (166.16 m²/g) with an excellent cesium adsorbent capacity and removal efficiency of 32.8 mg/g and 99.69%, respectively. Moreover, the superparamagnetism allows effective recovery of the adsorbent using an external magnetic field after the adsorption process. Therefore, the magnetic adsorbent with a high adsorption efficiency and convenient recovery is expected to be effectively used for rapid remediation of radioactive contamination.

  7. [Investigation on the process of sapindus saponin purified with macroporous adsorption resin and screening of its bacteriostasis].

    PubMed

    Fu, Yong; Lei, Peng; Han, Yu-mei; Yan, Dan

    2010-02-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. Bacteriostasis activity of each parts eluted was evaluated by the mean of cup-plate method. 13.6 mL of the extraction of sapindus saponin (crude drugs 0.01 g/mL) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol, most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying, the elutive ratio of saponins was 93.8% and the purity reached 250.1%. So this process of applying macroporous adsorption resin to adsorb and purify saponins is feasible, and supplies reference to the purification of other types of saponin.

  8. Current manufacturing processes of drug-eluting sutures.

    PubMed

    Champeau, Mathilde; Thomassin, Jean-Michel; Tassaing, Thierry; Jérôme, Christine

    2017-11-01

    Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Drug-eluting sutures represent the next generation of surgical sutures since they fulfill their mechanical functions but also deliver the drug in their vicinity after implantation. These implants are produced by a variety of manufacturing processes. Two general approaches can be followed: (i) the ones that add the API into the material during the manufacturing process of the suture and (ii) the ones that load the API to an already manufactured suture. Areas covered: This review provides an overview of the current manufacturing processes for drug-eluting suture production and discusses their benefits and drawbacks depending on the type of drugs. The mechanical properties and the drug delivery profile of drug-eluting sutures are highlighted since these implants must fulfill both criteria. Expert opinion: For limited drug contents, melt extrusion and electrospinning are the emerging processes since the drug is added during the suture manufacture process. Advantageously, the drug release profile can be tuned by controlling the processing parameters specific to each process and the composition of the drug-containing polymer. If high drug content is targeted, the coating or grafting of a drug layer on a pre-manufactured suture allows for preservation of the tensile strength requirements of the suture.

  9. Sequential elution process

    DOEpatents

    Kingsley, I.S.

    1987-01-06

    A process and apparatus are disclosed for the separation of complex mixtures of carbonaceous material by sequential elution with successively stronger solvents. In the process, a column containing glass beads is maintained in a fluidized state by a rapidly flowing stream of a weak solvent, and the sample is injected into this flowing stream such that a portion of the sample is dissolved therein and the remainder of the sample is precipitated therein and collected as a uniform deposit on the glass beads. Successively stronger solvents are then passed through the column to sequentially elute less soluble materials. 1 fig.

  10. Detection of the actinides and cesium from environmental samples

    NASA Astrophysics Data System (ADS)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  11. [Studies on the process of Herba Clinopodii saponins purified with macroporous adsorption resin].

    PubMed

    Zhang, Yi; Yan, Dan; Han, Yumei

    2005-10-01

    To study the technological parameters of the purification process of saponins with macroporous adsorption resin. The adsorptive characteristics and elutive parameters of the process were studied by taking the elutive and purified ratio of saponins as markers. 11.4 ml of the extraction of Herba Clinopodii (crude drugs 0.2 g/ml) was purified with a column of macroporous adsorption resin (phi15 mm x H90 mm, dry weight 2.5 g) and washed with 3BV of distilled water, then eluted with 3BV of 30% ethanol and 3BV of 70% ethanol. Most of saponins were collected in the 70% ethanol. With macroporous adsorption resin adsorbing and purifying,the elutive ratio of saponins is 86.8% and the purity reaches 153.2%. So this process of applying macroporous adsorption resin to adsorb and purify Saponins is feasible.

  12. Influence of amount of oxidizing slag discharged from stainless steelmaking process of electric arc furnace on elution behavior into fresh water

    NASA Astrophysics Data System (ADS)

    Yokoyama, S.; Shimomura, T.; Hisyamudin, M. N. N.; Takahashi, T.; Izaki, M.

    2012-03-01

    Fundamental study was carried out for provision for acidification of soil due to acid rain. The influence of weight of the additive slag on elution behavior of the slag into water was studied in this study. Elution experiment was carried out on a basis of JIS K 0058-1. Generally, the pH in the aqueous solution increased with an increase in weight of the additive slag. The pH converged to approximately eight. Calcium, magnesium and manganese, which were essential elements for plants, were eluted from the slag irrespective to elution condition. The eluted concentrations of Ca and Mg increased with an increase in weight of the additive slag. Silicon and zinc were also eluted depending on the conditions. Aluminum that was harmful for plants was not eluted from the used slag.

  13. Modeling of a diode-pumped thin-disk cesium vapor laser

    NASA Astrophysics Data System (ADS)

    An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-03-01

    A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.

  14. Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations.more » The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less

  15. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10-3 M) in seawater. In real seawater experiments, the bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent. Usingmore » the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  16. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  17. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE PAGES

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung; ...

    2017-05-02

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  18. Bentonite-Clay Waste Form for the Immobilization of Cesium and Strontium from Fuel Processing Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.; Mertz, Carol J.

    2016-01-01

    The physical properties of a surrogate waste form containing cesium, strontium, rubidium, and barium sintered into bentonite clay were evaluated for several simulant feed streams: chlorinated cobalt dicarbollide/polyethylene glycol (CCD-PEG) strip solution, nitrate salt, and chloride salt feeds. We sintered bentonite clay samples with a loading of 30 mass% of cesium, strontium, rubidium, and barium to a density of approximately 3 g/cm 3. Sintering temperatures of up to 1000°C did not result in volatility of cesium. Instead, there was an increase in crystallinity of the waste form upon sintering to 1000ºC for chloride- and nitrate-salt loaded clays. The nitrate saltmore » feed produced various cesium pollucite phases, while the chloride salt feed did not produce these familiar phases. In fact, many of the x-ray diffraction peaks could not be matched to known phases. Assemblages of silicates were formed that incorporated the Sr, Rb, and Ba ions. Gas evolution during sintering to 1000°C was significant (35% weight loss for the CCD-PEG waste-loaded clay), with significant water being evolved at approximately 600°C.« less

  19. Immunoglobulin G elution in protein A chromatography employing the method of chromatofocusing for reducing the co-elution of impurities.

    PubMed

    Pinto, Nuno D S; Uplekar, Shaunak D; Moreira, Antonio R; Rao, Govind; Frey, Douglas D

    2017-01-01

    Purification processes for monoclonal Immunoglobulin G (IgG) typically employ protein A chromatography as a capture step to remove most of the impurities. One major concern of the post-protein A chromatography processes is the co-elution of some of the host cell proteins (HCPs) with IgG in the capture step. In this work, a novel method for IgG elution in protein A chromatography that reduces the co-elution of HCPs is presented where a two-step pH gradient is self-formed inside a protein A chromatography column. The complexities involved in using an internally produced pH gradient in a protein A chromatography column employing adsorbed buffering species are discussed though equation-based modeling. Under the conditions employed, ELISA assays show a 60% reduction in the HCPs co-eluting with the IgG fraction when using the method as compared to conventional protein A elution without affecting the IgG yield. Evidence is also obtained which indicates that the amount of leached protein A present in free solution in the purified product is reduced by the new method. Biotechnol. Bioeng. 2017;114: 154-162. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  1. An improved filter elution and cell culture assay procedure for evaluating public groundwater systems for culturable enteroviruses.

    PubMed

    Dahling, Daniel R

    2002-01-01

    Large-scale virus studies of groundwater systems require practical and sensitive procedures for both sample processing and viral assay. Filter adsorption-elution procedures have traditionally been used to process large-volume water samples for viruses. In this study, five filter elution procedures using cartridge filters were evaluated for their effectiveness in processing samples. Of the five procedures tested, the third method, which incorporated two separate beef extract elutions (one being an overnight filter immersion in beef extract), recovered 95% of seeded poliovirus compared with recoveries of 36 to 70% for the other methods. For viral enumeration, an expanded roller bottle quantal assay was evaluated using seeded poliovirus. This cytopathic-based method was considerably more sensitive than the standard plaque assay method. The roller bottle system was more economical than the plaque assay for the evaluation of comparable samples. Using roller bottles required less time and manipulation than the plaque procedure and greatly facilitated the examination of large numbers of samples. The combination of the improved filter elution procedure and the roller bottle assay for viral analysis makes large-scale virus studies of groundwater systems practical. This procedure was subsequently field tested during a groundwater study in which large-volume samples (exceeding 800 L) were processed through the filters.

  2. DNA adsorption to and elution from silica surfaces: influence of amino acid buffers.

    PubMed

    Vandeventer, Peter E; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S; Niemz, Angelika

    2013-09-19

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction.

  3. Integrated microwave processing system for the extraction of organophosphorus pesticides in fresh vegetables.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-03-01

    A simple and efficient integrated microwave processing system (IMPS) was firstly assembled and validated for the extraction of organophosphorus pesticides in fresh vegetables. Two processes under microwave irradiation, dynamic microwave-assisted extraction (DMAE) and microwave-accelerated solvent elution (MASE), were integrated for simplifying the pretreatment of the sample. Extraction, separation, enrichment and elution were finished in a simple step. The organophosphorus pesticides were extracted from the fresh vegetables into hexane with DMAE, and then the extract was directly introduced into the enrichment column packed with active carbon fiber (ACF). Subsequently, the organophosphorus pesticides trapped on the ACF were eluted with ethyl acetate under microwave irradiation. No further filtration or cleanup was required before analysis of the eluate by gas chromatography-mass spectrometry. Some experimental parameters affecting extraction efficiency were investigated and optimized, such as microwave output power, kind and volume of extraction solvent, extraction time, amount of sorbent, elution microwave power, kind and volume of elution solvent, elution solvent flow rate. Under the optimized conditions, the recoveries were in the range of 71.5-105.2%, and the relative standard deviations were lower than 11.6%. The experiment results prove that the present method is a simple and effective sample preparation method for the determination of pesticides in solid samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Phenolic cation exchange resin material for recovery of cesium and strontium

    DOEpatents

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  5. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    DOEpatents

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  6. Weather from 250 Miles Up: Visualizing Precipitation Satellite Data (and Other Weather Applications) Using CesiumJS

    NASA Technical Reports Server (NTRS)

    Lammers, Matt

    2017-01-01

    Geospatial weather visualization remains predominately a two-dimensional endeavor. Even popular advanced tools like the Nullschool Earth display 2-dimensional fields on a 3-dimensional globe. Yet much of the observational data and model output contains detailed three-dimensional fields. In 2014, NASA and JAXA (Japanese Space Agency) launched the Global Precipitation Measurement (GPM) satellite. Its two instruments, the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) observe much of the Earth's atmosphere between 65 degrees North Latitude and 65 degrees South Latitude. As part of the analysis and visualization tools developed by the Precipitation Processing System (PPS) Group at NASA Goddard, a series of CesiumJS [Using Cesium Markup Language (CZML), JavaScript (JS) and JavaScript Object Notation (JSON)] -based globe viewers have been developed to improve data acquisition decision making and to enhance scientific investigation of the satellite data. Other demos have also been built to illustrate the capabilities of CesiumJS in presenting atmospheric data, including model forecasts of hurricanes, observed surface radar data, and gridded analyses of global precipitation. This talk will present these websites and the various workflows used to convert binary satellite and model data into a form easily integrated with CesiumJS.

  7. Extraction, Scrub, and Strip Test Results for the Salt Waste Processing Facility Caustic Side Solvent Extraction Solvent Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.

    An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D( Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D( Cs) measured 12.5, exceeding the required value of 8. This value is consistent with resultsmore » from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges. This revision was created to correct an error. The previous revision used an incorrect set of temperature correction coefficients which resulted in slight deviations from the correct D( Cs) results.« less

  8. METHOD OF PREPARING RADIOACTIVE CESIUM SOURCES

    DOEpatents

    Quinby, T.C.

    1963-12-17

    A method of preparing a cesium-containing radiation source with physical and chemical properties suitable for high-level use is presented. Finely divided silica is suspended in a solution containing cesium, normally the fission-product isotope cesium 137. Sodium tetraphenyl boron is then added to quantitatively precipitate the cesium. The cesium-containing precipitate is converted to borosilicate glass by heating to the melting point and cooling. Up to 60 weight percent cesium, with a resulting source activity of up to 21 curies per gram, is incorporated in the glass. (AEC)

  9. Multiple dual mode counter-current chromatography with variable duration of alternating phase elution steps.

    PubMed

    Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N

    2014-06-20

    The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Time-Fractional Advection-Dispersion Equation (tFADE) to Quantify Aqueous Phase Contaminant Elution from a Trichloroethene (TCE) NAPL Source Zone in Sand Columns

    NASA Astrophysics Data System (ADS)

    Tick, G. R.; Wei, S.; Sun, H.; Zhang, Y.

    2016-12-01

    Pore-scale heterogeneity, NAPL distribution, and sorption/desorption processes can significantly affect aqueous phase elution and mass flux in porous media systems. The application of a scale-independent fractional derivative model (tFADE) was used to simulate elution curves for a series of columns (5 cm, 7 cm, 15 cm, 25 cm, and 80 cm) homogeneously packed with 20/30-mesh sand and distributed with uniform saturations (7-24%) of NAPL phase trichloroethene (TCE). An additional set of columns (7 cm and 25 cm) were packed with a heterogeneous distribution of quartz sand upon which TCE was emplaced by imbibing the immiscible liquid, under stable displacement conditions, to simulate a spill-type process. The tFADE model was able to better represent experimental elution behavior for systems that exhibited extensive long-term concentration tailing requiring much less parameters compared to typical multi-rate mass transfer models (MRMT). However, the tFADE model was not able to effectively simulate the entire elution curve for such systems with short concentration tailing periods since it assumes a power-law distribution for the dissolution rate for TCE. Such limitations may be solved using the tempered fractional derivative model, which can capture the single-rate mass transfer process and therefore the short elution concentration tailing behavior. Numerical solution for the tempered fractional-derivative model in bounded domains however remains a challenge and therefore requires further study. However, the tFADE model shows excellent promise for understanding impacts on concentration elution behavior for systems in which physical heterogeneity, non-uniform NAPL distribution, and pronounced sorption-desorption effects dominate or are present.

  11. Transfer of radio-cesium from forest soil to woodchips using fungal activities

    NASA Astrophysics Data System (ADS)

    Kaneko, Nobuhiro; Huang, Yao; Tanaka, Yoichiro; Fujiwara, Yoshihiro; Sasaki, Michiko; Toda, Hiroto; Takahashi, Terumasa; Kobayashi, Tatsuaki; Harada, Naoki; Nonaka, Masahiro

    2014-05-01

    Raido-cesium released to terrestrial ecosystems by nuclear accidents is know to accumulate forest soil and organic layer on the soil. Forests in Japan are not exceptions. Practically it is impossible to decontaminate large area of forests. However, there is a strong demand from local people, who has been using secondary forests (Satoyama) around croplands in hilly areas, to decontaminate radio-cesium, because those people used to collect wild mushrooms and edible plants, and there are active cultures of mushrooms using logs and sawdusts. These natural resource uses consist substantial part of their economical activities, Therefore it is needed to decontaminate some selected part of forests in Japan to local economy. Clear cutting and scraping surface soil and organic matter are common methods of decontamination. However the efficiency of decontamination is up to 30% reduction of aerial radiation, and the cost to preserve contaminated debris is not affordable. In this study we used wood chips as a growth media for saprotrophic fungi which are known to accumulate redio-cesium. There are many studies indicated that mushrooms accumulated redio-cesium from forest soil and organic layer. It is not practical to collect mushrooms to decontaminate redio-cesium, because biomass of mushrooms are not enough to collect total contaminants. Mushrooms are only minor part of saprotrophic fungi. Fungal biomass in forest soil is about 1% of dead organic matter on forest floor. Our previous study to observe Cs accumulation to decomposing leaf litter indicated 18% absorption of total soil radio-Cs to litter during one year field incubation (Kaneko et al., 2013), and Cs concentration was proportional to fungal biomass on litter. This result indicated that fungi transferred radio-cesium around newly supplied leaf litter free of contamination. Therefore effective decontamination will be possible if we can provide large amount of growth media for saprotrophic fungi, and the media can be removed from forests with fungal bodies. We covered forest floor using wood chips, and observed Cs accumulation, and found that up to 50% of soil radio-cesium was transferred from soil to wood chips after 6-month of field incubation. Therefore this method is effective to decontaminate forest using ecological process. Kaneko N, Huang Y, Nakamori T, Tanaka Y, Nonaka M. Radio-cesium accumulation during decomposition of leaf litter in a deciduous forest after the Fukushima NPP accident. Geophysical Research Abstracts. 2013;15(EGU2013):7809.

  12. DNA Adsorption to and Elution from Silica Surfaces: Influence of Amino Acid Buffers

    PubMed Central

    Vandeventer, Peter E.; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S.; Niemz, Angelika

    2014-01-01

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed, and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction. PMID:23931415

  13. Mineral resource of the month: cesium

    USGS Publications Warehouse

    Angulo, Marc A.

    2010-01-01

    The article offers information on cesium, a golden alkali metal derived from the Latin word caesium which means bluish gray. It mentions that cesium is the first element discovered with the use of spectroscopy. It adds that the leading producer and supplier of cesium is Canada and there are 50,000 kilograms of cesium consumed of the world in a year. Moreover, it states that only 85% of the cesium formate can be retrieved and recycled.

  14. A novel role for methyl cysteinate, a cysteine derivative, in cesium accumulation in Arabidopsis thaliana

    PubMed Central

    Adams, Eri; Miyazaki, Takae; Hayaishi-Satoh, Aya; Han, Minwoo; Kusano, Miyako; Khandelia, Himanshu; Saito, Kazuki; Shin, Ryoung

    2017-01-01

    Phytoaccumulation is a technique to extract metals from soil utilising ability of plants. Cesium is a valuable metal while radioactive isotopes of cesium can be hazardous. In order to establish a more efficient phytoaccumulation system, small molecules which promote plants to accumulate cesium were investigated. Through chemical library screening, 14 chemicals were isolated as ‘cesium accumulators’ in Arabidopsis thaliana. Of those, methyl cysteinate, a derivative of cysteine, was found to function within the plant to accumulate externally supplemented cesium. Moreover, metabolite profiling demonstrated that cesium treatment increased cysteine levels in Arabidopsis. The cesium accumulation effect was not observed for other cysteine derivatives or amino acids on the cysteine metabolic pathway tested. Our results suggest that methyl cysteinate, potentially metabolised from cysteine, binds with cesium on the surface of the roots or inside plant cells and improve phytoaccumulation. PMID:28230101

  15. Wide Area Recovery and Resiliency Program (WARRP) Integrated Program Plan

    DTIC Science & Technology

    2011-06-01

    Agent YELLOW, which is a mixture of the chemical warfare agents Sulfur Mustard and Lewisite, is a liquid with a garlic-like odor. Sulfur mustard...Radioisotope Background Cesium -137 (137Cs) is a radioactive isotope of cesium . The half-life of cesium -137 is 30.17 years. Because of the chemical...nature of cesium , it moves easily through the environment. This makes the cleanup of cesium - 137 difficult. People may ingest cesium -137 with food

  16. Enhanced performance of magnesium alloy for drug-eluting vascular scaffold application

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Daikun; Mao, Daoyong; Bai, Ningning; Chen, Yashi; Li, Qing

    2018-03-01

    Bio-absorbable magnesium alloys drug-eluting vascular scaffold was developed to resolve the defect of permanent metal and drug-eluting stents, most notably a chronic vessel wall inflammation and the risk of stent thrombosis. Nevertheless, violent chemical reaction and rapid degradation under physiological conditions limits their application. Furthermore, multifunctional drug-eluting stents which could reduce the formation of thrombus and repair the damaged vessels need more attention to fundamentally cure the coronary artery disease. Herein, a drug delivery system (Mg/MgO/PLA-FA) which can realize sustainable release of ferulaic acid was designed via anodic oxidation process and dip coating process. Electrochemical tests and immersion experiments showed that the superior anticorrosion behavior, it is due to the dense MgO-PLA composite layer. The released ferulaic acid can effectively decrease platelets adhesion and aggregation during the early stage of implantation. Besides, hemolysis tests showed that the composite coatings endowed the Mg alloy with a low hemolysis ratio. The Mg/MgO/PLA-FA composite materials may be appropriate for applications on biodegradable Mg alloys drug-eluting stents.

  17. Derivation of strontium-90 and cesium-137 residual radioactive material guidelines for the Laboratory for Energy-Related Health Research, University of California, Davis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimmagadda, M.; Yu, C.

    1993-04-01

    Residual radioactive material guidelines for strontium-90 and cesium-137 were derived for the Laboratory for Energy-Related Health Research (LEHR) site in Davis, California. The guideline derivation was based on a dose limit of 100 mrem/yr. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD, was used in this evaluation; this code implements the methodology described in the DOE manual for implementing residual radioactive material guidelines. Three potential site utilization scenarios were considered with the assumption that, for a period of 1,000 years following remedial action, the site will be utilized without radiological restrictions. The defined scenarios varymore » with regard to use of the site, time spent at the site, and sources of food consumed. The results of the evaluation indicate that the basic dose limit of 100 mrem/yr will not be exceeded within 1,000 years for either strontium-90 or cesium-137, provided that the soil concentrations of these radionuclides at the LEHR site do not exceed the following levels: 71,000 pCi/g for strontium-90 and 91 pCi/g for cesium-137 for Scenario A (researcher: the expected scenario); 160,000 pCi/g for strontium-90 and 220 pCi/g for cesium-137 for Scenario B (recreationist: a plausible scenario); and 37 pCi/g for strontium-90 and 32 pCi/g for cesium-137 for Scenario C (resident farmer ingesting food produced in the contaminated area: a plausible scenario). The derived guidelines are single-radionuclide guidelines and are linearly proportional to the dose limit used in the calculations. In setting the actual strontium-90 and cesium-137 guidelines for the LEHR site, DOE will apply the as low as reasonably achievable (ALARA) policy to the decision-making process, along with other factors such as whether a particular scenario is reasonable and appropriate.« less

  18. An optimized method for elution of enteroviral RNA from a cellulose-based substrate.

    PubMed

    Li, Yan; Yoshida, Hiromu; Wang, Lu; Tao, Zexin; Wang, Haiyan; Lin, Xiaojuan; Xu, Aiqiang

    2012-12-01

    The Flinders Technology Australia (FTA) Elute Card is a commercial product that facilitates the collection, transport, archiving and processing of nucleic acids from a wide variety of biological samples at room temperature. While the cards have been designed so that sterile/deionized water can elute DNA easily, they are not suitable for some less stable RNAs. This study was undertaken to determine the optimal conditions such as the buffer type, buffer pH and incubation temperature for the elution of enteroviral RNA from FTA Elute Cards prior to quantitative analysis using real-time PCR (qPCR) or consensus degenerate hybrid oligonucleotide primer VP1 RT-semi nested PCR (CODEHOP VP1 RT-snPCR). TE-1 (pH 8.0), rather than sterile water, was the best buffer for high efficiency elution of enteroviral RNA at 95°C. However, as the estimated recovery rate of viral RNA eluted from the cards averaged to be only 6.1%, enterovirus assays using FTA elution should be considered qualitative, especially at low virus titers, and therefore the results of the assay should be interpreted carefully. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    NASA Astrophysics Data System (ADS)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

  20. Methods of producing cesium-131

    DOEpatents

    Meikrantz, David H; Snyder, John R

    2012-09-18

    Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.

  1. Cesium vapor thermionic converter anomalies arising from negative ion emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasor, Ned S., E-mail: ned.rasor@gmail.com

    2016-08-14

    Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects ofmore » negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.« less

  2. Web-Based Geospatial Visualization of GPM Data with CesiumJS

    NASA Technical Reports Server (NTRS)

    Lammers, Matt

    2018-01-01

    Advancements in the capabilities of JavaScript frameworks and web browsing technology have made online visualization of large geospatial datasets such as those coming from precipitation satellites viable. These data benefit from being visualized on and above a three-dimensional surface. The open-source JavaScript framework CesiumJS (http://cesiumjs.org), developed by Analytical Graphics, Inc., leverages the WebGL protocol to do just that. This presentation will describe how CesiumJS has been used in three-dimensional visualization products developed as part of the NASA Precipitation Processing System (PPS) STORM data-order website. Existing methods of interacting with Global Precipitation Measurement (GPM) Mission data primarily focus on two-dimensional static images, whether displaying vertical slices or horizontal surface/height-level maps. These methods limit interactivity with the robust three-dimensional data coming from the GPM core satellite. Integrating the data with CesiumJS in a web-based user interface has allowed us to create the following products. We have linked with the data-order interface an on-the-fly visualization tool for any GPM/partner satellite orbit. A version of this tool also focuses on high-impact weather events. It enables viewing of combined radar and microwave-derived precipitation data on mobile devices and in a way that can be embedded into other websites. We also have used CesiumJS to visualize a method of integrating gridded precipitation data with modeled wind speeds that animates over time. Emphasis in the presentation will be placed on how a variety of technical methods were used to create these tools, and how the flexibility of the CesiumJS framework facilitates creative approaches to interact with the data.

  3. Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins.

    PubMed

    Palamarchuk, Marina; Egorin, Andrey; Tokar, Eduard; Tutov, Mikhail; Marinin, Dmitry; Avramenko, Valentin

    2017-01-05

    The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Technical Improvements to an Absorbing Supergel for Radiological Decontamination in Tropical Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, Michael D.; Mertz, Carol J.; Kivenas, Nadia

    Argonne National Laboratory (Argonne) developed a superabsorbing gel-based process (SuperGel) for the decontamination of cesium from concrete and other porous building materials. Here, we report on results that tested the gel decontamination technology on specific concrete and ceramic formulations from a coastal city in Southeast Asia, which may differ significantly from some U.S. sources. Results are given for the evaluation of americium and cesium sequestering agents that are commercially available at a reasonable cost; the evaluation of a new SuperGel formulation that combines the decontamination properties of cesium and americium; the variation of the contamination concentration to determine the effectsmore » on the decontamination factors with concrete, tile, and brick samples; and pilot-scale testing (0.02–0.09 m2 or 6–12 in. square coupons).« less

  5. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Neeharika; Cifter, Gizem; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using themore » Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application with in situ dose painting administered via gold nanoparticle eluters for prostate cancer.« less

  6. Small Column Ion Exchange Testing of Superlig 644 for Removal of 137Cs from Hanford Tank Waste Envelope A (Tank 241-AW-101)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DE Kurath; DL Blanchard; JR Bontha

    The current BNFL Inc. flow sheet for the pretreatment of the Hanford High-Level tank wastes includes the use of Superlig{reg_sign} materials for the removal of {sup 137}Cs from the aqueous fraction of the waste. The Superlig materials applicable to cesium removal include the cesium selective Superlig 632 and Superlig 644. These materials have been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. The work contained in this report involves testing the Superlig 644 ion exchange material in a small dual column system (15 mL each; L/D = 5.7). The sample processed was approximately 2.5 L of dilutedmore » waste [Na{sup +}] = 4.6M from Tank 241-AW-101 (Envelope A). This waste had been previously clarified in a single tube cross-flow filtration unit. All ion exchange process steps were tested including resin bed preparation, loading, feed displacement water rinse, elution and resin regeneration. During the initial run, the lag column did not perform as expected so that the {sup 137}Cs concentration in the effluent composite was above the LAW treatment limits. This required a second column run with the partially decontaminated feed that was conducted at a higher flow rate. A summary of performance measures for both runs is shown in Table S1. The Cs {lambda} values represent a measure of the effective capacity of the SL-644 resin. The Cs {lambda} of 143 for the lead column in run 1 is very similar to the value obtained by the Savannah River Technology Center during Phase 1A testing. The larger Cs {lambda} value for run 2 reflects a general trend for the effective capacity of the SL-644 material to increase as the cesium concentration decreases. The low value for the lag column during the first run indicates that it did not perform as expected. This may have been due to insufficient conditioning of the bed prior to the start of the loading step or to air in the bed that caused channeling. Equilibrium data obtained with batch contacts using the AW-101 Cs IX feed indicates a range for the Cs {lambda} of 80--97. The maximum decontamination factor (DF) for {sup 137}CS is based on analysis of the first samples collected from each column and the concentration in the feed for each run. While the DF's are lower for the second run, this is attributed to the lower {sup 137}Cs concentration in the feed and the increased flowrate. The overall composite DF for run 2 was quite good since both columns functioned well. The overall DF for both runs was 3,000, which provided an effluent with a {sup 137}Cs concentration of 5.89E-02 Ci/m{sup 3} (C/C{sub 0} = 3.3 IE-04). The {sup 137}Cs concentration in the effluent composite was 7.3% of the contract limit for {sup 137}Cs and also below the basis of design limit.« less

  7. Radionuclide Basics: Cesium-137

    EPA Pesticide Factsheets

    The most common radioactive form of cesium (chemical symbol Cs) is Cesium-137. Cesium-137 is produced by nuclear fission for use in medical devices and gauges and is one of the byproducts of nuclear fission in nuclear reactors and nuclear weapons testing.

  8. Desorption of radioactive cesium by seawater from the suspended particles in river water.

    PubMed

    Onodera, Masaki; Kirishima, Akira; Nagao, Seiya; Takamiya, Kouichi; Ohtsuki, Tsutomu; Akiyama, Daisuke; Sato, Nobuaki

    2017-10-01

    In 2011, the accident at the Fukushima-Daiichi nuclear power plant dispersed radioactive cesium throughout the environment, contaminating the land, rivers, and sea. Suspended particles containing clay minerals are the transportation medium for radioactive cesium from rivers to the ocean because cesium is strongly adsorbed between the layers of clay minerals, forming inner sphere complexes. In this study, the adsorption and desorption behaviors of radioactive cesium from suspended clay particles in river water have been investigated. The radioactive cesium adsorption and desorption experiments were performed with two kinds of suspended particulate using a batch method with 137 Cs tracers. In the cesium adsorption treatment performed before the desorption experiments, simulated river water having a total cesium concentration ([ 133+137 Cs + ] total ) of 1.3 nM (10 -9  mol/L) was used. The desorption experiments were mainly conducted at a solid-to-liquid ratio of 0.17 g/L. The desorption agents were natural seawater collected at 10 km north of the Fukushima-Daiichi nuclear power plant, artificial seawater, solutions of NaCl, KCl, NH 4 Cl, and 133 CsCl, and ultrapure water. The desorption behavior, which depends on the preloaded cesium concentration in the suspended particles, was also investigated. Based on the cesium desorption experiments using suspended particles, which contained about 1000 ng/g loaded cesium, the order of cesium desorption ratios for each desorption agent was determined as 1 M NaCl (80%) > 470 mM NaCl (65%) > 1 M KCl (30%) ≈ seawater (natural seawater and Daigo artificial seawater) > 1 M NH 4 Cl (20%) > 1 M 133 CsCl (15%) ≫ ultrapure water (2%). Moreover, an interesting result was obtained: The desorption ratio in the 470 mM NaCl solution was much higher than that in seawater, even though the Na + concentrations were identical. These results indicate that the cesium desorption mechanism is not a simple ion exchange reaction but is strongly related to structural changes in the clay minerals in the suspended particles. Hydrated Na + ions expand the interlayer distance of the clay minerals, resulting in the facile desorption of cesium; in contrast, dehydrated K + ions reduce the interlayer distance and inhibit the desorption of cesium. In conclusion, the desorption of cesium from the suspended particles is controlled by the presence of sodium and potassium ions and the preloaded cesium concentration in the suspended particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 10 CFR 33.100 - Schedule A.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-126 .1 .001 Iodine-129 .1 .01 Iodine-131 .1 .001 Iodine-132 10 .1 Iodine-133 1 .01 Iodine-134 10 .1...-125 1 .01 Arsenic-73 10 .1 Arsenic-74 1 .01 Arsenic-76 1 .01 Arsenic-77 10 .1 Barium-131 10 .1 Barium... Cerium-144 .1 .001 Cesium-131 100 1. Cesium-134m 100 1. Cesium-134 .1 .001 Cesium-135 1 .01 Cesium-136 10...

  10. 10 CFR 33.100 - Schedule A.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...-126 .1 .001 Iodine-129 .1 .01 Iodine-131 .1 .001 Iodine-132 10 .1 Iodine-133 1 .01 Iodine-134 10 .1...-125 1 .01 Arsenic-73 10 .1 Arsenic-74 1 .01 Arsenic-76 1 .01 Arsenic-77 10 .1 Barium-131 10 .1 Barium... Cerium-144 .1 .001 Cesium-131 100 1. Cesium-134m 100 1. Cesium-134 .1 .001 Cesium-135 1 .01 Cesium-136 10...

  11. 10 CFR 33.100 - Schedule A.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-126 .1 .001 Iodine-129 .1 .01 Iodine-131 .1 .001 Iodine-132 10 .1 Iodine-133 1 .01 Iodine-134 10 .1...-125 1 .01 Arsenic-73 10 .1 Arsenic-74 1 .01 Arsenic-76 1 .01 Arsenic-77 10 .1 Barium-131 10 .1 Barium... Cerium-144 .1 .001 Cesium-131 100 1. Cesium-134m 100 1. Cesium-134 .1 .001 Cesium-135 1 .01 Cesium-136 10...

  12. Carbollide solubility and chemical compatibility summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, D.J.

    1993-08-17

    This report examines the value of the cobalt dicarbollide anion as an effective form of in-tank precipitation. The cobalt dicarbollide anion (CDC) has been investigated for the possible replacement of tetraphenyl borate anion (TPB) for precipitation of cesium in SRS High Level Waste (HLW). The solubility of the cesium CDC in 5 M salt solutions and the reactivity with caustic have been studied extensively. The solubility of CSCDC in a mixture of 4 M sodium nitrate and 1 m sodium hydroxide is {approximately}2 {times} 10{sup {minus}3} M at 40{degrees}C. Furthermore, the CDC decomposes in 1 M sodium hydroxide solution withmore » apparent first order kinetics with a half-life of 7.3 days at 60 {degrees}C and 94 days at 40{degrees}C. Tank temperatures are currently estimated to approach 60{degrees}C during the ITP filtration cycle. This solubility and rapid decomposition of the CDC under highly alkaline conditions and high temperature would require increasing the quantity of CDC and nonradioactive cesium which must be added, increasing the cost of production. Increasing the quantity of CDC would necessitate recovery of the material, probably using a solvent extraction system. Due to the large amount of nonradioactive cesium which must be added, the total amount of precipitate formed exceeds that for TPB precipitation. Also, formation of sodium and/or potassium precipitates compete with cesium salt precipitation in 5 M salt solutions at lower temperature (<30{degrees}C). Decomposition generates hydrogen, which may lead to process complications.« less

  13. Method and article for primary containment of cesium wastes. [DOE patent application

    DOEpatents

    Angelini, P.; Lackey, W.J.; Stinton, D.P.; Blanco, R.E.; Bond, W.D.; Arnold, W.D. Jr.

    1981-09-03

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600/sup 0/C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1000/sup 0/C for a suitable duration.

  14. Method for primary containment of cesium wastes

    DOEpatents

    Angelini, Peter; Lackey, Walter J.; Stinton, David P.; Blanco, Raymond E.; Bond, Walter D.; Arnold, Jr., Wesley D.

    1983-01-01

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600.degree. C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000.degree. C. for a suitable duration.

  15. An Experimental Study of the Fluorescence Spectrum of Cesium Atoms in the Presence of a Buffer Gas

    NASA Astrophysics Data System (ADS)

    Davydov, V. G.; Kulyasov, V. N.

    2018-01-01

    A direct experiment is performed to determine the quantum efficiency of a cesium fluorescence filter. The fluorescence spectra of cesium atoms are recorded under excitation of the upper states of the second resonance doublet with a Bell-Bloom cesium lamp. Introduction of different noble gases into the cell with cesium leads to the appearance of additional fluorescence photons. It is found that a fluorescence filter based on atomic cesium vapor with addition of helium in the working cell has the highest efficiency and response rate of all known fluorescence filters based on alkali-metal atomic vapors.

  16. Fire Safety Tests for Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang; Peterson, Reid A.; Schweiger, Michael J.

    2012-07-30

    A draft safety evaluation of the scenario for spherical resorcinol-formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping, which may be overly bounding based on the fire performance data from the manufacturer of the ion exchange resin selected for use at the WTP. To resolve this question, the fire properties of the SRF resin were measuredmore » by Southwest Research Institute (SwRI), following the American Society for Testing and Materials (ASTM) standard procedures, through a subcontract managed by Pacific Northwest National Laboratory (PNNL). For some tests, the ASTM standard procedures were not entirely appropriate or practical for the SRF resin material, so the procedures were modified and deviations from the ASTM standard procedures were noted. This report summarizes the results of fire safety tests performed and reported by SwRI. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. All as-received SwRI reports are attached to this report in the Appendix. Where applicable, the precision and bias of each test method, as given by each ASTM standard procedure, are included and compared with the SwRI test results of the SRF resin.« less

  17. Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3-H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure inmore » real seawater. The Na 2CO 3-H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.« less

  18. Method of removing cesium from steam

    DOEpatents

    Carson, Jr., Neill J.; Noland, Robert A.; Ruther, Westly E.

    1991-01-01

    Method for removal of radioactive cesium from a hot vapor, such as high temperature steam, including the steps of passing input hot vapor containing radioactive cesium into a bed of silicate glass particles and chemically incorporating radioactive cesium in the silicate glass particles at a temperature of at least about 700.degree. F.

  19. Literature Review of Spherical Resorcinol-Formaldehyde for Cesium Ion Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Garrett N.

    2014-09-30

    The current report summarizes work performed throughout the scientific community and DOE complex as reported in the open literature and DOE-sponsored reports to evaluate the Cs+ ion exchange (CIX) characteristics of SRF resin. King (2007) completed a similar literature review in support of material selection for the Small Column Ion Exchange (SCIX) project. Josephson et al. (2010) and Sams et al. (2009) provided a similar brief review of SRF CIX for the near-tank Cs+ removal (NTCR) project. Thorson (2008a) documented the basis for recommending SRF over SuperLigTM 644 as the primary CIX resin in the WTP. The current review expandsmore » on previous work, summarizes additional work completed to date, and provides a broad view of the literature without focusing on a specific column system. Although the focus of the current review is the SRF resin, many cited references include multiple materials such as the non-spherical GGRF and SuperLigTM 644 organic resins and crystalline silicotitanate (CST) IONSIVTM IE-911, a non-elutable inorganic material. This report summarizes relevant information provided in the literature.« less

  20. Preconcentration and determination of rare-earth elements in iron-rich water samples by extraction chromatography and plasma source mass spectrometry (ICP-MS).

    PubMed

    Hernández González, Carolina; Cabezas, Alberto J Quejido; Díaz, Marta Fernández

    2005-11-15

    A 100-fold preconcentration procedure based on rare-earth elements (REEs) separation from water samples with an extraction chromatographic column has been developed. The separation of REEs from matrix elements (mainly Fe, alkaline and alkaline-earth elements) in water samples was performed loading the samples, previously acidified to pH 2.0 with HNO(3), in a 2ml column preconditioned with 20ml 0.01M HNO(3). Subsequently, REEs were quantitatively eluted with 20ml 7M HNO(3). This solution was evaporated to dryness and the final residue was dissolved in 10ml 2% HNO(3) containing 1mugl(-1) of cesium used as internal standard. The solution was directly analysed by inductively coupled plasma mass spectrometry (ICP-MS), using ultrasonic nebulization, obtaining quantification limits ranging from 0.05 to 0.10 ngl(-1). The proposed method has been applied to granitic waters running through fracture fillings coated by iron and manganese oxy-hydroxides in the area of the Ratones (Cáceres, Spain) old uranium mine.

  1. Soil and sediment sample analysis for the sequential determination of natural and anthropogenic radionuclides.

    PubMed

    Michel, H; Levent, D; Barci, V; Barci-Funel, G; Hurel, C

    2008-02-15

    A new sequential method for the determination of both natural (U, Th) and anthropogenic (Sr, Cs, Pu, Am) radionuclides has been developed for application to soil and sediment samples. The procedure was optimised using a reference sediment (IAEA-368) and reference soils (IAEA-375 and IAEA-326). Reference materials were first digested using acids (leaching), 'total' acids on hot plate, and acids in microwave in order to compare the different digestion technique. Then, the separation and purification were made by anion exchange resin and selective extraction chromatography: transuranic (TRU) and strontium (SR) resins. Natural and anthropogenic alpha radionuclides were separated by uranium and tetravalent actinide (UTEVA) resin, considering different acid elution medium. Finally, alpha and gamma semiconductor spectrometer and liquid scintillation spectrometer were used to measure radionuclide activities. The results obtained for strontium-90, cesium-137, thorium-232, uranium-238, plutonium-239+240 and americium-241 isotopes by the proposed method for the reference materials provided excellent agreement with the recommended values and good chemical recoveries. Plutonium isotopes in alpha spectrometry planchet deposits could be also analysed by ICPMS.

  2. Cesium Sorption/Desorption Experiments with IONSIV(R) IE-911 in Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, D.D.

    2001-02-13

    This report describes cesium desorption from IONSIV IE-911 during ambient temperature storage and following temperature increases to 35 and 55 degrees C. This report also describes cesium sorption following return to ambient temperature. The IONSIV IE-911 used in these tests was loaded with cesium from Tank 44F radioactive waste in an ion exchange column test in 1999. Cesium desorbed and resorbed in the presence of Tank 44F waste and simulated waste solutions.

  3. Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders

    NASA Astrophysics Data System (ADS)

    Musil, Sean

    Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Geopolymers are chemical and fire resistant, can be used as refractory adhesives, and are processed at or near ambient temperature. These properties make geopolymer an attractive choice as a matrix material for elevated temperature composites. This body of research investigated numerous different reinforcement possibilities and variants of geopolymer matrix material and characterized their mechanical performance in tension, flexure and flexural creep. Reinforcements can then be chosen based on the resulting properties to tailor the geopolymer matrix composites to a specific application condition. Geopolymer matrix composites combine the ease of processing of polymer matrix composites with the high temperature capability of ceramic matrix composites. This study incorporated particulate, unidirectional fiber and woven fiber reinforcements. Sodium, potassium, and cesium based geopolymer matrices were evaluated with cesium based geopolymer showing great promise as a high temperature matrix material. It showed the best strength retention at elevated temperature, as well as a very low coefficient of thermal expansion when crystallized into pollucite. These qualities made cesium geopolymer the best choice for creep resistant applications. Cesium geopolymer binders were combined with unidirectional continuous polycrystalline mullite fibers (Nextel(TM) 720) and single crystal mullite fibers, then the matrix was crystallized to form cubic pollucite. Single crystal mullite fibers were obtained by the internal crystallization method and show excellent creep resistance up to 1400°C. High temperature flexural strength and flexural creep resistance of pollucite and polycrystalline/single-crystal fibers was evaluated at 1000-1400°C.

  4. Analysis of solute-protein interactions and solute-solute competition by zonal elution affinity chromatography.

    PubMed

    Tao, Pingyang; Poddar, Saumen; Sun, Zuchen; Hage, David S; Chen, Jianzhong

    2018-02-02

    Many biological processes involve solute-protein interactions and solute-solute competition for protein binding. One method that has been developed to examine these interactions is zonal elution affinity chromatography. This review discusses the theory and principles of zonal elution affinity chromatography, along with its general applications. Examples of applications that are examined include the use of this method to estimate the relative extent of solute-protein binding, to examine solute-solute competition and displacement from proteins, and to measure the strength of these interactions. It is also shown how zonal elution affinity chromatography can be used in solvent and temperature studies and to characterize the binding sites for solutes on proteins. In addition, several alternative applications of zonal elution affinity chromatography are discussed, which include the analysis of binding by a solute with a soluble binding agent and studies of allosteric effects. Other recent applications that are considered are the combined use of immunoextraction and zonal elution for drug-protein binding studies, and binding studies that are based on immobilized receptors or small targets. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Measurements of the cesium flow from a surface-plasma H/sup -/ ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.V.; Allison, P.W.

    1979-01-01

    A surface ionization gauge (SIG) was constructed and used to measure the Cs/sup 0/ flow rate through the emission slit of a surface-plasma source (SPS) of H/sup -/ ions with Penning geometry. The equivalent cesium density in the SPS discharge is deduced from these flow measurements. For dc operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 7 x 10/sup 12/ cm/sup -3/ (corresponding to an average cesium consumption rate of 0.5 mg/h). For pulsed operation the optimum H/sup -/ current occurs at an equivalent cesium density of approx. 2 x 10/sup 13/ cm/sup -3/more » (1-mg/h average cesium consumption rate). Cesium trapping by the SPS discharge was observed for both dc and pulsed operation. A cesium energy of approx. 0.1 eV is deduced from the observed time of flight to the SIG. In addition to providing information on the physics of the source, the SIG is a useful diagnostic tool for source startup and operation.« less

  6. Re-suspension of Cesium-134/137 into the Canadian Environment and the Contribution Stemming from the Fukushima-Daiichi Nuclear Incident

    NASA Astrophysics Data System (ADS)

    Mercier, Jean-Francois; Zhang, Weihua; Loignon-Houle, Francis; Cooke, Michael W.; Ungar, Kurt R.; Pellerin, Eric R.

    2013-04-01

    Cesium-137 (t1/2 = 30 yr) and cesium-134 (t1/2 = 2yr) constitute major fission by-products observed as the result of a nuclear incident. Such radioisotopes become integrated into the soil and biomass, and can therefore undergo re-suspension into the environment via activities such as forest fires. The Canadian Radiological Monitoring Network (CRMN), which consists of 26 environmental monitoring stations spread across the country, commonly observes cesium-137 in air filters due to re-suspension of material originating from long-past weapons testing. Cesium-134 is not observed owing to its relatively short half-life. The Fukushima-Daiichi nuclear power plant incident of March 2011 caused a major release of radioactive materials into the environment. In Canada, small quantities of both cesium-137 and cesium-134 fallout were detected with great frequency in the weeks which followed, falling off rapidly beginning in July 2011. Since September 2011, the CRMN has detected both cesium-137 and cesium-134 from air filters collected at Yellowknife, Resolute, and Quebec City locations. Using the known initial cesium-134/cesium-137 ratio stemming from this incident, along with a statistical assessment of the normality of the data distribution, we herein present evidence that strongly suggests that these activity spikes are due to re-suspended hot particles originating from the Fukushima-Daiichi nuclear power plant incident. Moreover, we have evidence to suggest that this re-suspension is localized in nature. This study provided empirical insight into the transport and uptake of radionuclides over vast distances, and it demonstrates that the CRMN was able to detect evidence of a re-suspension of Fukushima-Daiichi related isotopes.

  7. Cesium Uptake by Rice Roots Largely Depends Upon a Single Gene, HAK1, Which Encodes a Potassium Transporter.

    PubMed

    Rai, Hiroki; Yokoyama, Saki; Satoh-Nagasawa, Namiko; Furukawa, Jun; Nomi, Takiko; Ito, Yasuka; Fujimura, Shigeto; Takahashi, Hidekazu; Suzuki, Ryuichiro; Yousra, ELMannai; Goto, Akitoshi; Fuji, Shinichi; Nakamura, Shin-Ichi; Shinano, Takuro; Nagasawa, Nobuhiro; Wabiko, Hiroetsu; Hattori, Hiroyuki

    2017-09-01

    Incidents at the Fukushima and Chernobyl nuclear power stations have resulted in widespread environmental contamination by radioactive nuclides. Among them, 137cesium has a 30 year half-life, and its persistence in soil raises serious food security issues. It is therefore important to prevent plants, especially crop plants, from absorbing radiocesium. In Arabidopsis thaliana, cesium ions are transported into root cells by several different potassium transporters such as high-affinity K+ transporter 5 (AtHAK5). Therefore, the cesium uptake pathway is thought to be highly redundant, making it difficult to develop plants with low cesium uptake. Here, we isolated rice mutants with low cesium uptake and reveal that the Oryza sativa potassium transporter OsHAK1, which is expressed on the surfaces of roots, is the main route of cesium influx into rice plants, especially in low potassium conditions. During hydroponic cultivation with low to normal potassium concentrations (0-206 µM: the normal potassium level in soil), cesium influx in OsHAK1-knockout lines was no greater than one-eighth that in the wild type. In field experiments, knockout lines of O. sativa HAK1 (OsHAK1) showed dramatically reduced cesium concentrations in grains and shoots, but their potassium uptake was not greatly affected and their grain yields were similar to that of the wild type. Our results demonstrate that, in rice roots, potassium transport systems other than OsHAK1 make little or no contribution to cesium uptake. These results show that low cesium uptake rice lines can be developed for cultivation in radiocesium-contaminated areas. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Time-resolved production and detection of reactive atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grossman, L. W.; Hurst, G. S.

    1977-09-01

    Cesium iodide in the presence of a buffer gas was dissociated with a pulsed ultraviolet laser, which will be referred to as the source laser. This created a population of atoms at a well defined time and in a compact, well defined volume. A second pulsed laser, with a beam that completely surrounded that of the first, photoionized the cesium after a known time delay. This laser will be referred to as the detector laser. It was determined that for short time delays, all of the cesium atoms were easily ionized. When focused, the source laser generated an extremely intensemore » fluence. By accounting for the beam intensity profile it was shown that all of the molecules in the central portion of the beam can be dissociated and detected. Besides proving the feasibility of single-molecule detection, this enabled a determination of the absolute photodissociation cross section as a function of wavelength. Initial studies of the time decay of the cesium signal at low argon pressures indicated a non-exponential decay. This was consistent with a diffusion mechanism transporting cesium atoms out of the laser beam. Therefore, it was desired to conduct further experiments using a tightly focused source beam, passing along the axis of the detector beam. The theoretical behavior of this simple geometry accounting for diffusion and reaction is easily calculated. A diffusion coefficient can then be extracted by data fitting. If reactive decay is due to impurities constituting a fixed percentage of the buffer gas, then two-body reaction rates will scale linearly with pressure and three-body reaction rates will scale quadratically. Also, the diffusion coefficient will scale inversely with pressure. At low pressures it is conceivable that decay due to diffusion would be sufficiently rapid that all other processes can be neglected. Extraction of a diffusion coefficient would then be quite direct. Finally, study of the reaction of cesium and oxygen was undertaken.« less

  9. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, C.

    1999-02-23

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs.

  10. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, Candido

    1999-01-01

    A method for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700.degree. C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite.

  11. MOVEMENT OF STRONTIUM AND CAESIUM IN SOILS AND ITS SIGNIFICANCE IN STUDIES ON THE CONTAMINATION OF FOOD CHAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, R.S.; Shone, M.G.T.

    ABS>Experimental results are given of a long term study on the migration and fixation of strontium and cesium in several types of soil The investigations were designed to approximate to field conditions in which the soil remained undisturbed by cultivation. The effects of the addition of nutrients and of a permanent crop of ryegrass grown on the artificially contaminated soils were also examined. The relevance of processes of migration and fixation to assessments of the uptake of strontium and cesium by crop plants is considered in the light of field experiments. (auth)

  12. Cesium-induced inhibition of bacterial growth of Pseudomonas aeruginosa PAO1 and their possible potential applications for bioremediation of wastewater.

