Science.gov

Sample records for cesium produits au

  1. NPB Cesium Space Experiment

    NASA Technical Reports Server (NTRS)

    Parsons, George M., III

    1992-01-01

    Neutral Particle Beam (NPB) weapons systems are planned to perform the ballistic missile defense functions of nuclear weapon/decoy discrimination and warhead kill at appropriate energy levels and ion currents. Negatively charged ions are produced in a specialized ion source and focused into a high quality particle beam. NPB linear accelerators accelerate and steer the negatively charged ions using electric and magnetic fields. After acceleration and steering the neutralizer system strips away extra electrons from ions to form the electrically neutral particle beam. The neutral beam then travels through space to the target unaffected by the Earth's magnetic fields. Continuing technological advances have greatly reduced the size and weight of NPB accelerator systems. Ion current production has been enhanced by over 100 percent with the intermittent addition of cesium at the NPB ion source device. This increase in current is essential to attain the most light weight, compact NPB platforms and minimize expensive launch costs. Addition of cesium into the ion source has been identified by the NPB community as the highest priority risk reduction space experiment necessary prior to planned NPB accelerator experiments and later weapons systems. The NPB Cesium Space Experiment is planned to successfully demonstrate controlled cesium introduction and vaporization into a simulated ion source chamber. Microgravity effects on the cesium deposition will be studied as will the effects of small amounts of cesium on high voltage accelerator components that might be susceptible to electrical insulator break downs. The experiment design will simulate as closely as possible the environment, physical and operational characteristics of the actual NPB ion source.

  2. Methods of producing cesium-131

    SciTech Connect

    Meikrantz, David H; Snyder, John R

    2012-09-18

    Methods of producing cesium-131. The method comprises dissolving at least one non-irradiated barium source in water or a nitric acid solution to produce a barium target solution. The barium target solution is irradiated with neutron radiation to produce cesium-131, which is removed from the barium target solution. The cesium-131 is complexed with a calixarene compound to separate the cesium-131 from the barium target solution. A liquid:liquid extraction device or extraction column is used to separate the cesium-131 from the barium target solution.

  3. Recovery of cesium

    DOEpatents

    Izatt, Reed M.; Christensen, James J.; Hawkins, Richard T.

    1984-01-01

    A process of recovering cesium ions from mixtures of ions containing them and other ions, e.g., a solution of nuclear waste materials, which comprises establishing a separate source phase containing such a mixture of ions, establishing a separate recipient phase, establishing a liquid membrane phase in interfacial contact with said source and recipient phases, said membrane phase containing a ligand, preferably a selected calixarene as depicted in the drawing, maintaining said interfacial contact for a period of time long enough to transport by said ligand a substantial portion of the cesium ion from the source phase to the recipient phase, and recovering the cesium ion from the recipient phase. The separation of the source and recipient phases may be by the membrane phase only, e.g., where these aqueous phases are emulsified as dispersed phases in a continuous membrane phase, or may include a physical barrier as well, e.g., an open-top outer container with an inner open-ended container of smaller cross-section mounted in the outer container with its open bottom end spaced from and above the closed bottom of the outer container so that the membrane phase may fill the outer container to a level above the bottom of the inner container and have floating on its upper surface a source phase and a recipient phase separated by the wall of the inner container as a physical barrier. A preferred solvent for the ligand is a mixture of methylene chloride and carbon tetrachloride.

  4. Clinical effects of cesium intake.

    PubMed

    Melnikov, Petr; Zanoni, Lourdes Zélia

    2010-06-01

    The knowledge about cesium metabolism and toxicity is sparse. Oral intake of cesium chloride has been widely promoted on the basis of the hypothesis referred to as "high pH cancer therapy", a complimentary alternative medicine method for cancer treatment. However, no properly confirmed tumor regression was reported so far in all probability because of neither theoretical nor experimental grounds for this proposal. The aim of the present review was to resume and discuss the material currently available on cesium salts and their applications in medicine. The presence of cesium in the cell does not guarantee high pH of its content, and there is no clinical evidence to support the claims that cancer cells are vulnerable to cesium. Cesium is relatively safe; signs of its mild toxicity are gastrointestinal distress, hypotension, syncope, numbness, or tingling of the lips. Nevertheless, total cesium intakes of 6 g/day have been found to produce severe hypokalemia, hypomagnesemia, prolonged QTc interval, episodes of polymorphic ventricular tachycardia, with or without torsade de pointes, and even acute heart arrest. However, full information on its acute and chronic toxicity is not sufficiently known. Health care providers should be aware of the cardiac complications, as a result of careless cesium usage as alternative medicine.

  5. Metals fact sheet--cesium

    SciTech Connect

    1997-03-01

    Cesium, the most alkaline and electropositive metal, is used by several industries for a variety of applications, including chemical catalysis, biomedical, photoelectrical, and glass manufacturing. While the traditional market for cesium has remained small, potential growth areas exist in the chemical catalysis and the oil and gas industry.

  6. Cesium cation affinities and basicities

    NASA Astrophysics Data System (ADS)

    Gal, Jean-François; Maria, Pierre-Charles; Massi, Lionel; Mayeux, Charly; Burk, Peeter; Tammiku-Taul, Jaana

    2007-11-01

    This review focuses on the quantitative data related to cesium cation interaction with neutral or negatively charged ligands. The techniques used for measuring the cesium cation affinity (enthalpies, CCA), and cesium cation basicities (Gibbs free energies, CCB) are briefly described. The quantum chemical calculations methods that were specifically designed for the determination of cesium cation adduct structures and the energetic aspects of the interaction are discussed. The experimental results, obtained essentially from mass spectrometry techniques, and complemented by thermochemical data, are tabulated and commented. In particular, the correlations between cesium cation affinities and lithium cation affinities for the various kinds of ligands (rare gases, polyatomic neutral molecules, among them aromatic compounds and negative ions) serve as a basis for the interpretation of the diverse electrostatic modes of interaction. A brief account of some recent analytical applications of ion/molecule reactions with Cs+, as well as other cationization approaches by Cs+, is given.

  7. Cesium in hydrogen negative-ion sources

    SciTech Connect

    Belchenko, Yu.I.; Davydenko, V.I.

    2006-03-15

    Experimental data on the dynamics of cesium particles in the pulsed magnetron and Penning surface-plasma ion sources are presented. Cesium escape from the source emission apertures and the cesium ion current to discharge electrodes was measured. The low value of cesium flux from the source was detected. An intense cesium ion current to the cathode (up to 0.8 A/cm{sup 2}) was measured. The high value of cesium ion current to surface-plasma source cathode confirms the cesium circulation near the cathode.

  8. New closed system integral cesium reservoir

    NASA Astrophysics Data System (ADS)

    Rhee, Hyop S.; Britt, Edward J.; Kim, Kwang Y.; Kennel, Elliot B.

    Attention is given to the lead-cesium solution reservoir concept, according to which the cesium reservoir is in the form of a gas-buffered heat pipe, such that the cesium pressure will remain roughly constant over a wide range of input temperature flux. This concept carries fission gases from the cesium. Experimental data show that adequate cesium pressure control is facilitated by a lead-cesium solution at the collector operating temperature of the thermionic fuel elements (TFEs). If the performance and material compatibility issues are resolved, the lead-cesium reservoir could offer great benefits in terms of simplicity and reduction of TFE manufacturing costs.

  9. Mineral resource of the month: cesium

    USGS Publications Warehouse

    Angulo, Marc A.

    2010-01-01

    The article offers information on cesium, a golden alkali metal derived from the Latin word caesium which means bluish gray. It mentions that cesium is the first element discovered with the use of spectroscopy. It adds that the leading producer and supplier of cesium is Canada and there are 50,000 kilograms of cesium consumed of the world in a year. Moreover, it states that only 85% of the cesium formate can be retrieved and recycled.

  10. Cesium diffusion in graphite

    SciTech Connect

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  11. METHOD OF PREPARING RADIOACTIVE CESIUM SOURCES

    DOEpatents

    Quinby, T.C.

    1963-12-17

    A method of preparing a cesium-containing radiation source with physical and chemical properties suitable for high-level use is presented. Finely divided silica is suspended in a solution containing cesium, normally the fission-product isotope cesium 137. Sodium tetraphenyl boron is then added to quantitatively precipitate the cesium. The cesium-containing precipitate is converted to borosilicate glass by heating to the melting point and cooling. Up to 60 weight percent cesium, with a resulting source activity of up to 21 curies per gram, is incorporated in the glass. (AEC)

  12. Cesium clocks keep the world on time

    SciTech Connect

    Hellwig, H.

    1985-09-01

    The development of timekeeping systems based on the natural resonance of cesium atoms is reviewed. The design of a typical cesium clock using a frequency lock servo is described. Some common applications of cesium beam frequency and time reference systems are discussed, including Navstar GPS navigation referencing; military satellite communications; and measurements of relative gravitational effects. The possibility of increasing timekeeping accuracies using improved cesium clock designs is evaluated.

  13. Method of removing cesium from steam

    DOEpatents

    Carson, Jr., Neill J.; Noland, Robert A.; Ruther, Westly E.

    1991-01-01

    Method for removal of radioactive cesium from a hot vapor, such as high temperature steam, including the steps of passing input hot vapor containing radioactive cesium into a bed of silicate glass particles and chemically incorporating radioactive cesium in the silicate glass particles at a temperature of at least about 700.degree. F.

  14. Process for cesium decontamination and immobilization

    DOEpatents

    Komarneni, Sridhar; Roy, Rustum

    1989-01-01

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time.

  15. Process for cesium decontamination and immobilization

    DOEpatents

    Komarneni, S.; Roy, R.

    1988-04-25

    Cesium can be selectively recovered from a nuclear waste solution containing cesium together with other metal ions by contact with a modified phlogopite which is a hydrated, sodium phlogopite mica. Once the cesium has entered the modified phlogopite it is fixed and can be safely stored for long periods of time. 6 figs., 2 tabs.

  16. Cesium removal and kinetics equilibrium: Precipitation kinetics

    SciTech Connect

    Barnes, M.J.

    1999-12-17

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics.

  17. Cesium control and diagnostics in surface plasma negative ion sources

    SciTech Connect

    Dudnikov, Vadim; Chapovsky, Pavel; Dudnikov, Andrei

    2010-02-15

    For efficient and reliable negative ion generation it is very important to improve a cesium control and diagnostics. Laser beam attenuation and resonance fluorescence can be used for measurement of cesium distribution and cesium control. Resonant laser excitation and two-photon excitation can be used for improved cesium ionization and cesium trapping in the discharge chamber. Simple and inexpensive diode lasers can be used for cesium diagnostics and control. Cesium migration along the surface is an important mechanism of cesium escaping. It is important to develop a suppression of cesium migration and cesium accumulation on the extraction system.

  18. Cesium oxide-cesium solution as a source of cesium and oxygen.

    NASA Technical Reports Server (NTRS)

    Gunther, B.; Rufeh, F.; Pigford, T. H.

    1972-01-01

    Examination of the feasibility of using the solution as a source of cesium and oxygen, with description of an experimental system designed for a systematic investigation. Preliminary data are presented. Thermionic performance of the converter was recorded before the injection of oxygen at emitter temperatures of 1600, 1700, 1800, and 1900 K. The power of this converter, which had a polycrystalline tungsten emitter and a polycrystalline molybdenum collector, is compared with other converters. Experimental results show that cesium oxide mole factors higher than 0.18 are needed to achieve oxygen effects. It appears not to be necessary to be concerned about avoiding oxygen impurities in the cesium reservoir, since mole fractions as high as 0.18 have failed to influence the performance.

  19. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Goodall, C.A.

    1960-09-13

    A process is given for precipitating cesium on zinc ferricyanide (at least 0.0004 M) from aqueous solutions containing mineral acid in a concentration of from 0.2 N acidity to 0.61 N acid-deficiency and advantageously, but not necessarily, also aluminum nitrate in a concentration of from l to 2.5 M.

  20. Cesium Eluate Physical Property Determination

    SciTech Connect

    Baich, M.A.

    2001-02-13

    Two bench-scale process simulations of the proposed cesium eluate evaporation process of concentrating eluate produced in the Hanford Site Waste Treatment Plant were conducted. The primary objective of these experiments was to determine the physical properties and the saturation concentration of the eluate evaporator bottoms while producing condensate approximately 0.50 molar HN03.

  1. The cesium tetracyanoethylenide radical salt

    SciTech Connect

    Bock, H.; Ruppert, K. )

    1992-11-25

    The electron-acceptor molecule tetracyanoethylene, characterized by a multitude of data, is considered to be prototype charge-transfer complex ligand and is of actual interest as a counteranion in organic conductors and ferromagnets. Tetracyanoethylene (TCNE) reacts in aprotic dimethoxyethane solution with a cesium metal mirror to yield black crystals of [TCNE[sup [sm bullet][minus

  2. Method for primary containment of cesium wastes

    DOEpatents

    Angelini, Peter; Lackey, Walter J.; Stinton, David P.; Blanco, Raymond E.; Bond, Walter D.; Arnold, Jr., Wesley D.

    1983-01-01

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zeolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600.degree. C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1,000.degree. C. for a suitable duration.

  3. Cesium recovery from aqueous solutions

    DOEpatents

    Goodhall, C. A.

    1960-09-13

    A process for recovering cesium from aqueous solutions is given in which precipitation on zinc ferricyanide is used. The precipitation is preferably carried out in solutions containing at least 0.0004M zinc ferricyanide, an acidity ranging from 0.2N mineral acid to 0.61N acid deficiency, and 1 to 2.5M aluminum nitrate. (D.L.C.)

  4. Cesium standard for satellite application

    NASA Technical Reports Server (NTRS)

    Bloch, M. B.; Meirs, M.; Pascaru, I.; Weinstein, B.

    1983-01-01

    A Cesium frequency standard that was developed for satellite applications is discussed. It weighs 23 lbs. and uses 23.5 watts of power, achieves a stability of 1 x ten to the minus 13th power/100,000 seconds, and is radiation hardened. To achieve the weight and reliability requirements, both thick and thin film hybrid circuits were utilized. A crystal oscillator is used to improve short-term stability and performance on a moving platform.

  5. Unusual ligand coordination for cesium

    SciTech Connect

    Bryan, J.C.; Kavallieratos, K.; Sachleben, R.A.

    2000-04-03

    When complexed by tetrabenzo-24-crown-8, the cesium ion can accommodate unprecedented ligation. The structures of the complexes are presented. These structures are the first reported examples of linear {eta}{sup 2}-acetonitrile coordination to any metal ion and the first structures illustrating {eta}{sup 2}-acetonitrile and dichloromethane ligation to an alkali metal ion. Possible steric and electronic origins of these unusual metal-ligand interactions are discussed.

  6. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  7. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  8. Cesium heat-pipe thermostat

    SciTech Connect

    Wu, F.; Song, D.; Sheng, K.; Wu, J.; Yi, X.; Yu, Z.

    2013-09-11

    In this paper the authors report a newly developed Cesium Heat-Pipe Thermostat (Cs HPT) with the operation range of 400 °C to 800 °C. The working medium is cesium (Cs) of 99.98% purity and contains no radioisotope. A Cs filing device is developed which can prevent Cs being in contact with air. The structural material is stainless steel. A 5000 h test has been made to confirm the compatibility between cesium and stainless steel. The Cs HPT has several thermometer wells of 220mm depth with different diameters for different sizes of thermometers. The temperature uniformity of the Cs HPT is 0.06 °C to 0.20 °C. A precise temperature controller is used to ensure the temperature fluctuation within ±0.03 °C. The size of Cs HPT is 380mm×320mm×280mm with foot wheels for easy moving. The thermostat has been successfully used for the calibration of industrial platinum resistance thermometers and thermocouples.

  9. CESIUM RECOVERY FROM AQUEOUS SOLUTIONS

    DOEpatents

    Schneider, R.A.

    1961-06-20

    Cesium may be precipitated from an aqueous solution whose acidity ranges between a pH of 1.5 and a molarity of 5 on cobaltous, zinc, cadmium, nickel, or ferrous cobalticyanide. This precipitation brings about a separation from most fission products. Ruthenium which coprecipitates to a great degree can be removed by dissolving in sulfuric acid and boiling the solution in the presence of periodic acid for volatilization; other coprecipitated fission products can then be precipitated from the sulfuric acid solution with a ferric hydroxide carrier.

  10. Some thermochemical studies of cesium uranate, molybdate and chromate

    NASA Astrophysics Data System (ADS)

    Bose, O. K.; Sundaresan, M.; Tangri, R. P.; Kalyanaraman, R.; Schumacher, G.

    1985-02-01

    The present paper deals with studies on vaporisation of cesium monouranate and enthalpies of formation of cesium molybdate and cesium chromate. Vaporization studies of cesium monouranate using Knudsen cell in combination with quadrupole mass spectrometer at the temperature range of 1000-1573 K have indicated that at a temperature above 1223 K it decomposes to cesium polyuranate and cesium vapour. Cesium ion current vs temperature graphs have been plotted. The slope has thus been experimentally found to be -4.1 × 10 4 which compares well with the calculated value of the temperature co-efficient of the decomposition reaction. The enthalpies of formation of cesium molybdate and cesium chromate have been determined by static bomb calorimetry by reacting cesium carbonate with respective oxide in ultra pure oxygen.

  11. Sintered wire cesium dispenser photocathode

    SciTech Connect

    Montgomery, Eric J; Ives, R. Lawrence; Falce, Louis R

    2014-03-04

    A photoelectric cathode has a work function lowering material such as cesium placed into an enclosure which couples a thermal energy from a heater to the work function lowering material. The enclosure directs the work function lowering material in vapor form through a low diffusion layer, through a free space layer, and through a uniform porosity layer, one side of which also forms a photoelectric cathode surface. The low diffusion layer may be formed from sintered powdered metal, such as tungsten, and the uniform porosity layer may be formed from wires which are sintered together to form pores between the wires which are continuous from the a back surface to a front surface which is also the photoelectric surface.

  12. RECOVERY OF CESIUM FROM WASTE SOLUTIONS

    DOEpatents

    Burgus, W.H.

    1959-06-30

    This patent covers the precipitation of fission products including cesium on nickel or ferric ferrocyanide and subsequent selective dissolution from the carrier with a solution of ammonia or mercurlc nitrate.

  13. Environmental Tests Of Cesium Frequency Standards

    NASA Technical Reports Server (NTRS)

    Sydnor, Richard L.; Tucker, Thomas K.; Greenhall, Charles A.; Diener, William A.; Maleki, Lutfollah

    1992-01-01

    Report describes environmental tests of cesium-beam frequency standards of United States Naval Observatory. Purpose of tests to determine effects of atmospheric temperature, relative humidity, and pressure on frequencies.

  14. An overview of advanced cesium reservoir technology

    SciTech Connect

    Lamp, T.R. )

    1993-01-20

    The cesium reservoir is a critical component pacing development of a long life thermionic power system. A variety of cesium reservoirs have been researched during the existence of thermionics technology. Cesium is the ionization medium of choice and reservoir research is directed at containing and controlling this material. Historically, reservoirs of interest have included porous tungsten, highly oriented pyrolytic graphite (HOPG), charcoal, POCO graphite, binary compounds, and gas buffered reservoirs. Russian researchers are also working on a variety of reservoirs and cesiation techniques which are generically referred to as interelectrode medium maintenance systems. Russian work follows the general thrust of US work (heat pipe based concepts, graphite reservoir concepts, and chemical compounds of cesium.) This paper discusses the merits of several of these cesiation techniques which are in various stages of development in the United States. Russian work will be addressed only as a matter of historical record.

  15. An overview of advanced cesium reservoir technology

    NASA Astrophysics Data System (ADS)

    Lamp, Thomas R.

    1993-01-01

    The cesium reservoir is a critical component pacing development of a long life thermionic power system. A variety of cesium reservoirs have been researched during the existence of thermionics technology. Cesium is the ionization medium of choice and reservoir research is directed at containing and controlling this material. Historically, reservoirs of interest have included porous tungsten, highly oriented pyrolytic graphite (HOPG), charcoal, POCO graphite, binary compounds, and gas buffered reservoirs. Russian researchers are also working on a variety of reservoirs and cesiation techniques which are generically referred to as interelectrode medium maintenance systems. Russian work follows the general thrust of US work (heat pipe based concepts, graphite reservoir concepts, and chemical compounds of cesium.) This paper discusses the merits of several of these cesiation techniques which are in various stages of development in the United States. Russian work will be addressed only as a matter of historical record.

  16. Statistical properties of high performance cesium standards

    NASA Technical Reports Server (NTRS)

    Percival, D. B.

    1973-01-01

    The intermediate term frequency stability of a group of new high-performance cesium beam tubes at the U.S. Naval Observatory were analyzed from two viewpoints: (1) by comparison of the high-performance standards to the MEAN(USNO) time scale and (2) by intercomparisons among the standards themselves. For sampling times up to 5 days, the frequency stability of the high-performance units shows significant improvement over older commercial cesium beam standards.

  17. Cesium and strontium ion specific exchangers

    SciTech Connect

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  18. A convenient iodination method for alcohols using cesium iodide/methanesulfonic acid and its comparison using cesium iodide/p-toluenesulfonic acid or cesium iodide/aluminium chloride.

    PubMed

    Khan, Khalid Mohammed; Zia-Ullah; Perveen, Shahnaz; Hayat, Safdar; Ali, Muhammad; Voelter, Wolfgang

    2008-01-01

    In situ generation of hydrogen iodide from cesium iodide/methanesulfonic acid was found to be an attractive reagent combination for the conversion of alkyl, allyl, and benzyl alcohols to their corresponding iodides under mild conditions. The method is compared with that using cesium iodide/p-toluenesulfonic acid or cesium iodide/aluminium chloride.

  19. Tests of a cesium vapor control, circulation and purge system

    NASA Astrophysics Data System (ADS)

    Desplat, Jean-Louis; Hatch, G. Laurie; Greek, Kevin; Rasor, Ned S.

    1993-01-01

    A new type of cesium vapor supply system (the Cesiator) has been conceived that automatically maintains a constant cesium pressure over a wide range of temperature conditions, continuously recirculates the cesium vapor, and purges the cesium vapor of evolved impurities. The operating principle of this new type of cesium vapor supply is based on gas-buffered heat pipe technology. A preprototype model of the cesiator with an argon buffer was successfully operated at prototypic cesium pressures. Its ability to effectively sweep away injected non-condensible inert impurities was demonstrated using xenon.

  20. Tests of a cesium vapor control, circulation and purge system

    SciTech Connect

    Desplat, J.; Hatch, G.L.; Greek, K. ); Rasor, N.S. Consultant )

    1993-01-20

    A new type of cesium vapor supply system (the Cesiator) has been conceived that automatically maintains a constant cesium pressure over a wide range of temperature conditions, continuously recirculates the cesium vapor, and purges the cesium vapor of evolved impurities. The operating principle of this new type of cesium vapor supply is based on gas-buffered heat pipe technology. A preprototype model of the cesiator with an argon buffer was successfully operated at prototypic cesium pressures. Its ability to effectively sweep away injected non-condensible inert impurities was demonstrated using xenon.

  1. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  2. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  3. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  4. REMOVAL OF CESIUM BY SORPTION FROM AQUEOUS SOLUTIONS

    DOEpatents

    Ames, L.L.

    1962-01-16

    ABS>A process is given for selectively removing cesium from acid aqueous solutions containing cesium in microquantities and other cations in macroquantities by absorption on clinoptilolite. The cesium can be eluted from the clinoptilolite with a solution of ammonia, potassium hydroxide, or rubidium hydroxide. (AEC)

  5. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  6. 40 CFR 721.10168 - Cesium tungsten oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cesium tungsten oxide. 721.10168... Substances § 721.10168 Cesium tungsten oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as cesium tungsten oxide (PMN P-08-275; CAS No....

  7. Cesium injection system for negative ion duoplasmatrons

    DOEpatents

    Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J

    1978-01-01

    Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.

  8. METHOD FOR THE RECOVERY OF CESIUM VALUES

    DOEpatents

    Rimshaw, S.J.

    1960-02-16

    A method is given for recovering Cs/sup 137/ from radioactive waste solutions together with extraneous impurities. Ammonium alum is precipitated in the waste solution. The alum, which carries the cesium, is separated from the supernatant liquid and then dissolved in water. The resulting aqueous solution is then provided with a source of hydroxyl ions, which precipitates aluminum as the hydroxide, and the aluminum hydroxide is separated from the resulting liquid. This liquid, which contains anionic impurities together with ammonium and cesium, is passed through an anion exchange resin bed which removes the anionic impurities. The ammonium in the effluent is removed by destructive distiilation, leaving a substantiaily pure cesium salt in the effluent.

  9. Cesium removal flow studies using ion exchange

    SciTech Connect

    Lee, D.D.; Walker, J.F. Jr.; Taylor, P.A.

    1997-02-01

    Cesium and strontium radionuclides are a small fraction of the mainly sodium and potassium salts in underground storage tank supernatant at US Department of Energy (DOE) sites at Hanford, Oak Ridge, Savannah River, and Idaho that DOE must remediate. Cesium-137 ({sup 137}Cs) is the primary gamma radiation source in the dissolved tank waste at these sites, and its removal from the supernatant can reduce the hazard and waste classification of the treated waste reducing the further treatment and disposal costs. Several cesium removal sorbents have been developed by private industry and the US DOE`s Office of Science and Technology. Several of these removal technologies have been previously tested in small batch and column tests using simulated and a few actual supernatant under DOE`s Environmental Management (EM) programs including the Tanks Focus Area (TFA) and the Efficient Separations and Processing (ESP) Cross-Cutting Program.

  10. Microbial accumulation of uranium, radium, and cesium

    SciTech Connect

    Strandberg, G.W.; Shumate, S.E. II; Parrott, J.R. Jr.; North, S.E.

    1981-05-01

    Diverse microbial species varied considerably in their ability to accumulate uranium, cesium, and radium. Mechanistic differences in uranium uptake by Saccharomyces cerevisiae and Pseudomonas aeruginosa were indicated. S. serevisiae exhibited a slow (hours) surface accumulation of uranium which was subject to environmental factors, while P. aeruginosa accumulated uranium rapidly (minutes) as dense intracellular deposits and did not appear to be affected by environmental parameters. Metabolism was not required for uranium uptake by either organism. Cesium and radium were concentrated to a considerably lesser extent than uranium by the several species tested.

  11. Crystalline silicotitanates for cesium/strontium removal

    SciTech Connect

    Brown, N.; Miller, J.; Sherman, J.

    1996-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CST) has been developed that exhibits very high selectivity for cesium and strontium in the highly alkaline radioactive wastes at the Hanford Site and other DOE sites. Tests have also shown that CSTs have high selectivity for cesium in acidic and neutral solutions. The ESP is supporting an effort at Sandia National Laboratories and Texas A & M University to further develop and characterize the important chemical and physical properties that will determine the applicability of CST to radioactive waste treatment at Hanford and other DOE facilities.

  12. Perlite for permanent confinement of cesium

    NASA Astrophysics Data System (ADS)

    Balencie, J.; Burger, D.; Rehspringer, J.-L.; Estournès, C.; Vilminot, S.; Richard-Plouet, M.; Boos, A.

    2006-06-01

    We present the potential use of expanded perlite, a metastable amorphous hydrated aluminium silicate, as a permanent medium for the long-term confinement of cesium. The method requires simply a loading by mixing an aqueous cesium nitrate solution and expanded perlite at 300 K followed by densification by sintering. The formation of pollucite, CsAlSi2O6, a naturally occurring mineral phase, upon careful heat treatment is demonstrated by X-ray diffraction. Leaching tests on the resulting glass-ceramics reveal a very low Cs departure of 0.5 mg m-2 d-1.

  13. Cesium vapor thermionic converter anomalies arising from negative ion emission

    NASA Astrophysics Data System (ADS)

    Rasor, Ned S.

    2016-08-01

    Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects of negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.

  14. Cesium and Strontium Separation Technologies Literature Review

    SciTech Connect

    T. A. Todd; T. A. Todd; J. D. Law; R. S. Herbst

    2004-03-01

    Integral to the Advanced Fuel Cycle Initiative (AFCI) Program’s proposed closed nuclear fuel cycle, the fission products cesium and strontium in the dissolved spent nuclear fuel stream are to be separated and managed separately. A comprehensive literature survey is presented to identify cesium and strontium separation technologies that have the highest potential and to focus research and development efforts on these technologies. Removal of these high-heat-emitting fission products reduces the radiation fields in subsequent fuel cycle reprocessing streams and provides a significant short-term (100 yr) heat source reduction in the repository. This, along with separation of actinides, may provide a substantial future improvement in the amount of fuel that could be stored in a geologic repository. The survey and review of the candidate cesium and strontium separation technologies are presented herein. Because the AFCI program intends to manage cesium and strontium together, technologies that simultaneously separate both elements are of the greatest interest, relative to technologies that separate only one of the two elements.

  15. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  16. Distribution of radioactive cesium and stable cesium in cattle kept on a highly contaminated area of Fukushima nuclear accident.

    PubMed

    Sato, Itaru; Okada, Keiji; Sasaki, Jun; Chida, Hiroyuki; Satoh, Hiroshi; Miura, Kiyoshi; Kikuchi, Kaoru; Otani, Kumiko; Sato, Shusuke

    2015-07-01

    Radioactivity inspection of slaughtered cattle is generally conducted using a portion of the neck muscle; however, there is limited information about the distribution of radioactive cesium in cattle. In this study, therefore, we measured not only radioactive cesium but also stable cesium in various tissues of 19 cattle that had been kept in the area highly contaminated by the Fukushima nuclear accident. Skeletal muscles showed approximately 1.5-3.0 times higher concentration of radioactive cesium than internal organs. Radioactive cesium concentration in the tenderloin and top round was about 1.2 times as high as that in the neck muscle. The kidney showed the highest concentration of radioactive cesium among internal organs, whereas the liver was lowest. Radioactive cesium concentration in the blood was about 8% of that in the neck muscle. Characteristics of stable cesium distribution were almost the same as those of radioactive cesium. Correlation coefficient between radioactive cesium and stable cesium in tissues of individual cattle was 0.981 ± 0.012. When a suspicious level near 100 Bq/kg is detected in the neck of slaughtered cattle, re-inspection should be conducted using a different region of muscle, for example top round, to prevent marketing of beef that violates the Food Sanitation Act.

  17. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, Mark L.; Horwitz, E. Philip; Bartsch, Richard A.; Barrans, Jr., Richard E.; Rausch, David

    1999-01-01

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution.

  18. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    DOEpatents

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  19. The status of cesium beam frequency standards

    NASA Technical Reports Server (NTRS)

    Cutler, Leonard S.

    1990-01-01

    There has been a lot of progress in cesium beam frequency standards in the last few years some of which will be reported here. Optical pumping is being pursued actively in a number of laboratories. Optically slowed and cooled beams have been demonstrated as well as traps for cold neutral atoms. The microwave cavity performance with regard to local phase shift at the beam holes was improved by use of carefully designed and built ring structures for the cavity ends. Work is being done on improvements in electronics with some emphasis on use of digital circuitry and microprocessors. The frequency pulling due to microwave Delta M = +/- 1 transitions (Ramsey pulling) was analyzed and shown to be important. Status of cesium beam frequency standards in some of the laboratories as well as some of the commercial work is discussed. Optical pumping and detection are discussed.

  20. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  1. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  2. Bose-Einstein condensation of cesium.

    PubMed

    Weber, Tino; Herbig, Jens; Mark, Michael; Nägerl, Hanns-Christoph; Grimm, Rudolf

    2003-01-10

    Bose-Einstein condensation of cesium atoms is achieved by evaporative cooling using optical trapping techniques. The ability to tune the interactions between the ultracold atoms by an external magnetic field is crucial to obtain the condensate and offers intriguing features for potential applications. We explore various regimes of condensate self-interaction (attractive, repulsive, and null interaction strength) and demonstrate properties of imploding, exploding, and non-interacting quantum matter. PMID:12471267

  3. Murine immunization by cesium-137 irradiation attenuated Schistosoma mansoni cercariae

    SciTech Connect

    Stek, M. Jr.; Minard, P.; Cruess, D.F.

    1984-06-01

    Cesium-137, becoming a more readily available ionizing gamma radiation source for laboratory use, was shown to effectively attenuate Schistosoma mansoni cercariae for vaccine production. In parallel comparison studies with the murine model, cesium-137 attenuated cercariae consistently afforded better protection than did the cobalt-60 prepared vaccine. Dose-response data indicated that the optimal total irradiation with cesium-137 was between 45 and 50 Krad.

  4. Hydrogen masers and cesium fountains at NRC

    NASA Technical Reports Server (NTRS)

    Boulanger, J.-S.; Morris, D.; Douglas, R. J.; Gagne, M.-C.

    1994-01-01

    The NRC masers H-3 and H-4 have been operating since June 1993 with cavity servo control. These low-flux active H masers are showing stabilities of about 10(exp -15) from 1 hour to several days. Stability results are presented, and the current and planned uses of the masers are discussed. A cesium fountain primary frequency standard project has been started at NRC. Trapping and launching experiments with the goal of 7 m/s launches are beginning. We discuss our plans for a local oscillator and servo that exploit the pulsed aspect of cesium fountain standards, and meet the challenge of 10(exp -14) tau(exp -1/2) stability without requiring masers. At best, we expect to run this frequency standard initially for periods of hours each working day rather than continuously for years, and so frequency transfer to outside laboratories has been carefully considered. We conclude that masers (or other even better secondary clocks) are required to exploit this potential accuracy of the cesium fountain. We present and discuss our conclusion that it is feasible to transfer frequency in this way with a transfer-induced uncertainty of less than 10(exp -15), even in the presence of maser frequency drift and random walk noise.

  5. Lanthanide doped strontium-barium cesium halide scintillators

    SciTech Connect

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  6. Surface interactions of cesium and boric acid with stainless steel

    SciTech Connect

    Grossman-Canfield, N.

    1995-08-01

    In this report, the effects of cesium hydroxide and boric acid on oxidized stainless steel surfaces at high temperatures and near one atmosphere of pressure are investigated. This is the first experimental investigation of this chemical system. The experimental investigations were performed using a mass spectrometer and a mass electrobalance. Surfaces from the different experiments were examined using a scanning electron microscope to identify the presence of deposited species, and electron spectroscopy for chemical analysis to identify the species deposited on the surface. A better understanding of the equilibrium thermodynamics, the kinetics of the steam-accelerated volatilizations, and the release kinetics are gained by these experiments. The release rate is characterized by bulk vaporization/gas-phase mass transfer data. The analysis couples vaporization, deposition, and desorption of the compounds formed by cesium hydroxide and boric acid under conditions similar to what is expected during certain nuclear reactor accidents. This study shows that cesium deposits on an oxidized stainless steel surface at temperatures between 1000 and 1200 Kelvin. Cesium also deposits on stainless steel surfaces coated with boric oxide in the same temperature ranges. The mechanism for cesium deposition onto the oxide layer was found to involve the chemical reaction between cesium and chromate. Some revaporization in the cesium hydroxide-boric acid system was observed. It has been found that under the conditions given, boric acid will react with cesium hydroxide to form cesium metaborate. A model is proposed for this chemical reaction.

  7. Laser excited fluorescence in the cesium-xenon excimer and the cesium dimer

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Snow, W. L.; Hillard, M. E.

    1978-01-01

    Argon ion laser lines are used to excite fluorescence in a mixture of cesium and xenon. Excimer band fluorescence is observed at higher pressures (about 1 atm) while at lower pressures (several torr) a diffuse fluorescence due to the cesium dimer is observed whose character changes with exciting wavelength. The excimer fluorescence is shown to be directly related to the location of the exciting wavelength within previously measured Cs/Xe line shapes. This fact suggests that the excimer systems may be efficiently pumped through these line shapes. Qualitative energy-level schemes are proposed to explain the observations in both the excimer and dimer systems.

  8. Variation in available cesium concentration with parameters during temperature induced extraction of cesium from soil.

    PubMed

    Parajuli, Durga; Takahashi, Akira; Tanaka, Hisashi; Sato, Mutsuto; Fukuda, Shigeharu; Kamimura, Ryuichi; Kawamoto, Tohru

    2015-02-01

    Cesium extraction behavior of brown forest type soil collected from paddy fields in Fukushima nuclear accident affected areas was studied. In nitric acid or sulfuric acid solutions at elevated temperature, the concentration of Cs in soil available for extraction, m0, has been estimated on the basis of modified canonical equation and the equations derived from assumed equilibria. With the variation in temperature, mixing time, and soil to solvent ratio, the observed m0 values in 0.5 M acid solution ranged between 1.5 and 2.9 mg cesium per kilogram of soil. By increasing the acid concentration to 3 M, the value of m0 could be sharply increased to 5.1 mg/kg even at 95 °C. This variation in the extractable concentration of cesium with the parameters signifies the existence of different binding sites in the soil matrix. The results observed for uncontaminated sample could be reproduced with the radioactive cesium contaminated sample belonging to the same soil group.

  9. Strontium-90 and cesium-137 distribution in Baltic Sea waters

    SciTech Connect

    Lazarev, L.N.; Gedeonov, L.I.; Ivanova, L.M.; Stepanov, A.V.

    1988-09-01

    The strontium-90 and cesium-137 concentrations determined in 1983 in the Baltic Sea proper and the Gulf of Finland and in the Soviet Baltic rivers are furnished. The cesium-137 content has been found to be directly proportional to the salinity of the water. Significant influx of technogenic radioactive contaminants from the North to the Baltic Sea was noted in 1983.

  10. Hanford tank waste supernatant cesium removal test plan

    SciTech Connect

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides the test plan for the preparation and conduct of a cesium removal test using Hanford DSSF supernatant liquor from tank 241-AW-101 in a bench-scale column. Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate.

  11. Distillation device supplies cesium vapor at constant pressure

    NASA Technical Reports Server (NTRS)

    Basiulis, A.; Shefsiek, P. K.

    1968-01-01

    Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.

  12. Cesium-associated hypokalemia successfully treated with amiloride

    PubMed Central

    Horn, Sarah; Naidus, Elliot; Alper, Seth L.; Danziger, John

    2015-01-01

    Self-treatment of cancer with cesium chloride, despite proven lack of efficacy, continues to produce serious adverse effects. Among these is hypokalemia predisposing to life-threatening arrhythmia. The mechanism of cesium-associated hypokalemia (CAH) has not been described. We report urinary potassium wasting responsive to amiloride therapy in a cancer patient with CAH, and discuss possible mechanisms. PMID:26034598

  13. [Concentrations of radioactive cesium in different cuts of beef].

    PubMed

    Nabeshi, Hiromi; Kikuchi, Hiroyuki; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko

    2013-01-01

    After the Fukushima No. 1 Nuclear Power Plant accident, high levels of radioactive cesium were detected in beef. Many prefectural governments decided to conduct blanket tests on meat from local beef cattle to prevent distribution of beef contaminated with radioactive cesium exceeding the provisional regulation value. In some cases, different concentrations of radioactive cesium were found in different cuts of beef from the same cows. These results raised questions about the reliability of the test results. Here, we investigated the reason for the differences in radioactive cesium concentration in different cuts of beef from the same cows. The concentrations of radioactive cesium in five different parts cuts of beef from three cows were negatively correlated with fat content, suggesting that the difference in radioactive cesium concentration is due to differences in fat content in the meat. In addition, our results showed that the concentration of radioactive cesium in muscle was more than 7-fold higher than that in fat in the same cow. These results suggested that it is necessary to use muscle for testing of radioactive cesium in cows.

  14. [Biochemical changes in rats under the influence of cesium chloride].

    PubMed

    Mel'nykova, N M; Iermishev, O V

    2013-01-01

    Cesium is lately accumulated actively in the environment, but its influence on human and animal organism is the least studied among heavy metals. It is shown that the action of cesium chloride in rats caused significant changes in blood chemistry, which are characterized by a decrease of total protein content, pH, an increase in the level of urea, creatinine, glucose and total hemoglobin. The results showed that potassium content in all the studied organs and tissues of poisoned rats decreases under the action of cesium chloride. Histological examination of the heart tissue in rats poisoned with cesium chloride indicates the onset of pathology of cardiovascular system. It was found out that use of the drug "Asparkam" reduces the negative effect of cesium chloride on the body of rats.

  15. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, Candido

    1999-01-01

    A method for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700.degree. C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite.

  16. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, C.

    1999-02-23

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs.

  17. Investigations of negative and positive cesium ion species

    NASA Technical Reports Server (NTRS)

    Chanin, L. M.

    1978-01-01

    A direct test is provided of the hypothesis of negative ion creation at the anode or collector of a diode operating under conditions simulating a cesium thermionic converter. The experimental technique involves using direct ion sampling through the collector electrode with mass analysis using a quadrupole mass analyzer. Similar measurements are undertaken on positive ions extracted through the emitter electrode. Measurements were made on a variety of gases including pure cesium, helium-cesium mixtures and cesium-hydrogen as well as cesium-xenon mixtures. The gas additive was used primarily to aid in understanding the negative ion formation processes. Measurements were conducted using emitter (cathode) temperatures up to about 1000 F. The major negative ion identified through the collector was Cs(-) with minor negative ion peaks tentatively identified as H(-), H2(-), H3(-), He(-) and a mass 66. Positive ions detected were believed to be Cs(+), Cs2(+) and Cs3(+).

  18. A combined cesium-strontium extraction/recovery process

    SciTech Connect

    Horwitz, E.P.; Dietz, M.L.; Jensen, M.P.

    1996-03-01

    A new solvent extraction process for the simultaneous extraction of cesium and strontium from acidic nitrate media is described. This process uses a solvent formulation comprised of 0.05 M di-t-butylcyclohexano-18-crown-6 (DtBuCH18C6), 0.1 M Crown 100{prime} (a proprietary, cesium-selective derivative of dibenzo-18-crown-6), 1.2 M tributyl phosphate (TBP), and 5% (v/v) lauryl nitrile in an isoparaffinic hydrocarbon diluent. Distribution ratios for cesium and strontium from 4 M nitric acid are 4.13 and 3.46, respectively. A benchtop batch countercurrent extraction experiment indicates that >98% of the cesium and strontium initially present in the feed solution can be removed in only four extraction stages. Through proper choice of extraction and strip conditions, extracted cesium and strontium can be recovered either together or individually.

  19. Evaluation of electrochemical ion exchange for cesium elution

    SciTech Connect

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes.