    PubMed

    Kang, Sung-Min; Jang, Sung-Chan; Heo, Nam Su; Oh, Seo Yeong; Cho, Hye-Jin; Rethinasabapathy, Muruganantham; Vilian, A T Ezhil; Han, Young-Kyu; Roh, Changhyun; Huh, Yun Suk

    2017-09-15

    Radioactive isotopes and fission products have attracted considerable attention because of their long lasting serious damage to the health of humans and other organisms. This study examined the toxicity and accumulation behavior of cesium towards P. aeruginosa PAO1 and its capacity to remove cesium from waste water. Interestingly, the programmed bacterial growth inhibition occurred according to the cesium environment. The influence of cesium was analyzed using several optical methods for quantitative evaluation. Cesium plays vital role in the growth of microorganisms and functions as an anti-microbial agent. The toxicity of Cs to P. aeruginosa PAO1 increases as the concentration of cesium is increased in concentration-dependent manner. P. aeruginosa PAO1 shows excellent Cs removal efficiency of 76.1% from the contaminated water. The toxicity of cesium on the cell wall and in the cytoplasm were studied by transmission electron microscopy and electron dispersive X-ray analysis. Finally, the removal of cesium from wastewater using P. aeruginosa PAO1 as a potential biosorbent and the blocking of competitive interactions of other monovalent cation, such as potassium, were assessed. Overall, P. aeruginosa PAO1 can be used as a high efficient biomaterial in the field of radioactive waste disposal and management. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Application Status of Rubidium, Cesium and Research Situation of its Separation from Brine with Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Shi, Zhen; Du, Xuemin; Wang, Shiqiang; Guo, Yafei; Deng, Tianlong

    2017-12-01

    Rubidium, cesium and its compounds play an important role in traditional and high-tech fields. This paper focuses on the research status of separation rubidium and cesium in brine using solvent extraction, and briefly introduced the characteristics of this method, which can be used to realize industrial production of rubidium and cesium from brine.

  14. Towards enhanced automated elution systems for waterborne protozoa using megasonic energy.

    PubMed

    Horton, B; Katzer, F; Desmulliez, M P Y; Bridle, H L

    2018-02-01

    Continuous and reliable monitoring of water sources for human consumption is imperative for public health. For protozoa, which cannot be multiplied efficiently in laboratory settings, concentration and recovery steps are key to a successful detection procedure. Recently, the use of megasonic energy was demonstrated to recover Cryptosporidium from commonly used water industry filtration procedures, forming thereby a basis for a simplified and cost effective method of elution of pathogens. In this article, we report the benefits of incorporating megasonic sonication into the current methodologies of Giardia duodenalis elution from an internationally approved filtration and elution system used within the water industry, the Filta-Max®. Megasonic energy assisted elution has many benefits over current methods since a smaller final volume of eluent allows removal of time-consuming centrifugation steps and reduces manual involvement resulting in a potentially more consistent and more cost-effective method. We also show that megasonic sonication of G. duodenalis cysts provides the option of a less damaging elution method compared to the standard Filta-Max® operation, although the elution from filter matrices is not currently fully optimised. A notable decrease in recovery of damaged cysts was observed in megasonic processed samples, potentially increasing the abilities of further genetic identification options upon isolation of the parasite from a filter sample. This work paves the way for the development of a fully automated and more cost-effective elution method of Giardia from water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Forcing Cesium into Higher Oxidation States Using Useful hard x-ray Induced Chemistry under High Pressure

    NASA Astrophysics Data System (ADS)

    Sneed, D.; Pravica, M.; Kim, E.; Chen, N.; Park, C.; White, M.

    2017-10-01

    This paper discusses our attempt to synthesize higher oxidation forms of cesium fluoride by pressurizing cesium fluoride in a fluorine-rich environment created via the x-ray decomposition of potassium tetrafluoroborate. This was done in order to confirm recent theoretical predictions of higher oxidation forms of CsFn. We discuss the development of a technique to produce molecular fluorine in situ via useful hard x-ray photochemistry, and the attempt to utilize this technique to form higher oxidation states of cesium fluoride. In order to verify the formation of the novel stoichiometric species of CsFn. X-ray Absorption Near Edge Spectroscopy (XANES) centered on the cesium K-edge was performed to probe the oxidation state of cesium as well as the local molecular coordination around Cs.

  16. Selective removal of cesium by ammonium molybdophosphate - polyacrylonitrile bead and membrane.

    PubMed

    Ding, Dahu; Zhang, Zhenya; Chen, Rongzhi; Cai, Tianming

    2017-02-15

    The selective removal of radionuclides with extremely low concentrations from environmental medium remains a big challenge. Ammonium molybdophosphate possess considerable selectivity towards cesium ion (Cs + ) due to the specific ion exchange between Cs + and NH 4 + . Ammonium molybdophosphate - polyacrylonitrile (AMP-PAN) membrane was successfully prepared for the first time in this study. Efficient removal of Cs + (95.7%, 94.1% and 91.3% of 1mgL -1 ) from solutions with high ionic strength (400mgL -1 of Na + , Ca 2+ or K + ) was achieved by AMP-PAN composite. Multilayer chemical adsorption process was testified through kinetic and isotherm studies. The estimated maximum adsorption capacities even reached 138.9±21.3mgg -1 . Specifically, the liquid film diffusion was identified as the rate-limiting step throughout the removal process. Finally, AMP-PAN membrane could eliminate Cs + from water effectively through the filtration adsorption process. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Cesium separation from contaminated milk using magnetic particles containing crystalline silicotitantes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunez, L.; Kaminski, M.; Chemical Engineering

    2000-11-01

    The Chernobyl nuclear reactor disaster in 1986 contaminated vast regions of prime grazing land. Subsequently, milk produced in the region has been contaminated with small amounts of the long-lived fission product cesium-137, and the Ukraine is seeking to deploy a simple separation process that will remove the Cs and preserve the nutritional value of the milk. Tiny magnetic particles containing crystalline silicotitanates (CST) have been manufactured and tested to this end. The results show that partitioning efficiency is optimized with low ratios of particle mass to volume. To achieve 90% Cs decontamination in a single-stage process, <3 g of magneticmore » CST per l milk is sufficient with a 30-min mixing time. A two-stage process would utilize <0.4 g/l per stage. The modeling of the magnetic CST system described herein can be achieved rather simply which is important for deployment in the affected Ukraine region.« less

  18. Liquid-liquid phase separation causes high turbidity and pressure during low pH elution process in Protein A chromatography.

    PubMed

    Luo, Haibin; Lee, Nacole; Wang, Xiangyang; Li, Yuling; Schmelzer, Albert; Hunter, Alan K; Pabst, Timothy; Wang, William K

    2017-03-10

    Turbid elution pools and high column back pressure are common during elution of monoclonal antibodies (mAbs) by acidic pH in Protein A chromatography. This phenomenon has been historically attributed to acid-induced precipitation of incorrectly folded or pH-sensitive mAbs and host cell proteins (HCPs). In this work, we propose a new mechanism that may account for some observations of elution turbidity in Protein A chromatography. We report several examples of turbidity and high column back pressure occurring transiently under a short course of neutral conditions during Protein A elution. A systematic study of three mAbs displaying this behavior revealed phase separation characterized by liquid drops under certain conditions including neutral pH, low ionic strength, and high protein concentration. These liquid droplets caused solution turbidity and exhibited extremely high viscosity, resulting in high column back pressure. We found out that the droplets were formed through liquid-liquid phase separation (LLPS) as a result of protein self-association. We also found multiple factors, including pH, temperature, ionic strength, and protein concentration can affect LLPS behaviors. Careful selection of process parameters during protein A elution, including temperature, flow rate, buffer, and salt can inhibit formation of a dense liquid phase, reducing both turbidity (by 90%) and column back pressure (below 20 pounds per square inch). These findings provide both mechanistic insight and practical mitigation strategies for Protein A chromatography induced LLPS. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  19. Evaluation of a method for removing cesium and reducing the volume of leaf litter from broad-leaved trees contaminated by the Fukushima Daiichi nuclear accident during the Great East Japan Earthquake.

    PubMed

    Harada, Shigeki; Yanagisawa, Mitsunori

    2017-04-01

    The town of Marumori in southern Miyagi Prefecture borders on Fukushima Prefecture, and following the accident at the Fukushima Daiichi nuclear power plant, there were concerns about cesium deposition in forested areas. One of the authors of this paper has continually surveyed leaf litter from the forested areas. As leaf litter may be a source of cesium contamination from the forest to downstream areas, we considered a simplified version of wet oxidation, a method previously presented by one of the authors of this study, as a technology to reduce leaf litter weight and cesium concentration, separating radioactive nuclides from non-radioactive ones, in leaf litter. We tested our method in three experiments. Experiment 1 used new leaf litter (232 Bq/kg) from the surface of a small stream at the forest edge nearby an area with air dose level higher than the national standard threshold of 0.23 μSv/h for the implementation of governmental decontamination works. Experiment 2 applied wet oxidation to older leaf litter (705 Bq/kg) harvested from a pasture nearby the stream mentioned above. We also used the same leaf litter in experiment 3 for a cesium release tests using pure water. In experiment 1 and 2 we treated leaf litter with a sodium hypochlorite solution, optimizing sodium hypochlorite concentration and reaction temperature. We measured a 50-60% decrease in the leaf litter weight and a 60% decrease in the cesium concentration. Moreover, we also measured the amount of cesium washout. The cesium budget of experiment 1 showed no cesium gasification (wet oxidation avoids airborne cesium as this element is prone to be volatile at 600 °C), and that high sodium hypochlorite concentration and high temperature had a strong positive effect on leaf litter volume reduction and cesium decontamination. Experiment 2 confirmed the reproducibility of these results in leaves with different cesium concentration and harvested in different conditions. We could also explain the mechanism behind leaf litter weight and cesium concentration reduction. Experiment 3 helped us to investigate the effects of the matter present on the surface of the water and the contribution of water soluble cesium. Concurrent experiments on changes in leaf litter chemical composition confirmed that our modified wet oxidation method had an effect on the removal of acid-insoluble lignin. Removal of lignin, a refractory component, might allow for a better utilization of the residue left after implementation of the proposed simplified wet oxidation. Thus, real wastes could be smaller than the residues. Together with the observed smaller cesium concentration in the residue, the proposed method in this study is expected to contribute to mitigate the risk due to the fallen leaves containing cesium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Extraction of cesium, strontium and the platinium group metals from acidic high activity nuclear waste using a Purex process compatible organic extractant. Final report, December 15, 1980-August 15, 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, M.W. Jr.; Van Brunt, V.

    1984-09-14

    Purex process compatible organic systems which selectively and reversibly extract cesium, strontium, and palladium from synthetic mixed fission product solutions containing 3M HNO/sub 3/ have been developed. This advance makes the development of continuous solvent extraction processes for their recovery more likely. The most favorable cesium and strontium complexing solutions have been tested for radiation stability to 10/sup 7/ rad using a 0.4 x 10/sup 7/ rad/h /sup 60/Co source. The distribution coefficients dropped somewhat but remained above unity. For cesium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % kerosenemore » containing 0.05m Bis 4,4',(5')(1-hydroxy 2-ethylhexyl)-benzo 18-crown-6 (Crown XVII). The NNS is a sulfonic acid cation exchanger. With an aqueous phase containing 0.006M Cs/sup +1/ in contact with an equal volume of extractant the D org/aq = 1.6 at a temperature of 25 to 35/sup 0/C. For strontium the complexing organic solution is 5 vol % (0.1M) NNS, 27 vol % TBP and 68 vol % Kerosene containing 0.02M Bis 4,4'(5') (1-hydroxyheptyl)cyclohexo 18-crown-6 (Crown XVI). With an aqueous phase containing 0.003M Sr/sup +2/ in contact with an equal volume of extractant the D org/aq = 1.98 at a temperature of 25 to 35/sup 0/C. For palladium the complexing organic solution consisted of a ratio of TBP/kerosene of 0.667 containing 0.3M Alamine 336 which is a tertiary amine anion exchanger. With an aqueous phase containing 0.0045M Pd/sup +/ in contact with an equal volume of extractant the D org/aq = 1.95 at a temperature of 25 to 35/sup 0/C.« less

  1. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  2. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  3. Secretory immunoglobulin purification from whey by chromatographic techniques.

    PubMed

    Matlschweiger, Alexander; Engelmaier, Hannah; Himmler, Gottfried; Hahn, Rainer

    2017-08-15

    Secretory immunoglobulins (SIg) are a major fraction of the mucosal immune system and represent potential drug candidates. So far, platform technologies for their purification do not exist. SIg from animal whey was used as a model to develop a simple, efficient and potentially generic chromatographic purification process. Several chromatographic stationary phases were tested. A combination of two anion-exchange steps resulted in the highest purity. The key step was the use of a small-porous anion exchanger operated in flow-through mode. Diffusion of SIg into the resin particles was significantly hindered, while the main impurities, IgG and serum albumin, were bound. In this step, initial purity was increased from 66% to 89% with a step yield of 88%. In a second anion-exchange step using giga-porous material, SIg was captured and purified by step or linear gradient elution to obtain fractions with purities >95%. For the step gradient elution step yield of highly pure SIg was 54%. Elution of SIgA and SIgM with a linear gradient resulted in a step yield of 56% and 35%, respectively. Overall yields for both anion exchange steps were 43% for the combination of flow-through and step elution mode. Combination of flow-through and linear gradient elution mode resulted in a yield of 44% for SIgA and 39% for SIgM. The proposed process allows the purification of biologically active SIg from animal whey in preparative scale. For future applications, the process can easily be adopted for purification of recombinant secretory immunoglobulin species. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Tara E.; Scherman, Carl; Martin, David

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilitiesmore » and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.« less

  5. Forcing Cesium into Higher Oxidation States Using Useful hard x-ray Induced Chemistry under High Pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneed, D.; Pravica, M.; Kim, E.

    This paper discusses our attempt to synthesize higher oxidation forms of cesium fluoride by pressurizing cesium fluoride in a fluorine-rich environment created via the x-ray decomposition of potassium tetrafluoroborate. This was done in order to confirm recent theoretical predictions of higher oxidation forms of CsFn. We discuss the development of a technique to produce molecular fluorine in situ via useful hard x-ray photochemistry, and the attempt to utilize this technique to form higher oxidation states of cesium fluoride. In order to verify the formation of the novel stoichiometric species of CsFn. X-ray Absorption Near Edge Spectroscopy (XANES) centered on themore » cesium K-edge was performed to probe the oxidation state of cesium as well as the local molecular coordination around Cs.« less

  6. Measurements of cesium in Arctic beluga and caribou before and after the Fukushima accident of 2011.

    PubMed

    Stocki, T J; Gamberg, M; Loseto, L; Pellerin, E; Bergman, L; Mercier, J-F; Genovesi, L; Cooke, M; Todd, B; Sandles, D; Whyte, J; Wang, X

    2016-10-01

    Concern from northern communities following the Fukushima Daiichi nuclear accident of March 2011 has prompted a reassessment of the safety of their traditional foods with respect to radioactivity levels. To this end, a study was conducted to measure the levels of radionuclides in Arctic caribou (Rangifer tarandus) and beluga (Delphinapterus leucas). The main radionuclide of concern is cesium-137, which is easily transferred through the lichen-caribou food chain. Previous studies have been conducted on the cesium-137 levels in Canadian caribou herds from 1958 to 2000, allowing researchers to determine the amount of cesium-137 in caribou specifically attributable to atmospheric weapons testing and the Chernobyl nuclear accident in 1986. In this study, samples of lichens, mushrooms, caribou, beluga and beluga prey collected before and after the Fukushima accident were analyzed for radioactivity levels. Samples were processed and measured using gamma ray spectroscopy to identify the radionuclides present and determine the radioactivity concentration. Both calibration standards and Monte Carlo simulations were used to determine the efficiency of the detectors for the samples, taking into account differences in individual sample sizes as well as matrices. In particular, a careful analysis of the atomic composition of lichens and mushrooms was performed to ensure the efficiencies for these sample types were correct. A comparison of the concentrations from before and after the accident indicated that there was no increase in radioactivity as a result of the atmospheric plume from the Fukushima accident. Some cesium-137, likely attributable to fallout from atmospheric weapons testing of the 1950s and 1960s (since there was no cesium-134 measured in the samples), was measured in the post Fukushima caribou and beluga whale samples; however, this amount was determined to be insignificant for any radiological concern (9.1 ± 1.8 and 0.63 ± 0.23 Bq kg -1  ww respectively). The activity concentrations of cesium-137 was about 200 times smaller than that of natural radioactive potassium in the beluga samples. Both the caribou and beluga results showed that these foods continue to be a healthy food choice for northern Canadians with respect to radioactivity, and this result has been communicated to the nearby northern communities and stakeholders. Copyright © 2016. Published by Elsevier Ltd.

  7. Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process

    DOE PAGES

    Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene; ...

    2016-02-06

    Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less

  8. Thermal stability study of a new guanidine suppressor for the next-generation caustic-side solvent extraction process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Talon G.; Ensor, Dale D.; Delmau, Lætitia Helene

    Cesium stripping performance of thermally stressed solvent degrades slowly over time in batch tests of the Next Generation Caustic-Side Solvent Extraction (NGS) process. NGS is currently used at pilot scale at the Savannah River Site for the selective removal of cesium from high-level salt waste. Recently a new guanidine, N,N',N" -tris(3,7-dimethyloctyl)guanidine (TiDG), was chosen for use as the suppressor, a lipophilic organic base needed for stripping, and the present study was undertaken to address the question of its stability. The NGS process solvent was evaluated for a period of three months under a variety of temperature and storage conditions. Themore » performance of the solvent was tested at 30-day increments using a standard extraction, scrub, strip, and extraction (ES 2S 3E) sequence. Lastly, the results provide insight on the effects of storage and process conditions, the stripping behavior of TiDG, and the stability of the new solvent composition.« less

  9. Assessment of urinary metals following exposure to a large vegetative fire, New Mexico, 2000.

    PubMed

    Wolfe, Mitchell I; Mott, Joshua A; Voorhees, Ronald E; Sewell, C Mack; Paschal, Dan; Wood, Charles M; McKinney, Patrick E; Redd, Stephen

    2004-03-01

    In May 2000, a vegetative fire burned 47,000 acres in northern New Mexico, including 7500 acres of land administered by the Los Alamos National Laboratory. We evaluated potential human exposures from the fire. We surveyed two populations (firefighters and the general population) in four cities for urine heavy metal concentrations. Reference concentrations were based on the Third National Health and Nutrition Examination Survey (NHANES III). Multivariate linear regression assessed the association of urinary metal concentrations with smoke exposure. We also performed isotopic analysis of uranium and cesium on a subset of specimens. A total of 92 firefighters and 135 nonfirefighters participated. In both populations, urinary nickel, cesium, chromium, and uranium concentrations were greater than expected compared with NHANES III reference values. No values required immediate medical follow-up. Regression analysis demonstrated that for National Guard members, arsenic and cadmium levels were significantly related to smoke exposure, and for firefighters, cesium and arsenic levels were significantly related to exposure; however, only for cesium in National Guard members was this association in the positive direction. Isotopic analysis demonstrated that the cesium and uranium were naturally occurring. Some people had spot urine metal concentrations above nationally derived reference values, and values for some metals were associated with smoke exposure. These associations had little public health or clinical importance. Studies of exposures resulting from vegetative fires are difficult, and careful consideration should be given to the technical and communication processes at the outset of a fire exposure investigation. Recommendations for future investigations include testing as soon as possible during or after a fire, and early clinical consultation with a medical toxicologist.

  10. Simulation of cesium injection and distribution in rf-driven ion sources for negative hydrogen ion generation.

    PubMed

    Gutser, R; Fantz, U; Wünderlich, D

    2010-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. Stability and delivered current density depend highly on the cesium conditions during plasma-on and plasma-off phases of the ion source. The Monte Carlo code CSFLOW3D was used to study the transport of neutral and ionic cesium in both phases. Homogeneous and intense flows were obtained from two cesium sources in the expansion region of the ion source and from a dispenser array, which is located 10 cm in front of the converter surface.

  11. Effect of a counterion on the glass transition temperature (T(g)') during lyophilization of ganciclovir salt forms.

    PubMed

    Kumar, Lokesh; Baheti, Ankit; Bansal, Arvind K

    2011-02-07

    This manuscript deals with the effect of a counterion on the glass transition temperature for lyophilization of ganciclovir salts. Salt forms of ganciclovir, namely, sodium, potassium, rubidium, and cesium salts, were prepared by an in situ technique and analyzed by modulated differential scanning calorimetry (MDSC) for the determination of the critical process parameter for lyophilization. Nonionized ganciclovir and its salt forms showed a glass transition (T(g)') in the reversing MDSC signal, confirming their amorphous nature. T(g)' of the nonionized ganciclovir and ganciclovir sodium, potassium, rubidium, and cesium salts followed the order: sodium salt (-34.94°C) > nonionized ganciclovir (-40.15°C) > potassium salt (-46.23°C) > rubidium salt (-49.95°C) > cesium salt (-53.62°C). The analysis of the freezable water content for ganciclovir and its salts showed the trend: pure water > nonionized ganciclovir > potassium salt ∼ sodium salt > rubidium salt > cesium salt. This showed that a majority of water in the salts is present as an unfrozen fraction, thus leading to a lowering of T(g)' because of the plasticizing effect of unfrozen water. Density functional theory (DFT) further suggested a positive contribution of the strength of intra- and intermolecular force of interactions to the T(g)' value, with a higher intramolecular and intermolecular force of interaction leading to a higher T(g)'.

  12. Development of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) Process for Cesium Removal from High-Level Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene

    2011-01-01

    This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet thatmore » boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.« less

  13. Next Generation Solvent (NGS): Development for Caustic-Side Solvent Extraction of Cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.; Birdwell, Jr, Joseph F.; Bonnesen, Peter V.

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modularmore » Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Interlaboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.« less

  14. Next Generation Solvent Development for Caustic-Side Solvent Extraction of Cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Bruce A.; Birdwell, Joseph F.; Bonnesen, Peter V.

    This report summarizes the FY 2010 and 2011 accomplishments at Oak Ridge National Laboratory (ORNL) in developing the Next Generation Caustic-Side Solvent Extraction (NG-CSSX) process, referred to commonly as the Next Generation Solvent (NGS), under funding from the U.S. Department of Energy, Office of Environmental Management (DOE-EM), Office of Technology Innovation and Development. The primary product of this effort is a process solvent and preliminary flowsheet capable of meeting a target decontamination factor (DF) of 40,000 for worst-case Savannah River Site (SRS) waste with a concentration factor of 15 or higher in the 18-stage equipment configuration of the SRS Modularmore » Caustic-Side Solvent Extraction Unit (MCU). In addition, the NG-CSSX process may be readily adapted for use in the SRS Salt Waste Processing Facility (SWPF) or in supplemental tank-waste treatment at Hanford upon appropriate solvent or flowsheet modifications. Efforts in FY 2010 focused on developing a solvent composition and process flowsheet for MCU implementation. In FY 2011 accomplishments at ORNL involved a wide array of chemical-development activities and testing up through single-stage hydraulic and mass-transfer tests in 5-cm centrifugal contactors. Under subcontract from ORNL, Argonne National Laboratory (ANL) designed a preliminary flowsheet using ORNL cesium distribution data, and Tennessee Technological University confirmed a chemical model for cesium distribution ratios (DCs) as a function of feed composition. Inter laboratory efforts were coordinated with complementary engineering tests carried out (and reported separately) by personnel at Savannah River National Laboratory (SRNL) and Savannah River Remediation (SRR) with helpful advice by Parsons Engineering and General Atomics on aspects of possible SWPF implementation.« less

  15. Compact sub-kilohertz low-frequency quantum light source based on four-wave mixing in cesium vapor

    NASA Astrophysics Data System (ADS)

    Ma, Rong; Liu, Wei; Qin, Zhongzhong; Su, Xiaolong; Jia, Xiaojun; Zhang, Junxiang; Gao, Jiangrui

    2018-03-01

    Using a nondegenerate four-wave mixing (FWM) process based on a double-{\\Lambda} scheme in hot cesium vapor, we demonstrate a compact diode-laser-pumped quantum light source for the generation of quantum correlated twin beams with a maximum squeezing of 6.5 dB. The squeezing is observed at a Fourier frequency in the audio band down to 0.7 kHz which, to the best of our knowledge, is the first observation of sub-kilohertz intensity-difference squeezing in an atomic system so far. A phase-matching condition is also investigated in our system, which confirms the spatial-multi-mode characteristics of the FWM process. Our compact low-frequency squeezed light source may find applications in quantum imaging, quantum metrology, and the transfer of optical squeezing onto a matter wave.

  16. Calix[4]pyrrole: A New Ion-Pair Receptor As Demonstrated by Liquid-Liquid Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintergerst, Mr. Matthieu; Levitskaia, Tatiana G.; Moyer, Bruce A

    Solvent-extraction studies provide confirming evidence that meso-octamethylcalix[4]pyrrole acts as an ion-pair receptor for cesium chloride and cesium bromide in nitrobenzene solution. The stoichiometry of the interaction under extraction conditions from water to nitrobenzene was determined from plots of the cesium distribution ratios vs cesium salt and receptor concentration, indicating the formation of an ionpaired 1:1:1 cesium:calix[4]pyrrole:halide complex. The extraction results were modeled to evaluate the equilibria inherent to the solvent-extraction system, with either chloride or bromide. The binding energy between the halide anion and the calix[4]pyrrole was found to be about 7 kJ/mol larger for cesium chloride than for themore » cesium bromide. The ion-pairing free energies between the calix[4]pyrrole-halide complex and the cesium cation are nearly the same within experimental uncertainty for either halide, consistent with a structural model in which the Cs+ cation resides in the calix bowl. These results are unexpected since nitrobenzene is a polar solvent that generally leads to dissociated complexes in the organic phase when used as a diluent in extraction studies of univalent ions. Control studies involving nitrate revealed no evidence of ion pairing for CsNO3 under conditions identical to those where it is observed for CsCl and CsBr.« less

  17. Calix[4]pyrrole: A New Ion-Pair Receptor As Demonstrated by Liquid-Liquid Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wintergerst, Mr. Matthieu; Levitskaia, Tatiana G.; Moyer, Bruce A

    Solvent extraction studies provide confirming evidence that meso-octamethylcalix[4]pyrrole acts as an ion-pair receptor for cesium chloride and cesium bromide in nitrobenzene solution. The stoichiometry of the interaction under extraction conditions from water to nitrobenzene was determined from plots of the cesium distribution ratios vs. cesium salt and receptor concentration, indicating the formation of an ion-paired 1:1:1 cesium:calix[4]pyrrole:halide complex. The extraction results were modeled to evaluate the equilibria inherent to the solvent extraction system, either with chloride or bromide. The binding energy between the halide anion and the calix[4]pyrrole was found to be about 7 kJ/mol larger for cesium chloride thanmore » for the cesium bromide. The ion-pairing free energies between the calix[4]pyrrole-halide complex and the cesium cation are nearly the same within experimental uncertainty for either halide, consistent with a structural model in which the Cs+ cation resides in the calix bowl. These results are unexpected since nitrobenzene is a very polar solvent that generally leads to dissociated complexes in the organic phase when used as a diluent in extraction studies of univalent ions. Control studies involving nitrate revealed no evidence of ion-pairing for CsNO3 under conditions identical to those where it is observed for CsCl and CsBr.« less

  18. Fukushima- Ocean Impacts and Public Concerns

    NASA Astrophysics Data System (ADS)

    Buesseler, K.

    2015-12-01

    The triple disaster of the March 11, 2011 earthquake, tsunami, and subsequent radiation releases at Fukushima Dai-ichi were unprecedented events for the ocean and society. This presentation will provide an overview of studies of Fukushima radionuclides in the ocean. The radioactive releases from Fukushima will be compared to natural and prior human sources. The fate of cesium is largely determined by its soluble nature in seawater, though uptake in sediments does occur via cesium's association with both detrital particles and biological uptake and sedimentation. Cesium's continued supply from the rivers and ongoing leakages at the nuclear power plants suggests that coastal sediments may remain contaminated for decades to come. Although levels of cesium in the ocean and being released from Fukushima more than four years later are orders of magnitude lower than in 2011, other isotopes such as strontium-90 remain of interest as they are elevated relative to cesium in the groundwater and storage tanks at the reactor site. Across the Pacific, Fukushima cesium is starting to be detectable along the west coast of North America. Although models suggest cesium will be at levels well below those considered of human health concern, the public is worried about the lack of ocean monitoring of Fukushima radionuclides. We addressed these public concerns by creating "Our Radioactive Ocean" a citizen-scientist crowd-funded campaign that provides a sampling kit that can use to sample their favorite beach. Once collected, samples are returned to WHOI for analyses of the isotopes of cesium that allow us to distinguish Fukushima cesium from other sources (http://OurRadioactiveOcean.org ). However to measure the low levels of cesium already in the ocean 20 liter samples are needed. To increase public participation, we will also present results from a new wearable sample collector, the "RadBand" which contains a small amount of cesium selective resin that surfers and swimmers can wear on their ankle. A prototype RadBand is being tested as part of The Longest Swim, an attempt by Ben Lecomte to swim from Tokyo to San Francisco (http://thelongestswim.com/ ). This swim is being used as another way to engage the public on ocean and environmental issues.

  19. Separation technique provides rapid quantitative determination of cesium-137 in irradiated nuclear fuel

    NASA Technical Reports Server (NTRS)

    Ellenburg, E. J.; Mc Cown, J. J.

    1967-01-01

    Potassium cobalt ferrocyanide is used to determine cesium-137 activity in irradiated fuel samples. It preferentially removes cesium from an acid solution of the fuel material. The residue is filtered and analyzed with a gamma spectrometer.

  20. Innovative Elution Processes for Recovering Uranium and Transition Metals from Amidoxime-based Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wai, Chien M.

    Amidoxime-based polymer fibers are considered one of the most promising materials for sequestering uranium from seawater. The high-surface-area polymer fibers containing amidoxime and carboxylate groups synthesized by Oak Ridge National Lab (ORNL-AF1) show very high uranium adsorption capacities known in the literature. Effective elution of uranium and repeated use of the adsorbent are important factors affecting the cost of producing uranium from seawater using this material. Traditional acid leaching of uranium followed by KOH conditioning of the fiber causes chemical changes and physical damage to the ORNL-AF1 adsorbent. Two alkaline solution leaching methods were developed by this project, one usesmore » a highly concentrated (3 M) potassium bicarbonate solution at pH 8.3 and 40 °C; the other uses a mixture of sodium carbonate and hydrogen peroxide at pH 10.4. Both elution methods do not require KOH conditioning prior to reusing the fiber adsorbent. The conditions of eluting uranium from the amidoxime-based adsorbent using these alkaline solutions are confirmed by thermodynamic calculations. The bicarbonate elution method is selective for uranium recovery compared to other elution methods and causes no chemical change to the fiber material based on FTIR spectroscopy« less

  1. Negative ion production in large volume source with small deposition of cesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacquot, C.; Pamela, J.; Riz, D.

    1996-03-01

    Experimental data on the enhancement of D{sup {minus}} (H{sup {minus}}) negative ion production due to cesium injection into a large volume multiampere negative ion source (MANTIS) are described. The directed deposition of small cesium amounts (5{endash}100 mg) from a compact, movable oven, placed into the central part of a MANTIS gas-discharge box was used. A calorimetrically measured D{sup {minus}} beam with an intensity up to 1.6 A and an extracted current density up to 4.2 mA/cm{sup 2} (beam energy 25 kV) was obtained. Exactly 30 mg of cesium provides at least one month of source operation (1000 pulses with amore » discharge pulse duration of 4 s). The effect of cesium on NI enhancement was immediately displayed after the distributed Cs deposition, but it needed some {open_quote}{open_quote}conditioning{close_quote}{close_quote} of cesium by tens of discharge pulses (or by several hours {open_quote}{open_quote}pause{close_quote}{close_quote}) in the case of a localized Cs deposition. No degradation of extraction-acceleration voltage holding on within the tested range of cesium injection was observed. {copyright} {ital 1996 American Institute of Physics.}« less

  2. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    DOE PAGES

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; ...

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3 H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposuremore » in real seawater. The Na 2CO 3 H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less

  3. High voltage holding in the negative ion sources with cesium deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belchenko, Yu.; Abdrashitov, G.; Ivanov, A.

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  4. Metal cluster's effect on the optical properties of cesium bromide thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Kuldeep; Arun, P.; Ravi Kant, Chhaya; Juluri, Bala Krishna

    2012-06-01

    Cesium bromide (CsBr) films grown on glass substrates by thermal evaporation showed prominent absorption peaks in the UV-visible region. Interestingly, these absorption spectra showed peaks which red shifted over time in ambient exposure. Structural and morphological studies suggested decrease in particle size overtime which was unusual. Electron micrographs show the formation of "daughter" cesium nanorods from parent CsBr particles. Theoretical calculations show the optical behavior observed to be due to localized surface plasmon resonance resulting from cesium nanorods.

  5. Fast "hyperlayer" separation development in sedimentation field flow fractionation.

    PubMed

    Kassab, James R; Cardot, Philippe J P; Zahoransky, Richard A; Battu, Serge

    2005-11-05

    Specific prototypes of sedimentation field flow fractionation devices (SdFFF) have been developed with relative success for cell sorting. However, no data are available to compare these apparatus with commercial ones. In order to compare with other devices mainly used for non-biological species, biocompatible systems were used for standard particle (latex: 3-10 microm of different size dispersities) separation development. In order to enhance size dependent separations, channels of reduced thickness were used (80 and 100 microm) and channel/carrier-phase equilibration procedures were necessary. For sample injection, the use of inlet tubing linked to the FFF accumulation wall, common for cell sorting, can be extended to latex species when they are eluted in the Steric Hyperlayer elution mode. It avoids any primary relaxation steps (stop flow injection procedure) simplifying series of elution processing. Mixtures composed of four different monodispersed latex beads can be eluted in 6 min with 100 microm channel thickness.

  6. [Reduction of radioactive cesium content in pond smelt by cooking].

    PubMed

    Nabeshi, Hiromi; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko

    2013-01-01

    In Japan, seafood may be eaten raw or after having been cooked in diverse ways. Therefore, it is important to understand the effect of cooking on the extent of contamination with radioactive materials in order to avoid internal exposure to radioactive materials via seafood. In this study, we investigated the changes in radioactive cesium content in pond smelt cooked in four different ways: grilled, stewed (kanroni), fried and soaked (nanbanzuke). The radioactive cesium content in grilled, kanroni and fried pond smelt was almost unchanged compared with the uncooked state. In contrast, radioactive cesium content in nanbanzuke pond smelt was decreased by about 30%. Our result suggests that soaking cooked pond smelt in seasoning is an effective method of reducing the burden radioactive cesium.

  7. Low-energy vibrational dynamics of cesium borate glasses.

    PubMed

    Crupi, C; D'Angelo, G; Vasi, C

    2012-06-07

    Low-temperature specific heat and inelastic light scattering experiments have been performed on a series of cesium borate glasses and on a cesium borate crystal. Raman measurements on the crystalline sample have revealed the existence of cesium rattling modes in the same frequency region where glasses exhibit the boson peak (BP). These localized modes are supposed to overlap with the BP in cesium borate glasses affecting its magnitude. Their influence on the low frequency vibrational dynamics in glassy samples has been considered, and their contribution to the specific heat has been estimated. Evidence for a relation between the changes of the BP induced by the increased amount of metallic oxide and the variations of the elastic medium has been provided.

  8. The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C{sub 61} aggregation in films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemann, William R.; Wang, Wenjie; Shinar, Joseph

    2014-11-10

    Surface-pressure versus molecular area isotherms, X-ray reflectivity, and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C{sub 61} (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaicmore » structures and the likely ensuing ionic Cs-PCBM interaction decrease aggregation tendency of PCBM. This implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices.« less

  9. The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C 61 aggregation in films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindemann, William R.; Wang, Wenjie; Fungura, Fadzai

    2014-11-11

    Surface-pressure isotherms, X-ray reflectivity, and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C 61 (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaics and the likelymore » ensuing ionic Cs-PCBM interaction decrease aggregation tendency of PCBM. As a result, this implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices.« less

  10. Effect of the cesium and potassium doping of multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics

    NASA Astrophysics Data System (ADS)

    Izrael'yants, K. R.; Orlov, A. P.; Ormont, A. B.; Chirkova, E. G.

    2017-04-01

    The effect of cesium and potassium atoms deposited onto multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics was studied. The current-voltage characteristics of the field electron emission of specimens with cesium or potassium doped multiwalled carbon nanotubes of this type were revealed to retain their linear character in the Fowler-Nordheim coordinates within several orders of magnitude of change in the emission current. The deposition of cesium and potassium atoms was shown to lead to a considerable increase in the emission current and a decrease in the work function φ of studied emitters with multiwalled nanotubes. The work function was established to decrease to φ 3.1 eV at an optimal thickness of coating with cesium atoms and to φ 2.9 eV in the case of doping with potassium atoms. Cesium and potassium deposition conditions optimal for the attainment of a maximum emission current were found.

  11. Performance and modeling of cesium ion exchange by ENGI neered form crystalline silicotitanates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, R.G.; Gu, D.; Huckman, M.

    1996-10-01

    TAM-5, a hydrous crystalline silicotitanate (CST) powder developed by Sandia National Laboratories and Texas A&M University, and commercialized by UOP as IONSIV{reg_sign} Ion Exchanger Type IE-910, is a highly selective material for removing cesium and strontium from aqueous radioactive wastes such as those found at the Hanford site in Washington. An engineered form of the material suitable for column ion exchange type operations has been developed and tested. Data relevant to processing radioactive tank wastes including equilibrium distribution coefficients and column testing will be presented. The impact of exposure of the engineered form to chemically aggressive environments such as itmore » might experience during waste processing, and to the less aggressive environments it might experience during post processing storage has been assessed. The thermal stability of the material has also been evaluated. The experimental results have been integrated with an effort to model the material`s equilibrium and kinetic behavior.« less

  12. Using tsunami deposits to determine the maximum depth of benthic burrowing

    PubMed Central

    Shirai, Kotaro; Murakami-Sugihara, Naoko

    2017-01-01

    The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface. PMID:28854254

  13. Using tsunami deposits to determine the maximum depth of benthic burrowing.

    PubMed

    Seike, Koji; Shirai, Kotaro; Murakami-Sugihara, Naoko

    2017-01-01

    The maximum depth of sediment biomixing is directly related to the vertical extent of post-depositional environmental alteration in the sediment; consequently, it is important to determine the maximum burrowing depth. This study examined the maximum depth of bioturbation in a natural marine environment in Funakoshi Bay, northeastern Japan, using observations of bioturbation structures developed in an event layer (tsunami deposits of the 2011 Tohoku-Oki earthquake) and measurements of the radioactive cesium concentrations in this layer. The observations revealed that the depth of bioturbation (i.e., the thickness of the biomixing layer) ranged between 11 and 22 cm, and varied among the sampling sites. In contrast, the radioactive cesium concentrations showed that the processing of radioactive cesium in coastal environments may include other pathways in addition to bioturbation. The data also revealed the nature of the bioturbation by the heart urchin Echinocardium cordatum (Echinoidea: Loveniidae), which is one of the important ecosystem engineers in seafloor environments. The maximum burrowing depth of E. cordatum in Funakoshi Bay was 22 cm from the seafloor surface.

  14. Engineering a lignocellulosic biosorbent--coir pith for removal of cesium from aqueous solutions: equilibrium and kinetic studies.

    PubMed

    Parab, Harshala; Sudersanan, M

    2010-02-01

    A novel method of engineering lignocellulosic biosorbent- coir pith (CP) by incorporation of nickel hexacyanoferrate (NiHCF), also referred to as Prussian blue analogue (PBA) inside its porous matrix is reported. Structural characterization confirmed the successful synthesis of NiHCF in the coir pith matrix. Sorption capacity of coir pith (CP) before and after loading of NiHCF was investigated for cesium (Cs) in batch equilibrium studies. Kinetic studies showed that the sorption process was rapid and saturation was attained within 30 min. The applicability of non linear Langmuir, Freundlich and Redlich Peterson isotherms was examined for the experimental data. The present studies revealed that there was nearly 100% increase in the sorption capacity of CP after its surface modification with NiHCF. Owing to its low cost, fast sorption kinetics and high uptake capacity, coir pith loaded with NiHCF (CP-NiHCF) seems to be one of the most promising biosorbents for recovery of cesium from liquid nuclear wastes. (c) 2009 Elsevier Ltd. All rights reserved.

  15. Distillation device supplies cesium vapor at constant pressure

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Shefsiek, P. K.

    1968-01-01

    Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.

  16. Historical Cost Curves for Hydrogen Masers and Cesium Beam Frequency and Timing Standards

    NASA Technical Reports Server (NTRS)

    Remer, D. S.; Moore, R. C.

    1985-01-01

    Historical cost curves were developed for hydrogen masers and cesium beam standards used for frequency and timing calibration in the Deep Space Network. These curves may be used to calculate the cost of future hydrogen masers or cesium beam standards in either future or current dollars. The cesium beam standards are decreasing in cost by about 2.3% per year since 1966, and hydrogen masers are decreasing by about 0.8% per year since 1978 relative to the National Aeronautics and Space Administration inflation index.

  17. Method for removing cesium from a nuclear reactor coolant

    DOEpatents

    Colburn, Richard P.

    1986-01-01

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium

  18. Removal of Cesium From Acidic Radioactive Tank Waste Using IONSIV IE-911 (CST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Nicholas Robert; Todd, Terry Allen

    2004-10-01

    IONSIV IE-911, or the engineered form of crystalline silicotitanate (CST), manufactured by UOP Molecular Sieves, has been evaluated for the removal of cesium from Idaho National Engineering and Environmental Laboratory (INEEL) acidic radioactive tank waste. A series of batch contacts and column tests were performed by using three separate batches of CST. Batch contacts were performed to evaluate the concentration effects of nitric acid, sodium, and potassium ions on cesium sorption. Additional batch tests were performed to determine if americium, mercury, and plutonium would sorb onto IONSIV IE-911. An equilibrium isotherm was generated by using a concentrated tank waste simulant.more » Column tests using a 1.5 cm 3 column and flow rates of 3, 5, 10, 20, and 30 bed volumes (BV)/hr were performed to elucidate dynamic cesium sorption capacities and sorption kinetics. Additional experiments investigated the effect of CST batch and pretreatment on cesium sorption. The thermal stability of IONSIV IE-911 was evaluated by performing thermal gravimetric analysis/differential thermal analysis. Overall, IONSIV IE-911 was shown to be effective for cesium sorption from complex, highly acidic solutions; however, sorbent stability in these solutions may have a deleterious effect on cesium sorption.« less

  19. Initial examination of fuel compacts and TRISO particles from the US AGR-2 irradiation test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Baldwin, Charles A.; Montgomery, Fred C.

    Post-irradiation examination was completed on two as-irradiated compacts from the US Advanced Gas Reactor Fuel Development and Qualification Program’s second irradiation test. These compacts were selected for examination because there were indications that they may have contained particles that released cesium through a failed or defective SiC layer. The coated particles were recovered from these compacts by electrolytic deconsolidation of the surrounding graphitic matrix in nitric acid. The leach-burn-leach (LBL) process was used to dissolve and analyze exposed metallic elements (actinides and fission products), and each particle was individually surveyed for relative cesium retention with the Irradiated Microsphere Gamma Analyzermore » (IMGA). Data from IMGA and LBL examinations provided information on fission product release during irradiation and whether any specific particles had below-average retention that could be related to coating layer defects or radiation-induced degradation. A few selected normal-retention particles and six with abnormally-low cesium inventory were analyzed using X-ray tomography to produce three-dimensional images of the internal coating structure. Four of the low-cesium particles had obviously damaged or degraded SiC, and X-ray imaging was able to guide subsequent grinding and polishing to expose the regions of interest for analysis by optical and electron microscopy. Additional particles from each compact were also sectioned and examined to study the overall radiation-induced microstructural changes in the kernel and coating layers.« less

  20. Initial examination of fuel compacts and TRISO particles from the US AGR-2 irradiation test

    DOE PAGES

    Hunn, John D.; Baldwin, Charles A.; Montgomery, Fred C.; ...

    2017-10-21

    Post-irradiation examination was completed on two as-irradiated compacts from the US Advanced Gas Reactor Fuel Development and Qualification Program’s second irradiation test. These compacts were selected for examination because there were indications that they may have contained particles that released cesium through a failed or defective SiC layer. The coated particles were recovered from these compacts by electrolytic deconsolidation of the surrounding graphitic matrix in nitric acid. The leach-burn-leach (LBL) process was used to dissolve and analyze exposed metallic elements (actinides and fission products), and each particle was individually surveyed for relative cesium retention with the Irradiated Microsphere Gamma Analyzermore » (IMGA). Data from IMGA and LBL examinations provided information on fission product release during irradiation and whether any specific particles had below-average retention that could be related to coating layer defects or radiation-induced degradation. A few selected normal-retention particles and six with abnormally-low cesium inventory were analyzed using X-ray tomography to produce three-dimensional images of the internal coating structure. Four of the low-cesium particles had obviously damaged or degraded SiC, and X-ray imaging was able to guide subsequent grinding and polishing to expose the regions of interest for analysis by optical and electron microscopy. Additional particles from each compact were also sectioned and examined to study the overall radiation-induced microstructural changes in the kernel and coating layers.« less

  1. Recovery of cesium

    DOEpatents

    Izatt, Reed M.; Christensen, James J.; Hawkins, Richard T.

    1984-01-01

    A process of recovering cesium ions from mixtures of ions containing them and other ions, e.g., a solution of nuclear waste materials, which comprises establishing a separate source phase containing such a mixture of ions, establishing a separate recipient phase, establishing a liquid membrane phase in interfacial contact with said source and recipient phases, said membrane phase containing a ligand, preferably a selected calixarene as depicted in the drawing, maintaining said interfacial contact for a period of time long enough to transport by said ligand a substantial portion of the cesium ion from the source phase to the recipient phase, and recovering the cesium ion from the recipient phase. The separation of the source and recipient phases may be by the membrane phase only, e.g., where these aqueous phases are emulsified as dispersed phases in a continuous membrane phase, or may include a physical barrier as well, e.g., an open-top outer container with an inner open-ended container of smaller cross-section mounted in the outer container with its open bottom end spaced from and above the closed bottom of the outer container so that the membrane phase may fill the outer container to a level above the bottom of the inner container and have floating on its upper surface a source phase and a recipient phase separated by the wall of the inner container as a physical barrier. A preferred solvent for the ligand is a mixture of methylene chloride and carbon tetrachloride.

  2. A long-term stability study of Prussian blue: A quality assessment of water content and cesium binding.

    PubMed

    Mohammad, Adil; Yang, Yongsheng; Khan, Mansoor A; Faustino, Patrick J

    2015-01-25

    Prussian blue (PB) is the active pharmaceutical ingredient (API) of Radiogardase, the first approved medical countermeasure for the treatment of radiocesium poisoning in the event of a major radiological incident such as a "dirty bomb" or nuclear attack. The purpose of this study is to assess the long-term stability of Prussian blue drug products (DPs) and APIs under laboratory storage condition by monitoring the loss in water content and the in vitro cesium binding. The water content was measured by thermal gravimetric analysis (TGA). The in-vitro cesium binding study was conducted using a surrogate model to mimic gastric residence and intestinal transport. Free cesium was analyzed using a validated flame atomic emission spectroscopy (AES) method. The binding equilibrium was reached at 24h. The Langmuir isotherm was plotted to calculate the maximum binding capacity (MBC). Comparison of the same PB samples with 2003 data samples, the water content of both APIs and DPs decreased on an average by approximately 12-24%. Consequently, the MBC of cesium was decreased from 358mg/g in 2003 to 265mg/g @ pH 7.5, a decrease of approximately 26%. The binding of cesium is also pH dependent with lowest binding at pH 1.0 and maximum binding at pH 7.5. At pH 7.5, the amount of cesium bound decreased by an average value of 7.9% for APIs and 8.9% for DPs (for 600ppm initial cesium concentration). These findings of water loss, pH dependence and decrease in cesium binding are consistent with our previously published data in 2003. Over last 10 years the stored DPs and APIs of PB have lost about 20% of water which has a negative impact on the PB cesium binding, however PB still meets the FDA specification of >150mg/g at equilibrium. The study is the first quantitative assessment of the long-term stability of PB and directs that proper long-term and short-term storage of PB is required to ensure that it is safe and efficacious at the time of an emergency situation. Published by Elsevier B.V.

  3. Special treatment reduces helium permeation of glass in vacuum systems

    NASA Technical Reports Server (NTRS)

    Bryant, P. J.; Gosselin, C. M.

    1966-01-01

    Internal surfaces of the glass component of a vacuum system are exposed to cesium in gaseous form to reduce helium permeation. The cesium gas is derived from decomposition of cesium nitrate through heating. Several minutes of exposure of the internal surfaces of the glass vessel are sufficient to complete the treatment.

  4. Highly porous drug-eluting structures

    PubMed Central

    Elsner, Jonathan J.; Kraitzer, Amir; Grinberg, Orly; Zilberman, Meital

    2012-01-01

    For many biomedical applications, there is need for porous implant materials. The current article focuses on a method for preparation of drug-eluting porous structures for various biomedical applications, based on freeze drying of inverted emulsions. This fabrication process enables the incorporation of any drug, to obtain an “active implant” that releases drugs to the surrounding tissue in a controlled desired manner. Examples for porous implants based on this technique are antibiotic-eluting mesh/matrix structures used for wound healing applications, antiproliferative drug-eluting composite fibers for stent applications and local cancer treatment, and protein-eluting films for tissue regeneration applications. In the current review we focus on these systems. We show that the release profiles of both types of drugs, water-soluble and water-insoluble, are affected by the emulsion's formulation parameters. The former's release profile is affected mainly through the emulsion stability and the resulting porous microstructure, whereas the latter's release mechanism occurs via water uptake and degradation of the host polymer. Hence, appropriate selection of the formulation parameters enables to obtain desired controllable release profile of any bioactive agent, water-soluble or water-insoluble, and also fit its physical properties to the application. PMID:23507890

  5. ADSORPTION PROCEDURE IN PREPARING U$sup 23$$sup 3$

    DOEpatents

    Stoughton, R.W.

    1958-10-14

    A process is presented for the separation of protoactinium and thorium from an aqueous nitric acid solution containing these metals. It comprises contacting the solution with a cation exchange phenol-formaldehyde resin containing sulfonic acid groups, and eluting the adsorbed thorium from the resin by means of aqueous nitric acid. Thereafter the adsorbed protoactinium is eluted from the resin by means of an aqueous solution of ammonium fluoride.

  6. Investigation of Processes Controlling Elution of Solutes from Nonaqueous Phase Liquid (NAPL) Pools into Groundwater

    NASA Astrophysics Data System (ADS)

    Seyedabbasi, M.; Pirestani, K.; Holland, S. B.; Imhoff, P. T.

    2005-12-01

    Two major processes influencing the elution of solutes from porous media contaminated with nonaqueous phase liquids (NAPLs) are external mass transfer between the NAPL and groundwater and internal diffusion through NAPL ganglia and pools. There is a relatively large body of literature on the dissolution of single-species NAPLs. Less is known about the rates of elution of compounds dissolving from multicomponent NAPLs. We examined the mass transfer of one solute, 2,3-dimethyl-2-butanol (DMB) - a partitioning tracer, between groundwater and a dense NAPL - trichloroethylene (TCE). Diffusion cell experiments were used to measure the molecular diffusion coefficient of DMB in pure TCE and in porous media contaminated with a TCE pool. Measured diffusion coefficients were compared with empirical correlations (pure TCE) and a parallel resistance model (TCE pool). Based on the results from these analyses, a dimensionless Biot number was derived to express the ratio of the external rate of mass transfer from a NAPL pool to the internal rate of diffusion within the pool, which varies with NAPL saturation and NAPL-water partition coefficient. Biot numbers were then estimated for several laboratory scale experiments involving DMB transport between NAPL pools and groundwater. The estimated Biot numbers were in good agreement with experimental results. The expression for the Biot number developed here may be used to assess the processes controlling the elution of solutes from NAPL pools, which has implications on long-term predictions of solute dissolution from NAPLs in the field.

  7. The effect of mineral composition on the sorption of cesium ions on geological formations.

    PubMed

    Kónya, József; Nagy, Noémi M; Nemes, Zoltán

    2005-10-15

    The sorption of cesium-137 on rock samples, mainly on clay rocks, is determined as a function of the mineral composition of the rocks. A relation between the mineral groups (tectosilicates, phyllosilicates, clay minerals, carbonates) and their cesium sorption properties is shown. A linear model is constructed by which the distribution coefficients of the different minerals can be calculated from the mineral composition and the net distribution coefficient of the rock. On the basis of the distribution coefficients of the minerals the cesium sorption properties of other rocks can be predicted.

  8. Carbonation-induced weathering effect on cesium retention of cement paste

    NASA Astrophysics Data System (ADS)

    Park, S. M.; Jang, J. G.

    2018-07-01

    Carbonation is inevitable for cement and concrete in repositories over an extended period of time. This study investigated the carbonation-induced weathering effect on cesium retention of cement. Cement paste samples were exposed to accelerated carbonation for different durations to simulate the extent of weathering among samples. The extent of carbonation in cement was characterized by XRD, TG and NMR spectroscopy, while the retention capacity for cesium was investigated by zeta potential measurement and batch adsorption tests. Though carbonation led to decalcification from the binder gel, it negatively charged the surface of cement hydrates and enhanced their cesium adsorption capacity.

  9. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  10. ION ROCKET ENGINE

    DOEpatents

    Ehlers, K.W.; Voelker, F. III

    1961-12-19

    A thrust generating engine utilizing cesium vapor as the propellant fuel is designed. The cesium is vaporized by heat and is passed through a heated porous tungsten electrode whereby each cesium atom is fonized. Upon emergfng from the tungsten electrode, the ions are accelerated rearwardly from the rocket through an electric field between the tungsten electrode and an adjacent accelerating electrode grid structure. To avoid creating a large negative charge on the space craft as a result of the expulsion of the positive ions, a source of electrons is disposed adjacent the ion stream to neutralize the cesium atoms following acceleration thereof. (AEC)

  11. Results of Several Years Experiments on the Absorption of Radioactive Strontium and Cesium by Cultivated Plants; COMPTE RENDU D'EXPERIENCES DE PLUSIEURS ANNEES SUR L'ABSORPTION DU STRONTIUM ET DU CESIUM RADIOACTIES PAR DES PLANTES CULTIVEES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huguet, F. et al.

    1962-01-01

    The absorption of cesium-137 and strontium-90 by vines, permanent pasture, potatoes, green vegetables, tomatoes, onions, cabbage, and beans in France in 1960 is presented. The strontium coefficient has varied very little from one year to the next and that of cesium has slightly diminished. The values obtained suggest that the concentrations in irrigation water should not exceed one fifth of the maximum permissible concentration in drinking water. (auth)

  12. The effect of temperature and radiation on the cesium adsorption ability of IONSIV/256 IE-910 and IONSIV/256 IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, K.B.

    1999-12-08

    This study examined the ion exchange capacity of crystalline silicotitanate in a simulated waste solution. The focus areas included the effect of temperature and radiation on cesium sorption capacity. The cesium is expected to be removed from high-level radioactive wastes using these ion exchange materials.

  13. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.

    PubMed

    Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi

    2007-08-24

    We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.

  14. An Inorganic Microsphere Composite for the Selective Removal of Cesium 137 from Acidic Nuclear Waste Solutions - Parts 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. J. Tranter; T. A. Vereschchagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numericalmore » algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales. A new inorganic ion exchange composite consisting of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C) has been developed. Two different batches of the sorbent were produced resulting in 20% and 25% AMP loading for two and three loading cycles, respectively. The selective cesium exchange capacity of this inorganic composite was evaluated using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Equilibrium isotherms obtained from these experiments were very favorable for cesium uptake and indicated maximum cesium loading of approximately 9 % by weight of dry AMP. Batch kinetic experiments were also performed to obtain the necessary data to estimate the effective diffusion coefficient for cesium in the sorbent particle. These experiments resulted in effective intraparticle cesium diffusivity coefficients of 4.99 x 10-8 cm2/min and 4.72 x 10-8 cm2/min for the 20% and 25 % AMP-C material, respectively.« less

  15. The Effect of Pressure and Organic Constituents on the Cesium Ion Exchange Performance of IONSIV IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.F.

    2000-07-18

    This study examined cesium ({sup 137}Cs) ion exchange of crystalline silicotitanate (CST) in simulated waste solution. In particular, the study focused on the effect of CST pretreatment on the kinetics and extent of cesium adsorption. The test used IONSIV{reg_sign}IE-911 (UOP LLC, Molecular Sieves Division, Des Plaines, IL), the engineered form of CST. Pretreatment steps examined include: soaking CST in 2M NaOH solution for three days, exposing CST to 50% relative humidity for one week, flowing organic-containing (saturated) salt solution through a CST packed bed (at 5 cm/min. superficial velocity), or drying CST in air at 100 C for three days.more » Some tests occurred under 50 and 25 psig of argon. The following conclusions summarize the results. Pretreatment of IE-911 in organic-containing (e.g., tri-n-butyl phosphate, dibutylphosphate, butanol, paraffin and Dow Corning H-10 defoamer) simulated waste or simulated waste yielded a 83% slower rate of cesium adsorption and 56% lower cesium capacity after one week. Pretreatment of IE-911 in 2M caustic solution for 48 hours yielded a slower approach to equilibrium cesium distribution in batch contact tests--7.7 mL/(g*h) during the first 48 hours and 2.4 ml/(g*h) thereafter. Carboxylates and adsorbed carbonates inside the pores likely affect the cesium transport by either increasing the path-length or reducing mass transfer rate. Heating IE-911 as received from the vendor at 100 C for 24 hours significantly degraded its cesium removal performance by a 40.7% reduction in capacity and 43% reduction in sorption rate over one week of testing. Testing determined nearly identical distribution coefficients K{sub d} between lot {number_sign} 9990-9681-0004 and 9990-9881-0005 (i.e., difference of only 5.6%). Tests measuring water insertion rates into IE-911 show that hydration of the IE-911 does not appear to limit the rate of cesium sorption. Increasing the atmospheric pressure from 0 to 50 psig had no effect on cesium sorption. Note that lower apparent capacity or slower cesium sorption rate in these limited-duration batch contact tests as a result of pretreatment do not necessarily imply reduced dynamic performance in a flowing ion-exchange application. The experiments that provided the bases for the currently proposed facility design used caustic-pretreated IE-911. Another report will assess whether the presence of the organic compounds in the waste solution impeded column performance.« less

  16. Simulation of Sediment and Cesium Transport in the Ukedo River and the Ogi Dam Reservoir during a Rainfall Event using the TODAM Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Yokuda, Satoru T.; Kurikami, Hiroshi

    2014-03-28

    The accident at the Fukushima Daiichi Nuclear Power Plant in March 2011 caused widespread environmental contamination. Although decontamination activities have been performed in residential areas of the Fukushima area, decontamination of forests, rivers, and reservoirs is still controversial because of the economical, ecological, and technical difficulties. Thus, an evaluation of contaminant transport in such an environment is important for safety assessment and for implementation of possible countermeasures to reduce radiation exposure to the public. The investigation revealed that heavy rainfall events play a significant role in transporting radioactive cesium deposited on the land surface, via soil erosion and sediment transportmore » in rivers. Therefore, we simulated the sediment and cesium transport in the Ukedo River and its tributaries in Fukushima Prefecture, including the Ogaki Dam Reservoir, and the Ogi Dam Reservoir of the Oginosawa River in Fukushima Prefecture during and after a heavy rainfall event by using the TODAM (Time-dependent, One-dimensional Degradation And Migration) code. The main outcomes are the following: • Suspended sand is mostly deposited on the river bottom. Suspended silt and clay, on the other hand, are hardly deposited in the Ukedo River and its tributaries except in the Ogaki Dam Reservoir in the Ukedo River even in low river discharge conditions. • Cesium migrates mainly during high river discharge periods during heavy rainfall events. Silt and clay play more important roles in cesium transport to the sea than sand does. • The simulation results explain variations in the field data on cesium distributions in the river. Additional field data currently being collected and further modeling with these data may shed more light on the cesium distribution variations. • Effects of 40-hour heavy rainfall events on clay and cesium transport continue for more than a month. This is because these reservoirs slow down the storm-induced high flow moving through these reservoirs. • The reservoirs play a major role as a sink of sediment and cesium in the river systems. Some amounts of sediment pass through them along with cesium in dissolved and clay-sorbed cesium forms. • Effects of countermeasures such as overland decontamination, dam control and sorbent injection were tentatively estimated. The simulation suggested that overland decontamination and sorbent injection would be effective for decreasing the contamination of water in the reservoir and in the river below the dam.« less

  17. Two halide-containing cesium manganese vanadates: synthesis, characterization, and magnetic properties

    DOE PAGES

    Smith Pellizzeri, Tiffany M.; McGuire, Michael A.; McMillen, Colin D.; ...

    2018-01-24

    In this study, two new halide-containing cesium manganese vanadates have been synthesized by a high-temperature (580 °C) hydrothermal synthetic method from aqueous brine solutions. One compound, Cs 3Mn(VO 3) 4Cl, (1) was prepared using a mixed cesium hydroxide/chloride mineralizer, and crystallizes in the polar noncentrosymmetric space group Cmm2, with a = 16.7820(8) Å, b = 8.4765(4) Å, c = 5.7867(3) Å. This structure is built from sinusoidal zig-zag (VO 3) n chains that run along the b-axis and are coordinated to Mn 2+ containing (MnO 4Cl) square-pyramidal units that are linked together to form layers. The cesium cations reside betweenmore » the layers, but also coordinate to the chloride ion, forming a cesium chloride chain that also propagates along the b-axis. The other compound, Cs 2Mn(VO 3) 3F, (2) crystallizes in space group Pbca with a = 7.4286(2) Å, b = 15.0175(5) Å, c = 19.6957(7) Å, and was prepared using a cesium fluoride mineralizer. The structure is comprised of corner sharing octahedral Mn 2+ chains, with trans fluoride ligands acting as bridging units, whose ends are capped by (VO 3) n vanadate chains to form slabs. The cesium atoms reside between the manganese vanadate layers, and also play an integral part in the structure, forming a cesium fluoride chain that runs along the b-axis. Both compounds were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, and single-crystal Raman spectroscopy. Additionally, the magnetic properties of 2 were investigated. Lastly, above 50 K, it displays behavior typical of a low dimensional system with antiferromagnetic interactions, as to be expected for linear chains of manganese(II) within the crystal structure.« less

  18. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    PubMed

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Biological effects of cesium-137 injected in beagle dogs of different ages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikula, K.J.; Muggenburg, B.A.; Griffith, W.C.

    1995-12-01

    The toxicity of cesium-137 ({sup 137}Cs) in the Beagle dog was investigated at the Argonne National Laboratory (ANL) as part of a program to evaluate the biological effects of internally deposited radionuclides. The toxicity and health effects of {sup 137}Cs are important to understand because {sup 137}Cs is produced in large amounts in light-water nuclear reactors. Large quantities of cesium radioisotopes have entered the human food chain as a result of atmospheric nuclear weapons test, and additional cesium radioisotopes were released during the Chernobyl accident. Although the final analyses are not complete, three findings are significant: older dogs dies significantlymore » earlier than juvenile and young adult dogs; greater occurrence of sarcomas in the cesium-137 injected dogs; the major nonneoplastic effect in dogs surviving beyond 52 d appears to be testicular atrophy.« less

  20. Synchrotron-Radiation Photoemission Study of Electronic Structures of a Cs-Doped Rubrene Surface

    NASA Astrophysics Data System (ADS)

    Cheng, Chiu-Ping; Lu, Meng-Han; Chu, Yu-Ya; Pi, Tun-Wen

    Using synchrotron-radiation photoemission spectroscopy, we have studied the electronic structure of a cesium-doped rubrene thin film. The addition of cesium atoms causes the movement of the valence-band spectra and the change in line shapes at different concentration that can be separated into four different stages. In the first stage, the cesium atoms continuously diffuse into the substrate, and the Fermi level moves in the energy gap as a result of an electron transferred from the cesium to the rubrene. The second stage, in which the shifts of the spectra are interrupted, is characterized by the introduction of two in-gap states. When increasing doping of cesium into the third stage, the spectra move again; whereas, the line shapes maintain at the stoichiometric ratio of one. In the fourth stage, new in-gap states appear, which are the highest occupied molecular orbital (HOMO) and HOMO+1 states of (rubrene)2- anion.

  1. Radiochemical determination of strontium-90 and cesium-137 in waters of the Pacific Ocean and its neighboring seas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisenko, G.S.; Kandinskii, P.A.; Gedeonov, L.I.

    1987-03-01

    Depending on the salinity of the water, two versions of strontium-90 and cesium-137 concentration from water samples are presented. Cesium-137 was concentrated by precipitating sparingly soluble mixed hexacyanoferrates (II), and strontium-90 by precipitating carbonates together with calcium. A scheme has been given for radiochemical analysis of the concentrates. Strontium-90 and cesium-137 contents in the waters of the Pacific Ocean and its neighboring seas have been determined by the radiochemical method described. The levels of radionuclide content in the water and atmospheric precipitations have been shown to be inter-related. Strontium-90 and cesium-137 contents in the surface water of the northwestern Pacificmore » were found to be much lower in 1980 than in the early seventies. The area of technogenic radioactive pollution was found to persist in the region of the Columbia mouth into the Pacific Ocean.« less

  2. Effect of layer thickness on the elution of bulk-fill composite components.

    PubMed

    Rothmund, Lena; Reichl, Franz-Xaver; Hickel, Reinhard; Styllou, Panorea; Styllou, Marianthi; Kehe, Kai; Yang, Yang; Högg, Christof

    2017-01-01

    An increment layering technique in a thickness of 2mm or less has been the standard to sufficiently convert (co)monomers. Bulk fill resin composites were developed to accelerate the restoration process by enabling up to 4mm thick increments to be cured in a single step. The aim of the present study is to investigate the effect of layer thickness on the elution of components from bulk fill composites. The composites ELS Bulk fill, SDR Bulk fill and Venus Bulkfill were polymerized according to the instruction of the manufacturers. For each composite three groups with four samples each (n=4) were prepared: (1) samples with a layer thickness of 2mm; (2) samples with a layer thickness of 4mm and (3) samples with a layer thickness of 6mm. The samples were eluted in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). A total of 11 different elutable substances have been identified from the investigated composites. Following methacrylates showed an increase of elution at a higher layer thickness: TEGDMA (SDR Bulk fill, Venus Bulk fill), EGDMA (Venus Bulk fill). There was no significant difference in the elution of HEMA regarding the layer thickness. The highest concentration of TEGDMA was 146μg/mL for SDR Bulk fill at a layer thickness of 6mm after 7 d in water. The highest HEMA concentration measured at 108μg/mL was detected in the methanol eluate of Venus Bulk fill after 7 d with a layer thickness of 6mm. A layer thickness of 4mm or more can lead to an increased elution of some bulk fill components, compared to the elution at a layer thickness of 2mm. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  4. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis

    PubMed Central

    Toklu, Bora; Amoroso, Nicholas; Fusaro, Mario; Kumar, Sunil; Hannan, Edward L; Faxon, David P; Feit, Frederick

    2013-01-01

    Objective To compare the efficacy and safety of biodegradable polymer drug eluting stents with those of bare metal stents and durable polymer drug eluting stents. Design Mixed treatment comparison meta-analysis of 258 544 patient years of follow-up from randomized trials. Data sources and study selection PubMed, Embase, and Central were searched for randomized trials comparing any of the Food and Drug Administration approved durable polymer drug eluting stents (sirolimus eluting, paclitaxel eluting, cobalt chromium everolimus eluting, platinum chromium everolimus eluting, zotarolimus eluting-Endeavor, and zotarolimus eluting-Resolute) or biodegradable polymer drug eluting stents, with each other or against bare metal stents. Outcomes Long term efficacy (target vessel revascularization, target lesion revascularization) and safety (death, myocardial infarction, stent thrombosis). Landmark analysis at more than one year was evaluated to assess the potential late benefit of biodegradable polymer drug eluting stents. Results From 126 randomized trials and 258 544 patient years of follow-up, for long term efficacy (target vessel revascularization), biodegradable polymer drug eluting stents were superior to paclitaxel eluting stents (rate ratio 0.66, 95% credibility interval 0.57 to 0.78) and zotarolimus eluting stent-Endeavor (0.69, 0.56 to 0.84) but not to newer generation durable polymer drug eluting stents (for example: 1.03, 0.89 to 1.21 versus cobalt chromium everolimus eluting stents). Similarly, biodegradable polymer drug eluting stents were superior to paclitaxel eluting stents (rate ratio 0.61, 0.37 to 0.89) but inferior to cobalt chromium everolimus eluting stents (2.04, 1.27 to 3.35) for long term safety (definite stent thrombosis). In the landmark analysis after one year, biodegradable polymer drug eluting stents were superior to sirolimus eluting stents for definite stent thrombosis (rate ratio 0.29, 0.10 to 0.82) but were associated with increased mortality compared with cobalt chromium everolimus eluting stents (1.52, 1.02 to 2.22). Overall, among all stent types, the newer generation durable polymer drug eluting stents (zotarolimus eluting stent-Resolute, cobalt chromium everolimus eluting stents, and platinum chromium everolimus eluting stents) were the most efficacious (lowest target vessel revascularization rate) stents, and cobalt chromium everolimus eluting stents were the safest with significant reductions in definite stent thrombosis (rate ratio 0.35, 0.21 to 0.53), myocardial infarction (0.65, 0.55 to 0.75), and death (0.72, 0.58 to 0.90) compared with bare metal stents. Conclusions Biodegradable polymer drug eluting stents are superior to first generation durable polymer drug eluting stents but not to newer generation durable polymer stents in reducing target vessel revascularization. Newer generation durable polymer stents, and especially cobalt chromium everolimus eluting stents, have the best combination of efficacy and safety. The utility of biodegradable polymer stents in the context of excellent clinical outcomes with newer generation durable polymer stents needs to be proven. PMID:24212107

  5. High-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1974-01-01

    Lanthanum hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium diode performance should result from the lower collector temperatures allowed for earth and low power space duties. Decreased temperatures will lessen thermal transport losses that attend thermionic conversion mechanisms. Such advantages will add to those from collector Carnot and electrode effects. If plasma ignition difficulties impede diode temperature reductions, recycling small fractions of the output power could provide ionization. So high efficiency, low temperature cesium diodes with lanthanum hexaboride electrodes appear feasible.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. Itmore » was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.« less

  7. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium.

    PubMed

    Goñi, S; Guerrero, A; Lorenzo, M P

    2006-10-11

    The efficiency of innovative matrices for immobilizing cesium is presented in this work. The matrix formulation included the use of fly ash belite cement (FABC-2-W) and gismondine-type Na-P1 zeolite, both of which are synthesized from fly ash of coal combustion. The efficiency for immobilizing cesium is evaluated from the leaching test ANSI/ANS 16.1-1986 at the temperature of 40 degrees C, from which the apparent diffusion coefficient of cesium is obtained. Matrices with 100% of FABC-2-W are used as a reference. The integrity of matrices is evaluated by porosity and pore-size distribution from mercury intrusion porosimetry, X-ray diffraction and nitrogen adsorption analyses. Both matrices can be classified as good solidify systems for cesium, specially the FABC-2-W/zeolite matrix in which the replacement of 50% of belite cement by the gismondine-type Na-P1 zeolite caused a decrease of two orders of magnitude of cesium mean Effective Diffusion Coefficient (D(e)) (2.8e-09 cm(2)/s versus 2.2e-07 cm(2)/s, for FABC-2-W/zeolite and FABC-2-W matrices, respectively).

  8. Novel Fission-Product Separation based on Room-Temperature Ionic Liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Robin D.

    2004-12-31

    U.S. DOE's underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive cesium-137 and strontium-90. Because the primary chemical components of alkaline supernatants are sodium nitrate and sodium hydroxide, the majority of this could be disposed of as low level waste if radioactive cesium-137 and strontium- 90 could be selectively removed. The underlying goal of this project was to investigate the application of ionic liquids as novel solvents for new solvent extraction processes for separation of cesium-137 and strontium-90 from tank wastes. Ionic liquids are a distinct sub-set of liquids, comprising only of cationsmore » and anions they are proving to be increasingly interesting fluids for application in systems from electrochemistry to energetic materials, and are also rapidly establishing their promise as viable media for synthesis and separations operations. Properties including low melting points, electrochemical conductivity, wide liquid ranges, lack of vapor-pressure, and chemical tunability have encouraged researchers to explore the uses of ILs in place of volatile organic solvents. The most promising current developments arise from control of the unique combinations of chemical and physical properties characteristic of ionic liquids.« less

  9. Paclitaxel Drug-Eluting Stents in Peripheral Arterial Disease: A Health Technology Assessment

    PubMed Central

    2015-01-01

    Background Peripheral arterial disease is a condition in which atherosclerotic plaques partially or completely block blood flow to the legs. Although percutaneous transluminal angioplasty and metallic stenting have high immediate success rates in treating peripheral arterial disease, long-term patency and restenosis rates in long and complex lesions remain unsatisfactory. Objective The objective of this analysis was to evaluate the clinical effectiveness, safety, cost-effectiveness and budget impact of Zilver paclitaxel self-expanding drug-eluting stents for the treatment of de novo or restenotic lesions in above-the-knee peripheral arterial disease. Data Sources Literature searches were performed using Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid Embase, EBSCO Cumulative Index to Nursing & Allied Health Literature (CINAHL), and EBM Reviews. For the economic review, a search filter was applied to limit search results to economics-related literature. Data sources for the budget impact analysis included expert opinion, published literature, and Ontario administrative data. Review Methods Systematic reviews, meta-analyses, randomized controlled trials, and observational studies were included in the clinical effectiveness review, and full economic evaluations were included in the economic literature review. Studies were included if they examined the effect of Zilver paclitaxel drug-eluting stents in de novo or restenotic lesions in above-the-knee arteries. For the budget impact analysis, 3 scenarios were constructed based on different assumptions. Results One randomized controlled trial reported a significantly higher patency rate with Zilver paclitaxel drug-eluting stents for lesions ≤ 14 cm than with angioplasty or bare metal stents. One observational study showed no difference in patency rates between Zilver paclitaxel drug-eluting stents and paclitaxel drug-coated balloons. Zilver paclitaxel drug-eluting stents were associated with a significantly higher event-free survival rate than angioplasty, but the event-free survival rate was similar for Zilver paclitaxel drug-eluting stents and paclitaxel drug-coated balloons. No economic evaluations compared Zilver paclitaxel drug-eluting stents with bare metal stents or angioplasty for peripheral arterial disease. A budget impact analysis showed that the cost savings associated with funding of Zilver paclitaxel drug-eluting stents would be $470,000 to $640,000 per year, assuming that the use of the Zilver paclitaxel drug-eluting stent was associated with a lower risk of subsequent revascularization. Conclusions Based on evidence of low to moderate quality, Zilver paclitaxel drug-eluting stents were associated with a higher patency rate than angioplasty or bare metal stents, and with fewer adverse events than angioplasty. The effectiveness and safety of Zilver paclitaxel drug-eluting stents and paclitaxel drug-coated balloons were similar. PMID:26719778

  10. Pretreatment of Hanford medium-curie wastes by fractional crystallization.

    PubMed

    Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W

    2008-07-01

    Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.

  11. Sodium Bearing Waste Processing Alternatives Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, James Anthony; Palmer, Brent J; Perry, Keith Joseph

    2003-12-01

    A multidisciplinary team gathered to develop a BBWI recommendation to DOE-ID on the processing alternatives for the sodium bearing waste in the INTEC Tank Farm. Numerous alternatives were analyzed using a rigorous, systematic approach. The data gathered were evaluated through internal and external peer reviews for consistency and validity. Three alternatives were identified to be top performers: Risk-based Calcination, MACT to WIPP Calcination and Cesium Ion Exchange. A dual-path through early Conceptual design is recommended for MACT to WIPP Calcination and Cesium Ion Exchange since Risk-based Calcination does not require design. If calcination alternatives are not considered based on givingmore » Type of Processing criteria significantly greater weight, the CsIX/TRUEX alternative follows CsIX in ranking. However, since CsIX/TRUEX shares common uncertainties with CsIX, reasonable backups, which follow in ranking, are the TRUEX and UNEX alternatives. Key uncertainties must be evaluated by the decision-makers to choose one final alternative. Those key uncertainties and a path forward for the technology roadmapping of these alternatives is provided.« less

  12. Strontium-90 and cesium-137 distribution in Baltic Sea waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarev, L.N.; Gedeonov, L.I.; Ivanova, L.M.

    The strontium-90 and cesium-137 concentrations determined in 1983 in the Baltic Sea proper and the Gulf of Finland and in the Soviet Baltic rivers are furnished. The cesium-137 content has been found to be directly proportional to the salinity of the water. Significant influx of technogenic radioactive contaminants from the North to the Baltic Sea was noted in 1983.

  13. Introduction to Quartz Frequency Standards

    DTIC Science & Technology

    1992-03-01

    changes is 5 X 10-"N. Gas permeation under conditions where there is an abnormally high concentration of hydrogen or helium in the atmosphere can lead...Rubidium Life Rubidium depletion Power Buffer gas depletion __________Weight Glass contaminants Cesium Life Cesium supply depletion Power Spent cesium... Tifton , R., Electronic Activity Dip Measurement, IEEE Trans. on Instrumentation and Measurement, Vol. IM-27, pp. 59-65, 1978. 23. Ballato, A., Frequency

  14. Enhancing recovery of recombinant hepatitis B surface antigen in lab-scale and large-scale anion-exchange chromatography by optimizing the conductivity of buffers.

    PubMed

    Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin

    2018-01-01

    In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (<50%). In the current study, we hypothesized that ionic strengths of IEC buffers are easy-to-control parameters which can play a major role in optimizing the process and increasing the recovery. Thus, we investigated the effects of ionic strengths of buffers on rHBsAg recovery via adjusting Tris-HCl and NaCl concentrations. Increasing the conductivity of equilibration (Eq.), washing (Wash.) and elution (Elut.) buffers from their initial values of 1.6 mS/cm, 1.6 mS/cm, and 7.0 mS/cm to 1.6 mS/cm, 7 mS/cm and 50 mS/cm, respectively yielded an average recovery rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. CATIONIC EXCHANGE PROCESS FOR THE SEPARATION OF RARE EARTHS

    DOEpatents

    Choppin, G.R.; Thompson, S.G.; Harvey, B.G.

    1960-02-16

    A process for separating mixtures of elements in the lanthanum and actinium series of the periodic table is described. The mixture of elements is dissolved in 0.05 M HCI, wherein the elements exist as tripositive ions. The resulting solution is then transferred to a column of cationic exchange resin and the column eluted with 0.1 to 0.6 M aqueous ammonium alpha hydroxy isobutyrate solution of pH 3.8 to 5.0. The use of ammonium alpha hydroxy isobutyrate as an eluting agent results in sharper and more rapid separations than previously obtainable with eluants such as citric, tartaric, glycolic, and lactic acids.

  16. Method and system for radioisotope generation

    DOEpatents

    Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.

    2014-07-15

    A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.

  17. METHOD FOR THE RECOVERY OF CESIUM VALUES

    DOEpatents

    Rimshaw, S.J.

    1960-02-16

    A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.

  18. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOEpatents

    Abney, Kent D.; Kinkead, Scott A.; Mason, Caroline F. V.; Rais, Jiri

    1997-01-01

    Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  19. Method for removing cesium from a nuclear reactor coolant

    DOEpatents

    Colburn, R.P.

    1983-08-10

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium inventory thereof further into the carbon matrix while simultaneously redispersing a portion into the regeneration system for absorption at a reduced temperature by the secondary trap.

  20. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOEpatents

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-09-09

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  1. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection.

    PubMed

    Gutser, R; Wimmer, C; Fantz, U

    2011-02-01

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.

  2. Thermionic converter performance with oxide collectors

    NASA Technical Reports Server (NTRS)

    Lieb, D.; Goodale, D.; Briere, T.; Balestra, C.

    1977-01-01

    Thermionic converters using a variety of metal oxide collector surfaces have been fabricated and tested. Both work function and power output data are presented and evaluated. Oxides of barium, strontium, zinc, tungsten and titanium have been incorporated into a variable spacing converter. Tungsten oxide was found to give the highest converter performance and to furnish oxygen for the emitter at the same time. Oxygenated emitters operate at reduced cesium pressure with an increase in electrode spacing. Electron spectroscopy for chemical analysis (ESCA) performed on several tungsten oxide collectors showed cesium penetration of the oxide layer, possibly forming a cesium tungstate bronze. Titanium oxide showed high performance but did not furnish oxygen for the emitter; strontium oxide, in the form of a sprayed layer, appeared to dissociate in the presence of cesium. Sprayed coatings of barium and zinc oxides produced collector work functions of about 1.3 eV, but had excessive series resistance. Lanthanum hexaboride, in combination with oxygen introduced through a silver tube, and cesium produced a low work function collector and better than average performance.

  3. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium.

    PubMed

    Jang, J G; Park, S M; Lee, H K

    2016-11-15

    The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10(3) and 10(4), respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Simulating Wet Deposition of Radiocesium from the Chernobyl Accident

    DTIC Science & Technology

    2001-03-01

    In response to the Chernobyl nuclear power plant accident of 1986, a cesium-137 deposition dataset was assembled. Most of the airborne Chernobyl ... Chernobyl cesium-137. A cloud base parameterization modification is tested and appears to slightly improve the accuracy of one HYSPLIT simulation of...daily Chernobyl cesium-137 deposition over the course of the accident at isolated European sites, and degrades the accuracy of another HYSPLIT simulation

  5. Potential of Calendula alata for phytoremediation of stable cesium and lead from solutions.

    PubMed

    Borghei, Mehdi; Arjmandi, Reza; Moogouei, Roxana

    2011-10-01

    Calendula alata plants were tested for their potential to remove stable cesium and lead from solutions in a 15-day period. The plants were grown hydroponically and placed in solutions containing CsCl and Pb(C₂H₃O₂)₂ at different concentrations (0.6, 2 and 5 mg l⁻¹). When plants were incubated in CsCl solutions 46.84 ± 2.12%, 41.35 ± 1.59%, and 52.06 ± 1.02% cesium was found to be remediated after 15 days. Moreover, more than 99% lead was removed from the Pb(C₂H₃O₂)₂ solution in all three concentrations after 15 days during the same period. When both CsCl and Pb(C₂H₃O₂)₂ were supplemented together in the solution, 9.92 ± 1.22%, 45.56 ± 3.52%, and 46.16 ± 1.48% cesium and 95.30 ± 0.72%, 96.64 ± 0.30%, and 99.02 ± 0.04% lead were removed after 15 days. The present study suggests that hydroponically grown C. alata could be used as a potential candidate plant for phytoremediation of cesium and lead from solutions; however, plants were found to be more efficient for the remediation of lead than cesium.

  6. Mid-Award Progress Report for Department of Energy Office of Science Graduate Student Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, M. K.

    The purpose of the work proposed for this study is to investigate the behavior and transport mechanisms for cesium-137 in soils collected from contaminated sites with distinct source release scenarios. More specifically, this study aims to determine with which elements and minerals cesium-137 associates in these various environments to more reliably predict its migration in the subsurface. This will be achieved using a state-of-the-art analysis technique available at Lawrence Livermore National Laboratory (LLNL) known as NanoSIMS. Nano-scale secondary ion mass spectrometry, or NanoSIMS, is a destructive surface analysis technique in which positive secondary ions are generated from the surface ofmore » a sample and then quantified based on their mass-to-charge ratio (m/z) using mass spectrometry. The data collected about the secondary ions can then be used to create isotope-specific spatial maps with a resolution of a few hundred nanometers and depth profiles that show the variation of the secondary ion intensity with sputtering time. This should be an ideal technique for locating cesium-137 in a sample, as cesium is an easily ionized element, meaning the yield of secondary cesium (Cs) ions produced should be high and making the identification of cesium-137 straight forward.« less

  7. Quantifying Atmospheric Fallout of Fukushima-derived Radioactive Isotopes in the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    McKenzie, Trista; Dulai, Henrietta

    2016-04-01

    On March 11, 2011, several reactors at the Fukushima Dai-ichi Nuclear Power Plant suffered damage and released the radioisotopes iodine-131, cesium-134, and cesium-137 into the atmosphere. A week later, these isotopes were detected in aerosols over the state of Hawaii and in milk samples analyzed from the Big Island. Because the detected levels were significantly below levels of health concern, the state did not attempt to quantify the deposition of these nuclides on the islands. This study estimated the magnitude of atmospheric fallout of cesium and iodine, and examined the patterns of cesium wet deposition with precipitation observed in March 2011. Mushroom and soil samples were collected along precipitation gradients on Oahu and the island of Hawaii and analyzed for cesium isotopes using gamma spectrometry. Fukushima-derived fallout was differentiated from historic nuclear weapons testing fallout by the presence of Cs-134, which has a shorter half-life of 2.06 years and the fact that Cs-134 and 137 were released from the severed power plant nearly in parity. We found that Fukushima-derived cesium was present in both mushrooms and soil and the soil inventories ranged 2.2-60.9 Bq/m2 for Cs-137 and 16.1-445.8 Bq/m2 for I-131. Additionally, we found that Fukushima-derived cesium inventories in soils were correlated with precipitation gradients. This research confirmed and quantified the presence of Fukushima-derived fallout in Hawaii, however the activities detected were orders of magnitude lower than fallout associated with the nuclear weapons testing in the Pacific.

  8. Measurement of complete and continuous Wigner functions for discrete atomic systems

    NASA Astrophysics Data System (ADS)

    Tian, Yali; Wang, Zhihui; Zhang, Pengfei; Li, Gang; Li, Jie; Zhang, Tiancai

    2018-01-01

    We measure complete and continuous Wigner functions of a two-level cesium atom in both a nearly pure state and highly mixed states. We apply the method [T. Tilma et al., Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401] of strictly constructing continuous Wigner functions for qubit or spin systems. We find that the Wigner function of all pure states of a qubit has negative regions and the negativity completely vanishes when the purity of an arbitrary mixed state is less than 2/3 . We experimentally demonstrate these findings using a single cesium atom confined in an optical dipole trap, which undergoes a nearly pure dephasing process. Our method can be applied straightforwardly to multi-atom systems for measuring the Wigner function of their collective spin state.

  9. An accurate derivation of the air dose-rate and the deposition concentration distribution by aerial monitoring in a low level contaminated area

    NASA Astrophysics Data System (ADS)

    Nishizawa, Yukiyasu; Sugita, Takeshi; Sanada, Yukihisa; Torii, Tatsuo

    2015-04-01

    Since 2011, MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan) have been conducting aerial monitoring to investigate the distribution of radioactive cesium dispersed into the atmosphere after the accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), Tokyo Electric Power Company. Distribution maps of the air dose-rate at 1 m above the ground and the radioactive cesium deposition concentration on the ground are prepared using spectrum obtained by aerial monitoring. The radioactive cesium deposition is derived from its dose rate, which is calculated by excluding the dose rate of the background radiation due to natural radionuclides from the air dose-rate at 1 m above the ground. The first step of the current method of calculating the dose rate due to natural radionuclides is calculate the ratio of the total count rate of areas where no radioactive cesium is detected and the count rate of regions with energy levels of 1,400 keV or higher (BG-Index). Next, calculate the air dose rate of radioactive cesium by multiplying the BG-Index and the integrated count rate of 1,400 keV or higher for the area where the radioactive cesium is distributed. In high dose-rate areas, however, the count rate of the 1,365-keV peak of Cs-134, though small, is included in the integrated count rate of 1,400 keV or higher, which could cause an overestimation of the air dose rate of natural radionuclides. We developed a method for accurately evaluating the distribution maps of natural air dose-rate by excluding the effect of radioactive cesium, even in contaminated areas, and obtained the accurate air dose-rate map attributed the radioactive cesium deposition on the ground. Furthermore, the natural dose-rate distribution throughout Japan has been obtained by this method.

  10. Outcomes with various drug eluting or bare metal stents in patients with diabetes mellitus: mixed treatment comparison analysis of 22 844 patient years of follow-up from randomised trials

    PubMed Central

    Kumar, Sunil; Fusaro, Mario; Amoroso, Nicholas; Kirtane, Ajay J; Byrne, Robert A; Williams, David O; Slater, James; Cutlip, Donald E; Feit, Frederick

    2012-01-01

    Objectives To evaluate the efficacy and safety of currently used drug eluting stents compared with each other and compared with bare metal stents in patients with diabetes. Design Mixed treatment comparison meta-analysis. Data sources and study selection PubMed, Embase, and CENTRAL were searched for randomised clinical trials, until April 2012, of four durable polymer drug eluting stents (sirolimus eluting stents, paclitaxel eluting stents, everolimus eluting stents, and zotarolimus eluting stents) compared with each other or with bare metal stents for the treatment of de novo coronary lesions and enrolling at least 50 patients with diabetes. Primary outcomes Efficacy (target vessel revascularisation) and safety (death, myocardial infarction, stent thrombosis). Results From 42 trials with 22 844 patient years of follow-up, when compared with bare metal stents (reference rate ratio 1) all of the currently used drug eluting stents were associated with a significant reduction in target vessel revascularisation (37% to 69%), though the efficacy varied with the type of stent (everolimus eluting stents∼sirolimus eluting stents>paclitaxel eluting stents∼zotarolimus eluting stent>bare metal stents). There was about an 87% probability that everolimus eluting stents were the most efficacious compared with all others, though there were limited usable data for the zotarolimus eluting Resolute stent in patients with diabetes. Moreover, there was no increased risk of any safety outcome (including very late stent thrombosis) with any drug eluting stents compared with bare metal stents. There was about a 62% probability that the everolimus eluting stent was the safest stent for the outcome of “any” stent thrombosis. Conclusions Among patients with diabetes treated with coronary stents all currently available drug eluting stents were efficacious without compromising safety compared with bare metal stents. There were relative differences among the drug eluting stents, such that the everolimus eluting stent was the most efficacious and safe. PMID:22885395

  11. Carbonate-H2O2 Leaching for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Weisheng, Liao; Wai, Chien

    Uranium adsorbed on amidoxime-based polyethylene fiber in simulated seawater can be quantitatively eluted at room temperature using 1M Na2CO3 containing 0.1 M H2O2. This efficient elution process is probably due to formation of an extremely stable uranyl-peroxo-carbonato complex in the carbonate solution. After washing with water, the sorbent can be reused with little loss of uranium loading capacity. Possible existence of this stable uranyl species in ocean water is also discussed.

  12. Operation, Maintenance and Performance Evaluation of the Potomac Estuary Experimental Water Treatment Plant. Appendix. Volume 1.

    DTIC Science & Technology

    1983-09-01

    Biochemical Screening A-i-12 Quantitative Determination of Viruses A-1-13 Virus Adsorption A-1-13 Elution A-1-13 Reconcentration A-1-13 Virus Assay A-I... VIRUSES VIRUS ADSORPTION " The virus concentration method was based on an adsorption/elution procedure described in the 14th edition of Standard...the replication process of one virus may be inhibited by another. If the inoculum contains few infective viruses , interference problems are of little

  13. Carbonate-H₂O₂ leaching for sequestering uranium from seawater.

    PubMed

    Pan, Horng-Bin; Liao, Weisheng; Wai, Chien M; Oyola, Yatsandra; Janke, Christopher J; Tian, Guoxin; Rao, Linfeng

    2014-07-28

    Uranium adsorbed on amidoxime-based polyethylene fiber in simulated seawater can be quantitatively eluted at room temperature using 1 M Na2CO3 containing 0.1 M H2O2. This efficient elution process is probably due to the formation of an extremely stable uranyl-peroxo-carbonato complex in the carbonate solution. After washing with water, the sorbent can be reused with minimal loss of uranium loading capacity. Possible existence of this stable uranyl species in ocean water is also discussed.

  14. Anthropogenic radionuclides for estimating rates of soil redistribution by wind

    USDA-ARS?s Scientific Manuscript database

    Erosion of soil by wind and water is a degrading process that affects millions of hectares worldwide. Atmospheric testing of nuclear weapons and the resulting fallout of anthropogenic radioisotopes, particularly Cesium 137, has made possible the estimation of mean soil redistribution rates. The pe...

  15. Anthropogenic radioisotopes to estimate rates of soil redistribution by wind

    USDA-ARS?s Scientific Manuscript database

    Erosion of soil by wind and water is a degrading process that affects millions of hectares worldwide. Atmospheric testing of nuclear weapons and the resulting fallout of anthropogenic radioisotopes, particularly Cesium 137, has made possible the estimation of mean soil redistribution rates. The pe...

  16. 10 CFR Appendix B to Part 30 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Iodine-126 1 Iodine-129 0.1 Iodine-131 1 Iodine-132 10 Iodine-133 1 Iodine-134 10 Iodine-135 10 Iridium... Arsenic-73 100 Arsenic-74 10 Arsenic-76 10 Arsenic-77 100 Barium-131 10 Barium-133 10 Barium-140 10... Carbon-14 100 Cerium-141 100 Cerium-143 100 Cerium-144 1 Cesium-131 1,000 Cesium-134m 100 Cesium-134 1...

  17. 10 CFR Appendix B to Part 30 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Iodine-126 1 Iodine-129 0.1 Iodine-131 1 Iodine-132 10 Iodine-133 1 Iodine-134 10 Iodine-135 10 Iridium... Arsenic-73 100 Arsenic-74 10 Arsenic-76 10 Arsenic-77 100 Barium-131 10 Barium-133 10 Barium-140 10... Carbon-14 100 Cerium-141 100 Cerium-143 100 Cerium-144 1 Cesium-131 1,000 Cesium-134m 100 Cesium-134 1...

  18. 10 CFR Appendix B to Part 30 - Quantities 1 of Licensed Material Requiring Labeling

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Iodine-126 1 Iodine-129 0.1 Iodine-131 1 Iodine-132 10 Iodine-133 1 Iodine-134 10 Iodine-135 10 Iridium... Arsenic-73 100 Arsenic-74 10 Arsenic-76 10 Arsenic-77 100 Barium-131 10 Barium-133 10 Barium-140 10... Carbon-14 100 Cerium-141 100 Cerium-143 100 Cerium-144 1 Cesium-131 1,000 Cesium-134m 100 Cesium-134 1...

  19. Cesium Platinide Hydride 4Cs 2 Pt-CsH: An Intermetallic Double Salt Featuring Metal Anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smetana, Volodymyr; Mudring, Anja-Verena

    2016-10-24

    With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs 9Pt 4H exhibits a complex crystal structure containing Cs + cations, Pt 2- and H - anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the “alloy” cesium–platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs 9Pt 4H≡4 Cs 2Pt∙CsH.

  20. Fabrication and surface characterization of composite refractory compounds suitable for thermionic converters

    NASA Technical Reports Server (NTRS)

    Davis, P. R.; Swanson, L. W.

    1980-01-01

    Thermal faceting was observed for the high index planes of LaB6. The (100), (110), and (111) planes were found to be the most thermodynamically stable faces in vacuum in a study of electrode materials for thermionic emitters. The properties of adsorbed carbon, cesium, and cesium-oxygen layers were investigated on LaB6 single crystal surfaces as well as on Zr/0/W(100) and W(100). Cesium was found to increase electron reflection near the collision threshold on LaB6(100) and W(100) and to decrease the reflection on Zr/0/W(100). This difference may be explained by the unusually high threshold reflection coefficient of Zr/0/W without adsorbed cesium.

  1. Radiocesium interaction with clay minerals: Theory and simulation advances Post-Fukushima.

    PubMed

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C; Lammers, Laura N; Ikeda, Takashi; Sassi, Michel; Rosso, Kevin M; Machida, Masahiko

    2018-04-14

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai-ichi nuclear power plant accident. In particular, computer-based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the other hand, its methodological schemes are now varied from traditional force-field molecular dynamics on large-scale realizations composed of many thousands of atoms including water molecules to first-principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Radiocesium interaction with clay minerals: Theory and simulation advances Post–Fukushima

    DOE PAGES

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C.; ...

    2018-03-14

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai–ichi nuclear power plant accident. In particular, computer–based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the othermore » hand, its methodological schemes are now varied from traditional force–field molecular dynamics on large–scale realizations composed of many thousands of atoms including water molecules to first–principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.« less

  3. Radiocesium interaction with clay minerals: Theory and simulation advances Post–Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumura, Masahiko; Kerisit, Sebastien; Bourg, Ian C.

    Insights at the microscopic level of the process of radiocesium adsorption and interaction with clay mineral particles have improved substantially over the past several years, triggered by pressing social issues such as management of huge amounts of waste soil accumulated after the Fukushima Dai–ichi nuclear power plant accident. In particular, computer–based molecular modeling supported by advanced hardware and algorithms has proven to be a powerful approach. Its application can now generally encompass the full complexity of clay particle adsorption sites from basal surfaces to interlayers with inserted water molecules, to edges including fresh and weathered frayed ones. On the othermore » hand, its methodological schemes are now varied from traditional force–field molecular dynamics on large–scale realizations composed of many thousands of atoms including water molecules to first–principles methods on smaller models in rather exacting fashion. In this article, we overview new understanding enabled by simulations across methodological variations, focusing on recent insights that connect with experimental observations, namely: 1) the energy scale for cesium adsorption on the basal surface, 2) progress in understanding the structure of clay edges, which is difficult to probe experimentally, 3) cesium adsorption properties at hydrated interlayer sites, 4) the importance of the size relationship between the ionic radius of cesium and the interlayer distance at frayed edge sites, 5) the migration of cesium into deep interlayer sites, and 6) the effects of nuclear decay of radiocesium. Key experimental observations that motivate these simulation advances are also summarized. Furthermore, some directions toward future solutions of waste soil management are discussed based on the obtained microscopic insights.« less

  4. Transport of iodine and cesium via the grass-cow-milk pathway after the Chernobyl accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchner, G.

    1994-06-01

    More than 150 data sets giving time-dependent concentrations of {sup 131}I and {sup 137}Cs in feed and milk of cows after the Chernobyl accident are evaluated using a minimal compartmental modeling approach. Transfer of cesium via the grass-cow-milk pathway is adequately described by a three-compartmental model. No unique model results for {sup 131}I, as a compartment with slow secretion of {sup 131}I into milk, are identified for some datasets only. Frequency distributions of weathering half-lives on grass and of equilibrium feed-to-milk transfer coefficients are approximately lognormal. Mean values of weathering half-lives on plants are 9.1 {plus_minus} 0.6 d for iodinemore » and 11.1 {plus_minus} 0.8 d for cesium, in good agreement with means established from experiments performed before 1986. Mean values of equilibrium feed-to-milk transfer coefficients are 3.4 {plus_minus} 0.4 10{sup {minus}3} d L{sup {minus}1} for {sup 131}I and 5.4 {plus_minus} 0.5 10{sup {minus}3} d L{sup {minus}1} for {sup 137}Cs. Both are lower than means calculated from the pre-Chernobyl data base. Plausible explanations of the differences include (1) reduced availability of fallout compared to soluble tracer; (2) underestimation of post-Chernobyl transfer coefficients by some experiments concluded too early to record slow transport processes; and (3) reduced transfer of {sup 131}I compared to long-lived iodine isotopes due to decay during fixation in the thyroid. Feed-to-milk transfer of {sup 131}I is related to milk yield, but no influence of milk yield and type of feed on transfer is apparent for cesium. 73 refs., 3 figs., 5 tabs.« less

  5. Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae.

    PubMed

    Peng, Yang; Deng, Aosong; Gong, Xun; Li, Xiaomin; Zhang, Yang

    2017-11-01

    Considering the high concentration of mercury in industrial wastewater, such as coal-fired power plants and gold mining wastewater, this research study investigated the coupling process of lipid production and mercury bioremediation using microalgae cells. Chlorella vulgaris modified by biomimetic mineralization. The cultivation was divided in two stages: a natural cultivation for 7days and 5days of Hg 2+ addition (10-100μg/L) for cultivation at different pH values (4-7) after inoculation. Next, the harvested cells were eluted, and lipid was extracted. The fluorescein diacetate (FDA) dye tests demonstrated that the mineralized layer enhanced the biological activity of microalgae cells in Hg 2+ contaminated media. Hg distribution tests showed that the Hg removal capacity of modified cells was increased from 62.85% to 94.74%, and 88.72% of eluted Hg 2+ concentration was observed in modified cells compared to 48.42% of raw cells, implying that more mercury was transferred from lipid and residuals into elutable forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lanthanide doped strontium-barium cesium halide scintillators

    DOEpatents

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  7. A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE).

    PubMed

    Stacey, R Greg; Skinnider, Michael A; Scott, Nichollas E; Foster, Leonard J

    2017-10-23

    An organism's protein interactome, or complete network of protein-protein interactions, defines the protein complexes that drive cellular processes. Techniques for studying protein complexes have traditionally applied targeted strategies such as yeast two-hybrid or affinity purification-mass spectrometry to assess protein interactions. However, given the vast number of protein complexes, more scalable methods are necessary to accelerate interaction discovery and to construct whole interactomes. We recently developed a complementary technique based on the use of protein correlation profiling (PCP) and stable isotope labeling in amino acids in cell culture (SILAC) to assess chromatographic co-elution as evidence of interacting proteins. Importantly, PCP-SILAC is also capable of measuring protein interactions simultaneously under multiple biological conditions, allowing the detection of treatment-specific changes to an interactome. Given the uniqueness and high dimensionality of co-elution data, new tools are needed to compare protein elution profiles, control false discovery rates, and construct an accurate interactome. Here we describe a freely available bioinformatics pipeline, PrInCE, for the analysis of co-elution data. PrInCE is a modular, open-source library that is computationally inexpensive, able to use label and label-free data, and capable of detecting tens of thousands of protein-protein interactions. Using a machine learning approach, PrInCE offers greatly reduced run time, more predicted interactions at the same stringency, prediction of protein complexes, and greater ease of use over previous bioinformatics tools for co-elution data. PrInCE is implemented in Matlab (version R2017a). Source code and standalone executable programs for Windows and Mac OSX are available at https://github.com/fosterlab/PrInCE , where usage instructions can be found. An example dataset and output are also provided for testing purposes. PrInCE is the first fast and easy-to-use data analysis pipeline that predicts interactomes and protein complexes from co-elution data. PrInCE allows researchers without bioinformatics expertise to analyze high-throughput co-elution datasets.