  20. Trapping behavior of gaseous cesium by fly ash filters.

    PubMed

    Shin, J M; Park, J J; Song, K C; Kim, J H

    2009-01-01

    The high volatility of a gaseous form and its high chemical reactivity make a cesium emission control very difficult work. In this study, fly ash filters were tested for the removal of gaseous cesium from a hot flue gas under air and hydrogen conditions at 700-1000 degrees C. Tests were performed by using a simulated gaseous cesium volatilized from Cs(2)SiO(3) in a two-zone furnace. Fly ash filter was found to be the most promising filter for trapping the gaseous cesium. The results of the trapping tests are presented, along with the effects of the temperature, superficial gas velocity, and carrier gas on the cesium trapping quantity.

  1. Plutonium and Cesium Colloid Mediated Transport

    NASA Astrophysics Data System (ADS)

    Boukhalfa, H.; Dittrich, T.; Reimus, P. W.; Ware, D.; Erdmann, B.; Wasserman, N. L.; Abdel-Fattah, A. I.

    2013-12-01

    Plutonium and cesium have been released to the environment at many different locations worldwide and are present in spent fuel at significant levels. Accurate understanding of the mechanisms that control their fate and transport in the environment is important for the management of contaminated sites, for forensic applications, and for the development of robust repositories for the disposal of spent nuclear fuel and nuclear waste. Plutonium, which can be present in the environment in multiple oxidations states and various chemical forms including amorphous oxy(hydr)oxide phases, adsorbs/adheres very strongly to geological materials and is usually immobile in all its chemical forms. However, when associated with natural colloids, it has the potential to migrate significant distances from its point of release. Like plutonium, cesium is not very mobile and tends to remain adhered to geological materials near its release point, although its transport can be enhanced by natural colloids. However, the reactivity of plutonium and cesium are very different, so their colloid-mediated transport might be significantly different in subsurface environments. In this study, we performed controlled experiments in two identically-prepared columns; one dedicated to Pu and natural colloid transport experiments, and the other to Cs and colloid experiments. Multiple flow-through experiments were conducted in each column, with the effluent solutions being collected and re-injected into the same column two times to examine the persistence and scaling behavior of the natural colloids, Pu and Cs. The data show that that a significant fraction of colloids were retained in the first elution through each column, but the eluted colloids collected from the first run transported almost conservatively in subsequent runs. Plutonium transport tracked natural colloids in the first run but deviated from the transport of natural colloids in the second and third runs. Cesium transport tracked natural

  2. Negative and positive cesium ion studies

    NASA Technical Reports Server (NTRS)

    Kuehn, D. G.; Sutliff, D. E.; Chanin, L. M.

    1978-01-01

    Mass spectrometric analyses have been performed on the positive and negative species from discharges in Cs, He-Cs, and He-H2-Cs mixtures. Sampling was conducted through the electrodes of normal glow discharges and from close-spaced heated-cathode conditions, which approximate a cesium thermionic converter. No negative Cs ions were observed for Cs pressures less than .01 torr. Identified species included Cs(+), Cs2(+), Cs(-), and what appeared to be multiply charged ions. Low-mass negative and positive ions attributed to H2 were observed when an He-H2 mixture was also present in the discharge region.

  3. Cesium accumulation of Rhodococcus erythropolis CS98 strain immobilized in hydrogel matrices.

    PubMed

    Takei, Takayuki; Yamasaki, Mika; Yoshida, Masahiro

    2014-04-01

    Agarose gels were superior to calcium-alginate gels for immobilizing Rhodococcus erythropolis CS98 strain to remove cesium from water. Suitable incubation time of the immobilized cells in cesium solutions, cell number in the gels and volume ratio of the cesium solution to the gels for efficient cesium removal were identified.

  4. Marking cabbage looper (Lepidoptera: Noctuidae) with cesium

    SciTech Connect

    Moss, J.I.; Van Steenwyk, R.A.

    1984-04-01

    Cabbage loopers (CL), Trichoplusia ni (Huebner), adults reared on artificial diet containing 1 x 10/sup -2/ M and 1 x 10/sup -3/ M CsCl were marked with cesium (Cs) which could be detected by atomic absorption spectrophotometry. The cesium marks from the 10/sup -2/ M CsCl diet were sufficient to last the expected lifetime of the insects. CL reared on diet containing 1 x 10/sup -1/ M CsCl did not survive. Unmarked females mated to males reared on artificial diet containing 1 x 10/sup -2/ M and 1 x 10/sup -3/ M CsCl were marked. CL reared on cotton plants sprayed with Cs solutions of 1000, 5000, and 10,000 ..mu..g/ml were marked sufficiently to last the expected lifetime of the insect. CL adults exposed for 72 h to cotton plants sprayed with Cs solutions of 1000, 5000, and 10,000 ..mu..g/ml were marked sufficiently to last the expected lifetime of the insect. CL adults reared from field cotton plants sprayed with CsCl solutions at rates of 1.24, 2.47, and 4.94 kg of CsCl per ha were marked. 12 references, 1 figure, 5 tables.

  5. Intense non-relativistic cesium ion beam

    SciTech Connect

    Lampel, M.C.

    1984-02-01

    The Heavy Ion Fusion group at Lawrence Berkeley Laboratory has constructed the One Ampere Cesium Injector as a proof of principle source to supply an induction linac with a high charge density and high brightness ion beam. This is studied here. An electron beam probe was developed as the major diagnostic tool for characterizing ion beam space charge. Electron beam probe data inversion is accomplished with the EBEAM code and a parametrically adjusted model radial charge distribution. The longitudinal charge distribution was not derived, although it is possible to do so. The radial charge distribution that is derived reveals an unexpected halo of trapped electrons surrounding the ion beam. A charge fluid theory of the effect of finite electron temperature on the focusing of neutralized ion beams (Nucl. Fus. 21, 529 (1981)) is applied to the problem of the Cesium beam final focus at the end of the injector. It is shown that the theory's predictions and assumptions are consistent with the experimental data, and that it accounts for the observed ion beam radius of approx. 5 cm, and the electron halo, including the determination of an electron Debye length of approx. 10 cm.

  6. Cesium chloride compatibility testing program: Final report

    SciTech Connect

    Bryan, G.H.

    1989-11-01

    The US Department of Energy is considering the geologic disposal of the doubly encapsulated cesium chloride (CsCl) produced at the Waste Encapsulation and Storage Facility (WESF). Reliable estimates of long-term corrosion of the inner capsule material by the CsCl under repository storage conditions are needed to assess the hazards associated with geologic disposal of the fission product Cs. The Cesium Chloride Compatibility Program was carried out at PNL to obtain the short-term corrosion data required to accurately estimate long-term attack. In the compatibility tests six standard WESF CsCl capsules were placed vertically in individual insulated containers and allowed to self-heat to a nominal maximum 316L SS/CsCl interface temperature of 450{degree}C. The capsules were held at temperature for times ranging from 0.25 to 6 years. When a test was completed, the capsule was removed from the container and sectioned. Four samples were cut from the inner capsule at prescribed locations and subjected to metallographic examination. Corrosion was determined from photomicrographs of the samples. 16 refs., 41 figs., 16 tabs.

  7. Adsorption of cesium on cement mortar from aqueous solutions.

    PubMed

    Volchek, Konstantin; Miah, Muhammed Yusuf; Kuang, Wenxing; DeMaleki, Zack; Tezel, F Handan

    2011-10-30

    The adsorption of cesium on cement mortar from aqueous solutions was studied in series of bench-scale tests. The effects of cesium concentration, temperature and contact time on process kinetics and equilibrium were evaluated. Experiments were carried out in a range of initial cesium concentrations from 0.0103 to 10.88 mg L(-1) and temperatures from 278 to 313 K using coupons of cement mortar immersed in the solutions. Non-radioactive cesium chloride was used as a surrogate of the radioactive (137)Cs. Solution samples were taken after set periods of time and analyzed by inductively coupled plasma mass spectroscopy. Depending on the initial cesium concentration, its equilibrium concentration in solution ranged from 0.0069 to 8.837 mg L(-1) while the respective surface concentration on coupons varied from 0.0395 to 22.34 μg cm(-2). Equilibrium test results correlated well with the Freundlich isotherm model for the entire test duration. Test results revealed that an increase in temperature resulted in an increase in adsorption rate and a decrease in equilibrium cesium surface concentration. Among several kinetic models considered, the pseudo-second order reaction model was found to be the best to describe the kinetic test results in the studied range of concentrations. The adsorption activation energy determined from Arrhenius equation was found to be approximately 55.9 kJ mol(-1) suggesting that chemisorption was the prevalent mechanism of interaction between cesium ions and cement mortar.

  8. Thermionic converter with differentially heated cesium-oxygen source and method of operation

    DOEpatents

    Rasor, Ned S.; Riley, David R.; Murray, Christopher S.; Geller, Clint B.

    2000-01-01

    A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

  9. Thermionic converter with differentially heated cesium-oxygen source and method of operation

    SciTech Connect

    Rasor, N.S.; Riley, D.R.; Murray, C.S.; Geller, C.B.

    1998-12-01

    A thermionic converter having an emitter, a collector, and a source of cesium vapor is provided, wherein the source of cesium vapor is differentially heated so that said source has a hotter end and a cooler end, with cesium vapor evaporating from said hotter end into the space between the emitter and the collector and with cesium vapor condensing at said cooler end. The condensed cesium vapor migrates through a porous element from the cooler end to the hotter end.

  10. Structural Studies of Cesium, Lithium/Cesium, and Sodium/Cesium Bis(trimethylsilyl)amide (HMDS) Complexes.

    PubMed

    Ojeda-Amador, Ana I; Martínez-Martínez, Antonio J; Kennedy, Alan R; O'Hara, Charles T

    2016-06-01

    Reacting cesium fluoride with an equimolar n-hexane solution of lithium bis(trimethylsilyl)amide (LiHMDS) allows the isolation of CsHMDS (1) in 80% yield (after sublimation). This preparative route to 1 negates the need for pyrophoric Cs metal or organocesium reagents in its synthesis. If a 2:1 LiHMDS:CsF ratio is employed, the heterobimetallic polymer [LiCs(HMDS)2]∞ 2 was isolated (57% yield). By combining equimolar quantities of NaHMDS and CsHMDS in hexane/toluene [toluene·NaCs(HMDS)]∞ 3 was isolated (62% yield). Attempts to prepare the corresponding potassium-cesium amide failed and instead yielded the known monometallic polymer [toluene·Cs(HMDS)]∞ 4. With the aim of expanding the structural diversity of Cs(HMDS) species, 1 was reacted with several different Lewis basic donor molecules of varying denticity, namely, (R,R)-N,N,N',N'-tetramethylcyclohexane-1,2-diamine [(R,R)-TMCDA] and N,N,N',N'-tetramethylethylenediamine (TMEDA), N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDETA), tris[2-(dimethylamino)ethyl]amine (Me6-TREN) and tris[2-(2-methoxyethoxy)ethyl]amine (TMEEA). These reactions yielded dimeric [donor·NaCs(HMDS)2]2 5-7 [where donor is (R,R)-TMCDA, TMEDA and PMDETA respectively], the tetranuclear "open"-dimer [{Me6-TREN·Cs(HMDS)}2{Cs(HMDS)}2] 8 and the monomeric [TMEEA·Cs(HMDS)] 9. Complexes 2, 3, and 5-9 were characterized by X-ray crystallography and in solution by multinuclear NMR spectroscopy. PMID:27177080

  11. Method for removing cesium from a nuclear reactor coolant

    DOEpatents

    Colburn, Richard P.

    1986-01-01

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium

  12. Atmospheric transmission for cesium DPAL using TDLAS

    NASA Astrophysics Data System (ADS)

    Rice, Christopher A.; Perram, Glen P.

    2012-03-01

    The cesium (Cs) Diode Pumped Alkali Laser (DPAL) operates near 894 nm, in the vicinity of atmospheric water vapor absorption lines. An open-path Tunable Diode Laser Absorption (TDLAS) system composed of narrow band (~300 kHz) diode laser fiber coupled to a 12" Ritchey-Chrétien transmit telescope has been used to study the atmospheric transmission characteristics of Cs DPALs over extended paths. The ruggedized system has been field deployed and tested for propagation distances of greater than 1 km. By scanning the diode laser across many free spectral ranges, many rotational absorption features are observed. Absolute laser frequency is monitored with a High Finesse wavemeter to an accuracy of less than 10 MHz. Phase sensitive detection is employed with an absorbance of less than 1% observable under field conditions.

  13. Low-energy vibrational dynamics of cesium borate glasses.

    PubMed

    Crupi, C; D'Angelo, G; Vasi, C

    2012-06-01

    Low-temperature specific heat and inelastic light scattering experiments have been performed on a series of cesium borate glasses and on a cesium borate crystal. Raman measurements on the crystalline sample have revealed the existence of cesium rattling modes in the same frequency region where glasses exhibit the boson peak (BP). These localized modes are supposed to overlap with the BP in cesium borate glasses affecting its magnitude. Their influence on the low frequency vibrational dynamics in glassy samples has been considered, and their contribution to the specific heat has been estimated. Evidence for a relation between the changes of the BP induced by the increased amount of metallic oxide and the variations of the elastic medium has been provided.

  14. Low-work-function surfaces produced by cesium carbonate decomposition

    NASA Technical Reports Server (NTRS)

    Briere, T. R.; Sommer, A. H.

    1977-01-01

    Cesium carbonate (Cs2CO3) was heated to the decomposition temperature of approximately 600 C. The nonvolatile decomposition products were condensed on a nickel substrate while the carbon dioxide was removed by pumping. The deposited material is characterized by an effective work function of between 1.05 and 1.15 eV at 450 K and by photoemission in the visible and near-infrared region of the spectrum. It is suggested that the deposited material consists of Cs2O, possibly Cs2O2, and adsorbed cesium. Silver, evaporated from a heated silver bead, produced the typical photoemissive and thermionic properties of a silver-oxygen-cesium (S-1) photocathode. The material may be of interest for thermionic energy converters and for the formation of silver-oxygen-cesium photocathodes.

  15. Timescale algorithms combining cesium clocks and hydrogen masers

    NASA Technical Reports Server (NTRS)

    Breakiron, Lee A.

    1992-01-01

    The United States Naval Observatory (USNO) atomic timescale, formerly based on an ensemble of cesium clocks, is now produced by an ensemble of cesium clocks and hydrogen masers. In order to optimize stability and reliability, equal clock weighting has been replaced by a procedure reflecting the relative, time-varying noise characteristics of the two different types of clocks. Correlation of frequency drift is required, and residual drift is avoided by the eventual complete deweighting of the masers.

  16. Cesium dynamics in long pulse operation of negative hydrogen ion sources for fusion

    SciTech Connect

    Fantz, U.; Wimmer, C.

    2012-02-15

    Large scale negative hydrogen ion sources operating stable for 1 h (cw mode) are required for the neutral beam heating system of the fusion experiment ITER. The formation of negative hydrogen ions relies on the surface effect for which cesium is evaporated into the source. In order to monitor the cesium dynamics the laser absorption spectroscopy technique is applied to the long pulse test facility MANITU. In the vacuum phase, without plasma operation the evaporation of cesium and the built-up of the cesium in the source are measured. Typical neutral cesium densities are 10{sup 15} m{sup -3}. During plasma operation and after the plasma phase a high cesium dynamics is observed, showing also depletion of cesium during long pulses with low cesium amount. The co-extracted electron current decreases with the cesium amount to a certain level whereas the ion current indicates an optimum density range.

  17. Effects of cesium ions and cesium vapor on selected ATS-F samples. [thermal control coating degradation

    NASA Technical Reports Server (NTRS)

    Kemp, R. F.; Beynon, J. C.; Hall, D. F.; Luedke, E. E.

    1973-01-01

    Thermal control coating samples were subjected to cesium ion beam and vapor exposures. Degradation of solar absorptance and infrared emittance were measured. Solar cells and samples selected from surfaces on the ATS-F spacecraft likely to experience ion or vapor impingement were bombarded by 10-volt cesium ions. Other samples were subjected to high levels of cesium vapor. Aluminum and white paint were backsputtered by 550-volt cesium ions onto selected samples. For direct bombardment, the threshold for ion-induced property changes was above five-thousand trillion ions/sq cm. With material sputtered from a 450-sq cm target onto samples 36 cm distant, the threshold for noticeable effects was above 5 times 10 to the 17-th power ions/sq cm.

  18. Micro-PIXE evaluation of radioactive cesium transfer in contaminated soil samples

    NASA Astrophysics Data System (ADS)

    Fujishiro, F.; Ishii, K.; Matsuyama, S.; Arai, H.; Ishizaki, A.; Osada, N.; Sugai, H.; Kusano, K.; Nozawa, Y.; Yamauchi, S.; Karahashi, M.; Oshikawa, S.; Kikuchi, K.; Koshio, S.; Watanabe, K.; Suzuki, Y.

    2014-01-01

    Micro-PIXE analysis has been performed on two soil samples with high cesium activity concentrations. These soil samples were contaminated by fallout from the accident at Fukushima Daiichi Nuclear Power Plant. One exhibits a radioactive cesium transfer of ˜0.01, and the other shows a radioactive cesium transfer of less than 0.001, even though both samples have high cesium activity concentrations exceeding 10,000 Bq/kg. X-ray spectra and elemental images of the soil samples revealed the presence of chlorine, which can react with cesium to produce an inorganic soluble compound, and phosphorus-containing cesium-capturable organic compounds.

  19. Exotic stable cesium polynitrides at high pressure

    DOE PAGES

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3 , N4, N5, N6) and chains (N∞). Polymeric chainsmore » of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. In conclusion, to our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.« less

  20. Exotic stable cesium polynitrides at high pressure

    NASA Astrophysics Data System (ADS)

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-01

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high-energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3, N4, N5, N6) and chains (N∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. To our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.

  1. Cesium-137 levels detected in Georgia otters

    SciTech Connect

    Halbrook, R.S.; Jenkins, J.H.

    1988-11-01

    Beginning in the 1940's and continuing through the 50's and early 60's, nuclear devices were tested by aerial detonation in the United States and other countries around the world. Cesium-137 (/sup 137/Cs) is one of the most important radionuclide by-products due to its abundance and slow decay (30-year half-life). The uptake of /sup 137/Cs in animal tissue is the result of its similarity to potassium. The somatic and genetic effects of /sup 137/Cs, along with its effect on reproductive cells, can pose great hazards to wildlife species. A reported buildup of /sup 137/Cs in white-tailed deer in the lower coastal plain of Georgia during the 1960's was followed by a gradual decline during the 1970's. Although numerous studies have involved terrestrial mammals of Georgia, few have involved aquatic mammals such as the river otter. With continued atmospheric testing by some foreign countries and the increased use of nuclear power as an energy source, there is a need for continued monitoring of radionuclides in wildlife to ascertain the quality of the environment. This study was initiated as part of an overall study of environmental pollutants in the river otter of Georgia and deals with analysis of the /sup 137/Cs accumulations in this species.

  2. Exotic stable cesium polynitrides at high pressure

    PubMed Central

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-01-01

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high-energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3, N4, N5, N6) and chains (N∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44− anion. To our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure. PMID:26581175

  3. CACI: The Cesium-137 Agricultural Commodities Irradiator

    SciTech Connect

    Not Available

    1986-12-01

    This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the [sup 137]Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. This Volume, IV, provides specifications as developed for the CACI final design.

  4. CACI: The Cesium-137 Agricultural Commodities Irradiator

    SciTech Connect

    Not Available

    1986-12-19

    This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This volume, Volume VII, describes Safety Analysis, Thermal Analysis, and Thermal Testing.

  5. CACI: The Cesium-137 Agricultural Commodities Irradiator

    SciTech Connect

    Not Available

    1986-12-19

    This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the [sup 137]Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This Volume V, describes plans, criteria, and requirements.

  6. CACI: The Cesium-137 Agricultural Commodities Irradiator

    SciTech Connect

    Not Available

    1986-12-19

    This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the 137 Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. The CACI final design is described in eight volumes. This volume Volume III, describes the Shielding Window.

  7. CACI: The Cesium-137 Agricultural Commodities Irradiator

    SciTech Connect

    Not Available

    1986-12-19

    This report provides a complete description of the final detailed design of the Cesium-137 Agricultural Commodities Irradiator (CACI). The design was developed and successfully completed by the Rocketdyne Division of Rockwell International for the US Department of Energy (DOE). The CACI project was initiated in April 1985 under DOE's Byproducts Utilization Program, with the objectives of transferring food irradiation technology to the industry and thereby demonstrating a beneficial use for the [sup 137]Cs nuclear by-product isotope. As designed, CACI will meet the intended requirements for research, development, and demonstration of irradiation processing of food. Further, as shown in the safety analyses performed during the project, the design conforms to all the safety and licensing requirements set forth for the project. The original scope of the CACI project included completion of its construction. However, the project was terminated for the convenience of the government during the final design phase in February 1986 for lack of a specific site. This Volume, VI, provides the CACI final design features regarding shielding, mechanical and electrical.

  8. The diffusion of cesium, strontium, and europium in silicon carbide

    NASA Astrophysics Data System (ADS)

    Dwaraknath, S. S.; Was, G. S.

    2016-08-01

    A novel multi-layer diffusion couple was used to isolate the diffusion of strontium, europium and cesium in SiC without introducing radiation damage to SiC and at concentrations below the solubility limit for the fission products in SiC. Diffusion occurred by both bulk and grain boundary pathways for all three fission products between 900∘ C and 1 ,300∘ C. Cesium was the fastest diffuser below 1 ,100∘ C and the slowest above this temperature. Strontium and europium diffusion tracked very closely as a function of temperature for both bulk and grain boundary diffusion. Migration energies ranged from 1.0 eV to 5.7 eV for bulk diffusion and between 2.2 eV and 4.7 eV for grain boundary diffusion. These constitute the first measurements of diffusion of cesium, europium, and strontium in silicon carbide, and the magnitude of the cesium diffusion coefficient supports the premise that high quality TRISO fuel should have minimal cesium release.

  9. 40 CFR 721.10292 - Silicate (2-), hexafluoro-, cesium (1:2).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Silicate (2-), hexafluoro-, cesium (1... Specific Chemical Substances § 721.10292 Silicate (2-), hexafluoro-, cesium (1:2). (a) Chemical substance...-) hexafluoro-cesium (1:2) (PMN P-11-546; CAS No. 16923-87-8) is subject to reporting under this section for...

  10. 40 CFR 721.10292 - Silicate (2-), hexafluoro-, cesium (1:2).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Silicate (2-), hexafluoro-, cesium (1... Specific Chemical Substances § 721.10292 Silicate (2-), hexafluoro-, cesium (1:2). (a) Chemical substance...-) hexafluoro-cesium (1:2) (PMN P-11-546; CAS No. 16923-87-8) is subject to reporting under this section for...

  11. 40 CFR 721.10292 - Silicate (2-), hexafluoro-, cesium (1:2).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Silicate (2-), hexafluoro-, cesium (1... Specific Chemical Substances § 721.10292 Silicate (2-), hexafluoro-, cesium (1:2). (a) Chemical substance...-) hexafluoro-cesium (1:2) (PMN P-11-546; CAS No. 16923-87-8) is subject to reporting under this section for...

  12. Exotic stable cesium polynitrides at high pressure

    SciTech Connect

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3 , N4, N5, N6) and chains (N). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44- anion. In conclusion, to our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.

  13. Cesium in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

  14. Cesium in the Savannah River Site environment

    SciTech Connect

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of [sup 137]Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of [sup 137]Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope [sup 137]Cs releases have resulted in a negligible risk to the environment and the population it supports.

  15. Dating of mine waste in lacustrine sediments using cesium-137

    NASA Astrophysics Data System (ADS)

    Rember, W. C.; Erdman, T. W.; Hoffmann, M. L.; Chamberlain, V. E.; Sprenke, K. F.

    1993-11-01

    For over a century Medicine Lake in northern Idaho has received heavy-metal-laden tailings from the Coeur d'Alene mining district. Establishing the depositional chronology of the lake bottom sediments provides information on the source and rate of deposition of the tailings. Cesium-137, an isotope produced in the atmosphere by nuclear bomb tests, was virtually absent in the environment prior to 1951, but reached its apex in 1964. Our analysis of cesium-137 in the sediments of Medicine Lake revealed that 14 cm of fine-grained tailings were deposited in the lake from 1951 to 1964 and tailing deposition downstream was greatly reduced by the installation of tailings dams in the district in 1968. Cesium-137 analysis is accomplished by a fairly simple gamma-ray counting technique and should be a valuable tool for analyzing sedimentation in any lacustrine environment that was active during the 1950s and 1960s.

  16. Method for removing cesium from a nuclear reactor coolant

    DOEpatents

    Colburn, R.P.

    1983-08-10

    A method of and system for removing cesium from a liquid metal reactor coolant including a carbon packing trap in the primary coolant system for absorbing a major portion of the radioactive cesium from the coolant flowing therethrough at a reduced temperature. A regeneration subloop system having a secondary carbon packing trap is selectively connected to the primary system for isolating the main trap therefrom and connecting it to the regeneration system. Increasing the temperature of the sodium flowing through the primary trap diffuses a portion of the cesium inventory thereof further into the carbon matrix while simultaneously redispersing a portion into the regeneration system for absorption at a reduced temperature by the secondary trap.

  17. Study of radiatively sustained cesium plasmas for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Dunning, G. J.

    1980-01-01

    The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.

  18. The adsorption of cesium on lanthanum hexaboride surfaces

    NASA Technical Reports Server (NTRS)

    Davis, P. R.; Swanson, L. W.; Chambers, S. A.

    1980-01-01

    The adsorption/desorption characteristics of cesium on clean and oxygen-covered LaB6 (100) surfaces were studied using various surface analysis techniques. On the initially clean surface (phi = 2.77 eV), adsorption produces a minimum work function of 1.96 eV and a saturation work function of 2.07 eV. For the oxygen-saturated surface, the cesium adsorption curve shows no minimum, the lowest work function (1.35 eV) occurring at cesium saturation. The utility of LaB6 (100) as an emitter or collector in thermionic converter applications (particularly for space nuclear electric propulsion) is evaluated.

  19. Controllable evaporation of cesium from a dispenser oven

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Friedl, R.; Fröschle, M.

    2012-12-01

    This instrument allows controlled evaporation of the alkali metal cesium over a wide range of evaporation rates. The oven has three unique features. The first is an alkali metal reservoir that uses a dispenser as a cesium source. The heating current of the dispenser controls the evaporation rate allowing generation of an adjustable and stable flow of pure cesium. The second is a blocking valve, which is fully metallic as is the body of the oven. This construction both reduces contamination of the dispenser and enables the oven to be operated up to 300 °C, with only small temperature variations (<5 °C). By minimizing the temperature variation, the built up of the alkali metal at a cold spot is significantly hindered. The last feature is an integral surface ionization detector for measuring and controlling the evaporation rate. The dispenser oven can be easily transferred to the other alkali-metals.

  20. Operational frequency stability of rubidium and cesium frequency standards

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1973-01-01

    The frequency stabilities under operational conditions of several commercially available rubidium and cesium frequency standards were determined from experimental data for frequency averaging times from 10 to the 7th power s and are presented in table and graph form. For frequency averaging times between 10 to the 5th power and 10 to the 7th power s, the rubidium standards tested have a stability of between 10 to the minus 12th power and 5 x 10 to the minus 12th power, while the cesium standards have a stability of between 2 x 10 to the minus 13th power and 5 x 10 to the minus 13th power.

  1. High affinity of water-soluble cryptophanes for cesium cations.

    PubMed

    Brotin, Thierry; Montserret, Roland; Bouchet, Aude; Cavagnat, Dominique; Linares, Mathieu; Buffeteau, Thierry

    2012-01-20

    Exceptionally high affinity for cesium cations was achieved in aqueous solution using two enantiopure cryptophanes. Complexation of cesium was evidenced by (133)Cs NMR spectroscopy and by electronic circular dichroism (ECD). Binding constants as high as 6 × 10(9) M(-1) have been measured by isothermal titration calorimetry (ITC). Very strong complexation of rubidium cations (K ~10(6) M(-1)) has also been measured. Chiral hosts allowed the detection of the two cations at low concentrations (μM) using ECD.

  2. CAFS: A Cesium Atomic Frequency Standard for GPS block IIR

    NASA Technical Reports Server (NTRS)

    Wisnia, Jeffry A.

    1993-01-01

    Kernco, Inc. was selected to design the Cesium Atomic Frequency Standards (CAFS) for the GPS Block IIR NAVSTAR satellites. These spacecraft are scheduled to be launched in the mid-1990's to replenish and upgrade the existing constellation of Global Positioning System satellites. The Block IIR CAFS output frequency is 13.4003378 MHz, the 686th submultiple of the cesium atomic resonance frequency. Using an integer submultiple simplifies the design of the atomic frequency standard's rf multiplier circuits, eliminating the secondary frequency synthesizer needed in previous designs. The GPS Block IIR CAFS design, particularly the improvements made on our earlier Block II design is described. Test results are included.

  3. Computation of dimensional changes in isotropic cesium-graphite reservoirs

    NASA Astrophysics Data System (ADS)

    Smith, Joe N.; Heffernan, Timothy

    1992-01-01

    Cs-graphite reservoirs have been utilized in many operating thermionic converters and TFEs, in both in-core and out-of-core tests. The vapor pressure of cesium over Cs-intercalated graphite is well documented for unirradiated reservoirs. The vapor pressure after irradiation is the subject of on-going study. Dimensional changes due to both intercalation and to neutron irradiation have been quantified only for highly oriented graphite. This paper describes extrapolation of the data for intercalated oriented graphite, to provide a qualitative description of the response of isotropic graphite to exposure to both cesium and neutrons.

  4. Selective chemical binding enhances cesium tolerance in plants through inhibition of cesium uptake.

    PubMed

    Adams, Eri; Chaban, Vitaly; Khandelia, Himanshu; Shin, Ryoung

    2015-03-05

    High concentrations of cesium (Cs(+)) inhibit plant growth but the detailed mechanisms of Cs(+) uptake, transport and response in plants are not well known. In order to identify small molecules with a capacity to enhance plant tolerance to Cs(+), chemical library screening was performed using Arabidopsis. Of 10,000 chemicals tested, five compounds were confirmed as Cs(+) tolerance enhancers. Further investigation and quantum mechanical modelling revealed that one of these compounds reduced Cs(+) concentrations in plants and that the imidazole moiety of this compound bound specifically to Cs(+). Analysis of the analogous compounds indicated that the structure of the identified compound is important for the effect to be conferred. Taken together, Cs(+) tolerance enhancer isolated here renders plants tolerant to Cs(+) by inhibiting Cs(+) entry into roots via specific binding to the ion thus, for instance, providing a basis for phytostabilisation of radiocesium-contaminated farmland.

  5. Collective flow in Au + Au collisions

    SciTech Connect

    Ritter, H.G.; EOS Collaboration

    1994-05-01

    Based on a preliminary sample of Au + Au collisions in the EOS time projection chamber at the Bevalac, we study sideward flow as a function of bombarding energy between 0.25A GeV and 1.2A GeV. We focus on the increase in in-plane transverse momentum per nucleon with fragment mass. We also find event shapes to be close to spherical in the most central collisions, independent of bombarding energy and fragment mass up to {sup 4}He.

  6. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  7. Performances of the better metallic electrodes in cesium thermionic converters

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1972-01-01

    Outputs are presented for some cesium diodes having primarily emitters of highly oriented polycrystalline or single-crystal 110 tungsten or .0001 rhenium. Power densities at 10 A/sq cm or 0.5 V appear as functions of emitter temperatures and electrode spacings.

  8. REMOVAL OF CESIUM FROM AQUEOUS SOLUTIONS BY ADSORPTION

    DOEpatents

    Knoll, K.C.

    1963-07-16

    A process of removing microquantities of cesium from aqueous solutions also containing macroquantities of other ions by adsorption on clinoptilolite is described. The invention resides in the pretreatment of the clinoptilolite by heating at 400 deg C and cooling prior to use. (AEC)

  9. Discovery of cesium, lanthanum, praseodymium and promethium isotopes

    SciTech Connect

    May, E.; Thoennessen, M.

    2012-09-15

    Currently, forty-one cesium, thirty-five lanthanum, thirty-two praseodymium, and thirty-one promethium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  10. Membrane-based separation technologies for cesium, strontium, and technetium

    SciTech Connect

    Kafka, T.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with 3M, St. Paul, Minnesota, working in cooperation with IBC Advanced Technologies, American Fork, Utah.

  11. Suspension of superfluid helium using cesium-coated surfaces

    SciTech Connect

    Williams, M.C.; Giese, C.F.; Halley, J.W.

    1996-03-01

    We report results of an experiment which demonstrates that a layer of superfluid helium can be suspended over a cesium-coated orifice. By measuring the layer thickness with a capacitance bridge, we have shown in two runs that fluid layers up to 2 mm thick were suspended over a 70-{mu}m-diam cesium-coated orifice in a platinum foil for over 2 h in a cryostat held at 1.2 K. The effect depends on the recently established fact that superfluid helium does not wet cesium-coated surfaces. As a consequence, superfluid helium is expected to form a stable meniscus across such a cesium-coated hole. The observed depths of suspended helium are consistent with a simple theoretical model based on this picture. We briefly discuss the possible application of this method to the performance of a proposed experiment to study quantum coherence in superfluid helium by directing pulsed beams of helium atoms at such a suspended layer of fluid. {copyright} {ital 1996 The American Physical Society.}

  12. Hot demonstration of proposed commercial cesium removal technology

    SciTech Connect

    Lee, D.D.; Travis, J.R.; Gibson, M.R.

    1997-12-01

    This report describes the work done in support of the development of technology for the continuous removal and concentration of radioactive cesium in supernatant from Melton Valley Storage Tanks (MVSTs) at the ORNL site. The primary objective was to test candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the MVSTs. An experimental system contained in a hot-cell facility was constructed to test the materials in columns or modules using the same batch of supernatant to allow comparison on an equal basis. Resorcinol/formaldehyde (RF) resin was evaluated at three flow rates with 50% breakthrough ranges of 35 to 50 column volumes (CV) and also through a series of five loading/elution/regeneration cycles. The results reported here include the cesium loading breakthrough curves, elution curves (when applicable), and operational problems and observations for each material. The comparative evaluations should provide critical data for the selection of the sorbent for the ORNL Cesium Removal Demonstration project. These results will be used to help determine the design parameters for demonstration-scale systems. Such parameters include rates of cesium removal, quantity of resin or sorbent to be used, and elution and regeneration requirements, if applicable.

  13. Distribution of radioactive cesium in edible parts of cattle.

    PubMed

    Okada, Keiji; Sato, Itaru; Deguchi, Yoshitaka; Morita, Shigeru; Yasue, Takeshi; Yayota, Masato; Takeda, Ken-Ichi; Sato, Shusuke

    2013-12-01

    After the disastrous incident of the Fukushima Daiichi Nuclear Power Station, various agricultural, livestock and fishery products have been inspected for radioactive contamination with cesium in Japan. In this study, radioactive cesium was measured in various edible parts of cattle to verify the current inspection method for cattle, in which the neck tissues are generally used as samples. Radioactive cesium concentration in the short plate, diaphragm, liver, lung, omasum, abomasum and small intestine were lower and sirloin, tenderloin, top round meat and tongue were higher than that in the neck. There was no significant difference between the other organs (heart, kidney, lumen and reticulum) and the neck. Ninety-five percent upper tolerance limits of the relative concentration to the neck were 1.88 for sirloin, 1.74 for tenderloin, 1.87 for top round and 1.45 for tongue. These results suggest that a safety factor of 2 is recommended for the radioactivity inspection of cattle to prevent a marketing of meat with higher cesium than the legal limit. Re-inspection should be conducted using another part of muscle, for example, top round, when suspicious levels of 50-100 Bq/kg are detected in the neck.

  14. Sediment source determination using fallout Cesium-137 in arid rangelands.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sediment source identification in arid rangelands is necessary to understanding rangeland conditions and developing management practices to improve rangeland health and reduce sediment load to streams. The purpose of this research was to use Cesium-137 to identify sources of sediments in an arid ran...

  15. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.

    PubMed

    Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C

    2008-05-12

    Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and

  16. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.

    PubMed

    Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C

    2008-05-12

    Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and

  17. Cesium determination for the DWPF off-gas system performance test

    SciTech Connect

    Andrews, M.K.; Elder, H.H.; Boyce, W.T.

    1996-04-11

    In an effort to determine the cesium decontamination factors (DF`s) of the Defense Waste Processing Facility (DWPF) melter off-gas system at the Savannah River Site, the system was verified during an off-gas performance test. The off-gas performance test occurred during the DWPF waste Qualification Campaigns, WP-16 and WP-17. The verification of the off-gas system, which eliminated the need for a startup test involving a radioactive cesium addition, was based on the analysis of nonradioactive cesium across the first and second stage High Efficiency Particulate Air (HEPA) filters. The amount of cesium on the first and second stage HEPA filters was determined by leaching samples from each HEPA filter with nitric acid and analyzing the leachate using Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). The ICP-MS method has been demonstrated to be sufficiently sensitive to measure small quantities of cesium on filters. Based on the cesium results of the HEPA filter, cesium DF`s were calculated. The DF`s indicated that the DWPF HEPA filters performed better than the design basis. In addition to the HEPA filters, a determination of the cesium concentration in the melter feed, the canister glass and the off-gas condensate was made. These analyses provided information on cesium flow through the DWPF. This paper will focus on the methods used in the determination of nonradioactive cesium and the calculation of the DF`s for the DWPF melter off-gas system.

  18. Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption.

    PubMed

    Fukushi, Keisuke; Sakai, Haruka; Itono, Taeko; Tamura, Akihiro; Arai, Shoji

    2014-09-16

    Fine clay particles have functioned as transport media for radiocesium in terrestrial environments after nuclear accidents. Because radiocesium is expected to be retained in clay minerals by a cation-exchange reaction, ascertaining trace cesium desorption behavior in response to changing solution conditions is crucially important. This study systematically investigated the desorption behavior of intrinsic Cs (13 nmol/g) in well-characterized Na-montmorillonite in electrolyte solutions (NaCl, KCl, CaCl2, and MgCl2) under widely differing cation concentrations (0.2 mM to 0.2 M). Batch desorption experiments demonstrated that Cs(+) desorption was inhibited significantly in the presence of the environmental relevant concentrations of Ca(2+) and Mg(2+) (>0.5 mM) and high concentrations of K(+). The order of ability for Cs desorption was Na(+) = K(+) > Ca(2+) = Mg(2+) at the highest cation concentration (0.2 M), which is opposite to the theoretical prediction based on the cation-exchange selectivity. Laser diffraction grain-size analyses revealed that the inhibition of Cs(+) desorption coincided with the increase of the clay tactoid size. Results suggest that radiocesium in the dispersed fine clay particles adheres on the solid phase when the organization of swelling clay particles occurs because of changes in solution conditions caused by both natural processes and artificial treatments.

  19. Method and article for primary containment of cesium wastes. [DOE patent application

    DOEpatents

    Angelini, P.; Lackey, W.J.; Stinton, D.P.; Blanco, R.E.; Bond, W.D.; Arnold, W.D. Jr.

    1981-09-03

    A method for producing a cesium-retentive waste form, characterized by a high degree of compositional stability and mechanical integrity, is provided by subjecting a cesium-loaded zeolite to heat under conditions suitable for stabilizing the zeolite and immobilizing the cesium, and coating said zeolite for sufficient duration within a suitable environment with at least one dense layer of pyrolytic carbon to seal therein said cesium to produce a final, cesium-bearing waste form. Typically, the zolite is stabilized and the cesium immobilized in less than four hours by confinement within an air environment maintained at about 600/sup 0/C. Coatings are thereafter applied by confining the calcined zeolite within a coating environment comprising inert fluidizing and carbon donor gases maintained at 1000/sup 0/C for a suitable duration.

  20. Characterization of high cesium containing glass-bonded ceramic waste forms.

    SciTech Connect

    Lambregts, M. J.; Frank, S. M.

    2003-10-03

    High cesium containing glass-bonded ceramic waste form samples were prepared and characterized to identify possible cesium phases present in glass-bonded ceramic waste forms developed for the containment of fission product bearing salts. Major phases of the waste forms are sodalite and glass. A combination of powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and nuclear magnetic resonance spectroscopy (NMR) were used to study the multiphase nature of these waste forms. Cesium was found to be present in the higher loaded waste forms in a cesium aluminosilicate phase with an analcime structure and a 1:1 Si:Al ratio, a pollucite phase, and also in the glass phase. The glass phase contains the majority of the cesium at lower loadings, however some pollucite also remains. Cesium was not detected in the sodalite phase of any of the samples.

  1. Multiple delivery cesium oven system for negative ion sources

    SciTech Connect

    Bansal, G.; Bhartiya, S.; Pandya, K.; Bandyopadhyay, M.; Singh, M. J.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Chakraborty, A.

    2012-02-15

    Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out at Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.

  2. Leachate tests with sewage sludge contaminated by radioactive cesium.

    PubMed

    Tsushima, Ikuo; Ogoshi, Masashi; Harada, Ichiro

    2013-01-01

    The sewer systems of eastern Japan have transported radioactive fallout from the Fukushima Dai-ichi nuclear power plant accident to wastewater treatment plants, where the radioisotopes have accumulated. To better understand the potential problems associated with the disposal of contaminated sewage sludge in landfills, leachate tests were conducted with radioactive incinerator ash, cement solidification incinerator ash, and dewatered sludge cake. Radioactivity was undetectable in the eluate from incinerator ash and dewatered sludge cake, but about 30% of the radioactivity initially in cement solidification incinerator ash appeared in the eluate during the leaching experiments. Moreover, modification of test conditions revealed that the presence of Ca(2+) ions and strong alkali in the water that contacted the incinerator ash enhanced leaching of cesium. Lastly, the capacity of pit soil to absorb radioactive cesium was estimated to be at least 3.0 Bq/g (dry).

  3. Atomic trajectories in compact cesium-beam clocks.

    PubMed

    Jaduszliwer, B

    1990-01-01

    The author presents accurate calculations of atomic trajectories in conventional CBTs (cesium-beam tubes) using dispersive two-wire field magnets, and also in a novel configuration using two orthogonal one-dimensional focusing dipoles of the type described P. Kartaschoff (1974). In the first configuration, the author explains the observed differences in atomic velocity distribution in terms of small variations in the oven and/or detector offsets. The second configuration yields beam intensities that are significantly higher than the ones obtained with dispersive magnets and/or substantially lower atomic velocities, and thus could improve the frequency stability of compact cesium clocks in the white-noise regime. The present design differs from Kartaschoff's prescription in that a 1-D focusing dipole, rather than a hexapole or quadrupole magnet, is used as the A magnet in the CBT, making the tube manufacturing simpler.

  4. Hydrological methods preferentially recover cesium from nuclear waste salt cake

    SciTech Connect

    Brooke, J.N.; Hamm, L.L.

    1997-05-01

    The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs.

  5. Detection of the actinides and cesium from environmental samples

    NASA Astrophysics Data System (ADS)

    Snow, Mathew Spencer

    Detection of the actinides and cesium in the environment is important for a variety of applications ranging from environmental remediation to safeguards and nuclear forensics. The utilization of multiple different elemental concentrations and isotopic ratios together can significantly improve the ability to attribute contamination to a unique source term and/or generation process; however, the utilization of multiple elemental "signatures" together from environmental samples requires knowledge of the impact of chemical fractionation for various elements under a variety of environmental conditions (including predominantly aqueous versus arid conditions). The research reported in this dissertation focuses on three major areas: 1. Improving the understanding of actinide-mineral interactions at ultra-low concentrations. Chapter 2 reports a batch sorption and modeling study of Np(V) sorption to the mineral goethite from attomolar to micromolar concentrations. 2. Improving the detection capabilities for Thermal Ionization Mass Spectrometry (TIMS) analyses of ultra-trace cesium from environmental samples. Chapter 4 reports a new method which significantly improves the chemical yields, purification, sample processing time, and ultimately, the detection limits for TIMS analyses of femtogram quantities of cesium from a variety of environmental sample matrices. 3. Demonstrating how actinide and cesium concentrations and isotopic ratios from environmental samples can be utilized together to determine a wealth of information including environmental transport mechanisms (e.g. aqueous versus arid transport) and information on the processes which generated the original material. Chapters1, 3 and 5 demonstrate these principles using Pu, Am, Np, and Cs concentrations and isotopic ratios from contaminated soils taken near the Subsurface Disposal Area (SDA) of Idaho National Laboratory (INL) (a low level radioactive waste disposal site in southeastern Idaho).

  6. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, Jr., Milton W.; Bowers, Jr., Charles B.

    1988-01-01

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4'(5') [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution.

  7. X-ray spectrographic determination of cesium and rubidium

    USGS Publications Warehouse

    Axelrod, J.M.; Adler, I.

    1957-01-01

    An x-ray spectrographic method for the determination of rubidium and cesium was developed, using the internal-standard method and a four-channel flat-crystal spectrograph. The sensitivity is within 0.1% for cesia and 0.02% for rubidia; the precision is within 10% of the amount present. Results agree well with those obtained by flame photometry and by radio-activation.

  8. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  9. Effect of illite particle shape on cesium sorption

    USGS Publications Warehouse

    Rajec, P.; Sucha, V.; Eberl, D.D.; Srodon, J.; Elsass, F.

    1999-01-01

    Samples containing illite and illite-smectite, having different crystal shapes (plates, "barrels", and filaments), were selected for sorption experiments with cesium. There is a positive correlation between total surface area and Cs-sorption capacity, but no correlation between total surface area and the distribution coefficient, Kd. Generally Kd increases with the edge surface area, although "hairy" (filamentous) illite does not fit this pattern, possibly because elongation of crystals along one axis reduces the number of specific sorption sites.

  10. Extraction of cesium and strontium from nuclear waste

    DOEpatents

    Davis, M.W. Jr.; Bowers, C.B. Jr.

    1988-06-07

    Cesium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5) [1-hydroxy-2-ethylhexyl]benzo 18-crown-6 compound and a cation exchanger in a matrix solution. Strontium is extracted from acidified nuclear waste by contacting the waste with a bis 4,4[prime](5[prime]) [1-hydroxyheptyl]cyclohexo 18-crown-6 compound, and a cation exchanger in a matrix solution. 3 figs.

  11. Une alternative au cobalt pour la synthese de nanotubes de carbone monoparoi par plasma inductif thermique

    NASA Astrophysics Data System (ADS)

    Carrier, Jean-Francois

    Les nanotubes de carbone de type monoparoi (C-SWNT) sont une classe recente de nanomateriaux qui ont fait leur apparition en 1991. L'interet qu'on leur accorde provient des nombreuses proprietes d'avant-plan qu'ils possedent. Leur resistance mecanique serait des plus rigide, tout comme ils peuvent conduire l'electricite et la chaleur d'une maniere inegalee. Non moins, les C-SWNT promettent de devenir une nouvelle classe de plateforme moleculaire, en servant de site d'attache pour des groupements reactifs. Les promesses de ce type particulier de nanomateriau sont nombreuses, la question aujourd'hui est de comment les realiser. La technologie de synthese par plasma inductif thermique se situe avantageusement pour la qualite de ses produits, sa productivite et les faibles couts d'operation. Par contre, des recherches recentes ont permis de mettre en lumiere des risques d'expositions reliees a l'utilisation du cobalt, comme catalyseur de synthese; son elimination ou bien son remplacement est devenu une preoccupation importante. Quatre recettes alternatives ont ete mises a l'essai afin de trouver une alternative plus securitaire a la recette de base; un melange catalytique ternaire, compose de nickel, de cobalt et d'oxyde d'yttrium. La premiere consiste essentiellement a remplacer la proportion massique de cobalt par du nickel, qui etait deja present dans la recette de base. Les trois options suivantes contiennent de nouveaux catalyseurs, en remplacement au Co, qui sont apparus dans plusieurs recherches scientifiques au courant des dernieres annees: le dioxyde de zircone (ZrO2), dioxyde de manganese (MnO2) et le molybdene (Mo). La methode utilisee consiste a vaporiser la matiere premiere, sous forme solide, dans un reacteur plasma a haute frequence (3 MHz) a paroi refroidi. Apres le passage dans le plasma, le systeme traverse une section dite de "croissance", isolee thermiquement a l'aide de graphite, afin de maintenir une certaine plage de temperature favorable a la

  12. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    SciTech Connect

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  13. Test procedures and instructions for Hanford complexant concentrate supernatant cesium removal using CST

    SciTech Connect

    Hendrickson, D.W.

    1997-01-08

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Complexant Concentrate supernatant liquor from tank 241-AN-107, in a bench-scale column. The cesium sorbent to be tested is crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-023, Hanford Complexant Concentrate Supernatant Cesium Removal Test Plan.

  14. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    SciTech Connect

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  15. Cesium Isotope Ratios as Indicators of Nuclear Power Plant Operations

    SciTech Connect

    Darin Snyder; James Delmore; Troy Tranter; Nick Mann; Michael Abbott; John Olson

    2011-11-01

    There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive 135Cs/137Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these 135Cs/137Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample.

  16. Cesium isotope ratios as indicators of nuclear power plant operations.

    PubMed

    Delmore, James E; Snyder, Darin C; Tranter, Troy; Mann, Nick R

    2011-11-01

    There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive (135)Cs/(137)Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these (135)Cs/(137)Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample.

  17. SODIUM ALUMINOSILICATE SOLIDS AFFINITY FOR CESIUM AND ACTINIDES

    SciTech Connect

    Peters, T; Bill Wilmarth, B; Samuel Fink, S

    2007-07-31

    Washed sodium-aluminosilicate (NAS) solids at initial concentrations of 3.55 and 5.4 g/L sorb or uptake virtually no cesium over 288 hours, nor do any NAS solids generated during that time. These concentrations of solids are believed to conservatively bound current and near-term operations. Hence, the NAS solids should not have affected measurements of the cesium during the mass transfer tests and there is minimal risk of accumulating cesium during routine operations (and hence posing a gamma radiation exposure risk in maintenance). With respect to actinide uptake, it appears that NAS solids sorb minimal quantities of uranium - up to 58 mg U per kg NAS solid. The behavior with plutonium is less well understood. Additional study may be needed for radioactive operations relative to plutonium or other fissile component sorption or trapping by the solids. We recommend this testing be incorporated in the planned tests using samples from Tank 25F and Tank 49H to extend the duration to bound expected inventory time for solution.

  18. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    PubMed

    Jung, Il Lae; Ryu, Moonyoung; Cho, Seok Keun; Shah, Pratik; Lee, Ju Hye; Bae, Hansol; Kim, In Gyu; Yang, Seong Wook

    2015-01-01

    MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism. PMID:25946015

  19. Mobility of cesium through the Callovo-Oxfordian claystones under partially saturated conditions.

    PubMed

    Savoye, S; Beaucaire, C; Fayette, A; Herbette, M; Coelho, D

    2012-03-01

    The diffusion of cesium was studied in an unsaturated core of Callovo-Oxfordian claystone, which is a potential host rock for retrievable disposal of high-level radioactive wastes. In-diffusion laboratory experiments were performed on rock samples with water saturation degrees ranging from 81% to 100%. The analysis of both cesium concentration monitoring in the source reservoir and post-mortem cesium rock concentration profile of the samples was carried out using a chemical-transport code where the sorption of cesium was described by a multisite ion-exchange model. The results showed that cesium exhibited a clear trend related to the saturation degree of the sample. The more dehydrated the rock sample, the slower the decrease of cesium concentration, and the thinner the penetration depth of cesium was. The effective diffusion coefficient (De) for cesium decreased from 18.5 × 10(-11) m(2) s(-1) at full-saturation to 0.3 × 10(-11) m(2) s(-1) for the more dehydrated sample. This decrease is almost 1 order of magnitude higher than that for tritiated water (HTO), although a similar behavior could have been expected, since cesium is known to diffuse in the same parts of the pore space as HTO in fully saturated claystones.

  20. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    PubMed

    Jung, Il Lae; Ryu, Moonyoung; Cho, Seok Keun; Shah, Pratik; Lee, Ju Hye; Bae, Hansol; Kim, In Gyu; Yang, Seong Wook

    2015-01-01

    MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  1. Effects of accompanying anions on cesium retention and translocation via droplets on soybean leaves.

    PubMed

    Yan, Dong; Zhao, Ye; Lu, Anxiang; Wang, Shuifeng; Xu, Dongyu; Zhang, Ping

    2013-12-01

    Plant foliar uptake and translocation is an important pathway for the migration of radiocesium to the human diet. This study reports the effects of accompanying anions ( [Formula: see text] , [Formula: see text] , [Formula: see text] , and I(-)) on cesium retention and translocation. An experiment to simulate cesium retention and translocation was conducted in a greenhouse by applying droplets of stable cesium solutions to the upper surface of four soybean [Glycine max (L.) Merr.] trifoliate leaves. The average percentages of cesium retention with the accompanying anions [Formula: see text] , [Formula: see text] , [Formula: see text] , and I(-) on the leaves were 7.2, 21.5, 49.3, and 10.2%, respectively. Retention values of the four treatments were stable during the 3-day exposure period, indicating that cesium could be absorbed and penetrate the cuticle quickly once it was dissolved. Scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that particles containing cesium remained on the leaf surfaces after washing. Also, nano-sized particles containing cesium were observed inside the leaf tissues. Cesium concentrations in the uncontaminated leaves, pods, stems, and roots increased during the study period indicating cesium redistribution from the contaminated leaves.

  2. Radioactive cesium dynamics derived from hydrographic observations in the Abukuma River Estuary, Japan.

    PubMed

    Kakehi, Shigeho; Kaeriyama, Hideki; Ambe, Daisuke; Ono, Tsuneo; Ito, Shin-ichi; Shimizu, Yugo; Watanabe, Tomowo

    2016-03-01

    Large quantities of radioactive materials were released into the air and the ocean as a result of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, caused by the 2011 Tohoku earthquake and the subsequent major tsunami off the Pacific coast. There is much concern about radioactive contamination in both the watershed of the Abukuma River, which flows through Fukushima Prefecture, and its estuary, where it discharges into the sea in Miyagi Prefecture. We investigated radioactive cesium dynamics using mixing diagrams obtained from hydrographic observations of the Abukuma River Estuary. Particulate radioactive cesium dominates the cesium load in the river, whereas the dissolved form dominates in the sea. As the salinity increased from <0.1 to 0.1-2.3, the mixing diagram showed that dissolved radioactive cesium concentrations increased, because of desorption. Desorption from suspended particles explained 36% of dissolved radioactive cesium in estuarine water. However, the dissolved and particulate radioactive cesium concentrations in the sea decreased sharply because of dilution. It is thought that more than 80% of the discharged particulate radioactive cesium was deposited off the river mouth, where the radioactive cesium concentrations in sediment were relatively high (217-2440 Bq kg(-1)). Radioactive cesium that was discharged to the sea was transported southward by currents driven by the density distribution. PMID:26698826

  3. Radioactive cesium dynamics derived from hydrographic observations in the Abukuma River Estuary, Japan.

    PubMed

    Kakehi, Shigeho; Kaeriyama, Hideki; Ambe, Daisuke; Ono, Tsuneo; Ito, Shin-ichi; Shimizu, Yugo; Watanabe, Tomowo

    2016-03-01

    Large quantities of radioactive materials were released into the air and the ocean as a result of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, caused by the 2011 Tohoku earthquake and the subsequent major tsunami off the Pacific coast. There is much concern about radioactive contamination in both the watershed of the Abukuma River, which flows through Fukushima Prefecture, and its estuary, where it discharges into the sea in Miyagi Prefecture. We investigated radioactive cesium dynamics using mixing diagrams obtained from hydrographic observations of the Abukuma River Estuary. Particulate radioactive cesium dominates the cesium load in the river, whereas the dissolved form dominates in the sea. As the salinity increased from <0.1 to 0.1-2.3, the mixing diagram showed that dissolved radioactive cesium concentrations increased, because of desorption. Desorption from suspended particles explained 36% of dissolved radioactive cesium in estuarine water. However, the dissolved and particulate radioactive cesium concentrations in the sea decreased sharply because of dilution. It is thought that more than 80% of the discharged particulate radioactive cesium was deposited off the river mouth, where the radioactive cesium concentrations in sediment were relatively high (217-2440 Bq kg(-1)). Radioactive cesium that was discharged to the sea was transported southward by currents driven by the density distribution.

  4. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana

    PubMed Central

    Cho, Seok Keun; Shah, Pratik; Lee, Ju Hye; Bae, Hansol; Kim, In Gyu; Yang, Seong Wook

    2015-01-01

    MicroRNAs (miRNAs) are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1)-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism. PMID:25946015

  5. Cesium Removal Performance of Resorcinol-Formaldehyde Resin

    SciTech Connect

    Nash, Charles A.; Duffey, Cheryl E.; Aleman, Sebastian E.; Thorson, Murray R.

    2007-07-01

    Full text of publication follows: The Department of Energy's Hanford River Protection Project is an effort to design and construct a Waste Treatment Plant (WTP) for processing and stabilization of nuclear waste from past operations at Hanford, WA. As part of that effort the Savannah River National Laboratory (SRNL) has been contracted to test technology for unit operations including the use of ion exchange to remove cesium ion from highly alkaline aqueous feed. Resorcinol-formaldehyde (RF) cationic exchange resin is highly selective for cesium under alkaline conditions. The work presented here examined the isotherm, capacity, kinetics, and column performance of a spherical form of RF. The spherical or bead form of the resin has been found to be hydraulically better than the traditional ground gel form of RF in past work, and the different method of manufacture necessitated the study of the resulting different chemical performance. The resin isotherm was found to depend primarily on sodium, potassium, and free hydroxide levels along with temperature. In addition the resin was found to have a high content (6 {+-} 0.8 meq/gram hydrogen form) of non-selective cationic sites along with roughly 0.8 meq/gram of sites that select cesium under WTP feed compositions. Standard batch contact methods were used to obtain data for isotherm modeling. Loaded resin samples were also analyzed to determine capacity and also affinities for other elements in the feeds. Chromium, iron, lead, and cadmium were found to be adsorbed by the resin while many other metals in the feed are not selected. Kinetics testing was performed to assist in modeling resin performance under dynamic conditions. Kinetics data are included in the modeling of column performance. Small columns were run to breakthrough to provide data for benchmarking. The presentation will include comparisons of isotherm models with batch data. SRNL uses a combination of Pitzer solution chemical activity modeling and an algebraic

  6. Spin resonance transport properties of a single Au atom in S-Au-S junction and Au-Au-Au junction

    NASA Astrophysics Data System (ADS)

    Fangyuan, Wang; Guiqin, Li

    2016-07-01

    The spin transport properties of S-Au-S junction and Au-Au-Au junction between Au nanowires are investigated with density functional theory and the non-equilibrium Green's function. We mainly focus on the spin resonance transport properties of the center Au atom. The breaking of chemical bonds between anchor atoms and center Au atom significantly influences their spin transmission characteristics. We find the 0.8 eV orbital energy shift between anchor S atoms and the center Au atom can well protect the spin state stored in the S-Au-S junction and efficiently extract its spin state to the current by spin resonance mechanism, while the spin interaction of itinerant electrons and the valence electron of the center Au atom in the Au-Au-Au junction can extract the current spin information into the center Au atom. Fermi energy drift and bias-dependent spin filtering properties of the Au-Au-Au junction may transform information between distance, bias, and electron spin. Those unique properties make them potential candidates for a logical nanocircuit. Project supported by the National Basic Research Program of China (Grants No. 2011CB921602) and the National Natural Science Foundation of China (Grants No. 20121318158).

  7. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    SciTech Connect

    Ohno, S.; Shimakura, H.; Tahara, S.; Okada, T.

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  8. Ionizing mechanisms in a cesium plasma irradiated with a ruby laser

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Robinson, L. B.

    1975-01-01

    A cesium filled diode--laser plasmadynamic converter was built to investigate the feasibility of converting laser energy to electrical energy at large power levels. Experiments were performed with a pulsed ruby laser to determine the quantity of electrons and cesium ions generated per pulse of laser beam and to determine the output voltage. A current density as high as 200 amp/sq cm from a spot of approximately 1 sq mm area and an open circuit voltage as high as 1.5 volts were recorded. A qualitative theory was developed to explain these results. In the operation of the device, the laser beam evaporates some of the cesium and ionizes the cesium gas. A dense cesium plasma is formed to absorb further the laser energy. Results suggest that the simultaneous absorption of two ruby laser photons by the cesium atoms plays an important role in the initial ionization of cesium. Inverse bremsstrahlung absorption appears to be the dominant mechanism in subsequent processes. Recombinations of electrons and cesium ions appear to compete favorably with the simultaneous absorption of two photons.

  9. Recovery of cesium and palladium from nuclear reactor fuel processing waste

    DOEpatents

    Campbell, David O.

    1976-01-01

    A method of recovering cesium and palladium values from nuclear reactor fission product waste solution involves contacting the solution with a source of chloride ions and oxidizing palladium ions present in the solution to precipitate cesium and palladium as Cs.sub.2 PdCl.sub.6.

  10. Phase separation of cesium from lead borosilicate glass by heat treatment under a reducing atmosphere.

    PubMed

    Xu, Zhanglian; Okada, Takashi; Nishimura, Fumihiro; Yonezawa, Susumu

    2016-11-01

    A phase-separation technique for removing sodium from glass using a heat-treatment method under a reducing atmosphere was previously developed for sodium recovery from waste glass. In this study, this technique was applied to cesium-containing lead borosilicate glass to concentrate the cesium in phase-separated sodium-rich materials for efficient cesium extraction. The theoretical phase-separation temperature of the sodium-rich phase was simulated by thermodynamic equilibrium calculations and was predicted to occur below 700°C for lead borosilicate glass. Experimentally, a simulated lead borosilicate glass was melted at 1000°C and subsequently annealed below 700°C under a CO-containing reducing atmosphere. The phase separation of cesium was found to occur with sodium enrichment on the glass surface that was in contact with the gas phase, promoting cesium extraction from the treated glass using water. The cesium extraction efficiency was affected by the surface area of the treated glass that was in contact with water, and under the examined conditions, the cesium extraction efficiency was up to 66%. Phase separation using reductive heat treatment, combined with a water leaching technique, is suggested to be effective for extracting cesium incorporated in borosilicate glass waste. PMID:27368086

  11. Fiscal year 1996 laboratory scale studies of cesium elution in tank 8D-1

    SciTech Connect

    Russell, R.L.; Patello, G.K.; Sills, J.A.

    1996-09-01

    This report details work performed as part of the West Valley Support Project (WVSP) by Pacific Northwest National Laboratory (PNNL). This work is intended to support residual waste removal during high-level waste (HLW) tank stabilization activities to be performed by the West valley Demonstration Project (WVDP). The HLW originated from a now inactive commercial nuclear fuel-reprocessing plant at West Valley, New York. It is stored in a carbon-steel tank designated 8D-2. Cesium-loaded zeolite was generated by a supernatant decontamination process involving ion exchange. The exchange columns and the spent zeolite are stored in a carbon-steel tank designated 8D-1. During the vitrification phase of the WVDP waste remediation, and estimated 95 percent of the zeolite will be transferred from tank 8D-1 to tank 8D- 2. The remaining cesium-loaded zeolite will require treatment to remove the highly radioactive cesium. This report summarizes the findings of laboratory experiments. The primary objectives of these experiments were: to refine the optimum process conditions for use of oxalic acid to elute cesium from zeolite; minimize iron dissolution during cesium elution; investigation of the effect of neutralization on cesium elution; determination of effects of zeolite particle size on cesium elution; and determine if aluminum can be used as an indicator for cesium in solution.

  12. Characterization of quantum efficiency and robustness of cesium-based photocathodes

    NASA Astrophysics Data System (ADS)

    Montgomery, Eric J.

    High quantum efficiency, robust photocathodes produce picosecond-pulsed, high-current electron beams for photoinjection applications like free electron lasers. In photoinjectors, a pulsed drive laser incident on the photocathode causes photoemission of short, dense bunches of electrons, which are then accelerated into a relativistic, high quality beam. Future free electron lasers demand reliable photocathodes with long-lived quantum efficiency at suitable drive laser wavelengths to maintain high current density. But faced with contamination, heating, and ion back-bombardment, the highest efficiency photocathodes find their delicate cesium-based coatings inexorably lost. In answer, the work herein presents careful, focused studies on cesium-based photocathodes, particularly motivated by the cesium dispenser photocathode. This is a novel device comprised of an efficiently photoemissive, cesium-based coating deposited onto a porous sintered tungsten substrate, beneath which is a reservoir of elemental cesium. Under controlled heating cesium diffuses from the reservoir through the porous substrate and across the surface to replace cesium lost to harsh conditions---recently shown to significantly extend the lifetime of cesium-coated metal cathodes. This work first reports experiments on coated metals to validate and refine an advanced theory of photoemission already finding application in beam simulation codes. Second, it describes a new theory of photoemission from much higher quantum efficiency cesium-based semiconductors and verifies its predictions with independent experiment. Third, it investigates causes of cesium loss from both coated metal and semiconductor photocathodes and reports remarkable rejuvenation of full quantum efficiency for contaminated cesium-coated surfaces, affirming the dispenser prescription of cesium resupply. And fourth, it details continued advances in cesium dispenser design with much-improved operating characteristics: lower temperature

  13. [Variation in amount of radioactive cesium before and after cooking dry shiitake and beef].

    PubMed

    Nabeshi, Hiromi; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko

    2013-01-01

    We investigated the change of radioactive cesium content in food due to cooking in order to estimate the internal radiation exposure due to from radioactive materials in food. Our results revealed that soaking dry shiitake in water decreased the radioactive cesium content by about 50%, compared with that present in uncooked shiitake. Radioactive cesium in beef was decreased by about 10%, 12%, 60-65% and 80% by grilling, frying, boiling and stewing, respectively, compared to uncooked beef. For cooked beef, the decrease in the ratio of radioactive cesium was significantly different among the types of cooking. The decrease ratio of radioactive cesium in boiled and stewed beef was 8 times higher than that in grilled and fried beef.

  14. Permeable membranes containing crystalline silicotitanate as model barriers for cesium ion.

    PubMed

    Warta, Andrew M; Arnold, William A; Cussler, Edward L

    2005-12-15

    In diaphragm cell experiments, a permeable model reactive barrier for the containment of cesium is tested. Primary targets for cesium containment are former plutonium processing sites (e.g., Hanford, WA and Savannah River, SC), which are currently contaminated with cesium-137. Adding up to 10 wt % crystalline silicotitanate, a sacrificial reagent, to poly(vinyl alcohol) films increases the time before cesium can cross the film by a factor of 30. The increased lag times are consistent with theories developed for this type of reactive membrane. Theory also correctly predicts the effects of cesium concentration and membrane thickness on membrane performance. Because the relative improvements of the model barrier are expected to be independent of the polymer used, these increased lags should hold for less permeable polymers that are more resistant to radiation, although these polymers have not been tested. PMID:16475361

  15. DRAMATIC IMPROVEMENTS IN CAUSTIC-SIDE SOLVENT EXTRACTION OF CESIUM THROUGH MORE EFFICIENT STRIPPING

    SciTech Connect

    Delmau, Laetitia Helene; Bazelaire, Eve; Bonnesen, Peter V; Engle, Nancy L; Gorbunova, Maryna; Haverlock, Tamara; Moyer, Bruce A; Ensor, Dale; Meadors, Viola M; Harmon, Ben; Bartsch, Richard A.; Surowiec, Malgorzata A.; Zhou, Hui

    2008-01-01

    Dramatic potential improvements to the chemistry of the Caustic-Side Solvent Extraction (CSSX) process are presented as related to enhancement of cesium stripping. The current process for removing cesium from the alkaline high-level waste (HLW) at the USDOE Savannah River Site employs acidic scrub and strip stages and shows remarkable extraction and selectivity properties for cesium. It was determined that cesium stripping can be greatly improved with caustic or near-neutral stages using sodium hydroxide and boric acid as scrub and strip solutions, respectively. Improvements can also be achieved by appending pH-sensitive functional groups to the calix[4]arene-crown-6 extractant. Addition of a proton-ionizable group to the calixarene frame leads to a dramatic "pH swing" of up to 6 orders of magnitude change in cesium distribution ratio.

  16. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    SciTech Connect

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.

    2003-12-15

    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  17. Modification of cesium toxicity by calcium in mammalian system.

    PubMed

    Ghosh, A; Ghosh, A K; Sharma, A; Talukder, G

    1991-11-01

    The interaction between cesium chloride CsCl and calcium chloride CaCl2 was observed in bone marrow chromosomes of mice. The two salts were administered orally to laboratory bred Swiss albino mice in vivo singly or one followed by the other, or both simultaneously. CsCl induced chromosomal aberrations in frequencies directly proportional to the dose administered. The frequency of aberrations was reduced significantly when the two chemicals were administered simultaneously or when CaCl2 was given 2 h before CsCl. Thus, CaCl2 is able to protect against the cytotoxicity of CsCl. PMID:9438035

  18. Performance of the PARCS Testbed Cesium Fountain Frequency Standard

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, William M.

    2004-01-01

    A cesium fountain frequency standard has been developed as a ground testbed for the PARCS (Primary Atomic Reference Clock in Space) experiment, an experiment intended to fly on the International Space Station. We report on the performance of the fountain and describe some of the implementations motivated in large part by flight considerations, but of relevance for ground fountains. In particular, we report on a new technique for delivering cooling and trapping laser beams to the atom collection region, in which a given beam is recirculated three times effectively providing much more optical power than traditional configurations. Allan deviations down to 10 have been achieved with this method.

  19. Field operations with cesium clocks in HF navigation systems

    NASA Technical Reports Server (NTRS)

    Christy, E. H.; Clayton, D. A.

    1982-01-01

    Networks of HF phase comparison marine navigation stations employing cesium clocks are discussed. The largest permanent network is in the Gulf of Mexico where some fourteen base stations are continuously active and others are activated as needed. These HF phase comparison systems, which operate on a single transmission path, require a clock on the mobile unit as well. Inventory consists of upwards of 70 clocks from two different manufacturers. The maintenance of this network as an operating system requires a coordinated effort involving clock preparation, clock environment control, station performance monitoring and field service.

  20. Low energy sputtering of cobalt by cesium ions

    NASA Technical Reports Server (NTRS)

    Handoo, A.; Ray, Pradosh K.

    1989-01-01

    An experimental facility to investigate low energy (less than 500 eV) sputtering of metal surfaces with ions produced by an ion gun is described. Results are reported on the sputtering yield of cobalt by cesium ions in the 100 to 500 eV energy range at a pressure of 1 times 10(exp -6) Torr. The target was electroplated on a copper substrate. The sputtered atoms were collected on a cobalt foil surrounding the target. Co-57 was used as a tracer to determine the sputtering yield.

  1. Optical transmission measurements on monocrystalline and polycrystalline cesium iodide

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Arens, J. F.; Simon, M.

    1973-01-01

    A summary is presented of optical measurements performed on a variety of cesium iodide samples to characterize quantitatively the optical quality of the materials, and to define and measure parameters which determine its suitability as a detector material for high energy cosmic ray experiments on HEAO-A. The general case of light transmission through a long rectangular slab under multiple internal reflections is discussed along with transmission and scattering as a function of wavelength at normal incidence. Scattering parameters are tabulated for encapsulated single crystal CsI and polyscin.

  2. Single-frequency tunable laser for pumping cesium frequency standards

    SciTech Connect

    Zhuravleva, O V; Ivanov, Andrei V; Leonovich, A I; Kurnosov, V D; Kurnosov, K V; Chernov, Roman V; Shishkov, V V; Pleshanov, S A

    2006-08-31

    A single-frequency tunable laser for pumping the cesium frequency standard is studied. It is shown experimentally that the laser emits at a single frequency despite the fact that a few longitudinal modes of the external cavity fall within the reflection band of a fibre Bragg grating (FBG) written in the optical fibre. The laser wavelength can be tuned by varying the pump current of the laser, its temperature, and the FBG temperature. The laser linewidth does not exceed 2 MHz for 10 mW of output power. (lasers)

  3. Modelling the transport of radioactive cesium released from the Fukushima Dai-ichi NPP with sediments through the hydrologic system

    NASA Astrophysics Data System (ADS)

    Kinouchi, T.; Omata, T.; Wei, L.; Liu, T.; Araya, M.

    2013-12-01

    Due to the accident of the Fukushima Dai-ichi Nuclear Power Plant on March 2011, a huge amount of radionuclides including Cesium-134 and Cesium-137 was deposited over the main island of Japan and the Pacific Ocean, resulting in further transfer and diffusion of Cesium through the atmospheric flow, watershed hydrological processes, and terrestrial ecosystem. Particularly, for the transfer of Cesium-134 and Cesium-137, sediments eroded and transported by the rainfall-runoff processes play an important role as Cesium tends to be strongly adsorbed to soil particles such as clay and silt. In this study, we focus on the transport of sediment and adsorbed Cesium in the watershed-scale hydrologic system to predict the long-term change of distribution of Cesium and its discharge to rivers and ocean. We coupled a physically-based distributed hydrological model with the modules of erosion and transport of sediments and adsorbed Cesium, and applied the coupled model to the Abukuma River watershed, which is located over the area of higher deposition of Cesium. In the model, complex land use and land cover distributions, and the effect of human activities such as irrigation, dam control and urban drainage system are taken into accounts. Simulation was conducted for the period of March 2011 until August 2012, with initial spatial distribution of Cesium-134 and Cesium-137 obtained by the airborne survey. Simulated flow rates and sediment concentrations agreed well with observed, and found that since the accident, two major storms in July and September 2011 transported about 50% of total sediments transported during the simulated periods. Cesium concentration in the sediment was reproduced well except for the difference in the initial periods. This difference is attributable to the uncertainty arisen from the initial distribution of Cesium in the soil and the transfer of Cesium from the forest canopy.

  4. /Au Back Contacts

    NASA Astrophysics Data System (ADS)

    Paudel, Naba R.; Compaan, Alvin D.; Yan, Yanfa

    2014-08-01

    We report on the fabrication and characterization of CdTe thin-film solar cells with Cu-free MoO3- x /Au back contacts. CdTe solar cells with sputtered CdTe absorbers of thicknesses from 0.5 to 1.75 μm were fabricated on Pilkington SnO2:F/SnO2-coated soda-lime glasses coated with a 60- to 80-nm sputtered CdS layer. The MoO3- x /Au back contact layers were deposited by thermal evaporation. The incorporation of MoO3- x layer was found to improve the open circuit voltage ( V OC) but reduce the fill factor of the ultrathin CdTe cells. The V OC was found to increase as the CdTe thickness increased.

  5. Magnetoresistance of Au films

    DOE PAGES

    Zhang, D. L.; Song, X. H.; Zhang, X.; Zhang, Xiaoguang

    2014-12-10

    Measurement of the magnetoresistance (MR) of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler s rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms.

  6. A solution for cesium removal from high-salinity acidic or alkaline liquid waste: The crown calix[4]arenes

    SciTech Connect

    Dozol, J.F.; Simon, N.; Lamare, V.; Rouquette, H.; Eymard, S.; Tournois, B.; Marc, D. de; Macias, R.M.

    1999-04-01

    Calix[4]arenes monocrown or biscrown, blocked in 1,3 alternative cone conformation, display an exceptional efficiency for cesium extraction, even from very acid or alkaline media. Moreover, they possess an important selectivity for cesium over sodium that makes possible the extraction of cesium from media containing high sodium nitrate loadings. Another advantage, since the extraction of cesium is reversible, is that the stripping of cesium can be carried out in deionized water, a property which leads to very high concentration factors. 79 refs., 10 figs., 6 tabs.

  7. Computer simulation of liquid cesium using embedded atom model

    NASA Astrophysics Data System (ADS)

    Belashchenko, D. K.; Nikitin, N. Yu

    2008-02-01

    The new method is presented for the inventing an embedded atom potential (EAM potential) for liquid metals. This method uses directly the pair correlation function (PCF) of the liquid metal near the melting temperature. Because of the specific analytic form of this EAM potential, the pair term of potential can be calculated using the pair correlation function and, for example, Schommers algorithm. Other parameters of EAM potential may be found using the potential energy, module of compression and pressure at some conditions, mainly near the melting temperature, at very high temperature or in strongly compressed state. We used the simple exponential formula for effective EAM electronic density and a polynomial series for embedding energy. Molecular dynamics method was applied with L. Verlet algorithm. A series of models with 1968 atoms in the basic cube was constructed in temperature interval 323-1923 K. The thermodynamic properties of liquid cesium, structure data and self-diffusion coefficients are calculated. In general, agreement between the model data and known experimental ones is reasonable. The evaluation is given for the critical temperature of cesium models with EAM potential.

  8. Structure and bonding in crystalline cesium uranyl tetrachloride under pressure.

    PubMed

    Osman, Hussien H; Pertierra, Pilar; Salvadó, Miguel A; Izquierdo-Ruiz, F; Recio, J M

    2016-07-21

    A thorough investigation of pressure effects on the structural properties of crystalline cesium uranyl chloride was performed by means of first-principles calculations within the density functional theory framework. Total energies, equilibrium geometries and vibrational frequencies were computed at selected pressures up to 50 GPa. Zero pressure results present good agreement with available experimental and theoretical data. Our calculated equation of state parameters reveal that Cs2UO2Cl4 is a high compressible material, similar to other ionic compounds with cesium cations, and displays a structural anisotropic behavior guided by the uranyl moiety. An unexpected variation of the U-O bond length, dUO, is detected as pressure is applied. It leads to a dUO-stretching frequency relationship that cannot be described by the traditional Badger's rule. Interestingly enough, it can be explained in terms of a change in the main factor controlling dUO. At low pressure, the charge transferred to the uranyl cation induces an increase of the bond length and a red shift of the stretching frequencies, whereas it is the mechanical effect of the applied pressure above 10 GPa that is the dominant factor that leads to a shortening of dUO and a blue shift of the stretching frequencies. PMID:27340008

  9. Uranium and cesium diffusion in fuel cladding of electrogenerating channel

    SciTech Connect

    Vasil’ev, I. V. Ivanov, A. S.; Churin, V. A.

    2014-12-15

    The results of reactor tests of a carbonitride fuel in a single-crystal cladding from a molybdenum-based alloy can be used in substantiating the operational reliability of fuels in developing a project of a megawatt space nuclear power plant. The results of experimental studies of uranium and cesium penetration into the single-crystal cladding of fuel elements with a carbonitride fuel are interpreted. Those fuel elements passed nuclear power tests in the Ya-82 pilot plant for 8300 h at a temperature of about 1500°C. It is shown that the diffusion coefficients for uranium diffusion into the cladding are virtually coincident with the diffusion coefficients measured earlier for uranium diffusion into polycrystalline molybdenum. It is found that the penetration of uranium into the cladding is likely to occur only in the case of a direct contact between the cladding and fuel. The experimentally observed nonmonotonic uranium-concentration profiles are explained in terms of predominant uranium diffusion along grain boundaries. It is shown that a substantially nonmonotonic behavior observed in our experiment for the uranium-concentration profile may be explained by the presence of a polycrystalline structure of the cladding in the surface region from its inner side. The diffusion coefficient is estimated for the grain-boundary diffusion of uranium. The diffusion coefficients for cesium are estimated on the basis of experimental data obtained in the present study.

  10. Adsorption of sodium and cesium on aggregates of C60

    NASA Astrophysics Data System (ADS)

    Harnisch, Martina; Daxner, Matthias; Scheier, Paul; Echt, Olof

    2016-09-01

    We explore the formation of C60 sodium and C60 cesium complexes in superfluid helium nanodroplets. Anomalies in mass spectra of these doped droplets reveal anomalies in the stability of ions. (C60) m Cs+ n ions ( m ≤ 6) are particularly abundant if they contain n = 6 m + 1 cesium atoms; (C60) m Cs2+ n dications ( m ≤ 3 or 5) are abundant if n = 6 m + 2. These findings are consistent with the notion that alkali metal atoms (A) transfer their valence electrons into the three-fold degenerate lowest unoccupied orbital of C60, resulting in particularly stable C60A6 building blocks. However, (C60) 4CsCs2+ n dications display an entirely different pattern; instead of an expected anomaly at n = 6 × 4 + 2 = 26 we observe a strong odd-even alternation starting at n = 6. Also surprising is the effect of adding one H2O or CO2 molecule to (C60) m Cs n mono- or dications; anomalies shift by two units as if the impurity were acting as an acceptor for two valence electrons from the alkali metal atoms.

  11. Electron emission from nickel-alloy surfaces in cesium vapor

    NASA Technical Reports Server (NTRS)

    Manda, M.; Jacobson, D.

    1978-01-01

    An experimental apparatus and measurement techniques are described for measuring the thermionic emission from cesium-activated materials having adequate high-temperature properties such as creep strength and corrosion resistance, which might ultimately reduce the cost of thermionic converters. The electron emission characteristics are measured for nickel, Inconel 600, and Hastelloy X probes with a 412 K cesium reservoir. It is found that the nickel alloys exhibit a peak electron emission 1.4 to 2.1 times greater than pure nickel. Both the Inconel and the Hastelloy samples have work functions of 1.64 eV at peak emission. The minimum cesiated work functions are estimated to be 1.37 eV for Inconel at a probe temperature of 750 K and 1.4 eV for Hastelloy at a probe temperature of 665 K. The bare work functions for both alloys is estimated to be about the same as for pure nickel, 4.8 eV.

  12. Structure and bonding in crystalline cesium uranyl tetrachloride under pressure.

    PubMed

    Osman, Hussien H; Pertierra, Pilar; Salvadó, Miguel A; Izquierdo-Ruiz, F; Recio, J M

    2016-07-21

    A thorough investigation of pressure effects on the structural properties of crystalline cesium uranyl chloride was performed by means of first-principles calculations within the density functional theory framework. Total energies, equilibrium geometries and vibrational frequencies were computed at selected pressures up to 50 GPa. Zero pressure results present good agreement with available experimental and theoretical data. Our calculated equation of state parameters reveal that Cs2UO2Cl4 is a high compressible material, similar to other ionic compounds with cesium cations, and displays a structural anisotropic behavior guided by the uranyl moiety. An unexpected variation of the U-O bond length, dUO, is detected as pressure is applied. It leads to a dUO-stretching frequency relationship that cannot be described by the traditional Badger's rule. Interestingly enough, it can be explained in terms of a change in the main factor controlling dUO. At low pressure, the charge transferred to the uranyl cation induces an increase of the bond length and a red shift of the stretching frequencies, whereas it is the mechanical effect of the applied pressure above 10 GPa that is the dominant factor that leads to a shortening of dUO and a blue shift of the stretching frequencies.

  13. Lasing in robust cesium lead halide perovskite nanowires

    PubMed Central

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  14. Dissolved and colloidal transport of cesium in natural discrete fractures.

    PubMed

    Tang, Xiang-Yu; Weisbrod, Noam

    2010-01-01

    Transport of cesium (Cs) was investigated in a saturated natural chalk fracture with an average equivalent hydraulic aperture of 129 microm. The results show that Cs (inflow concentration of 0.22 mmol L(-1)) can be transported in its dissolved form and in association with montmorillonite. Humic acid (HA) did not sorb Cs but enhanced colloid-associated Cs transport by 12.5% in terms of breakthrough curve (BTC) recovery. The BTCs clearly showed desorption of Cs from the fracture walls during the artificial rainwater (ARW)-injection period. Cesium transport associated with montmorillonite colloids was significant, with a maximum colloid-associated Cs C/C(0) (outflow-to-inflow concentration ratio) value of 16.6 +/- 1.1% during the tracer (colloids and LiBr)-injection period. However, the relative contribution of colloid-associated Cs transport to total Cs transport was relatively low, amounting to 10.3 +/- 0.7% and 14.5 +/- 0.7% with montmorillonite (500 mg L(-1)) and the montmorillonite-HA (10 mg L(-1)) mixture, respectively. Readsorption of Cs onto the colloids occurred immediately on switching from the tracer suspension to the background solution of ARW. The significant colloid-associated Cs transport, the stripping effect of Cs from colloids, and the slow desorption of Cs from fracture walls reported in this study have important implications for risk assessments of Cs mobility in fractured carbonatic rocks. PMID:20400602

  15. Photoionization cross sections and oscillator strengths of neutral cesium

    NASA Astrophysics Data System (ADS)

    Haq, S. U.; Nadeem, Ali; Nawaz, M.