  8. A novel convenient process to obtain a raw decaffeinated tea polyphenol fraction using a lignocellulose column.

    PubMed

    Sakanaka, Senji

    2003-05-07

    Lignocellulose prepared from sawdust was investigated for its potential application in obtaining a raw decaffeinated tea polyphenol fraction from tea extract. Tea polyphenols having gallate residues, namely, (-)epigallocatechin gallate (EGCg) and (-)epicatechin gallate (ECg), were adsorbed on the lignocellulose column, while caffeine was passed through it. Adsorbed polyphenols were eluted with 60% ethanol, and the elute was found to consist mainly of EGCg and ECg. The caffeine/EGCg ratio was 0.696 before lignocellulose column treatment, but it became 0.004 after the column treatment. These results suggest that the lignocellulose column provides a useful and convenient process of purification of tea polyphenol fraction accompanied by decaffeination.

  9. Ultrasonic atomization and subsequent desolvation for monoclonal antibody (mAb) to the glycoprotein (GP) IIIa receptor into drug eluting stent.

    PubMed

    Wang, G X; Luo, L L; Yin, T Y; Li, Y; Jiang, T; Ruan, C G; Guidoin, R; Chen, Y P; Guzman, R

    2010-01-01

    An eluting-stent system with mAb dispersed in the PLLA (poly (L-lactic acid)) was validated in vitro. Specifically designed spray equipment based on the principle of ultrasonic atomization was used to produce a thin continuous PLLA (poly (L-lactic acid)) polymer coating incorporating monoclonal antibody (mAb). This PLLA coating was observed in light microscopy (LM) and scanning electron microscopy (SEM). The concentration of the monoclonal antibody (mAb) to the platelet glycoprotein (GP) IIIa receptor and the eluting rate were then measured by a radioisotope technique with (125)I-labelled GP IIIa mAb. An in vitro perfusion circuit was designed to evaluate the release rates at different velocities (10 or 20 ml min(-1)). The PLLA coating was thin and transparent, uniformly distributed on the surface of the stent. Three factors influenced its thickness: PLLA concentration, duration and gas pressure. The concentration of mAb was influenced by the duration of absorption and the concentration of the mAb solution; the maximum was 1662.23 + or - 38.83 ng. The eluting rate was fast for the first 2 h, then decreased slowly and attained 80% after 2 weeks. This ultrasonic atomization spray equipment and technological process to prepare protein eluting-stents were proved to be effective and reliable.

  10. Adsorption of Radioactive Cesium to Illite-Sericite Mixed Clays

    NASA Astrophysics Data System (ADS)

    Hwang, J. H.; Choung, S.; Park, C. S.; Jeon, S.; Han, J. H.; Han, W. S.

    2016-12-01

    Once radioactive cesium is released into aquatic environments through nuclear accidents such as Chernobyl and Fukushima, it is harmful to human and ecological system for a long time (t1/2 = 30.2 years) because of its chemical toxicity and γ-radiation. Sorption mechanism is mainly applied to remove the cesium from aquatic environments. Illite is one of effective sorbent, considering economical cost for remediation. Although natural illite is typically produced as a mixture with sericite formed by phyllic alteration in hydrothermal ore deposits, the effects of illite-sericite mixed clays on cesium sorption was rarely studied. This study evaluated the sorption properties of cesium to natural illite collected at Yeongdong in Korea as the world-largest illite producing areas (termed "Yeongdong illite"). The illite samples were analyzed by XRF, XRD, FT-IR and SEM-EDX to determine mineralogy, chemical composition, and morphological characteristics, and used for batch sorption experiments. Most of "Yeongdong illite" samples predominantly consist of sericite, quartz, albite, plagioclase feldspar and with minor illite. Cesium sorption distribution coefficients (Kd,Cs) of various "Yeongdong illite" samples ranged from 500 to 4000 L/kg at low aqueous concentration (Cw 10-7 M). Considering Kd,Cs values were 400 and 6000 using reference sericite and illite materials, respectively, in this study, these results suggested that high contents of sericite significantly affect the decrease of sorption capabilities for radiocesium by natural illite (i.e., illite-sericite mixed clay).

  11. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 2: Determination of Cesium Exchange Capacity and Effective Mass Transfer Coefficient from a 500-cm3 Column Experiement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel,NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CSTmore » columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste.« less

  12. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    PubMed

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.

  13. A study of environmental effects caused by cesium from ion thrusters

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The ATS-F satellite will carry two cesium ion thrusters. Cesium is a material that is not present in the upper atmosphere, and there is concern that the introduction of this material may result in some unexpected behavior. A study has been conducted to assess the magnitude of the effects that are to be expected. No observable effects were found as a result of the study. Consideration was given to the origin and destination of the material and the various reactions that could occur. The origin was considered to be anywhere in space from altitudes of about 100 km upward. The probable short term destination is in the form of cesium ions trapped in the earth's magnetic field or as ions and atoms in the heterosphere. The maximum possible number of cesium atoms in the field of view of an earth based observer is of the order of one million per square centimeter, far too few to be observable by visible, near-visible, or radio-frequency means. Further, no phenomena could be found that would result in the occurance of an observable event.

  14. Development of a bi-functional silica monolith for electro-osmotic pumping and DNA clean-up/extraction using gel-supported reagents in a microfluidic device.

    PubMed

    Oakley, Jennifer A; Shaw, Kirsty J; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2009-06-07

    A silica monolith used to support both electro-osmotic pumping (EOP) and the extraction/elution of DNA coupled with gel-supported reagents is described. The benefits of the combined EOP extraction/elution system were illustrated by combining DNA extraction and gene amplification using the polymerase chain reaction (PCR) process. All the reagents necessary for both processes were supported within pre-loaded gels that allow the reagents to be stored at 4 degrees C for up to four weeks in the microfluidic device. When carrying out an analysis the crude sample only needed to be hydrodynamically introduced into the device which was connected to an external computer controlled power supply via platinum wire electrodes. DNA was extracted with 65% efficiency after loading lysed cells onto a silica monolith. Ethanol contained within an agarose gel matrix was then used to wash unwanted debris away from the sample by EOP (100 V cm(-1) for 5 min). The retained DNA was subsequently eluted from the monolith by water contained in a second agarose gel, again by EOP using an electric field of 100 V cm(-1) for 5 min, and transferred into the PCR reagent containing gel. The eluted DNA in solution was successfully amplified by PCR, confirming that the concept of a complete self-contained microfluidic device could be realised for DNA sample clean up and amplification, using a simple pumping and on-chip reagent storage methodology.

  15. RECOVERY OF CESIUM FROM WASTE SOLUTIONS

    DOEpatents

    Burgus, W.H.

    1959-06-30

    This patent covers the precipitation of fission products including cesium on nickel or ferric ferrocyanide and subsequent selective dissolution from the carrier with a solution of ammonia or mercurlc nitrate.

  16. Energy Pooling, Ion Recombination, and Reactions of Rubidium and Cesium in Hydrocarbon Gasses.

    NASA Astrophysics Data System (ADS)

    Bresler, Sean Michael; Park, J.; Heaven, Michael

    2017-06-01

    Diode Pumped Alkali Lasers (DPAL) are continuous wave lasers, potentially capable of megawatt average powers. These lasers exploit the D1 and D2 lines of alkali metals resulting in a 3-level laser with the lasing transition in the near infrared region of the electromagnetic spectrum. Energy pooling processes involving collisions between excited alkali metals cause a fraction of the gain media to be highly excited and eventually ionized. These high energy cesium atoms and ions chemically react with small hydrocarbons utilized as buffer gasses for the system, depleting the gain media. A kinetic model supported by experimental data is introduced to explain the cumulative effects of optical trapping, energy pooling, and chemical reactivity in heavy alkali metal (Rb, Cs) systems. Spectroscopic studies demonstrating metal hydride formation will also be presented.

  17. RADIATION SOURCES

    DOEpatents

    Brucer, M.H.

    1958-04-15

    A novel long-lived source of gamma radiation especially suitable for calibration purposes is described. The source of gamma radiation is denoted mock iodine131, which comprises a naixture of barium-133 and cesium-137. The barium and cesium are present in a barium-cesium ratio of approximately 5.7/1 to 14/1, uniformly dispersed in an ion exchange resin and a filter surrounding the resin comprised of a material of atomic number below approximately 51, and substantially 0.7 to 0.9 millimeter thick.

  18. The uptake and elimination of cesium-137 by a grasshopper-romalea microptera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crossley, Jr, D A; Pryor, M E

    1960-10-01

    Adults of Romalea microptera, the eastern lubber grasshopper, were fed cesium-137 in bean plants to investigate uptake and elimination of this isotope. A biological half-life of 4 to 5 days was obtained. In experiments where grasshoppers were allowed to feed repeatedly on cesium-contaminated food, the biological half-life was used to pretend Cs 137 was concentrated in muscular tissue, but some was also found in the digestive tract and reproductive organs. Only trace amounts were found in the exoskeleton.

  19. Small-angle neutron scattering study of the structure of mixed micellar solutions based on heptaethylene glycol monotetradecyl ether and cesium dodecyl sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajewska, A., E-mail: aldonar@jinr.ru; Medrzycka, K.; Hallmann, E.

    2016-01-15

    The micellization in mixed aqueous systems based on a nonionic surfactant, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, cesium dodecyl sulfate, has been investigated by small-angle neutron scattering. Preliminary data on the behavior of the C{sub 14}E{sub 7} aqueous solutions (with three concentrations, 0.17, 0.5, and 1%) mixed with a small amount of anionic surfactant, cesium dodecyl sulfate, are reported.

  20. Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT – Task 6, Subtask 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

    2014-03-28

    After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agency’s (JAEA’s) investigation project. Three simulation cases under the following different temperature conditions were studied:more » • incoming rivers and the Ogi Dam Reservoir have the same water temperature • incoming rivers have lower water temperature than that of the reservoir • incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: • Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. • Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. • Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in the Fukushima environment. The issues to be addressed in future are the following: • Validate the simulation results by comparison with the investigation data. • Confirm the applicability of the FLESCOT code to Fukushima coastal areas. • Increase computation speed by parallelizing the FLESCOT code.« less

  1. Atrial natriuretic-like peptide and its prohormone within metasequoia.

    PubMed

    Yang, Q; Gower, W R; Li, C; Chen, P; Vesely, D L

    1999-07-01

    Metasequoia glyptostroboides was one of the dominant conifers in North America, Asia, and Europe for more than 100 million years since the late Cretaceous Albian Age, but Quaternary glaciations drove the Metasequoia population to apparent extinction. A small pocket of Metasequoia, however, was found in central China in the 1940s representing the only surviving population of this "living fossil" species. Atrial natriuretic peptide, a 28-amino-acid peptide hormone that causes sodium and water excretion in animals, has been found to be part of the first peptide hormonal system in lower plants. The existence of this hormonal system has never been examined within trees of any genus. High-performance gel permeation chromatography of the leaves and stems (i.e., branches) of Metasequoia followed by atrial natriuretic peptide radioimmunoassay revealed an ANP-like peptide and its prohormone (i.e., approximately 13,000 mol wt) were present in both leaves and stems of this conifer. The elution profile of ANP-like peptide in stems of Metasequoia had a shoulder to the left of where pure synthetic ANP elutes suggesting the possibility of a slightly larger peptide eluting within this shoulder secondary to alternate processing of the ANP-like prohormone and similar to what occurs with the kidney of animals. The elution profile of ANP-like peptide in the leaves of Metasequoia revealed two peaks; one where ANP elutes and a second peak suggesting a smaller peptide that has been metabolically processed. The presence of the ANP-like prohormone strongly suggests that ANP-like gene expression is occurring in both leaves and stems of Metasequoia since this prohormone is the gene product of this hormonal system. The presence of the ANP-like hormonal system in trees implies that this hormonal system may have been present early in land plant evolution to allow trees to reach heights of greater than 30 feet where a water flow-enhancing substance is absolutely necessary for water flow to occur to these heights.

  2. Cesium iodide crystals fused to vacuum tube faceplates

    NASA Technical Reports Server (NTRS)

    Fleck, H. G.

    1964-01-01

    A cesium iodide crystal is fused to the lithium fluoride faceplate of a photon scintillator image tube. The conventional silver chloride solder is then used to attach the faceplate to the metal support.

  3. Study of radiatively sustained cesium plasmas for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Dunning, G. J.

    1980-01-01

    The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.

  4. Radionuclides in Foods

    PubMed Central

    Bird, P. M.

    1966-01-01

    Levels of strontium-90 and cesium-137 in Canadian milk during the period 1960-64 were consistently higher than those in the United States or the United Kingdom, but levels in humans, while also higher, did not reflect the differences observed in milk. Annual dose rates of 27 millirads to bone and 4 millirads to the whole body correspond to the highest average concentrations of strontium-90 and cesium-137 so far observed. Levels of cesium-137 in the urine of residents of the Canadian North were found to increase with the increasing consumption of caribou or reindeer. Whole body counting of a few northern residents showed cesium-137 levels as high as 1000 nanocuries. It is concluded that protective actions are not needed but that studies in the North should be emphasized to provide a better basis for evaluating that particular situation. PMID:5948368

  5. A simple elution strategy for biotinylated proteins bound to streptavidin conjugated beads using excess biotin and heat.

    PubMed

    Cheah, Joleen S; Yamada, Soichiro

    2017-12-02

    Protein-protein interactions are the molecular basis of cell signaling. Recently, proximity based biotin identification (BioID) has emerged as an alternative approach to traditional co-immunoprecipitation. In this protocol, a mutant biotin ligase promiscuously labels proximal binding partners with biotin, and resulting biotinylated proteins are purified using streptavidin conjugated beads. This approach does not require preservation of protein complexes in vitro, making it an ideal approach to identify transient or weak protein complexes. However, due to the high affinity bond between streptavidin and biotin, elution of biotinylated proteins from streptavidin conjugated beads requires harsh denaturing conditions, which are often incompatible with downstream processing. To effectively release biotinylated proteins bound to streptavidin conjugated beads, we designed a series of experiments to determine optimal binding and elution conditions. Interestingly, the concentrations of SDS and IGEPAL-CA630 during the incubation with streptavidin conjugated beads were the key to effective elution of biotinylated proteins using excess biotin and heating. This protocol provides an alternative method to isolate biotinylated proteins from streptavidin conjugated beads that is suitable for further downstream analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays.

    PubMed

    Xue, Peng; Wu, Yafeng; Guo, Jinhong; Kang, Yuejun

    2015-04-01

    Circulating tumor cells (CTCs), which are derived from primary tumor site and transported to distant organs, are considered as the major cause of metastasis. So far, various techniques have been applied for CTC isolation and enumeration. However, there exists great demand to improve the sensitivity of CTC capture, and it remains challenging to elute the cells efficiently from device for further biomolecular and cellular analyses. In this study, we fabricate a dual functional chip integrated with herringbone structure and micropost array to achieve CTC capture and elution through EpCAM-based immunoreaction. Hep3B tumor cell line is selected as the model of CTCs for processing using this device. The results demonstrate that the capture limit of Hep3B cells can reach up to 10 cells (per mL of sample volume) with capture efficiency of 80% on average. Moreover, the elution rate of the captured Hep3B cells can reach up to 69.4% on average for cell number ranging from 1 to 100. These results demonstrate that this device exhibits dual functions with considerably high capture rate and elution rate, indicating its promising capability for cancer diagnosis and therapeutics.

  7. Process for preparing radiopharmaceuticals

    DOEpatents

    Barak, Morton; Winchell, Harry S.

    1977-01-04

    A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical.

  8. Characterization of polypropylene–polyethylene blends by temperature rising elution and crystallization analysis fractionation

    PubMed Central

    del Hierro, Pilar

    2010-01-01

    The introduction of single-site catalysts in the polyolefins industry opens new routes to design resins with improved performance through multicatalyst-multireactor processes. Physical combination of various polyolefin types in a secondary extrusion process is also a common practice to achieve new products with improved properties. The new resins have complex structures, especially in terms of composition distribution, and their characterization is not always an easy task. Techniques like temperature rising elution fractionation (TREF) or crystallization analysis fractionation (CRYSTAF) are currently used to characterize the composition distribution of these resins. It has been shown that certain combinations of polyolefins may result in equivocal results if only TREF or CRYSTAF is used separately for their characterization. PMID:20730530

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T F

    Rongelap Atoll experienced close-in ''local fallout'' from nuclear weapons tests conducted by the United States (1946-58) in the northern Marshall Islands. Most of the radiation dose delivered to Rongelap Island residents during the 1950s was from radioactive elements that quickly decayed into non-radioactive elements. Since 1985, the Lawrence Livermore National Laboratory (LLNL) has continued to provide monitoring of radioactive elements from bomb testing in the terrestrial and marine environment of Rongelap Atoll. The only remaining radioactive elements of environmental importance at the atoll are radioactive cesium (cesium-137), radioactive strontium (strontium-90), different types (isotopes) of plutonium, and americium (americium-241). Cesium- 137more » and strontium-90 dissolve in seawater and are continually flushed out of the lagoon into the open ocean. The small amount of residual radioactivity from nuclear weapons tests remaining in the lagoon does not concentrate through the marine food chain. Elevated levels of cesium-137 and strontium-90 are still present in island soils and pose a potential health risk if certain types of local plants and coconut crabs are eaten in large quantities. Cesium-137 is taken up from the soil into plants and edible food products, and may end up in the body of people living on the islands and consuming local food. The presence of cesium-137 in the human body can be detected using a device called a whole body counter. A person relaxes in a chair for a few minutes while counts or measurements are taken using a detector a few inches away from the body. The whole body counting program on Rongelap Island was established in 1999 under a cooperative agreement between the Rongelap Atoll Local Government (RALG), the Republic of the Marshall Islands and the U.S. Department of Energy (DOE). Local technicians from Rongelap continue to operate the facility under supervision of scientists from LLNL. The facility permits resettlement workers living on Rongelap Island to check the amount of cesium-137 in their bodies. The amount of cesium-137 detected in resettlement workers living on Rongelap Island over the past three years is well below the level of radiation exposure considered safe by the Nuclear Claims Tribunal. Returning residents and visitors to Rongelap will also be able to receive a whole body count free of charge to check the level of cesium in their bodies. There is also a very low health risk from exposure to external sources of radiation from visiting or walking around any of the islands on the atoll.« less

  10. PROCESS FOR SEPARATING URANIUM FISSION PRODUCTS

    DOEpatents

    Spedding, F.H.; Butler, T.A.; Johns, I.B.

    1959-03-10

    The removal of fission products such as strontium, barium, cesium, rubidium, or iodine from neutronirradiated uranium is described. Uranium halide or elemental halogen is added to melted irradiated uranium to convert the fission products to either more volatile compositions which vaporize from the melt or to higher melting point compositions which separate as solids.

  11. Distribution of radioactive cesium in edible parts of cattle.

    PubMed

    Okada, Keiji; Sato, Itaru; Deguchi, Yoshitaka; Morita, Shigeru; Yasue, Takeshi; Yayota, Masato; Takeda, Ken-Ichi; Sato, Shusuke

    2013-12-01

    After the disastrous incident of the Fukushima Daiichi Nuclear Power Station, various agricultural, livestock and fishery products have been inspected for radioactive contamination with cesium in Japan. In this study, radioactive cesium was measured in various edible parts of cattle to verify the current inspection method for cattle, in which the neck tissues are generally used as samples. Radioactive cesium concentration in the short plate, diaphragm, liver, lung, omasum, abomasum and small intestine were lower and sirloin, tenderloin, top round meat and tongue were higher than that in the neck. There was no significant difference between the other organs (heart, kidney, lumen and reticulum) and the neck. Ninety-five percent upper tolerance limits of the relative concentration to the neck were 1.88 for sirloin, 1.74 for tenderloin, 1.87 for top round and 1.45 for tongue. These results suggest that a safety factor of 2 is recommended for the radioactivity inspection of cattle to prevent a marketing of meat with higher cesium than the legal limit. Re-inspection should be conducted using another part of muscle, for example, top round, when suspicious levels of 50-100 Bq/kg are detected in the neck. © 2013 Japanese Society of Animal Science.

  12. Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods

    NASA Astrophysics Data System (ADS)

    Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.

    2018-03-01

    The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.

  13. Endovascular Gene Delivery from a Stent Platform: Gene- Eluting Stents

    PubMed Central

    Fishbein, Ilia; Chorny, Michael; Adamo, Richard F; Forbes, Scott P; Corrales, Ricardo A; Alferiev, Ivan S; Levy, Robert J

    2015-01-01

    A synergistic impact of research in the fields of post-angioplasty restenosis, drug-eluting stents and vascular gene therapy over the past 15 years has shaped the concept of gene-eluting stents. Gene-eluting stents hold promise of overcoming some biological and technical problems inherent to drug-eluting stent technology. As the field of gene-eluting stents matures it becomes evident that all three main design modules of a gene-eluting stent: a therapeutic transgene, a vector and a delivery system are equally important for accomplishing sustained inhibition of neointimal formation in arteries treated with gene delivery stents. This review summarizes prior work on stent-based gene delivery and discusses the main optimization strategies required to move the field of gene-eluting stents to clinical translation. PMID:26225356

  14. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    USGS Publications Warehouse

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa L.

    2017-06-20

    Lithium-cesium-tantalum (LCT) pegmatites comprise a compositionally defined subset of granitic pegmatites. The major minerals are quartz, potassium feldspar, albite, and muscovite; typical accessory minerals include biotite, garnet, tourmaline, and apatite. The principal lithium ore minerals are spodumene, petalite, and lepidolite; cesium mostly comes from pollucite; and tantalum mostly comes from columbite-tantalite. Tin ore as cassiterite and beryllium ore as beryl also occur in LCT pegmatites, as do a number of gemstones and high-value museum specimens of rare minerals. Individual crystals in LCT pegmatites can be enormous: the largest spodumene was 14 meters long, the largest beryl was 18 meters long, and the largest potassium feldspar was 49 meters long.Lithium-cesium-tantalum pegmatites account for about one-fourth of the world’s lithium production, most of the tantalum production, and all of the cesium production. Giant deposits include Tanco in Canada, Greenbushes in Australia, and Bikita in Zimbabwe. The largest lithium pegmatite in the United States, at King’s Mountain, North Carolina, is no longer being mined although large reserves of lithium remain. Depending on size and attitude of the pegmatite, a variety of mining techniques are used, including artisanal surface mining, open-pit surface mining, small underground workings, and large underground operations using room-and-pillar design. In favorable circumstances, what would otherwise be gangue minerals (quartz, potassium feldspar, albite, and muscovite) can be mined along with lithium and (or) tantalum as coproducts.Most LCT pegmatites are hosted in metamorphosed supracrustal rocks in the upper greenschist to lower amphibolite facies. Lithium-cesium-tantalum pegmatite intrusions generally are emplaced late during orogeny, with emplacement being controlled by pre-existing structures. Typically, they crop out near evolved, peraluminous granites and leucogranites from which they are inferred to be derived by fractional crystallization. In cases where a parental granite pluton is not exposed, one is inferred to lie at depth. Lithium-cesium-tantalum LCT pegmatite melts are enriched in fluxing components including H2O, F, P, and B, which depress the solidus temperature, lower the density, and increase rates of ionic diffusion. This, in turn, enables pegmatites to form thin dikes and massive crystals despite having a felsic composition and temperatures that are significantly lower than ordinary granitic melts. Lithium-cesium-tantalum pegmatites crystallized at remarkably low temperatures (about 350–550 °C) in a remarkably short time (days to years).Lithium-cesium-tantalum pegmatites form in orogenic hinterlands as products of plate convergence. Most formed during collisional orogeny (for example, Kings Mountain district, North Carolina). Specific causes of LCT pegmatite-related magmatism could include: ordinary arc processes; over thickening of continental crust during collision or subduction; slab breakoff during or after collision; slab delamination before, during, or after collision; and late collisional extensional collapse and consequent decompression melting. Lithium-cesium-tantalum pegmatite deposits are present in all continents including Antarctica and in rocks spanning 3 billion years of Earth history. The global age distribution of LCT pegmatites is similar to those of common pegmatites, orogenic granites, and detrital zircons. Peak times of LCT pegmatite genesis at about 2640, 1800, 960, 485, and 310 Ma (million years before present) correspond to times of collisional orogeny and supercontinent assembly. Between these pulses were long intervals when few or no LCT pegmatites formed. These minima overlap with supercontinent tenures at ca. 2450–2225, 1625–1000, 875–725, and 250–200 Ma.Exploration and assessment for LCT pegmatites are guided by a number of observations. In frontier areas where exploration has been minimal at best, the key first-order criteria are an orogenic hinterland setting, appropriate regional metamorphic grades, and the presence of evolved granites and common granitic pegmatites. New LCT pegmatites are most likely to be found near known deposits. Pegmatites tend to show a regional mineralogical and geochemical zoning pattern with respect to the inferred parental granite, with the greatest enrichment in the more distal pegmatites. Mineral-chemical trends in common pegmatites that can point toward an evolved LCT pegmatite include: increasing rubidium in potassium feldspar, increasing lithium in white mica, increasing manganese in garnet, and increasing tantalum and manganese in columbite-tantalite. Most LCT pegmatite bodies show a distinctive internal zonation featuring four zones: border, wall, intermediate (where lithium, cesium, and tantalum are generally concentrated), and core. This zonation is expressed both in cross section and map view; thus, what may appear to be a common pegmatite may instead be the edge of a mineralized body.Neither lithium-cesium-tantalum pegmatites nor their parental granites are likely to cause serious environmental concerns. Soils and country rock surrounding a LCT pegmatite, as well as waste from mining operations, may be enriched in characteristic elements relative to global average soil and bedrock values. These elements may include lithium, cesium, tantalum, beryllium, boron, fluorine, phosphorus, manganese, gallium, rubidium, niobium, tin, and hafnium. Among this suite of elements, however, the only ones that might present a concern for environmental health are beryllium and fluorine, which are included in the U.S. Environmental Protection Agency drinking-water regulations with maximum contaminant levels of 4 micrograms per liter and 4 milligrams per liter, respectively.

  15. Content of strontium-90 and cesium-137 in a number of regions of the Baltic Sea in 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarev, L.N.; Flegontov, V.M.; Gedenov, L.I.

    1985-07-01

    The authors present the data gathered from the samples of water and bed deposits taken at various sites in the Baltic Sea, the Gulf of Riga, and the Gulf of Finland. By means of the radiochemical method using ferrocyanide-carbonate concentration, they determine strotium-90 and cesium-137 content. The authors conclude by noting an increase in the cesium-137 content in the deep waters of the Baltic Sea and in bed deposits, and by cautioning that this development commands close attention.

  16. A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites

    USGS Publications Warehouse

    Bradley, Dwight; McCauley, Andrew

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. We emphasize practical aspects of pegmatite geology that might directly or indirectly help in exploration for lithium-cesium-tantalum (LCT) pegmatites, or for assessing regions for pegmatite-related mineral resource potential. These deposits are an important link in the world’s supply chain of rare and strategic elements, accounting for about one-third of world lithium production, most of the tantalum, and all of the cesium.

  17. How can we make stable linear monoatomic chains? Gold-cesium binary subnanowires as an example of a charge-transfer-driven approach to alloying.

    PubMed

    Choi, Young Cheol; Lee, Han Myoung; Kim, Woo Youn; Kwon, S K; Nautiyal, Tashi; Cheng, Da-Yong; Vishwanathan, K; Kim, Kwang S

    2007-02-16

    On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.

  18. [Blastomogenic effect following single and chronic exposure to a mixture of cesium-137 and strontium-90].

    PubMed

    Danetskaia, E V; Lavrent'ev, L N; Zapol'skaia, N A

    1976-01-01

    The rate of tumor incidence in different rhythms of rat stomach exposure to cesium-137 and strontium-90 was analysed. The correlative values of the administered nucleids activity were selected by analogy with their content in global natural fall-out. In single exposure to the concentrations of 400 and 100 mc/per rat of cesium-137 and strontium-90 mixture accordingly, osteogenic osteosarcomas developed approximatley 4 times as frequently as in chronic administration of the same radionucleids in concentrations of 2 and 8 mc/per rat, correspondingly.

  19. High efficiency thermionic converter studies

    NASA Technical Reports Server (NTRS)

    Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, T. R.; Lieb, D.; Oettinger, P. E.; Goodale, D. B.

    1977-01-01

    Research in thermionic energy conversion technology is reported. The objectives were to produce converters suitable for use in out of core space reactors, radioisotope generators, and solar satellites. The development of emitter electrodes that operate at low cesium pressure, stable low work function collector electrodes, and more efficient means of space charge neutralization were investigated to improve thermionic converter performance. Potential improvements in collector properties were noted with evaporated thin film barium oxide coatings. Experiments with cesium carbonate suggest this substance may provide optimum combinations of cesium and oxygen for thermionic conversion.

  20. Cesium frequency standard for lasers at. Sigma. = 1. 06. mu. m

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallmeroth, K.; Letterer, R.

    1990-07-15

    High-resolution spectra of the {ital X}{sup 1}{Sigma}{sup +}{sub {ital g}}--{ital A}{sup 1}{Sigma}{sup +}{sub {ital u}} band of molecular cesium at {lambda}=1.06 {mu}m have been measured. An absolute wave-number reference table for lasers emitting at {Sigma} = 1.06 {mu}m has been established. The cesium resonances are calibrated with respect to the well-known molecular-iodine absorption lines at {Sigma} = 0.53 {mu}m. An accuracy of 10{sup {minus}7} has been achieved.

  1. A tool for selective inline quantification of co-eluting proteins in chromatography using spectral analysis and partial least squares regression.

    PubMed

    Brestrich, Nina; Briskot, Till; Osberghaus, Anna; Hubbuch, Jürgen

    2014-07-01

    Selective quantification of co-eluting proteins in chromatography is usually performed by offline analytics. This is time-consuming and can lead to late detection of irregularities in chromatography processes. To overcome this analytical bottleneck, a methodology for selective protein quantification in multicomponent mixtures by means of spectral data and partial least squares regression was presented in two previous studies. In this paper, a powerful integration of software and chromatography hardware will be introduced that enables the applicability of this methodology for a selective inline quantification of co-eluting proteins in chromatography. A specific setup consisting of a conventional liquid chromatography system, a diode array detector, and a software interface to Matlab® was developed. The established tool for selective inline quantification was successfully applied for a peak deconvolution of a co-eluting ternary protein mixture consisting of lysozyme, ribonuclease A, and cytochrome c on SP Sepharose FF. Compared to common offline analytics based on collected fractions, no loss of information regarding the retention volumes and peak flanks was observed. A comparison between the mass balances of both analytical methods showed, that the inline quantification tool can be applied for a rapid determination of pool yields. Finally, the achieved inline peak deconvolution was successfully applied to make product purity-based real-time pooling decisions. This makes the established tool for selective inline quantification a valuable approach for inline monitoring and control of chromatographic purification steps and just in time reaction on process irregularities. © 2014 Wiley Periodicals, Inc.

  2. Environmental application of cesium-137 irradiation technology: Sludges and foods

    NASA Astrophysics Data System (ADS)

    Sivinski, Jacek S.

    Several activities have been undertaken to investigate and implement the use of the military byproduct cesium-137 in ways which benefit mankind. Gamma radiation from cesium-137 has been shown to be effective in reducing pathogens in sewage sludge to levels where reuse of the material in public areas meets current regulatory criteria for protection of public health. Food irradiation at doses of 10 kGy or less have been found by international expert committees to be wholesome and safe for human consumption. Cesium-137 can be used as a means of enhancing particular properties of various food commodities by means of sterilization, insect disinfestation, delayed senescence and ripening, and sprout inhibition. This paper discusses the U.S. Department of Energy Beneficial Uses Program research and engineering history, as well as current activities and future plans, relating to both sewage sludge and food irradiation.

  3. Low level detection of Cs-135 and Cs-137 in environmental samples by ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Farmer, Orville T.; Thomas, Linda MP

    2009-10-01

    The measurement of the fission product cesium isotopes 135Cs and 137Cs at low femtogram (fg) 10-15 levels in ground water by Inductively Coupled Plasma-Mass Spectrometry ICP-MS is reported. To eliminate the potential natural barium isobaric interference on the cesium isotopes, in-line chromatographic separation of the cesium from barium was performed followed by high sensitivity ICP-MS analysis. A high efficiency desolvating nebulizer system was employed to maximize ICP-MS sensitivity ~10cps/femtogram. The three sigma detection limit measured for 135Cs was 2fg/ml (0.1uBq/ml) and for 137Cs 0.9fg/ml (0.0027Bq/ml) with analysis time of less than 30 minutes/sample. Cesium detection and 135/137 isotope ratio measurementmore » at very low femtogram levels using this method in a ground water matrix is also demonstrated.« less

  4. Cesium and Strontium Retentions Governed by Aluminosilicate Gel in Alkali-Activated Cements

    PubMed Central

    Jang, Jeong Gook; Park, Sol Moi; Lee, Haeng Ki

    2017-01-01

    The present study investigates the retention mechanisms of cesium and strontium for alkali-activated cements. Retention mechanisms such as adsorption and precipitation were examined in light of chemical interactions. Batch adsorption experiments and multi-technical characterizations by using X-ray diffraction, zeta potential measurements, and the N2 gas adsorption/desorption methods were conducted for this purpose. Strontium was found to crystalize in alkali-activated cements, while no cesium-bearing crystalline phases were detected. The adsorption kinetics of alkali-activated cements having relatively high adsorption capacities were compatible with pseudo-second-order kinetic model, thereby suggesting that it is governed by complex multistep adsorption. The results provide new insight, demonstrating that characteristics of aluminosilicate gel with a highly negatively charged surface and high micropore surface area facilitated more effective immobilization of cesium and strontium in comparison with calcium silicate hydrates. PMID:28772803

  5. Cesium injection system for negative ion duoplasmatrons

    DOEpatents

    Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J

    1978-01-01

    Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.

  6. [Radioactive cesium analysis in radiation-tainted beef by gamma-ray spectrometry with germanium semiconductor detector].

    PubMed

    Minatani, Tomiaki; Nagai, Hiroyuki; Nakamura, Masashi; Otsuka, Kimihito; Sakai, Yoshimichi

    2012-01-01

    The detection limit and precision of radioactive cesium measurement in beef by gamma-ray spectrometry with a germanium semiconductor detector were evaluated. Measurement for 2,000 seconds using a U-8 container (100 mL) provided a detection limit of radioactive cesium (the sum of 134Cs and 137Cs) of around 20 Bq/kg. The 99% confidence interval of the measurement of provisional maximum residue limit level (491 Bq/kg) samples ranged from 447 to 535 Bq/kg. Beef is heterogeneous, containing muscle and complex fat layers. Depending on the sampled parts, the measurement value is variable. It was found that radioactive cesium content of the muscle layer was clearly different from that of fat, and slight differences were observed among parts of the sample (SD=16.9 Bq/kg), even though the same region (neck block) of beef sample was analyzed.

  7. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Stephanie R.; Cooke, Gary A.

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion-exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid in themore » classification of the waste for shipping, receiving, treatment, and disposal determinations.« less

  8. Test Report for Cesium and Solids Removal from an 11.5L Composite of Archived Hanford Double Shell Tank Supernate for Off-Site Disposal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, S. R.; Cooke, G. A.

    The 222-S Laboratory blended supernate waste from Hanford Tanks 241-AN-101, 241-AN- 106, 241-AP-105, 241-AP-106, 241-AP-107, and 241-AY-101 from the hot cell archive to create a bulk composite. The composite was blended with 600 mL 19.4 M NaOH, which brought the total volume to approximately 11.5 L (3 gal). The composite was filtered to remove solids and passed through spherical resorcinol-formaldehyde ion-exchange resin columns to remove cesium. The composite masses were tracked as a treatability study. Samples collected before, during, and after the ion exchange process were characterized for a full suite of analytes (inorganic, organic, and radionuclides) to aid inmore » the classification of the waste for shipping, receiving, treatment, and disposal determinations.« less

  9. Extraction processes and solvents for recovery of cesium, strontium, rare earth elements, technetium and actinides from liquid radioactive waste

    DOEpatents

    Zaitsev, Boris N.; Esimantovskiy, Vyacheslav M.; Lazarev, Leonard N.; Dzekun, Evgeniy G.; Romanovskiy, Valeriy N.; Todd, Terry A.; Brewer, Ken N.; Herbst, Ronald S.; Law, Jack D.

    2001-01-01

    Cesium and strontium are extracted from aqueous acidic radioactive waste containing rare earth elements, technetium and actinides, by contacting the waste with a composition of a complex organoboron compound and polyethylene glycol in an organofluorine diluent mixture. In a preferred embodiment the complex organoboron compound is chlorinated cobalt dicarbollide, the polyethylene glycol has the formula RC.sub.6 H.sub.4 (OCH.sub.2 CH.sub.2).sub.n OH, and the organofluorine diluent is a mixture of bis-tetrafluoropropyl ether of diethylene glycol with at least one of bis-tetrafluoropropyl ether of ethylene glycol and bis-tetrafluoropropyl formal. The rare earths, technetium and the actinides (especially uranium, plutonium and americium), are extracted from the aqueous phase using a phosphine oxide in a hydrocarbon diluent, and reextracted from the resulting organic phase into an aqueous phase by using a suitable strip reagent.

  10. Thermal Analysis for Ion-Exchange Column System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models weremore » used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.« less

  11. SELECTIVE REMOVAL OF STRONTIUM AND CESIUM FROM SIMULATED WASTE SOLUTION WITH TITANATE ION-EXCHANGERS IN A FILTER CARTRIDGE CONFIGURATIONS-12092

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.; Martin, K.; Hobbs, D.

    2012-01-03

    Experimental results for the selective removal of strontium and cesium from simulated waste solutions with monosodium titanate and crystalline silicotitanate laden filter cartridges are presented. In these proof-of-principle tests, effective uptake of both strontium-85 and cesium-137 were observed using ion-exchangers in this filter cartridge configuration. At low salt simulant conditions, the instantaneous decontamination factor for strontium-85 with monosodium titanate impregnated filter membrane cartridges measured 26, representing 96% strontium-85 removal efficiency. On the other hand, the strontium-85 instantaneous decontamination factor with co-sintered active monosodium titanate cartridges measured 40 or 98% Sr-85 removal efficiency. Strontium-85 removal with the monosodium titanate impregnated membranemore » cartridges and crystalline silicotitanate impregnated membrane cartridges, placed in series arrangement, produced an instantaneous decontamination factor of 41 compared to an instantaneous decontamination factor of 368 for strontium-85 with co-sintered active monosodium titanate cartridges and co-sintered active crystalline silicotitanate cartridges placed in series. Overall, polyethylene co-sintered active titanates cartridges performed as well as titanate impregnated filter membrane cartridges in the uptake of strontium. At low ionic strength conditions, there was a significant uptake of cesium-137 with co-sintered crystalline silicotitanate cartridges. Tests results with crystalline silicotitanate impregnated membrane cartridges for cesium-137 decontamination are currently being re-evaluated. Based on these preliminary findings we conclude that incorporating monosodium titanate and crystalline silicotitanate sorbents into membranes represent a promising method for the semicontinuous removal of radioisotopes of strontium and cesium from nuclear waste solutions.« less

  12. A Cesium fountain frequency standard: Preliminary results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clairon, A.; Laurent, P.; Santarelli, G.

    1994-12-31

    Laser cooling of atoms has opened up new possibilities in the field of atomic frequency standards. A Cesium atomic fountain, first proposed by Zacharias in 1953, is now feasible: the atoms, first cooled by six laser beams, are launched upward using laser light, pass once through a microwave cavity, continue their ballistic flight and then fall through the same cavity. The long time between the two microwave interactions leads to a Ramsey resonance much narrower than in conventional Cs clocks using thermal atomic beams. The stability and accuracy of such a cesium fountain am very attractive. The use of diodemore » lasers to cool, launch and detect cesium atoms in a low cesium pressure cell allows the construction of a simple and reliable atomic fountain frequency standard. A fountain frequency standard is now in operation at LPTF. A Ramsey resonance as narrow as 0.8 Hz has been obtained. A few days of continuous operation are routinely obtained. In closed loop operation the fountain frequency standard is continuously monitored against a H maser allowing an evaluation of the accuracy of the device. The present short- term frequency stability is about 5.10{sup -13} {tau}{sup -1/2} limited only by the frequency noise of the microwave source. We intend to present a preliminary evaluation of this new standard with a discussion of the major systematic effects which determine the accuracy. The expected accuracy will be at 10-14 level. In addition, we will present a description of the whole design of the cesium fountain.« less

  13. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.

    PubMed

    Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C

    2008-05-12

    Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and drug products. Our results suggest that certain physiochemical properties affect the initial binding capacity and the overall binding capacity of PB APIs and drug products during conditions that simulated gastric and GI residence time. These physiochemical properties can be utilized as quality attributes to monitor and predict drug product quality under certain manufacturing and storage conditions and may be utilized to enhance the clinical efficacy of PB.

  14. Cs₂CO₃-Initiated Trifluoro-Methylation of Chalcones and Ketones for Practical Synthesis of Trifluoromethylated Tertiary Silyl Ethers.

    PubMed

    Dong, Cheng; Bai, Xing-Feng; Lv, Ji-Yuan; Cui, Yu-Ming; Cao, Jian; Zheng, Zhan-Jiang; Xu, Li-Wen

    2017-05-18

    It was found that 1,2-trifluoromethylation reactions of ketones, enones, and aldehydes were easily accomplished using the Prakash reagent in the presence of catalytic amounts of cesium carbonate, which represents an experimentally convenient, atom-economic process for this anionic trifluoromethylation of non-enolisable aldehydes and ketones.

  15. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design.

    PubMed

    Xu, Zhihao; Li, Jason; Zhou, Joe X

    2012-01-01

    Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.

  16. Influence of the Dirac-Hartree-Fock starting potential on the parity-nonconserving electric-dipole-transition amplitudes in cesium and thallium

    NASA Technical Reports Server (NTRS)

    Perger, W. F.; Das, B. P.

    1987-01-01

    The parity-nonconserving electric-dipole-transition amplitudes for the 6s1/2-7s1/2 transition in cesium and the 6p1/2-7p1/2 transition in thallium have been calculated by the Dirac-Hartree-Fock method. The effects of using different Dirac-Hartree-Fock atomic core potentials are examined and the transition amplitudes for both the length and velocity gauges are given. It is found that the parity-nonconserving transition amplitudes exhibit a greater dependence on the starting potential for thallium than for cesium.

  17. Using Cesium for 3D Thematic Visualisations on the Web

    NASA Astrophysics Data System (ADS)

    Gede, Mátyás

    2018-05-01

    Cesium (http://cesiumjs.org) is an open source, WebGL-based JavaScript library for virtual globes and 3D maps. It is an excellent tool for 3D thematic visualisations, but to use its full functionality it has to be feed with its own file format, CZML. Unfortunately, this format is not yet supported by any major GIS software. This paper intro- duces a plugin for QGIS, developed by the author, which facilitates the creation of CZML file for various types of visualisations. The usability of Cesium is also examined in various hardware/software environments.

  18. INVESTIGATIONS ON THE BIOLOGICAL BEHAVIOR OF RADIOACTIVE FISSION PRODUCTS IN PREGNANT ANIMALS. III. ENRICHMENT OF RADIOCESIUM IN NURSING RATS AND THE MODIFICATION OF THE Cs RETENTION IN ORGANS OF THE MOTHER DURING THE LACTATION PERIOD (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriegel, H.; Weber, E.

    In a continuation of the investigation on the placental turnover of radiocesium in the rat, the changes of the postpartum cesium content in the young nursing animals caused by the amounts of cesium, which are excreted with the mother-milk, are described. The cesium content in the organs of the mother at the end of the lactation period is decreased by 50% in contrast to the un- pregnant controls. (auth)

  19. The biological impacts of ingested radioactive materials on the pale grass blue butterfly

    NASA Astrophysics Data System (ADS)

    Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Tanahara, Akira; Otaki, Joji M.

    2014-05-01

    A massive amount of radioactive materials has been released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident, but its biological impacts have rarely been examined. Here, we have quantitatively evaluated the relationship between the dose of ingested radioactive cesium and mortality and abnormality rates using the pale grass blue butterfly, Zizeeria maha. When larvae from Okinawa, which is likely the least polluted locality in Japan, were fed leaves collected from polluted localities, mortality and abnormality rates increased sharply at low doses in response to the ingested cesium dose. This dose-response relationship was best fitted by power function models, which indicated that the half lethal and abnormal doses were 1.9 and 0.76 Bq per larva, corresponding to 54,000 and 22,000 Bq per kilogram body weight, respectively. Both the retention of radioactive cesium in a pupa relative to the ingested dose throughout the larval stage and the accumulation of radioactive cesium in a pupa relative to the activity concentration in a diet were highest at the lowest level of cesium ingested. We conclude that the risk of ingesting a polluted diet is realistic, at least for this butterfly, and likely for certain other organisms living in the polluted area.

  20. The biological impacts of ingested radioactive materials on the pale grass blue butterfly.

    PubMed

    Nohara, Chiyo; Hiyama, Atsuki; Taira, Wataru; Tanahara, Akira; Otaki, Joji M

    2014-05-15

    A massive amount of radioactive materials has been released into the environment by the Fukushima Dai-ichi Nuclear Power Plant accident, but its biological impacts have rarely been examined. Here, we have quantitatively evaluated the relationship between the dose of ingested radioactive cesium and mortality and abnormality rates using the pale grass blue butterfly, Zizeeria maha. When larvae from Okinawa, which is likely the least polluted locality in Japan, were fed leaves collected from polluted localities, mortality and abnormality rates increased sharply at low doses in response to the ingested cesium dose. This dose-response relationship was best fitted by power function models, which indicated that the half lethal and abnormal doses were 1.9 and 0.76 Bq per larva, corresponding to 54,000 and 22,000 Bq per kilogram body weight, respectively. Both the retention of radioactive cesium in a pupa relative to the ingested dose throughout the larval stage and the accumulation of radioactive cesium in a pupa relative to the activity concentration in a diet were highest at the lowest level of cesium ingested. We conclude that the risk of ingesting a polluted diet is realistic, at least for this butterfly, and likely for certain other organisms living in the polluted area.

  1. Ultrathin, bioresorbable polymer sirolimus-eluting stents versus thin, durable polymer everolimus-eluting stents in patients undergoing coronary revascularisation (BIOFLOW V): a randomised trial.

    PubMed

    Kandzari, David E; Mauri, Laura; Koolen, Jacques J; Massaro, Joseph M; Doros, Gheorghe; Garcia-Garcia, Hector M; Bennett, Johan; Roguin, Ariel; Gharib, Elie G; Cutlip, Donald E; Waksman, Ron

    2017-10-21

    The development of coronary drug-eluting stents has included use of new metal alloys, changes in stent architecture, and use of bioresorbable polymers. Whether these advancements improve clinical safety and efficacy has not been shown in previous randomised trials. We aimed to examine the clinical outcomes of a bioresorbable polymer sirolimus-eluting stent compared with a durable polymer everolimus-eluting stent in a broad patient population undergoing percutaneous coronary intervention. BIOFLOW V was an international, randomised trial done in patients undergoing elective and urgent percutaneous coronary intervention in 90 hospitals in 13 countries (Australia, Belgium, Canada, Denmark, Germany, Hungary, Israel, the Netherlands, New Zealand, South Korea, Spain, Switzerland, and the USA). Eligible patients were those aged 18 years or older with ischaemic heart disease undergoing planned stent implantation in de-novo, native coronary lesions. Patients were randomly assigned (2:1) to either an ultrathin strut (60 μm) bioresorbable polymer sirolimus-eluting stent or to a durable polymer everolimus-eluting stent. Randomisation was via a central web-based data capture system (mixed blocks of 3 and 6), and stratified by study site. The primary endpoint was 12-month target lesion failure. The primary non-inferiority comparison combined these data from two additional randomised trials of bioresorbable polymer sirolimus-eluting stent and durable polymer everolimus-eluting stent with Bayesian methods. Analysis was by intention to treat. The trial is registered with ClinicalTrials.gov, number NCT02389946. Between May 8, 2015, and March 31, 2016, 4772 patients were recruited into the study. 1334 patients met inclusion criteria and were randomly assigned to treatment with bioresorbable polymer sirolimus-eluting stents (n=884) or durable polymer everolimus-eluting stents (n=450). 52 (6%) of 883 patients in the bioresorbable polymer sirolimus-eluting stent group and 41 (10%) of 427 patients in the durable polymer everolimus-eluting stent group met the 12-month primary endpoint of target lesion failure (95% CI -6·84 to -0·29, p=0·0399), with differences in target vessel myocardial infarction (39 [5%] of 831 patients vs 35 [8%] of 424 patients, p=0·0155). The posterior probability that the bioresorbable polymer sirolimus-eluting stent is non-inferior to the durable polymer everolimus-eluting stent was 100% (Bayesian analysis, difference in target lesion failure frequency -2·6% [95% credible interval -5·5 to 0·1], non-inferiority margin 3·85%, n=2208). The outperformance of the ultrathin, bioresorbable polymer sirolimus-eluting stent over the durable polymer everolimus-eluting stent in a complex patient population undergoing percutaneous coronary intervention suggests a new direction in improving next generation drug-eluting stent technology. BIOTRONIK. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Titanium-nitride-oxide-coated coronary stents: insights from the available evidence.

    PubMed

    Karjalainen, Pasi P; Nammas, Wail

    2017-06-01

    Coating of stent surface with a biocompatible material is suggested to improve stent safety profile. A proprietary process was developed to coat titanium-nitride-oxide on the stent surface, based on plasma technology that uses the nano-synthesis of gas and metal. Preclinical in vitro and in vivo investigation confirmed blood compatibility of titanium (nitride-) oxide films. Titanium-nitride-oxide-coated stents demonstrated a better angiographic outcome, compared with bare-metal stents at mid-term follow-up; however, they failed to achieve non-inferiority for angiographic outcome versus second-generation drug-eluting stents. Observational studies showed adequate clinical outcome at mid-term follow-up. Non-randomized studies showed an outcome of titanium-nitride-oxide-coated stents comparable to - or better than - first-generation drug-eluting stents at long-term follow-up. Two randomized controlled trials demonstrated comparable efficacy outcome, and a better safety outcome of titanium-nitride-oxide-coated stents versus drug-eluting stents at long-term follow-up. Evaluation by optical coherence tomography at mid-term follow-up revealed better neointimal strut coverage associated with titanium-nitride-oxide-coated stents versus drug-eluting stents; yet, neointimal hyperplasia thickness was greater. Key messages Stents coated with titanium-nitride-oxide demonstrated biocompatibility in preclinical studies: they inhibit platelet and fibrin deposition, and reduce neointimal growth. In observational and non-randomized studies, titanium-nitride-oxide-coated stents were associated with adequate safety and efficacy outcome. In randomized trials of patients with acute coronary syndrome, titanium-nitride-oxide-coated stents were associated with a better safety outcome, compared with drug-eluting stents; efficacy outcome was comparable.

  3. High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device.

    PubMed

    Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja

    2016-11-01

    We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Klein, R.; Adler, A.; Beanlands, R. S.; de Kemp, R. A.

    2007-02-01

    A rubidium-82 (82Rb) elution system is described for use with positron emission tomography. Due to the short half-life of 82Rb (76 s), the system physics must be modelled precisely to account for transport delay and the associated activity decay and dispersion. Saline flow is switched between a 82Sr/82Rb generator and a bypass line to achieve a constant-activity elution of 82Rb. Pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control (PCC) algorithm is developed which produces a constant-activity elution within the constraints of long feedback delay and short elution time. The system model parameters are adjusted through a self-tuning algorithm to minimize error versus the requested time-activity profile. The system is self-calibrating with 2.5% repeatability, independent of generator activity and elution flow rate. Accurate 30 s constant-activity elutions of 10-70% of the total generator activity are achieved using both control methods. The combined PWM-PCC method provides significant improvement in precision and accuracy of the requested elution profiles. The 82Rb elution system produces accurate and reproducible constant-activity elution profiles of 82Rb activity, independent of parent 82Sr activity in the generator. More reproducible elution profiles may improve the quality of clinical and research PET perfusion studies using 82Rb.