    2012-11-01

    The absolute photoionization cross sections from the 6p 2P1/2 excited state of cesium at threshold and above the threshold region have been measured using the saturation absorption technique. The photoionization cross section at the ionization threshold is determined as 22.6±3.6 Mb, whereas in the region above threshold its value ranges from 22 to 20 Mb for photoelectron energies up to 0.1 eV. A comparison of the photoionization cross sections with earlier reported theoretical and experimental data have been presented and are in good agreement within the uncertainty. In addition, the oscillator strengths of the 6p 2P1/2→n d 2D3/2 (21≤n≤60) Rydberg transitions of cesium have been calibrated using the threshold value of the photoionization cross section. A complete picture of the oscillator strengths from the present work and previously reported data from n=5-60 is presented.

  16. RESORCINOL-FORMALDEHYDE ADSORPTION OF CESIUM (Cs+) FROM HANFORD WASTE SOLUTIONS-PART I: BATCH EQUILIBRIUM STUDY

    SciTech Connect

    HASSAN, NEGUIBM

    2004-03-30

    Batch equilibrium measurements were conducted with a granular Resorcinol-Formaldehyde (RF) resin to determine the distribution coefficients (Kds) for cesium. In the tests, Hanford Site actual waste sample containing radioactive cesium and a pretreated waste sample that was spiked with non-radioactive cesium were used. Initial concentrations of non-radioactive cesium in the waste sample were varied to generate an equilibrium isotherm for cesium. Two additional tests were conducted using a liquid to solid phase ratio of 10 and a contact time of 120 hours. The measured distribution coefficient (Kd) for radioactive cesium (137Cs) was 948 mL/g; the Kd for non-radioactive cesium (133Cs) was 1039 mL/g. The Kd for non-radioactive cesium decreased from 1039 to 691 mL/g as the initial cesium concentration increased. Very little change of the Kd was observed at initial cesium concentrations above 64 mg/mL. The maximum sorption capacity for cesium on granular RF resin was 1.17 mmole/g dry resin. T his value was calculated from the fit of the equilibrium isotherm data to the Dubinin-Radushkevich equation. Previously, a total capacity of 2.84 mmole/g was calculated by Bibler and Wallace for air-dried RF resin.

  17. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    PubMed

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation.

  18. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    PubMed

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation. PMID:26683820

  19. Preliminary Evaluation of Cesium Distribution for Wet Sieving Process Planned for Soil Decontamination in Japan - 13104

    SciTech Connect

    Enokida, Y.; Tanada, Y.; Hirabayashi, D.; Sawada, K.

    2013-07-01

    For the purpose of decontaminating radioactive cesium from a huge amount of soil, which has been estimated to be 1.2x10{sup 8} m{sup 3} by excavating to a 5-cm depth from the surface of Fukushima Prefecture where a severe nuclear accident occurred at TEPCO's power generating site and has emitted a significant amount of radioactive materials, mainly radioactive cesium, a wet sieving process was selected as one of effective methods available in Japan. Some private companies have demonstrated this process for soil treatment in the Fukushima area by testing at their plants. The results were very promising, and a full-fledged application is expected to follow. In the present study, we spiked several aqueous samples containing soil collected from an industrial wet sieving plant located near our university for the recycling of construction wastes with non-radioactive cesium hydroxide. The present study provides scientific data concerning the effectiveness in volume reduction of the contaminated soil by a wet sieving process as well as the cesium distribution between the liquid phase and clay minerals for each sub-process of the full-scale one, but a simulating plant equipped with a process of coagulating sedimentation and operational safety fundamentals for the plant. Especially for the latter aspect, the study showed that clay minerals of submicron size strongly bind a high content of cesium, which was only slightly removed by coagulation with natural sedimentation (1 G) nor centrifugal sedimentation (3,700 G) and some of the cesium may be transferred to the effluent or recycled water. By applying ultracentrifugation (257,000 G), most of submicron clay minerals containing cesium was removed, and the cesium amount which might be transferred to the effluent or recycled water, could be reduced to less than 2.3 % of the original design by the addition of a cesium barrier consisting of ultracentrifugation or a hollow fiber membrane. (authors)

  20. Historical Cost Curves for Hydrogen Masers and Cesium Beam Frequency and Timing Standards

    NASA Technical Reports Server (NTRS)

    Remer, D. S.; Moore, R. C.

    1985-01-01

    Historical cost curves were developed for hydrogen masers and cesium beam standards used for frequency and timing calibration in the Deep Space Network. These curves may be used to calculate the cost of future hydrogen masers or cesium beam standards in either future or current dollars. The cesium beam standards are decreasing in cost by about 2.3% per year since 1966, and hydrogen masers are decreasing by about 0.8% per year since 1978 relative to the National Aeronautics and Space Administration inflation index.

  1. Microstructure analysis for chemical interaction between cesium and SUS 316 steel in fast breeder reactor application

    SciTech Connect

    Sasaki, K.; Fukumoto, K. I.; Oshima, T.; Tanigaki, T.; Masayoshi, U.

    2012-07-01

    In this study the corrosion products on a surface after cesium corrosion examination at 650 deg. C for 100 hrs were characterized by TEM observation around the corroded area on the surface in order to understand the corrosion mechanism of cesium fission product for cladding materials in fast reactor. The experimental results suggest the main corrosion mechanism occurred in the process of the separation of cesium chromate and metal (Fe, Ni). The main reaction of corrosion process was considered to be equation, 2Cs + 7/2 O{sub 2} + 2Cr {yields} Cs{sub 2}Cr{sub 2}O{sub 7}(L). (authors)

  2. Hydrogen and Cesium Monitor for H- Magnetron Sources

    SciTech Connect

    Tan, Cheng-Yang; Bollinger, Dan; Schupbach, Brian; Seiya, Kiyomi

    2014-07-01

    The relative concentration of cesium to hydrogen in the plasma of a H- magnetron source is an important parameter for reliable operations. If there is too much cesium, the surfaces of the source become contaminated with it and sparking occurs. If there is too little cesium then the plasma cannot be sustained. In order to monitor these two elements, a spectrometer has been built and installed on a test and operating source that looks at the plasma. It is hypothesized that the concentration of each element in the plasma is proportional to the intensity of their spectral lines.

  3. X-ray photoemission studies of superficially oxidized cesium antimonide photoemitters

    NASA Technical Reports Server (NTRS)

    Bates, C. W., Jr.; Wertheim, G. K.; Buchanan, D. N. E.; Clements, K. E.; Van Atekum, T. M.

    1981-01-01

    Superficially oxidized cesium antimonide photoemitting surfaces prepared in ultrahigh vacuum were studied by X-ray photoelectron spectroscopy. Oxidation of Cs3Sb to produce a surface with enhanced photosensitivity converts part of the antimony to elemental antimony and part of the cesium to cesium suboxide. The latter is identified on the basis of an O1 s peak at 531.3 eV, characteristic of Cs11O3. The production of Cs2O is not ruled out in this process since its signature at 527.5 eV is masked by an antimony shake-up peak at 527 eV.

  4. High-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1974-01-01

    Lanthanum hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium diode performance should result from the lower collector temperatures allowed for earth and low power space duties. Decreased temperatures will lessen thermal transport losses that attend thermionic conversion mechanisms. Such advantages will add to those from collector Carnot and electrode effects. If plasma ignition difficulties impede diode temperature reductions, recycling small fractions of the output power could provide ionization. So high efficiency, low temperature cesium diodes with lanthanum hexaboride electrodes appear feasible.

  5. First-principles study of cesium adsorption to weathered micaceous clay minerals

    NASA Astrophysics Data System (ADS)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2014-05-01

    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  6. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    SciTech Connect

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  7. Comparative analysis of cesium and potassium uptake in onion Allium cepa L.

    NASA Astrophysics Data System (ADS)

    Urban, P. Ł.; Bystrzejewska-Piotrowska, G.

    2003-01-01

    Cesium uptake in onion (from 0.3 mM CsCl solution traced with 137CsCl) has been examined. The highest uptake occurred at pH 4-5 and it decreased with increasing pH. The intensity of Cs translocation depended on acidity of the solution. For acidic solutions, translocation of cesium into bulbs and leaves was greater than in case of alkaline solutions, where most of the cesium remained in the roots. Addition of potassium into the solutions (millimolar K concentrations) inhibits Cs uptake. The potassium pH-influx/efflux characteristic does not coincide with the Cs uptake.

  8. High voltage holding in the negative ion sources with cesium deposition.

    PubMed

    Belchenko, Yu; Abdrashitov, G; Ivanov, A; Sanin, A; Sotnikov, O

    2016-02-01

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed.

  9. High voltage holding in the negative ion sources with cesium deposition.

    PubMed

    Belchenko, Yu; Abdrashitov, G; Ivanov, A; Sanin, A; Sotnikov, O

    2016-02-01

    High voltage holding of the large surface-plasma negative ion source with cesium deposition was studied. It was found that heating of ion-optical system electrodes to temperature >100 °C facilitates the source conditioning by high voltage pulses in vacuum and by beam shots. The procedure of electrode conditioning and the data on high-voltage holding in the negative ion source with small cesium seed are described. The mechanism of high voltage holding improvement by depletion of cesium coverage is discussed. PMID:26932002

  10. a Biokinetic Model for CESIUM-137 in the Fetus

    NASA Astrophysics Data System (ADS)

    Jones, Karen Lynn

    1995-01-01

    Previously, there was no method to determine the dose to the embryo, fetus, fetal organs or placenta from radionuclides within the embryo, fetus, or placenta. In the past, the dose to the fetus was assumed to be equivalent to the dose to the uterus. Watson estimated specific absorbed fractions from various maternal organs to the uterine contents which included the fetus, placenta, and amniotic fluid and Sikov estimated the absorbed dose to the embryo/fetus after assuming 1 uCi of radioactivity was made available to the maternal blood.^{1,2} However, this method did not allow for the calculation of a dose to individual fetal organs or the placenta. The radiation dose to the embryo or fetus from Cs-137 in the fetus and placenta due to a chronic ingestion by the mother was determined. The fraction of Cs-137 in the maternal plasma crossing the placenta to the fetal plasma was estimated. The absorbed dose from Cs-137 in each modelled fetal organ was estimated. Since there has been more research regarding potassium in the human body, and particularly in the pregnant woman, a biokinetic model for potassium was developed first and used as a basis and confirmation of the cesium model. Available pertinent information in physiology, embryology, biokinetics, and radiation dosimetry was utilized. Due to the rapid growth of the fetus and placenta, the pregnancy was divided into four gestational periods. The numerous physiological changes that occurred during pregnancy were considered and an appropriate biokinetic model was developed for each of the gestational periods. The amount of cesium in the placenta, embryo, and fetus was estimated for each period. The dose to the fetus from cesium deposited in the embryo or fetus and in the placenta was determined for each period using Medical Internal Radiation Dosimetry (MIRD) methodology. An uncertainty analysis was also performed to account for the variability of the parameters in the biokinetic model based on the experimental data

  11. Evaluation of cesium selective media at the Callaway Plant

    SciTech Connect

    Miller, B.

    1996-10-01

    Based on the desire to lower costs, public dose and in-plant exposure, Callaway Nuclear Plant evaluated the prospect of changing their liquid waste processing from evaporation to demineralization. Approximately 95% of Callaway`s annual dose to the total body can be attributed to cesium. During normal plant operations, Callaway`s influent Cs-137 level averages 3E{minus}5 {mu}Ci/ml. During episodes of failed fuel, Cs-137 rises to approximately 3E{minus}3 {mu}Ci/ml. Plant criteria specify that the Cs-137 effluent remain below 5E{minus}7 (average Minimum Detectable Activity) to maintain the required 1% dose to the public (exclusive of tritium). From February, 1995 through February, 1996, extensive testing of the capacities and associated Decontamination Factors (DF) for cesium specific media were conducted. Two media were selected for testing based on their capacity for cesium in high conductivity water. During bench scale testing, one media, CsTreat, performed well below the 1% dose parameter (0.2%) during the equivalent of processing 28,300 gallon/cu ft media. The test was ended based on time constraints rather than loss of ion exchange capacity. At the end of processing this 28,300 gallon/cu ft equivalent, the effluent Cs-137 level remained below MDA. The same test bed was then subjected to simulated waste water that would be seen during a cycle with significant fuel failures. Callaway chemists injected Cs-137 into their Floor Drain Tank (FDT) water increasing the influent level to 1.6E{minus}2 {mu}Ci/ml. The effluent Cs-137 level was measured at 3.5E{minus}6 {mu}Ci/ml giving an associated DF of 3949. Anticipated DF for full scale application is 5000 to 10000, which would maintain Callaway below the 1% dose goal for effluent during a cycle with failed fuel. Based on these results and the associated cost benefit, Callaway Plant will switch their radwaste processing from evaporation to filtration and ion exchange including CsTreat media.

  12. Radioactive and Stable Cesium Distributions in Fukushima Forests

    NASA Astrophysics Data System (ADS)

    Ioshchenko, V.; Kivva, S.; Konoplev, A.; Nanba, K.; Onda, Y.; Takase, T.; Zheleznyak, M.

    2015-12-01

    Fukushima Dai-ichi NPP accident has resulted in release into the environment of large amounts of 134Cs and 137Cs and in radioactive contamination of terrestrial and aquatic ecosystems. In Fukushima prefecture up to 2/3 of the most contaminated territory is covered with forests, and understanding of its further fate in the forest ecosystems is essential for elaboration of the long-term forestry strategy. At the early stage, radiocesium was intercepted by the trees' canopies. Numerous studies reported redistribution of the initial fallout in Fukushima forests in the followed period due to litterfall and leaching of radiocesium from the foliage with precipitations. By now these processes have transported the major part of deposited radiocesium to litter and soil compartments. Future levels of radiocesium activities in the aboveground biomass will depend on relative efficiencies of the radiocesium root uptake and its return to the soil surface with litterfall and precipitations. Radiocesium soil-to-plant transfer factors for typical tree species, soil types and landscape conditions of Fukushima prefecture have not been studied well; moreover, they may change in time with approaching to the equilibrium between radioactive and stable cesium isotopes in the ecosystem. The present paper reports the results of several ongoing projects carried out by Institute of Environmental Radioactivity of Fukushima University at the experimental sites in Fukushima prefecture. For typical Japanese cedar (Cryptomeria japonica) forest, we determined distributions of radiocesium in the ecosystem and in the aboveground biomass compartments by the end of 2014; available results for 2015 are presented, too, as well as the results of test application of D-shuttle dosimeters for characterization of seasonal variations of radiocesium activity in wood. Based on the radiocesium activities in biomass we derived the upper estimates of its incorporation and root uptake fluxes, 0.7% and 3% of the total

  13. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  14. Calculation of isotope shifts for cesium and francium

    SciTech Connect

    Dzuba, V.A.; Johnson, W.R.; Safronova, M.S.

    2005-08-15

    We perform ab initio calculations of isotope shifts for isotopes of cesium (from A=123 to A=137) and francium (from A=207 to A=228). These calculations start from the relativistic Hartree-Fock method and make use of several techniques to include correlations. The field (volume) isotope shift is calculated by means of an all-order correlation potential method and within the singles-doubles-partial-triples linearized coupled-cluster approach. Many-body perturbation theory in two different formulations is used to calculate the specific mass shift. We discuss the strong points and shortcomings of the different approaches and implications for parity nonconservation in atoms. Changes in nuclear charge radii are found by comparing the present calculations with experiment.

  15. Solvent extraction of cesium by substituted crown ethers

    SciTech Connect

    Sachleben, R.A.; Deng, Y.; Palmer, D.A.; Moyer, B.A.

    1996-12-31

    The extraction of alkali metal nitrates by 18-crown-6, 21-crown-7, and 24-crown-8 ethers, bearing cyclohexano, benzo-, t-alkylbenzo, and furano- substituents, in 1,2-dichloroethane has been surveyed. Introduction of a furano substituent onto the macrocyclic ring of 18-crown-6 or 21 crown-7 ethers causes a significant reduction in both extraction efficiency and selectivity. Addition of an additional benzo group to dibenzo-21 -crown-7, to give tribenzo-21 -crown-7, decreases both extraction efficiency and selectivity, whereas addition of one or two additional benzo groups to dibenzo-24-crown-8 increases the extraction efficiency and selectivity for the larger ions Rb+ and Cs{sup +} Detailed equilibrium modeling of the extraction by lipophilic 21 -crown-7 ethers indicates that the addition of t-alkyl substituents onto the benzo groups has only a minor effect on the extraction of cesium nitrate by dibenzo-21 -crown-7 ethers.

  16. Electron emission from nickel-alloy surfaces in cesium vapor

    NASA Technical Reports Server (NTRS)

    Manda, M.; Jacobson, D.

    1978-01-01

    The cesiated electron emission was measured for three candidate electrodes for use as collectors in thermionic converters. Nickel, Inconel 600 and Hastelloy were tested with a 412 K cesium reservoir. Peak emission from the alloys was found to be comparable to that from pure nickel. Both the Inconel and the Hastelloy samples had work functions of 1.64 eV at peak emission. The minimum work functions were estimated to be 1.37 eV at a probe temperature of 750 K for Inconel and 1.40 eV for Hastelloy at 665 K. The bare work function for both alloys is estimated to be approximately the same as for pure nickel, 4.8 eV.

  17. ATS-6 - Cesium bombardment engine north-south stationkeeping experiment

    NASA Technical Reports Server (NTRS)

    Worlock, R. M.; James, E. L.; Hunter, R. E.; Bartlett, R. O.

    1975-01-01

    Two 0.004 N thrust cesium bombardment ion thrustors have been developed and used for north-south stationkeeping in the geostationary Applications Technology Satellite-6 (ATS-6). The thrustor subsystems are mounted on the north and south faces of the earth viewing module such that 0.0026 N of thrust is applied normal to the orbit plane and 0.0036 N is applied radially upward. The change in the orbit inclination of the satellite is maintained at zero by operating the two thrustors alternately so that their thrust components, normal to the orbital plane, are symmetrically applied about the nodal crossings. Initial operation of the thrustors was successful. There was no interference with the satellite communications systems and the predicted spacecraft operating potential was verified. Subsequent trials failed due to a defect in the operation of the propellant reservoirs in zero g. A feed line valve is under development to correct this difficulty.

  18. Laser cooling of cesium atoms below 3 microkelvins

    SciTech Connect

    Salomon, C.; Dalibard, J.; Phillips, W.D. , Departement de Physique de l ENS, 24 rue Lhomond, F-75231 Paris Cedex 05 ); Clairon, A. ); Guellati, S. )

    1991-08-05

    We have measured the temperature of cesium atoms released from optical molasses. For a wide range of laser intensity and detuning from resonance, the temperature depends only on the intensity to detuning ratio. The lowest temperature achieved is 2.5{plus minus}0.6 {mu}K, which corresponds to an rms velocity of 12.5 mm/s or 3.6 times the single-photon recoil velocity. This is, to our knowledge, the coldest kinetic temperature ever measured for three dimensional (3D) cooling. We then discuss the possibility of using such a cold sample of atoms for realizing a high performance atomic clock in a fountain geometry. In particular, a method for launching the atoms upwards, while maintaining the very cold temperature, is demonstrated.

  19. Coherence properties of nanofiber-trapped cesium atoms.

    PubMed

    Reitz, D; Sayrin, C; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A

    2013-06-14

    We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') = 3.7 ms. By modeling the signals, we find that, for our experimental parameters, T(2)(*) and T(2)(') are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network. PMID:25165922

  20. Trade study for the disposition of cesium and strontium capsules

    SciTech Connect

    Claghorn, R.D.

    1996-03-01

    This trade study analyzes alternatives for the eventual disposal of cesium and strontium capsules currently stored at the Waste Encapsulation and Storage Facility as by-product. However, for purposes of this study, it is assumed that at some time in the future, the capsules will be declared high-level waste and therefore will require disposal at an offsite geologic repository. The study considered numerous alternatives and selected three for detailed analysis: (1) overpack and storage at high-level waste canister storage building, (2) overpack at the high-level waste vitrification facility followed by storage at a high-level waste canister storage building, and (3) blend capsule contents with other high-level waste feed streams and vitrify at the high-level waste vitrification facility.

  1. Cesium and strontium sorption behavior in amended agricultural soils

    NASA Astrophysics Data System (ADS)

    Mehmood, Khalid; Hofmann, Diana; Burauel, Peter; Vereecken, Harry; Berns, Anne E.

    2014-05-01

    Biogas digestates and biochar are emerging soil amendments. Biochar is a byproduct of pyrolysis process which is thermal decomposition of biomass to produce syngas and bio-oil. The use of biochar for soil amendment is being promoted for higher crop yields and carbon sequestration. Currently, the numbers of biogas plants in Germany are increasing to meet the new energy scenarios. The sustainability of biogas industry requires proper disposal options for digestate. Biogas digestates being rich in nutrients are beneficial to enhance agricultural productions. Contrary to the agronomical benefits of these organic amendments, their use can influence the mobility and bioavailability of soil contaminants due to nutrients competition and high organic matter content. So far, the impact of such amendments on highly problematic contaminants like radionuclides is not truly accounted for. In the present study, sorption-desorption behavior of cesium and strontium was investigated in three soils of different origin and texture. Two agricultural soils, a loamy sand and a silty soil, were amended with biochar and digestate in separate experiments, with field application rates of 25 Mg/ha and 34 Mg/ha, respectively. For comparison a third soil, a forest soil, was incubated without any amendment. The amendments were mixed into the top 20 cm of the field soils, resulting in final concentrations of 8-9 g biochar/Kg soil and 11-12 g digestate/Kg soil. The soils were incubated for about six months at room temperature. Sorption-desorption experiments were performed with CsCl and SrCl2 after pre-equilibrating the soils with CaCl2 solutions. The amendments with field application rates did not have a significant effect on the relevant soil parameters responsible for the sorption behavior of the two radionuclides. Comparatively, the soil type lead to distinctive differences in sorption-desorption dynamics of the two radionuclides. Cesium showed a higher affinity for silty soil followed by

  2. Radial geometry cesium plasma source with improved mechanical features

    SciTech Connect

    Alton, G.D.; Beckers, R.M.; Johnson, J.W.

    1985-01-01

    An improved version of the radial geometry cesium plasma negative ion source, described by Alton and Blazey, has been designed, evaluated and employed for use during routine operation of the Holifield Heavy Ion Research Facility (HHIRF) tandem accelerator. The mechanical features of the source have been improved to facilitate rapid change of degradable parts such as the sputter probe insulator and cathodes and to provide better thermal isolation of the externally mounted oven from the discharge chamber. The source has demonstrated improved operational stability, higher intensities and increased reliability over its predecessor. Negative ion beams from more than twenty-five elements have been provided for the HHIRF experimental program including several molecular hydride beams from difficult elements such as Be, Mg, Ti, Sc, Nd and Zr. A detailed description of the mechanical features of the source as well as the negative ion yield dependence on certain operational parameters are presented. 9 refs., 5 figs., 1 tab.

  3. Hot demonstration of proposed commercial cesium removal technology: Progress report

    SciTech Connect

    Lee, D.D.; Travis, J.R.; Gibson, M.R.

    1997-12-01

    Cesium, strontium, and technetium radionuclides constitute a small fraction of the primarily sodium and potassium salts present in supernatants that are being stored in tanks at Hanford, Oak Ridge, Savannah River, and Idaho and must be remediated. Nuclide removal technologies supplied by the US Department of Energy Office of Science and Technology`s Efficient Separations and Processing (ESP) Cross-Cutting Program have been previously proposed and tested in small batch and column tests using both simulated and actual supernatants. These technologies must now be tested and the most appropriate ones selected using a flow system of a scale suitable to obtain engineering data that can be applied to the design of pilot-scale equipment. This report describes the operation of the experimental test unit that is located in Building 4501 (ORNL) and the results using the sorbent materials that were tested.

  4. Cesium Interactions With Illite in the Presence of Bacterial Exudates

    NASA Astrophysics Data System (ADS)

    Wendling, L. A.; Ward, T. E.; Harsh, J. B.; Hamilton, M. A.; Palmer, C. D.

    2003-12-01

    Biogeochemical processes in the rhizosphere can significantly alter chemical reactions between contaminants and soil minerals. Several strains of bacteria that exude aluminum-chelating compounds were isolated from the rhizosphere of crested wheatgrass (Agropyron desertorum) collected from the Idaho National Engineering and Environmental Laboratory (INEEL). We examined the effect of exudates from the rhizosphere bacteria on cesium desorption from illite. The exudates from some strains of rhizosphere bacteria significantly enhanced Cs desorption from illite. In addition, Cs desorption from illite increased with increasing concentration of exudates from one selected bacterial strain. There was no obvious relationship between Cs desorption and the Al-chelating ability of the exudates. Both mobilization of Al from illite and changes in the density of frayed edge sites on the illite were monitored as a function of exudate type and concentration. Results suggest that exudates from rhizosphere bacteria may play an important role in Cs interactions with illite and, therefore, could alter Cs availability in micaceous soils.

  5. Hyperfine relaxation of an optically pumped cesium vapor

    SciTech Connect

    Tornos, J.; Amare, J.C.

    1986-07-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a sigma-polarized D/sub 1/-light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D/sub 0/ = 0.101 +- 0.010 cm/sup 2/s/sup -1/ at 0/sup 0/C and 760 Torr; relaxation cross section by Cs-Ar collisions, sigma/sub c/ = (104 +- 5) x 10/sup -23/ cm/sup 2/; relaxation cross section by Cs-Cs (spin exchange) collisions, sigma/sub e//sub x/ = (1.63 +- 0.13) x 10/sup -14/ cm/sup 2/.

  6. Surface morphology and optical properties of porphyrin/Au and Au/porphyrin/Au systems

    PubMed Central

    2013-01-01

    Porphyrin/Au and Au/porphyrin/Au systems were prepared by vacuum evaporation and vacuum sputtering onto glass substrate. The surface morphology of as-prepared systems and those subjected to annealing at 160°C was studied by optical microscopy, atomic force microscopy, and scanning electron microscopy techniques. Absorption and luminescence spectra of as-prepared and annealed samples were measured. Annealing leads to disintegration of the initially continuous gold layer and formation of gold nanoclusters. An amplification of Soret band magnitude was observed on the Au/meso-tetraphenyl porphyrin (TPP) system in comparison with mere TPP. Additional enhancement of luminescence was observed after the sample annealing. In the case of sandwich Au/porphyrin/Au structure, suppression of one of the two porphyrins’ luminescence maxima and sufficient enhancement of the second one were observed. PMID:24373347

  7. Beta-decay measurements of neutron-deficient cesium isotopes

    SciTech Connect

    Parry, R.F.

    1983-03-01

    Beta decay endpoint energy measurements of the neutron deficient cesium isotopes were done using an energy spectrum shape fitting technique. This was a departure from the typical method of endpoint energy analysis, the Fermi-Kurie plot. A discussion of the shape fitting procedure and its improved features are discussed. These beta endpoint measurements have led to total decay energies (Q/sub EC/) of the neutron deficient /sup 119/ /sup 123/Cs isotopes. The total decay energies of /sup 122m/Cs (Q/sub EC/ = 6.95 +- 0.25 MeV) and /sup 119/Cs (Q/sub EC/ = 6.26 +- 0.29 MeV) were new measurements. The total decay energies of /sup 123/Cs (Q/sub EC/ = 4.05 +- 0.18 MeV), /sup 122g/Cs (Q/sub EC/ = 7.05 +- 0.18 MeV), /sup 121/Cs (Q/sub EC/ = 5.21 +- 0.22 MeV), and /sup 120/Cs (Q/sub EC/ = 7.38 +- 0.23 MeV) were measurements with significantly improved uncertainties as compared to the literature. Further, a combination of the energy levels derived from previous literature gamma-gamma coincident measurements and the experimental beta-coincident gamma decay energies has supported an improved level scheme for /sup 121/Xe and the proposal of three new energy levels in /sup 119/Xe. Comparison of the experimental cesium mass excesses (determined with our Q/sub EC/ values and known xenon mass excesses) with both the literature and theoretical predicted values showed general agreement except for /sup 120/Cs. Possible explanations for this deviation are discussed.

  8. Vitrification of cesium-contaminated organic ion exchange resin

    SciTech Connect

    Sargent, T.N. Jr.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  9. Testing Lorentz Invariance with Laser-Cooled Cesium Atomic Frequency Standards

    NASA Technical Reports Server (NTRS)

    Klipstein, William M.

    2004-01-01

    This slide presentation reviews the Lorentz invariance testing during the proposed PARCS experiment. It includes information on the primary atomic reference clock in space (PARCS), cesium, laser cooling, and the vision for the future.

  10. CT brain findings in a patient with elevated brain cesium levels.

    PubMed

    Khangure, Simon R; Williams, Eric S; Welman, Christopher J

    2013-12-01

    We describe the CT findings in the brain of a woman with pathologically proven elevated levels of blood and tissue cesium. The 42-year-old woman had been receiving cesium chloride as a non-mainstream treatment for metastatic breast carcinoma. She presented to hospital following a seizure, and died 48 hours after admission. A brain CT performed on hospital admission showed a diffuse increase in attenuation of brain parenchyma. Autopsy revealed elevated levels of cesium in blood and solid organs including the brain. We hypothesize that the imaging findings are attributable to the abnormally elevated level of brain cesium at the time of the CT scan. To our knowledge, this is the first reported case of this imaging finding.

  11. INTERACTIONS BETWEEN CESIUM AND DISPERSED KAOLINITE POWDERS AT HIGH TEMPERATURES FOR TREATMENT OF MIXED WASTES

    EPA Science Inventory

    Kaolinite sorbents were found to manage emissions of vapor phase cesium, when the kaolinite was injected into the combustor, having maximum value between 1400 and 1500 K. The mechanism of this process and its quantification await further research.

  12. Radiation enhanced diffusion of cesium, strontium, and europium in silicon carbide

    NASA Astrophysics Data System (ADS)

    Dwaraknath, S. S.; Was, G. S.

    2016-06-01

    The radiation enhanced diffusion (RED) of three key fission products in SiC: cesium, europium, and strontium was investigated following ion irradiation at a damage rate of 4.6 × 10-4 dpa s-1 at temperatures between 900° C and 1100° C. The radiation enhancement of diffusion was as large as 107 at 900° C, and dropped to a value of 1 by 1300° C for all but cesium grain boundary diffusion. Strontium and cesium exhibited several orders of magnitude enhancement for both mechanisms. Europium enhancement was greatest at 900° C, but dropped to the thermal rates at 1100° C for both mechanisms. The trends in the RED mechanism correlated well with the point defect concentrations suggesting that both carbon and silicon vacancy concentrations are important for fission product diffusion. These constitute the first radiation-enhanced diffusion measurements of strontium, cesium and europium in SiC.

  13. Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium.

    PubMed

    Hu, Baiyang; Fugetsu, Bunshi; Yu, Hongwen; Abe, Yoshiteru

    2012-05-30

    We developed a spongiform adsorbent that contains Prussian blue, which showed a high capacity for eliminating cesium. An in situ synthesizing approach was used to synthesize Prussian blue inside diatomite cavities. Highly dispersed carbon nanotubes (CNTs) were used to form CNT networks that coated the diatomite to seal in the Prussian blue particles. These ternary (CNT/diatomite/Prussian-blue) composites were mixed with polyurethane (PU) prepolymers to produce a quaternary (PU/CNT/diatomite/Prussian-blue), spongiform adsorbent with an in situ foaming procedure. Prussian blue was permanently immobilized in the cell walls of the spongiform matrix and preferentially adsorbed cesium with a theoretical capacity of 167 mg/g cesium. Cesium was absorbed primarily by an ion-exchange mechanism, and the absorption was accomplished by self-uptake of radioactive water by the quaternary spongiform adsorbent.

  14. Local variation of soil contamination with radioactive cesium at a farm in Fukushima.

    PubMed

    Sato, Itaru; Natsuhori, Masahiro; Sasaki, Jun; Satoh, Hiroshi; Murata, Takahisa; Nakamura, Tatsuro; Otani, Kumiko; Okada, Keiji

    2016-02-01

    Radioactive cesium concentration in soil was measured at 27 sections with 5 points per section, and surface dose of ground was measured at 10 sections with 13 points per section at a farm in Fukushima to assess local variation of soil contamination with radioactive cesium. As for the cesium in soil, averages of the coefficient of variance (CV) and the maximum/minimum ratio in each section were 49% and 4.9, respectively. As for the surface dose, average of its CV in each section was 20% and the maximum/minimum ratio reached a maximum of 3.0. These findings suggest that exact evaluation of soil contamination with cesium is difficult. Small changes or differences in soil contamination may not be detected in studies of the environmental radioactivity.

  15. Cesium-diode performances from the 1963-to-1971 Thermionic Conversion Specialist Conferences

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1972-01-01

    Indexes and summaries of the conference papers containing cesium-diode results are presented. Lists of converter materials, geometries, conditions, outputs, and lifetimes accompany the references. Simple chemical designations for emitters, collectors, and additives direct the reader to appropriate selections.

  16. Cs2 ‘diffuse bands’ emission from superheated cesium vapor

    NASA Astrophysics Data System (ADS)

    Pichler, G.; Makdisi, Y.; Kokaj, J.; Thomas, N.; Mathew, J.; Beuc, R.

    2016-07-01

    Thermal emission from superheated cesium vapor was studied to very high temperatures from 700 °C to 1000 °C. This was performed in the vapor condition only and with no liquid cesium present in the all-sapphire cell. We observed a number of atomic and molecular spectral features simultaneously in emission and absorption, especially peculiar thermal emission of cesium dimer diffuse bands (2 3Πg → a 3∑u + transitions) around 710 nm coexisting with absorption bands around first resonance lines at 852 and 894 nm. We performed appropriate calculations of the diffuse band emission profiles and compared them with measured profiles. We also performed absorption measurements and compared observed diffuse band profiles with calculated ones. Possible applications of the observed phenomena will be discussed in terms of the solar energy conversion using dense cesium vapor.

  17. Solution Effects on Cesium Complexation with Calixarene - Crown Ethers from Liquid to Supercritical Fluids

    SciTech Connect

    Wai, Chien M.; Yonker,Clem

    1999-06-01

    Supercritical fluid CO2 is an alternative solvent for extraction of metals. The solubility parameter of supercritical CO2 varies with density resembling that of liquid hexane at moderate pressures in the supercritical region to those of chlorinated solvents at very high pressures. By changing density of supercritical CO2, the solvation environment of a metal chelate system can vary continuously and resembles over a wide range of solvents. Thus, supercritical CO2 provides a unique system for studying solvation effects on metal chelation. This project is designed to investigate the solvation effects on cesium complexation with macrocyclic compounds including crown ethers and calixarene-crown ethers in CO2 from liquid to supercritical region at high pressures. A powerful spectroscopic technique for studying cesium chelation is nuclear magnetic resonance (NMR). Cesium has only one isotope, 133Cs, with a nuclear spin I = 7/2. Popov et al. used NMR to study cesium complexation with crown ethers and cryptand.

  18. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  19. Biological effects of cesium-137 injected in beagle dogs of different ages

    SciTech Connect

    Nikula, K.J.; Muggenburg, B.A.; Griffith, W.C.

    1995-12-01

    The toxicity of cesium-137 ({sup 137}Cs) in the Beagle dog was investigated at the Argonne National Laboratory (ANL) as part of a program to evaluate the biological effects of internally deposited radionuclides. The toxicity and health effects of {sup 137}Cs are important to understand because {sup 137}Cs is produced in large amounts in light-water nuclear reactors. Large quantities of cesium radioisotopes have entered the human food chain as a result of atmospheric nuclear weapons test, and additional cesium radioisotopes were released during the Chernobyl accident. Although the final analyses are not complete, three findings are significant: older dogs dies significantly earlier than juvenile and young adult dogs; greater occurrence of sarcomas in the cesium-137 injected dogs; the major nonneoplastic effect in dogs surviving beyond 52 d appears to be testicular atrophy.

  20. Local variation of soil contamination with radioactive cesium at a farm in Fukushima.

    PubMed

    Sato, Itaru; Natsuhori, Masahiro; Sasaki, Jun; Satoh, Hiroshi; Murata, Takahisa; Nakamura, Tatsuro; Otani, Kumiko; Okada, Keiji

    2016-02-01

    Radioactive cesium concentration in soil was measured at 27 sections with 5 points per section, and surface dose of ground was measured at 10 sections with 13 points per section at a farm in Fukushima to assess local variation of soil contamination with radioactive cesium. As for the cesium in soil, averages of the coefficient of variance (CV) and the maximum/minimum ratio in each section were 49% and 4.9, respectively. As for the surface dose, average of its CV in each section was 20% and the maximum/minimum ratio reached a maximum of 3.0. These findings suggest that exact evaluation of soil contamination with cesium is difficult. Small changes or differences in soil contamination may not be detected in studies of the environmental radioactivity. PMID:27348893

  1. Estimation of Downstream Cesium Concentrations Following a Postulated PAR Pond Dam Break

    SciTech Connect

    Chen, K.F.

    2002-07-08

    Following a postulated PAR Pond dam break, some of the PAR Pond sediment including the cesium could be eroded and be transported downstream to the Savannah River through the Lower Three Runs Creek. Studies showed that most of the eroded sediment including the cesium would deposit in the Lower Three Runs Creek and the remainder would discharge to the Savannah River from the mouth of Lower Three Runs Creek. A WASP5 model was developed to simulate the eroded sediment and cesium transport from the Lower Three Runs Creek mouth to the Atlantic coast. The dissolved cesium concentrations at the Highway 301 bridge and near the City of Savannah Industrial and Domestic Water Supply Plant are 30 and 27 pCi/l, respectively. The concentrations at both locations are less than the U. S. Environmental Protection Agency drinking water standard of 200 pCi/l.

  2. Surveillance of Radioactive Cesium in Meats of Wild Animals Caught in Chiba Prefecture.

    PubMed

    Hayashi, Chieko; Nakamura, Kazuhiro; Hongo, Takeshi; Hashimoto, Hiroyuki; Harada, Rie; Nakanishi, Kiyoko; Ishii, Toshiyasu

    2016-01-01

    From fiscal year 2012 to 2014, we surveyed the concentration of radioactive cesium in 39 wild animal meats obtained from 20 wild boars and 19 deer caught in Chiba prefecture, using a germanium semiconductor detector. Four wild boar meats in the fiscal years 2012 and 2013 exceeded the radioactive cesium limit in general foods (100 Bq/kg), whereas none of the deer meats exceeded the limit. The left side of the wild boar that showed a radioactive cesium concentration above 100 Bq/kg was divided into 14 parts. We compared the radioactive cesium concentration in the ham used for the screening test with those in other parts. The concentration was highest in ham, among the edible parts. PMID:27211916

  3. Next generation extractants for separation of cesium from high-level waste

    SciTech Connect

    Bartsch, R.A.; Zhou, H.; Delmau, L.H.; Moyer, B.A.

    2008-07-01

    Using calix[4]arene as a scaffold, lipophilic, proton-ionizable ligands for cesium ion extraction have been synthesized. In the 1,3-alternate conformation, lipophilic octyl groups are attached to distal oxygens on one side of the calix[4]arene molecule, and an alkylated benzo-crown-6 unit is connected to distal oxygens on the other side. One phenyl octyl ether unit bears an acidic group in the para-position which orients it directly over the polyether ring. Solvent extractions of trace cesium ion from aqueous solutions into toluene have been performed. The efficiency of cesium ion extraction as a function of the aqueous phase pH and the identity of the acidic group have been assessed. Promising results are obtained for this new series of cesium ion extractants. (authors)

  4. Surveillance of Radioactive Cesium in Meats of Wild Animals Caught in Chiba Prefecture.

    PubMed

    Hayashi, Chieko; Nakamura, Kazuhiro; Hongo, Takeshi; Hashimoto, Hiroyuki; Harada, Rie; Nakanishi, Kiyoko; Ishii, Toshiyasu

    2016-01-01

    From fiscal year 2012 to 2014, we surveyed the concentration of radioactive cesium in 39 wild animal meats obtained from 20 wild boars and 19 deer caught in Chiba prefecture, using a germanium semiconductor detector. Four wild boar meats in the fiscal years 2012 and 2013 exceeded the radioactive cesium limit in general foods (100 Bq/kg), whereas none of the deer meats exceeded the limit. The left side of the wild boar that showed a radioactive cesium concentration above 100 Bq/kg was divided into 14 parts. We compared the radioactive cesium concentration in the ham used for the screening test with those in other parts. The concentration was highest in ham, among the edible parts.

  5. Calculations of neutron and proton radii of cesium isotopes. Final report, April 23--September 30, 1993

    SciTech Connect

    Not Available

    1993-12-31

    This task involved the calculation of neutron and proton radii of cesium isotopes. The author has written a computer code that calculates radii according to two models: Myers 1983 and FRDM 1992. Results of calculations in both these models for both cesium and francium isotopes are attached as figures. He is currently interpreting these results in collaboration with D. Vieira and J.R. Nix, and they expect to use the computer code for further studies of nuclear radii.

  6. A rapid method for the determination of radioactive cesium isotopes in water

    USGS Publications Warehouse

    Janzer, V.J.

    1973-01-01

    Radioactive cesium in water is concentrated by ion-exchange on finely divided ammonium hexacyanocobalt ferrate (NCFC), and then determined by beta counting. No carrier is added, and the method can be used to determine beta-emitting cesium isotopes at the 10-pCi/l level using a 100-ml sample. Five samples can be prepared for counting, in approximately 3 hours, and the method is applicable to fresh and saline waters.

  7. Characterization and immobilization of cesium-137 in soil at Los Alamos National Laboratory

    SciTech Connect

    Lu, Ningping; Mason, C.F.V.; Turney, W.R.J.R.

    1996-06-01

    At Los Alamos National Laboratory, cesium-137 ({sup 137}Cs) is a major contaminant in soils of Technical Area 21 (TA-21) and is mainly associated with soil particles {<=}2.00 mm. Cesium-137 was not leached by synthetic groundwater or acid rainwater. Soil erosion is a primary mechanism of {sup 137}Cs transport in TA-21. The methodology that controls soil particle runoff can prevent the transport of {sup 137}Cs.

  8. Magnetoresistance of Au films

    SciTech Connect

    Zhang, D. L. Song, X. H.; Zhang, X.; Zhang, X.-G.