  5. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography.

    PubMed

    Klein, R; Adler, A; Beanlands, R S; Dekemp, R A

    2007-02-07

    A rubidium-82 ((82)Rb) elution system is described for use with positron emission tomography. Due to the short half-life of (82)Rb (76 s), the system physics must be modelled precisely to account for transport delay and the associated activity decay and dispersion. Saline flow is switched between a (82)Sr/(82)Rb generator and a bypass line to achieve a constant-activity elution of (82)Rb. Pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control (PCC) algorithm is developed which produces a constant-activity elution within the constraints of long feedback delay and short elution time. The system model parameters are adjusted through a self-tuning algorithm to minimize error versus the requested time-activity profile. The system is self-calibrating with 2.5% repeatability, independent of generator activity and elution flow rate. Accurate 30 s constant-activity elutions of 10-70% of the total generator activity are achieved using both control methods. The combined PWM-PCC method provides significant improvement in precision and accuracy of the requested elution profiles. The (82)Rb elution system produces accurate and reproducible constant-activity elution profiles of (82)Rb activity, independent of parent (82)Sr activity in the generator. More reproducible elution profiles may improve the quality of clinical and research PET perfusion studies using (82)Rb.

  6. In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Liu, Yang; Luo, Rifang; Chen, Si; Li, Xin; Yuan, Shuheng; Wang, Jin; Huang, Nan

    2015-02-01

    Drug-eluting stents (DESs) have been an important breakthrough for interventional cardiology applications since 2002. Though successful in reducing restenosis, some adverse clinical problems still emerged, which were mostly caused by the bare-metal stents and non-biodegradable polymer coatings, associated with the delayed endothelialization process. In this study, dexamethasone-loaded poly (lactic-co-glycolic acid) (PLGA) coatings were developed to explore the potential application of dexamethasone-eluting stents. Dexamethasone-eluting PLGA stents were prepared using ultrasonic atomization spray method. For other tests like stability and cytocompatibility and hemocompatibility tests, dexamethasone loaded coatings were deposited on 316L SS wafers. Fourier transform-infrared spectroscopy (FT-IR) results demonstrated that there was no chemical reaction between PLGA and dexamethasone. The balloon expansion experiment and surface morphology observation suggested that the stent coatings were smooth and uniform, and could also withstand the compressive and tensile strains imparted without cracking after stent expansion. The drug release behavior in vitro indicated that dexamethasone existed burst release within 1 day, but it presented linear release characteristics after 6 days. In vitro platelets adhesion, activation test and APTT test were also done, which showed that after blending dexamethasone into PLGA, the hemocompatibility was improved. Besides, dexamethasone and dexamethasone-loaded PLGA coatings could significantly inhibit the attachment and proliferation of smooth muscle cells.

  7. Absolute configuration of 2,2',3,3',6-pentachlorinatedbiphenyl (PCB 84) atropisomers.

    PubMed

    Li, Xueshu; Parkin, Sean R; Lehmler, Hans-Joachim

    2017-05-23

    Nineteen polychlorinated biphenyl (PCB) congeners, such as 2,2',3,3',6-pentachlorobiphenyl (PCB 84), display axial chirality because they form stable rotational isomers, or atropisomers, that are non-superimposable mirror images of each other. Although chiral PCBs undergo atropselective biotransformation and atropselectively alter biological processes, the absolute structure of only a few PCB atropisomers has been determined experimentally. To help close this knowledge gap, pure PCB 84 atropisomers were obtained by semi-preparative liquid chromatography with two serially connected Nucleodex β-PM columns. The absolute configuration of both atropisomers was determined by X-ray single-crystal diffraction. The PCB 84 atropisomer eluting first and second on the Nucleodex β-PM column correspond to (aR)-(-)-PCB 84 and (aS)-(+)-PCB 84, respectively. Enantioselective gas chromatographic analysis with the β-cyclodextrin-based CP-Chirasil-Dex CB gas chromatography column showed the same elution order as the Nucleodex β-PM column. Based on earlier reports, the atropisomers eluting first and second on the BGB-172 gas chromatography column are (aR)-(-)-PCB 84 and (aS)-(+)-PCB 84, respectively. An inversion of the elution order is observed on the Cyclosil-B gas chromatography and Cellulose-3 liquid chromatography columns. These results advance the interpretation of environmental and human biomonitoring as well as toxicological studies.

  8. Discontinuous pH gradient-mediated separation of TiO2-enriched phosphopeptides

    PubMed Central

    Park, Sung-Soo; Maudsley, Stuart

    2010-01-01

    Global profiling of phosphoproteomes has proven a great challenge due to the relatively low stoichiometry of protein phosphorylation and poor ionization efficiency in mass spectrometers. Effective, physiologically-relevant, phosphoproteome research relies on the efficient phosphopeptide enrichment from complex samples. Immobilized metal affinity chromatography and titanium dioxide chromatography (TOC) can greatly assist selective phosphopeptide enrichment. However, the complexity of resultant enriched samples is often still high, suggesting that further separation of enriched phosphopeptides is required. We have developed a pH-gradient elution technique for enhanced phosphopeptide identification in conjunction with TOC. Using this process, we have demonstrated its superiority to the traditional ‘one-pot’ strategies for differential protein identification. Our technique generated a highly specific separation of phosphopeptides by an applied pH-gradient between 9.2 and 11.3. The most efficient elution range for high-resolution phosphopeptide separation was between pH 9.2 and 9.4. High-resolution separation of multiply-phosphorylated peptides was primarily achieved using elution ranges > pH 9.4. Investigation of phosphopeptide sequences identified in each pH fraction indicated that phosphopeptides with phosphorylated residues proximal to acidic residues, including glutamic acid, aspartic acid, and other phosphorylated residues, were preferentially eluted at higher pH values. PMID:20946866

  9. Cesium-diode performances from the 1963-to-1971 Thermionic Conversion Specialist Conferences

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1972-01-01

    Indexes and summaries of the conference papers containing cesium-diode results are presented. Lists of converter materials, geometries, conditions, outputs, and lifetimes accompany the references. Simple chemical designations for emitters, collectors, and additives direct the reader to appropriate selections.

  10. Lesson from the stoichiometry determination of the cohesin complex: a short protease mediated elution increases the recovery from cross-linked antibody-conjugated beads.

    PubMed

    Holzmann, Johann; Fuchs, Johannes; Pichler, Peter; Peters, Jan-Michael; Mechtler, Karl

    2011-02-04

    Affinity purification of proteins using antibodies coupled to beads and subsequent mass spectrometric analysis has become a standard technique for the identification of protein complexes. With the recent transfer of the isotope dilution mass spectrometry principle (IDMS) to the field of proteomics, quantitative analyses-such as the stoichiometry determination of protein complexes-have become achievable. Traditionally proteins were eluted from antibody-conjugated beads using glycine at low pH or using diluted acids such as HCl, TFA, or FA, but elution was often found to be incomplete. Using the cohesin complex and the anaphase promoting complex/cyclosome (APC/C) as examples, we show that a short 15-60 min predigestion with a protease such as LysC (modified on-bead digest termed protease elution) increases the elution efficiency 2- to 3-fold compared to standard acid elution protocols. While longer incubation periods-as performed in standard on-bead digestion-led to partial proteolysis of the cross-linked antibodies, no or only insignificant cleavage was observed after 15-60 min protease mediated elution. Using the protease elution method, we successfully determined the stoichiometry of the cohesin complex by absolute quantification of the four core subunits using LC-SRM analysis and 19 reference peptides generated with the EtEP strategy. Protease elution was 3-fold more efficient compared to HCl elution, but measurements using both elution techniques are in agreement with a 1:1:1:1 stoichiometry. Furthermore, using isoform specific reference peptides, we determined the exact STAG1:STAG2 stoichiometry within the population of cohesin complexes. In summary, we show that the protease elution protocol increases the recovery from affinity beads and is compatible with quantitative measurements such as the stoichiometry determination of protein complexes.

  11. Study on the Volatility of Cesium in Dry Ashing Pretreatment and Dissolution of Ash by Microwave Digestion System - 13331

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kwang-Soon; Lee, Chang Heon; Ahn, Hong-Joo

    2013-07-01

    Based on the regulation of the activity concentration of Cs-137, Co-58, Co-60, Fe-55, Ni-59, Ni-63, Sr-90, Nb-94, and Tc-99, and the total alpha from the radioactive waste acceptance criteria, the measurement of the activity concentration of these nuclides in low and intermediate levels of radioactive waste such as in paper, cotton, vinyl and plastic samples was investigated. A dry ashing method was applied to obtain a concentration effect of the samples. Owing to the temperature dependence of the volatility for cesium, the temperature of 300 to 650 deg. C was examined. It was found that 450 deg. C is themore » optimum dry ashing temperature. After dry ashing, the produced ash was dissolved with HNO{sub 3}, HCl, and HF by a high-performance microwave digestion system. The ash sample, for the most part, was completely dissolved with 10 mL of HNO{sub 3}, 4 mL of HCl, and 0.25 mL of HF by a high-performance microwave digestion system using a nova high temperature rotor at 250 deg. C for 90 min until reaching 0.2 g. To confirm the reliability of cesium loss after the performance of the dry ashing procedure, a cesium standard solution for AAS and a Cs-137 standard solution for gamma spectrometry were added to a paper towel or a planchet of stainless steel, respectively. Cesium was measured by AAS, ICP-MS, and gamma spectrometry. The volatility of cesium did not occur until 450 deg. C ashing. (authors)« less

  12. Tungstate-based glass-ceramics for the immobilization of radio cesium

    NASA Astrophysics Data System (ADS)

    Drabarek, Elizabeth; McLeod, Terry I.; Hanna, John V.; Griffith, Christopher S.; Luca, Vittorio

    2009-02-01

    The preparation of tungstate-containing glass-ceramic composites (GCC) for the potential immobilization of radio cesium has been considered. The GCC materials were prepared by blending two oxide precursor compositions in various proportions. These included a preformed Cs-containing hexagonal tungsten bronze (HTB) phase (Cs 0.3Ti 0.2W 0.8O 3, P6 3/ mcm) and a blend of silica and other oxides. The use of the HTB phase was motivated on the assumption that a HTB-based adsorbent could be used to remove cesium directly from aqueous high level liquid waste feeds. In the absence of the HTB, glass-ceramics were relatively easily prepared from the Cs-containing glass-forming oxide blend. On melting the mixture a relative complex GCC phase assemblage formed. The principal components of this phase assemblage were determined using X-ray powder diffraction, 133Cs MAS-NMR, and cross-sectional SEM and included glass, various zeolites, scheelite (CaWO 4) and a range of other oxide phases and Cs-containing aluminosilicate. Importantly, under no circumstance was cesium partitioned into the glass phase irrespective of whether or not the composition included the preformed Cs-containing HTB compound. For compositions containing the HTB, cesium was partitioned into one of four major phases including zeolite; Cs-silica-tungstate bronze, pollucite (CsAlSi 2O 6), and an aluminosilicate with an Al/Si ratio close to one. The leach resistance of all materials was evaluated and related to the cesium distribution within the GCC phase assemblages. In general, the GCCs prepared from the HTB had superior durability compared with materials not containing tungsten. Indeed the compositions in many cases had leach resistances comparable to the best ceramics or glass materials.

  13. Drug-eluting versus bare-metal coronary stents: where are we now?

    PubMed

    Amoroso, Nicholas S; Bangalore, Sripal

    2012-11-01

    Drug-eluting stents have dramatically reduced the risk of restenosis, but concerns of an increased risk of stent thrombosis have provided uncertainty about their use. Recent studies have continued to show improved procedural and clinical outcomes with drug-eluting stents both in the setting of acute coronary syndromes and stable coronary artery disease. Newer generation drug-eluting stents (especially everolimus-eluting stents) have been shown to be not only efficacious but also safe with reduced risk of stent thrombosis when compared with bare-metal stents, potentially changing the benchmark for stent safety from bare-metal stents to everolimus-eluting stents. While much progress is being made in the development of bioabsorbable polymer stents, nonpolymer stents and bioabsorbable stent technology, it remains to be seen whether these stents will have superior safety and efficacy outcomes compared with the already much improved rates of revascularization and stent thrombosis seen with newer generation stents (everolimus-eluting stents and resolute zotarolimus-eluting stents).

  14. Biodegradable-polymer drug-eluting stents vs. bare metal stents vs. durable-polymer drug-eluting stents: a systematic review and Bayesian approach network meta-analysis.

    PubMed

    Kang, Si-Hyuck; Park, Kyung Woo; Kang, Do-Yoon; Lim, Woo-Hyun; Park, Kyung Taek; Han, Jung-Kyu; Kang, Hyun-Jae; Koo, Bon-Kwon; Oh, Byung-Hee; Park, Young-Bae; Kandzari, David E; Cohen, David J; Hwang, Seung-Sik; Kim, Hyo-Soo

    2014-05-01

    The aim of this study was to compare the safety and efficacy of biodegradable-polymer (BP) drug-eluting stents (DES), bare metal stents (BMS), and durable-polymer DES in patients undergoing coronary revascularization, we performed a systematic review and network meta-analysis using a Bayesian framework. Study stents included BMS, paclitaxel-eluting (PES), sirolimus-eluting (SES), endeavor zotarolimus-eluting (ZES-E), cobalt-chromium everolimus-eluting (CoCr-EES), platinium-chromium everolimus-eluting (PtCr-EES), resolute zotarolimus-eluting (ZES-R), and BP biolimus-eluting stents (BP-BES). After a systematic electronic search, 113 trials with 90 584 patients were selected. The principal endpoint was definite or probable stent thrombosis (ST) defined according to the Academic Research Consortium within 1 year. Biodegradable polymer-biolimus-eluting stents [OR, 0.56; 95% credible interval (CrI), 0.33-0.90], SES (OR, 0.53; 95% CrI, 0.38-0.73), CoCr-EES (OR, 0.34; 95% CrI, 0.23-0.52), and PtCr-EES (OR, 0.31; 95% CrI, 0.10-0.90) were all superior to BMS in terms of definite or probable ST within 1 year. Cobalt-chromium everolimus-eluting stents demonstrated the lowest risk of ST of all stents at all times after stent implantation. Biodegradable polymer-biolimus-eluting stents was associated with a higher risk of definite or probable ST than CoCr-EES (OR, 1.72; 95% CrI, 1.04-2.98). All DES reduced the need for repeat revascularization, and all but PES reduced the risk of myocardial infarction compared with BMS. All DESs but PES and ZES-E were superior to BMS in terms of ST within 1 year. Cobalt-chromium everolimus-eluting stents was safer than any DES even including BP-BES. Our results suggest that not only the biodegradability of polymer, but the optimal combination of stent alloy, design, strut thickness, polymer, and drug all combined determine the safety of DES.

  15. [Kinetics of decamethoxine, an antimicrobial agent].

    PubMed

    Paliĭ, G K; Nazarchuk, A A; Kulakov, A I; Nazarchuk, G G; Paliĭ, D V; Bereza, B N; Oleĭnik, D P

    2014-01-01

    The kinetics of decamethoxine liberation from medical antimicrobial textiles was studied. The elution of decamethoxine was shown to be a complicated diffusive-kinetic process dependent on the exposure and concentration of decamethoxine.

  16. Metal elution from Ni- and Fe-based alloy reactors under hydrothermal conditions.

    PubMed

    Faisal, Muhammad; Quitain, Armando T; Urano, Shin-Ya; Daimon, Hiroyuki; Fujie, Koichi

    2004-05-20

    Elution of metals from Ni- and Fe-based alloy (i.e. Inconel 625 and SUS 316) under hydrothermal conditions was investigated. Results showed that metals could be eluted even in a short contact time. At subcritical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo, and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. Several factors including temperature and contact time were found to affect elution behavior. The presence of air in the fluid even promoted elution under subcritical conditions.

  17. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    PubMed

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  18. Application of quality by design concept to develop a dual gradient elution stability-indicating method for cloxacillin forced degradation studies using combined mixture-process variable models.

    PubMed

    Zhang, Xia; Hu, Changqin

    2017-09-08

    Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Concentration of perrhenate and pertechnetate solutions

    DOEpatents

    Knapp, F.F.; Beets, A.L.; Mirzadeh, S.; Guhlke, S.

    1998-03-17

    A method is described for preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: (a) providing a generator column loaded with a composition containing a parent radioisotope; (b) eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate; (c) eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; (d) eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and (e) eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution. 1 fig.

  20. Concentration of perrhenate and pertechnetate solutions

    DOEpatents

    Knapp, Furn F.; Beets, Arnold L.; Mirzadeh, Saed; Guhlke, Stefan

    1998-01-01

    A method of preparing a concentrated solution of a carrier-free radioisotope which includes the steps of: a. providing a generator column loaded with a composition containing a parent radioisotope; b. eluting the generator column with an eluent solution which includes a salt of a weak acid to elute a target daughter radioisotope from the generator column in a first eluate. c. eluting a cation-exchange column with the first eluate to exchange cations of the salt for hydrogen ions and to elute the target daughter radioisotope and a weak acid in a second eluate; d. eluting an anion-exchange column with the second eluate to trap and concentrate the target daughter radioisotope and to elute the weak acid solution therefrom; and e. eluting the concentrated target daughter radioisotope from the anion-exchange column with a saline solution.

  1. Management of the Cs/Sr Capsule Project at the Hanford Site. Technology Readiness Assessment Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Federal Project Director (FPD) for the U.S. Department of Energy (DOE), Richland Operations Office (RL) Waste Management and D&D Division (WMD) requested a Technology Readiness Assessment (TRA) for the Management of the Cesium/Strontium Capsule Storage Project (MCSCP) at the Waste Encapsulation and Storage Facility (WESF) on the Hanford Site in Washington State. The MCSCP CD-1 TRA was performed by a team selected in collaboration between the Office of Environmental Management (EM) Chief Engineer (EM-3.3) and RL, WMD FPD. The TRA Team included subject matter and technical experts having experience in cask storage, process engineering, and system design who weremore » independent of the MCSCP, and the team was led by the Director of Operations and Processes from the EM Chief Engineer's Office (EM-3.32). Movement of the Cs/Sr capsules to dry storage, based on information from the conceptual design, involves (1) capsule packaging, (2) capsule transfer, and (3) capsule storage. The project has developed a conceptual process, described in 30059-R-02, "NAC Conceptual Design Report for the Management of the Cesium and Strontium Capsules Project", which identifies the five major activities in the process to complete the transfer from storage pool to pad-mounted cask storage. The process, shown schematically in Figure 1, is comprised of the following process steps: (1) loading capsules into the UCS; (2) UCS processing; (3) UCS insertion into the TSC Basket; (4) cask transport from WESF to CSA and (5) extended storage at the CSA.« less

  2. Nano-scale investigations of electric-dipole-layer enhanced field and thermionic emission from high current density cathodes

    NASA Astrophysics Data System (ADS)

    Vlahos, Vasilios

    Cesium iodide coated graphitic fibers and scandate cathodes are two important electron emission technologies. The coated fibers are utilized as field emitters for high power microwave sources. The scandate cathodes are promising thermionic cathode materials for pulsed power vacuum electron devices. This work attempts to understand the fundamental physical and chemical relationships between the atomic structure of the emitting cathode surfaces and the superior emission characteristics of these cathodes. Ab initio computational modeling in conjunction with experimental investigations was performed on coated fiber cathodes to understand the origin of their very low turn on electric field, which can be reduced by as much as ten-fold compared to uncoated fibers. Copious amounts of cesium and oxygen were found co-localized on the fiber, but no iodine was detected on the surface. Additional ab initio studies confirmed that cesium oxide dimers could lower the work function significantly. Surface cesium oxide dipoles are therefore proposed as the source of the observed reduction in the turn on electric field. It is also proposed that emission may be further enhanced by secondary electrons from cesium oxide during operation. Thermal conditioning of the coated cathode may be a mechanism by which surface cesium iodide is converted into cesium oxide, promoting the depletion of iodine by formation of volatile gas. Ab initio modeling was also utilized to investigate the stability and work functions of scandate structures. The work demonstrated that monolayer barium-scandium-oxygen surface structures on tungsten can dramatically lower the work function of the underlying tungsten substrate from 4.6 eV down to 1.16 eV, by the formation of multiple surface dipoles. On the basis of this work, we conclude that high temperature kinetics force conventional dispenser cathodes (barium-oxygen monolayers on tungsten) to operate in a non-equilibrium compositional steady state with higher than optimal work functions of ˜2 eV. We hypothesize that scandium enables the barium-oxygen surface monolayer kinetics to access a more thermodynamically stable phase with reported work functions as low as ˜1.3 eV.

  3. Sequential Elution of Essential Oil Constituents during Steam Distillation of Hops (Humulus lupulus L.) and Influence on Oil Yield and Antimicrobial Activity.

    PubMed

    Jeliazkova, Ekaterina; Zheljazkov, Valtcho D; Kačániova, Miroslava; Astatkie, Tess; Tekwani, Babu L

    2018-06-07

    The profile and bioactivity of hops (Humulus lupulus L.) essential oil, a complex natural product extracted from cones via steam distillation, depends on genetic and environmental factors, and may also depend on extraction process. We hypothesized that compound mixtures eluted sequentially and captured at different timeframes during the steam distillation process of whole hop cones would have differential chemical and bioactivity profiles. The essential oil was collected sequentially at 8 distillation time (DT) intervals: 0-2, 2-5, 5-10, 10-30, 30-60, 60-120, 120-180, and 180-240 min. The control was a 4-h non-interrupted distillation. Nonlinear regression models described the DT and essential oil compounds relationship. Fractions yielded 0.035 to 0.313% essential oil, while control yielded 1.47%. The oil eluted during the first hour was 83.2%, 9.6% during the second hour, and only 7.2% during the second half of the distillation. Essential oil (EO) fractions had different chemical profile. Monoterpenes were eluted early, while sequiterpenes were eluted late. Myrcene and linalool were the highest in 0-2 min fraction, β-caryophyllene, β-copaene, β-farnesene, and α-humulene were highest in fractions from middle of distillation, whereas α- bergamotene, γ-muurolene, β- and α-selinene, γ- and δ-cadinene, caryophyllene oxide, humulne epoxide II, τ-cadinol, and 6-pentadecen-2-one were highest in 120-180 or 180-240 min fractions. The Gram-negative Escherichia coli was strongly inhibited by essential oil fractions from 2-5 min and 10-30 min, followed by oil fraction from 0-2 min. The strongest inhibition activity against Gram-negative Yersinia enterocolitica, and Gram-positive Clostridium perfringens, Enterococcus faecalis, and Staphylococcus aureus subs. aureus was observed with the control essential oil. This is the first study to describe significant activity of hops essential oils against Trypanosoma brucei, a parasitic protozoan that causes African trypanosomiasis (sleeping sickness in humans and nagana in other animals). Hops essential oil fractions or whole oil may be used as antimicrobial agents or for the development of new drugs.

  4. Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum.

    PubMed

    Chakraborty, Dipjyoti; Maji, Samir; Bandyopadhyay, Abhijit; Basu, Sukalyan

    2007-11-01

    Mucilaginous seeds of Ocimum basilicum were used in uptake studies with cesium-137 and strontium-90. Results showed that uptake was dependent on the structural integrity of the mucilage fibrils. Water imbibed seeds showed higher adsorption of both 137Cs and 90Sr in comparison to seeds pretreated with NaOH, HCl and Na-periodate solution. The uptake was pH dependent and while some divalent metal ions had no or little detrimental effect, the alkali metal ions Li+, Na+ and K+ decreased the uptake. The maximum adsorption capacity was 160 mg cesium g(-1) and 247 mg strontium g(-1) seed dry weight.

  5. Performance of preproduction model cesium beam frequency standards for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Levine, M. W.

    1978-01-01

    A cesium beam frequency standards for spaceflight application on Navigation Development Satellites was designed and fabricated and preliminary testing was completed. The cesium standard evolved from an earlier prototype model launched aboard NTS-2 and the engineering development model to be launched aboard NTS satellites during 1979. A number of design innovations, including a hybrid analog/digital integrator and the replacement of analog filters and phase detectors by clocked digital sampling techniques are discussed. Thermal and thermal-vacuum testing was concluded and test data are presented. Stability data for 10 to 10,000 seconds averaging interval, measured under laboratory conditions, are shown.

  6. Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, And Caustic Wash Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 4 Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T. B.; Fink, S. D.

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), and Caustic Wash Tank (CWT) samples from several of the ?microbatches? of Integrated Salt Disposition Project (ISDP) Salt Batch (?Macrobatch?) 4 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by inductively-coupled plasma emission spectroscopy (ICPES). Furthermore, samples from the CWT have been analyzed by a variety of methods to investigate a decline in the decontamination factor (DF) of the cesium observed at MCU. The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and themore » previous set of results for Macrobatch 3 samples indicate generally consistent operations. There is no indication of a disruption in plutonium and strontium removal. The average cesium DF and concentration factor (CF) for samples obtained from Macrobatch 4 are slightly lower than for Macrobatch 3, but still well within operating parameters. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in Actinide Removal Process (ARP).« less

  7. EVALUATION OF FACTORS IN THE ELUTION OF HYDROCORTISONE FROM PAPER CHROMATOGRAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganis, F.M.; Hendrickson, M.W.; Giunta, P.D.

    An assessment was made of a number of variable factors which affect the recovery of hydrocortisone from eluted filter paper chromatographic fractions. Factors tested included time of elution, sample concentration, rinsing of eluting fractions and pre-washing of the filter paper. It was noted that a 50 mu g sample could be quantitatively recovered after a 15-minute elution time from a pre-washed filter paper fraction. The results were subjected to a statistical analysis and were found to be highly significant. (auth)

  8. Everolimus-eluting stents in interventional cardiology

    PubMed Central

    Townsend, Jacob C; Rideout, Phillip; Steinberg, Daniel H

    2012-01-01

    Bare metal stents have a proven safety record, but limited long-term efficacy due to in-stent restenosis. First-generation drug-eluting stents successfully countered the restenosis rate, but were hampered by concerns about their long-term safety. Second generation drug-eluting stents have combined the low restenosis rate of the first generation with improved long-term safety. We review the evolution of drug-eluting stents with a focus on the safety, efficacy, and unique characteristics of everolimus-eluting stents. PMID:22910420

  9. Collisional Dynamics of the Cesium D1 and D2 Transitions

    DTIC Science & Technology

    2010-09-01

    37 14. Comparison of Phase Changing Probability and Polarizability ...Phase Changing Probability and Polarizability for D2 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 25...theoretically determined the values for broadening and shift rates for cesium with Argon , Krypton, and Xenon from the interatomic potentials [27]. The rates

  10. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    PubMed

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  11. Cesium vapor cycle for an advanced LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraas, A.P.

    1975-01-01

    A review indicates that a cesium vapor topping cycle appears attractive for use in the intermediate fluid circuit of an advanced LMFBR designed for a reactor outlet temperature of 1250$sup 0$F or more and would have the following advantages: (1) it would increase the thermal efficiency by about 5 to 10 points (from approximately 40 percent to approximately 45 to 50 percent) thus reducing the amount of waste heat rejected to the environment by 15 to 30 percent. (2) the higher thermal efficiency should reduce the overall capital cost of the reactor plant in dollars per kilowatt. (3) the cesiummore » can be distilled out of the intermediate fluid circuit to leave it bone-dry, thus greatly reducing the time and cost of maintenance work (particularly for the steam generator). (4) the large volume and low pressure of the cesium vapor region in the cesium condenser-steam generator greatly reduces the magnitude of pressure fluctuations that might occur in the event of a leak in a steam generator tube, and the characteristics inherent in a condenser make it easy to design for rapid concentration of any noncondensibles that may form as a consequence of a steam leak into the cesium region so that a steam leak can be detected easily in the very early stages of its development. (auth)« less

  12. Precision control of eluted activity from a Sr/Rb generator for cardiac positron emission tomography.

    PubMed

    Klein, R; Adler, A; Beanlands, R S; deKemp, R A

    2004-01-01

    A rubidium-82 (/sup 82/Rb) elution system is described for use with clinical positron emission tomography. The system is self-calibrating with 1.4% repeatability, independent of generator activity and elution flow rate. Saline flow is switched between a /sup 82/Sr//sup 82/Rb generator and a bypass line to achieve a constant activity elution of /sup 82/Rb. In the present study, pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control algorithm is developed which produces a constant activity elution within the constraints of long feedback delay and short elution time. Accurate constant-activity elutions of 10-70% of the total generator activity were demonstrated using the threshold comparison control. The adaptive-corrective control of the PWM valve provided a substantial improvement in precision of the steady-state output.

  13. Method for enhanced accuracy in predicting peptides using liquid separations or chromatography

    DOEpatents

    Kangas, Lars J.; Auberry, Kenneth J.; Anderson, Gordon A.; Smith, Richard D.

    2006-11-14

    A method for predicting the elution time of a peptide in chromatographic and electrophoretic separations by first providing a data set of known elution times of known peptides, then creating a plurality of vectors, each vector having a plurality of dimensions, and each dimension representing the elution time of amino acids present in each of these known peptides from the data set. The elution time of any protein is then be predicted by first creating a vector by assigning dimensional values for the elution time of amino acids of at least one hypothetical peptide and then calculating a predicted elution time for the vector by performing a multivariate regression of the dimensional values of the hypothetical peptide using the dimensional values of the known peptides. Preferably, the multivariate regression is accomplished by the use of an artificial neural network and the elution times are first normalized using a transfer function.

  14. Direct enantioseparation of nitrogen-heterocyclic pesticides on cellulose-based chiral column by high-performance liquid chromatography.

    PubMed

    Chai, Tingting; Yang, Wenwen; Qiu, Jing; Hou, Shicong

    2015-01-01

    The enantiomeric separation of eight pesticides including bitertanol (), diclobutrazol (), fenbuconazole (), triticonazole (), imazalil (), triapenthenol (), ancymidol (), and carfentrazone-ethyl () was achieved, using normal-phase high-performance liquid chromatography on two cellulosed-based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol (), triticonazole (), imazalil () with the (+)-enantiomer eluted first and fenbuconazole () with the (-)-enantiomer eluted first on Lux Cellulose-2 and Lux Cellulose-3. (+)-Enantiomers of diclobutrazol () and triapenthenol () were first eluted on Lux Cellulose-2. (-)-Carfentrazone-ethyl () were eluted first on Lux Cellulose-2 and Lux Cellulose-3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)-Ancymidol was first eluted on Lux Cellulose-2 while on Lux Cellulose-3 (-)-ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. © 2014 Wiley Periodicals, Inc.

  15. Polymer-Passivated Inorganic Cesium Lead Mixed-Halide Perovskites for Stable and Efficient Solar Cells with High Open-Circuit Voltage over 1.3 V.

    PubMed

    Zeng, Qingsen; Zhang, Xiaoyu; Feng, Xiaolei; Lu, Siyu; Chen, Zhaolai; Yong, Xue; Redfern, Simon A T; Wei, Haotong; Wang, Haiyu; Shen, Huaizhong; Zhang, Wei; Zheng, Weitao; Zhang, Hao; Tse, John S; Yang, Bai

    2018-03-01

    Cesium-based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (E loss ) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI 2 Br absorber and polythiophene hole-acceptor to minimize the E loss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI 2 Br, can significantly reduce electron-hole recombination within the perovskite, which is due to the electronic passivation of surface defect states. In addition, the interfacial properties are improved by a simple annealing process, leading to significantly reduced energy disorder in polythiophene and enhanced hole-injection into the hole-acceptor. Consequently, one of the highest power conversion efficiency (PCE) of 12.02% from a reverse scan in inorganic mixed-halide perovskite solar cells is obtained. Modifying the perovskite films with annealing polythiophene enables an open-circuit voltage (V OC ) of up to 1.32 V and E loss of down to 0.5 eV, which both are the optimal values reported among cesium-lead mixed-halide perovskite solar cells to date. This method provides a new route to further improve the efficiency of perovskite solar cells by minimizing the E loss . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    PubMed

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  17. TREATMENT FOR IMPROVING THE OPERATION OF STRONG BASE ANION EXCHANGE RESINS

    DOEpatents

    Stevenson, P.C.

    1960-11-29

    A process is offered for improving quaternary ammonium type strongly basic anion exchange resins so that centain zinc and cadmium residues, which normally stick to and "poison" this type of resin, can be removed by elution. Specifically, the resin as obtained commercially is treated with an aqueous solution of sodium hydroxide of about 1 to 4 M concentration by heating therein and periodically adding small amounts of oxidizing agent selected from hydrogen peroxide, sodium peroxide and hypochlorite. Zinc and cadmium values may then be adsorbed onto the resin from a 0.1 to 3 M HCl and thereafter eluted therefrom with very dilute HCl solutions.

  18. Isolation and characterization of Chinese standard fulvic acid sub-fractions separated from forest soil by stepwise elution with pyrophosphate buffer.

    PubMed

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P

    2015-03-04

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants.

  19. Isolation and Characterization of Chinese Standard Fulvic Acid Sub-fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer

    PubMed Central

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P.

    2015-01-01

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants. PMID:25735451

  20. The Effect of Alkaline Earth Metal on the Cesium Loading of Ionsiv(R) IE-910 and IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.F.

    2001-01-16

    This study investigated the effect of variances in alkaline earth metal concentrations on cesium loading of IONSIV(R) IE-911. The study focused on Savannah River Site (SRS) ''average'' solution with varying amounts of calcium, barium and magnesium.

  1. Evaluation of a new solid media specimen transport card for high risk HPV detection and cervical cancer prevention.

    PubMed

    Maurer, Kathryn; Luo, Hongxue; Shen, Zhiyong; Wang, Guixiang; Du, Hui; Wang, Chun; Liu, Xiaobo; Wang, Xiamen; Qu, Xinfeng; Wu, Ruifang; Belinson, Jerome

    2016-03-01

    Solid media transport can be used to design adaptable cervical cancer screening programs but currently is limited by one card with published data. To develop and evaluate a solid media transport card for use in high-risk human papillomavirus detection (HR-HPV). The Preventative Oncology International (POI) card was constructed using PK 226 paper(®) treated with cell-lysing solution and indicating dye. Vaginal samples were applied to the POI card and the indicating FTA (iFTA) elute card. A cervical sample was placed in liquid media. All specimens were tested for HR-HPV. Color change was assessed at sample application and at card processing. Stability of the POI card and iFTA elute card was tested at humidity. 319 women were enrolled. Twelve women had at least one insufficient sample with no difference between media (p=0.36). Compared to liquid samples, there was good agreement for HR-HPV detection with kappa of 0.81 (95% CI 0.74-0.88) and 0.71 (95% CI 0.62-0.79) for the POI and iFTA elute card respectively. Sensitivity for ≥CIN2 was 100% (CI 100-100%), 95.1% (CI 92.7-97.6%), and 93.5% (CI 90.7-96.3%) for the HR-HPV test from the liquid media, POI card, and iFTA elute card respectively. There was no color change of the POI card noted in humidity but the iFTA elute card changed color at 90% humidity. The POI card is suitable for DNA transport and HR-HPV testing. This card has the potential to make cervical cancer screening programs more affordable worldwide. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Safety, feasibility, and efficacy of placement of steroid-eluting bioabsorbable sinus implants in the office setting: a prospective case series.

    PubMed

    Matheny, Keith E; Carter, Kenny B; Tseng, Ewen Y; Fong, Karen J

    2014-10-01

    The outcomes of endoscopic sinus surgery (ESS) for chronic rhinosinusitis (CRS) can be compromised by postoperative inflammation, recurrent polyposis, middle turbinate lateralization, and synechiae, often requiring subsequent interventions. A bioabsorbable steroid-eluting sinus implant placed in the operating room following ESS has been proven safe and effective in 2 randomized controlled trials and a subsequent meta-analysis, for its ability to preserve sinus patency, and reduce medical and surgical interventions. This trial sought to evaluate the safety, feasibility, and outcomes of implants placed in the office after achieving hemostasis. Twenty patients with CRS underwent ESS including bilateral ethmoidectomy. A steroid-eluting bioabsorbable implant was deployed into each ethmoid cavity in the office within 7 days after ESS. Endoscopic appearance of the ethmoid cavities was evaluated at 1 week, 2 weeks, and 4 weeks postoperatively by the operating surgeon and an independent blinded evaluator. Procedural tolerance was assessed at week 2 using a patient preference questionnaire. The 20-item Sino-Nasal Outcome Test (SNOT-20) questionnaire was completed at baseline, week 2, and week 4. In-office placement of steroid-eluting bioabsorbable implants was well tolerated, with 90% of patients very satisfied with the overall experience, and 80% very satisfied with the recovery process. At 1 month, there were no significant adhesions or frank polyposis, and middle turbinate lateralization was only 5%. Compared to baseline, ethmoid sinus inflammation was significantly reduced (p = 0.03), and the mean SNOT-20 score was significantly improved (p < 0.001). In-office placement of steroid-eluting bioabsorbable implants after achieving hemostasis was well tolerated and might improve local drug diffusion and surgical outcomes. © 2014 ARS-AAOA, LLC.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamliton, T F

    Rongelap Atoll experienced close-in or local fallout from the U.S. nuclear test program conducted in the northern Marshall Islands between 1946 and 1958. By all internationally agreed scientific criteria, Rongelap Island is considered safe for permanent resettlement. However, the amount of bomb-related radioactivity in soil and vegetation is, on average, about 5 times greater in the northern islands of the atoll because the centerline of the fallout pattern from the 1954 thermonuclear ''Bravo'' test extended over this part of the atoll. The most important radioactive element remaining on the atoll is radioactive cesium (cesium-137). Cesium-137 emits what is called amore » ''gamma ray'' that can penetrate the body and deliver both an external (outside the body) and internal (from inside the body) gamma dose to inhabitants of Rongelap Atoll. Cesium-137 is taken up from the soil into locally grown foodstuffs such as coconut, Pandanus and breadfruit. Significant quantities of cesium-137 may also be found in coconut crab. The internal dose delivered to people eating these products will be directly proportional to the concentration of cesium-137 in the food and the amount consumed. The external gamma dose will depend on the concentration of cesium-137 in the soil and the amount of time spent in the area. The highest concentration of cesium-137 in surface soils of the northern islands of Rongelap Atoll is about equivalent to that measured on Bikini Island. Under the radiation protection criteria adopted by the Republic of the Marshall Islands Nuclear Claims Tribunal, permanent resettlement of these islands would require intervention because of the higher radiation doses that could potentially be delivered to inhabitants living on a diet derived largely from local foods. A more realistic lifestyle scenario is that the resettled population on Rongelap Island will occasionally visit the northern part of the atoll for food gathering, fishing and other recreational activities. It is estimated that a person spending 8 hours (1 work day) in the interior of the Rongelap Atoll northern islands will receive a maximum additional external dose of around 0.1-0.2 mrem per day. Furthermore, Lawrence Livermore National Laboratory's environmental monitoring continues to show that the marine environment contains very low levels of bomb radioactivity. Similarly, the occasional consumption of terrestrial foods including coconut crab from the northern islands is not expected to add significantly to the radiological health risk of living on Rongelap Island. The average annual effective ingestion dose for Rongelap Island resettlement in 2002 is estimated to be around 1-2 mrem per year when imported foods are made available and proposed remediation efforts take effect. This estimate is about twice that of the Rongelap Island resettlement worker population using direct measurements from the whole body counting program. Resettlement workers presently living on the islands receive an average internal dose from cesium-137 of less than 1 mrem (0.01 mSv) per year. These workers are known to eat locally grown foods and coconut crabs collected from the northern islands. The highest individual dose observed was 4 mrem (0.04 mSv) per year. Under the guidelines adopted by the Republic of the Marshall Islands Nuclear Claims Tribunal, it is concluded that diving, fishing and visiting any northern island of Rongelap Atoll are safe activities for limited periods. Eating local fish and other marine life such as clams would also be considered safe. Consumption of plant foods from the northern islands of Rongelap Atoll depends on successful implementation of specific remediation measures to ensure dietary intakes of cesium-137 remain at or below levels considered safe. The whole body counting program should continue to monitor the actual internal levels of cesium-137 among people eating plants and coconut crabs gathered from the northern islands of Rongelap Atoll islands until such time that the Nuclear Claims Tribunal guidelines are met.« less

  4. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    PubMed

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Operational frequency stability of rubidium and cesium frequency standards

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1973-01-01

    The frequency stabilities under operational conditions of several commercially available rubidium and cesium frequency standards were determined from experimental data for frequency averaging times from 10 to the 7th power s and are presented in table and graph form. For frequency averaging times between 10 to the 5th power and 10 to the 7th power s, the rubidium standards tested have a stability of between 10 to the minus 12th power and 5 x 10 to the minus 12th power, while the cesium standards have a stability of between 2 x 10 to the minus 13th power and 5 x 10 to the minus 13th power.

  6. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  7. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  8. Wetting of a Charged Surface of Glassy Carbon by Molten Alkali-Metal Chlorides

    NASA Astrophysics Data System (ADS)

    Stepanov, V. P.

    2018-03-01

    Values of the contact angle of wetting of a surface of glassy carbon by molten chlorides of lithium, sodium, potassium, and cesium are measured by the meniscus weight method to determine the common factors of wettability of solid surfaces by ionic melts upon a change in the salt phase composition and a jump in electric potential. It is found that with a potential shift in the positive direction the shape of the curve of the contact angle's dependence on the potential varies upon substitution of one salt by another: the angle of wetting shrinks monotonously in lithium chloride but remains constant in molten cesium chloride. This phenomenon is explained by the hypothesis that the nature of the halide anion adsorption on the positively charged surface of an electrode is chemical and not electrostatic. It is shown that the adsorption process is accompanied by charge transfer through the interface, with covalent bonding between the adsorbent and adsorbate.

  9. ATLAS tile calorimeter cesium calibration control and analysis software

    NASA Astrophysics Data System (ADS)

    Solovyanov, O.; Solodkov, A.; Starchenko, E.; Karyukhin, A.; Isaev, A.; Shalanda, N.

    2008-07-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented.

  10. CsIX/TRU Grout Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. J. Losinski; C. M. Barnes; B. K. Grover

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that liquid waste now stored at the Idaho Nuclear Technology Engineering Center (INTEC - formerly the Idaho Chemical Processing Plant, ICPP) will be calcined by the end of year 2012. This study investigates an alternative treatment of the liquid waste that removes undissolved solids (UDS) by filtration and removes cesium by ion exchange followed by cement-based grouting of the remaining liquid into 55-gal drums. Operations are assumed to be from January 2008 through December 2012. The grouted waste will be contact-handled and will be shippedmore » to the Waste Isolation Pilot Plant (WIPP) in New Mexico for disposal. The small volume of secondary wastes such as the filtered solids and cesium sorbent (resin) would remain in storage at the Idaho National Engineering and Environmental Laboratory for treatment and disposal under another project, with an option to dispose of the filtered solids as a r emote-handled waste at WIPP.« less

  11. Performance demonstration of a single-frequency optically-pumped cesium beam frequency standard for space applications

    NASA Astrophysics Data System (ADS)

    Lecomte, S.; Haldimann, M.; Ruffieux, R.; Thomann, P.; Berthoud, P.

    2017-11-01

    Observatoire de Neuchâtel (ON) is developing a compact optically-pumped cesium beam frequency standard in the frame of an ESA-ARTES 5 project. The simplest optical scheme, which is based on a single optical frequency for both preparation and detection processes of atoms, has been chosen to fulfill reliability constraints of space applications. With our laboratory demonstrator operated at 852 nm (D2 line), we have measured a frequency stability of σy=2.74x10-12 τ -1/2, which is compliant with the Galileo requirement. The atomic resonator is fully compliant to be operated with a single diode laser at 894 nm (D1 line). Sensitivity measurements of the clock signal to the microwave power and to the optical pumping power are also presented. Present performance limitations are discussed and further improvements are proposed in order to reach our ultimate frequency stability goal of σy=1x10-12 τ -1/2. The clock driving software is also briefly described.

  12. Metallic Limus-Eluting Stents Abluminally Coated with Biodegradable Polymers: Angiographic and Clinical Comparison of a Novel Ultra-Thin Sirolimus Stent Versus Biolimus Stent in the DESTINY Randomized Trial.

    PubMed

    Lemos, Pedro A; Abizaid, Alexandre A C; Meireles, George C; Sarmento-Leite, Rogério; Prudente, Mauricio; Cantarelli, Marcelo; Dourado, Adriano D; Mariani, Jose; Perin, Marco A; Costantini, Costantino; Costa, Ricardo A; Costa, José Ribamar; Chamie, Daniel; Campos, Carlos A; Ribeiro, Expedito

    2015-12-01

    To evaluate the outcomes of patients treated with a new drug-eluting stent formulation with low doses of sirolimus, built in an ultra-thin-strut platform coated with biodegradable abluminal coating. This study is a randomized trial that tested the main hypothesis that the angiographic late lumen loss of the novel sirolimus-eluting stent is noninferior compared with commercially available biolimus-eluting stent. A final study population comprising 170 patients with one or two de novo lesions was randomized in the ratio 2:1 for sirolimus-eluting stent or biolimus-eluting stent, respectively. The primary endpoint was 9-month angiographic in-stent late lumen loss. Adverse clinical events were prospectively collected for 1 year. After 9 months, the novel sirolimus-eluting stent was shown noninferior compared with the biolimus stent for the primary endpoint (angiographic in-stent late lumen loss: 0.20 ± 0.29 mm vs. 0.15 ± 0.20 mm, respectively; P value for noninferiority <0.001). The 1-year incidence of death, myocardial infarction, repeat revascularization, and stent thrombosis remained low and not significantly different between the groups. The present randomized trial demonstrates that the tested novel sirolimus-eluting stent was angiographically noninferior in comparison with a last-generation biolimus-eluting stent. © 2015 John Wiley & Sons Ltd.

  13. Increasing Flexibility in Two-Dimensional Liquid Chromatography by Pulsed Elution of the First Dimension: A Proof of Concept.

    PubMed

    Jakobsen, Simon S; Christensen, Jan H; Verdier, Sylvain; Mallet, Claude R; Nielsen, Nikoline J

    2017-09-05

    This work demonstrates the development of an online two-dimensional liquid chromatography (2D-LC) method where the first dimension column is eluted by a sequence of pulses of increasing eluotropic strength generated by the LC pumps (pulsed-elution 2D-LC). Between the pulses, the first dimension is kept in a no-elution state using low eluent strength. The eluate from the first dimension is actively modulated using trap columns and subsequently analyzed in the second dimension. We demonstrate that by tuning the length and eluotropic strength of the pulses, peaks with retention factors in water, k w , above 150 can be manipulated to elute in 3-4 pulses. The no-elution state can be kept for 1-10 min with only minor changes as to which and how many pulses the peaks elute in. Pulsed-elution 2D-LC combined with active modulation tackles three of the main challenges encountered in 2D-LC and specifically online comprehensive 2D-LC: undersampling, difficulties in refocusing, and lack of flexibility in the selection of column dimensions and flow rates because the two dimensions constrain each other. The pulsed-elution 2D-LC was applied for the analysis of a basic fraction of vacuum gas oil. Peak capacity was 4018 for a 540 min analysis and 4610 for a 1040 min analysis.

  14. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis.

    PubMed

    De Santo, Ilaria; Sanguigno, Luigi; Causa, Filippo; Monetta, Tullio; Netti, Paolo A

    2012-11-07

    Drug elution properties of TiO(2) nanotube arrays have been largely investigated by means of solely macroscopic observations. Controversial elution performances have been reported so far and a clear comprehension of these phenomena is still missing as a consequence of a lack of molecular investigation methods. Here we propose a way to discern drug elution properties of nanotubes through the evaluation of drug localization by Fluorescence Correlation Spectroscopy (FCS) analysis. We verified this method upon doxorubicin elution from differently loaded TiO(2) nanotubes. Diverse elution profiles were obtained from nanotubes filled by soaking and wet vacuum impregnation methods. Impregnated nanotubes controlled drug diffusion up to thirty days, while soaked samples completed elution in seven days. FCS analysis of doxorubicin motion in loaded nanotubes clarified that more than 90% of drugs dwell preferentially in inter-nanotube spaces in soaked samples due to decorrelation in a 2D fashion, while a 97% fraction of molecules showed 1D mobility ascribable to displacements along the nanotube vertical axis of wet vacuum impregnated nanotubes. The diverse drug localizations inferred from FCS measurements, together with distinct drug-surface interaction strengths resulting from diverse drug filling techniques, could explain the variability in elution kinetics.

  15. Cesium 137-Its applications for understanding soil redistribution and deposition patterns on the landscape

    USDA-ARS?s Scientific Manuscript database

    In the 1960s research began on the application of fallout radionuclides to determine sediment deposition and soil redistribution rates and patterns in agricultural and natural ecosystems. This research was based on the use of fallout 137Cesium (137Cs) from nuclear weapon tests deposited worldwide d...

  16. Laser-cooled cesium fountain clock: design and expected performances

    NASA Astrophysics Data System (ADS)

    Clairon, Andre; Laurent, Phillipe; Nadir, A.; Santarelli, G.; Drewsen, M.; Grison, D.; Lounis, B.; Salomon, C.

    1993-04-01

    The use of diode lasers to cool and trap Cesium atoms in a low Cs pressure cell allows the construction of a relatively simple and reliable atomic fountain frequency standard. Here we discuss the design and the potentialities of the Cs clock frequency standards being built at L.P.T.F..

  17. Nuclear breeder reactor fuel element with axial tandem stacking and getter

    DOEpatents

    Gibby, Ronald L.; Lawrence, Leo A.; Woodley, Robert E.; Wilson, Charles N.; Weber, Edward T.; Johnson, Carl E.

    1981-01-01

    A breeder reactor fuel element having a tandem arrangement of fissile and fertile fuel with a getter for fission product cesium disposed between the fissile and fertile sections. The getter is effective at reactor operating temperatures to isolate the cesium generated by the fissile material from reacting with the fertile fuel section.

  18. Fission product release from fuel under LWR accident conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, M.F.; Lorenz, R.A.; Norwood, K.S.

    Three tests have provided additional data on fission product release under LWR accident conditions in a temperature range (1400 to 2000/sup 0/C). In the release rate data are compared with curves from a recent NRC-sponsored review of available fission product release data. Although the iodine release in test HI-3 was inexplicably low, the other data points for Kr, I, and Cs fall reasonably close to the corresponding curve, thereby tending to verify the NRC review. The limited data for antimony and silver release fall below the curves. Results of spark source mass spectrometric analyses were in agreement with the gammamore » spectrometric results. Nonradioactive fission products such as Rb and Br appeared to behave like their chemical analogs Cs and I. Results suggest that Te, Ag, Sn, and Sb are released from the fuel in elemental form. Analysis of the cesium and iodine profiles in the thermal gradient tube indicates that iodine was deposited as CsT along with some other less volatile cesium compound. The cesium profiles and chemical reactivity indicate the presence of more than one cesium species.« less

  19. Cesium isotope ratios as indicators of nuclear power plant operations.

    PubMed

    Delmore, James E; Snyder, Darin C; Tranter, Troy; Mann, Nick R

    2011-11-01

    There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive (135)Cs/(137)Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these (135)Cs/(137)Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The cesiator - A device for cesium vapor control and impurity purge

    NASA Astrophysics Data System (ADS)

    Rasor, N. S.; Desplat, J.-L.