    2014-12-14

    Classical magnetoresistance (MR) in nonmagnetic metals are conventionally understood in terms of the Kohler rule, with violation usually viewed as anomalous electron transport, in particular, as evidence of non-Fermi liquid behavior. Measurement of the MR of Au films as a function of temperature and film thickness reveals a strong dependence on grain size distribution and clear violation of the Kohler rule. Using a model of random resistor network, we show that this result can be explained if the MR arises entirely from inhomogeneity due to grain boundary scattering and thermal activation of grain boundary atoms. Consequently, the Kohler rule should not be used to distinguish normal and anomalous electron transport in solids.

  9. Review and assessment of technologies for the separation of cesium from acidic media

    SciTech Connect

    Orth, R.J.; Brooks, K.P.; Kurath, D.E.

    1994-09-01

    A preliminary literature survey has been conducted to identify and evaluate methods for the separation of cesium from acidic waste. The most promising solvent extraction, precipitation, and ion exchange methods, along with some of the attributes for each method, are listed. The main criteria used in evaluating the separation methods were as follows: (1) good potential for cesium separation must be demonstrated (i.e., cesium decontamination factors on the order of 50 to 100). (2) Good selectivity for cesium over bulk components must be demonstrated. (3) The method must show promise for evolving into a practical and fairly simple process. (4) The process should be safe to operate. (5) The method must be robust (i.e., capable of separating cesium from various acidic waste types). (6) Secondary waste generation must be minimized. (7) The method must show resistance to radiation damage. The most promising separation methods did not necessarily satisfy all of the above criteria, thus key areas requiring further development are suggested for each method. The report discusses in detail these and other areas requiring further development, as well as alternative solvent extraction, precipitation, ion exchange, and {open_quote}other{close_quote} technologies that, based on current information, show less promise for the separation of cesium from acidic wastes because of significant process limitations. When appropriate, the report recommends areas of future development.

  10. Quantification Of Cesium In Negative Hydrogen Ion Sources By Laser Absorption Spectroscopy

    SciTech Connect

    Fantz, U.; Wimmer, Ch.

    2011-09-26

    The use of cesium in negative hydrogen ion sources and the resulting cesium dynamics caused by the evaporation and redistribution in the vacuum and plasma phase makes a reliable and on-line monitoring of the cesium amount in the source highly desirable. For that purpose, a robust and compact laser absorption setup suitable for the ion source environment has been developed utilizing the Cs D{sub 2} resonance line at 852.1 nm. First measurements are taken in a small laboratory plasma chamber with cesium evaporation. A detection limit of {approx_equal}5x10{sup 13} m{sup -3} at a typical path length of 15 cm has been obtained with a dynamic range of more than three orders of magnitude, limited by line saturation at high densities. For on-line monitoring an automatic data analysis is established achieving a temporal resolution of 100 ms. The setup has then been applied to the ITER prototype ion sources developed at IPP. It is been shown that the method is well suited for routine measurements revealing a new insight into the cesium dynamics during source operation and cesium conditioning.

  11. Modeling Ion-Exchange Processing With Spherical Resins For Cesium Removal

    SciTech Connect

    Hang, T.; Nash, C. A.; Aleman, S. E.

    2012-09-19

    The spherical Resorcinol-Formaldehyde and hypothetical spherical SuperLig(r) 644 ion-exchange resins are evaluated for cesium removal from radioactive waste solutions. Modeling results show that spherical SuperLig(r) 644 reduces column cycling by 50% for high-potassium solutions. Spherical Resorcinol Formaldehyde performs equally well for the lowest-potassium wastes. Less cycling reduces nitric acid usage during resin elution and sodium addition during resin regeneration, therefore, significantly decreasing life-cycle operational costs. A model assessment of the mechanism behind ''cesium bleed'' is also conducted. When a resin bed is eluted, a relatively small amount of cesium remains within resin particles. Cesium can bleed into otherwise decontaminated product in the next loading cycle. The bleed mechanism is shown to be fully isotherm-controlled vs. mass transfer controlled. Knowledge of residual post-elution cesium level and resin isotherm can be utilized to predict rate of cesium bleed in a mostly non-loaded column. Overall, this work demonstrates the versatility of the ion-exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. This evaluation justifies further development of a spherical form of the SL644 resin.

  12. Measurement of cesium emissions during the vitrification of simulated high level radioactive waste

    SciTech Connect

    Zamecnik, J.R.; Miller, D.H.; Carter, J.T.

    1992-01-01

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to eliminate a startup test that would involve adding small amounts of radioactive cesium-137 to simulated high-level waste. In order to eliminate this test, a reliable method for measuring non-radioactive cesium in the offgas system from the glass melter is required. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICPMS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 {mu}g, with the sensitivity being limited by the background cesium present in the filter paper. Typical particulate loadings ranged from <0.2 to >800 {mu}g of cesium. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. The decontamination factors measured experimentally compared favorably with the process design basis values.

  13. Measurement of cesium emissions during the vitrification of simulated high level radioactive waste

    SciTech Connect

    Zamecnik, J.R.; Miller, D.H.; Carter, J.T.

    1992-09-01

    In the Defense Waste Processing Facility at the Savannah River Site, it is desired to eliminate a startup test that would involve adding small amounts of radioactive cesium-137 to simulated high-level waste. In order to eliminate this test, a reliable method for measuring non-radioactive cesium in the offgas system from the glass melter is required. From a pilot scale melter system, offgas particulate samples were taken on filter paper media and analyzed by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). The ICPMS method proved to be sufficiently sensitive to measure cesium quantities as low as 0.135 {mu}g, with the sensitivity being limited by the background cesium present in the filter paper. Typical particulate loadings ranged from <0.2 to >800 {mu}g of cesium. This sensitivity allowed determination of cesium decontamination factors for four of the five major components of the offgas system. The decontamination factors measured experimentally compared favorably with the process design basis values.

  14. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  15. Cesium absorption from acidic solutions using ammonium molybdophosphate on a polyacrylonitrile support (AMP-PAN)

    SciTech Connect

    Miller, C.J.; Olson, A.L.; Johnson, C.K.

    1995-12-01

    Recent efforts at the Idaho Chemical Processing Plant (ICPP) have included evaluation of cesium removal technologies as applied to ICPP acidic radioactive waste streams. Ammonium molybdophosphate (AMP) immobilized on a polyacrylonitrile support (AMP-PAN) has been studied as an ion exchange agent for cesium removal from acidic waste solutions. Capacities, distribution coefficients, elutability, and kinetics of cesium-extraction have been evaluated. Exchange breakthrough curves using small columns have been determined from 1M HNO{sub 3} and simulated waste solutions. The theoretical capacity of AMP is 213 g Cs/kg AMP. The average experimental capacity in batch contacts with various acidic solutions was 150 g Cs/kg AMP. The measured cesium distribution coefficients from actual waste solutions were 3287 mL/g for dissolved zirconia calcines, and 2679 mL/g for sodium-bearing waste. The cesium in the dissolved alumina calcines was analyzed for; however, the concentration was below analytical detectable limits resulting in inconclusive results. The reaction kinetics are very rapid (2-10 minutes). Cesium absorption appears to be independent of acid concentration over the range tested (0.1 M to 5 M HNO{sub 3}).

  16. Export of radioactive cesium from agricultural fields under simulated rainfall in Fukushima.

    PubMed

    Thai, Phong K; Suka, Yuma; Sakai, Masaru; Nanko, Kazuki; Yen, Jui-Hung; Watanabe, Hirozumi

    2015-06-01

    In this study, we investigated the impact of rainfall on runoff, soil erosion and consequently on the discharge of radioactive cesium in agricultural fields in Fukushima prefecture using a rainfall simulator. Simulated heavy rainfalls (50 mm h(-1)) generated significant runoff and soil erosion. The average concentration of radioactive cesium (the sum of (134)Cs and (137)Cs) in the runoff sediments was ∼3500 Bq kg(-1) dry soil, more than double the concentrations measured in the field soils which should be considered in studies using the (137)Cs loss to estimate long-term soil erosion. However, the estimated mass of cesium discharged through one runoff event was less than 2% of the cesium inventory in the field. This suggested that cesium discharge via soil erosion is not a significant factor in reducing the radioactivity of contaminated soils in Fukushima prefecture. However, the eroded sediment carrying radioactive cesium will deposit into the river systems and potentially pose a radioactivity risk for aquatic living organisms.

  17. Au103(SR)45, Au104(SR)45, Au104(SR)46 and Au105(SR)46 nanoclusters

    NASA Astrophysics Data System (ADS)

    Dass, Amala; Nimmala, Praneeth Reddy; Jupally, Vijay Reddy; Kothalawala, Nuwan

    2013-11-01

    High resolution ESI mass spectrometry of the ``22 kDa'' nanocluster reveals the presence of a mixture containing Au103(SR)45, Au104(SR)45, Au104(SR)46, and Au105(SR)46 nanoclusters, where R = -CH2CH2Ph. MALDI TOF MS data confirm the purity of the sample and a UV-vis spectrum shows minor features. Au102(SC6H5COOH)44, whose XRD crystal structure was recently reported, is not observed. This is due to ligand effects, because the 102 : 44 composition is produced using aromatic ligands. However, the 103-, 104- and 105-atom nanoclusters, protected by -SCH2CH2Ph and -SC6H13 ligands, are at or near 58 electron shell closing.High resolution ESI mass spectrometry of the ``22 kDa'' nanocluster reveals the presence of a mixture containing Au103(SR)45, Au104(SR)45, Au104(SR)46, and Au105(SR)46 nanoclusters, where R = -CH2CH2Ph. MALDI TOF MS data confirm the purity of the sample and a UV-vis spectrum shows minor features. Au102(SC6H5COOH)44, whose XRD crystal structure was recently reported, is not observed. This is due to ligand effects, because the 102 : 44 composition is produced using aromatic ligands. However, the 103-, 104- and 105-atom nanoclusters, protected by -SCH2CH2Ph and -SC6H13 ligands, are at or near 58 electron shell closing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03872f

  18. Electron-stimulated desorption of cesium atoms from adlayers on a gold surface

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Yu. A.; Lapushkin, M. N.; Potekhina, N. D.

    2016-06-01

    We have studied the process of electron-stimulated desorption (ESD) of Cs atoms from a Cs/CsAu/Au/W system. It is established that ESD takes place from a Cs adlayer and the adjacent CsAu layer of this system. A model of Cs atom desorption from the Cs/CsAu/Au/W system is proposed. The results confirm the semiconductor nature of CsAu compounds.

  19. Determination of relative sensitivity factors during secondary ion sputtering of silicate glasses by Au+, Au2+ and Au3+ ions.

    PubMed

    King, Ashley; Henkel, Torsten; Rost, Detlef; Lyon, Ian C

    2010-01-01

    In recent years, Au-cluster ions have been successfully used for organic analysis in secondary ion mass spectrometry. Cluster ions, such as Au(2)(+) and Au(3)(+), can produce secondary ion yield enhancements of up to a factor of 300 for high mass organic molecules with minimal sample damage. In this study, the potential for using Au(+), Au(2)(+) and Au(3)(+) primary ions for the analysis of inorganic samples is investigated by analyzing a range of silicate glass standards. Practical secondary ion yields for both Au(2)(+) and Au(3)(+) ions are enhanced relative to those for Au(+), consistent with their increased sputter rates. No elevation in ionization efficiency was found for the cluster primary ions. Relative sensitivity factors for major and trace elements in the standards showed no improvement in quantification with Au(2)(+) and Au(3)(+) ions over the use of Au(+) ions. Higher achievable primary ion currents for Au(+) ions than for Au(2)(+) and Au(3)(+) allow for more precise analyses of elemental abundances within inorganic samples, making them the preferred choice, in contrast to the choice of Au(2)(+) and Au(3)(+) for the analysis of organic samples. The use of delayed secondary ion extraction can also boost secondary ion signals, although there is a loss of overall sensitivity.

  20. Alternate Methods For Eluting Cesium From Spherical Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen; Johnson, Heather Lauren

    2009-01-01

    A Small Column Ion Exchange (SCIX) system has been proposed for removing cesium from the supernate and dissolved salt solutions in the high level waste tanks at the Savannah River Site (SRS). The SCIX system could use either crystalline silicotitanate (CST) an inorganic, non-regenerable sorbent or spherical resorcinol-formaldehyde (RF), a new regenerable resin, to remove cesium from the waste solutions. The standard method for eluting the cesium from the RF resin uses 15-20 bed volumes (BV) of 0.5 M nitric acid (HNO3). The nitric acid eluate, containing the radioactive cesium, would be combined with the sludge from the waste tanks, and would be converted into glass at the Defense Waste Processing Facility (DWPF) at SRS. The amount of nitric acid generated by the standard elution method exceeds the capacity of DWPF to destroy the nitrate ions and maintain the required chemical reducing conditions in the glass melt. Alternate methods for eluting the resin have been tested, including using lower concentrations of nitric acid, other acids, and changing the flow regimes. About 4 bed volumes of 0.5 M nitric acid are required to remove the sodium (titrate the resin) and most of the cesium from the resin, so the bulk of the acid used for the standard elution method removes a very small quantity of cesium from the resin. The resin was loaded with 9.5 g Cs/L of resin prior to elution, which is the maximum expected loading for RF resin treating the actual dissolved salt waste at SRS. For the baseline elution method, 465 g of nitrate is used per liter of resin, and >99.9999% of the cesium is removed from the resin. An alternative method that used 4 bed volumes of 0.5 M HNO3 followed by 11 bed volumes of 0.05 M HNO3, used 158 g of nitrate per liter of resin (66% less nitrate than used for the standard elution) and removed >99.998% of the cesium. A staccato flow mode using 0.5 M HNO3 (1 hr on at 1 BV/hr, followed by 3 hrs off) after the resin had been titrated using a continuous

  1. Low-Light-Shift Cesium Fountain without Mechanical Shutters

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna

    2008-01-01

    A new technique for reducing errors in a laser-cooled cesium fountain frequency standard provides for strong suppression of the light shift without need for mechanical shutters. Because mechanical shutters are typically susceptible to failure after operating times of the order of months, the elimination of mechanical shutters could contribute significantly to the reliability of frequency standards that are required to function continuously for longer time intervals. With respect to the operation of an atomic-fountain frequency standard, the term "light shift" denotes an undesired relative shift in the two energy levels of the atoms (in this case, cesium atoms) in the atomic fountain during interrogation by microwaves. The shift in energy levels translates to a frequency shift that reduces the precision and possibly accuracy of the frequency standard. For reasons too complex to describe within the space available for this article, the light shift is caused by any laser light that reaches the atoms during the microwave- interrogation period, but is strongest for near-resonance light. In the absence of any mitigating design feature, the light shift, expressed as a fraction of the standard fs frequency, could be as large as approx. 2 x 10(exp -11), the largest error in the standard. In a typical prior design, to suppress light shift, the intensity of laser light is reduced during the interrogation period by using a single-pass acoustooptic modulator to deflect the majority of light away from the main optical path. Mechanical shutters are used to block the remaining undeflected light to ensure complete attenuation. Without shutters, this remaining undeflected light could cause a light shift of as much as .10.15, which is unacceptably large in some applications. The new technique implemented here involves additionally shifting the laser wavelength off resonance by a relatively large amount (typically of the order of nanometers) during microwave interrogation. In this

  2. Engineered Materials for Cesium and Strontium Storage Final Technical Report

    SciTech Connect

    Sean M. McDeavitt

    2010-04-14

    Closing the nuclear fuel cycle requires reprocessing spent fuel to recover the long-lived components that still have useful energy content while immobilizing the remnant waste fission products in stable forms. At the genesis of this project, next generation spent fuel reprocessing methods were being developed as part of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. One of these processes was focused on solvent extraction schemes to isolate cesium (Cs) and strontium (Sr) from spent nuclear fuel. Isolating these isotopes for short-term decay storage eases the design requirements for long-term repository disposal; a significant amount of the radiation and decay heat in fission product waste comes from Cs-137 and Sr-90. For the purposes of this project, the Fission Product Extraction (FPEX) process is being considered to be the baseline extraction method. The objective of this project was to evaluate the nature and behavior of candidate materials for cesium and strontium immobilization; this will include assessments with minor additions of yttrium, barium, and rubidium in these materials. More specifically, the proposed research achieved the following objectives (as stated in the original proposal): (1) Synthesize simulated storage ceramics for Cs and Sr using an existing labscale steam reformer at Purdue University. The simulated storage materials will include aluminosilicates, zirconates and other stable ceramics with the potential for high Cs and Sr loading. (2) Characterize the immobilization performance, phase structure, thermal properties and stability of the simulated storage ceramics. The ceramic products will be stable oxide powders and will be characterized to quantify their leach resistance, phase structure, and thermophysical properties. The research progressed in two stages. First, a steam reforming process was used to generate candidate Cs/Sr storage materials for characterization. This portion of the research was carried out at Purdue

  3. Cesium Ion Exchange Loading Kinetics Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-11-02

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (2 to 8 M) due to caustic leaching and higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of linear load velocity (4, 6, 8 cm/min), initial sodium concentration (2, 5, 8 M), initial sodium-to-cesium ratio (1.4E+05, 2.1E+05, 2.8E+05 mol/mol), initial sodium-to-hydroxide ratio (2.0, 3.0, 4.0 mol/mol), and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing was performed using a~2mL column packed with SRF resin with feed flowing through it in an up-flow pattern. Samples were taken at set intervals and the data analyzed to help understand the impact of these conditions on the SRF resin performance. It was found that the loading kinetics were not significantly impacted by the sodium concentration over the range tested. However, the loading kinetics were impacted by the linear load velocity. These results indicated that at the test temperature, the adsorption of cesium is strongly dependent on mass transfer through the film and not significantly impacted by interparticle diffusion. Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  4. Biogeochemistry of Cesium in a Sagebrush Steppe Ecosystem

    NASA Astrophysics Data System (ADS)

    Palmer, C. D.; Hess, J. R.; Hamilton, M. A.; Cook, L. L.; Siegel, L. S.; Yancey, N. A.

    2002-12-01

    The nature of radiocesium sources is such that they often have resulted in the contamination of shallow (< 1m), vegetated soils. This surface and near-surface soil contamination by radiocesium may be susceptible to migration on vegetated sites due to plant facilitated 137Cs translocation. Once in the plant, the 137Cs will not only reposition within the soil profile, but grazing and predation can move it through the food chain and range fires can further disperse it throughout the environment. We have been studying the biogeochemistry of cesium in a sagebrush ecosystem at the Idaho National Engineering and Environmental Laboratory in southeastern Idaho. This ecosystem is dominated by crested wheatgrass, rabbitbrush, and sagebrush. Field measurements at the Central Facilities Area indicate that approximately 94% of plant mass radiocesium is associated with crested wheatgrass. Under conditions of senescence, the crested wheatgrass root-to-soil and shoot-to-root ratios (transfer factors) are different for 137Cs and stable Cs (133Cs). These differences are partially attributed to the differences in the binding mechanisms of 137Cs and 133Cs in the soil. Field measurements in the vicinity of the former SL-1 reactor show changes in concentrations and transfer factors with the stage of plant growth. The samples included both rhizosphere and bulk soils as well as roots and shoots from the crested wheatgrass. The ranges of total cesium in rhizosphere and bulk soils are similar, are fairly narrow (1.7 to 5.2 mg kg-1), and do not appear to vary seasonally. In contrast, 137Cs activities in rhizosphere and bulk soils are significantly different, vary over orders of magnitude (10-180 pCi g-1), and show seasonal differences. Shoot and root 137Cs activities decrease between April and May. Total Cs shoot-to-root ratios are greater than the corresponding ratios for radiocesium. Total Cs root-to-rhizosphere soil ratios are lower than the corresponding ratios for 137Cs. These results

  5. Centrality dependence of antiproton production in Au+Au collisions

    SciTech Connect

    Beavis, D.; Bennett, M.J.; Carroll, J.B.; Chiba, J.; Chikanian, A.; Crawford, H.; Cronqvist, M.; Dardenne, Y.; Debbe, R.; Doke, T.; Engelage, J.; Greiner, L.; Hallman, T.J.; Hayano, R.S.; Heckman, H.H.; Kashiwagi, T.; Kikuchi, J.; Kumar, S.; Kuo, C.; Lindstrom, P.J.; Mitchell, J.W.; Nagamiya, S.; Nagle, J.L.; Pope, J.K.; Stankus, P.; Tanaka, K.H.; Welsh, R.C.; Zhan, W. ||||||||[Universities Space Sciences Research Association

    1995-11-13

    We have measured the yields of antiprotons in Au+Au interactions in the rapidity range 1.2{lt}{ital y}{lt}2.8 as a function of centrality using a beam line spectrometer. The shapes of the invariant multiplicity distributions at {ital p}{sub {ital t}}=0 are used to explore the dynamics of antiproton production and annihilation. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  6. Physical mechanisms for anisotropic plasma etching of cesium iodide

    SciTech Connect

    Yang Xiaoji; Hopwood, Jeffrey A.

    2004-11-01

    The physical mechanisms for the interaction between a reactive plasma and a cesium iodide surface are investigated. Under conditions of ion bombardment and elevated substrate temperature, CsI is found to sputter etch slowly (15 nm/min). If atomic fluorine, fluorocarbon radicals, of SF{sub x} radicals are present in the discharge, however, CsI is reactively etched at substantially higher rates (up to 200 nm/min). The roles of plasma radicals and energetic ion bombardment are investigated by first exposing the surface to plasma radicals and then bombarding the surface with argon ions. The optical emission from Cs and I atoms is found to correlate with the etch rate of CsI and is used as an in situ monitor of radical-enhanced etching. Small surface exposures to CF{sub x}, SF{sub x}, and F radicals are shown to enhance the etch rate of CsI. If the exposure of the CsI surface is increased, however, these same radical species act as etch inhibitors. A simple model for reactive etching of CsI is proposed, and this model is shown to compare reasonably well with experimental etch rates.

  7. Chromatic instabilities in cesium-doped tungsten bronze nanoparticles

    SciTech Connect

    Adachi, Kenji Ota, Yosuke; Tanaka, Hiroyuki; Okada, Mika; Oshimura, Nobumitsu; Tofuku, Atsushi

    2013-11-21

    Nanoparticles of alkali-doped tungsten bronzes are an excellent near-infrared shielding material, but exhibit slight chromatic instabilities typically upon applications of strong ultra-violet light or heating in humid environment, which acts detrimentally to long-life commercial applications. Origin of the chromatic instabilities in cesium-doped tungsten bronze has been investigated, and it has been found that the coloration and bleaching processes comprised electronic exchanges which accelerate or depress the polaron excitation and the localized surface plasmon resonance. Coloration on UV illumination is evidenced by electron diffraction as due to the formation of H{sub x}WO{sub 3}, which is considered to take place in the surface Cs-deficient WO{sub 3} region via the double charge injection mechanism. On the other hand, bleaching on heating in air and in humid environment is shown to accompany the extraction of Cs and electrons from Cs{sub 0.33}WO{sub 3} by X-ray photoelectron spectroscopy and X-ray diffraction analysis and is concluded to be an oxidation of Cs{sub 0.33}WO{sub 3} on the particle surface.

  8. The crystal structures of potassium and cesium trivanadates

    USGS Publications Warehouse

    Evans, H.T.; Block, S.

    1966-01-01

    Potassium and cesium trivanadates are monoclinic and isomorphous, space group P21/m, with the following dimensions (Z = 2): KV3O8, a = 7.640 A, b = 8.380 A, c = 4.979 A, ??= 96?? 57???; CsV3O8, a = 8.176 A, b = 8.519 A, c = 4.988 A, ?? = 95?? 32???. The crystal structure of KV3O8 has been determined from hk0, 0kl, and h0l Weissenberg data with an R factor of 0.15. The structure of CsV3O8 has been refined with 1273 hkl Weissenberg data to an R factor of 0.089. The structures consist of corrugated sheets based on a linkage of distorted VO6, octahedra. Two of the vanadium atoms lie in double, square-pyramid groups V2O8, which are linked through opposite basal corners into chains along the b axis. The chains are joined laterally along the c axis into sheets by the third vanadium atom in VO groups, also forming part of a square-pyramid coordination. Various aspects of these structures are compared with other known oxovanadate structures.

  9. Production of complex rubidium and cesium hydrogen sulfate‒phosphates

    NASA Astrophysics Data System (ADS)

    Komornikov, V. A.; Grebenev, V. V.; Makarova, I. P.; Selezneva, E. V.; Andreev, P. V.

    2016-07-01

    The solubility in the CsH2PO4‒CsHSO4‒H2O system at different temperatures (25, 50, and 75°C) is studied and the phase equilibria in the Rb3H(SO4)2‒RbH2PO4‒H2O system under isothermal conditions (at 25°C) are analyzed. The temperature and concentration conditions for forming Rb2(HSO4)(H2PO4), Rb4(HSO4)3(H2PO4), Cs4(HSO4)3(H2PO4), Cs3(HSO4)2(H2PO4), Cs2(HSO4)(H2PO4), and Cs6H(HSO4)3(H2PO4)4 compounds (the latter has been obtained for the first time) are determined. The conditions for growing large single crystals of complex acid rubidium and cesium salts are found.

  10. A cesium TELEC experiment at Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Britt, E. J.

    1979-01-01

    The thermoelectronic laser energy converter (TELEC), was studied as a method of converting a 10.6 mm CO2 laser beam into electric power. The calculated characteristics of a TELEC seem to be well matched to the requirements of a spacecraft laser energy conversion system. The TELEC is a high power density plasma device which absorbs an intense laser beam by inverse bremsstrahlung with the plasma electrons. In the TELEC process, electromagnetic radiation is absorbed directly in the plasma electrons producing a high electron temperature. The energetic electrons diffuse out of the plasma striking two electrodes which are in contact with the plasma at the boundaries. These two electrodes have different areas: the larger one is designated as the collector, the smaller one is designated as the emitter. The smaller electrode functions as an electron emitter to provide continuity of the current. Waste heat is rejected from the collector electrode. An experiment was carried out with a high power laser using a cesium vapor TELEC cell with 30 cm active length. Laser supported plasma was produced in the TELEC device during a number of laser runs over a period of several days. Electric power from the TELEC was observed with currents in the range of several amperes and output potentials of less than 1 volt. The magnitudes of these electric outputs were smaller than anticipated but consistent with the power levels of the laser during this experiment.

  11. Interlayer collapse affects on cesium adsorption onto illite.

    PubMed

    Benedicto, Ana; Missana, Tiziana; Fernández, Ana María

    2014-05-01

    Cesium adsorption onto Illite has been widely studied, because this clay is especially relevant for Cs migration-retention in the environment. The objective of this study is to analyze how Cs adsorption onto Illite is affected by structural changes produced by the presence of different exchangeable cations--and specifically interlayer collapse. Cs sorption isotherms were carried out with Illite previously exchanged with Na, K, or Ca, at a broad enough range of ionic strength, for the determination of the possible affect of the electrolyte on the structure of Illite. In the presence of Ca, the maximum sorbed Cs was unexpectedly high (900 mequiv · kg(-1)) given the cationic exchange capacity commonly accepted for Illite (near 200 mequiv · kg(-1)). This was explained by the expansion of Illite layers (decollapse) induced by large hydrated cations such as Ca(2+) that may facilitate cation uptake--especially Cs(+), which is a highly selective cation. In the presence of Ca (and most probably of other divalent cations), Cs accessibility to exchange positions is increased. Both experimental evidence and the modeling of Cs sorption onto Illite supported the hypothesis of decollapse. Our results demonstrate the requirement of accounting for Illite decollapse especially for high Cs loadings, because of the potential prediction errors for its migration. Ignoring the Illite decollapse could lead the biased estimation of selectivity coefficients and consequently the erroneous prediction of sorption/migration behavior of Cs, and possibly other contaminants, in the environment. PMID:24708160

  12. Desorption of cesium from granite under various aqueous conditions.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Wei, Yuan-Yaw; Teng, Shi-Ping

    2010-12-01

    In this work the desorption of cesium ions from crushed granite in synthetic groundwater (GW) and seawater (SW) was investigated. Results were compared with those obtained in deionized water (DW) and in two kinds of extraction solutions, namely: MgCl(2) and NaOAc (sodium acetate). In general, the desorption rate of Cs from crushed granite increased proportionally with initial Cs loadings. Also, amounts of desorbed Cs ions followed the tendency in the order SW>GW>NaOAc approximately equal MgCl(2)>DW solutions. This indicated that the utilization of extraction reagents for ion exchange will underestimate the Cs desorption behavior. Fitting these experimental data by Langmuir model showed that these extraction reagents have reduced Cs uptake by more than 90%, while only less than 1% of adsorbed Cs ions are still observed in GW and SW solutions in comparison to those in DW. Further SEM/EDS mapping studies clearly demonstrate that these remaining adsorbed Cs ions are at the fracture areas of biotite.

  13. Evaluation of a cesium adsorbent grafted with ammonium 12-molybdophosphate

    NASA Astrophysics Data System (ADS)

    Shibata, Takuya; Seko, Noriaki; Amada, Haruyo; Kasai, Noboru; Saiki, Seiichi; Hoshina, Hiroyuki; Ueki, Yuji

    2016-02-01

    A fibrous cesium (Cs) adsorbent was developed using radiation-induced graft polymerization with a cross-linked structure containing a highly stable adsorption ligand. The ligand, ammonium 12-molybdophosphate (AMP), was successfully introduced onto the fibrous polyethylene trunk material. The resulting Cs adsorbent contained 36% nonwoven fabric polyethylene (NFPE), 1% AMP, 2% triallyl isocyanurate (TAIC) and 61% glycidyl methacrylate (GMA). The adsorbent's Cs adsorption capacity was evaluated using batch and column tests. It was determined that the adsorbent could be used in a wide pH range. The amount of desorbed molybdenum, which can be used as an estimate for AMP stability on the Cs adsorbent, was minimized at the standard drinking water pH range of 5.8-8.6. Based from the inspection on the adherence of these results to the requirements set forth by the Food Sanitation Act by a third party organization, it can be concluded that the developed Cs adsorbent can be safely utilized for drinking water.

  14. Final storage of radioactive cesium by pollucite hydrothermal synthesis

    PubMed Central

    Yokomori, Yoshinobu; Asazuki, Kazuhito; Kamiya, Natsumi; Yano, Yudai; Akamatsu, Koki; Toda, Tetsuya; Aruga, Atsushi; Kaneo, Yoshiaki; Matsuoka, Seiko; Nishi, Koji; Matsumoto, Satoshi

    2014-01-01

    The Fukushima nuclear accident has highlighted the importance of finding a better final storage method for radioactive cesium species. Cs is highly soluble in water, and can easily exchange with other alkali ions in zeolites or clays to form stable complexes. However, Cs+ is released from Cs+ complexes into water when surrounded by an excess of water. Pollucite may be the best final storage option for Cs+, but its typical synthesis requires heating to about 1200°C in air. Here, we show that the hydrothermal synthesis of pollucite can be completed at 300°C in three hours from any zeolite or clay. Furthermore, our procedure does not require ion exchange before synthesis. Radioactive Cs is usually found in complexes with clays. At that time, this method only requires calcium hydroxide, water, and three hours of hydrothermal synthesis, so the process is both inexpensive and practical for large-scale application. Pollucite is an analog of analcime zeolite, and contains a channel system 2.8 Å in diameter, which is formed by 6-oxygen rings. As the diameter of Cs+ is 3.34 Å and each Cs+ exists independently within a separate portion of the channel, Cs+ cannot exit the pollucite framework without breaking it. PMID:24569302

  15. Hanford Isotope Project strategic business analysis Cesium-137 (Cs-137)

    SciTech Connect

    1995-10-01

    The purpose of this business analysis is to address the beneficial reuse of Cesium 137 (Cs-137) in order to utilize a valuable national asset and possibly save millions of tax dollars. Food irradiation is the front runner application along with other uses. This business analysis supports the objectives of the Department of Energy National Isotope Strategy distributed in August 1994 which describes the DOE plans for the production and distribution of isotope products and services. As part of the Department`s mission as stated in that document. ``The Department of Energy will also continue to produce and distribute other radioisotopes and enriched stable isotopes for medical diagnostics and therapeutics, industrial, agricultural, and other useful applications on a businesslike basis. This is consistent with the goals and objectives of the National Performance Review. The Department will endeavor to look at opportunities for private sector to co-fund or invest in new ventures. Also, the Department will seek to divest from ventures that can more profitably or reliably be operated by the private sector.``

  16. Cesium Delivery System for Negative Ion Source at IPR

    SciTech Connect

    Bansal, G.; Pandya, K.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Bandyopadhyay, M.; Chakraborty, A.; Singh, M. J.

    2011-09-26

    The technique of surface production of negative ions using cesium, Cs, has been efficiently exploited over the years for producing negative ion beams with increased current densities from negative ion sources used on neutral beam lines. Deposition of Cs on the source walls and the plasma grid lowers the work function and therefore enables a higher yield of H{sup -}, when hydrogen particles (H and/or H{sub x}{sup +}) strike these surfaces.A single driver RF based (100 kW, 1 MHz) negative ion source test bed, ROBIN, is being set up at IPR under a technical collaboration between IPR and IPP, Germany. The optimization of the Cs oven design to be used on this facility as well as multidriver sources is underway. The characterization experiments of such a Cs delivery system with a 1 g Cs inventory have been carried out using surface ionization technique. The experiments have been carried by delivering Cs into a vacuum chamber without plasma. The linear motion of the surface ionization detector, SID, attached with a linear motion feedthrough allows measuring the angular distribution of the Cs coming out of the oven. Based on the experimental results, a Cs oven for ROBIN has been proposed. The Cs oven design and experimental results of the prototype Cs oven are reported and discussed in the paper.

  17. Au20: A Tetrahedral Cluster

    SciTech Connect

    Li, Jun; Li, Xi; Zhai, Hua Jin; Wang, Lai S.

    2003-02-07

    Photoelectron spectroscopy revealed that a 20 atom gold cluster has an extremely large energy gap, which is even greater than that of C60, and an electron affinity comparable with that of C60. This observation suggests that the Au20 cluster must be extremely stable and chemically inert. Using relativistic density functional calculations, we found that Au20 possesses a remarkable tetrahedral structure, which is a fragment of the bulk face-centered cubic lattice of gold with a small structural relaxation. Au20 is thus a true cluster molecule, while at the same time it is exactly part of the bulk, but with very different properties. The tetrahedral Au20 may possess interesting catalytic properties and may be synthesized in bulk quantity or assembled on non-interacting surfaces.

  18. Potential of Calendula alata for phytoremediation of stable cesium and lead from solutions.

    PubMed

    Borghei, Mehdi; Arjmandi, Reza; Moogouei, Roxana

    2011-10-01

    Calendula alata plants were tested for their potential to remove stable cesium and lead from solutions in a 15-day period. The plants were grown hydroponically and placed in solutions containing CsCl and Pb(C₂H₃O₂)₂ at different concentrations (0.6, 2 and 5 mg l⁻¹). When plants were incubated in CsCl solutions 46.84 ± 2.12%, 41.35 ± 1.59%, and 52.06 ± 1.02% cesium was found to be remediated after 15 days. Moreover, more than 99% lead was removed from the Pb(C₂H₃O₂)₂ solution in all three concentrations after 15 days during the same period. When both CsCl and Pb(C₂H₃O₂)₂ were supplemented together in the solution, 9.92 ± 1.22%, 45.56 ± 3.52%, and 46.16 ± 1.48% cesium and 95.30 ± 0.72%, 96.64 ± 0.30%, and 99.02 ± 0.04% lead were removed after 15 days. The present study suggests that hydroponically grown C. alata could be used as a potential candidate plant for phytoremediation of cesium and lead from solutions; however, plants were found to be more efficient for the remediation of lead than cesium.

  19. Removal of cesium from simulated liquid waste with countercurrent two-stage adsorption followed by microfiltration.

    PubMed

    Han, Fei; Zhang, Guang-Hui; Gu, Ping

    2012-07-30

    Copper ferrocyanide (CuFC) was used as an adsorbent to remove cesium. Jar test results showed that the adsorption capacity of CuFC was better than that of potassium zinc hexacyanoferrate. Lab-scale tests were performed by an adsorption-microfiltration process, and the mean decontamination factor (DF) was 463 when the initial cesium concentration was 101.3μg/L, the dosage of CuFC was 40mg/L and the adsorption time was 20min. The cesium concentration in the effluent continuously decreased with the operation time, which indicated that the used adsorbent retained its adsorption capacity. To use this capacity, experiments on a countercurrent two-stage adsorption (CTA)-microfiltration (MF) process were carried out with CuFC adsorption combined with membrane separation. A calculation method for determining the cesium concentration in the effluent was given, and batch tests in a pressure cup were performed to verify the calculated method. The results showed that the experimental values fitted well with the calculated values in the CTA-MF process. The mean DF was 1123 when the dilution factor was 0.4, the initial cesium concentration was 98.75μg/L and the dosage of CuFC and adsorption time were the same as those used in the lab-scale test. The DF obtained by CTA-MF process was more than three times higher than the single-stage adsorption in the jar test.

  20. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  1. An isotope dilution-precipitation process for removing radioactive cesium from wastewater.

    PubMed

    Rogers, Harold; Bowers, John; Gates-Anderson, Dianne

    2012-12-01

    A novel isotope dilution-precipitation method has been developed to remove cesium-137 from radioactive wastewater. The process involves adding stable cesium chloride to wastewater in order to raise the total cesium concentration, which then allows both the stable and radioactive cesium ions to be precipitated together using sodium tetraphenylborate. This process was investigated utilizing laboratory solutions to determine stable cesium dose rates, mixing times, effects of pH, and filtration requirements. Once optimized, the process was then tested on synthetic wastewater and aqueous low-level waste. Experiments showed the reaction to be very quick and stable in the pH range tested, 2.5-11.5. The wastewater may need to be filtered using a 0.45-μm filter, though ferric sulfate has been shown to promote coagulation and settling, thereby eliminating the necessity for filtration. This investigation showed that this isotope dilution-precipitation process can remove Cs-37 levels below the U.S. Department of Energy's (DOE) Derived Concentration Standard (DCS) of 3.0 × 10(-6) μCi/mL using a single dosage, potentially allowing the wastewater to be discharged directly to sanitary sewers.

  2. The effect of environmental remediation on the cesium-137 levels in white-tailed deer.

    PubMed

    Rispoli, Fred J; Green, Timothy; Fasano, Thomas A; Shah, Vishal

    2014-10-01

    Due to activities involving nuclear energy research during the latter half of the 1900 s, environmental contamination in the form of elevated cesium-137 levels was observed within the Brookhaven National Laboratory, a US Department of Energy facility. Between the years 2000 and 2005, the laboratory carried out a major soil cleanup effort to remove cesium-137 from contaminated sites. In this study, we examine the effectiveness of the cleanup effort by comparing the levels of cesium-137 in the meat of white-tailed deer found within and around the laboratory. Results suggest that the cleanup was effective, with mean concentration of cesium-137 in the meat from within the laboratory decreasing from 2.04 Bq/g prior to 1.22 Bq/g after cleanup. At the current level, the consumption of deer would not pose any human health hazard. Nevertheless, statistically higher levels of cesium-137 were detected in the deer within the laboratory as opposed to levels found in deer 1 mi beyond the laboratory site.

  3. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium.

    PubMed

    Goñi, S; Guerrero, A; Lorenzo, M P

    2006-10-11

    The efficiency of innovative matrices for immobilizing cesium is presented in this work. The matrix formulation included the use of fly ash belite cement (FABC-2-W) and gismondine-type Na-P1 zeolite, both of which are synthesized from fly ash of coal combustion. The efficiency for immobilizing cesium is evaluated from the leaching test ANSI/ANS 16.1-1986 at the temperature of 40 degrees C, from which the apparent diffusion coefficient of cesium is obtained. Matrices with 100% of FABC-2-W are used as a reference. The integrity of matrices is evaluated by porosity and pore-size distribution from mercury intrusion porosimetry, X-ray diffraction and nitrogen adsorption analyses. Both matrices can be classified as good solidify systems for cesium, specially the FABC-2-W/zeolite matrix in which the replacement of 50% of belite cement by the gismondine-type Na-P1 zeolite caused a decrease of two orders of magnitude of cesium mean Effective Diffusion Coefficient (D(e)) (2.8e-09 cm(2)/s versus 2.2e-07 cm(2)/s, for FABC-2-W/zeolite and FABC-2-W matrices, respectively). PMID:16759800

  4. ADVANCED TECHNOLOGIES FOR THE SIMULTANEOUS SEPARATION OF CESIUM AND STRONTIUM FROM SPENT NUCLEAR FUEL

    SciTech Connect

    Jack D. Law; Terry A. Todd; R. Scott Herbst; David H. Meikrantz; Dean R. Peterman; Catherine L. Riddle; Richard D. Tillotson

    2005-02-01

    Two new solvent extraction technologies have been recently developed to simultaneously separate cesium and strontium from spent nuclear fuel, following dissolution in nitric acid. The first process utilizes a solvent consisting of chlorinated cobalt dicarbollide and polyethylene glycol extractants in a phenyltrifluoromethyl sulfone diluent. Recent improvements to the process include development of a new, non-nitroaromatic diluent and development of new stripping reagents, including a regenerable strip reagent that can be recovered and recycled. This new strip reagent reduces product volume by a factor of 20, over the baseline process. Countercurrent flowsheet tests on simulated spent nuclear fuel feed streams have been performed with both cesium and strontium removal efficiencies of greater than 99 %. The second process developed to simultaneously separate cesium and strontium from spent nuclear fuel is based on two highly-specific extractants: 4',4',(5')-Di-(t-butyldicyclo-hexano)-18-crown-6 (DtBuCH18C6) and Calix[4]arene-bis-(tert-octylbenzo-crown-6) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium and the BOBCalixC6 extractant is selective for cesium. A solvent composition has been developed that enables both elements to be removed together and, in fact, a synergistic effect was observed with strontium distributions in the combined solvent that are much higher that in the strontium extraction (SREX) process. Initial laboratory test results of the new combined cesium and strontium extraction process indicate good extraction and stripping performance.

  5. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry

    PubMed Central

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-01-01

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash. PMID:25192495

  6. The effect of environmental remediation on the cesium-137 levels in white-tailed deer.

    PubMed

    Rispoli, Fred J; Green, Timothy; Fasano, Thomas A; Shah, Vishal

    2014-10-01

    Due to activities involving nuclear energy research during the latter half of the 1900 s, environmental contamination in the form of elevated cesium-137 levels was observed within the Brookhaven National Laboratory, a US Department of Energy facility. Between the years 2000 and 2005, the laboratory carried out a major soil cleanup effort to remove cesium-137 from contaminated sites. In this study, we examine the effectiveness of the cleanup effort by comparing the levels of cesium-137 in the meat of white-tailed deer found within and around the laboratory. Results suggest that the cleanup was effective, with mean concentration of cesium-137 in the meat from within the laboratory decreasing from 2.04 Bq/g prior to 1.22 Bq/g after cleanup. At the current level, the consumption of deer would not pose any human health hazard. Nevertheless, statistically higher levels of cesium-137 were detected in the deer within the laboratory as opposed to levels found in deer 1 mi beyond the laboratory site. PMID:25028321

  7. 75 FR 37483 - Request for Comments on the Draft Policy Statement on the Protection of Cesium-137 Chloride...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... published in the Federal Register on July 31, 2008 (73 FR 44780), and discussed with stakeholders in a... COMMISSION Request for Comments on the Draft Policy Statement on the Protection of Cesium-137 Chloride... considering adopting a statement of policy on the protection of cesium-137 chloride (CsCl) sources....

  8. Comparison of organic and inorganic ion exchange materials for removal of cesium and strontium from tank waste

    SciTech Connect

    Brown, G.

    1996-10-01

    This work is part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. Pacific Northwest National Laboratory (PNNL) staff are investigating novel ion exchangers for use in nuclear waste remediation (groundwater, high-level waste (HLW), and low-level waste (LLW)). Waste components targeted for remediation include cesium, strontium, and technetium.

  9. Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts

    PubMed Central

    Ma, Aijing; Xu, Jie; Zhang, Xuehua; Zhang, Bin; Wang, Dayang; Xu, Haolan

    2014-01-01

    Interfacial nanodroplets were grafted to the surfaces of self-sacrificed template particles in a galvanic reaction system to assist the construction of 3D Au porous structures. The interfacial nanodroplets were formed via direct adsorption of surfactant-free emulsions onto the particle surfaces. The interfacial nanodroplets discretely distributed at the template particle surfaces and served as soft templates to guide the formation of porous Au structures. The self-variation of footprint sizes of interfacial nanodroplets during Au growth gave rise to a hierarchical pore size distribution of the obtained Au porous particles. This strategy could be easily extended to synthesize bimetal porous particles such as Au-Pt and Au-Pd. The obtained porous Au, Au-Pt, and Au-Pd particles showed excellent catalytic activity in catalytic reduction of 4-nitrophenol. PMID:24797697

  10. Proton tunneling in low dimensional cesium silicate LDS-1

    SciTech Connect

    Matsui, Hiroshi Iwamoto, Kei; Mochizuki, Dai; Osada, Shimon; Asakura, Yusuke; Kuroda, Kazuyuki

    2015-07-14

    In low dimensional cesium silicate LDS-1 (monoclinic phase of CsHSi{sub 2}O{sub 5}), anomalous infrared absorption bands observed at 93, 155, 1210, and 1220 cm{sup −1} are assigned to the vibrational mode of protons, which contribute to the strong hydrogen bonding between terminal oxygen atoms of silicate chain (O–O distance = 2.45 Å). The integrated absorbance (oscillator strength) for those modes is drastically enhanced at low temperatures. The analysis of integrated absorbance employing two different anharmonic double-minimum potentials makes clear that proton tunneling through the potential barrier yields an energy splitting of the ground state. The absorption bands at 93 and 155 cm{sup −1}, which correspond to the different vibrational modes of protons, are attributed to the optical transition between the splitting levels (excitation from the ground state (n = 0) to the first excited state (n = 1)). Moreover, the absorption bands at 1210 and 1220 cm{sup −1} are identified as the optical transition from the ground state (n = 0) to the third excited state (n = 3). Weak Coulomb interactions in between the adjacent protons generate two types of vibrational modes: symmetric mode (93 and 1210 cm{sup −1}) and asymmetric mode (155 and 1220 cm{sup −1}). The broad absorption at 100–600 cm{sup −1} reveals an emergence of collective mode due to the vibration of silicate chain coupled not only with the local oscillation of Cs{sup +} but also with the proton oscillation relevant to the second excited state (n = 2)

  11. Cesium Chloride Compatibility Testing Program. Annual report, fiscal year 1984

    SciTech Connect

    Bryan, G.H.; Divine, J.R.

    1985-01-01

    During the course of a prior examination, it was found that one of the aged test capsules exhibited discoloration and pitting on the outer surface of the inner capsule. The damage was attributed to problems encountered in the electropolishing operation, which is used to decontaminate the inner capsule after it is loaded with the CsCl and welded shut. A study was carried out in FY 1984 to: determine if the pitting was associated with the electropolishing operation; identify acceptable solution(s) to the problem; and establish the effect, if any, on the long-term integrity of the capsule. Another special study performed in FY 1984 was that of examining two capsules from the Waste Encapsulation and Storage Facility (WESF) storage pool. The objective was to establish the extent of the capsule corrosion while in storage. The study of cause and long-term consequences of the pitting on the WESF cesium chloride capsules has found: The pitting is caused by a nonuniform current distribution at the rack/capsule contact, which forms localized hot spots. The high temperature causes the acid to become more concentrated through boiling of the acid. The concentrated boiling phosphoric acid causes a high rate of corrosion which forms the crevice. The lack of intergranular attack at the base of the crevices and the favorable results of the mechanical testing leads to the conclusion that there will be no long-term failure mechanism accentuated by the pitting, beyond that of having a small hole in the capsule wall with a consequential thinner wall. An attempt to penetrate the capsule wall by electropolishing failed after 30 min with the loss of electrical contact. Consequently, the maximum wall penetration is 40 mils, out of a total thickness of 136 mil. No justification was found to require examination and repack of the existing capsules. A modification of the rack design is recommended for future work, however, to eliminate the pitting.

  12. Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models

    SciTech Connect

    Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.

    2005-09-15

    Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.

  13. Levels of cesium-137 in seawater and fish from the Brazilian coast.

    PubMed

    Cunha, I I; Munita, C S; Paiva, R P; Teixeira, A

    1993-11-01

    Considering environmental pollution problems and their impact on man, we have developed a research programme on environment monitoring. The aim of this work was to develop and to apply radiochemical methods for the analysis of cesium-137 in marine samples, such as seawater and fish. Cesium-137 levels in surface seawater from the coastal region of São Paulo State range from 1.7 to 1.9 Bq.m-3. Samples of the five species of fish most consumed by local population were taken for the analysis of cesium-137. Levels for fish varied from 0.1 to 0.3 Bq.kg-1 of edible part. Data were used to calculate dose assessment. PMID:8272848

  14. Operational stability of rubidium and cesium frequency standards. [analysis of equipment performance at NASA tracking stations

    NASA Technical Reports Server (NTRS)

    Lavery, J. E.

    1972-01-01

    In the course of testing various rubidium and cesium frequency standards under operational conditions for use in NASA tracking stations, about 55 unit-years of relative frequency measurements for averaging times from 10 to 10 to the 7th power have been accumulated at Goddard Space Flight Center (GSFC). Statistics on the behavior of rubidium and cesium standards under controlled laboratory conditions have been published, but it was not known to what extent the lesser controlled environments of NASA tracking stations affected the performance of the standards. The purpose of this report is to present estimates of the frequency stability of rubidium and cesium frequency standards under operational conditions based on the data accumulated at GSFC.

  15. Decontamination of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant - 13277

    SciTech Connect

    Parajuli, Durga; Minami, Kimitaka; Tanaka, Hisashi; Kawamoto, Tohru

    2013-07-01

    Peculiar binding of Cesium to the soil clay minerals remained the major obstacle for the immediate Cs-decontamination of soil and materials containing clay minerals like sludge. Experiments for the removal of Cesium from soil and ash samples from different materials were performed in the lab scale. For soil and sludge ash formed by the incineration of municipal sewage sludge, acid treatment at high temperature is effective while washing with water removed Cesium from ashes of plants or burnable garbage. Though total removal seems a difficult task, water-washing of wood-ash or garbage-ash at 40 deg. C removes >90% radiocesium, while >60% activity can be removed from soil and sludge-ash by acid washing at 95 deg. C. (authors)

  16. Fluoro-alcohol phase modifiers and process for cesium solvent extraction

    DOEpatents

    Bonnesen, Peter V.; Moyer, Bruce A.; Sachleben, Richard A.

    2003-05-20

    The invention relates to a class of phenoxy fluoro-alcohols, their preparation, and their use as phase modifiers and solvating agents in a solvent composition for the extraction of cesium from alkaline solutions. These phenoxy fluoro-alcohols comply with the formula: ##STR1## in which n=2 to 4; X represents a hydrogen or a fluorine atom, and R.sup.2 -R.sup.6 are hydrogen or alkyl substituents. These phenoxy fluoro-alcohol phase modifiers are a necessary component to a robust solvent composition and process useful for the removal of radioactive cesium from alkaline nuclear waste streams. The fluoro-alcohols can also be used in solvents designed to extract other cesium from acidic or neutral solutions.

  17. High-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes

    NASA Technical Reports Server (NTRS)

    Morris, J. F.

    1974-01-01

    Lanthanum-hexaboride electrodes in 1700 K cesium diodes may triple power outputs compared with those demonstrated for nuclear thermionic space applications. Still greater relative gains seem possible for emitters below 1700 K. Further improvements in cesium-diode performance should result from the lower collector temperatures allowed for earth and low-power-space duties. Decreased temperatures will lessen thermal-transport losses that attend thermionic-conversion mechanisms. Such advantages will add to those from collector-Carnot and electrode effects. If plasma ignition difficulties impede diode temperature reductions, recycling small fractions of the output power could provide ionization. So high-efficiency, low-temperature cesium diodes with lanthanum-hexaboride electrodes appear feasible.

  18. Determining reactor flux from xenon-136 and cesium-135 in spent fuel

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.; Jungman, Gerard

    2012-10-01

    The ability to infer reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3%, but only at high flux.

  19. Phosphate ceramic solidification and stabilization of cesium-containing crystalline silicotitanate resins.

    SciTech Connect

    Langton, C. A.

    1999-05-11

    This paper reports on the fabrication and testing of magnesium potassium phosphate (MKP)-bonded cesium-loaded crystalline silicotitanate (CST) resins. Typical waste loading of CST resins in the final waste forms was 50 wt.%. Physical and chemical characterization of the MKP materials has shown them to be physically, chemically, and mineralogically stable. Long-term durability studies (using the AN 16.1 standard test) showed a leachability index of {approx}18 for cesium in the phosphate matrix when exposed to deionized water under ambient and elevated temperatures. Leaching of cesium was somewhat higher than in glass waste forms as per PCT and MCC-1 tests. MKP-based final waste forms showed no significant weight changes after exposure to aqueous media for {approx}90 days, indicating the highly insoluble nature of the phosphate matrix. In addition, durability of the CST-MKP waste forms was further established by freeze-thaw cycling tests.

  20. Equilibrium data for cesium ion exchange of Hanford CC and NCAW tank waste

    SciTech Connect

    Bray, L.A.; Carson, K.J.; Elovich, R.J.; Kurath, D.E.

    1996-04-01

    Hanford alkaline waste storage-tank contents will be processed to remove the soluble salts. A major fraction of these solutions will require cesium recovery to produce a low-level waste (LLW). The technology for decontamination of high-level alkaline waste and sludge wash waters is being developed. At the request of Westinghouse Hanford Company (WHC), the Pacific Northwest Laboratory (PNL) has studied several ion exchange materials for the recovery of cesium from Hanford waste tanks. The WHC program was divided into tow main tasks, (1) to obtain equilibrium data for cesium ion exchange, and (2) to evaluate ion exchange column performance. The subject of this letter report is the measurement of batch distribution coefficients for several ion exchange media for a range of operating conditions for two types of waste; complexant concentrate (CC) and neutralized current acid waste (NCAW).

  1. Cesium removal from liquid acidic wastes with the primary focus on ammonium molybdophosphate as an ion exchanger: A literature review

    SciTech Connect

    Miller, C.J.

    1995-03-01

    Many articles have been written concerning the selective removal of cesium from both acidic and alkaline defense wastes. The majority of the work performed for cesium removal from defense wastes involves alkaline feed solutions. Several different techniques for cesium removal from acidic solutions have been evaluated such as precipitation, solvent extraction, and ion exchange. The purpose of this paper is to briefly review various techniques for cesium removal from acidic solutions. The main focus of the review will be on ion exchange techniques, particularly those involving ammonium molybdophosphate as the exchanger. The pertinent literature sources are condensed into a single document for quick reference. The information contained in this document was used as an aid in determining techniques to evaluate cesium removal from the acidic Idaho Chemical Processing Plant waste matrices. 47 refs., 2 tabs.

  2. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect

    Moyer, Bruce A.; Bonnesen, Peter V.; Bryan, Jeffrey C.; Engle, Nancy L.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Bartsch, Richard A.; Talanov, Vladimir S.; Gibson, Harry W.; Jones, Jason W.; Hay, Benjamin P.

    2002-06-01

    This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed bear upon cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit applied projects funded by the USDOE Office of Environmental Management to clean up sites such as the Savannah River Site (SRS), Hanford, and the Idaho National Environmental and Engineering Laboratory. The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high-level tank waste.

  3. Small-Column Cesium Ion Exchange Elution Testing of Spherical Resorcinol-Formaldehyde

    SciTech Connect

    Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.

    2011-10-21

    This report summarizes the work performed to evaluate multiple, cesium loading, and elution cycles for small columns containing SRF resin using a simple, high-level waste (HLW) simulant. Cesium ion exchange loading and elution curves were generated for a nominal 5 M Na, 2.4E-05 M Cs, 0.115 M Al loading solution traced with 134Cs followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with 137Cs. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small ({approx}15.7 mL) bed of SRF resin with a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45 C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with 29+ BVs of HNO3 processed at 25 C and at 1.4 BV/h. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium leakage) to help establish acid strength and purity requirements.

  4. Caustic-Side Solvent Extraction: Extended Equilibrium Modeling of Cesium and Potassium Distribution Behavior

    SciTech Connect

    Delmau, L.H.

    2002-06-13

    An extension of the model developed in FY01 for predicting equilibrium distribution ratios in the Caustic-Side Solvent Extraction (CSSX) process is presented here. Motivation for extending the model arose from the need to predict extraction performance of the recently optimized solvent composition and the desire to include additional waste components. This model involves the extraction of cesium and potassium from different cesium, potassium, and sodium media over a large range of concentrations. Those different media include a large variety of anions such as nitrate, hydroxide, nitrite, chloride, fluoride, sulfate, and carbonate. The model was defined based on several hundreds of experimental data points and predicted satisfactorily the cesium extraction from five different SRS waste simulants. This process model encompassed almost exclusively 1:1:1 metal:anion:ligand species. Fluoride, sulfate, and carbonate species were found to be very little extractable, and their main impact is reflected through their activity effects. This model gave a very good cesium and potassium extraction prediction from sodium salts, which is what is needed when trying to predict the behavior from actual waste. However, the extraction from potassium or cesium salts, and the extraction of sodium could be improved, and some additional effort was devoted to improve the thermodynamic rigor of the model. Toward this end, more detailed anion-specific models were developed based on the cesium, potassium, and sodium distribution ratios obtained with simple systems containing single anions, but it has not yet proven possible to combine those models to obtain better predictions than provided by the process model.

  5. Alternate Methods for Eluting Cesium from Spherical Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen; Johnson, Heather Lauren

    2009-02-01

    A small-column ion exchange (SCIX) system has been proposed for removing cesium from the supernate and dissolved salt solutions in the high-level-waste tanks at the Savannah River Site (SRS). The SCIX system could use either crystalline silicotitanate (CST), an inorganic, non-regenerable sorbent, or spherical resorcinol-formaldehyde (RF), a new regenerable resin, to remove cesium from the waste solutions. The baseline method for eluting the cesium from the RF resin uses 15 bed volumes (BV) of 0.5 M nitric acid (HNO{sub 3}). The nitric acid eluate, containing the radioactive cesium, would be combined with the sludge from the waste tanks and would be converted into glass at the Defense Waste Processing Facility (DWPF) at SRS. The amount of nitric acid that would be used to elute the RF resin, using the current elution protocol, exceeds the capacity of DWPF to destroy the nitrate ions and maintain the required chemical reducing environment in the glass melt. Installing a denitration evaporator at SRS is technically feasible but would add considerable cost to the project. Alternate methods for eluting the resin have been tested, including using lower concentrations of nitric acid, other acids, and changing the flow regimes. About 4 BV of 0.5 M HNO{sub 3} are required to remove the sodium (titrate the resin) and most of the cesium from the resin, so the bulk of the acid used for the baseline elution method removes a very small quantity of cesium from the resin. A summary of the elution methods that have been tested are listed.

  6. A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites

    USGS Publications Warehouse

    Bradley, Dwight; McCauley, Andrew

    2013-01-01

    This report is part of an effort by the U.S. Geological Survey to update existing mineral deposit models and to develop new ones. We emphasize practical aspects of pegmatite geology that might directly or indirectly help in exploration for lithium-cesium-tantalum (LCT) pegmatites, or for assessing regions for pegmatite-related mineral resource potential. These deposits are an important link in the world’s supply chain of rare and strategic elements, accounting for about one-third of world lithium production, most of the tantalum, and all of the cesium.

  7. Performance of preproduction model cesium beam frequency standards for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Levine, M. W.

    1978-01-01

    A cesium beam frequency standards for spaceflight application on Navigation Development Satellites was designed and fabricated and preliminary testing was completed. The cesium standard evolved from an earlier prototype model launched aboard NTS-2 and the engineering development model to be launched aboard NTS satellites during 1979. A number of design innovations, including a hybrid analog/digital integrator and the replacement of analog filters and phase detectors by clocked digital sampling techniques are discussed. Thermal and thermal-vacuum testing was concluded and test data are presented. Stability data for 10 to 10,000 seconds averaging interval, measured under laboratory conditions, are shown.

  8. EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Pennebaker, F.

    2010-12-22

    Small-column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions are among the waste treatment plans in the DOE-complex. Spherical Resorcinol-Formaldehyde (sRF) is the ion exchange resin selected for use in the Hanford Waste Treatment and Immobilization Plant (WTP). It is also the primary ion exchange material under consideration for SCIX at the Hanford site. The elution step of the multi-step ion exchange process is typically done with 0.5 M nitric acid. An acid eluant is a potential hazard in the event of a spill, leak, etc. because the high-level waste tanks are made of carbon steel. Corrosion and associated structural damage may ensue. A study has been conducted to explore non-acid elution as an alternative. Batch contact sorption equilibrium screening tests have been conducted with 36 potential non-acid eluants. The sorption tests involve equilibrating each cesium-containing eluant solution with the sRF resin for 48 hours at 25 C in a shaker oven. In the sorption tests, an eluant is deemed to have a high cesium elution potential if it minimizes cesium sorption onto the sRF resin. The top candidates (based on lowest cesium sorption distribution coefficients) include ammonium carbonate, ammonium carbonate/ammonium hydroxide, ammonium bicarbonate, rubidium carbonate, ammonium acetate, ammonium acetate/ammonium hydroxide, ammonium bicarbonate/ammonium hydroxide, calcium chloride, and magnesium chloride. A select few of the top candidate eluants from the screening tests were subjected to actual sorption (loading) and elution tests to confirm their elution ability. The actual sorption (loading) and elution tests mimicked the typical sRF-cesium ion exchange process (i.e., sorption or loading, caustic wash, water rinse, and elution) via batch contact sorption and quasi column caustic wash/water rinse/elution. The eluants tested included ammonium carbonate, ammonium acetate, calcium acetate, magnesium

  9. Recent progress in optically-pumped cesium beam clock at Peking University

    NASA Astrophysics Data System (ADS)

    Liu, C.; Zhou, S.; Wan, J.; Wang, S.; Wang, Y.

    2016-06-01

    A compact, long-life, and low-drift cesium beam clock is investigated at Peking University, where the atoms are magnetic-state selected and optically detected. Stability close to that of the best commercial cesium clocks has been achieved from 10 to 105 s. As previously shown, the short-term stability is determined by atomic shot noise or laser frequency noise. The stabilizations of microwave power and C-field improve the long-term stability, with the help of a digital servo system based on field-programmable gate array.

  10. Computational study of organo-cesium complexes and the possibility of lanthanide/actinide ions substitution

    NASA Astrophysics Data System (ADS)

    Rabanal-León, Walter A.; Martinez-Ariza, Guillermo; Roberts, Sue A.; Hulme, Christopher; Arratia-Pérez, Ramiro

    2015-11-01

    Relativistic DFT calculations suggest that two organo-cesium complexes studied herein afford large HOMO-LUMO gaps of around 2.4 eV with the PBE xc-functional, which accounts for their stability. Energy decomposition studies suggest these two complexes are largely ionic with about 20% covalency. However, when the Cs+ ions are substituted by the isoelectronic La3+ and Th4+, their predicted ionicity decreases significantly. The significant increase in covalence indicates that employing Ugi reaction cascades that afford tetramic acid-based organo-cesium complexes may be extended to La3+ and Th4+ organometallics.

  11. Transfer of radio-cesium from forest soil to woodchips using fungal activities

    NASA Astrophysics Data System (ADS)

    Kaneko, Nobuhiro; Huang, Yao; Tanaka, Yoichiro; Fujiwara, Yoshihiro; Sasaki, Michiko; Toda, Hiroto; Takahashi, Terumasa; Kobayashi, Tatsuaki; Harada, Naoki; Nonaka, Masahiro

    2014-05-01

    Raido-cesium released to terrestrial ecosystems by nuclear accidents is know to accumulate forest soil and organic layer on the soil. Forests in Japan are not exceptions. Practically it is impossible to decontaminate large area of forests. However, there is a strong demand from local people, who has been using secondary forests (Satoyama) around croplands in hilly areas, to decontaminate radio-cesium, because those people used to collect wild mushrooms and edible plants, and there are active cultures of mushrooms using logs and sawdusts. These natural resource uses consist substantial part of their economical activities, Therefore it is needed to decontaminate some selected part of forests in Japan to local economy. Clear cutting and scraping surface soil and organic matter are common methods of decontamination. However the efficiency of decontamination is up to 30% reduction of aerial radiation, and the cost to preserve contaminated debris is not affordable. In this study we used wood chips as a growth media for saprotrophic fungi which are known to accumulate redio-cesium. There are many studies indicated that mushrooms accumulated redio-cesium from forest soil and organic layer. It is not practical to collect mushrooms to decontaminate redio-cesium, because biomass of mushrooms are not enough to collect total contaminants. Mushrooms are only minor part of saprotrophic fungi. Fungal biomass in forest soil is about 1% of dead organic matter on forest floor. Our previous study to observe Cs accumulation to decomposing leaf litter indicated 18% absorption of total soil radio-Cs to litter during one year field incubation (Kaneko et al., 2013), and Cs concentration was proportional to fungal biomass on litter. This result indicated that fungi transferred radio-cesium around newly supplied leaf litter free of contamination. Therefore effective decontamination will be possible if we can provide large amount of growth media for saprotrophic fungi, and the media can be

  12. Photoemission and optical constant measurements of a Cesium Iodide thin film photocathode

    NASA Astrophysics Data System (ADS)

    Triloki; Rai, R.; Gupta, Nikita; Jammal, Nabeel F. A.; Singh, B. K.

    2015-07-01

    The performance of cesium iodide as a reflective photocathode is presented. The absolute quantum efficiency of a 500 nm thick film of cesium iodide has been measured in the wavelength range 150 nm-200 nm. The optical absorbance has been analyzed in the wavelength range 190 nm-900 nm and the optical band gap energy has been calculated. The dispersion properties were determined from the refractive index using an envelope plot of the transmittance data. The morphological and elemental film composition have been investigated by atomic force microscopy and X-ray photo-electron spectroscopy techniques.

  13. Concentration Ratios for Cesium and Strontium in Produce Near Los Alamos

    SciTech Connect

    S. Salazar, M.McNaughton, P.R. Fresquez

    2006-03-01

    The ratios of the concentrations of radionuclides in produce (fruits, vegetables, and grains) to the concentrations in the soil have been measured for cesium and strontium at locations near Los Alamos. The Soil, Foodstuffs, and Biota Team of the Meteorology and Air Quality Group of the Los Alamos National Laboratory (LANL) obtained the data at locations within a radius of 50 miles of LANL. The concentration ratios are in good agreement with previous measurements: 0.01 to 0.06 for cesium-137 and 0.1 to 0.5 for strontium-90 (wet-weight basis).

  14. Selectivity of ion exchangers in extracting cesium and rubidium from alkaline solutions

    NASA Astrophysics Data System (ADS)

    Shelkovnikova, L. A.; Kargov, S. I.; Gavlina, O. T.; Ivanov, V. A.; Al'tshuler, G. N.

    2013-01-01

    We compare the ion exchange selectivity of phenol-type sorbents based on phenol formaldehyde resins, products of condensation of diatomic phenols with formaldehyde, and crosslinked polymer based on C-phenyl[4]resorcinarene resin, for cesium and rubidium ions. It is shown that phenol formaldehyde sorbents are the ones most selective. The interaction of alkali metal cations with the anion of calix[4]arene is investigated via quantum-chemical modeling. It is shown that the selectivity toward cesium and rubidium ions in ion exchangers of the phenolic type is not due to specific interactions of ions with phenolic groups.

  15. Safety evaluation for packaging (onsite) for cesium chloride capsules with type W overpacks

    SciTech Connect

    McCoy, J.C.

    1997-09-15

    This Safety Evaluation for Packaging (SEP) documents the evaluation of a new basket design and overpacked cesium chloride capsule payload for the Beneficial Uses Shipping System (BUSS) Cask in accordance with the onsite transportation requirements of the Hazardous Material Packaging and Shipping manual, WHC-CM-2-14. This design supports the one-time onsite shipment of 16 cesium chloride capsules with Type W overpacks from the 324 Building to the 224T Building at the Waste Encapsulation and Storage Facility (WESF). The SEP is valid for a one-time onsite shipment or until August 1, 1998, whichever occurs first.

  16. Transport of the radioisotopes iodine-131, cesium-134, and cesium-137 from the fallout following the accident at the Chernobyl nuclear reactor into cheesemaking products

    SciTech Connect

    Assimakopoulos, P.A.; Ioannides, K.G.; Pak; Paradopoulou, C.V.

    1987-07-01

    The transport of radiation contamination from milk to products of the cheese making process has been studied. The concentration of radioactive iodine and cesium in samples of sheep milk and cheese (Gruyere) products was measured for 10 consecutive production d. Milk with concentration 100 Bq/L in each of the radionuclides /sup 131/I, /sup 134/Cs, and /sup 137/Cs cheese with concentration 82.2 +/- 3.9 Bq/kg in iodine and an average of 42.3 +/- 2.3 Bq/kg in the cesium isotopes is produced. The corresponding concentrations in cream extracted from the same milk are 26.7 +/- 2.8 Bq/kg (/sup 131/I) and 18.6 +/- 1.9 Bq/kg (/sup 134/Cs, /sup 137/Cs).

  17. Stable cesium uptake and accumulation capacities of five plant species as influenced by bacterial inoculation and cesium distribution in the soil.

    PubMed

    Djedidi, Salem; Kojima, Katsuhiro; Yamaya, Hiroko; Ohkama-Ohtsu, Naoko; Bellingrath-Kimura, Sonoko Dorothea; Watanabe, Izumi; Yokoyama, Tadashi

    2014-09-01

    The effects of inoculation with Bacillus and Azospirillum strains on growth and cesium accumulation of five plant species, Komatsuna, Amaranth, sorghum, common millet and buckwheat, grown on cesium-spiked soil were assessed for potential use in cesium remediation. Pot experiments were performed using "artificially" Cs-contaminated soil. Three treatments were applied based on Cs location in the soil. For a soil height of 15 cm in the pots, Cs was added as follows: in the top five cm to imitate no ploughing condition; in the bottom five cm simulating inverted ploughing; and uniformly distributed Cs reproducing normal plowing. Generally, inoculation of Cs-exposed plants significantly enhanced growth and tolerance to this element. Transfer factor (ratio of Cs concentration in the plant tissues to that in surrounding soil) was strongly influenced by Cs distribution, with higher values in the top-Cs treatment. Within this treatment, inoculation of Komatsuna with Bacillus and Azospirillum strains resulted in the greatest transfer factors of 6.55 and 6.68, respectively. Cesium content in the shoots was high in the Azospirillum-inoculated Komatsuna, Amaranth, and buckwheat, i.e., 1,830, 1,220, and 1,030 µg per pot, respectively (five plants were grown in each pot). Therefore, inoculation of Komatsuna and Amaranth with the strains tested here could be effective in enhancing Cs accumulation. The decrease of Cs transfer under uniform- and bottom-Cs treatments would suggest that countermeasures aiming at decreasing the transfer of Cs could rely on ploughing practices.

  18. Ion exchange pretreatment of alkaline radwaste for cesium removal

    SciTech Connect

    Bibler, J.P.

    1994-08-01

    A cation exchange resin has been tested for its ability to remove the Cs ion from simulants of highly alkaline liquid nuclear wastes found at the Savannah River Site, Oak Ridge, and Hanford. The resin is a condensation polymer of the K salt of resorcinol and formaldehyde. It removes milli- and micromolar amounts of Cs{sup +} from solutions that contain as high as 11 molar Na{sup +}. Small column tests indicate that approximately 200 column volumes of SRS simulant and 205 column volumes of OR Tank 25 supernatant simulant can be processed before the resin requires regeneration. For these two wastes, a carousel arrangement of two columns in series and a third in reserve can be used effectively in a process. Hanford 101-AW simulant generates a less sharp breakthrough profile with this resin, though an operation using a maximum of three columns in series with another column off-line for regeneration would be effective if the resin beds are allowed to reach about 90% breakthrough before taking them out of service. Parameters that effect the performance of the resin with a particular feed solution are the concentrations of the two primary ions of interest, Cs{sup +} and Na{sup +}, as well as the concentrations of K{sup +} and OH{sup {minus}}. A further ramification of the hydroxide ion concentration is its role in assisting oxidation of the resin, thereby destroying its usefulness in cesium removal. Although the performance of the resin is unaffected at doses of 1 E+8 rad ionizing radiation, it shows noticeable degradation after storage for 100 hours in alkaline solutions, generating quinone and ketone groups, as determined from C-13 NMR and by an increase in total organic C content of the contacting solution. Gases detected from the radiolysis of the resin/simulant mixture are CO{sub 2} from the resin, N{sub 2}O from nitrate in the simulant, and H{sub 2} possibly from resin and simulant. Oxygen depletion in the mixture results from radiolysis and chemical degradation.

  19. Conception et caracterisation d'un magnetoplasma produit par une onde de surface pour la pulverisation d'echantillons solides

    NASA Astrophysics Data System (ADS)

    Masse, Louis Philippe

    puissance. Une etude des caracteristiques du plasma seul a revele que le champ magnetique confine si bien le plasma que le maximum de densite electronique se trouve hors axe, plus exactement a la position radiale correspondant au rayon du cylindre dielectrique servant a former l'interface dielectrique-plasma dans la zone source du reacteur. Ce phenomene indique une tres nette superiorite du coefficient de diffusion axial par rapport au coefficient de diffusion radial. Notre reacteur a un potentiel interessant pour l'analyse elementaire de materiaux solides puisque le taux de pulverisation y est eleve et que les especes pulverisees sont aisement excitees et ionisees par le plasma.

  20. Au36(SPh)23 nanomolecules.

    PubMed

    Nimmala, Praneeth Reddy; Dass, Amala

    2011-06-22

    A new core size protected completely by an aromatic thiol, Au(36)(SPh)(23), is synthesized and characterized by MALDI-TOF mass spectrometry and UV-visible spectroscopy. The synthesis involving core size changes is studied by MS, and the complete ligand coverage by aromatic thiol group is shown by NMR.

  1. Cesium-137-A tool for understanding soil redistribution across the landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 1968 research began at the USDA ARS Sedimentation Laboratory on the application of fallout radionuclides to determine sediment deposition and soil redistribution rates and patterns in agricultural and natural ecosystems. This research was based on the use of fallout Cesium -137(Cs-137) from nucl...

  2. HIGH TEMPERATURE SORPTION OF CESIUM AND STRONTIUM ON DISPERSED KAOLINITE POWDERS

    EPA Science Inventory

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high-temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, nonradioactive aq...

  3. A novel fluorescent cesium ion-selective optode membrane based on 15-crown-5-anthracene.

    PubMed

    Seo, Hyo Sook; Lee, Sang Hak

    2011-03-01

    An optode system based on a plasticized polymer membrane containing cesium ion-selective fluoroionophore and lipophilic anions for the determination of cesium ions has been developed. In this work, 15-crown-5 derivative including anthracene was used as a fluoroionophore. Emission intensity of the optode membrane incorporating 15-crown-5-anthracene was measured at 500 nm with excitation at 360 nm in the presence of Tris-HCl buffer solution. Under optimum experimental condition, the relative fluorescence intensity was linear with the concentration of cesium ion in the range of 1.0 × 10(-4) M to 1.0 × 10(-1) M and the detection limit was obtained 4.2 × 10(-5) M, as defined by LOD=3 × S(b)/m (where S(b)=standard deviation of blank signal and, m=slope of the calibration curve). The effect of pH of sample solution on the fluorescent response, the selectivity, response time and reproducibility of the optode membrane were also discussed. The fluorescent optode system shows a high selectivity and sensitivity for cesium ion with respect to other cations such as K(+), Na(+) and Li(+).

  4. Using Fallout Cesium-137 to understand soil redistribution over agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While it is recognized that soil erosion is highly variable in space and time, studies of the redistribution of soil and soil organic carbon (SOC) within a field or watershed are limited. Our studies focus on the use of fallout Cesium-137 to understand pattern of soil and SOC movement on the landsca...

  5. Using fallout Cesium-137 to understand soil redistribution over agricultural landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While it is recognized that soil erosion is highly variable in space and time, studies of the redistribution of soil within a field or watershed are limited. Our studies focus on the use of fallout Cesium-137 to understand pattern of soil movement on the landscape. It is often assumed that eroding...

  6. Cesium 137-Its applications for understanding soil redistribution and deposition patterns on the landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the 1960s research began on the application of fallout radionuclides to determine sediment deposition and soil redistribution rates and patterns in agricultural and natural ecosystems. This research was based on the use of fallout 137Cesium (137Cs) from nuclear weapon tests deposited worldwide d...

  7. Using Radioactive Fallout Cesium (137Cs) to Distinguish Sediment Sources in an Agricultural Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radioactive fallout Cesium (Cs-137) has been used for quantifying sources of accumulating sediment in water bodies and to determine the rates and pattern of soil erosion. The objectives of this research are to use Cs-137 as a tracer to determine patterns of soil erosion and deposition of eroding soi...

  8. Adsorption characteristics of sol gel-derived zirconia for cesium ions from aqueous solutions.

    PubMed

    Yakout, Sobhy M; Hassan, Hisham S

    2014-07-01

    Zirconia powder was synthesized via a sol gel method and placed in a batch reactor for cesium removal investigation. X-ray analysis and Fourier transform infrared spectroscopy were utilized for the evaluation of the developed adsorbent. The adsorption process has been investigated as a function of pH, contact time and temperature. The adsorption is strongly dependent on the pH of the medium whereby the removal efficiency increases as the pH turns to the alkaline range. The process was initially very fast and the maximum adsorption was attained within 60 min of contact. A pseudo-second-order model and homogeneous particle diffusion model (HPDM) were found to be the best to correlate the diffusion of cesium into the zirconia particles. Furthermore, adsorption thermodynamic parameters, namely the standard enthalpy, entropy, and Gibbs free energy, were calculated. The results indicate that cesium adsorption by zirconia is an endothermic (ΔH>0) process and good affinity of cesium ions towards the sorbent (ΔS>0) was observed.

  9. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  10. Non inverted gain lineshapes of the cesium resonance transition at 894 nm

    NASA Astrophysics Data System (ADS)

    Cataliotti, F. S.; Fort, C.; Prevedelli, M.; Hänsch, T. W.; Inguscio, M.

    1997-01-01

    We report on electromagnetically induced transparency (EIT) in a V-type system in cesium. We investigated the induced EIT as a function of the pump-laser power for different hyperfine components on the D1-D2 lines. Adding repumping light on the D1 transition we observed 2% single pass gain.

  11. Overview of active cesium contamination of freshwater fish in Fukushima and Eastern Japan.

    PubMed

    Mizuno, Toshiaki; Kubo, Hideya

    2013-01-01

    This paper focuses on an overview of radioactive cesium 137 (quasi-Cs137 included Cs134) contamination of freshwater fish in Fukushima and eastern Japan based on the data published by the Fisheries Agency of the Japanese Government in 2011. In the area north and west of the Fukushima Nuclear plant, freshwater fish have been highly contaminated. For example, the mean of active cesium (quasi-Cs137) contamination of Ayu (Plecoglossus altivelis) is 2,657 Bq/kg at Mano River, 20-40 km north-west from the plant. Bioaccumulation is observed in the Agano river basin in Aizu sub-region, 70-150 km west from the plant. The active cesium (quasi-Cs137) contamination of carnivorous Salmondae is around 2 times higher than herbivorous Ayu. The extent of active cesium (quasi-Cs137) contamination of Ayu is observed in the entire eastern Japan. The some level of the contamination is recognized even in Shizuoka prefecture, 400 km south-west from the plant.

  12. Vitrification of Cesium-Laden Organic Ion Exchange Resin in a Stirred Melter

    SciTech Connect

    Cicero-Herman, C.A; Sargent, T.N.; Overcamp, T.J.; Bickford, D.F.

    1997-07-09

    The goal of this research was a feasibility study for vitrifying the organic ion exchange resin in a stirred-tank melter. Tests were conducted to determine the fate of cesium including the feed, exit glass, and offgas streams and to assess any impact of feeding the resin on the melter or its performance.

  13. Overview of active cesium contamination of freshwater fish in Fukushima and Eastern Japan

    PubMed Central

    Mizuno, Toshiaki; Kubo, Hideya

    2013-01-01

    This paper focuses on an overview of radioactive cesium 137 (quasi-Cs137 included Cs134) contamination of freshwater fish in Fukushima and eastern Japan based on the data published by the Fisheries Agency of the Japanese Government in 2011. In the area north and west of the Fukushima Nuclear plant, freshwater fish have been highly contaminated. For example, the mean of active cesium (quasi-Cs137) contamination of Ayu (Plecoglossus altivelis) is 2,657 Bq/kg at Mano River, 20–40 km north-west from the plant. Bioaccumulation is observed in the Agano river basin in Aizu sub-region, 70–150 km west from the plant. The active cesium (quasi-Cs137) contamination of carnivorous Salmondae is around 2 times higher than herbivorous Ayu. The extent of active cesium (quasi-Cs137) contamination of Ayu is observed in the entire eastern Japan. The some level of the contamination is recognized even in Shizuoka prefecture, 400 km south-west from the plant. PMID:23625055

  14. Evaluation of selected ion exchangers for the removal of cesium from MVST W-25 supernate

    SciTech Connect

    Collins, J.L.; Egan, B.Z.; Anderson, K.K.; Chase, C.W.; Mrochek, J.E.; Bell, J.T.; Jernigan, G.E.

    1995-04-01

    The goal of this batch-test equilibration study was to evaluate the effectiveness of certain ion exchangers for removing cesium from supernate taken from tank W-25 of the Melton Valley Storage Tank (MVST) Facility located at the Oak Ridge National Laboratory (ORNL). These exchangers were selective for removing cesium from alkaline supernatant solutions with high salt concentrations. Since the supernates of evaporator concentrates stored in tanks at the MVST facility have compositions similar to some of those stored in tanks at Hanford, the data generated in this study should prove useful in the overall evaluation of the ion exchangers for applications to Hanford and other US Department of Energy (USDOE) sites. A goal of the waste processing effort at Hanford is to remove enough cesium to ensure that the resulting LLW will meet the Nuclear Regulatory Commission (NRC) 10 CFR 61 class A limit for {sup 137}Cs (1 Ci/m{sup 3} or 1 {mu}Ci/mL). The separated cesium may be concentrated and vitrified for disposal in the high-level waste repository. The decontaminated effluent would be solidified for near-surface disposal.

  15. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium.

    PubMed

    Jang, J G; Park, S M; Lee, H K

    2016-11-15

    The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10(3) and 10(4), respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior. PMID:27434737

  16. Spatial variability and the fate of cesium in coastal sediments near Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Black, E.; Buesseler, K. O.

    2014-05-01

    Quantifying the amount of cesium incorporated into marine sediments as a result of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident has proven challenging due to the limited multi-core sampling from within the 30 km zone around the facility, the inherent spatial heterogeneities in ocean sediments, and the potential for inventory fluctuations due to physical, biological, and chemical processes. Using 210Pb, 234Th, 137Cs, and 134Cs profiles from 20 sediment cores, coastal sediment inventories were reevaluated. A minimum 137Cs sediment inventory of 100 ± 50 TBq was found for an area of 55 000 km2 using cores from this study and a total of 130 ± 60 TBq using an additional 181 samples. These inventories represent less than 1% of the estimated 15-30 PBq of cesium released during the FDNPP disaster and constitute ~ 90% of the total coastal inventory of 137Cs remaining in 2012. The time needed for surface sediment activities (0 to 3 cm) at the 20 locations to reduce by 50% via bioturbation was estimated to range from 0.4 to 26 years, indicating a much greater persistence of cesium in the sediments relative to coastal water activities. However, due to the observed variability in mixing rates, grain size, and inventories, additional cores are needed to further improve estimates and capture the full extent of cesium penetration into the shallow coastal sediments, which was deeper than 14 cm for all cores retrieved from water depths less than 150 m.

  17. Evaluation of Factors Affecting Cesium Extraction Performance by Calix[4]Arene Derivatives

    SciTech Connect

    Rumppe, J.L.; Delmau, L.