    A new type of liquid cesium reservoir that maintains a temperature-independent cesium pressure, continuously recirculates cesium vapor through the TFE (thermionic fuel element), and purges it of impurities is discussed. This device, the cesiator, is based on well-established gas-buffered heat pipe principles. The cesiator offers new TFE design options for fission product/impurity handling that eliminate the need for an intercell insulator seal and associated failure modes. Cesiator performance requirements are estimated based on data for expected release of fission products and their effect on TFE performance. The effect of design parameters on cesiator performance is described. Experimentation with an ethanol-metal mock-up revealed an unexpected but desirable mode of operation that autoregulates the pressure drop and flow of vapor in the external circuit and that has been incorporated in the reference design for phase II development. Experimental techniques for measuring the local temperature, pressure, and composition in a condensing vapor were successfully developed. A reference design for a TFE cesiator was defined for prototype design, development, and test.

  1. eWaterCycle visualisation. combining the strength of NetCDF and Web Map Service: ncWMS

    NASA Astrophysics Data System (ADS)

    Hut, R.; van Meersbergen, M.; Drost, N.; Van De Giesen, N.

    2016-12-01

    As a result of the eWatercycle global hydrological forecast we have created Cesium-ncWMS, a web application based on ncWMS and Cesium. ncWMS is a server side application capable of reading any NetCDF file written using the Climate and Forecasting (CF) conventions, and making the data available as a Web Map Service(WMS). ncWMS automatically determines available variables in a file, and creates maps colored according to map data and a user selected color scale. Cesium is a Javascript 3D virtual Globe library. It uses WebGL for rendering, which makes it very fast, and it is capable of displaying a wide variety of data types such as vectors, 3D models, and 2D maps. The forecast results are automatically uploaded to our web server running ncWMS. In turn, the web application can be used to change the settings for color maps and displayed data. The server uses the settings provided by the web application, together with the data in NetCDF to provide WMS image tiles, time series data and legend graphics to the Cesium-NcWMS web application. The user can simultaneously zoom in to the very high resolution forecast results anywhere on the world, and get time series data for any point on the globe. The Cesium-ncWMS visualisation combines a global overview with local relevant information in any browser. See the visualisation live at forecast.ewatercycle.org

  2. Purification of anti-Japanese encephalitis virus monoclonal antibody by ceramic hydroxyapatite chromatography without proteins A and G.

    PubMed

    Saito, Maiko; Kurosawa, Yae; Okuyama, Tsuneo

    2012-02-01

    Antibody purification using proteins A and G has been a standard method for research and industrial processes. The conventional method, however, includes a three-step process, including buffer exchange, before chromatography. In addition, proteins A and G require low pH elution, which causes antibody aggregation and inactivates the antibody's immunity. This report proposes a two-step method using hydroxyapatite chromatography and membrane filtration, without proteins A and G. This novel method shortens the running time to one-third the conventional method for each cycle. Using our two-step method, 90.2% of the monoclonal antibodies purified were recovered in the elution fraction, the purity achieved was >90%, and most of the antigen-specific activity was retained. This report suggests that the two-step method using hydroxyapatite chromatography and membrane filtration should be considered as an alternative to purification using proteins A and G.

  3. The promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jie; Cai, Qiuxia; Wan, Yan

    In this study, the promotional effects of cesium promoter on higher alcohol (C2+OH) synthesis from syngas over Cs-Cu/ZnO/Al2O3 catalysts were investigated using a combined experimental and theoretical density functional theory (DFT) calculation method. In the presence of cesium, the C2+OH productivity increases from 77.1 g•kgcat-1•h-1 to 157.3 g•kgcat-1•h-1 at 583 K due to the enhancement of the initial C–C bond formation. Detailed analysis of chain growth probabilities (CGPs) confirms that initial C–C bond formation is the rate-determining step in the temperature range of 543-583 K. Addition of cesium promoter significantly increases the productivities of 2-methyl-1-propanol, while the CGPs values (C3*more » to 2-methyl-C3*) is almost unaffected. With the assistance of cesium promoter, the CGPs of the initial C–C bond formation step (C1* to C2*) could be increased from 0.13 to 0.25 at 583 K. DFT calculations indicate that the initial C–C bond formation is mainly contributed by the HCO+HCO coupling reaction over the ZnCu(211) model surface. In the presence of the Cs2O, the stabilities of key reaction intermediates such as HCO and H2CO are enhanced which facilitates both HCO+HCO and HCO+H2CO coupling reaction steps with lower activation barriers over the Cs2O-ZnCu(211) surface. The promotional effects of cesium on the C2+OH productivity are also benefited from the competitive CH+HCO coupling reaction over CH hydrogenation that leads to lower alkane formation. In addition, Bader charge analysis suggests that the presence of cesium ions would facilitate the nucleophilic reaction between HCO and H2CO for initial C–C bond formation. This work was supported by the National Natural Science Foundation of China (No. 91545114 and No. 91545203). We appreciate the joint PhD scholarship support from the China Scholarship Council. The authors would also like to thank the support from Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM). DM was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Computing time was granted by the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research. PNNL is a multiprogram national laboratory operated for DOE by Battelle Memorial Institute. We also appreciate the support from Sinochem Quanzhou Petrochemical Co. Ltd.« less

  4. Stent Thrombosis With Drug-Eluting Stents and Bioresorbable Scaffolds: Evidence From a Network Meta-Analysis of 147 Trials.

    PubMed

    Kang, Si-Hyuck; Chae, In-Ho; Park, Jin-Joo; Lee, Hak Seung; Kang, Do-Yoon; Hwang, Seung-Sik; Youn, Tae-Jin; Kim, Hyo-Soo

    2016-06-27

    This study sought to perform a systematic review and network meta-analysis to compare the relative safety and efficacy of contemporary DES and BVS. To improve outcomes of patients undergoing percutaneous coronary revascularization, there have been advances in the design of drug-eluting stents (DES), including the development of drug-eluting bioresorbable vascular scaffolds (BVS). Prospective, randomized, controlled trials comparing bare-metal stents (BMS), paclitaxel-eluting stents (PES), sirolimus-eluting stents (SES), Endeavor zotarolimus-eluting stents (E-ZES), cobalt-chromium (CoCr) everolimus-eluting stents (EES), platinum-chromium (PtCr)-EES, biodegradable polymer (BP)-EES, Resolute zotarolimus-eluting stents (R-ZES), BP biolimus-eluting stents (BP-BES), hybrid sirolimus-eluting stents (H [Orsiro]-SES), polymer-free sirolimus- and probucol-eluting stents, or BVS were searched in online databases. The primary endpoint was definite or probable stent thrombosis at 1 year. A total of 147 trials including 126,526 patients were analyzed in this study. All contemporary DES were superior to BMS and PES in terms of definite or probable stent thrombosis at 1 year. CoCr-EES, PtCr-EES, and H-SES were associated with significantly lower risk than BVS. CoCr-EES and H-SES were superior to SES and BP-BES. The risk of myocardial infarction was significantly lower with H-SES than with BVS. There were no significant differences regarding all-cause or cardiac mortality. Contemporary devices including BVS showed comparably low risks of repeat revascularization. Contemporary DES, including biocompatible DP-DES, BP-DES, and polymer-free DES, showed a low risk of definite or probable stent thrombosis at 1 year. BVS had an increased risk of device thrombosis compared with CoCr-EES, PtCr-EES, and H-SES. Data from extended follow-up are warranted to confirm the long-term safety of contemporary coronary devices. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  5. Evaluation of differences between dual salt-pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative-scale ion exchange chromatographic resin.

    PubMed

    Lee, Yi Feng; Jöhnck, Matthias; Frech, Christian

    2018-02-21

    The efficiencies of mono gradient elution and dual salt-pH gradient elution for separation of six mAb charge and size variants on a preparative-scale ion exchange chromatographic resin are compared in this study. Results showed that opposite dual salt-pH gradient elution with increasing pH gradient and simultaneously decreasing salt gradient is best suited for the separation of these mAb charge and size variants on Eshmuno ® CPX. Besides giving high binding capacity, this type of opposite dual salt-pH gradient also provides better resolved mAb variant peaks and lower conductivity in the elution pools compared to single pH or salt gradients. To have a mechanistic understanding of the differences in mAb variants retention behaviors of mono pH gradient, parallel dual salt-pH gradient, and opposite dual salt-pH gradient, a linear gradient elution model was used. After determining the model parameters using the linear gradient elution model, 2D plots were used to show the pH and salt dependencies of the reciprocals of distribution coefficient, equilibrium constant, and effective ionic capacity of the mAb variants in these gradient elution systems. Comparison of the 2D plots indicated that the advantage of opposite dual salt-pH gradient system with increasing pH gradient and simultaneously decreasing salt gradient is the noncontinuous increased acceleration of protein migration. Furthermore, the fitted model parameters can be used for the prediction and optimization of mAb variants separation in dual salt-pH gradient and step elution. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  6. Differential expression and elution behavior of basic 7S globulin among cultivars under hot water treatment of soybean seeds.

    PubMed

    Fujiwara, Keigo; Cabanos, Cerrone; Toyota, Kenji; Kobayashi, Yasunori; Maruyama, Nobuyuki

    2014-06-01

    Basic 7S globulin (Bg7S), which accumulates in mature soybean (Glycine max) seeds, is an extracellular matrix protein. A large amount of Bg7S is synthesized de novo and is eluted from soybean seeds when immersed in 50-60°C water (hot water treatment, HWT). However, the Bg7S elution mechanism remains unclear. Under HWT, the seeds probably undergo heat stress and flooding stress. To obtain fundamental knowledge related to how Bg7S is eluted from hot-water-treated seeds, this study compared Bg7S elution among soybean cultivars having different flooding tolerance during pre-germination. The amounts of Bg7S eluted from seeds varied significantly among cultivars. Elution was suppressed by seed coats regarded as preventing the leakage of seed contents by rapid water imbibition. Furthermore, Bg7S expression levels differed among cultivars, although the difference did not result from any variation in Bg7S promoter sequences. However, the expression levels of Bg7S under HWT were not associated with the flooding tolerance level. Immunoelectron microscopy revealed that the Bg7S accumulated in the intercellular space of hot-water-treated seeds. Plasma membrane shrinkage was observed. The main proteins eluted from seeds under HWT were located in the extracellular space. This study clarified the mechanism of Bg7S elution from seeds under HWT. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation andmore » decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue University and is detailed in Appendix A. Steam reforming proved to be too rigorous for efficient The second stage of this project was carried out at Texas A&M University and is Detailed in Appendix B. In this stage, a gentler ceramic synthesis process using Cs and Sr loaded kaolinite and bentonite clays was developed in collaboration with Dr. M. Kaminski at Argonne National Laboratory.« less

  8. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Demonstration of a strategy for product purification by high-gradient magnetic fishing: recovery of superoxide dismutase from unconditioned whey.

    PubMed

    Meyer, Andrea; Hansen, Dennis B; Gomes, Cláudia S G; Hobley, Timothy J; Thomas, Owen R T; Franzreb, Matthias

    2005-01-01

    A systematic approach for the design of a bioproduct recovery process employing magnetic supports and the technique of high-gradient magnetic fishing (HGMF) is described. The approach is illustrated for the separation of superoxide dismutase (SOD), an antioxidant protein present in low concentrations (ca. 0.15-0.6 mg L(-1)) in whey. The first part of the process design consisted of ligand screening in which metal chelate supports charged with copper(II) ions were found to be the most suitable. The second stage involved systematic and sequential optimization of conditions for the following steps: product adsorption, support washing, and product elution. Next, the capacity of a novel high-gradient magnetic separator (designed for biotechnological applications) for trapping and holding magnetic supports was determined. Finally, all of the above elements were assembled to deliver a HGMF process for the isolation of SOD from crude sweet whey, which consisted of (i) binding SOD using Cu2+ -charged magnetic metal chelator particles in a batch reactor with whey; (ii) recovery of the "SOD-loaded" supports by high-gradient magnetic separation (HGMS); (iii) washing out loosely bound and entrained proteins and solids; (iv) elution of the target protein; and (v) recovery of the eluted supports from the HGMF rig. Efficient recovery of SOD was demonstrated at approximately 50-fold increased scale (cf magnetic rack studies) in three separate HGMF experiments, and in the best of these (run 3) an SOD yield of >85% and purification factor of approximately 21 were obtained.

  10. Cesium-137 Fallout in Indiana Soil

    ERIC Educational Resources Information Center

    Whitman, Richard T.

    2017-01-01

    Atomic weapons testing during the Cold War and accidents at nuclear power plants have resulted in the release of radioactive fallout over great distances. Little is known about levels of fallout deposited in Indiana. The reported study sampled soil in all 92 Indiana counties to determine the present level of cesium-137 from the 2 to 12 centimeter…

  11. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  12. FAST NEUTRON DOSIMETER FOR HIGH TEMPERATURE OPERATION BY MEASUREMENT OF THE AMOUNT OF CESIUM 137 FORMED FROM A THORIUM WIRE

    DOEpatents

    McCune, D.A.

    1964-03-17

    A method and device for measurement of integrated fast neutron flux in the presence of a large thermal neutron field are described. The device comprises a thorium wire surrounded by a thermal neutron attenuator that is, in turn, enclosed by heat-resistant material. The method consists of irradiating the device in a neutron field whereby neutrons with energies in excess of 1.1 Mev cause fast fissions in the thorium, then removing the thorium wire, separating the cesium-137 fission product by chemical means from the thorium, and finally counting the radioactivity of the cesium to determine the number of fissions which have occurred so that the integrated fast flux may be obtained. (AEC)

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakravarti, D.; Held, E.E.

    Radiocesium and stable potassium levels were determined in samples of muscle tissue of Birgus latro, the coconut crab, collected at Rongelap Atoll, Marshall Islands, during March and August 1958 and March 1959, and at Utirik Atoll in March 1959. Levels of cesium-137 ranged betwoen 731 d/m/g dry weight at Kabelle Island, Rongelap Atoll, and 28 d/m/g dry weight at Utirik Island, Utirik Atoll. The average potassium value for all samples was 13.05 mg/g dry weight with a standard deviation of 3.66. No significant correlation between cesium-l37 and potassium levels was found. There wse no significant difference in the average levelsmore » of cesium-137 in crabs collected at different times at the same island. (auth)« less

  14. Precision mass measurements of cesium isotopes—new entries in the ISOLTRAP chronicles

    NASA Astrophysics Data System (ADS)

    Atanasov, D.; Beck, D.; Blaum, K.; Borgmann, Ch; Cakirli, R. B.; Eronen, T.; George, S.; Herfurth, F.; Herlert, A.; Kowalska, M.; Kreim, S.; Litvinov, Yu A.; Lunney, D.; Manea, V.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2017-04-01

    Alkali ion beams are among the most intense produced by the ISOLDE facility. These were the first to be studied by the ISOLTRAP mass spectrometer and ever since, new measurements have been regularly reported. Recently the masses of very neutron-rich and short-lived cesium isotopes were determined at ISOLTRAP. The isotope 148Cs was measured directly for the first time by Penning-trap mass spectrometry. Using the new results, the trend of two-neutron separation energies in the cesium isotopic chain is revealed to be smooth and gradually decreasing, similar to the ones of the barium and xenon isotopic chains. Predictions of selected microscopic models are employed for a discussion of the experimental data in the region.

  15. Radioactive and Stable Cesium Distributions in Fukushima Forests

    NASA Astrophysics Data System (ADS)

    Ioshchenko, V.; Kivva, S.; Konoplev, A.; Nanba, K.; Onda, Y.; Takase, T.; Zheleznyak, M.

    2015-12-01

    Fukushima Dai-ichi NPP accident has resulted in release into the environment of large amounts of 134Cs and 137Cs and in radioactive contamination of terrestrial and aquatic ecosystems. In Fukushima prefecture up to 2/3 of the most contaminated territory is covered with forests, and understanding of its further fate in the forest ecosystems is essential for elaboration of the long-term forestry strategy. At the early stage, radiocesium was intercepted by the trees' canopies. Numerous studies reported redistribution of the initial fallout in Fukushima forests in the followed period due to litterfall and leaching of radiocesium from the foliage with precipitations. By now these processes have transported the major part of deposited radiocesium to litter and soil compartments. Future levels of radiocesium activities in the aboveground biomass will depend on relative efficiencies of the radiocesium root uptake and its return to the soil surface with litterfall and precipitations. Radiocesium soil-to-plant transfer factors for typical tree species, soil types and landscape conditions of Fukushima prefecture have not been studied well; moreover, they may change in time with approaching to the equilibrium between radioactive and stable cesium isotopes in the ecosystem. The present paper reports the results of several ongoing projects carried out by Institute of Environmental Radioactivity of Fukushima University at the experimental sites in Fukushima prefecture. For typical Japanese cedar (Cryptomeria japonica) forest, we determined distributions of radiocesium in the ecosystem and in the aboveground biomass compartments by the end of 2014; available results for 2015 are presented, too, as well as the results of test application of D-shuttle dosimeters for characterization of seasonal variations of radiocesium activity in wood. Based on the radiocesium activities in biomass we derived the upper estimates of its incorporation and root uptake fluxes, 0.7% and 3% of the total inventory in the ecosystem. Measurements of stable cesium concentrations in the biomass compartments enabled obtaining the more precise estimates. Return fluxes of both radioactive and stable cesium also were quantified, which forms the basis for modelling of the long-term redistribution of radiocesium in the studied ecosystem.

  16. Update on the everolimus-eluting coronary stent system: results and implications from the SPIRIT clinical trial program

    PubMed Central

    Kirchner, R Michael; Abbott, J Dawn

    2009-01-01

    Drug-eluting stents (DES) have had a major impact in interventional cardiology. Compared to bare metal stents, they significantly reduce restenosis and the need for target vessel revascularization. Four DES are available in the US, the first-generation sirolimus-eluting (Cypher®) and paclitaxel-eluting (Taxus®) stents and later approved second-generation everolimus-eluting (Xience V®) and zotarolimus-eluting (Endeavor®) stents. The Xience V stent was approved on the basis of clinical efficacy and safety data from 3 studies in the SPIRIT clinical trial program. Within this trial series, the Xience V was superior to its bare metal stent counterpart, the Vision® stent, and noninferior to the paclitaxel-eluting stent for target vessel failure at 9 months. This review provides a comprehensive assessment of the data derived from both the pre- and post-approval randomized controlled trials and registry studies of Xience V that comprise the SPIRIT clinical trial program including recently published mid-term outcomes. The implications of the results in terms of interventional practice will be discussed. PMID:20057901

  17. Optimization of elution salt concentration in stepwise elution of protein chromatography using linear gradient elution data. Reducing residual protein A by cation-exchange chromatography in monoclonal antibody purification.

    PubMed

    Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi

    2006-05-05

    Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.

  18. Growth and cesium uptake responses of Phytolacca americana Linn. and Amaranthus cruentus L. grown on cesium contaminated soil to elevated CO2 or inoculation with a plant growth promoting rhizobacterium Burkholderia sp. D54, or in combination.

    PubMed

    Tang, Shirong; Liao, Shangqiang; Guo, Junkang; Song, Zhengguo; Wang, Ruigang; Zhou, Xiaomin

    2011-12-30

    Growth and cesium uptake responses of plants to elevated CO(2) and microbial inoculation, alone or in combination, can be explored for clean-up of contaminated soils, and this induced phytoextraction may be better than the natural process. The present study used open-top chambers to investigate combined effects of Burkholderia sp. D54 inoculation and elevated CO(2) (860 μL L(-1)) on growth and Cs uptake by Phytolacca americana and Amaranthus cruentus grown on soil spiked with various levels of Cs (0-1000 mg kg(-1)). Elevated CO(2) and bacterial inoculation, alone or in combination, significantly increased biomass production with increased magnitude, ranging from 22% to 139% for P. americana, and 14% to 254% for A. cruentus. Total tissue Cs in both plants was significantly greater for bacterial inoculation treatment singly, and combined treatments of bacterial inoculation and elevated CO(2) than for the control treatment in most cases. Regardless of CO(2) concentrations and bacterial inoculation, A. cruentus had higher tissue Cs concentration, Cs transfer factors and concentration ratios than P. americana, but they had slightly different contents of antioxidant enzymes. It is concluded that combined effects of elevated CO(2) and microbial inoculation with regard to plant ability to grow and remove radionuclides from soil can be explored for CO(2)- and microbe-assisted phytoextraction technology. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Study of the overall behavior of thin films of the 7,7,8,8-tetracyanoquinodimethane neutral/anion couple on glassy carbon electrodes in the presence of cesium ion.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2008-10-07

    The overall electrochemistry of 7,7,8,8-tetracyanoquinodimethane thin films on glassy carbon electrodes in media containing Cs+ ions is explained in light of a layer-by-layer nucleation and growth model, and kinetic data for the processes involved are reported. Using in situ UV-vis spectroelectrochemistry allowed available mechanistic knowledge on such processes to be expanded and the presence of various intermediates in the redox reactions confirmed.

  20. The Effects of Radiation Chemistry on Solvent Extraction: 1. Conditions in Acidic Solution and a Review of TBP Radiolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce J. Mincher; Guiseppe Modolo; Strephen P. Mezyk

    2009-01-01

    Solvent extraction is the most commonly used process scale separation technique for nuclear applications and it benefits from more than 60 years of research and development and proven experience at the industrial scale. Advanced solvent extraction processes for the separation of actinides and fission products from dissolved nuclear fuel are now being investigated worldwide by numerous groups (US, Europe, Russia, Japan etc.) in order to decrease the radiotoxic inventories of nuclear waste. While none of the advanced processes have yet been implemented at the industrial scale their development studies have sometimes reached demonstration tests at the laboratory scale. Most ofmore » the partitioning strategies rely on the following four separations: 1. Partitioning of uranium and/or plutonium from spent fuel dissolution liquors. 2. Separation of the heat generating fission products such as strontium and cesium. 3. Coextraction of the trivalent actinides and lanthanides. 4. Separation of the trivalent actinides from the trivalent lanthanides. Tributylphosphate (TBP) in the first separation is the basis of the PUREX, UREX and COEX processes, developed in Europe and the US, whereas monoamides as alternatives for TBP are being developed in Japan and India. For the second separation, many processes were developed worldwide, including the use of crown-ether extractants, like the FPEX process developed in the USA, and the CCD-PEG process jointly developed in the USA and Russia for the partitioning of cesium and strontium. In the third separation, phosphine oxides (CMPOs), malonamides, and diglycolamides are used in the TRUEX, DIAMEX and the ARTIST processes, respectively developed in US, Europe and Japan. Trialkylphosphine oxide(TRPO) developed in China, or UNEX (a mixture of several extractants) jointly developed in Russia and the USA allow all actinides to be co-extracted from acidic radioactive liquid waste. For the final separation, soft donor atom-containing ligands such as the bistriazinylbipyridines (BTBPs) or dithiophosphinic acids have been developed in Europe and China to selectively extract the trivalent actinides. However, in the TALSPEAK process developed in the USA, the separation is based on the relatively high affinity of aminopolycarboxylic acid complexants such as DTPA for trivalent actinides over lanthanides. In the DIDPA, SETFICS and the GANEX processes, developed in Japan and France, the group separation is accomplished in a reverse TALSPEAK process. A typical scenario is shown in Figure 1 for the UREX1a (Uranium Extraction version 1a) process. The initial step is the TBP extraction for the separation of recyclable uranium. The second step partitions the short-lived, highly radioactive cesium and strontium to minimize heat loading in the high-level waste repository. The third step is a group separation of the trivalent actinides and lanthanides with the last step being partitioning of the trivalent lanthanides from the actinides.« less

  1. Conversion of radioactive ferrocyanide compounds to immobile glasses

    DOEpatents

    Schulz, Wallace W.; Dressen, A. Louise

    1977-04-26

    Complex radioactive ferrocyanide compounds result from the scavenging of cesium from waste products produced in the chemical reprocessing of nuclear fuel. These ferrocyanides, in accordance with this process, are converted to an immobile glass, resistant to leaching by water, by fusion together with sodium carbonate and a mixture of (a) basalt and boron trioxide (B.sub.2 O.sub.3) or (b) silica (SiO.sub.2) and lime (CaO).

  2. Pore networks and polymer rearrangement on a drug-eluting stent as revealed by correlated confocal Raman and atomic force microscopy.

    PubMed

    Biggs, Kevin B; Balss, Karin M; Maryanoff, Cynthia A

    2012-05-29

    Drug release from and coating morphology on a CYPHER sirolimus-eluting coronary stent (SES) during in vitro elution were studied by correlated confocal Raman and atomic force microscopy (CRM and AFM, respectively). Chemical surface and subsurface maps of the SES were generated in the same region of interest by CRM and were correlated with surface topography measured by AFM at different elution times. For the first time, a direct correlation between drug-rich regions and the coating morphology was made on a drug-eluting medical device, linking drug release with pore formation, pore throats, and pore networks. Drug release was studied on a drug-eluting stent (DES) system with a multicomponent carrier matrix (poly(n-butyl methacrylate) [PBMA] and poly(ethylene-co-vinyl acetate) [PEVA]). The polymer was found to rearrange postelution because confluence of the carrier polymer matrix reconstituted the voids created by drug release.

  3. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    PubMed Central

    BURAL, Canan; AKTAŞ, Esin; DENIZ, Günnur; ÜNLÜÇERÇI, Yeşim; BAYRAKTAR, Gülsen

    2011-01-01

    Objectives Residual methyl methacrylate (MMA) may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r) on in vitro cytotoxicity of L-929 fibroblasts. Material and Methods A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1) at 74ºC for 9 h, (2) at 74ºC for 9 h and terminal boiling (at 100ºC) for 30 min, (3) at 74ºC for 9 h and terminal boiling for 3 h, (4) at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl)-3,4-tetrazolium]bis(4-methoxy-6-nitro)benzenesulphonic acid) assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05). Results [MMA]r was significantly (p≤0.001) higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01) lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05) for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. Conclusion Due to reduction of leaching residual MMA concentrations, use of terminal boiling in the polymerization process for at least 30 min and water storage of the heat-polymerized denture bases for at least 1 to 2 days before denture delivery is clinically recommended for minimizing the residual MMA and possible cytotoxic effects. PMID:21956586

  4. Optimal thermionic energy conversion with established electrodes for high-temperature topping and process heating. [coal combustion product environments

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1980-01-01

    Applied research-and-technology (ART) work reveals that optimal thermionic energy conversion (TEC) with approximately 1000 K to approximately 1100 K collectors is possible using well established tungsten electrodes. Such TEC with 1800 K emitters could approach 26.6% efficiency at 27.4 W/sq cm with approximately 1000 K collectors and 21.7% at 22.6 W/sq cm with approximately 1100 K collectors. These performances require 1.5 and 1.7 eV collector work functions (not the 1 eV ultimate) with nearly negligible interelectrode losses. Such collectors correspond to tungsten electrode systems in approximately 0.9 to approximately 6 torr cesium pressures with 1600 K to 1900 K emitters. Because higher heat-rejection temperatures for TEC allow greater collector work functions, interelectrode loss reduction becomes an increasingly important target for applications aimed at elevated temperatures. Studies of intragap modifications and new electrodes that will allow better electron emission and collection with lower cesium pressures are among the TEC-ART approaches to reduced interelectrode losses. These solutions will provide very effective TEC to serve directly in coal-combustion products for high-temperature topping and process heating. In turn this will help to use coal and to use it well.

  5. Overview of insoluble radioactive cesium particles emitted from the Fukushima Dai-ichi Nuclear Power Station

    NASA Astrophysics Data System (ADS)

    Satou, Yukihiko

    2017-04-01

    In the early stage of the Fukushima Dai-ichi Nuclear Power Station (F1NPS) accident, number of spot type contamination has been observed in computed autoradiography (Kashimura 2013, Shibata 2013, Satou 2014). It's means presence of radioactive particles, however, insoluble cesium particle was overlooked because cesium, which is dominant radioactive element in the accident, becomes ionized in the environment. Adachi et al. (2013) showed presence of cesium (Cs)-bearing particles within air dust sample collected at Tsukuba, 170 km south from the Fukushima site, in midnight of 14 to morning of 15 March 2011. These particles were micrometer order small particles and Cs was could be detectable as element using an energy dispersive X-ray spectroscopy (EDX). However, other radioactive elements such as Co-60, Ru-103 and uranium, which were dominant element of radioactive particles delivered from Chernobyl accident, could not detected. Abe et al. (2014) employed a synchrotron radiation (SR)-micro(μ)-X-ray analysis to the Cs-bearing particles, and they were concluded that (1) contained elements derived from nuclear fission processes and from nuclear reactor and fuel materials; (2) were amorphous; (3) were highly oxidized; and (4) consisted of glassy spherules formed from a molten mixture of nuclear fuel and reactor material. In addition, Satou et al. (2016) and Yamaguchi et al. (2016) disclosed that silicate is main component of Cs-bearing particles. Satou et al. (2015) discovered two types of radioactive particles from soil samples collected in the vicinity of the F1NPS. These particles were remained in the natural environment more than four years, silicate is main component in common of each group particles. Group A particles were very similar to Cs-bearing particles reported by Adachi et al. except particle shape. On the other hand, group B is big particles found in north area from the F1NPS, and the strongest particles contained 20 kBq of Cs-137 within a particle. Radioactive ratio of Cs-134/Cs-137 of group A and B is completely different. Group B particles shown 0.92 (mean value) of Cs ratio, and specific radioactivity are much lowers than group A particles. In contrast, activity ratio in group A particles shown 1.0 (mean value), and it was consistent with previous studies by Adachi (2013). The location of soil samples, which was containing group B particles, has been contaminated with radioactive materials from Unit 1 with hydrogen explosion on 12 March (Satou et al. 2014, Chino et al. 2016). More than 300 um of diameter particles has been transported from the Unit 1 of F1NPS. This result shown that the insoluble radioactive cesium particles are emitted from not only Units 2 and/or 3 on 15 March but also Unit 1 on 12 March. The insoluble radioactive Cs particles were spread widely, and it is require to evaluation for particulate percentage of contribution in total emitted radioactive cesium, and long term monitoring of these behaviors.

  6. High Chloride Doping Levels Stabilize the Perovskite Phase of Cesium Lead Iodide.

    PubMed

    Dastidar, Subham; Egger, David A; Tan, Liang Z; Cromer, Samuel B; Dillon, Andrew D; Liu, Shi; Kronik, Leeor; Rappe, Andrew M; Fafarman, Aaron T

    2016-06-08

    Cesium lead iodide possesses an excellent combination of band gap and absorption coefficient for photovoltaic applications in its perovskite phase. However, this is not its equilibrium structure under ambient conditions. In air, at ambient temperature it rapidly transforms to a nonfunctional, so-called yellow phase. Here we show that chloride doping, particularly at levels near the solubility limit for chloride in a cesium lead iodide host, provides a new approach to stabilizing the functional perovskite phase. In order to achieve high doping levels, we first co-deposit colloidal nanocrystals of pure cesium lead chloride and cesium lead iodide, thereby ensuring nanometer-scale mixing even at compositions that potentially exceed the bulk miscibility of the two phases. The resulting nanocrystal solid is subsequently fused into a polycrystalline thin film by chemically induced, room-temperature sintering. Spectroscopy and X-ray diffraction indicate that the chloride is further dispersed during sintering and a polycrystalline mixed phase is formed. Using density functional theory (DFT) methods in conjunction with nudged elastic band techniques, low-energy pathways for interstitial chlorine diffusion into a majority-iodide lattice were identified, consistent with the facile diffusion and fast halide exchange reactions observed. By comparison to DFT-calculated values (with the PBE exchange-correlation functional), the relative change in band gap and the lattice contraction are shown to be consistent with a Cl/I ratio of a few percent in the mixed phase. At these incorporation levels, the half-life of the functional perovskite phase in a humid atmosphere increases by more than an order of magnitude.

  7. Development of an elution device for ViroCap virus filters.

    PubMed

    Fagnant, Christine Susan; Toles, Matthew; Zhou, Nicolette Angela; Powell, Jacob; Adolphsen, John; Guan, Yifei; Ockerman, Byron; Shirai, Jeffry Hiroshi; Boyle, David S; Novosselov, Igor; Meschke, John Scott

    2017-10-19

    Environmental surveillance of waterborne pathogens is vital for monitoring the spread of diseases, and electropositive filters are frequently used for sampling wastewater and wastewater-impacted surface water. Viruses adsorbed to electropositive filters require elution prior to detection or quantification. Elution is typically facilitated by a peristaltic pump, although this requires a significant startup cost and does not include biosafety or cross-contamination considerations. These factors may pose a barrier for low-resource laboratories that aim to conduct environmental surveillance of viruses. The objective of this study was to develop a biologically enclosed, manually powered, low-cost device for effectively eluting from electropositive ViroCap™ virus filters. The elution device described here utilizes a non-electric bilge pump, instead of an electric peristaltic pump or a positive pressure vessel. The elution device also fully encloses liquids and aerosols that could contain biological organisms, thereby increasing biosafety. Moreover, all elution device components that are used in the biosafety cabinet are autoclavable, reducing cross-contamination potential. This device reduces costs of materials while maintaining convenience in terms of size and weight. With this new device, there is little sample volume loss due to device inefficiency, similar virus yields were demonstrated during seeded studies with poliovirus type 1, and the time to elute filters is similar to that required with the peristaltic pump. The efforts described here resulted in a novel, low-cost, manually powered elution device that can facilitate environmental surveillance of pathogens through effective virus recovery from ViroCap filters while maintaining the potential for adaptability to other cartridge filters.

  8. Biosolid colloid-mediated transport of copper, zinc, and lead in waste-amended soils.

    PubMed

    Karathanasis, A D; Johnson, D M C; Matocha, C J

    2005-01-01

    Increasing land applications of biosolid wastes as soil amendments have raised concerns about potential toxic effects of associated metals on the environment. This study investigated the ability of biosolid colloids to transport metals associated with organic waste amendments through subsurface soil environments with leaching experiments involving undisturbed soil monoliths. Biosolid colloids were fractionated from a lime-stabilized, an aerobically digested, and a poultry manure organic waste and applied onto the monoliths at a rate of 0.7 cm/h. Eluents were monitored for Cu, Zn, Pb, and colloid concentrations over 16 to 24 pore volumes of leaching. Mass-balance calculations indicated significantly higher (up to 77 times) metal elutions in association with the biosolid colloids in both total and soluble fractions over the control treatments. Eluted metal loads varied with metal, colloid, and soil type, following the sequences Zn = Cu > Pb, and ADB > PMB > LSB colloids. Colloid and metal elution was enhanced by decreasing pH and colloid size, and increasing soil macroporosity and organic matter content. Breakthrough curves were mostly irregular, showing several maxima and minima as a result of preferential macropore flow and multiple clogging and flushing cycles. Soil- and colloid-metal sorption affinities were not reliable predictors of metal attenuation/elution loads, underscoring the dynamic nature of transport processes. The findings demonstrate the important role of biosolid colloids as contaminant carriers and the significant risk they pose, if unaccounted, for soil and ground water contamination in areas receiving heavy applications of biosolid waste amendments.

  9. WE-G-BRE-08: Radiosensitization by Olaparib Eluting Nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangutoori, S; Kumar, R; Sridhar, S

    2014-06-15

    Purpose: Permanent prostate brachytherapy often uses inert bio-absorbable spacers to achieve the desired geometric distribution of sources within the prostate. Transforming these spacers into implantable nanoplatforms for chemo-radiation therapy (INCeRT) provides a means of providing sustained in-situ release of radiosensitizers in the prostate to enhance the therapeutic ratio of the procedure. Olaparib, a PARP inhibitor, suppresses DNA repair processes present during low dose rate continuous irradiation. This work investigates the radiosensitizing/DNA damage repair inhibition by NanoOlaparib eluting nanospheres. Methods: Human cell line PC3 (from ATCC), was maintained in F12-k medium supplemented with fetal bovine serum. Clonogenic assay kit (from Fischermore » Scientific) was used to fix and stain the cells to determine the long term effects of irradiation. Nanoparticle size and zeta potential of nanospheres were determined using a Zeta particle size analyzer. The incorporation of Olaparib in nanospheres was evaluated by HPLC. Irradiation was performed in a small animal irradiator operating at 220 KeV.The long term effects of radio-sensitization with olaparib and nanoolaparib was determined using the clonogenic assay at 2 Gy and 4 Gy doses. The cells were allowed to grow for around 10 doubling cycles, The colonies were fixed and stained using clonogenic assay kit. The excess stain was washed off using DI water and the images were taken using a digital camera. Results: Radiosensitization studies were carried out in prostate cancer cell line, PC3 radiation at 0, 2 and 4Gy doses. Strongest dose response was observed with nanoolaparib treated cells compared to untreated cells. Conclusion: A two stage drug release of drug eluting nanospheres from a biodegradable spacer has been suggested for sustained in-situ release of Olaparib to suppress DNA repair processes during prostate brachytherapy. The Olaparib eluting nanospheres had the same in-vitro radiosensitizing effect as free olaparib. DOD 1R21CA16977501, A. David Mazzone Awards Program 2012PD164.« less

  10. Leach of the weathering crust elution-deposited rare earth ore for low environmental pollution with a combination of (NH4)2SO4 and EDTA.

    PubMed

    Tang, Jie; Qiao, Jiyang; Xue, Qiang; Liu, Fei; Chen, Honghan; Zhang, Guochen

    2018-05-01

    High concentration of ammonium sulfate, a typical leaching agent, was often used in the mining process of the weathering crust elution-deposited rare earth ore. After mining, a lot of ammonia nitrogen and labile heavy metal fractions were residual in tailings, which may result in a huge potential risk to the environment. In this study, in order to achieve the maximum extraction of rare earth elements and reduce the labile heavy metal, extraction effect and fraction changes of lanthanum (La) and lead (Pb) in the weathering crust elution-deposited rare earth ore were studied by using a compound agent of (NH 4 ) 2 SO 4 -EDTA. The extraction efficiency of La was more than 90% by using 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which was almost same with that by using 2.0% (NH 4 ) 2 SO 4 solution. In contrast, the extraction efficiency of Pb was 62.3% when use 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which is much higher than that (16.16%) achieved by using 2.0% (NH 4 ) 2 SO 4 solution. The released Pb fractions were mainly acid extractable and reducible fractions, and the content of reducible fraction being leached accounted for 70.45% of the total reducible fraction. Therefore, the use of 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA can not only reduce the amount of (NH 4 ) 2 SO 4 , but also decrease the labile heavy metal residues in soil, which provides a new way for efficient La extraction with effective preventing and controlling environmental pollution in the process of mining the weathering crust elution-deposited rare earth ore. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. 3-Year Clinical Follow-Up of the RIBS IV Clinical Trial: A Prospective Randomized Study of Drug-Eluting Balloons Versus Everolimus-Eluting Stents in Patients With In-Stent Restenosis in Coronary Arteries Previously Treated With Drug-Eluting Stents.

    PubMed

    Alfonso, Fernando; Pérez-Vizcayno, María José; Cuesta, Javier; García Del Blanco, Bruno; García-Touchard, Arturo; López-Mínguez, José Ramón; Masotti, Mónica; Zueco, Javier; Cequier, Angel; Velázquez, Maite; Moreno, Raúl; Mainar, Vicente; Domínguez, Antonio; Moris, Cesar; Molina, Eduardo; Rivero, Fernando; Jiménez-Quevedo, Pilar; Gonzalo, Nieves; Fernández-Pérez, Cristina

    2018-05-28

    This study sought to compare the long-term safety and efficacy of drug-eluting balloons (DEB) and everolimus-eluting stents (EES) in patients with in-stent restenosis (ISR) of drug-eluting stents (DES). Treatment of patients with DES-ISR remains a challenge. The RIBS IV (Restenosis Intra-Stent of Drug-Eluting Stents: Drug-Eluting Balloons vs Everolimus-Eluting Stents) trial is a prospective multicenter randomized clinical trial comparing DEB and EES in patients with DES-ISR. The pre-specified comparison of the 3-year clinical outcomes obtained with these interventions is the main objective of the present study. A total of 309 patients with DES-ISR were randomized to DEB (n = 154) or EES (n = 155). At angiographic follow-up, the in-segment minimal lumen diameter was larger in the EES arm (2.03 ± 0.7 mm vs. 1.80 ± 0.6 mm; p < 0.01). Three-year clinical follow-up was obtained in all enrolled patients (100%). The combined clinical outcome measure of cardiac death, myocardial infarction and target lesion revascularization was significantly reduced in the EES arm (19 [12.3%] vs. 31 [20.1%]; p = 0.04; hazard ratio: 0.57 [95% confidence interval: 0.34 to 0.96]), driven by a lower need for target lesion revascularization (11 [7.1%] vs. 24 [15.6%]; p = 0.015; hazard ratio: 0.43 [95% confidence interval: 0.21 to 0.87]). The need for "late" (>1 year) target lesion revascularization (2.6% vs. 4%) and target vessel revascularization (4% vs. 6.6%) was similar in the 2 arms. Rates of cardiac death (3.9% vs. 3.2%), myocardial infarction (2.6% vs. 4.5%), and stent thrombosis (1.3% vs. 2.6%) at 3 years were also similar in both arms. The 3-year clinical follow-up of this randomized clinical trial demonstrates that in patients with DES-ISR, EES reduce the need for repeat interventions compared with DEB. (Restenosis Intra-Stent of Drug-Eluting Stents: Drug-Eluting Balloons vs Everolimus-Eluting Stents [RIBS IV]; NCT01239940). Published by Elsevier Inc.

  12. Deciphering the Measured Ratios of Iodine-131 to Cesium-137 at the Fukushima Reactors

    NASA Astrophysics Data System (ADS)

    Matsui, T.

    2011-12-01

    We calculate the relative abundance of the radioactive isotopes Iodine-131 and Cesium-137 produced by nuclear fission in reactors and compare it with data taken at the troubled Fukushima Dai-ichi nuclear power plant. The ratio of radioactivities of these two isotopes can be used to obtain information about when the nuclear reactions terminated.

  13. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  14. Electron Temperature Measurements in an Argon/Cesium Plasma Diode.

    DTIC Science & Technology

    1987-12-01

    treatment , Q~xC (E) is modeled as a linear function. Upon viewing the cesium cross section data, one notes that Qmx is reached within only 1 eV of...metal sealIC where the electrode leads enter the cell. Due to the shape of this seal, portions of the glass are exposed to the air, despite the aluminum

  15. X-ray spectrographic determination of cesium and rubidium

    USGS Publications Warehouse

    Axelrod, J.M.; Adler, I.

    1957-01-01

    An x-ray spectrographic method for the determination of rubidium and cesium was developed, using the internal-standard method and a four-channel flat-crystal spectrograph. The sensitivity is within 0.1% for cesia and 0.02% for rubidia; the precision is within 10% of the amount present. Results agree well with those obtained by flame photometry and by radio-activation.

  16. Cesium-Induced Ionic Conduction through a Single Nanofluidic Pore Modified with Calixcrown Moieties.

    PubMed

    Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Cervera, Javier; Mafe, Salvador; Niemeyer, Christof M; Ensinger, Wolfgang

    2017-09-12

    We demonstrate experimentally and theoretically a nanofluidic device for the selective recognition of the cesium ion by exploiting host-guest interactions inside confined geometry. For this purpose, a host molecule, i.e., the amine-terminated p-tert-butylcalix[4]arene-crown (t-BuC[4]C-NH 2 ), is successfully synthesized and functionalized on the surface of a single conical nanopore fabricated in a poly(ethylene terephthalate) (PET) membrane through carbodiimide coupling chemistry. On exposure to the cesium cation, the t-BuC[4]C-Cs + complex is formed through host-guest interaction, leading to the generation of positive fixed charges on the pore surface. The asymmetrical distribution of these groups along the conical nanopore leads to the electrical rectification observed in the current-voltage (I-V) curve. On the contrary, other alkali cations are not able to induce any significant change in the rectification characteristics of the nanopore. The success of the chemical modification is monitored from the changes in the electrical readout of the nanopore. Theoretical results based on the Nernst-Planck and Poisson equations further demonstrate the validity of the experimental approach to the cesium-induced ionic conduction of the nanopore.

  17. Thermodynamics of soluble fission products cesium and iodine in the Molten Salt Reactor

    NASA Astrophysics Data System (ADS)

    Capelli, E.; Beneš, O.; Konings, R. J. M.

    2018-04-01

    The present study describes the full thermodynamic assessment of the Li,Cs,Th//F,I system. The existing database for the relevant fluoride salts considered as fuel for the Molten Salt Reactor (MSR) has been extended with two key fission products, cesium and iodine. A complete evaluation of all the common-ion binary and ternary sub-systems of the LiF-ThF4-CsF-LiI-ThI4-CsI system has been performed and the optimized parameters are presented in this work. New equilibrium data have been measured using Differential Scanning Calorimetry and were used to assess the reciprocal ternary systems and confirm the extrapolated phase diagrams. The developed database significantly contributes to the understanding of the behaviour of cesium and iodine in the MSR, which strongly depends on their concentration and chemical form. Cesium bonded with fluorine is well retained in the fuel mixture while in the form of CsI the solubility of these elements is very limited. Finally, the influence of CsI and CsF on the physico-chemical properties of the fuel mixture was calculated as function of composition.

  18. Hydrogen masers and cesium fountains at NRC

    NASA Technical Reports Server (NTRS)

    Boulanger, J.-S.; Morris, D.; Douglas, R. J.; Gagne, M.-C.

    1994-01-01

    The NRC masers H-3 and H-4 have been operating since June 1993 with cavity servo control. These low-flux active H masers are showing stabilities of about 10(exp -15) from 1 hour to several days. Stability results are presented, and the current and planned uses of the masers are discussed. A cesium fountain primary frequency standard project has been started at NRC. Trapping and launching experiments with the goal of 7 m/s launches are beginning. We discuss our plans for a local oscillator and servo that exploit the pulsed aspect of cesium fountain standards, and meet the challenge of 10(exp -14) tau(exp -1/2) stability without requiring masers. At best, we expect to run this frequency standard initially for periods of hours each working day rather than continuously for years, and so frequency transfer to outside laboratories has been carefully considered. We conclude that masers (or other even better secondary clocks) are required to exploit this potential accuracy of the cesium fountain. We present and discuss our conclusion that it is feasible to transfer frequency in this way with a transfer-induced uncertainty of less than 10(exp -15), even in the presence of maser frequency drift and random walk noise.

  19. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active filmsmore » (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)« less

  20. Evaluation of PAN-based manganese dioxide composite for the sorptive removal of cesium-137 from aqueous solutions.

    PubMed

    Nilchi, A; Saberi, R; Garmarodi, S Rasouli; Bagheri, A

    2012-02-01

    Hydrous manganese dioxide-polyacrylonitrile (MnO(2)-PAN) was chemically synthesized and evaluated, as an organic-inorganic composite material, for the removal of radio-contaminant cesium-137 from aqueous solutions. The physico-chemical characterization was carried out by Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), CHN elemental analysis, scanning electron microscopy (SEM), nitrogen adsorption-desorption studies and thermogravimetry-differential scanning calorimetry (TGA-DSC). Batch experiments were carried out as a function of contact time, interference of the coexisting ions and initial pH of adsorptive solution applying a radiotracer technique. The effect of temperature on the distribution coefficient of cesium has been utilized in order to evaluate the changes in the standard thermodynamic parameters. The results indicated that Cs(+) ions could be efficiently removed using MnO(2)-PAN composite in the pH range of 4-9 from aqueous solutions and the uptake of cesium is affected to varying degrees by the presence of some diverse co-ions. The equilibrium isotherms have been determined and the sorption data were successfully modeled using Freundlich model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Post-elution concentration of (188)Re by an electrochemical method.

    PubMed

    Chakravarty, Rubel; Dash, Ashutosh; Pillai, M R A; Venkatesh, Meera

    2010-12-01

    High specific activity (188)Re required for nuclear medicine is mostly obtained from (188)W/(188)Re generators. As the parent radionuclide (188)W is of low specific activity (<185 GBq/g), a relatively large volume of 0.9% saline is required for the elution of (188)Re. Post-elution concentration is needed in order to increase the radioactive concentration of the eluted (188)Re. An electrochemical procedure to concentrate (188)Re suitable for the preparation of radiopharmaceuticals is developed. (188)Re eluted from an alumina generator could be concentrated approximately 100 fold, and it could be used to label DMSA and HEDP with >98% yield. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Econazole-releasing porous space maintainers for fungal periprosthetic joint infection.

    PubMed

    Tatara, Alexander M; Rozich, Allison J; Kontoyiannis, Panayiotis D; Watson, Emma; Albert, Nathaniel D; Bennett, George N; Mikos, Antonios G

    2018-05-11

    While antibiotic-eluting polymethylmethacrylate space maintainers have shown efficacy in the treatment of bacterial periprosthetic joint infection and osteomyelitis, antifungal-eluting space maintainers are associated with greater limitations for treatment of fungal musculoskeletal infections including limited elution concentration and duration. In this study, we have designed a porous econazole-eluting space maintainer capable of greater inhibition of fungal growth than traditional solid space maintainers. The eluted econazole demonstrated bioactivity in a concentration-dependent manner against the most common species responsible for fungal periprosthetic joint infection as well as staphylococci. Lastly, these porous space maintainers retain compressive mechanical properties appropriate to maintain space before definitive repair of the joint or bony defect.

  3. [Optimized isolation and purification of non-typeable Haemophilus influenzae Haps protein].

    PubMed

    Li, Wan-yi; Kuang, Yu; Li, Ming-yuan; Yang, Yuan; Jiang, Zhong-hua; Yao, Feng; Chen, Chang-chun

    2007-12-01

    To optimize the isolation and purification conditions for Hap(s) protein of non-typeable Haemophilus influenzae. Hap(s) protein was purified by ammonium sulfate precipitation, dialysis desalting and Hitrap weak cation exchange columns of CM Sepharose Fast Flow. The condition of the elution was optimized for pH and ionic strength, the absorbance at 280 nm of the elution samples were detected, and the targeted protein band in the collected samples was observed by SDS-PAGE electrophoresis. The Hitrap ion exchange column was eluted with buffer 1, which resulted in a baseline distribution of absorbance at 280 nm. Buffer 2 elution of the column resulted in the presence of peak absorbance with trails, which was identified to be constituted by some low molecular weight bands by subsequent SDS-PAGE. In serial column elution with buffer 3 with different ionic strength, a peak absorbance was observed with the ionic strength of 100 mmol/L NaCl, and SDS-PAGE confirmed that the peak was generated by the target protein. No obvious peaks or bands in SDS-PAGE occurred with the other ionic strengths. The pH of the buffer only affect the elution of the irrelevant proteins rather than the Hap(s) protein, and elution with the buffer containing 100 mmol/L NaCl can be optimal for eluting the Hap(s) protein.

  4. [Optimization of Cryptosporidium and Giardia detection in water environment using automatic elution station Filta-Max xpress].

    PubMed

    Matuszewska, Renata; Szczotko, Maciej; Krogulska, Bozena

    2012-01-01

    The presence of parasitic protozoa in drinking water is mostly a result of improperly maintened the water treatment process. Currently, in Poland the testing of Cryptosporidium and Giardia in water as a part of routine monitoring of water is not perform. The aim of this study was the optimization of the method of Cryptosporidium and Giardia detection in water according to the main principles of standard ISO 15553:2006 and using Filta-Max xpress automatic elution station. Preliminary tests were performed on the samples contaminated with oocysts and cysts of reference strains of both parasitic protozoa. Further studies were carried out on environmental samples of surface water sampled directly from the intakes of water (21 samples from Vistula River and 8 samples from Zegrzynski Lake). Filtration process and samples volume reducing were performed using an automatic elution system Filta-Max xpress. Next, samples were purified during immunomagnetic separation process (IMS). Isolated cysts and oocysts were stained with FITC and DAPI and than the microscopic observation using an epifluorescence microscope was carried out. Recovery of parasite protozoa in all contaminated water samples after 9-cycles elution process applied was mean 60.6% for Cryptosporidium oocysts and 36.1% for Giardia cysts. Studies on the environmental surface water samples showed the presence of both parasitic protozoa. Number of detected Giardia cysts ranged from 1.0/10 L up to 4.5/10 L in samples from Zegrzynski Lake and from 1.0/10 L up to 38.9/10 L in samples from Vistula River. Cryptosporidium oocysts were present in 50% of samples from the Zegrzynski Lake and in 47.6% of samples from the Vistula River, and their number in both cases was similar and ranged from 0.5 up to 2.5 oocyst/10 L. The results show that applied procedure is appropriate for detection the presence of parasitic protosoan in water, but when water contains much amount of inorganic matter and suspended solids test method have to be modified like subsamples preparation and filtration process speed reduction. The applied method with the modification using Filta-Max xpress system can be useful for the routine monitoring of water. Detection of Cryptosporidium and Giardia in all samples of water taken from the intakes of surface water shows the possibility oftransfering of the protozoan cysts into the water intended for the consumption, therefore the testing of Cryptosporidium and Giardia should be included into the monitoring of water.

  5. Realization of a twin beam source based on four-wave mixing in Cesium

    NASA Astrophysics Data System (ADS)

    Adenier, G.; Calonico, D.; Micalizio, S.; Samantaray, N.; Degiovanni, I. P.; Berchera, I. Ruo

    2016-05-01

    Four-wave mixing (4WM) is a known source of intense non-classical twin beams. It can be generated when an intense laser beam (the pump) and a weak laser beam (the seed) overlap in a χ(3) medium (here Cesium vapor), with frequencies close to resonance with atomic transitions. The twin beams generated by 4WM have frequencies naturally close to atomic transitions, and can be intense (gain ≫1) even in the CW pump regime, which is not the case for PDC χ(2) phenomenon in nonlinear crystals. So, 4WM is well suited for atom-light interaction and atom-based quantum-protocols. Here, we present the first realization of a source of 4-wave mixing exploiting D2 line of Cesium atoms.

  6. Monitoring Cs-134 and 137 released by Fukushima Dai-ichi Nuclear Power Plant accident in ground, soil, and stream waters

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Onda, Yuichi; Hada, Manami; Ishwar, Pun; Abe, Yutaka

    2013-04-01

    Due to Fukushima Dai-ichi Nuclear power plant accident occurred in March 2011, large amount of radionuclides was released into the atmosphere and was fallen onto ground by rainfall. Few researches have monitored radioactive cesium dynamics in whole hydrological cycle system such as groundwater, soil water, spring water and stream water. Thus, the purpose of this study is to monitor concentration of radioactive cesium in those waters in time series in the headwaters. We have performed an intensive monitoring at three small mountainous catchments in Yamakiya district, Kawamata town, Fukushima prefecture, locating 35 km northwest from Fukushima Dai-ichi Nuclear Power Plant since June 2011, also we consider the movement of radioactive cesium and its relation with the hydrological cycle.

  7. Cs 62 DJ Rydberg-atom macrodimers formed by long-range multipole interaction

    NASA Astrophysics Data System (ADS)

    Han, Xiaoxuan; Bai, Suying; Jiao, Yuechun; Hao, Liping; Xue, Yongmei; Zhao, Jianming; Jia, Suotang; Raithel, Georg

    2018-03-01

    Long-range macrodimers formed by D -state cesium Rydberg atoms are studied in experiments and calculations. Cesium [62DJ]2 Rydberg-atom macrodimers, bonded via long-range multipole interaction, are prepared by two-color photoassociation in a cesium atom trap. The first color (pulse A) resonantly excites seed Rydberg atoms, while the second (pulse B, detuned by the molecular binding energy) resonantly excites the Rydberg-atom macrodimers below the [62DJ]2 asymptotes. The molecules are measured by extraction of autoionization products and Rydberg-atom electric-field ionization, and ion detection. Molecular spectra are compared with calculations of adiabatic molecular potentials. From the dependence of the molecular signal on the detection delay time, the lifetime of the molecules is estimated to be 3 -6 μ s .

  8. The analysis of isotherms of radionuclides sorption by inorganic sorbents

    NASA Astrophysics Data System (ADS)

    Bykova, E. P.; Nedobukh, T. A.

    2017-09-01

    The isotherm of cesium sorption by an inorganic sorbent based on granulated glauconite obtained in a wide cesium concentrations range was mathematically treated using Langmuir, Freundlich and Redlich-Peterson sorption models. The algorithms of mathematical treatment of experimental data using these models were described; parameters of all isotherms were determined. It was shown that estimating the correctness of various sorption models relies not only on the correlation coefficient values but also on the closeness of the calculated and experimental data. Various types of sorption sites were found as a result of mathematical treatment of the isotherm of cesium sorption. The algorithm was described and calculation of parameters of the isotherm was performed under the assumption that simultaneous sorption on all three types of sorption sites occurs in accordance with Langmuir isotherm.

  9. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, C.G.

    A tunable source of coherent infrared energy includes a heat pipe having an intermediate region at which cesium is heated to vaporizing temperature and end regions at which the vapor is condensed and returned to the intermediate region for reheating and recirculation. Optical pumping light is directed along the axis of the heat pipe through a first end window to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window. A porous walled tubulation extends along the axis of the heat pipe and defines a region in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light. Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light.

  10. Optical and structural properties of CsI thin film photocathode

    NASA Astrophysics Data System (ADS)

    Triloki; Rai, R.; Singh, B. K.

    2015-06-01

    In the present work, the performance of a cesium iodide thin film photocathode is studied in detail. The optical absorbance of cesium iodide films has been analyzed in the spectral range from 190 nm to 900 nm. The optical band gap energy of 500 nm thick cesium iodide film is calculated from the absorbance data using a Tauc plot. The refractive index is estimated from the envelope plot of transmittance data using Swanepoel's method. The absolute quantum efficiency measurement has been carried out in the wavelength range from 150 nm to 200 nm. The crystallographic nature and surface morphology are investigated by X-ray diffraction and transmission electron microscopy techniques. In addition, the elemental composition result obtained by energy dispersive X-ray analysis is also reported in the present work.

  11. Preparative electrophoresis with on-column optical fiber monitoring and direct elution into a minimized volume.

    PubMed

    Jackson, George W; Willson, Richard

    2005-11-01

    A "column-format" preparative electrophoresis device which obviates the need for gel extraction or secondary electro-elution steps is described. Separated biomolecules are continuously detected and eluted directly into a minimal volume of free solution for subsequent use. An optical fiber allows the species of interest to be detected just prior to elution from the gel column, and a small collection volume is created by addition of an ion-exchange membrane near the end of the column.

  12. Design and scaleup of downstream processing of monoclonal antibodies for cancer therapy: from research to clinical proof of principle.

    PubMed

    Horenstein, Alberto L; Crivellin, Federico; Funaro, Ada; Said, Marcela; Malavasi, Fabio

    2003-04-01

    Murine monoclonal antibodies (mAb) from cell culture supernatants have been purified in order to acquire clinical grade for in vivo cancer treatment. The starting material was purified by high performance liquid chromatography (HPLC) systems ranging from the analytical scale process to a scaleup to 1 g per batch. Three columns (Protein A affinity chromatography with single-step elution, hydroxyapatite (HA) chromatography followed by linear gradient elution and endotoxin removing-gel chromatography), exploiting different properties of the mAb were applied. The final batches of antibody were subjected to a large panel of tests for the purpose of evaluating the efficacy of the downstream processing. The resulting data have allowed us to determine the maximum number of times the column can be used and to precisely and thoroughly characterize antibody integrity, specificity, and potency according to in-house reference standards. The optimized bioprocessing is rapid, efficient, and reproducible. Not less importantly, all the techniques applied are characterized by costs which are affordable to medium-sized laboratories. They represent the basis for implementing immunotherapeutic protocols transferable to clinical medicine.

  13. Differentiated analysis of an everolimus-eluting stent and a paclitaxel-eluting stent among higher risk subgroups for restenosis: results from the SPIRIT II trial.

    PubMed

    Khattab, Ahmed A; Richardt, Gert; Verin, Vitali; Kelbaek, Henning; Macaya, Carlos; Berland, Jacques; Miquel-Hebert, Karine; Dorange, Cécile; Serruys, Patrick W

    2008-03-01

    Restenosis is higher among certain subpopulations when subjected to percutaneous coronary interventions even when using drug-eluting stents. The randomised SPIRIT II trial demonstrated the superiority of the XIENCE V Everolimus Eluting Coronary Stent System over the TAXUS Paclitaxel-Eluting Stent System in terms of in-stent late loss at six months among 300 patients treated for de novo native coronary artery lesions. In this post-hoc analysis of SPIRIT II we focused on six-month angiographic outcomes of diabetic patients (n=69), left anterior descending arteries (n=149), long lesions >20 mm (n=43), small vessels <3.0 mm (n=209) and type B2 and C lesions (n=233). In-stent late loss was consistently less among all subgroups when treated by everolimus-eluting stents compared to paclitaxel-eluting stents: diabetics 0.15+/-0.26 mm versus 0.39+/-0.34 mm, p=0.006; LAD 0.12+/-0.23 mm versus 0.44+/-0.37 mm, p<0.001; long lesions 0.13+/-0.26 mm versus 0.43+/-0.46 mm, p=0.070; small vessels 0.17+/-0.28 mm versus 0.37+/-0.39 mm, p<0.001; B2/C lesions 0.12+/-0.31 mm versus 0.36+/-0.36 mm, p<0.001. The everolimus-eluting stent remained superior in terms of in-stent late loss in a variety of higher risk populations for restenosis compared to the paclitaxel-eluting stent. These analyses were consistent with the in-stent late loss results of the overall SPIRIT II trial population.

  14. Nickel elution properties of contemporary interatrial shunt closure devices.

    PubMed

    Verma, Divya Ratan; Khan, Muhammad F; Tandar, Anwar; Rajasekaran, Namakkal S; Neuharth, Renée; Patel, Amit N; Muhlestein, Joseph B; Badger, Rodney S

    2015-02-01

    We sought to compare nickel elution properties of contemporary interatrial shunt closure devices in vitro. There are two United States Food and Drug Administration (FDA)-approved devices for percutaneous closure of secundum atrial septal defect: the Amplatzer septal occluder (ASO; St Jude Medical Corporation) and Gore Helex septal occluder (HSO; W.L. Gore & Associates). The new Gore septal occluder (GSO) device is in clinical trials. These are also used off-label for patent foramen ovale closure in highly selected patients. These devices have high nickel content. Nickel allergy is the most common reason for surgical device explantation. Nickel elution properties of contemporary devices remain unknown. We compared nickel elution properties of 4 devices - ASO, GSO, HSO, and sternal wire (SW) - while Dulbecco's phosphate-buffered saline (DPBS) served as control. Three samples of each device were submerged in DPBS. Nickel content was measured at 14 intervals over 90 days. Nickel elution at 24 hours, compared to control (0.005 ± 0.0 mg/L), was significantly higher for ASO (2.98 ± 1.65 mg/L; P=.04) and SW (0.03 ± 0.014 mg/L; P=.03). Nickel levels at 90 days, compared to control (0.005 ± 0.0 mg/L) and adjusting for multiple comparisons, were significantly higher for ASO (19.80 ± 2.30 mg/L; P=.01) and similar for HSO (P=.34), GSO (P=.34), and SW (P=.34). ASO had significantly higher nickel elution compared to HSO, GSO, and SW (P=.01). There is substantial variability in nickel elution; devices with less exposed nickel (HSO and GSO) have minimal elution. The safety of low nickel elution devices in patients with nickel allergy needs to be evaluated in prospective trials.

  15. Estimation of the Cesium-137 Source Term from the Fukushima Daiichi Power Plant Using Air Concentration and Deposition Data

    NASA Astrophysics Data System (ADS)

    Winiarek, Victor; Bocquet, Marc; Duhanyan, Nora; Roustan, Yelva; Saunier, Olivier; Mathieu, Anne

    2013-04-01

    A major difficulty when inverting the source term of an atmospheric tracer dispersion problem is the estimation of the prior errors: those of the atmospheric transport model, those ascribed to the representativeness of the measurements, the instrumental errors, and those attached to the prior knowledge on the variables one seeks to retrieve. In the case of an accidental release of pollutant, and specially in a situation of sparse observability, the reconstructed source is sensitive to these assumptions. This sensitivity makes the quality of the retrieval dependent on the methods used to model and estimate the prior errors of the inverse modeling scheme. In Winiarek et al. (2012), we proposed to use an estimation method for the errors' amplitude based on the maximum likelihood principle. Under semi-Gaussian assumptions, it takes into account, without approximation, the positivity assumption on the source. We applied the method to the estimation of the Fukushima Daiichi cesium-137 and iodine-131 source terms using activity concentrations in the air. The results were compared to an L-curve estimation technique, and to Desroziers's scheme. Additionally to the estimations of released activities, we provided related uncertainties (12 PBq with a std. of 15 - 20 % for cesium-137 and 190 - 380 PBq with a std. of 5 - 10 % for iodine-131). We also enlightened that, because of the low number of available observations (few hundreds) and even if orders of magnitude were consistent, the reconstructed activities significantly depended on the method used to estimate the prior errors. In order to use more data, we propose to extend the methods to the use of several data types, such as activity concentrations in the air and fallout measurements. The idea is to simultaneously estimate the prior errors related to each dataset, in order to fully exploit the information content of each one. Using the activity concentration measurements, but also daily fallout data from prefectures and cumulated deposition data over a region lying approximately 150 km around the nuclear power plant, we can use a few thousands of data in our inverse modeling algorithm to reconstruct the Cesium-137 source term. To improve the parameterization of removal processes, rainfall fields have also been corrected using outputs from the mesoscale meteorological model WRF and ground station rainfall data. As expected, the different methods yield closer results as the number of data increases. Reference : Winiarek, V., M. Bocquet, O. Saunier, A. Mathieu (2012), Estimation of errors in the inverse modeling of accidental release of atmospheric pollutant : Application to the reconstruction of the cesium-137 and iodine-131 source terms from the Fukushima Daiichi power plant, J. Geophys. Res., 117, D05122, doi:10.1029/2011JD016932.

  16. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  17. Diminiode thermionic energy conversion with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Kroeger, E. W.; Bair, V. L.; Morris, J. F.

    1978-01-01

    Thermionic conversion data obtained from a variable gap cesium diminiode with a hot pressed, sintered lanthanum hexaboride emitter and an arc melted lanthanum hexaboride collector are presented. Performance curves cover a range of temperatures: emitter 1500 to 1700 K, collector 750 to 1000 K, and cesium reservoir 370 to 510 K. Calculated values of emitter and collector work functions and barrier index are also given.

  18. The best practice for preparation of samples from FTA®cards for diagnosis of blood borne infections using African trypanosomes as a model system.

    PubMed

    Ahmed, Heba A; MacLeod, Ewan T; Hide, Geoff; Welburn, Susan C; Picozzi, Kim

    2011-05-07

    Diagnosis of blood borne infectious diseases relies primarily on the detection of the causative agent in the blood sample. Molecular techniques offer sensitive and specific tools for this although considerable difficulties exist when using these approaches in the field environment. In large scale epidemiological studies, FTA®cards are becoming increasingly popular for the rapid collection and archiving of a large number of samples. However, there are some difficulties in the downstream processing of these cards which is essential for the accurate diagnosis of infection. Here we describe recommendations for the best practice approach for sample processing from FTA®cards for the molecular diagnosis of trypanosomiasis using PCR. A comparison of five techniques was made. Detection from directly applied whole blood was less sensitive (35.6%) than whole blood which was subsequently eluted from the cards using Chelex®100 (56.4%). Better apparent sensitivity was achieved when blood was lysed prior to application on the FTA cards (73.3%) although this was not significant. This did not improve with subsequent elution using Chelex®100 (73.3%) and was not significantly different from direct DNA extraction from blood in the field (68.3%). Based on these results, the degree of effort required for each of these techniques and the difficulty of DNA extraction under field conditions, we recommend that blood is transferred onto FTA cards whole followed by elution in Chelex®100 as the best approach.

  19. Purification of foot-and-mouth disease virus by heparin as ligand for certain strains.

    PubMed

    Du, Ping; Sun, Shiqi; Dong, Jinjie; Zhi, Xiaoying; Chang, Yanyan; Teng, Zhidong; Guo, Huichen; Liu, Zaixin

    2017-04-01

    The goal of this project was to develop an easily operable and scalable process for the recovery and purification of foot-and-mouth disease virus (FMDV) from cell culture. Heparin resins HipTrap Heparin HP and AF-Heparin HC-650 were utilized to purify FMDV O/HN/CHA/93. Results showed that the purity of AF-Heparin HC-650 was ideal. Then, the O/HN/CHA/93, O/Tibet/CHA/99, Asia I/HN/06, and A/CHA/HB/2009 strains were purified by AF-Heparin HC-650. Their affinity/virus recoveries were approximately 51.2%/45.8%, 71.5%/70.9%, 96.4%/73.5, and 59.5%/42.1%, respectively. During a stepwise elution strategy, the viral particles were mainly eluted at 300mM ionic strength peaks. The heparin affinity chromatography process removed more than 94% of cellular and medium proteins. Anion exchange resin Capto Q captured four FMD virus particles; 40% of binding proteins and 80%-90% of viral particles were eluted at 450mM NaCl. Moreover, ionic strength varied from 30 to 450mM had no effect on the immunity to FMDV. The results revealed that heparin sulfate may be the main receptor for CHA/99 strain attachment-susceptible cells. Heparin affinity chromatography can reach perfect results, especially when used as a ligand of the virus. Anion exchange is useful only as previous step for further purification. Copyright © 2016. Published by Elsevier B.V.

  20. Multiwalled carbon nanotubes as a sorbent material for the solid phase extraction of lead from urine and subsequent determination by electrothermal atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peña Crecente, Rosa M.; Lovera, Carlha Gutiérrez; García, Julia Barciela; Méndez, Jennifer Álvarez; Martín, Sagrario García; Latorre, Carlos Herrero

    2014-11-01

    The determination of lead in urine is a way of monitoring the chemical exposure to this metal. In the present paper, a new method for the Pb determination by electrothermal atomic absorption spectrometry (ETAAS) in urine at low levels has been developed. Lead was separated from the undesirable urine matrix by means of a solid phase extraction (SPE) procedure. Oxidized multiwalled carbon nanotubes have been used as a sorbent material. Lead from urine was retained at pH 4.0 and was quantitatively eluted using a 0.7 M nitric acid solution and was subsequently measured by ETAAS. The effects of parameters that influence the adsorption-elution process (such as pH, eluent volume and concentration, sampling and elution flow rates) and the atomic spectrometry conditions have been studied by means of different factorial design strategies. Under the optimized conditions, the detection and quantification limits obtained were 0.08 and 0.26 μg Pb L- 1, respectively. The results demonstrate the absence of a urine matrix effect and this is the consequence of the SPE process carried out. Therefore, the developed method is useful for the analysis of Pb at low levels in real samples without the influence of other urine components. The proposed method was applied to the determination of lead in urine samples of unexposed healthy people and satisfactory results were obtained (in the range 3.64-22.9 μg Pb L- 1).

  1. My Interventional Drug-Eluting Stent Educational App (MyIDEA): Patient-Centered Design Methodology

    PubMed Central

    Shroff, Adhir; Groo, Vicki; Dickens, Carolyn; Field, Jerry; Baumann, Matthew; Welland, Betty; Gutowski, Gerry; Flores Jr, Jose D; Zhao, Zhongsheng; Bahroos, Neil; Hynes, Denise M; Wilkie, Diana J

    2015-01-01

    Background Patient adherence to medication regimens is critical in most chronic disease treatment plans. This study uses a patient-centered tablet app, “My Interventional Drug-Eluting Stent Educational App (MyIDEA).” This is an educational program designed to improve patient medication adherence. Objective Our goal is to describe the design, methodology, limitations, and results of the MyIDEA tablet app. We created a mobile technology-based patient education app to improve dual antiplatelet therapy adherence in patients who underwent a percutaneous coronary intervention and received a drug-eluting stent. Methods Patient advisers were involved in the development process of MyIDEA from the initial wireframe to the final launch of the product. The program was restructured and redesigned based on the patient advisers’ suggestions as well as those from multidisciplinary team members. To accommodate those with low health literacy, we modified the language and employed attractive color schemes to improve ease of use. We assumed that the target patient population may have little to no experience with electronic tablets, and therefore, we designed the interface to be as intuitive as possible. Results The MyIDEA app has been successfully deployed to a low-health-literate elderly patient population in the hospital setting. A total of 6 patients have interacted with MyIDEA for an average of 17.6 minutes/session. Conclusions Including patient advisers in the early phases of a mobile patient education development process is critical. A number of changes in text order, language, and color schemes occurred to improve ease of use. The MyIDEA program has been successfully deployed to a low-health-literate elderly patient population. Leveraging patient advisers throughout the development process helps to ensure implementation success. PMID:26139587

  2. Emission, transport, deposition, and re-suspension of radionuclides from Fukushima Dai-ichi Nuclear Power Plant in the atmosphere - Overview of 2-year investigations in Japan

    NASA Astrophysics Data System (ADS)

    Kita, Kazuyuki; Igarashi, Yasuhiro; Yoshida, Naohiro; Nakajima, Teruyuki

    2013-04-01

    Following a huge earthquake and tsunami in Eastern Japan on 11 March, 2011, the accident in Fukushima Dai-ichi Nuclear Power Plant (FDNPP) occurred to emit a large amount of artificial radionuclides to the environment. Soon after the FDNPP accident, many Japanese researchers, as well as researchers in other countries, started monitoring radionuclides in various environmental fields and/or model calculations to understand extent and magnitude of radioactive pollution. In this presentation, we overview these activities for the atmospheric radionuclides in Japan as followings: 1. Investigations to evaluate radionuclide emissions by explosions at FNDPP in March 2011 and to estimate the respiration dose of the radiation at this stage. 2. Investigations to evaluate atmospheric transport and deposition processes of atmospheric radionuclide to determine the extent of radionuclide pollution. -- Based on results of the regular and urgent monitoring results, as well as the mapping of the distribution of radionuclide s accumulated by the deposition to the ground, restoration of their time-dependent emission rates has been tried, and processes determining atmospheric concentration and deposition to the ground have been investigated by using the model calculations. 3. Monitoring of the atmospheric concentrations of radionuclide after the initial, surge phase of FNDPP accident. 4. Investigations to evaluate re-suspension of radionuclide from the ground, including the soil and the vegetation. -- Intensive monitoring of the atmospheric concentrations and deposition amount of radionuclide after the initial, surge phase of the accident enable us to evaluate emission history from FNDPP, atmospheric transport and deposition processes, chemical and physical characteristics of atmospheric radionuclide especially of radio cesium, and re-suspension processes which has become dominant process to supply radio cesium to the atmosphere recently.

  3. Characteristics of radionuclide accumulation in benthic organisms and fish of the Barents and Kara Seas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matishov, G.G.; Matishov, D.G.; Rissanen, C.

    1995-05-01

    Artificial radionuclides play a specific role in the hydrochemical, geochemical, and hydrobiological processes that are currently occurring in the western Arctic. The existing data on radioactive contamination of different plant and animal species inhabiting the sea shelf are fragmentary. Hence, it was difficult to follow the transformation of radionuclides during their transmission along food chains, from phyto- and zoo-plankton to benthos, fish, birds, and marine mammals. In 1990-1994, the Murmansk Institute of Marine Biology organized expeditions to collect samples of residues on the sea floor and also of benthos, benthic fish, macrophytes, and other organisms inhabiting the shelf of themore » Barents and Kara Seas. These samples were tested for cesium-137, cesium-134, strontium-90, plutonium-239, plutonium-240, americium-241, and cobalt-60 in Rovaniemi (Finland) by the regional radiation administration of the Finnish Centre for Radiation and Nuclear Safety. Over 1000 tests were made. Their results provided new data on the content and distribution of these radionuclides among different components of marine ecosystems. 7 refs.« less

  4. The Role of Cesium Cation in Controlling Interphasial Chemistry on Graphite Anode in Propylene Carbonate-Rich Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Hongfa; Mei, Donghai; Yan, Pengfei

    2015-09-10

    Propylene carbonate (PC) is seldom used in lithium-ion batteries (LIBs) due to its sustained co-intercalation into graphene structure and the eventual graphite exfoliation, despite potential advantages it brings, such as wider liquid range and lower cost. Here we discover that cesium cation (Cs+), originally used to suppress dendrite growth of Li metal anode, directs the formation of solid electrolyte interphase (SEI) on graphitic anode in PC-rich electrolytes through preferential solvation. Effective suppression of PC-decomposition and graphite-exfoliation was achieved when the ratio of ethylene carbonate (EC)/PC in electrolytes was so adjusted that the reductive decomposition of Cs+-(EC)m (1≤m≤2) complex precedes thatmore » of Li+-(PC)n (3≤n≤5). The interphase directed by Cs+ is stable, ultrathin and compact, leading to significant improvements in LIB performances. In a broader context, the accurate tailoring of SEI chemical composition by introducing a new solvation center represents a fundamental breakthrough in manipulating interfacial reactions processes that once were elusive.« less

  5. Selection of an anti-solvent for efficient and stable cesium-containing triple cation planar perovskite solar cells.

    PubMed

    Xiao, Meng; Zhao, Li; Geng, Min; Li, Yanyan; Dong, Binghai; Xu, Zuxun; Wan, Li; Li, Wenlu; Wang, Shimin

    2018-06-19

    The perovskite layer is a crucial component influencing high-performance perovskite solar cells (PSCs). In the one-step solution method, anti-solvents are important for obtaining smooth and uniform perovskite active layers. This work explored the effect of various anti-solvents on the preparation of triple cation perovskite active layers. In general, anti-solvents with low dielectric constants, low polarity, and low boiling point are suitable for the preparation of perovskite films. Microstructural and elemental analyses of the perovskite films were systematically conducted by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The photoelectric properties, carrier transfer, and recombination process in the PSCs were investigated using photocurrent-voltage characteristic curves and electrochemical impedance spectroscopy. Optimum performance was obtained when the anti-solvent was diethyl ether (DEE) and the ratio of the optimum amount of DEE to the volume of the precursor was 1 : 10. Meanwhile, we found that the partial replacement of formamidinium/methylammonium by cesium could increase the stability of the PSCs and enhance the power conversion efficiency from 15.49% to over 17.38%.

  6. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    NASA Astrophysics Data System (ADS)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  7. Photoelectron spectroscopy of color centers in negatively charged cesium iodide nanocrystals

    NASA Astrophysics Data System (ADS)

    Sarkas, Harry W.; Kidder, Linda H.; Bowen, Kit H.

    1995-01-01

    We present the photoelectron spectra of negatively charged cesium iodide nanocrystals recorded using 2.540 eV photons. The species examined were produced using an inert gas condensation cluster ion source, and they ranged in size from (CsI)-n=13 to nanocrystal anions comprised of 330 atoms. Nanocrystals showing two distinct types of photoemission behavior were observed. For (CsI)-n=13 and (CsI)-n=36-165, a plot of cluster anion photodetachment threshold energies vs n-1/3 gives a straight line extrapolating (at n-1/3=0, i.e., n=∞) to 2.2 eV, the photoelectric threshold energy for F centers in bulk cesium iodide. The linear extrapolation of the cluster anion data to the corresponding bulk property implies that the electron localization in these gas-phase nanocrystals is qualitatively similar to that of F centers in extended alkali halide crystals. These negatively charged cesium iodide nanocrystals are thus shown to support embryonic forms of F centers, which mature with increasing cluster size toward condensed phase impurity centers. Under an alternative set of source conditions, nanocrystals were produced which showed significantly lower photodetachment thresholds than the aforementioned F-center cluster anions. For these species, containing 83-131 atoms, a plot of their cluster anion photodetachment threshold energies versus n-1/3 gives a straight line which extrapolates to 1.4 eV. This value is in accord with the expected photoelectric threshold energy for F' centers in bulk cesium iodide, i.e., color centers with two excess electrons in a single defect site. These nanocrystals are interpreted to be the embryonic F'-center containing species, Cs(CsI)-n=41-65.

  8. Investigation of the unusual behavior of cesium-137 and other radionuclides in the Florida environment. Progress report, September 1, 1975--August 31, 1976. [Digitaria decumbens, Paspalum notatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamble, J.F.

    1976-01-01

    The most significant development in the contract year was the documentation of the presence of endomycorrhizal, vesicular arbuscular (V-A) mycorrhizae in the pasture systems of south Florida that have the elevated levels of cesium-137 activity. In all samples the V-A hyphal network was well developed and growing throughout the particles of organic matter. The organic particles are held in a loose, aggregate structure by the hyphal network. In improved pastures of Digitaria decumbens (pangola) and Paspalum notatum (bahiagrass) the root infection ranged from 24 to 95 percent. The principle association was Gigaspora and Glomus sp. In the unimproved pastures ofmore » mostly Aristida stricta (wiregrass) and Serenoa repens (saw palmetto) the infection was 70 percent and only Acaulospora laevis was found. Experiments are in progress to show whether there are differences in cesium uptake between mycorrhizal and non-mycorrhizal grass plants. The test grass is pangola. Greenhouse tests involve V-A mycorrhizal control using a fungicide, the infection of grass cuttings with mycorrhizal strains found in the test area. These pot experiments will serve as pilot programs for field experiments. The effects of ectomycorrhizal associations on uptake of cesium in pine seedlings is also being studied. Analysis of the dynamics of organic matter cycling in a mesic hardwood forest shows that the rates of organic matter flow are similar to tropical systems although the plant species are warm temperate. The increased tempo of organic turnover probably contributes to the observed higher-than-expected levels of cesium-137 activity in Florida biosystems.« less

  9. Colloid-facilitated mobilization of metals by freeze-thaw cycles.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2014-01-21

    The potential of freeze-thaw cycles to release colloids and colloid-associated contaminants into water is unknown. We examined the effect of freeze-thaw cycles on the mobilization of cesium and strontium in association with colloids in intact cores of a fractured soil, where preferential flow paths are prevalent. Two intact cores were contaminated with cesium and strontium. To mobilize colloids and metal cations sequestered in the soil cores, each core was subjected to 10 intermittent wetting events separated by 66 h pauses. During the first five pauses, the cores were dried at room temperature, and during last five pauses, the cores were subjected to 42 h of freezing followed by 24 h of thawing. In comparison to drying, freeze-thaw cycles created additional preferential flow paths through which colloids, cesium, and strontium were mobilized. The wetting events following freeze-thaw intervals mobilized about twice as many colloids as wetting events following drying at room temperature. Successive wetting events following 66 h of drying mobilized similar amounts of colloids; in contrast, successive wetting events after 66 h of freeze-thaw intervals mobilized greater amounts of colloids than the previous one. Drying and freeze-thaw treatments, respectively, increased and decreased the dissolved cesium and strontium, but both treatments increased the colloidal cesium and strontium. Overall, the freeze-thaw cycles increased the mobilization of metal contaminants primarily in association with colloids through preferential flow paths. These findings suggest that the mobilization of colloid and colloid-associated contaminants could increase when temperature variations occur around the freezing point of water. Thus, climate extremes have the potential to mobilize contaminants that have been sequestered in the vadose zone for decades.

  10. Ion Exchange Modeling of Crystalline Silicotitanate (IONSIV(R) IE-911) Column for Cesium Removal from Argentine Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hang, T.

    2003-07-16

    The U.S. Department of Energy (DOE) and the Nuclear Energy Commission of Argentina (CNEA) have a collaborative project to separate cesium/strontium from waste resulting from the production of Mo-99. The Pacific Northwest National Laboratory (PNNL) is assisting DOE on this joint project by providing technical guidance to CNEA scientists. As part of the collaboration, PNNL staff works with staff at the Savannah River Technology Center (SRTC) to run the VERSE-LC model for removal of cesium from the Mo-99 waste using the crystalline silicotitanate (CST) material (IONSIV(R) IE-911, UOP LLC, DesPlaines, IL) based on technical data provided by CNEA. This reportmore » discusses the VERSE-LC ion-exchange-column model and the predicted results of CNEA test cases.« less

  11. Spin-injection optical pumping of molten cesium salt and its NMR diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Kiyoshi

    2015-07-15

    Nuclear spin polarization of cesium ions in the salt was enhanced during optical pumping of cesium vapor at high magnetic field. Significant motional narrowing and frequency shift of NMR signals were observed by intense laser heating of the salt. When the hyperpolarized salt was cooled by blocking the heating laser, the signal width and frequency changed during cooling and presented the phase transition from liquid to solid. Hence, we find that the signal enhancement is mostly due to the molten salt and nuclear spin polarization is injected into the salt efficiently in the liquid phase. We also show that opticalmore » pumping similarly induces line narrowing in the solid phase. The use of powdered salt provided an increase in effective surface area and signal amplitude without glass wool in the glass cells.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.

    Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantationmore » and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.« less

  13. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  14. LARGE SCALE METHOD FOR THE PRODUCTION AND PURIFICATION OF CURIUM

    DOEpatents

    Higgins, G.H.; Crane, W.W.T.

    1959-05-19

    A large-scale process for production and purification of Cm/sup 242/ is described. Aluminum slugs containing Am are irradiated and declad in a NaOH-- NaHO/sub 3/ solution at 85 to 100 deg C. The resulting slurry filtered and washed with NaOH, NH/sub 4/OH, and H/sub 2/O. Recovery of Cm from filtrate and washings is effected by an Fe(OH)/sub 3/ precipitation. The precipitates are then combined and dissolved ln HCl and refractory oxides centrifuged out. These oxides are then fused with Na/sub 2/CO/sub 3/ and dissolved in HCl. The solution is evaporated and LiCl solution added. The Cm, rare earths, and anionic impurities are adsorbed on a strong-base anfon exchange resin. Impurities are eluted with LiCl--HCl solution, rare earths and Cm are eluted by HCl. Other ion exchange steps further purify the Cm. The Cm is then precipitated as fluoride and used in this form or further purified and processed. (T.R.H.)

  15. Separation of mutagenic components in synthetic crudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerin, M. R.; Ho, C. H.; Clark, B. R.

    1978-01-01

    Mutagenic, basic constituents of a synthetic coal oil and a shale oil were isolated from the crude mixtures. In arriving at an efficient isolation procedure, several liquid chromatographic packing-eluent combinations were tried and the fractions bioassayed to determine the distributions of the mutagenic components. The most effective separation was achieved using a sequential elution scheme with first an alumina-benzene combination followed by a Sephadex LH-20 gel-isopropanol-acetone system. About 75 to 80% of an ether soluble base is eluted with benzene through alumina (activity I). Analysis of this fraction has revealed a wide range of alkyl substituted quinolines and pyridines. Materialmore » remaining on the alumina column was eluted with ethanol, dried and placed on the Sephadex column. Isopropanol (approximately 250 ml) and acetone (approximately 600 ml) were used in that order to elute the material quantitatively. About 12% of the ether-soluble base is eluted with the isopropanol while the rest (approximately 10%) is eluted with the acetone. Additional alkyl pyridine compounds are eluted with isopropanol while the acetone fractions are predominantly multi-ring nitrogen heterocyclic compounds, according to mass spectral analyses. Bioassay data show excellent isolation of the mutagenic activities into the acetone fractions. Negligible activity is found in the sum of the other (90% wt) fractions.« less

  16. Laboratory study of the response of select insecticides to toxicity identification evaluation procedures

    USGS Publications Warehouse

    Kuivila, Kathryn; Crepeau, Kathryn L.

    1999-01-01

    A laboratory study was used to evaluate the response of select insecticides to toxicity identification evaluation procedures. Fourteen insecticides, one degradation product, and one synergist were spiked into organic-grade water and carried through toxicity identification evaluation procedures. Concentrations of each compound were analyzed by gas chromatography/mass spectrometry. During Phase I, the water sample was pumped through a C-8 solid-phase extraction cartridge and then eluted with methanol. Dimethoate was not removed by the extraction, but remained in the rinsate. In contrast, permethrin was removed by the extraction, but was not recovered by the methanol elution, and 80 percent of the permethrin remained on the cartridge, teflon tubing, and glassware. Chlorpyrifos also was not recovered completely with the methanol elution (only 62 percent was recovered). The other insecticides were extracted by C-8 solid-phase extraction cartridge and recovered by elution with methanol (80 percent or greater). During Phase II, a new spiked water sample was extracted by C-8 solid-phase extraction cartridge and then eluted with varying concentrations of methanol and water into different fractions. Each methanol:water fraction was analyzed for the added compounds. Most of the insecticides eluted in two fractions, with concentrations of 10 percent or greater. The largest number of insecticides eluted in the 75 percent methanol:water fraction.

  17. Concentration and fractionation of hydrophobic organic acid constituents from natural waters by liquid chromatography

    USGS Publications Warehouse

    Thurman, E.M.; Malcolm, R.L.

    1979-01-01

    A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.

  18. Rapid analysis of charge variants of monoclonal antibodies using non-linear salt gradient in cation-exchange high performance liquid chromatography.

    PubMed

    Joshi, Varsha; Kumar, Vijesh; Rathore, Anurag S

    2015-08-07

    A method is proposed for rapid development of a short, analytical cation exchange high performance liquid chromatography method for analysis of charge heterogeneity in monoclonal antibody products. The parameters investigated and optimized include pH, shape of elution gradient and length of the column. It is found that the most important parameter for development of a shorter method is the choice of the shape of elution gradient. In this paper, we propose a step by step approach to develop a non-linear sigmoidal shape gradient for analysis of charge heterogeneity for two different monoclonal antibody products. The use of this gradient not only decreases the run time of the method to 4min against the conventional method that takes more than 40min but also the resolution is retained. Superiority of the phosphate gradient over sodium chloride gradient for elution of mAbs is also observed. The method has been successfully evaluated for specificity, sensitivity, linearity, limit of detection, and limit of quantification. Application of this method as a potential at-line process analytical technology tool has been suggested. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections.

    PubMed

    Ordikhani, F; Tamjid, E; Simchi, A

    2014-08-01

    Orthopaedic implant-associated infections are one of the most serious complications in orthopaedic surgery and a major cause of implant failure. In the present work, drug-eluting coatings based on chitosan containing various amounts of vancomycin were prepared by a cathodic electrophoretic deposition process on titanium foils. A three-step release mechanism of the antibiotic from the films in a phosphate-buffered saline solution was noticed. At the early stage, physical encapsulation of the drug in the hydrogel network controlled the release rate. At the late stage, however, in vitro degradation/deattachment of chitosan was responsible for the controlled release. Cytotoxicity evaluation of the drug-eluting coatings via culturing in human osteosarcoma cells (MG-63 osteoblast-like cell line) showed no adverse effect on the biocompatibility. Antibacterial tests against Gram-positive Staphylococcus aureus also demonstrated that the infection risk of titanium foils was significantly reduced due to the antibiotic release. Additionally, in vitro electrochemical corrosion studies by polarization technique revealed that the corrosion current density was significantly lower for the titanium foils with drug-eluting coatings compared to that of uncoated titanium. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Integrating Ecology and Watershed Processes: Historical Rangeland Change as a Driver of Sediment Yield and Impacts on Reservoir Storage

    NASA Astrophysics Data System (ADS)

    Berg, M.; Wilcox, B. P.; Marcantonio, F.; Popescu, S. C.

    2014-12-01

    Rural lands increasingly are receiving attention for the ecosystem services they provide to growing populations. Among the most important of these is water yield and storage in rangelands. Yet rangelands are dynamic, with large land use/land cover changes over time. Uncertainty remains about the effects of these changes on rangeland function and how they affect potential benefits to populations that depend on them. We investigated rangelands in central Texas, USA to quantify changes in land cover and land use and resulting trends in sediment yield over time. Examining eight watersheds totaling 230 km2, we classified land cover using aerial photos from the late 1930s to 2012, focusing on woody plant cover. In addition, we digitized cultivated areas over time. Finally, we collected sediment cores from reservoirs at the base of each watershed and created a chronosequence of sedimentation trends using cesium-137 and lead-210 tracers. Cropland exhibited major reductions nearing 80% in all areas. Woody plant cover trends varied geographically, from steady decreases to decline followed by rebound to consistent increases in shrub extent. Cesium-137 profiles indicated sedimentation rates generally have decreased by more than 50% since 1963. Since then, rates in all areas have been quite stable. Cesium-137 and lead-210 rate estimates were similar (p = 0.69). At its peak, sedimentation in the smaller, semi-urban watershed occurred 1400% faster per unit area than in rural watersheds. Results indicate changing shrub cover is not a primary driver of sediment dynamics in these watersheds. Rather, it is likely that a combination of severe drought and land use history is responsible for periods of high sediment yield and reservoir storage loss

  1. Mineral Commodity Profiles -- Rubidium

    USGS Publications Warehouse

    Butterman, W.C.; Reese, R.G.

    2003-01-01

    Overview -- Rubidium is a soft, ductile, silvery-white metal that melts at 39.3 ?C. One of the alkali metals, it is positioned in group 1 (or IA) of the periodic table between potassium and cesium. Naturally occurring rubidium is slightly radioactive. Rubidium is an extremely reactive metal--it ignites spontaneously in the presence of air and decomposes water explosively, igniting the liberated hydrogen. Because of its reactivity, the metal and several of its compounds are hazardous materials, and must be stored and transported in isolation from possible reactants. Although rubidium is more abundant in the earth?s crust than copper, lead, or zinc, it forms no minerals of its own, and is, or has been, produced in small quantities as a byproduct of the processing of cesium and lithium ores taken from a few small deposits in Canada, Namibia, and Zambia. In the United States, the metal and its compounds are produced from imported raw materials by at least one company, the Cabot Corporation (Cabot, 2003). Rubidium is used interchangeably or together with cesium in many uses. Its principal application is in specialty glasses used in fiber optic telecommunication systems. Rubidium?s photoemissive properties have led to its use in night-vision devices, photoelectric cells, and photomultiplier tubes. It has several uses in medical science, such as in positron emission tomographic (PET) imaging, the treatment of epilepsy, and the ultracentrifugal separation of nucleic acids and viruses. A dozen or more other uses are known, which include use as a cocatalyst for several organic reactions and in frequency reference oscillators for telecommunications network synchronization. The market for rubidium is extremely small, amounting to 1 to 2 metric tons per year (t/yr) in the United States. World resources are vast compared with demand.

  2. Effects of experimental parameters on the sorption of cesium, strontium, and uranium from saline groundwaters onto shales: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, R.E.; Arnold, W.D.; Case, F.I.

    1988-11-01

    This report concerns an extension of the first series of experiments on the sorption properties of shales and their clay mineral components reported earlier. Studies on the sorption of cesium and strontium were carried out on samples of Chattanooga (Upper Dowelltown), Pierre, Green River Formation, Nolichucky, and Pumpkin Valley Shales that had been heated to 120/degree/C in a 0.1-mol/L NaCl solution for periods up to several months and on samples of the same shales which had been heated to 250/degree/C in air for six months, to simulate limiting scenarios in a HLW repository. To investigate the kinetics of the sorptionmore » process in shale/groundwater systems, strontium sorption experiments were done on unheated Pierre, Green River Formation, Nolichucky, and Pumpkin Valley Shales in a diluted, saline groundwater and in 0.03-mol/L NaHCO/sub 3/, for periods of 0.25 to 28 days. Cesium sorption kinetics tests were performed on the same shales in a concentrated brine for the same time periods. The effect of the water/rock (W/R) ratio on sorption for the same combinations of unheated shales, nuclides, and groundwaters used in the kinetics experiments was investigated for a range of W/R ratios of 3 to 20 mL/g. Because of the complexity of the shale/groundwater interaction, a series of tests was conducted on the effects of contact time and W/R ratio on the pH of a 0.03-mol/L NaHCO/sub 3/ simulated groundwater in contact with shales. 8 refs., 12 figs., 15 tabs.« less

  3. Analysis of Breakthrough Profiles Based on Gamma Ray Emission Along Loaded Packed Bed Columns: Comparative Evaluation of Ionsiv IE-911 and Chabazite Zeolite for the Removal of Radiostrontium and Cesium from Groundwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, D.T.; DePaoli, S.M.; Lucero, A.J.

    1999-10-18

    A gamma counting system has been assembled that can profile the breakthrough fronts of gamma-emitting radioisotopes longitudinally and axially along a loaded column. This profiling technique has been particularly useful in columns studies such as those performed with IONSP IE-911, a crystalline silicotitanate (CST) manufactured by UOP, in which unusually long operating times are required to observe cesium breakthrough in column effluent. The length of the mass transfer zone and extent of column saturation can be detected early in a column study by viewing the relative emission of gamma emitters along I the length of the column. In this study,more » gamma scans were used to analyze loaded CST and zeolite columns used in the treatment of process wastewater simulant and actual groundwater. Results indicate good run-to-run reproductibility in acquiring the scans. The longitudinal gamma scans for both {sup 90}Sr and {sup 137}Cs conformed with breakthrough results reported on the basis of column effluent activity. Although not obvious from data obtained by monitoring effluent activity, the gamma scans indicated that both cesium and strontium in the saturated zone of the CST column are slowly displaced by the higher levels of groundwater cations and are then resorbed further down the column. This displacement phenomenon identified by gamma scans was verified using data from a zeolite column, in which both the gamma scan and column effluent data exhibited radionuclide displacement by groundwater cations. The gamma emission intensities from the CST column runs are used to quantitate and compare the distribution coefficient and loading capacity of {sup 137}Cs on CST versus zeolite.« less

  4. The Impact of Time on Decorporation Efficacy After a "Dirty Bomb" Attack Studied by Simulation.

    PubMed

    Rump, A; Stricklin, D; Lamkowski, A; Eder, S; Abend, M; Port, M

    2016-11-01

    Background: In the case of a nuclear or radiological incident, there is a risk of external and internal contamination with radionuclides in addition to external irradiation. There is no consensus whether decorporation treatment should be initiated right away on spec or pending the results of internal dosimetry to determine the indication. Method: Based on biokinetic models for plutonium-239, americium-241 and cesium-137, the efficacy of a decorporation treatment using DTPA or Prussian blue was simulated depending on the initiation time and the duration of treatment for different invasion pathways and physicochemical properties of the inhaled compounds. Results: For the same level of radioactivity incorporated, the committed effective dose increases with the speed of the invasion process. The impact of the initiation time of a decorporation treatment is particularly important when the absorption of the radionuclide is fast. Even if started early after incorporation, the therapeutic efficacy is less for americium-241 or cesium-137 compared to plutonium-239. Therapeutic efficacy increases with treatment duration up to about 90 days for plutonium-239 and cesium-137, whereas a prolongation of the treatment over this limit may further enhance efficacy in the case of americium-241. Conclusion: In the case of a nuclear incident, several fractions with different but a priori unknown physicochemical properties may be inhaled. Thus, decorporation therapy should be started as soon as possible after the incorporation of the radionuclide(s), as a loss of efficacy caused by a delay of treatment initiation possibly cannot be compensated later on. Treatment should be pursued for several months. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Sorption Mechanisms of Cesium on Cu II2Fe II(CN) 6and Cu II3[Fe III(CN) 6] 2Hexacyanoferrates and Their Relation to the Crystalline Structure

    NASA Astrophysics Data System (ADS)

    Ayrault, S.; Jimenez, B.; Garnier, E.; Fedoroff, M.; Jones, D. J.; Loos-Neskovic, C.

    1998-12-01

    CuII2FeII(CN)6·xH2O and CuII3[FeIII(CN)6]2·xH2O can be prepared with reproducible chemical compositions and structures after careful washing. They have cubicFmoverline3mstructures with iron vacancies. In CuII2FeII(CN)6, copper occupies two different sites: Cu1 in position 4blinked to Fe through the CN groups, and Cu2 not linked to the CN groups and partially occupying the interstitial 24epositions. The second type of site is not present in CuII3[FeIII(CN)6]2. Sorption kinetics and isotherms were determined for cesium on both hexacyanoferrates by batch experiments. On CuII3[FeIII(CN)6]2, the maximum uptake is only 0.073 Cs/Fe (at./at.). On CuII2FeII(CN)6, the uptake reaches 1.5 Cs/Fe. The sorption kinetics include at least two steps: at1/2variation until approximately 72 h and then a slow evolution studied up to 6 months. The sorption mechanism is complex. The main process seems to be diffusion of ion pairs, followed by a reorganization of the solid, resulting in one or more new solid phases. The presence of the Cu2 site seems to play a favorable role in the sorption. Owing to its good midterm stability and the first rapid step of exchange, CuII2FeII(CN)6·xH2O seems to be one of the most promising compounds for the recovery of cesium from nuclear liquid wastes.

  6. Mycoextraction of radiolabeled cesium and strontium by Pleurotus eryngii mycelia in the presence of alumina nanoparticles: Sorption and accumulation studies.

    PubMed

    Asztemborska, Monika; Jakubiak, Małgorzata; Rykaczewska, Magdalena; Bembenek, Marcin; Stęborowski, Romuald; Bystrzejewska-Piotrowska, Grażyna

    2016-11-01

    Widespread use of products based on nanomaterials results in the release of nanoparticles into the environment. Nanoparticles can be taken up by organisms, but they can also coexist with other substances such as radionuclides, thus affecting their uptake or toxicity. In contrast, the sorption capacity of nanoparticles is exploited in water purification. The aim of the study was to investigate: (i) bioaccumulation of cesium and strontium by Pleurotus eryngii mycelia in the presence of alumina nanoparticles (Al 2 O 3 NPs); and (ii) sorption of radionuclides on the surface of nanoparticles. For the experiments, living and dried mycelia were used to permit distinguishing between active uptake and passive sorption of the NPs by P. eryngii. The results are discussed from the perspective of the use of P. eryngii in the mycoextraction of radionuclides. The sorption capacity of Al 2 O 3 NPs and the accumulation by P. eryngii mycelia differ for the applied radioisotopes. The efficiency of Cs and Sr sorption by alumina nanoparticles is 20% and 40%, respectively. Mycelia of P. eryngii have the ability to accumulate 30% of both radioisotopes from the medium. More than 60% of strontium can be removed accumulated from water by P. eryngii mycelia in coexistence with Al 2 O 3 NPs, while the efficiency of cesium removal accumulation is negligible. It was found that alumina nanoparticles do not enhance uptake of radionuclides by P. eryngii mycelia; mycoextraction of radionuclides by mycelia and sorption by Al 2 O 3 NPs are concurrent processes. There was no difference between live or dried mycelia uptake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, M.W. Jr.; Bowers, C.B. Jr.

    1988-06-07

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.