    2004-01-01

    Novel aza-crown derivatives of dioctyloxy-calix[4]arene crown-6 were examined for their cesium extraction performance at different pH levels. These studies are of interest in addressing high-level waste tank remediation and the removal of 137Cs, a major contributor to heat and radiation generation. Preliminary studies were done to assess the performance of these calixarene compounds under varying conditions. Results showed an increase of cesium extraction with pH as well as expected trends in diluent effects and anion selectivity. Poor extraction performance of some aza-crown derivatives raised questions regarding the possibility of intramolecular hydrogen-bonding. A novel methylated derivative was used to address these questions. Additional experiments were conducted to determine the extraction effect on pH. Results indicate an increase in cesium extraction with pH, as shown in preliminary studies. Mono-aza derivatives were shown to exhibit better cesium extraction performance than their di-aza counterparts. The methylated derivative showed poorer extraction performance than the non-methylated derivative, indicating that completely removing the possibility of intramolecular hydrogen-bonding has negative effects on extraction performance. This suggests that the hydrogen-bonding facilitates anion co-extraction, which would lead to better overall extraction. Mono-aza derivatives were shown to cause unexpected changes in pH. This could possibly be attributed to protonation of the calix crown.

  18. 3M Empore(R)-Membrane Filter Technology: Cesium Removal from Fuel Storage Water Basin

    SciTech Connect

    Oji, L.N.

    2003-07-15

    This paper describes results from a seven-day demonstration of the use of 3M Empore(R) membrane filter loaded with ion exchange material (potassium cobalt hexacynoferrate) for cesium uptake from the R-Disassembly Basin at the Savannah River Site. The goal of the demonstration was to evaluate the ability of the Process Absorber Development unit, a water pre-filtration /CoHex configuration on a skid, to remove cesium from R-Disassembly Basin at a linear processing flow rate of 22.9 liters per minute (1,204 liters/minute/m2). Over 210,000 liters of R-Disassembly Basin water was processed through the PADU without a cesium breakthrough, that is, the effluent after treatment with CoHex, contained less than detectable amounts of radioactive cesium. Some of the observed advantages of the Empore(R) membrane filter technology over conventional packed column ion exchange systems include rapid flow rates without channeling effects, low volume secondary waste and fast extraction or rapid kinetics per unit of flow.

  19. Observation of microporous cesium salts of 12-tungstosilicic acid using scanning transmission electron microscopy.

    PubMed

    Hiyoshi, Norihito; Kamiya, Yuichi

    2015-06-21

    Heteropolyanions and their arrays in microporous cesium salts of 12-tungstosilicic acid, Cs2.5H1.5[SiW12O40] and Cs4.0[SiW12O40], were observed by aberration-corrected scanning transmission electron microscopy. Microstructures that form micropores in the polyoxometalates were visualized.

  20. Physical barrier effect of geopolymeric waste form on diffusivity of cesium and strontium.

    PubMed

    Jang, J G; Park, S M; Lee, H K

    2016-11-15

    The present study investigates the physical barrier effect of geopolymeric waste form on leaching behavior of cesium and strontium. Fly ash-based geopolymers and slag-blended geopolymers were used as solidification agents. The leaching behavior of cesium and strontium from geopolymers was evaluated in accordance with ANSI/ANS-16.1. The diffusivity of cesium and strontium in a fly ash-based geopolymer was lower than that in Portland cement by a factor of 10(3) and 10(4), respectively, showing significantly improved immobilization performance. The leaching resistance of fly ash-based geopolymer was relatively constant regardless of the type of fly ash. The diffusivity of water-soluble cesium and strontium ions were highly correlated with the critical pore diameter of the binder. The critical pore diameter of the fly ash-based geopolymer was remarkably smaller than those of Portland cement and slag-blended geopolymer; consequently, its ability physically to retard the diffusion of nuclides (physical barrier effect) was superior.

  1. Foliar uptake of cesium, iodine and strontium and their transfer to the edible parts of beans, potatoes and radishes

    NASA Astrophysics Data System (ADS)

    Oestling, O.; Kopp, P.; Burkart, W.

    Considerable fractions of radionuclide solutions deposited on the surface of the leaves may be transferred to the edible parts of plants. In radishes we observed a transfer of more than 40% of the applied cesium radioisotope within a few days. A rather similar uptake was found for beans and potatoes when harvested a month after application of radioactivity. As much as 60% of the applied cesium-isotope remained in (or on) the potato leaves even 8 days after application. The major part could however be washed off the leaves a few hours after application. When radishes were showered with water within 7 h after the application of activity the uptake was greatly reduced. No competitive effect of potassium chloride for the foliar uptake of cesium was found. A 10 -2 M colloidal suspension of Prussian Blue, a chelating agent for monovalent alkali metals such as potassium, cesium, or other monovalent cations, applied as droplets to the leaves one day prior to application of active cesium was found to strongly inhibit the transfer of cesium to the radish. The transfer of iodine and strontium to the edible parts was found to be negligible (or slower) as compared to cesium. In most cases no detectable amounts of these two nuclides were transfered to the edible parts of the radish after 2-5 weeks.

  2. Preparation and characterization of cesium-137 aluminosilicate pellets for radioactive source applications

    SciTech Connect

    Schultz, F.J.; Tompkins, J.A.; Haff, K.W.; Case, F.N.

    1981-07-01

    Twenty-seven fully loaded /sup 137/Cs aluminosilicate pellets were fabricated in a hot cell by the vacuum hot pressing of a cesium carbonate/montmorillonite clay mixture at 1500/sup 0/C and 570 psig. Four pellets were selected for characterization studies which included calorimetric measurements, metallography, scanning electron microscope and electron backscattering (SEM-BSE), electron microprobe, x-ray diffraction, and cesium ion leachability measurements. Each test pellet contained 437 to 450 curies of /sup 137/Cs as determined by calorimetric measurements. Metallographic examinations revealed a two-phase system: a primary, granular, gray matrix phase containing large and small pores and small pore agglomerations, and a secondary fused phase interspersed throughout the gray matrix. SEM-BSE analyses showed that cesium and silicon were uniformly distributed throughout both phases of the pellet. This indicated that the cesium-silicon-clay reaction went to completion. Aluminum homogeneity was unconfirmed due to the high background noise associated with the inherent radioactivity of the test specimens. X-ray diffraction analyses of both radioactive and non-radioactive aluminosilicate pellets confirmed the crystal lattice structure to be pollucite. Cesium ion quasistatic leachability measurements determined the leach rates of fully loaded /sup 137/Cs sectioned pollucite pellets to date to be 4.61 to 34.4 x 10/sup -10/ kg m/sup -2/s/sup -1/, while static leach tests performed on unsectioned fully loaded pellets showed the leach rates of the cesium ion to date to be 2.25 to 3.41 x 10/sup -12/ kg m/sup -2/s/sup -1/. The cesium ion diffusion coefficients through the pollucite pellet were calculated using Fick's first and second laws of diffusion. The diffusion coefficients calculated for three tracer level /sup 137/Cs aluminosilicate pellets were 1.29 x 10/sup -16/m/sup 2/s/sup -1/, 6.88 x 10/sup -17/m/sup 2/s/sup -1/, and 1.35 x 10/sup -17/m/sup 2/s/sup -1/, respectively.

  3. Ion exchange kinetics of cesium for various reaction designs using crystalline silicotitanate, UOP IONSIV IE-911

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hyun

    Through collaborative efforts at Texas A&M University and Sandia National Laboratories, a crystalline silicotitanate (CST), which shows extremely high selectivity for radioactive cesium removal in highly concentrated sodium solutions, was synthesized. The effect of hydrogen peroxide on a CST under cesium ion exchange conditions has been investigated. The experimental results with hydrogen peroxide showed that the distribution coefficient of cesium decreased and the tetragonal phase, the major component of CST, slowly dissolved at hydrogen peroxide concentrations greater than 1 M. A simple and novel experimental apparatus for a single-layer ion exchange column was developed to generate experimental data for estimation of the intraparticle effective diffusivity. A mathematical model is presented for estimation of effective diffusivities for a single-layer column of CST granules. The intraparticle effective diffusivity for Cs was estimated as a parameter in the analytical solution. By using the least square method, the effective diffusivities of 1.56 +/- 0.14 x 10-11 m2/s and 0.68 +/- 0.09 x 10-11 m2/s, respectively, were obtained. The difference in the two values was due to the different viscosities of the solutions. A good fit of the experimental data was obtained which supports the use of the homogeneous model for this system. A counter-current ion exchange (CCIX) process was designed to treat nuclear waste at the Savannah River Site. A numerical method based on the orthogonal collocation method was used to simulate the concentration profile of cesium in the CCIX loaded with CST granules. To maximize cesium loading onto the CST and minimize the volume of CST, two design cases of a moving bed, where the fresh CST is pulsed into the column at certain periods or at certain concentration of cesium, were investigated. Simulation results showed that cesium removal behavior in the pilot-scale test of CCIX experiment, where the column length is 22 ft and the CST is pulsed

  4. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using Hydrous Crystalline Silicotitanate Material

    SciTech Connect

    HAMM, LUTHER L.

    2004-07-27

    For the current pretreatment facility design of the River Protection Project (RPP) Waste Treatment Plant (WTP), the removal of cesium from low activity waste (LAW) is achieved by ion-exchange technology based on SuperLig(R) 644 resin. Due to recent concerns over potential radiological and chemical degradation of SuperLig(R) 644 resin and increased pressure drops observed during pilot-scale column studies, an increased interest in developing a potential backup ion-exchanger material has resulted. Ideally, a backup ion-exchanger material would replace the SuperLig(R) 644 resin and have no other major impacts on the pretreatment facility flowsheet. Such an ideal exchanger has not been identified to date. However, Crystalline Silicotitanate (CST) ion-exchanger materials have been studied for the removal of cesium from a variety of DOE wastes over the last decade. CST ion-exchanger materials demonstrate a high affinity for cesium under high alkalinity conditions and have been under investigation for cesium removal specifically at Hanford and SRS during the last six years. Since CST is an inorganic based material (with excellent properties in regard to chemical, radiological, and thermal stability) that is considered to be practically non-elutable (while SuperLig(R) 644 is an organic based elutable resin), the overall pretreatment facility flowsheet would be impacted in various ways. However, the CST material is still being considered as a potential backup ion-exchanger material. The performance of a proposed backup ion-exchange column using IONSIV IE-911 (CST in its engineered-form) material for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report focuses attention on the ion-exchange aspects and addresses the loading phase of the process cycle.

  5. Significant enhancement of negative secondary ion yields by cluster ion bombardment combined with cesium flooding.

    PubMed

    Philipp, Patrick; Angerer, Tina B; Sämfors, Sanna; Blenkinsopp, Paul; Fletcher, John S; Wirtz, Tom

    2015-10-01

    In secondary ion mass spectrometry (SIMS), the beneficial effect of cesium implantation or flooding on the enhancement of negative secondary ion yields has been investigated in detail for various semiconductor and metal samples. All results have been obtained for monatomic ion bombardment. Recent progress in SIMS is based to a large extent on the development and use of cluster primary ions. In this work we show that the enhancement of negative secondary ions induced by the combination of ion bombardment with simultaneous cesium flooding is valid not only for monatomic ion bombardment but also for cluster primary ions. Experiments carried out using C60+ and Ar4000+ bombardment on silicon show that yields of negative secondary silicon ions can be optimized in the same way as by Ga+ and Cs+ bombardment. Both for monatomic and cluster ion bombardment, the optimization does not depend on the primary ion species. Hence, it can be assumed that the silicon results are also valid for other cluster primary ions and that results obtained for monatomic ion bombardment on other semiconductor and metal samples are also valid for cluster ion bombardment. In SIMS, cluster primary ions are also largely used for the analysis of organic matter. For polycarbonate, our results show that Ar4000+ bombardment combined with cesium flooding enhances secondary ion signals by a factor of 6. This can be attributed to the removal of charging effects and/or reduced fragmentation, but no major influence on ionization processes can be observed. The use of cesium flooding for the imaging of cells was also investigated and a significant enhancement of secondary ion yields was observed. Hence, cesium flooding has also a vast potential for SIMS analyses with cluster ion bombardment.

  6. Electron stimulated desorption of cesium atoms from germanium-covered tungsten

    NASA Astrophysics Data System (ADS)

    Ageev, V. N.; Kuznetsov, Yu. A.; Madey, T. E.

    2006-05-01

    The electron stimulated desorption (ESD) yield and energy distributions for Cs atoms from cesium layers adsorbed on germanium-covered tungsten have been measured for different Ge film thicknesses, 0.25-4.75 ML (monolayer), as a function of electron energy and cesium coverage Θ. The measurements have been carried out using a time-of-flight method and surface ionization detector. In the majority of measurements Cs is adsorbed at 300 K. The appearance threshold for Cs atoms is about 30 eV, which correlates well with the Ge 3d ionization energy. As the electron energy increases the Cs atom ESD yield passes through a wide maximum at an electron energy of about 120 eV. In the Ge film thickness range from 0.5 to 2 ML, resonant Cs atom yield peaks are observed at electron energies of 50 and 80 eV that can be associated with W 5p and W 5s level excitations. As the cesium coverage increases the Cs atom yield passes through a smooth maximum at 1 ML coverage. The Cs atom ESD energy distributions are bell-shaped; they shift toward higher energies with increasing cesium coverage for thin germanium films and shift toward lower energies with increasing cesium coverage for thick germanium films. The energy distributions for ESD of Cs from a 1 ML Ge film exhibit a strong temperature dependence; at T = 160 K they consist of two bell-shaped curves: a narrow peak with a maximum at a kinetic energy of 0.35 eV and a wider peak with a maximum at a kinetic energy of 0.5 eV. The former is associated with W level excitations and the latter with a Ge 3d level excitation. These results can be interpreted in terms of the Auger stimulated desorption model.

  7. Extraction of cesium from an alkaline leaching solution of spent catalysts using an ion-exchange column

    SciTech Connect

    Dumont, N.; Favre-Reguillon, A.; Dunjic, B.; Lemaire, M.

    1996-04-01

    The selective extraction of cesium from an alkaline leaching solution of spent catalysts using phenolic resins was studied. The resins were synthesized by alkaline polycondensation of formaldehyde by phenol, resorcinol, catechol, and phloroglucinol. Their ionoselectivities for five alkali metals were evaluated with a solid-liquid extraction, and their ion-exchange capacities were compared. The resin with the best selectivity for cesium was tested with a real solution at different pH values. An on-column extraction is proposed to obtain cesium with high purity.

  8. A comparison of the cesium and hydrogen hyperfine frequencies by means of Loran-C and portable clocks

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Lavanceau, J.

    1974-01-01

    A comparison of the hydrogen and cesium hyperfine frequencies is made using a hydrogen maser calibrated directly against the Flexible Bulb Large Storage Box Hydrogen Maser and a Hewlett-Packard portable high performance cesium clock calibrated indirectly against the USNO Master Clock via a Loran-C link. The portable cesium clock is transported from the USNO to Harvard University in operating condition. This allows the evaluation of the portable clock's performance under transport. Data are presented on the epoch and frequency stability of the portable clock under transport as well as the usefulness of a closure measurement in determining clock drift.

  9. The Synthesis of Stable, Complex Organocesium Tetramic Acids through the Ugi Reaction and Cesium-Carbonate-Promoted Cascades.

    PubMed

    Martinez-Ariza, Guillermo; Ayaz, Muhammad; Roberts, Sue A; Rabanal-León, Walter A; Arratia-Pérez, Ramiro; Hulme, Christopher

    2015-09-28

    Two structurally unique organocesium carbanionic tetramic acids have been synthesized through expeditious and novel cascade reactions of strategically functionalized Ugi skeletons delivering products with two points of potential diversification. This is the first report of the use of multicomponent reactions and subsequent cascades to access complex, unprecedented organocesium architectures. Moreover, this article also highlights the first use of mild cesium carbonate as a cesium source for the construction of cesium organometallic scaffolds. Relativistic DFT calculations provide an insight into the electronic structure of the reported compounds.

  10. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOEpatents

    Abney, Kent D.; Kinkead, Scott A.; Mason, Caroline F. V.; Rais, Jiri

    1997-01-01

    Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  11. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    DOEpatents

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-09-09

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  12. Global polarization measurement in Au+Au collisions

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev,V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2007-08-02

    The system created in non-central relativisticnucleus-nucleus collisions possesses large orbital angular momentum. Dueto spin-orbit coupling, particles produced in such a system could becomeglobally polarized along the direction of the system angular momentum. Wepresent the results of Lambda and anti-Lambda hyperon global polarizationmeasurements in Au+Au collisions at sqrt sNN=62.4 GeV and 200 GeVperformed with the STAR detector at RHIC. The observed globalpolarization of Lambda and anti-Lambda hyperons in the STAR acceptance isconsistent with zero within the precision of the measurements. Theobtained upper limit, lbar P Lambda, anti-Lambda rbar<= 0.02, iscompared to the theoretical values discussed recently in theliterature.

  13. d + Au hadron correlation measurements at PHENIX

    SciTech Connect

    Anne M. Sickles

    2014-05-13

    In these proceedings, we discuss recent results from d + Au collisions in PHENIX ridge related measurements and their possible hydrodynamic origin. We present the v2 at midrapidity and measurements of the pseudorapidity dependence of the ridge, distinguishing between the d-going and Au-going directions. We investigate the possible geometrical origin by comparing v2 in d + Au to that in p + Pb, Au + Au and Pb + Pb collisions. Future plans to clarify the role of geometry in small collision systems at RHIC are discussed.

  14. FULL-SCALE TESTING OF A CAUSTIC SIDE SOLVENT EXTRACTION SYSTEM TO REMOVE CESIUM FROM SAVANNAH RIVER SITE RADIOACTIVE WASTE

    SciTech Connect

    Poirier, M; Thomas Peters, T; Earl Brass, E; Stanley Brown, S; Mark Geeting, M; Lcurtis Johnson, L; Charles02 Coleman, C; S Crump, S; Mark Barnes, M; Samuel Fink, S

    2007-10-15

    Savannah River Site (SRS) personnel have completed construction and assembly of the Modular Caustic Side Solvent Extraction Unit (MCU) facility. Following assembly, they conducted testing to evaluate the ability of the process to remove non-radioactive cesium and to separate the aqueous and organic phases. They conducted tests at salt solution flow rates of 3.5, 6.0, and 8.5 gpm. During testing, the MCU Facility collected samples and submitted them to Savannah River National Laboratory (SRNL) personnel for analysis of cesium, Isopar{reg_sign} L, and Modifier [1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol]. SRNL personnel analyzed the aqueous samples for cesium by Inductively-Coupled Plasma Mass Spectroscopy (ICP-MS) and the solvent samples for cesium using a Parr Bomb Digestion followed by ICP-MS. They analyzed aqueous samples for Isopar{reg_sign} L and Modifier by gas chromatography (GC).

  15. Content of strontium-90 and cesium-137 in a number of regions of the Baltic Sea in 1982

    SciTech Connect

    Lazarev, L.N.; Flegontov, V.M.; Gedenov, L.I.; Ivanova, L.M.; Orlova, T.B.; Stepanov, A.V.

    1985-07-01

    The authors present the data gathered from the samples of water and bed deposits taken at various sites in the Baltic Sea, the Gulf of Riga, and the Gulf of Finland. By means of the radiochemical method using ferrocyanide-carbonate concentration, they determine strotium-90 and cesium-137 content. The authors conclude by noting an increase in the cesium-137 content in the deep waters of the Baltic Sea and in bed deposits, and by cautioning that this development commands close attention.

  16. Sugar-metal ion interactions: the complicated coordination structures of cesium ion with D-ribose and myo-inositol.

    PubMed

    Hu, Haijian; Xue, Junhui; Wen, Xiaodong; Li, Weihong; Zhang, Chao; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Bu, Xiaoxia; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2013-11-18

    The novel cesium chloride-D-ribose complex (CsCl·C5H10O5; Cs-R) and cesium chloride-myo-inositol complex (CsCl·C6H12O6; Cs-I) have been synthesized and characterized using X-ray diffraction and FTIR, FIR, THz, and Raman spectroscopy. Cs(+) is eight-coordinated to three chloride ions, O1 and O2 from one D-ribose molecule, O1 from another D-ribose molecule, and O4 and O5 from the third D-ribose molecule in Cs-R. For one D-ribose molecule, the oxygen atom O1 in the ring is coordinated to two cesium ions as an oxygen bridge, O2 is cocoordinated with O1 to one of the two cesium ions, and O4 and O5 are coordinated to the third cesium ion, respectively. O3 does not coordinate to metal ions and only takes part in forming hydrogen bonds. One chloride ion is connected to three cesium ions. Thus, a complicated structure of Cs-D-ribose forms. For Cs-I, Cs(+) is 10-coordinated to three chloride ions, O1 and O2 from one myo-inositol molecule, O3 and O4 from another myo-inositol molecule, O5 and O6 from the third myo-inositol molecule, and O6 from the fourth myo-inositol molecule. One metal ion is connected to four ligands, and one myo-inositol is coordinated to four Cs(+) ions, which is also a complicated coordination structure. Crystal structure results, FTIR, FIR, THz, and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-D-ribose and cesium chloride-myo-inositol complexes.

  17. Synthesis and optical property characterization of elongated AuPt and Pt@Au metal nanoframes

    NASA Astrophysics Data System (ADS)

    Lee, Sangji; Jang, Hee-Jeong; Jang, Ho Young; Hong, Soonchang; Moh, Sang Hyun; Park, Sungho

    2016-02-01

    We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges.We report a facile method to synthesize elongated nanoframes consisting of Pt and Au in solution. Pentagonal Au nanorods served as templates and successfully led to an elongated AuPt nanoframe after etching the core Au. Subsequently, the coating of Au around Pt ridges resulted in Pt@Au metal nanoframes. The resulting elongated nanostructure exhibited 5 well-defined ridges continuously connected along the long axis. During the shape evolution from pure Au nanorods to elongated Pt@Au metal nanoframes, their corresponding localized surface plasmon resonance bands were monitored. Especially, unique surface plasmon features were observed for elongated Pt@Au nanoframes where the short-axis oscillation of surface free electrons is strongly coupled but the long-axis oscillation is not coupled among the ridges. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08200e

  18. Role of Hog1 and Yaf9 in the transcriptional response of Saccharomyces cerevisiae to cesium chloride.

    PubMed

    Del Vescovo, Valerio; Casagrande, Viviana; Bianchi, Michele M; Piccinni, Eugenia; Frontali, Laura; Militti, Cristina; Fardeau, Vivienne; Devaux, Frédéric; Di Sanza, Claudio; Presutti, Carlo; Negri, Rodolfo

    2008-03-14

    We analyzed the global transcriptional response of Saccharomyces cerevisiae cells exposed to different concentrations of CsCl in the growth medium and at different times after addition. Early responsive genes were mainly involved in cell wall structure and biosynthesis. About half of the induced genes were previously shown to respond to other alkali metal cations in a Hog1-dependent fashion. Western blot analysis confirmed that cesium concentrations as low as 100 mM activate Hog1 phosphorylation. Another important fraction of the cesium-modulated genes requires Yaf9p for full responsiveness as shown by the transcriptome of a yaf9-deleted strain in the presence of cesium. We showed that a cell wall-restructuring process promptly occurs in response to cesium addition, which is dependent on the presence of both Hog1 and Yaf9 proteins. Moreover, the sensitivity to low concentration of cesium of the yaf9-deleted strain is not observed in a strain carrying the hog1/yaf9 double deletion. We conclude that the observed early transcriptional modulation of cell wall genes has a crucial role in S. cerevisiae adaptation to cesium.

  19. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect

    Moyer, Bruce A; Bazelaire, Eve; Bonnesen, Peter V; Custelcean, Radu; Delmau, Laetitia H; Ditto, Mary E; Engle, Nancy L; Gorbunova, Maryna G; Haverlock, Tamara J; Levitskaia, Taiana G; Bartsch, Richard A; Surowiec, Malgorzata A; Zhou, Hui

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and "switch off" when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  20. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Ditto, Mary E.; Engle, Nancy L.; Gorbunova, Maryna G.; Haverlock, Tamara J.; Levitskaia, Tatiana G.; Bartsch, Richard A.; Surowiec, Malgorzata A.; Zhou, Hui

    2005-07-06

    This project unites expertise at Oak Ridge National Laboratory (ORNL) and Texas Tech University (TTU, Prof. Richard A. Bartsch) to answer fundamental questions addressing the problem of cesium removal from high-level tank waste. Efforts focus on novel solvent-extraction systems containing calixcrown extractants designed for enhanced cesium binding and release. Exciting results are being obtained in three areas: (1) a new lipophilic cesium extractant with a high solubility in the solvent; (2) new proton-ionizable calixcrowns that both strongly extract cesium and ''switch off'' when protonated; and (3) an improved solvent system that may be stripped with more than 100-fold greater efficiency. Scientific questions primarily concern how to more effectively reverse extraction, focusing on the use of amino groups and proton-ionizable groups to enable pH-switching. Synthesis is being performed at ORNL (amino calixcrowns) and TTU (proton-ionizable calixcrowns). At ORNL, the extraction behavior is being surveyed to assess the effectiveness of candidate solvent systems, and systematic distribution measurements are under way to obtain a thermodynamic understanding of partitioning and complexation equilibria. Crystal structures obtained at ORNL are revealing the structural details of cesium binding. The overall objective is a significant advance in the predictability and efficiency of cesium extraction from high-level waste in support of potential implementation at U. S. Department of Energy (USDOE) sites.

  1. Moisture proof columnar Cesium Iodide (CsI) layers for gas avalanche microdetectors

    SciTech Connect

    Park, I.J.; Cho, H.S.; Hong, W.S.; Perez-Mendez, V.; Kadyk, J.

    1999-05-05

    Cesium iodide columnar layers having a diameter of 3 {micro}m, and wall spacing of {approx} 1 {micro}m act as secondary electron emitters and can be used for detection of radiation: charged particles, X-rays and gamma rays. With a large enough electric field across the columnar layers, {approx} 400 {micro}m in thickness, gas avalanche gain is evident when placed in a suitable gas, such as P10 or argon-ethane mixtures. The cesium iodide columns are damaged by ambient moisture. This damage can be prevented by evaporating protective layers of insoluble, low boiling point inorganic materials, such as mercuric iodide. Columnar layers with 20 nm coatings of mercuric iodide yield more than 30,000 electrons on average when traversed by electrons from a {sup 90}Sr beta source.

  2. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    SciTech Connect

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J.

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  3. Phenolic cation exchange resin material for recovery of cesium and strontium

    DOEpatents

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  4. Spin-injection optical pumping of molten cesium salt and its NMR diagnosis

    SciTech Connect

    Ishikawa, Kiyoshi

    2015-07-15

    Nuclear spin polarization of cesium ions in the salt was enhanced during optical pumping of cesium vapor at high magnetic field. Significant motional narrowing and frequency shift of NMR signals were observed by intense laser heating of the salt. When the hyperpolarized salt was cooled by blocking the heating laser, the signal width and frequency changed during cooling and presented the phase transition from liquid to solid. Hence, we find that the signal enhancement is mostly due to the molten salt and nuclear spin polarization is injected into the salt efficiently in the liquid phase. We also show that optical pumping similarly induces line narrowing in the solid phase. The use of powdered salt provided an increase in effective surface area and signal amplitude without glass wool in the glass cells.

  5. Grid control over high currents in a cesium discharge with a cathode spot

    NASA Astrophysics Data System (ADS)

    Kaplan, V. B.; Martsinovskii, A. M.; Stolyarov, I. I.

    2016-05-01

    We report on the results of investigation of a plasma switch with complete grid control in a discharge with a cathode spot on the liquid-metal cesium cathode without grid diaphragming. The retention of the working area of the grid relative to the anode area leads to an order-of-magnitude increase in the switching anode current (up to 20 A/cm2 over the anode area) and a substantial (up to 100 V and higher) increase in the switching voltages. The use of the cathode jet makes it possible to reduce the working pressures of cesium vapor (down to 10-3 Torr). We discuss the results of analysis of peculiarities of grid discharge quenching in such a switch, which make it possible to determine possible reasons for limitation of the working parameters of the switch and the ways of their further increase.

  6. Physical origin of the frequency shifts in cesium beam frequency standards: Related environmental sensitivity

    NASA Technical Reports Server (NTRS)

    Audoin, Claude; Dimarcq, N.; Giordano, V.; Viennet, J.

    1990-01-01

    When observed in a cesium beam frequency standard, the hyperfine transition frequency of the atoms differs slightly from the invariant transition frequency of the unperturbed atoms at rest. The various physical and technical origins of the frequency offsets are stated. They relate to fundamental physical effects, to the method of probing the atomic resonance and to the frequency control of the slaved oscillator. The variation of the frequency offsets under a change of the value of the internal operating characteristics is considered. The sensitivity to a change of the magnetic induction, the microwave power, and the temperature is given. A comparison is made of the sensitivity of cesium beam frequency standards of the commercially available type, making use of magnetic state selection, and of devices under study, in which the state preparation and detection is accomplished optically. The pathways between the external stimuli and the physical origin of the frequency offsets are specified.

  7. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    DOEpatents

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  8. Realization of a twin beam source based on four-wave mixing in Cesium

    NASA Astrophysics Data System (ADS)

    Adenier, G.; Calonico, D.; Micalizio, S.; Samantaray, N.; Degiovanni, I. P.; Berchera, I. Ruo

    2016-05-01

    Four-wave mixing (4WM) is a known source of intense non-classical twin beams. It can be generated when an intense laser beam (the pump) and a weak laser beam (the seed) overlap in a χ(3) medium (here Cesium vapor), with frequencies close to resonance with atomic transitions. The twin beams generated by 4WM have frequencies naturally close to atomic transitions, and can be intense (gain ≫1) even in the CW pump regime, which is not the case for PDC χ(2) phenomenon in nonlinear crystals. So, 4WM is well suited for atom-light interaction and atom-based quantum-protocols. Here, we present the first realization of a source of 4-wave mixing exploiting D2 line of Cesium atoms.

  9. Characterization of cesium uptake mediated by a potassium transport system of bacteria in a soil conditioner.

    PubMed

    Zhang, Pengyao; Idota, Yoko; Yano, Kentaro; Negishi, Masayuki; Kawabata, Hideaki; Arakawa, Hiroshi; Morimoto, Kaori; Tsuji, Akira; Ogihara, Takuo

    2014-01-01

    We found that bacteria in a commercial soil conditioner sold in Ishinomaki, Miyagi, exhibited concentrative and saturable cesium ion (Cs(+)) uptake in the natural range of pH and temperature. The concentration of intracellular Cs(+) could be condensed at least a few times higher compared with the outside medium of the cells. This uptake appeared to be mediated by a K(+) transport system, since Cs(+) uptake was dose-dependently inhibited by potassium ion (K(+)). Eadie-Hofstee plot analysis indicated that the Cs(+) uptake involved a single saturable process. The maximum uptake amount (Jmax) was the same in the presence and absence of K(+), suggesting that Cs(+) and K(+) uptakes were competitive with respect to each other. These bacteria might be useful for bioremediation of cesium-contaminated soil.

  10. Low Level Gamma Spectroscopy Measurements of Radium and Cesium in Lucerne (Medicago Sativa)

    NASA Astrophysics Data System (ADS)

    Fokapić, S.; Bikit, I.; Mrđa, D.; Vesković, M.; Slivka, J.; Mihaljev, Ž.; Ćupić, Ž.

    2007-04-01

    Nineteen years after Chernobyl nuclear accident, activity concentration of 137Cs still could be detected in food and soil samples in Central and Eastern Europe. In this paper radiation levels of radium and cesium in Lucerne will be presented. It is a perennial plant with a deep root system and it is widely grown throughout the world as forage for cattle. The samples of Lucerne were taken from twelve different locations in Vojvodina in the summer period July-September 2004. The samples were specially dried on the air and after that ground, powdered and mineralized by method of dry burning on the temperature of 450°C. Gamma spectrometry measurements of the ash were performed by means of actively shielded germanium detector with maximal background reduction. For cesium 137Cs 10 mBq/kg order of magnitude detection limits were achieved.

  11. Bench-scale treatability studies for simulated incinerator scrubber blowdown containing radioactive cesium and strontium

    SciTech Connect

    Coroneos, A.C.; Taylor, P.A.; Arnold, W.D. Jr.; Bostick, D.A.; Perona, J.J.

    1994-12-01

    The purpose of this report is to document the results of bench-scale testing completed to remove {sup 137}Cs and {sup 90}Sr from the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator blowdown at the K-25 Site Central Neutralization Facility, a wastewater treatment facility designed to remove heavy metals and uranium from various wastewaters. The report presents results of bench-scale testing using chabazite and clinoptilolite zeolites to remove cesium and strontium; using potassium cobalt ferrocyanide (KCCF) to remove cesium; and using strontium chloride coprecipitation, sodium phosphate coprecipitation, and calcium sulfate coprecipitation to remove strontium. Low-range, average-range, and high-range concentration blowdown surrogates were used to complete the bench-scale testing.

  12. Removal of cesium ions from aqueous solution by adsorption onto local Taiwan laterite.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Yeh, Wen-Chun; Wei, Yuan-Yaw; Teng, Shi-Ping

    2008-12-30

    Utilization of local Taiwan laterite (LTL) to remove aqueous cesium was investigated in this work under the conditions of various contact time, cesium (Cs) loading and temperature. Experimental results show that adsorption is instantaneous. Freundlich and Langmuir simulation results demonstrate that local Taiwan laterite has high affinity and sorption capacity for Cs at low temperatures, which may be attributed to enhanced desorption as temperature increased. Thermodynamic parameters including DeltaH, DeltaG and DeltaS were calculated and it is indicated that Cs adsorption on LTL is an exothermic, spontaneous and physical adsorption reaction. Moreover, the adsorbed Cs is distributed evenly on the LTL surface, which is confirmed by SEM/EDS mapping images. Furthermore, the absence of apparent shifting or broadening of the kaolinite signal in XRD patterns after Cs adsorption is an indication of the non-expanding characteristic of kaolinite structure. PMID:18448244

  13. Surface electrical conductivity of single crystal spinel in cesium vapor. Final report

    SciTech Connect

    Agnew, P.; Ing, J.L.

    1995-04-02

    The operation of a thermionic fuel element (TFE) requires the maintenance of good electrical resistance between the anode and cathode, and between the electrodes and the TFE body. A program of research was established as part of the TOPAZ International Program (TIP) with the purpose of investigating the degradation of TFE electrical insulators. The major emphasis of this research has been on the interactions of oxide ceramics with cesium (Cs) vapor, and the resurfacing decrease of surface resistivity. Previous work has studied the surface electrical conductivity of sapphire exposed to Cs. In this report the authors describe the results of an experimental investigation of the surface electrical conductivity of single crystal magnesium aluminate spinel at temperatures ranging from 573K to 923K, in the presence of cesium vapor at pressures up to 1 Torr. The interest in spinel has arisen in view of its apparent resistance to radiation damage.

  14. Study of cesium sorption on Na and Ca-Mg bentonites using batch and diffusion experiments

    NASA Astrophysics Data System (ADS)

    Vejsada, J.; Vokál, A.; Vopálka, D.; Filipská, H.

    2006-01-01

    In this study the cesium sorption on two different bentonites (Ca-Mg bentonite Rokle and Na bentonite Volclay KWK 20 80) has been compared using two different experimental approaches — batch and diffusion methods. The distribution coefficients (Kds) calculated for variable liquid-to-solid ratio (batch) and dry density (diffusion) were evaluated with respect to the main uncertainties affecting both approaches. It has been concluded that there are significant differences between selected bentonites in mineral composition, cation exchange capacity (CEC) and sorption characteristics. The Kd values calculated from batch sorption and diffusion data were found comparable only for Na bentonite Volclay KWK 20 80. The considerably higher sorption of Cs on Ca-Mg bentonite Rokle was explained by its higher content of cesium-selective sorbents (illite, vermiculite).

  15. Accumulation of radioactive cesium released from Fukushima Daiichi Nuclear Power Plant in terrestrial cyanobacteria Nostoc commune.

    PubMed

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight (134)Cs and 607,000 Bq kg(-1) dry weight (137)Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil.

  16. Sorption of cesium and strontium on Savannah River soils impregnated with colloidal silica

    SciTech Connect

    Hakem, N.; Al Mahamid, I.; Apps, J.; Moridis, G.

    1997-01-01

    Colloidal silica (CS) is being considered as an injectable low viscosity fluid for creation of impermeable barrier containment of low level radioactive waste at the Savannah River Site (SRS), South Carolina. The sorption behavior of cesium and strontium on Savannah River Site Soils impregnated with Colloidal Silica was studied using a batch experimental method. The samples were prepared by addition of CS and an aqueous solution of CaCl{sub 2} to the soil materials. Sorption studies were conducted after the gelation of the CS samples had occurred. The variation of the sorption ratio, R, as a function of cesium or strontium concentration was examined. The Freundlich isotherm was used to fit the data and very good results were obtained.

  17. Low Level Gamma Spectroscopy Measurements of Radium and Cesium in Lucerne (Medicago Sativa)

    SciTech Connect

    Fokapic, S.; Bikit, I.; Mrda, D.; Veskovic, M.; Slivka, J.; Mihaljev, Z.; Cupic, Z.

    2007-04-23

    Nineteen years after Chernobyl nuclear accident, activity concentration of 137Cs still could be detected in food and soil samples in Central and Eastern Europe. In this paper radiation levels of radium and cesium in Lucerne will be presented. It is a perennial plant with a deep root system and it is widely grown throughout the world as forage for cattle. The samples of Lucerne were taken from twelve different locations in Vojvodina in the summer period July-September 2004. The samples were specially dried on the air and after that ground, powdered and mineralized by method of dry burning on the temperature of 450 deg. C. Gamma spectrometry measurements of the ash were performed by means of actively shielded germanium detector with maximal background reduction. For cesium 137Cs 10 mBq/kg order of magnitude detection limits were achieved.

  18. Removal of cesium ions from aqueous solution by adsorption onto local Taiwan laterite.

    PubMed

    Wang, Tsing-Hai; Li, Ming-Hsu; Yeh, Wen-Chun; Wei, Yuan-Yaw; Teng, Shi-Ping

    2008-12-30

    Utilization of local Taiwan laterite (LTL) to remove aqueous cesium was investigated in this work under the conditions of various contact time, cesium (Cs) loading and temperature. Experimental results show that adsorption is instantaneous. Freundlich and Langmuir simulation results demonstrate that local Taiwan laterite has high affinity and sorption capacity for Cs at low temperatures, which may be attributed to enhanced desorption as temperature increased. Thermodynamic parameters including DeltaH, DeltaG and DeltaS were calculated and it is indicated that Cs adsorption on LTL is an exothermic, spontaneous and physical adsorption reaction. Moreover, the adsorbed Cs is distributed evenly on the LTL surface, which is confirmed by SEM/EDS mapping images. Furthermore, the absence of apparent shifting or broadening of the kaolinite signal in XRD patterns after Cs adsorption is an indication of the non-expanding characteristic of kaolinite structure.

  19. Design and operation of a 1000 C lithium-cesium test system

    NASA Technical Reports Server (NTRS)

    Hays, L. G.; Haskins, G. M.; Oconnor, D. E.; Torola, J., Jr.

    1973-01-01

    A 100 kWt cesium-lithium test loop fabricated of niobium-1% zirconium for experiments on erosion and two-phase system operation at temperatures of 980 C and velocities of 150 m/s. Although operated at design temperature for 100 hours, flow instabilities in the two-phase separator interfered with the achievement of the desired mass flow rates. A modified separator was fabricated and installed in the loop to alleviate this problem.

  20. Study of the parameters of a single-frequency laser for pumping cesium frequency standards

    SciTech Connect

    Zhuravleva, O V; Ivanov, A V; Kurnosov, V D; Kurnosov, K V; Mustafin, I R; Simakov, V A; Chernov, R V; Pleshanov, S A

    2008-04-30

    A model for calculating the parameters of a laser diode with an external fibre cavity containing a fibre Bragg grating (FBG) is presented. It is shown that by using this model, it is possible to obtain single-mode lasing by neglecting the spectral burning of carriers. The regions of the laser-diode current and temperature and the FBG temperature in which the laser can be tuned to the D{sub 2} line of cesium are determined experimentally. (lasers and amplifiers)

  1. Cesium under pressure: First-principles calculation of the bcc-to-fcc phase transition

    NASA Astrophysics Data System (ADS)

    Carlesi, S.; Franchini, A.; Bortolani, V.; Martinelli, S.

    1999-05-01

    In this paper we present the ab initio calculation of the structural properties of cesium under pressure. The calculation of the total energy is done in the local-density approximation of density-functional theory, using a nonlocal pseudopotential including the nonlinear core corrections proposed by Louie et al. The calculation of the pressure-volume diagram for both bcc and fcc structures allows us to prove that the transition from bcc to fcc structure is a first-order transition.

  2. Fukushima Daiichi reactor source term attribution using cesium isotope ratios from contaminated environmental samples

    DOE PAGES

    Snow, Mathew S.; Snyder, Darin C.; Delmore, James E.

    2016-01-18

    Source term attribution of environmental contamination following the Fukushima Daiichi Nuclear Power Plant (FDNPP) disaster is complicated by a large number of possible similar emission source terms (e.g. FDNPP reactor cores 1–3 and spent fuel ponds 1–4). Cesium isotopic analyses can be utilized to discriminate between environmental contamination from different FDNPP source terms and, if samples are sufficiently temporally resolved, potentially provide insights into the extent of reactor core damage at a given time. Rice, soil, mushroom, and soybean samples taken 100–250 km from the FDNPP site were dissolved using microwave digestion. Radiocesium was extracted and purified using two sequentialmore » ammonium molybdophosphate-polyacrylonitrile columns, following which 135Cs/137Cs isotope ratios were measured using thermal ionization mass spectrometry (TIMS). Results were compared with data reported previously from locations to the northwest of FDNPP and 30 km to the south of FDNPP. 135Cs/137Cs isotope ratios from samples 100–250 km to the southwest of the FDNPP site show a consistent value of 0.376 ± 0.008. 135Cs/137Cs versus 134Cs/137Cs correlation plots suggest that radiocesium to the southwest is derived from a mixture of FDNPP reactor cores 1, 2, and 3. Conclusions from the cesium isotopic data are in agreement with those derived independently based upon the event chronology combined with meteorological conditions at the time of the disaster. In conclusion, cesium isotopic analyses provide a powerful tool for source term discrimination of environmental radiocesium contamination at the FDNPP site. For higher precision source term attribution and forensic determination of the FDNPP core conditions based upon cesium, analyses of a larger number of samples from locations to the north and south of the FDNPP site (particularly time-resolved air filter samples) are needed. Published in 2016. This article is a U.S. Government work and is in the public domain

  3. Mössbauer study on the gamma radiolysis of anhydrous cesium tris (oxalato) ferrate(III)

    NASA Astrophysics Data System (ADS)

    Ladriere, J.; Senterre, V.; Apers, D.