  8. Cold-Atom Clocks on Earth and in Space

    NASA Astrophysics Data System (ADS)

    Lemonde, Pierre; Laurent, Philippe; Santarelli, Giorgio; Abgrall, Michel; Sortais, Yvan; Bize, Sebastien; Nicolas, Christophe; Zhang, Shougang; Clairon, Andre; Dimarcq, Noel; Petit, Pierre; Mann, Antony G.; Luiten, Andre N.; Chang, Sheng; Salomon, Christophe

    We present recent progress on microwave clocks that make use of laser-cooled atoms. With an ultra-stable cryogenic sapphire oscillator as interrogation oscillator, a cesium fountain operates at the quantum projection noise limit. With 6 x10^5 detected atoms, the relative frequency stability is 4 x10^-14 &1/2circ, where τ is the integration time in seconds. This stability is comparable to that of hydrogen masers. At τ=2 x10^4s, the measured stability reaches 6 x10^-16. A 87Rb fountain has also been constructed and the 87Rb ground-state hyperfine energy has been compared to the Cs primary standard with a relative accuracy of 2.5 x10^-15. The 87Rb collisional shift is found to be at least 30 times below that of cesium. We also describe a transportable cesium fountain, which will be used for frequency comparisons with an accuracy of 10-15 or below. Finally, we present the details of a space mission for a cesium standard which has been selected by the European Space Agency (ESA) to fly on the International Space Station in 2003.

  9. Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium.

    PubMed

    Vipin, Adavan Kiliyankil; Fugetsu, Bunshi; Sakata, Ichiro; Isogai, Akira; Endo, Morinobu; Li, Mingda; Dresselhaus, Mildred S

    2016-11-15

    On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi's damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (10 6 ) order of magnitude distribution coefficient (K d ) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications.

  10. Radioactive cesium isotope ratios as a tool for determining dispersal and re-dispersal mechanisms downwind from the Nevada Nuclear Security Site.

    PubMed

    Snyder, Darin C; Delmore, James E; Tranter, Troy; Mann, Nick R; Abbott, Michael L; Olson, John E

    2012-08-01

    Fractionation of the two longer-lived radioactive cesium isotopes ((135)Cs and (137)Cs) produced by above ground nuclear tests have been measured and used to clarify the dispersal mechanisms of cesium deposited in the area between the Nevada Nuclear Security Site and Lake Mead in the southwestern United States. Fractionation of these isotopes is due to the 135-decay chain requiring several days to completely decay to (135)Cs, and the 137-decay chain less than one hour decay to (137)Cs. Since the Cs precursors are gases, iodine and xenon, the (135)Cs plume was deposited farther downwind than the (137)Cs plume. Sediment core samples were obtained from the Las Vegas arm of Lake Mead, sub-sampled and analyzed for (135)Cs/(137)Cs ratios by thermal ionization mass spectrometry. The layers proved to have nearly identical highly fractionated isotope ratios. This information is consistent with a model where the cesium was initially deposited onto the land area draining into Lake Mead and the composite from all of the above ground shots subsequently washed onto Lake Mead by high intensity rain and wind storms producing a layering of Cs activity, where each layer is a portion of the composite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium

    PubMed Central

    Vipin, Adavan Kiliyankil; Fugetsu, Bunshi; Sakata, Ichiro; Isogai, Akira; Endo, Morinobu; Li, Mingda; Dresselhaus, Mildred S.

    2016-01-01

    On 11 March 2011, the day of the unforgettable disaster of the 9 magnitude Tohoku earthquake and quickly followed by the devastating Tsunami, a damageable amount of radionuclides had dispersed from the Fukushima Daiichi’s damaged nuclear reactors. Decontamination of the dispersed radionuclides from seawater and soil, due to the huge amounts of coexisting ions with competitive functionalities, has been the topmost difficulty. Ferric hexacyanoferrate, also known as Prussian blue (PB), has been the most powerful material for selectively trapping the radioactive cesium ions; its high tendency to form stable colloids in water, however, has made PB to be impossible for the open-field radioactive cesium decontamination applications. A nano/nano combinatorial approach, as is described in this study, has provided an ultimate solution to this intrinsic colloid formation difficulty of PB. Cellulose nanofibers (CNF) were used to immobilize PB via the creation of CNF-backboned PB. The CNF-backboned PB (CNF/PB) was found to be highly tolerant to water and moreover, it gave a 139 mg/g capability and a million (106) order of magnitude distribution coefficient (Kd) for absorbing of the radioactive cesium ion. Field studies on soil and seawater decontaminations in Fukushima gave satisfactory results, demonstrating high capabilities of CNF/PB for practical applications. PMID:27845441

  12. Decontamination of radiological agents from drinking water infrastructure: a literature review and summary.

    PubMed

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of radiological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some important radiological agents (cesium, strontium and cobalt), but important data gaps remain. Although some targeted experiments have been published on cesium, strontium and cobalt persistence on drinking water infrastructure, most of the data comes from nuclear clean-up sites. Furthermore, the studies focused on drinking water systems use non-radioactive surrogates. Non-radioactive cobalt was shown to be persistent on iron due to oxidation with free chlorine in drinking water and precipitation on the iron surface. Decontamination with acidification was an effective removal method. Strontium persistence on iron was transient in tap water, but adherence to cement-mortar has been demonstrated and should be further explored. Cesium persistence on iron water infrastructure was observed when flow was stagnant, but not with water flow present. Future research suggestions focus on expanding the available cesium, strontium and cobalt persistence data to other common infrastructure materials, specifically cement-mortar. Further exploration chelating agents and low pH treatment is recommended for future decontamination studies. Published by Elsevier Ltd.

  13. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 1: Cesium Exchange Capacity of a 15-cm3 Column and Dynamic Stability of the Exchange Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization ofmore » the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used.« less

  14. Cesium radioactivity in peripheral blood is linearly correlated to that in skeletal muscle: analyses of cattle within the evacuation zone of the Fukushima Daiichi Nuclear Power Plant.

    PubMed

    Fukuda, Tomokazu; Kino, Yasushi; Abe, Yasuyuki; Yamashiro, Hideaki; Kobayashi, Jin; Shimizu, Yoshinaka; Takahashi, Atsushi; Suzuki, Toshihiko; Chiba, Mirei; Takahashi, Shintaro; Inoue, Kazuya; Kuwahara, Yoshikazu; Morimoto, Motoko; Shinoda, Hisashi; Hiji, Masahiro; Sekine, Tsutomu; Fukumoto, Manabu; Isogai, Emiko

    2015-01-01

    The accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) released a large amount of radioactive substances into the environment. Furthermore, beef contaminated with radioactive cesium above the 500 Bq/kg safety standard was circulated in the food chain in 2011. Japanese consumers remain concerned about the safety of radioactively contaminated food. In our previous study, we detected a linear correlation between radioactive cesium ((137) Cs) activity in blood and muscle around 500 to 2500 Bq/kg in cattle. However, it was unclear whether the correlation was maintained at a lower radioactivity close to the current safety standard of 100 Bq/kg. In this study, we evaluated 17 cattle in the FNPP evacuation zone that had a (137) Cs blood level less than 10 Bq/kg. The results showed a linear correlation between blood (137) Cs and muscle (137) Cs (Y = 28.0X, R(2)  = 0.590) at low radioactivity concentration, indicating that cesium radioactivity in the muscle can be estimated from blood radioactivity. This technique would be useful in detecting high-risk cattle before they enter the market, and will contribute to food safety. © 2014 Japanese Society of Animal Science.

  15. Uptake and transport of radioactive cesium and strontium into grapevines after leaf contamination

    NASA Astrophysics Data System (ADS)

    Zehnder, H. J.; Kopp, P.; Eikenberg, J.; Feller, U.; Oertli, J. J.

    1995-07-01

    From 1989 to 1993 the foliar uptake of radioactive strontium (Sr-85) and cesium (Cs-134) by selected leaves of grapevine plants and the subsequent redistribution within the plants was examined under controlled conditions in a greenhouse. The radionuclides were applied as chlorides. These plants were grown in large pots containing a mixture of local soil and peat. Plant and soil samples were analyzed throughout the growing season and also during the following vegetation period. Only traces of the applied radiostrontium were taken up by the leaves. This element was essentially not redistributed within the plants. In contrast, radiocesium was easily taken up through the leaf surface, transported to other plant parts and to some extent released from the roots into the soil. Cesium reaching the soil may interact with clay particles causing a very reduced availability for plants. Therefore the soil may act as a long-term sink for radiocesium. On the other hand, grape berries represent transient sinks. The cesium levels in the berries decreased again in a late phase of maturation, but the mechanisms causing this loss are not yet identified. During the second vegetation period, only a very minor proportion of the radiocesium taken up previously by the plants was present in the above ground parts.

  16. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock

    NASA Astrophysics Data System (ADS)

    Iraola, Aitor; Trinchero, Paolo; Voutilainen, Mikko; Gylling, Björn; Selroos, Jan-Olof; Molinero, Jorge; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido

    2017-12-01

    Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways.

  17. Inhibition of plaque neovascularization and intimal hyperplasia by specific targeting vascular endothelial growth factor with bevacizumab-eluting stent: an experimental study.

    PubMed

    Stefanadis, Christodoulos; Toutouzas, Konstantinos; Stefanadi, Elli; Lazaris, Andreas; Patsouris, Efstratios; Kipshidze, Nicholas

    2007-12-01

    Neovascularization is associated with destabilization of atheromatic plaques. Increased expression of vascular endothelial growth factor (VEGF) is important in the process of neovascularization. We assessed the effect of bevacizumab, a monoclonal antibody specific for VEGF, on neovascularization. We used 12 New Zealand rabbits under atherogenic diet for 3 weeks. We immersed a phosphorycholine coated stent into a solution of 4 ml bevacizumab according to previous studies. Twelve eluting stents and 12 non-eluting stents were implanted in the middle segment of the rabbit's iliac arteries. Follow-up angiography was performed at 4 weeks and tissues were obtained for histological analysis. The procedure of stent loading with bevacizumab and stent implantation was successful. There was no difference in angiographic measurements before, after implantation and at follow-up between the two groups. mean neointimal thickness (0.09+/-0.02 versus 0.12+/-0.02 mm, p<0.01), and mean neointimal area (1.08+/-0.09 versus 1.20+/-0.12 mm(2), p<0.01) were less in the bevacizumab treated segments. bevacizumab-treated arterial segments demonstrated significantly decreased microvessel density compared with the control group (1.69+/-0.06 CI: 1.65-1.73 versus 15.68+/-0.56 CI: 15.32-16.04 vessels per mm(2), p<0.001) and vegf expression was decreased in the media and adventitia of bevacizumab group. Endothelialization, inflammation and injury scores were similar between the two groups. These results suggest that bevacizumab-eluting stent implantation in rabbit iliac arteries is safe, and inhibits neovascularization without affecting the endothelialization.

  18. Everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents: a meta-analysis of randomised controlled trials.

    PubMed

    Cassese, Salvatore; Byrne, Robert A; Ndrepepa, Gjin; Kufner, Sebastian; Wiebe, Jens; Repp, Janika; Schunkert, Heribert; Fusaro, Massimiliano; Kimura, Takeshi; Kastrati, Adnan

    2016-02-06

    Bioresorbable coronary stents might improve outcomes of patients treated with percutaneous coronary interventions. The everolimus-eluting bioresorbable vascular scaffold is the most studied of these stent platforms; however, its performance versus everolimus-eluting metallic stents remains poorly defined. We aimed to assess the efficacy and safety of everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents in patients with ischaemic heart disease treated with percutaneous revascularisation. We searched Medline, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), scientific sessions abstracts, and relevant websites for randomised trials investigating everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents published or posted between Nov 30, 2006, and Oct 12, 2015. The primary efficacy outcome was target lesion revascularisation and the primary safety outcome was definite or probable stent (scaffold) thrombosis. Secondary outcomes were target lesion failure (the composite of cardiac death, target-vessel myocardial infarction, or ischaemia-driven target lesion revascularisation), myocardial infarction, death, and in-device late lumen loss. We derived odds ratios (ORs) and weighted mean differences with 95% CIs, and calculated the risk estimates for the main outcomes according to a random-effects model. This study is registered with PROSPERO, number CRD42015026374. We included six trials, comprising data for 3738 patients randomised to receive percutaneous coronary intervention with either an everolimus-eluting bioresorbable vascular scaffold (n=2337) or an everolimus-eluting metallic stent (n=1401). Median follow-up was 12 months (IQR 9-12). Patients treated with bioresorbable vascular scaffolds had a similar risk of target lesion revascularisation (OR 0.97 [95% CI 0.66-1.43]; p=0.87), target lesion failure (1.20 [0.90-1.60]; p=0.21), myocardial infarction (1.36 [0.98-1.89]; p=0.06), and death (0.95 [0.45-2.00]; p=0.89) as those treated with metallic stents. Patients treated with a bioresorbable vascular scaffold had a higher risk of definite or probable stent thrombosis than those treated with a metallic stent (OR 1.99 [95% CI 1.00-3.98]; p=0.05), with the highest risk between 1 and 30 days after implantation (3.11 [1.24-7.82]; p=0.02). Lesions treated with a bioresorbable vascular scaffold had greater in-device late lumen loss than those treated with a metallic stent (weighted mean difference 0.08 [95% CI 0.05-0.12]; p<0.0001). Compared with everolimus-eluting metallic stents, everolimus-eluting bioresorbable vascular scaffolds had similar rates of repeat revascularisation at 1 year of follow-up, despite inferior mid-term angiographic performance. However, patients treated with a bioresorbable vascular scaffold had an increased risk of subacute stent thrombosis. Studies with extended follow-up in a larger number of patients are needed to fully assess the long-term advantages of everolimus-eluting bioresorbable vascular scaffolds. None. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. In vitro physical, chemical, and biological evaluation of commercially available metal orthodontic brackets.

    PubMed

    Kim, Joo Hyoung; Cha, Jung Yul; Hwang, Chung Ju

    2012-12-01

    This in vitro study was undertaken to evaluate the physical, chemical, and biological properties of commercially available metal orthodontic brackets in South Korea, because national standards for these products are lacking. FOUR BRACKET BRANDS WERE TESTED FOR DIMENSIONAL ACCURACY, (MANUFACTURING ERRORS IN ANGULATION AND TORQUE), CYTOTOXICITY, COMPOSITION, ELUTION, AND CORROSION: Archist (Daeseung Medical), Victory (3M Unitek), Kosaka (Tomy), and Confidence (Shinye Odontology Materials). The tested rackets showed no significant differences in manufacturing errors in angulation, but Confidence brackets showed a significant difference in manufacturing errors in torque. None of the brackets were cytotoxic to mouse fibroblasts. The metal ion components did not show a regular increasing or decreasing trend of elution over time, but the volume of the total eluted metal ions increased: Archist brackets had the maximal Cr elution and Confidence brackets appeared to have the largest volume of total eluted metal ions because of excessive Ni elution. Confidence brackets showed the lowest corrosion resistance during potentiodynamic polarization. The results of this study could potentially be applied in establishing national standards for metal orthodontic brackets and in evaluating commercially available products.

  20. Contrasting Effects of Physical Wear on Elution of Two Antibiotics from Orthopedic Cement

    PubMed Central

    Dodds, S.; Akid, R.; Stephenson, J.; Nichol, T.; Banerjee, R. D.; Stockley, I.; Townsend, R.

    2012-01-01

    The use of antibiotics as a supplement to bone cement for the purposes of providing a local release of antibiotics is common practice in arthroplasty surgery and the kinetics of elution of the antibiotics in such systems have been investigated previously. However, in these previous studies no account was taken of the potential effects that wear may have on the elution kinetics of the antibiotic. Here, we have modified an existing wear testing rig to allow the simultaneous study of the elution kinetics of bone cement samples containing antibiotics being subjected to immersion only and immersion and conjoint wear. The results show contrasting effects with two commonly used antibiotics. Bone cement containing daptomycin showed no substantial change in antibiotic elution due to wear, while cement containing gentamicin (the most commonly used antibiotic in this application) in contrast demonstrated a substantial reduction in the rate of antibiotic elution when wear was applied. Scanning electron microscopy revealed a possible explanation for these diverse results, due to wear-induced “sealing” of the surface in conjunction with the crystal morphology of the antibiotic. PMID:22155831

  1. Hydrodistillation time affects dill seed essential oil yield, composition, and bioactivity

    USDA-ARS?s Scientific Manuscript database

    Dill (Anethum graveolens L.) essential oil is widely used by the food and pharmaceutical industries. We hypothesized that the chemical constituents of dill seed essential oil are eluted at different times during the hydrodistillation process, resulting in oils with different composition and bioactiv...

  2. Electronic Devices with Cesium Barrier Film and Process for Making Same

    DTIC Science & Technology

    1998-08-20

    interfacial structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows...another 20 embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed...compound effusion cell, for example a barium fluoride, strontium fluoride or the like effusion cell, is provided at 32, and has a shutter 33. A

  3. [Extraction, isolation and purification for ginkgolide B].

    PubMed

    Zhang, Chenfeng; Li, Minghui; Tang, Yun; Zhang, Yanhai; Shi, Min; Sheng, Longsheng

    2010-08-01

    To establish a simple extraction, isolation and purification method for ginkgolide B from ginkgo leaf. The optimum conditions of extraction, isolation and purification were studied by taking the transfer rate of ginkgolide B as index. Ginkgo leaf was extracted with 70% ethanol for three times, the extracts were concentrated to remove ethanol and diluted by water till the crude drug density reached 0.1 g x mL(-1). The dilution was adsorbed with HPD-450 macroporous resin. The impurities were eluted with 20% ethanol and ginkgolide B was eluted with 80% ethanol. Then the 80% ethanol eluant was concentrated and crystallized. Finally the crude crystals were recrystallized with isopropanol. The purity of the ginkgolide B recrystallization was 95%. The process was stable and easy to operate, which was suited to industrialized production.

  4. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOEpatents

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  5. Evaluation of three methods for the concentration of poliovirus from oysters.

    PubMed

    Bouchriti, N; Goyal, S M

    1992-10-01

    Three methods for the concentration of poliovirus from oyster homogenates were compared. The adsorption-elution-precipitation method gave the lowest average virus recovery (24.1%), while the beef extract elution-acid precipitation method and the non-fat dry milk elution-acid precipitation methods gave recoveries of 47.2% and 39.6%, respectively. Although the overall recovery rates with these methods were lower than those reported in previous studies, recoveries of 40-47% obtained with the elution-precipitation methods used in the present study are considered to be above average in terms of recovery efficiency.

  6. Stent thrombosis with drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis.

    PubMed

    Palmerini, Tullio; Biondi-Zoccai, Giuseppe; Della Riva, Diego; Stettler, Christoph; Sangiorgi, Diego; D'Ascenzo, Fabrizio; Kimura, Takeshi; Briguori, Carlo; Sabatè, Manel; Kim, Hyo-Soo; De Waha, Antoinette; Kedhi, Elvin; Smits, Pieter C; Kaiser, Christoph; Sardella, Gennaro; Marullo, Antonino; Kirtane, Ajay J; Leon, Martin B; Stone, Gregg W

    2012-04-14

    The relative safety of drug-eluting stents and bare-metal stents, especially with respect to stent thrombosis, continues to be debated. In view of the overall low frequency of stent thrombosis, large sample sizes are needed to accurately estimate treatment differences between stents. We compared the risk of thrombosis between bare-metal and drug-eluting stents. For this network meta-analysis, randomised controlled trials comparing different drug-eluting stents or drug-eluting with bare-metal stents currently approved in the USA were identified through Medline, Embase, Cochrane databases, and proceedings of international meetings. Information about study design, inclusion and exclusion criteria, sample characteristics, and clinical outcomes was extracted. 49 trials including 50,844 patients randomly assigned to treatment groups were analysed. 1-year definite stent thrombosis was significantly lower with cobalt-chromium everolimus eluting stents (CoCr-EES) than with bare-metal stents (odds ratio [OR] 0·23, 95% CI 0·13-0·41). The significant difference in stent thrombosis between CoCr-EES and bare-metal stents was evident as early as 30 days (OR 0·21, 95% CI 0·11-0·42) and was also significant between 31 days and 1 year (OR 0·27, 95% CI 0·08-0·74). CoCr-EES were also associated with significantly lower rates of 1-year definite stent thrombosis compared with paclitaxel-eluting stents (OR 0·28, 95% CI 0·16-0·48), permanent polymer-based sirolimus-eluting stents (OR 0·41, 95% CI 0·24-0·70), phosphorylcholine-based zotarolimus-eluting stents (OR 0·21, 95% CI 0·10-0·44), and Resolute zotarolimus-eluting stents (OR 0·14, 95% CI 0·03-0·47). At 2-year follow-up, CoCr-EES were still associated with significantly lower rates of definite stent thrombosis than were bare-metal (OR 0·35, 95% CI 0·17-0·69) and paclitaxel-eluting stents (OR 0·34, 95% CI 0·19-0·62). No other drug-eluting stent had lower definite thrombosis rates compared with bare-metal stents at 2-year follow-up. In randomised studies completed to date, CoCr-EES has the lowest rate of stent thrombosis within 2 years of implantation. The finding that CoCr-EES also reduced stent thrombosis compared with bare-metal stents, if confirmed in future randomised trials, represents a paradigm shift. The Cardiovascular Research Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Space Agriculture for Recovery of Fukushima from the Nuclear Disaster

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Tomita-Yokotani, Kaori; Hasegawa, Katsuya; Kanazawa, Shinjiro; Oshima, Tairo

    2012-07-01

    Space agriculture is an engineering challenge to realize life support functions on distant planetary bodies under their harsh environment. After the nuclear disaster in Fukushima, its land was heavily contaminated by radioactive cesium and other nuclei. We proposed the use of space agriculture to remediate the contaminated land. Since materials circulation in the human dominant system should remove sodium from metabolic waste at processing fertilizer for crop plants, handling of sodium and potassium ions in agro-ecosystem has been one of major research targets of space agriculture. Cesium resembles to potassium as alkaline metal. Knowledge on behavior of sodium/potassium in agro-ecosystem might contribute to Fukushima. Reduction of volume of contaminated biomass made by hyperthermophilic aerobic composting bacterial system is another proposal from space agriculture. Volume and mass of plant bodies should be reduced for safe storage of nuclear wastes. Capacity of the storage facility will be definitely limited against huge amount of contaminated soil, plants and others. For this purpose, incineration of biomass first choice. The process should be under the lowered combustion temperature and with filters to confine radioactive ash to prevent dispersion of radioactive cesium. Biological combustion made by hyperthermophilic aerobic composting bacterial system might offer safe alternative for the volume reduction of plant biomass. Scientific evidence are demanded for Fukushima in order to to judge health risks of the low dose rate exposure and their biological mechanism. Biology and medicine for low dose rate exposure have been intensively studied for space exploration. The criteria of radiation exposure for general public should be remained as 1 mSv/year, because people has no merit at being exposed. However, the criteria of 1,200 mSv for life long, which is set to male astronaut, age of his first flight after age 40, might be informative to people for understanding the less risk of low dose rate against the acute exposure of same total dose. Scientific achievements of space radiobiology and medicine help people to assess their risk of exposure to radiation and to find effective measures against it. Knowledge for quantitative comparison of risks need to be provided. Space agriculture is a promising testbed to solve the Fukushima problems.

  8. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1984-02-15

    G. P. Somov; ZHURNAL MIKROBIOLOGII, EPIDEMIOLOGII I IMMUNOBIOLOGII, No 10, Oct 83) 12 Modern Preventive Measures for Zoonotic Infections (V. P...However, the concentrations of strontium-90 and cesium- 137 in the milk , potatoes and vegetables remained virtually unchanged in the period...covered, with the cesium-137/strontium-90 ratio ranging from 0.45 (carrots) to 2.75 ( milk ) in 1980, and from 0.55 (beets) to 4.0 ( milk ) in 1981. [130

  9. Design and operation of a 1000 C lithium-cesium test system

    NASA Technical Reports Server (NTRS)

    Hays, L. G.; Haskins, G. M.; Oconnor, D. E.; Torola, J., Jr.

    1973-01-01

    A 100 kWt cesium-lithium test loop fabricated of niobium-1% zirconium for experiments on erosion and two-phase system operation at temperatures of 980 C and velocities of 150 m/s. Although operated at design temperature for 100 hours, flow instabilities in the two-phase separator interfered with the achievement of the desired mass flow rates. A modified separator was fabricated and installed in the loop to alleviate this problem.

  10. Off-Site Monitoring of Nuclear Fuel Reprocessing Plants for Nuclear Weapons Proliferation

    DTIC Science & Technology

    1980-01-01

    of commercial nuclear power reactors by the collection of cesium and neodynium radionuclides and the use-of isotopic correlation techniques.Both...Both Goodwin (ref 1) and Clark (ref 2) investigated off-site monitoring of commercial nuclear power reactoze by the collection of cesium and neodynium...manner than that which is used for power production.Economical generation of electrical power requires a long sus- tained fission cycle whereas Pu-239

  11. Radioactive pollution of the waters of the baltic sea during 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarev, L.N.; Kuznetsov, Yu.V.; Gedeonov, L.I.

    Results are presented from an investigation of radioactive pollution of the waters of the Baltic Sea during 1986. Inhomogeneities in the pollution of this area of water, due to varying density of atmospheric radioactive fallout, are detected. It is found that among the radionuclides entering the surface of the Baltic Sea in 1986 as a result of atmospheric transport, the main one in terms of radiation dose is cesium-137. Comparisons are made of the level of cesium-137 content in the waters of the Baltic Sea in 1986 and in preceding years. It is noted that even in the most pollutedmore » regions of the sea the cesium-137 content was 500 times less than the maximum allowable concentration (MAC) in the USSR for drinking water. The first results of the determination of plutonium-239 and 240 in the Baltic Sea are presented.« less

  12. A Simple and Rapid Method for Reducing Radiocesium Concentrations in Wild Mushrooms ( Cantharellus and Boletus ) in the Course of Cooking.

    PubMed

    Steinhauser, Georg; Steinhauser, Veronika

    2016-11-01

    Many species of mushrooms are known accumulators of radioactive cesium ( 137 Cs and 134 Cs). Even years and decades after major nuclear accidents, especially those at Chernobyl and Fukushima, mushrooms exhibit high concentrations of these radionuclides. We investigated a simple method for reducing the activity of radiocesium in wild mushrooms (chanterelles, Cantharellus cibarius ; and boleti, Boletus edulis ) during cooking. The juice generated while cooking mushrooms contains a relatively high fraction of the total cesium. The amount of juice can be increased by washing the mushrooms with water prior to cooking. By removing the juice, up to 29% of the radiocesium can be easily removed from chanterelles. Because boleti have a lower affinity for cesium, activity levels were lower in boleti than in chanterelles. The fraction of radiocesium in the juice was lower in boleti than in chanterelles.

  13. Multiple delivery cesium oven system for negative ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, G.; Bhartiya, S.; Pandya, K.

    2012-02-15

    Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out atmore » Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.« less

  14. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake

    PubMed Central

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung

    2015-01-01

    High concentrations of cesium (Cs+) inhibit plant growth but the detailed mechanisms of Cs+ uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs+, chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs+ tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs+ concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs+. Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs+ tolerance enhancer isolated here renders plants tolerant to Cs+ by inhibiting Cs+ entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland. PMID:25740624

  15. An ab initio cluster study of the chemisorption of atomic cesium and hydrogen on reconstructed surfaces of gallium rich gallium arsenide

    NASA Astrophysics Data System (ADS)

    Schailey, Ronald

    1999-11-01

    Chemisorption properties of cesium and hydrogen atoms on the Ga-rich GaAs (100) (2 x 1), (2 x 2), and β(4 x 2) surfaces are investigated using ab initio self-consistent restricted open shell Hartree-Fock (ROHF) total energy calculations with Hay- Wadt effective core potentials. The effects of electron correlation have been included using many-body perturbation theory through second order, with the exception of β(4 x 2) symmetry due to computational limitations. The semiconductor surface is modeled by finite sized hydrogen saturated clusters. The effects of surface relaxation and reconstruction have been investigated in detail. Results are given for the energetics of chemisorption, charge population analysis, HOMO-LUMO gaps, and consequent possibilities of metallization for atomic cesium adsorption. For the chemisorption of atomic hydrogen, the experimentally verified mechanism of surface dimer bond breaking is investigated in detail.

  16. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake.

    PubMed

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung

    2015-03-05

    High concentrations of cesium (Cs(+)) inhibit plant growth but the detailed mechanisms of Cs(+) uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs(+), chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs(+) tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs(+) concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs(+). Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs(+) tolerance enhancer isolated here renders plants tolerant to Cs(+) by inhibiting Cs(+) entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland.

  17. Apparatus for generating coherent infrared energy of selected wavelength

    DOEpatents

    Stevens, Charles G.

    1985-01-01

    A tunable source (11) of coherent infrared energy includes a heat pipe (12) having an intermediate region (24) at which cesium (22) is heated to vaporizing temperature and end regions (27, 28) at which the vapor is condensed and returned to the intermediate region (24) for reheating and recirculation. Optical pumping light (43) is directed along the axis of the heat pipe (12) through a first end window (17) to stimulate emission of coherent infrared energy which is transmitted out through an opposite end window (18). A porous walled tubulation (44) extends along the axis of the heat pipe (12) and defines a region (46) in which cesium vapor is further heated to a temperature sufficient to dissociate cesium dimers which would decrease efficiency by absorbing pump light (43). Efficient generation of any desired infrared wavelength is realized by varying the wavelength of the pump light (43).

  18. A review of the Thermoelectronic Laser Energy Converter /TELEC/ Program at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Alger, D. L.; Manista, E. J.; Thompson, R. W.

    1978-01-01

    The investigation of the Thermoelectronic Laser Energy Converter (TELEC) concept at the Lewis Research Center (LeRC) began with a feasibility study of a 1 megawatt sized TELEC system. The TELEC was to use either cesium vapor or hydrogen as the plasma medium. The cesium vapor TELEC appears to be the more practical device studied with an overall calculated conversion efficiency of greater than 48%. Following this study, a small TELEC cell was fabricated which demonstrated the conversion of a small amount of laser power to electrical power. The cell developed a short circuit current of 0.7 amperes and an open circuit voltage, as extrapolated from volt-ampere curves, of about 1.5 volts. Work is now in progress to construct and test a cesium vapor TELEC capable of absorbing 20% of an incident 10 kW, 10.6 micrometer beam, and converting 35% of this power to electrical power.

  19. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Lewis, P. F.

    1980-01-01

    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.

  20. Progress toward Brazilian cesium fountain second generation

    NASA Astrophysics Data System (ADS)

    Bueno, Caio; Rodriguez Salas, Andrés; Torres Müller, Stella; Bagnato, Vanderlei Salvador; Varela Magalhães, Daniel

    2018-03-01

    The operation of a Cesium fountain primary frequency standard is strongly influenced by the characteristics of two important subsystems. The first is a stable frequency reference and the second is the frequency-transfer system. A stable standard frequency reference is key factor for experiments that require high accuracy and precision. The frequency stability of this reference has a significant impact on the procedures for evaluating certain systematic biases in frequency standards. This paper presents the second generation of the Brazilian Cesium Fountain (Br-CsF) through the opto-mechanical assembly and vacuum chamber to trap atoms. We used a squared section glass profile to build the region where the atoms are trapped and colled by magneto-optical technique. The opto-mechanical system was reduced to increase stability and robustness. This newest Atomic Fountain is essential to contribute with time and frequency development in metrology systems.

  1. A case of Z/E-isomers elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography.

    PubMed

    Pokrovskiy, Oleg I; Ustinovich, Konstantin B; Usovich, Oleg I; Parenago, Olga O; Lunin, Valeriy V; Ovchinnikov, Denis V; Kosyakov, Dmitry S

    2017-01-06

    A case of elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography was observed and investigated in some detail. Z- and E-isomers of phenylisobutylketone oxime experience an elution order reversal on most columns if the mobile phase consists of CO 2 and alcohol. At lower percentages of alcohol Z-oxime is retained less, somewhere at 2-5% coelution occurs and at larger cosolvent volume elution order reverses - Z-oxime is eluted later than E-oxime. We suppose inversion with CO 2 -ROH phases happens due to a shift in balance between two main interactions governing retention. At low ROH percentages stationary phase surface is only slightly covered by ROH molecules so oximes primarily interact with adsorption sites via hydrogen bond formation. Due to intramolecular sterical hindrance Z-oxime is less able to form hydrogen bonds and consequently is eluted first. At higher percentages alcohols occupy most of strong hydrogen bonding sites on silica surface thus leaving non-specific electrostatic interactions predominantly responsible for Z/E selectivity. Z-oxime has a much larger dipole moment than E-oxime and at these conditions it is eluted later. Additional experimental data with CO 2 -CH 3 CN, hexane-iPrOH and CHF 3 -ROH mobile phases supporting this explanation are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modeling of salt and pH gradient elution in ion-exchange chromatography.

    PubMed

    Schmidt, Michael; Hafner, Mathias; Frech, Christian

    2014-01-01

    The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion-exchange columns is a well-established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well-characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A new polymer-free drug-eluting stent with nanocarriers eluting sirolimus from stent-plus-balloon compared with bare-metal stent and with biolimus A9 eluting stent in porcine coronary arteries.

    PubMed

    Takimura, Celso K; Galon, Micheli Z; Gutierrez, Paulo S; Sojitra, Prakash; Vyas, Ashwin; Doshi, Manish; Lemos, Pedro A

    2015-04-01

    Permanent polymers in first generation drug-eluting stent (DES) have been imputed to be a possible cause of persistent inflammation, remodeling, malapposition and late stent thrombosis. We aim to describe the in vivo experimental result of a new polymer-free DES eluting sirolimus from stent-plus-balloon (Focus np stent, Envision Scientific) compared with a bare-metal stent (BMS) (Amazonia CroCo, Minvasys) and with a biolimus A9 eluting stent (Biomatrix, Biosensors). In 10 juvenile pigs, 23 coronary stents were implanted in the coronary arteries (8 Amazonia CroCo, 8 Focus np, and 7 Biomatrix). At 28-day follow-up, optical coherence tomography (OCT) and histology were used to evaluate neointimal hyperplasia and healing response. According to OCT analysis, Focus np stents had a greater lumen area and less neointimal hyperplasia response than BMS and Biomatrix had. Histomorphometry results showed less neointimal hyperplasia in Focus np than in BMS. Histology showed a higher fibrin deposition in Biomatrix stent compared to Focus np and BMS. The new polymer-free DES with sirolimus eluted from stent-plus-balloon demonstrated safety and reduced neointimal proliferation compared with the BMS and Biomatrix stents at 28-day follow-up in this porcine coronary model. This new polymer-free DES is promising and warrants further clinical studies.

  4. Elution of lead from lead zirconate titanate ceramics to acid rain

    NASA Astrophysics Data System (ADS)

    Tsurumi, Takaaki; Takezawa, Shuhei; Hoshina, Takuya; Takeda, Hiroaki

    2017-10-01

    The amount of lead that eluted from lead zirconate titanate (PZT) ceramics to artificial acid rain was evaluated. Four kinds of PZT ceramics, namely, pure PZT at MPB composition, CuO-added PZT, PZT with 10 mol % substitution of Ba for Pb, and CuO-added PZT with 10 mol % substitution of Ba for Pb, were used as samples of the elution test. These PZT ceramics of 8 mm2 and 1.1-1.2 mm thickness were suspended in 300 ml of H2SO4 solution of pH 4.0. The concentration of lead eluted from PZT was in the range from 0.2 to 0.8 ppm. It was found that both liquid phase formation by the addition of CuO and the substitution of Ba for Pb were effective to reduce the amount of lead that eluted. By fitting the leaching out curve with a classical equation, a master curve assuming no sampling effect was obtained. The lead concentration evaluated from the amount of lead that eluted from a commercial PZT plate to H2SO4 solution of pH 5.3 was almost the same as the limit in city water. It is concluded that PZT is not harmful to health and the environment and the amount of lead that eluted from PZT can be controlled by modifying PZT composition.

  5. Application of acidic elution to virus concentration using electropositive filters.

    PubMed

    Haramoto, Eiji; Katayama, Hiroyuki

    2013-03-01

    The effect of the type and pH of an elution solution on the recovery of poliovirus from water by a virus concentration method using an electropositive filter was evaluated. The experimental results obtained indicated the potential usefulness of H2SO4 (pH 1.5-3.5) as a novel solution for virus elution.

  6. Comparison of everolimus- and paclitaxel-eluting stents in patients with acute and stable coronary syndromes: pooled results from the SPIRIT (A Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System) and COMPARE (A Trial of Everolimus-Eluting Stents and Paclitaxel-Eluting Stents for Coronary Revascularization in Daily Practice) Trials.

    PubMed

    Planer, David; Smits, Pieter C; Kereiakes, Dean J; Kedhi, Elvin; Fahy, Martin; Xu, Ke; Serruys, Patrick W; Stone, Gregg W

    2011-10-01

    This study sought to compare the clinical outcomes of everolimus-eluting stents (EES) versus paclitaxel-eluting stents (PES) in patients with acute coronary syndromes (ACS) and stable coronary artery disease (CAD). Although randomized trials have shown superiority of EES to PES, the safety and efficacy of EES in ACS is unknown. We performed a patient-level pooled analysis from the prospective, randomized SPIRIT (Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System) II, III, IV, and COMPARE (A Trial of Everolimus-Eluting Stents and Paclitaxel-Eluting Stents for Coronary Revascularization in Daily Practice) trials in which 2,381 patients with ACS and 4,404 patients with stable CAD were randomized to EES or to PES. Kaplan-Meier estimates of death, myocardial infarction (MI), ischemia-driven target lesion revascularization, and stent thrombosis were assessed at 2 years and stratified by clinical presentation (ACS vs. stable CAD). At 2 years, patients with ACS compared with stable CAD had higher rates of death (3.2% vs. 2.4%, hazard ratio [HR]: 1.37 [95% confidence interval (CI): 1.02 to 1.85], p = 0.04) and MI (4.9% vs. 3.4%, HR: 1.45 [95% CI: 1.14 to 1.85], p = 0.02). In patients with ACS, EES versus PES reduced the rate of death or MI (6.6% vs. 9.3%, HR: 0.70 [95% CI: 0.52 to 0.94], p = 0.02), stent thrombosis (0.7% vs. 2.9%, HR: 0.25 [95% CI: 0.12 to 0.52], p = 0.0002), and ischemia-driven target lesion revascularization (4.7% vs. 6.2%, HR: 0.69 [95% CI: 0.48 to 0.99], p = 0.04). In patients with stable CAD, EES reduced the rate of death or MI (4.5% vs. 7.1%, HR: 0.62 [95% CI: 0.48 to 0.80], p = 0.0002), stent thrombosis (0.7% vs. 1.8%, HR: 0.34 [95% CI: 0.19 to 0.62], p = 0.0002), and ischemia-driven target lesion revascularization (3.9% vs. 6.9%, HR: 0.55 [95% CI: 0.42 to 0.73], p < 0.0001). Treatment with EES versus PES provides enhanced safety and efficacy regardless of the acuity of the clinical syndrome being treated and appears to mitigate the increased risk of stent thrombosis associated with ACS. (A Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System in the Treatment of Patients With de Novo Native Coronary Artery Lesions [SPIRIT II]; NCT00180310; SPIRIT III: A Clinical Evaluation of the Investigational Device XIENCE V Everolimus Eluting Coronary Stent System [EECSS] in the Treatment of Subjects With de Novo Native Coronary Artery Lesions [SPIRIT III]; NCT00180479; SPIRIT IV Clinical Trial: Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System in the Treatment of Subjects With de Novo Native Coronary Artery Lesions [SPIRIT IV]; NCT00307047; A Trial of Everolimus-Eluting Stents and Paclitaxel-Eluting Stents for Coronary Revascularization in Daily Practice: the COMPARE Trial [COMPARE]; NCT01016041). Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes.

    PubMed

    Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J

    2015-04-21

    A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.

  8. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics.

    PubMed

    Hua, Yujuan; Jemere, Abebaw B; Dragoljic, Jelena; Harrison, D Jed

    2013-07-07

    Both 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ~8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics.

  9. Effectiveness and safety of drug-eluting stents in Ontario.

    PubMed

    Tu, Jack V; Bowen, James; Chiu, Maria; Ko, Dennis T; Austin, Peter C; He, Yaohua; Hopkins, Robert; Tarride, Jean-Eric; Blackhouse, Gord; Lazzam, Charles; Cohen, Eric A; Goeree, Ron

    2007-10-04

    The placement of drug-eluting stents decreases the frequency of repeat revascularization procedures in patients undergoing percutaneous coronary intervention (PCI) in randomized clinical trials. However, there is uncertainty about the effectiveness of drug-eluting stents, and increasing concern about their safety, in routine clinical practice. From the Cardiac Care Network of Ontario's population-based clinical registry of all patients undergoing PCI in Ontario, Canada, we identified a well-balanced cohort of 3751 pairs of patients, matched on the basis of propensity score, who received either bare-metal stents alone or drug-eluting stents alone during an index PCI procedure between December 1, 2003, and March 31, 2005. The primary outcomes of the study were the rates of target-vessel revascularization, myocardial infarction, and death. The 2-year rate of target-vessel revascularization was significantly lower among patients who received drug-eluting stents than among those who received bare-metal stents (7.4% vs. 10.7%, P<0.001). Drug-eluting stents were associated with significant reductions in the rate of target-vessel revascularization among patients with two or three risk factors for restenosis (i.e., presence of diabetes, small vessels [<3 mm in diameter], and long lesions [> or =20 mm]) but not among lower-risk patients. The 3-year mortality rate was significantly higher in the bare-metal-stent group than in the drug-eluting-stent group (7.8% vs. 5.5%, P<0.001), whereas the 2-year rate of myocardial infarction was similar in the two groups (5.2% and 5.7%, respectively; P=0.95). Drug-eluting stents are effective in reducing the need for target-vessel revascularization in patients at highest risk for restenosis, without a significantly increased rate of death or myocardial infarction. Copyright 2007 Massachusetts Medical Society.

  10. CONCENTRATION AND PROCESSING OF WATERBORNE VIRUSES BY POSITIVE CHARGE 1MDS CARTRIDGE FILTERS AND ORGANIC FLOCCULATION

    EPA Science Inventory

    This chapter describes the most widely used virus adsorption-elution (VIRADEL) method for recovering human enteric viruses from water matrices (Fout et al., 1996). The method takes advantage of postively charged cartridge filters to concentrate viruses from water. The major adv...

  11. Effect of Nanoparticle Surface on the HPLC Elution Profile of Liposomal Nanoparticles.

    PubMed

    Itoh, Naoki; Yamamoto, Eiichi; Santa, Tomofumi; Funatsu, Takashi; Kato, Masaru

    2016-06-01

    Nanoparticles have been used in diverse areas, and even broader applications are expected in the future. Since surface modification can influence the configuration and toxicity of nanoparticles, a rapid screening method is important to ensure nanoparticle quality. We examined the effect of the nanoparticle surface morphology on the HPLC elution profile using two types of 100-nm liposomal nanoparticles (AmBisome(Ⓡ) and DOXIL(Ⓡ)). These 100-nm-sized nanoparticles eluted before the holdup time (about 4 min), even when a column packed with particles with a relatively large pore size (30 nm) was used. The elution time of the nanoparticles increased with pegylation of the nanoparticles and protein adsorption to the nanoparticles; however, the nanoparticles still eluted before the holdup time. The results of this study indicate that HPLC is a suitable tool for rapid evaluation of the surface of liposomal nanoparticles.

  12. Alendronate-Eluting Biphasic Calcium Phosphate (BCP) Scaffolds Stimulate Osteogenic Differentiation

    PubMed Central

    Kim, Sung Eun; Lee, Deok-Won; Kang, Eun Young; Jeong, Won Jae; Lee, Boram; Jeong, Myeong Seon; Kim, Hak Jun; Park, Kyeongsoon; Song, Hae-Ryong

    2015-01-01

    Biphasic calcium phosphate (BCP) scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN-) eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation. PMID:26221587

  13. Technetium-99m generator system

    DOEpatents

    Mirzadeh, Saed; Knapp, Jr., Furn F.; Collins, Emory D.

    1998-01-01

    A .sup.99 Mo/.sup.99m Tc generator system includes a sorbent column loaded with a composition containing .sup.99 Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating .sup.99m Tc eluted from the sorbent column. A method of preparing a concentrated solution of .sup.99m Tc includes the general steps of: a. providing a sorbent column loaded with a composition containing .sup.99 Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; b. eluting the sorbent column with a salt solution to elute .sup.99m Tc from the sorbent and to trap and concentrate the eluted .sup.99m Tc on the ion-exchange column; and c. eluting the concentrated .sup.99m Tc from the ion-exchange column with a solution comprising a reductive complexing agent.

  14. Technetium-99m generator system

    DOEpatents

    Mirzadeh, S.; Knapp, F.F. Jr.; Collins, E.D.

    1998-06-30

    A {sup 99}Mo/{sup 99m}Tc generator system includes a sorbent column loaded with a composition containing {sup 99}Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating {sup 99m}Tc eluted from the sorbent column. A method of preparing a concentrated solution of {sup 99m}Tc includes the general steps of: (a) providing a sorbent column loaded with a composition containing {sup 99}Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; (b) eluting the sorbent column with a salt solution to elute {sup 99m}Tc from the sorbent and to trap and concentrate the eluted {sup 99m}Tc on the ion-exchange column; and (c) eluting the concentrated {sup 99m}Tc from the ion-exchange column with a solution comprising a reductive complexing agent. 1 fig.

  15. The best practice for preparation of samples from FTA®cards for diagnosis of blood borne infections using African trypanosomes as a model system

    PubMed Central

    2011-01-01

    Background Diagnosis of blood borne infectious diseases relies primarily on the detection of the causative agent in the blood sample. Molecular techniques offer sensitive and specific tools for this although considerable difficulties exist when using these approaches in the field environment. In large scale epidemiological studies, FTA®cards are becoming increasingly popular for the rapid collection and archiving of a large number of samples. However, there are some difficulties in the downstream processing of these cards which is essential for the accurate diagnosis of infection. Here we describe recommendations for the best practice approach for sample processing from FTA®cards for the molecular diagnosis of trypanosomiasis using PCR. Results A comparison of five techniques was made. Detection from directly applied whole blood was less sensitive (35.6%) than whole blood which was subsequently eluted from the cards using Chelex®100 (56.4%). Better apparent sensitivity was achieved when blood was lysed prior to application on the FTA cards (73.3%) although this was not significant. This did not improve with subsequent elution using Chelex®100 (73.3%) and was not significantly different from direct DNA extraction from blood in the field (68.3%). Conclusions Based on these results, the degree of effort required for each of these techniques and the difficulty of DNA extraction under field conditions, we recommend that blood is transferred onto FTA cards whole followed by elution in Chelex®100 as the best approach. PMID:21548975

  16. Distribution of Radioactive Cesium during Milling and Cooking of Contaminated Buckwheat.

    PubMed

    Hachinohe, Mayumi; Nihei, Naoto; Kawamoto, Shinichi; Hamamatsu, Shioka

    2018-06-01

    To clarify the behavior of radioactive cesium (Cs) in buckwheat grains during milling and cooking processes, parameters such as processing factor (Pf) and food processing retention factor (Fr) were evaluated in two lots of buckwheat grains, R1 and R2, with different concentrations of radioactive Cs. Three milling fractions, the husk, bran, and flour fractions, were obtained using a mill and electric sieve. The radioactive Cs ( 134 Cs + 137 Cs) concentrations in husk and bran were higher than that in grain, whereas the concentration in flour was lower than that in grain. Pf values for the flours of R1 and R2 were 0.60 and 0.80, respectively. Fr values for the flours of R1 and R2 were 0.28 and 0.53, respectively. Raw buckwheat noodles (soba) were prepared using a mixture of buckwheat flour and wheat flour according to the typical recipe and were cooked with boiling water for 0.5, 1, and 2 min, followed by rinsing with water. Pf values for the soba boiled for 2 min (optimal for eating) made with R1 and R2 were 0.34 and 0.40, respectively. Fr values for these R1 and R2 samples were 0.55 and 0.66, respectively. Pf and Fr values for soba boiled for different times for both R1 and R2 were less than 0.6 and 0.8, respectively. Thus, buckwheat flour and its product, soba, cooked by boiling, are considered acceptable for human consumption according to the standard limit for radioactive Cs in buckwheat grains.

  17. [Influences of the mobile phase constitution, salt concentration and pH value on retention characters of proteins on the metal chelate column].

    PubMed

    Li, R; Di, Z M; Chen, G L

    2001-09-01

    The effects of the nature and concentration of salts, pH value and competitive eluent in the mobile phase on the protein retention have been systematically investigated. A mathematical expression describing the protein retention in metal chelate chromatography has been derived. It is proposed that the eluting power of the salt solution can be expressed by the eluent strength exponent epsilon. According to the retention characters of protein under different chromatographic conditions, the interaction between the various metal chelate ligands and proteins is discussed. The protein retention on the metal chelate column is a cooperative interactions of coordination, electrostatic and hydrophobic interaction. For the strong combined metal column with proteins such as IDA-Cu, the coordination is the most important, and the electrostatic interaction is secondary in chromatographic process. However, for the weak combined metal columns with proteins such as IDA-Ni, IDA-Co and IDA-Zn, the electrostatic interaction between the metal chelate ligands and proteins is the chief one, while the coordination is the next in importance. When the mobile phase contains high concentration of salt which can't form complex with the immobilized metal, the hydrophobic interaction between the protein and stationary phase will be increased. As the interaction between the metal chelate ligand and proteins relates to chromatographic operating conditions closely, different elution processes may be selected for different metal chelate columns. The gradient elution is generally performed by the low concentration of salt or different pH for weakly combined columns with proteins, however the competitive elution procedure is commonly utilized for strongly combined column. The experiment showed that NH3 is an excellent competitive eluent. It isn't only give the efficient separation of proteins, but also has the advantages of cheapness, less bleeding of the immobilized metals and ease of controlling NH3 concentration. The interaction between the metal chelate ligand and proteins and the selectivity of metal chelate chromatography can be changed through changing chromatographic conditions.

  18. Coupling of ultrasound-assisted extraction and expanded bed adsorption for simplified medicinal plant processing and its theoretical model: extraction and enrichment of ginsenosides from Radix Ginseng as a case study.

    PubMed

    Mi, Jianing; Zhang, Min; Zhang, Hongyang; Wang, Yuerong; Wu, Shikun; Hu, Ping

    2013-02-01

    A high-efficient and environmental-friendly method for the preparation of ginsenosides from Radix Ginseng using the method of coupling of ultrasound-assisted extraction with expanded bed adsorption is described. Based on the optimal extraction conditions screened by surface response methodology, ginsenosides were extracted and adsorbed, then eluted by the two-step elution protocol. The comparison results between the coupling of ultrasound-assisted extraction with expanded bed adsorption method and conventional method showed that the former was better than the latter in both process efficiency and greenness. The process efficiency and energy efficiency of the coupling of ultrasound-assisted extraction with expanded bed adsorption method rapidly increased by 1.4-fold and 18.5-fold of the conventional method, while the environmental cost and CO(2) emission of the conventional method were 12.9-fold and 17.0-fold of the new method. Furthermore, the theoretical model for the extraction of targets was derived. The results revealed that the theoretical model suitably described the process of preparing ginsenosides by the coupling of ultrasound-assisted extraction with expanded bed adsorption system. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cleaning Contaminated Water at Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rende, Dean; Nenoff, Tina

    2013-11-21

    Crystalline Silico-Titanates (CSTs) are synthetic zeolites designed by Sandia National Laboratories scientists to selectively capture radioactive cesium and other group I metals. They are being used for cleanup of radiation-contaminated water at the Fukushima Daiichi nuclear power plant in Japan. Quick action by Sandia and its corporate partner UOP, A Honeywell Company, led to rapid licensing and deployment of the technology in Japan, where it continues to be used to clean up cesium contaminated water at the Fukushima power plant.

  20. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    NASA Technical Reports Server (NTRS)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

Top