    1992-04-01

    The final product of the gamma radiolysis of anhydrous cesium tris(oxalato) ferrate(III) has been identified by Mössbauer spectroscopy as Cs2Fe(ox)2. The radiolytic decomposition proceeds as a first-order process due to the original compound depletion and to the radiolytic stability of the ferrous compound. Lamb-Mössbauer factors measurements indicate that the recoilless fractions of the iron species are practically unaffected by the radiolysis.

  4. Frequency tuning of the optical delay in cesium D{sub 2} line including hyperfine structure

    SciTech Connect

    Anderson, Monte D.; Perram, Glen P.

    2010-03-15

    The frequency dependence of optical delays in both the wings and core of the cesium 6 {sup 2}S{sub 1/2}-6 {sup 2}P{sub 3/2} transition have been observed and modeled with a Voigt line shape convolved with the six hyperfine components. Tunable delays of 0-37 ns are achieved by tuning the laser frequency through resonance at various vapor pressures of 0.15-5.28 mTorr.

  5. Cesium and strontium tolerant Arthrobacter sp. strain KMSZP6 isolated from a pristine uranium ore deposit.

    PubMed

    Swer, Pynskhem Bok; Joshi, Santa Ram; Acharya, Celin

    2016-12-01

    Arthrobacter sp. KMSZP6 isolated from a pristine uranium ore deposit at Domiasiat located in North-East India exhibited noteworthy tolerance for cesium (Cs) and strontium (Sr). The strain displayed a high minimum inhibitory concentration (MIC) of 400 mM for CsCl and for SrCl2. Flow cytometric analysis employing membrane integrity indicators like propidium iodide (PI) and thiazole orange (TO) indicated a greater sensitivity of Arthrobacter cells to cesium than to strontium. On being challenged with 75 mM of Cs, the cells sequestered 9612 mg Cs g(-1) dry weight of cells in 12 h. On being challenged with 75 mM of Sr, the cells sequestered 9989 mg Sr g(-1) dry weight of cells in 18 h. Heat killed cells exhibited limited Cs and Sr binding as compared to live cells highlighting the importance of cell viability for optimal binding. The association of the metals with Arthrobacter sp. KMSZP6 was further substantiated by Field Emission-Scanning Electron Microscopy (FE-SEM) coupled with Energy dispersive X-ray (EDX) spectroscopy. This organism tolerated up to 1 kGy (60)Co-gamma rays without loss of survival. The present report highlights the superior tolerance and binding capacity of the KMSZP6 strain for cesium and strontium over other earlier reported strains and reveals its potential for bioremediation of nuclear waste. PMID:27620733

  6. Uptake and transport of radioactive cesium and strontium into grapevines after leaf contamination

    NASA Astrophysics Data System (ADS)

    Zehnder, H. J.; Kopp, P.; Eikenberg, J.; Feller, U.; Oertli, J. J.

    1995-07-01

    From 1989 to 1993 the foliar uptake of radioactive strontium (Sr-85) and cesium (Cs-134) by selected leaves of grapevine plants and the subsequent redistribution within the plants was examined under controlled conditions in a greenhouse. The radionuclides were applied as chlorides. These plants were grown in large pots containing a mixture of local soil and peat. Plant and soil samples were analyzed throughout the growing season and also during the following vegetation period. Only traces of the applied radiostrontium were taken up by the leaves. This element was essentially not redistributed within the plants. In contrast, radiocesium was easily taken up through the leaf surface, transported to other plant parts and to some extent released from the roots into the soil. Cesium reaching the soil may interact with clay particles causing a very reduced availability for plants. Therefore the soil may act as a long-term sink for radiocesium. On the other hand, grape berries represent transient sinks. The cesium levels in the berries decreased again in a late phase of maturation, but the mechanisms causing this loss are not yet identified. During the second vegetation period, only a very minor proportion of the radiocesium taken up previously by the plants was present in the above ground parts.

  7. Construction and preliminary tests of a laser optically pumped cesium jet atomic clock

    NASA Astrophysics Data System (ADS)

    Arditi, M.; Picque, J.-L.

    1980-06-01

    The design and preliminary operational test results of an atomic clock based on an optically pumped cesium jet utilizing laser pumping and optical detection are presented. The apparatus consists of a tunable CW monomode GaAs semiconductor laser diode emitting in the vicinity of the cesium D2 resonance line at 852.1 nm which creates a population splitting between the hyperfine Zeeman sublevels F equals 3, mF equals 0 and F equals 4, mF equals 0 of the ground state of a jet of cesium atoms; the microwave resonance is detected through a change in the intensity of laser-induced fluorescence produced by the 9192-MHz excitation of a resonant cavity. The observed Ramsey spectrum for a clock with a resonant cavity 22.5 cm long is shown to be in good agreement with the theoretical curve for the mean transition probability, and measurements of the magnetic field dependence of the frequency standard indicating an accuracy on the order of 10 to the -11th are reported.

  8. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    SciTech Connect

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  9. Immobilization of Cesium Traps from the BN-350 Fast Reactor (Aktau, Kazakhstan)

    SciTech Connect

    J. A. Michelbacher; C. Knight; O. G. Romanenko; I. L. Tazhibaeva; I. L. Yakovlev; A. V. Rovneyko; V. I. Maev; D. Wells; A. Herrick

    2011-03-01

    During BN-350 reactor operations and also during the initial stages of decommissioning, cesium traps were used to decontaminate the reactor’s primary sodium coolant. Two different types of carbon-based trap were used – the MAVR series, low ash granulated graphite adsorber (LAG) contained in a carrier designed to be inserted into the reactor core during shutdown; and a series of ex-reactor trap accumulators(TAs) which used reticulated vitreous carbon (RVC) to reduce Cs-137 levels in the sodium after final reactor shutdown. In total four MAVRs and seven TAs were used at BN-350 to remove an estimated cumulative 755 TBq of cesium. The traps, which also contain residual sodium, need to be immobilized in an appropriate way to allow them to be consigned as waste packages for long term storage and, ultimately, disposal. The present paper reports on the current status of the implementation phase, with particular reference to the work done to date on the trap accumulators, which have the most similarity with the cesium traps used at other reactors.

  10. Gas-Phase Reactivity of Cesium-Containing Species by Quantum Chemistry.

    PubMed

    Šulková, Katarína; Cantrel, Laurent; Louis, Florent

    2015-09-01

    Thermodynamics and kinetics of cesium species reactions have been studied by using high-level quantum chemical tools. A systematic theoretical study has been done to find suitable methodology for calculation of reliable thermodynamic properties, allowing us to determine bimolecular rate constants with appropriate kinetic theories of gas-phase reactions. Four different reactions have been studied in this work: CsO + H2 = CsOH + H (R1), Cs + HI = CsI + H (R2), CsI + H2O = CsOH + HI (R3), and CsI + OH = CsOH + I (R4). All reactions involve steam, hydrogen, and iodine in addition of cesium. Most of the reactions are fast and (R3) and (R4) proceed even without energetic barrier. In terms of chemical reactivity in the reactor coolant system (RCS) in the case of severe accident, it can be expected that there will be no kinetic limitations for main cesium species (CsOH and CsI) transported along the RCS. Cs chemical speciation inside the RCS should be governed by the thermodynamics.

  11. Fire Safety Tests for Cesium-Loaded Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    SciTech Connect

    Kim, Dong-Sang; Schweiger, Michael J.; Peterson, Reid A.

    2012-09-01

    A draft safety evaluation of the scenario for spherical resorcinol formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI) through a subcontract managed by Pacific Northwest National Laboratory (PNNL). The results of initial fire safety tests on the SRF resin were documented in a previous report (WTP-RPT-218). The present report summarizes the results of additional tests performed by SwRI on the cesium-loaded SRF resin. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. The as-received SwRI report is attached to this report in the Appendix A. Where applicable, the precision and bias of each test method, as given by each American Society for Testing and Materials (ASTM) standard procedure, are included and compared with the SwRI test results of the cesium-loaded SRF resin.

  12. Study of a cesium plasma as a selective emitter for thermophotovoltaic applications

    NASA Technical Reports Server (NTRS)

    Lowe, R.; Goradia, C.; Goradia, M.; Chubb, Donald L.

    1990-01-01

    This experimental study evaluates the potential of a cesium plasma as an emitter for a thermophotovoltaic (TPV) energy conversion system. A cesium plasma, as a result of the ground-state transitions of its single outer-shell electron, produces large amounts of radiation in the 850-890-nm wavelength region. This would provide excellent coupling to silicon, gallium arsenide, and indium phosphide photovoltaic cells. Measurements of the radiative efficiency, the sum of the power at the 852 and 894 nm wavelengths relative to the total emitted power, were made and correlated to the plasma operating variables. It was determined that, for atomic density in the range (3-6) x 10 exp 21/cu cm and electron temperature in the range 2000-3000 K, radiative efficiencies in excess of 70 percent are attainable. This would indicate that a cesium plasma with its selective emission characteristics and low electron operating temperatures of 2000-3000 K would be an excellent candidate as an emitter in a TPV system.

  13. Deployment of Cesium Recovered from High Level Liquid Waste for Irradiation - Indian Scenario - 13128

    SciTech Connect

    Vincent, Tessy; Shah, J.G.; Kumar, Amar; Patil, S.B.; Wattal, P.K.

    2013-07-01

    Recovery of Cs-137 from HLW and its utilisation as source pencil in place of Co-60 is vital for medical and sewage treatment applications in India. For separation of Cs, specific ion exchange resins as well as 'Calyx crown' solvent have been developed and synthesized indigenously. A flow sheet involving separation of Cs from acidic HLW using Ammonium Molybdo Phosphate (AMP) resins, recovery of Cs from the loaded AMP column by dissolving it in alkali, ion exchange purification of Cs rich alkaline solution using Resorcinol-Formaldehyde Poly condensate (RF) resins and its elution in cesium nitrate form was developed and demonstrated. Solvent extraction route employing 0.03 Molar, 1-3-octyl oxy Calyx (4) arene crown-6 in 30% isodecyl alcohol and dodecane was also established using mixer settlers. Cesium lithium borosilicate glass based formulations have been considered as a glass matrix for Cs irradiation pencils. While choosing this vitreous matrix, attributes addressing maximum possible Cs-137 loading, low glass pouring temperature to minimise Cs volatility, reasonably good mechanical strength and good chemical durability have been considered. Recovered cesium nitrate solution was vitrified along with glass additives in an induction heated metallic melter and subsequently poured into 12 numbers of Cs irradiation pencils positioned on turn-table equipped with the load cell. The complete cycle involving recovery of Cs from HLW followed by its conversion into Cs pencil was demonstrated. (authors)

  14. Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater.

    PubMed

    Lee, Keun-Young; Kim, Kwang-Wook; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-15

    Finding a striking peculiarity of nanomaterials and evaluating its feasibility for practical use are interesting topics of research. We investigated the application of nanozeolite's outstanding reactivity for a rapid and effective method for radioactive cesium removal in the wastewater generated from nuclear power plant accident, as a new concept. Extremely fast removal of cesium, even without stirring, was achieved by the nanozeolite at efficiencies never observed with bulk materials. The nanozeolite reached an adsorption equilibrium state within 1 min. Cesium adsorption by nanozeolite was demonstrated at reaction rates of orders of magnitude higher than that of larger zeolite phases. This observation was strongly supported by the positive correlation between the rate constant ratio (k2,bulk/k2,nano) and the initial Cs concentrations with a correlation coefficient (R(2)) of 0.99. A potential drawback of a nanoadsorbent is the difficulty of particle settling and separation because of its high dispersivity in solution. However, our results also demonstrated that the nanozeolite could be easily precipitated from the high-salt solution with ferric flocculant. The flocculation index reached a steady state within 10 min. A series of our experimental results met the goal of rapid processing in the case of emergency by applying the well-suited nanozeolite adsorption and flocculation.

  15. Theoretical study on temperature features of a sealed cesium vapor cell pumped by laser diodes.

    PubMed

    Zhang, Wei; Wang, You; Cai, He; Xue, Liangping; Han, Juhong; Wang, Hongyuan; Liao, Zhiye

    2014-07-01

    The diode-pumped alkali laser (DPAL) is a new type of laser source which has been widely studied in the recent years. The temperature distribution of a sealed vapor cell, which is the crucial component in a DPAL system, produces an important effect on the output performance of a DPAL. In this paper, the strict solution of the heat conduction equation for a cesium vapor cell is obtained by using a finite difference procedure. The temperature distribution of a dummy open cell is first analyzed, and then the temperature distributions of two independent windows, regarded as the boundary conditions of solving a sealed cell, are evaluated in detail. By combining the results of the two steps together, we finally acquire the temperature distribution of a real sealed cesium vapor cell. The results reveal that the temperature gradients on both radial and longitudinal directions change with the pump power, cell radius, and absorption coefficient when the sealed cesium vapor cell is heated or pumped with the laser diodes. The conclusions are helpful for accurately evaluating the output characteristics of a DPAL.

  16. Derivation of cesium-137 residual radioactive material guidelines for the Peek Street site, Schenectady, New York

    SciTech Connect

    Jones, L.; Nimmagadda, M.; Yu, C.

    1992-01-01

    Residual radioactive material guidelines for cesium-137 were derived for the Peek rk. The derivation was based on the requirement that the Street site in Schenectady, New York. The derivation was based on the requirement that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works in the immediate vicinity of the Peek Street site should not exceed a dose of 100 mrem/yr following remedial action. The US Department of Energy (DOE) residual radioactive material guideline computer code, RESRAD was used in this evaluation. Three potential scenarios were considered for the site on the assumption that for a period of 1,000 years following remedial action, the site wig be utilized without radiological restrictions. The scenarios vary with regard to use of the site, time spent at the site, and sources of food consumed. Results indicate that the basic dose limit of 100 mrem/yr will not be exceeded for cesium-137 within 1,000 years, provided that the soil concentration of cesium-137 at the Peek Street site does not exceed the following levels: 98 pCi/g for Scenario A (industrial worker: the expected scenario), 240 pCi/g for Scenario B (recreationist: a plausible scenario), and 34 pCi/g for Scenario C (resident farmer ingesting food produced in the decontaminated area: a plausible scenario).

  17. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103

    SciTech Connect

    Hassan, N.M.

    2000-07-27

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low activity and high level waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The ion exchange removal of cesium (Cs) and technetium (Tc) ions is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as pertechnetate), from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Technology Center demonstrated the conceptualized flow sheet parameters with a similar Hanford tank sample (241-AW-101). Those experiments included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  18. Equilibrium sorption of cobalt, cesium, and strontium on Bandelier Tuff: analysis of alternative mathematical modeling

    SciTech Connect

    Polzer, W.L.; Fuentes, H.R.; Essington, E.H.; Roensch, F.R.

    1985-01-01

    Sorption isotherms are derived from batch equilibrium data for cobalt, cesium and strontium on Bandelier Tuff. Experiments were conducted at an average temperature of 23/sup 0/C and equilibrium was defined at 48 hours. The solute concentrations ranged from 0 to 500 mg/L. The radioactive isotopes /sup 60/Co, /sup 137/Cs, and /sup 85/Sr were used to trace the sorption of the stable solutes. The Linear, Langmuir, Freundlich and a Modified Freundlich isotherm equations are evaluated. The Modified Freundlich isotherm equation is validated as a preferred general mathematical tool for representing the sorption of the three solutes. The empirical constants derived from the Modified Freundlich isotherm equation indicate that under dynamic flow conditions strontium will move most rapidly and cobalt least rapidly. On the other hand, chemical dispersion will be greatest for cesium and least for strontium. Hill Plots of the sorption data suggest that in the region of low saturation sorption of all three solutes is impeded by interactions among sorption sites; cobalt exhibits the greatest effect of interactions and strontium shows only a minimal effect. In the saturation region of 50% or more, sorption of cobalt is enhanced slightly by interactions among sorption sites whereas sorption of cesium and strontium appears to be independent of site interactions. 9 references, 4 figures, 2 tables.

  19. Temperature and number evolution of cold cesium atoms inside a wall-coated glass cell

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Qiang; Zhang, Jian-Wei; Wang, Shi-Guang; Wang, Zheng-Bo; Wang, Li-Jun

    2015-11-01

    We report an experimental study on the temperature and number evolution of cold cesium atoms diffusively cooled inside a wall-coated glass cell by measuring the absorption profile of the 62S1/2 (F = 4) → 62P3/2 (F‧ = 5) transition line with a weak probe laser in the evolution process. We found that the temperature of the cold atoms first gradually decreases from 16 mK to 9 mK, and then rapidly increases. The number of cold atoms first declines slowly from 2.1 × 109 to 3.7 × 108 and then falls drastically. A theoretical model for the number evolution is built and includes the instantaneous temperature of the cold atoms and a fraction p, which represents the part of cold cesium atoms elastically reflected by the coated cell wall. The theory is overall in good agreement with the experimental result, and a nonzero value is obtained for the fraction p, which indicates that the cold cesium atoms are not all heated to the ambient temperature by a single collision with the coated cell wall. These results can provide helpful insight for precision measurements based on diffuse laser cooling. Project supported by the National Natural Science Foundation of China (Grant No. 11304177).

  20. The cesiator - A device for cesium vapor control and impurity purge

    NASA Astrophysics Data System (ADS)

    Rasor, N. S.; Desplat, J.-L.

    A new type of liquid cesium reservoir that maintains a temperature-independent cesium pressure, continuously recirculates cesium vapor through the TFE (thermionic fuel element), and purges it of impurities is discussed. This device, the cesiator, is based on well-established gas-buffered heat pipe principles. The cesiator offers new TFE design options for fission product/impurity handling that eliminate the need for an intercell insulator seal and associated failure modes. Cesiator performance requirements are estimated based on data for expected release of fission products and their effect on TFE performance. The effect of design parameters on cesiator performance is described. Experimentation with an ethanol-metal mock-up revealed an unexpected but desirable mode of operation that autoregulates the pressure drop and flow of vapor in the external circuit and that has been incorporated in the reference design for phase II development. Experimental techniques for measuring the local temperature, pressure, and composition in a condensing vapor were successfully developed. A reference design for a TFE cesiator was defined for prototype design, development, and test.

  1. WESF cesium capsule behavior at high temperature or during thermal cycling

    SciTech Connect

    Tingey, G.L.; Gray, W.J.; Shippell, R.J.; Katayama, Y.B.

    1985-06-01

    Double-walled stainless steel (SS) capsules prepared for storage of radioactive /sup 137/Cs from defense waste are now being considered for use as sources for commercial irradiation. Cesium was recovered at B-plant from the high-level radioactive waste generated during processing of defense nuclear fuel. It was then purified, converted to the chloride form, and encapsulated at the Hanford Waste Encapsulation and Storage Facility (WESF). The molten cesium chloride salt was encapsulated by pouring it into the inner of two concentric SS cylinders. Each cylinder was fitted with a SS end cap that was welded in place by inert gas-tungsten arc welding. The capsule configuration and dimensions are shown in Figure 1. In a recent review of the safety of these capsules, Tingey, Wheelwright, and Lytle (1984) indicated that experimental studies were continuing to produce long-term corrosion data, to reaffirm capsule integrity during a 90-min fire where capsule temperatures reached 800/sup 0/C, to monitor mechanical properties as a function of time, and to assess the effects of thermal cycling due to periodic transfer of the capsules from a water storage pool to the air environment of an irradiator facility. This report covers results from tests that simulated the effects of the 90-min fire and from thermal cycling actual WESF cesium capsules for 3845 cycles over a period of six months. 11 refs., 39 figs., 9 tabs.

  2. Spatial variability and the fate of cesium in coastal sediments near Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Black, E. E.; Buesseler, K. O.

    2014-09-01

    Quantifying the amount of cesium incorporated into marine sediments as a result of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident has proven challenging due to the limited multi-core sampling from within the 30 km zone around the facility; the inherent spatial heterogeneities in ocean sediments; and the potential for inventory fluctuations due to physical, biological, and chemical processes. Using 210Pb, 234Th, 137Cs, and 134Cs profiles from 20 sediment cores, coastal sediment inventories were reevaluated. A 137Cs sediment inventory of 100 ± 50 TBq was found for an area of 55 000 km2 using cores from this study and a total of 130 ± 60 TBq using an additional 181 samples. These inventories represent less than 1% of the estimated 15-30 PBq of cesium released during the FDNPP disaster. The time needed for surface sediment activities (0 to 3 cm) at the 20 locations to be reduced by 50% via sediment mixing was estimated to range from 0.4 to 26 yr. Due to the observed variability in mixing rates, grain size, and inventories, additional cores are needed to improve these estimates and capture the full extent of cesium penetration into the shallow coastal sediments, which was deeper than 14 cm for all cores retrieved from water depths less than 150 m.

  3. ION EXCHANGE MODELING FOR REMOVAL OF CESIUM FROM HANFORD WASTE USING SUPERLIG 644 RESIN

    SciTech Connect

    Hamm, L

    2004-05-01

    The expected performance of a proposed ion exchange column using SuperLig{reg_sign} 644 resin for the removal of cesium from Hanford high level radioactive alkaline waste is discussed. This report represents a final report on the ability and knowledge with regard to modeling the Cesium-SuperLig{reg_sign} 644 resin ion exchange system. Only the loading phase of the cycle process is addressed within this report. Pertinent bench-scale column tests and batch equilibrium experiments are addressed. The methodology employed and sensitivity analyses are also included (i.e., existing methodology employed is referenced to prior developmental efforts while updated methodology is discussed). Pilot-scale testing is not assessed since no pilot-scale testing was available at the time of this report. Column performance predictions are made considering three selected feed compositions under nominal operating conditions. The sensitivity analyses provided help to identify key parameters that aid in resin procurement acceptance criteria. The methodology and application presented within this report reflect the expected behavior of SuperLig{reg_sign} 644 resin manufactured at the production-scale (i.e, 250 gallon batch size level). The primary objective of this work was, through modeling and verification based on experimental assessments, to predict the cesium removal performance of SuperLig{reg_sign} 644 resin for application in the RPP pretreatment facility.

  4. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    SciTech Connect

    Hassan, N.M.

    2000-07-27

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low and high activity waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The cesium (Cs-137) and technetium (Tc-99) ion exchange removal is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as anionic pertechnetate ) from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Tech nology Center2 demonstrated the conceptualized flow sheet parameters with an Envelope C sample from Hanford Tank 241-AN-107. Those experiments also included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  5. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    NASA Astrophysics Data System (ADS)

    Igarashi, Susumu; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko

    2014-09-01

    The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  6. Partition Coefficients of Selected Compounds Using Ion Exchange Separation of Cesium From High Level Waste

    SciTech Connect

    Toth, James J.; Blanchard, David L.; Arm, Stuart T.; Urie, Michael W.

    2004-04-24

    The removal of cesium radioisotope (137Cs) from the High Level Waste stored in underground storage tanks at the Hanford site is a formidable chemical separations challenge for the Waste Treatment Plant. An eluatable organic-based ion exchange resin was selected as the baseline technology (1). The baseline technology design employs a proprietary macrocyclic weak-acid ion exchange resin to adsorb the cesium (137Cs) during the process loading cycle in a fixed bed column design. Following loading, the cesium is eluted from the resin using a nitric acid eluant. Previous work provided limited understanding of the performance of the resin, processed with actual wastes, and under multiple load and elute conditions, which are required for the ion exchange technology to be underpinned sufficiently for resolution of all process-related design issues before flowsheet and construction drawings can be released. By performing multiple ion exchange column tests with waste feeds, and measuring the chemical and radionuclide compositions of the waste feeds, column effluents and column eluants, ion exchange stream composition information can be provided for supporting resolution of selected design issues.

  7. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    SciTech Connect

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L.

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL.

  8. Novel application of nanozeolite for radioactive cesium removal from high-salt wastewater.

    PubMed

    Lee, Keun-Young; Kim, Kwang-Wook; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-15

    Finding a striking peculiarity of nanomaterials and evaluating its feasibility for practical use are interesting topics of research. We investigated the application of nanozeolite's outstanding reactivity for a rapid and effective method for radioactive cesium removal in the wastewater generated from nuclear power plant accident, as a new concept. Extremely fast removal of cesium, even without stirring, was achieved by the nanozeolite at efficiencies never observed with bulk materials. The nanozeolite reached an adsorption equilibrium state within 1 min. Cesium adsorption by nanozeolite was demonstrated at reaction rates of orders of magnitude higher than that of larger zeolite phases. This observation was strongly supported by the positive correlation between the rate constant ratio (k2,bulk/k2,nano) and the initial Cs concentrations with a correlation coefficient (R(2)) of 0.99. A potential drawback of a nanoadsorbent is the difficulty of particle settling and separation because of its high dispersivity in solution. However, our results also demonstrated that the nanozeolite could be easily precipitated from the high-salt solution with ferric flocculant. The flocculation index reached a steady state within 10 min. A series of our experimental results met the goal of rapid processing in the case of emergency by applying the well-suited nanozeolite adsorption and flocculation. PMID:26990838

  9. Cesium chloride sensing and signaling in Saccharomyces cerevisiae: an interplay among the HOG and CWI MAPK pathways and the transcription factor Yaf9.

    PubMed

    Casagrande, Viviana; Del Vescovo, Valerio; Militti, Cristina; Mangiapelo, Eleonora; Frontali, Laura; Negri, Rodolfo; Bianchi, Michele M

    2009-05-01

    In yeast, many environmental stimuli are sensed and signaled by the MAP kinases pathways. In a previous work, we showed that cesium chloride activates the HOG pathway and modulates the transcription of several genes, especially those involved in cell wall biosynthesis and organization. The response to cesium was largely overlapping with the response to salt and osmotic stress. However, when low cesium chloride concentrations were used, a specific response was eventually elicited. The cesium-specific response involved the Yaf9 protein and its activity of chromatin remodeling and transcription regulation. In this paper we show that the osmotic activity of cesium salt is detected and signaled by the two branches downstream of the Sln1 and Sho1 sensors of the HOG pathway, that seem to possess different but exchangeables functions in cesium signaling. However, the cesium-specific response mediated by Yaf9, that counteracts the efficiency of the HOG pathway, is not routed by these sensors. In addition, the cesium response also involves the cell wall integrity (CWI) pathway, which is activated by low concentration of cesium chloride. Mutations blocking the CWI pathway show sensitivity to this salt.

  10. The magic gold cluster Au20

    NASA Astrophysics Data System (ADS)

    Kryachko, E. S.; Remacle, F.

    The 20-nanogold cluster Au20 exhibits a large variety of two- and three-dimensional isomeric forms. Among them is the ground-state isomer Au20(Td) representing the stable cluster with a unique tetrahedral shape, with all atoms on the surface, and large HOMO-LUMO gap which even slightly exceeds that of the buckyball fullerene C60. The anionic cluster Au-20(Td) that holds its parent tetrahedral symmetry features a high catalytic activity. The list of the properties of the 20-nanogold clusters surveyed in the present work ranges from the energetic order of stability of its isomers to the optical absorption and excitation spectra of the Au20(Td) cluster. We also report the structures and properties of its doubly charged clusters Au2+20 and Au2-20 and computationally confirm that Au2-20 is indeed stable. The zero-point-energy-corrected adiabatic second electron affinity of Au20(Td) amounts to 0.43-0.53 eV that is consistent with the experimental data. In addition, we provide computational evidence of the existence of the novel, hollow cage isomer of Au20 and analyze its key properties.0

  11. THERMAL PERFORMANCE ANALYSIS FOR SMALL ION-EXCHANGE CESIUM REMOVAL PROCESS

    SciTech Connect

    Lee, S.; King, W.

    2009-12-29

    The In-Riser Ion Exchange program focuses on the development of in-tank systems to decontaminate high level waste (HLW) salt solutions at the Savannah River Site (SRS) and the Hanford Site. Small Column Ion Exchange (SCIX) treatment for cesium removal is a primary in-riser technology for decontamination prior to final waste immobilization in Saltstone. Through this process, radioactive cesium from the salt solution is adsorbed onto the ion exchange media which is packed within a flow-through column. Spherical Resorcinol-Formaldehyde (RF) is being considered as the ion exchange media for the application of this technology at both sites. A packed column loaded with media containing radioactive cesium generates significant heat from radiolytic decay. Under normal operating conditions, process fluid flow through the column can provide adequate heat removal from the columns. However, in the unexpected event of loss of fluid flow or fluid drainage from the column, the design must be adequate to handle the thermal load to avoid unacceptable temperature excursions. Otherwise, hot spots may develop locally which could degrade the performance of the ion-exchange media or the temperature could rise above column safety limits. Data exists which indicates that performance degradation with regard to cesium removal occurs with RF at 65C. In addition, the waste supernate solution will boil around 130C. As a result, two temperature limits have been assumed for this analysis. An additional upset scenario was considered involving the loss of the supernate solution due to inadvertent fluid drainage through the column boundary. In this case, the column containing the loaded media could be completely dry. This event is expected to result in high temperatures that could damage the column or cause the RF sorbent material to undergo undesired physical changes. One objective of these calculations is to determine the range of temperatures that should be evaluated during testing with the RF

  12. Sintered bentonite ceramics for the immobilization of cesium- and strontium-bearing radioactive waste

    NASA Astrophysics Data System (ADS)

    Ortega, Luis Humberto

    The Advanced Fuel Cycle Initiative (AFCI) is a Department of Energy (DOE) program, that has been investigating technologies to improve fuel cycle sustainability and proliferation resistance. One of the program's goals is to reduce the amount of radioactive waste requiring repository disposal. Cesium and strontium are two primary heat sources during the first 300 years of spent nuclear fuel's decay, specifically isotopes Cs-137 and Sr-90. Removal of these isotopes from spent nuclear fuel will reduce the activity of the bulk spent fuel, reducing the heat given off by the waste. Once the cesium and strontium are separated from the bulk of the spent nuclear fuel, the isotopes must be immobilized. This study is focused on a method to immobilize a cesium- and strontium-bearing radioactive liquid waste stream. While there are various schemes to remove these isotopes from spent fuel, this study has focused on a nitric acid based liquid waste. The waste liquid was mixed with the bentonite, dried then sintered. To be effective sintering temperatures from 1100 to 1200°C were required, and waste concentrations must be at least 25 wt%. The product is a leach resistant ceramic solid with the waste elements embedded within alumino-silicates and a silicon rich phase. The cesium is primarily incorporated into pollucite and the strontium into a monoclinic feldspar. The simulated waste was prepared from nitrate salts of stable ions. These ions were limited to cesium, strontium, barium and rubidium. Barium and rubidium will be co-extracted during separation due to similar chemical properties to cesium and strontium. The waste liquid was added to the bentonite clay incrementally with drying steps between each addition. The dry powder was pressed and then sintered at various temperatures. The maximum loading tested is 32 wt. percent waste, which refers to 13.9 wt. percent cesium, 12.2 wt. percent barium, 4.1 wt. percent strontium, and 2.0 wt. percent rubidium. Lower loadings of waste

  13. Experiments Performed in Substantiation of the Conditioning of BN-350 Spent Cesium Traps Using Lead or Lead-Bismuth Alloy Filling Technology

    SciTech Connect

    O. Romanenko; I. Tazhibaeva; I. Yakovlev; A. Ivanov; D. Wells; A. Herrick; J. Michelbacher; S. Shiganakov

    2009-05-01

    The technology of cleaning cesium radionuclides from sodium coolant at the BN-350 fast reactor was realized in the form of cesium traps of two types: stationary devices connected to the circuit that was to be cleaned and in-core devices installed into the core of reactor when it was not under operation. Carbon-graphite materials were used as sorbents to collect and concentrate radioactive cesium, accumulated in the BN-350 reactor circuits over the decades of their operation, in relatively small volume traps which provided effective radiation-safe conditions for personnel working in proximity to the coolant and equipment of the primary circuit during BN-350 decommissioning. Spent cesium traps, as products unfit for further use, represent solid radioactive wastes. The presence of chemically active sodium, potassium and cesium that are able to react violently with water results in series of problems related to their disposal in the Republic of Kazakhstan. Considering the technology of filling spent cesium traps with lead/lead-bismuth alloy as a priority one for their conditioning, evaluations for safety substantiation were implemented. A set of experiments was implemented aimed at verification of calculations performed in substantiation of the proposed technology: filling a full scale cesium trap mock-up with sodium followed by its draining to determine the optimal regimes of draining; filling bench scale cesium trap mock-ups with sodium and cesium followed by sodium draining and filling with lead or lead-bismuth alloy at different temperatures and filling rates to chose the optimal regimes for filling spent cesium traps; implementation of leachability tests to determine the rate of cesium release from the filling materials into water. This paper provides a description of the experimental program carried out and the main results obtained.

  14. Synthesis and Optical Responses of Ag@Au/Ag@Au Double Shells

    NASA Astrophysics Data System (ADS)

    Li, Ying-Ying; Liu, Xiao-Li; Yang, Da-Jie; Hao, Zhong-Hua; Wang, Qu-Quan

    2015-02-01

    We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our results show that the surface plasmon resonance wavelength of the hollow porous nanoparticles could be easily tuned in a wide range in the visible and near infrared region by controlling the volume of HAuCl4. The nonlinear optical refraction of the double-shelled Ag@Au/Ag@Au nanoparticles is prominently enhanced by the plasmon resonance. Our findings may find applications in biosensors and nonlinear optical nanodevices.

  15. Au microstructure and the functional properties of Ni/Au finishes on ceramic IC packages

    SciTech Connect

    Winters, E.D.; Baxter, W.K.; Braski, D.N.; Watkins, T.R.

    1995-12-31

    Ni/Au plated finishes used on thick-film metallized multilayer ceramic packages for integrated circuits must meet functional requirements such as bondability, sealability, and solderability. Their ability to do so is dependent, among other things, on the ability of the Au deposit to inhibit the grain boundary diffusion and subsequent surface oxidation of Ni. In this study, the relation between functional performance, Ni diffusionr ate, and Au microstructure was examined. Extent of Ni diffusion during heating was determined by Auger electron spectroscopy for several electrolytic and electroless Ni/Au finishing processes. Results were correlated with differences in Au microstructures determined by SEM, atomic force microscopy, and XRD.

  16. Next Generation Extractants for Cesium Separation from High-Level Waste: From Fundamental Concepts to Site Implementation

    SciTech Connect

    Moyer, Bruce A.; Bazelaire, Eve; Bonnesen, Peter V.; Bryan, Jeffrey C.; Delmau, Latitia H.; Engle, Nancy L.; Gorbunova, Maryna G.; Keever, Tamara J.; Levitskaia, Tatiana G.; Sachleben, Richard A.; Tomkins, Bruce A.

    2004-06-30

    General project objectives. This project seeks a fundamental understanding and major improvement in cesium separation from high-level waste by cesium-selective calixcrown extractants. Systems of particular interest involve novel solvent-extraction systems containing specific members of the calix[4]arene-crown-6 family, alcohol solvating agents, and alkylamines. Questions being addressed pertain to cesium binding strength, extraction selectivity, cesium stripping, and extractant solubility. Enhanced properties in this regard will specifically benefit cleanup projects funded by the USDOE Office of Environmental Management to treat and dispose of high-level radioactive wastes currently stored in underground tanks at the Savannah River Site (SRS), the Hanford site, and the Idaho National Environmental and Engineering Laboratory.1 The most direct beneficiary will be the SRS Salt Processing Project, which has recently identified the Caustic-Side Solvent Extraction (CSSX) process employing a calixcrown as its preferred technology for cesium removal from SRS high level tank waste.2 This technology owes its development in part to fundamental results obtained in this program.

  17. Electrochemical formation of Au clusters in polyaniline

    SciTech Connect

    Hatchett, D.W.; Josowicz, M.; Janata, J.; Baer, D.R.

    1999-10-01

    The reduction of chloroaurate and the incorporation of Au clusters in polyaniline, PANI, films have been investigated. The chloroaurate complex is generated at the electrode surface during Cl{sup {minus}} doping of Au/PANI. FTIE and UV/vis data indicate that chloroaurate interacts with PANI and that its reduction to metallic Au occurs preferentially at the nitrogen linkages. The voltammetric and XPS results show that the uptake of both protons and anions is suppressed by the formation of Au clusters due to this interaction. The ability to reduce chloroaurate in PANI films is also demonstrated for Pt electrodes coated with PANI in solutions containing KAuCl{sub 4}. The preliminary results indicate that Au cluster size distribution remains fairly constant regardless of the method used.

  18. Polyethylene terephthalate (PET) bulk film analysis using C 60+, Au 3+, and Au + primary ion beams

    NASA Astrophysics Data System (ADS)

    Conlan, X. A.; Gilmore, I. S.; Henderson, A.; Lockyer, N. P.; Vickerman, J. C.

    2006-07-01

    The damage characteristics of polyethylene terephthalate (PET) have been studied under bombardment by C 60+, Au 3+ and Au + primary ions. The observed damage cross-sections for the three ion beams are not dramatically different. The secondary ion yields however were significantly enhanced by the polyatomic primary ions where the secondary ion yield of the [M + H] + is on average 5× higher for C 60+ than Au 3+ and 8× higher for Au 3+ than Au +. Damage accumulates under Au + and Au 3+ bombardment while C 60+ bombardment shows a lack of damage accumulation throughout the depth profile of the PET thick film up to an ion dose of ˜1 × 10 15 ions cm -2. These properties of C 60+ bombardment suggest that the primary ion will be a useful molecular depth profiling tool.

  19. Investigation of the Phase Equilibria of Sn-Cu-Au Ternary and Ag-Sn-Cu-Au Quaternary Systems and Interfacial Reactions in Sn-Cu/Au Couples

    NASA Astrophysics Data System (ADS)

    Yen, Yee-Wen; Jao, Chien-Chung; Hsiao, Hsien-Ming; Lin, Chung-Yung; Lee, Chiapyng

    2007-02-01

    The phase equilibria of the Sn-Cu-Au ternary, Ag-Sn-Cu-Au quaternary systems and interfacial reactions between Sn-Cu alloys and Au were experimentally investigated at specific temperatures in this study. The experimental results indicated that there existed three ternary intermetallic compounds (IMCs) and a complete solid solubility between AuSn and Cu6Sn5 phases in the Sn-Cu-Au ternary system at 200°C. No quaternary IMC was found in the isoplethal section of the Ag-Sn-Cu-Au quaternary system. Three IMCs, AuSn, AuSn2, and AuSn4, were found in all couples. The same three IMCs and (Au,Cu)Sn/(Cu,Au)6Sn5 phases were found in all Sn-Cu/Au couples. The thickness of these reaction layers increased with increasing temperature and time. The mechanism of IMC growth can be described by using the parabolic law. In addition, when the reaction time was extended and the Cu content of the alloy was increased, the AuSn4 phase disappeared gradually. The (Au, Cu)Sn and (Cu,Au)6Sn5 layers played roles as diffusion barriers against Sn in Sn-Cu/Au reaction couple systems.

  20. Thermal and photoinduced reduction of ionic Au(III) to elemental Au nanoparticles by dissolved organic matter in water: possible source of naturally occurring Au nanoparticles.

    PubMed

    Yin, Yongguang; Yu, Sujuan; Liu, Jingfu; Jiang, Guibin

    2014-01-01

    Naturally occurring Au nanoparticles (AuNPs) have been widely observed in ore deposits, coal, soil, and environmental water. Identifying the source of these naturally occurring AuNPs could be helpful for not only the discovery of Au deposits through advanced exploration methods, but also the elucidation of the biogeochemical cycle and environmental toxicity of ionic Au and engineered AuNPs. Here, we investigated the effect of natural/simulated sunlight and heating on the reduction of ionic Au by ubiquitous dissolved organic matter (DOM) in river water. The reductive process probed by X-ray photoelectron spectroscopy revealed that phenolic, alcoholic, and aldehyde groups in DOM act as reductive sites. Long-time exposure with thermal and photoirradiation induced the further fusion and growth of AuNPs to branched Au nanostructure as precipitation. The formation processes and kinetics of AuNPs were further investigated using humic acid (HA) as the DOM model, with comprehensive characterizing methods. We have observed that HA can reduce ionic Au(III) complex (as chloride or hydroxyl complex) to elemental Au nanoparticles under sunlight or heating. In this process, nearly all of the Au(III) could be reduced to AuNPs, in which HA serves as not only the reductive agent, but also the coating agent to stabilize and disperse AuNPs. The size and stability of AuNPs were highly dependent on the concentration ratio of Au(III) to HA. These results imply that, besides biological processes, this thermal or photochemical reduction process is another possible source of naturally occurring AuNPs in natural environments, which possibly has critical impacts on the transport and transformation of Au and engineered AuNPs.

  1. Facile Synthesis of Prussian Blue Derivate-Modified Mesoporous Material via Photoinitiated Thiol-Ene Click Reaction for Cesium Adsorption.

    PubMed

    Qian, Jun; Ma, Jiaqi; He, Weiwei; Hua, Daoben

    2015-08-01

    A novel strategy to synthesize a functional mesoporous material for efficient removal of cesium is reported. Specifically, Prussian blue derivate-modified SBA-15 (SBA-15@FC) was prepared by photoinitiated thiol-ene reaction between thiol-modified SBA-15 and pentacyano(4-vinyl pyridine)ferrate complex. The effects of weight percentage of the Prussian blue derivate, pH, adsorbent dose, co-existing ions, and initial concentration were evaluated on the adsorption of cesium ions. The adsorption kinetically follows a pseudo-second-order model and reaches equilibrium within 2 h with a high adsorption capacity of about 13.90 mg Cs g(-1) , which indicates that SBA-15@FC is a promising adsorbent to effectively remove cesium from aqueous solutions.

  2. Matrix elimination ion chromatography method for the determination of trace levels of anionic impurities in high purity cesium iodide.

    PubMed

    Ayushi; Kumar, Sangita D; Reddy, A V R

    2012-01-01

    In the present study an ion chromatographic method based on matrix elimination has been developed for the determination of anionic impurities in high purity cesium iodide crystals. The presence of impurities has a detrimental effect on the characteristics of detectors based on cesium iodide crystals. In particular, oxygen-containing anions inhibit the resolving power of scintillators and decrease the optical absorption. The quantitative determination of anions (fluoride, chloride, bromide, nitrate, phosphate, and sulphate) simultaneously in the high-purity cesium iodide crystals has not been carried out before. The large concentration of iodide poses a challenge in the determination of anions (especially phosphate and sulphate); hence, matrix elimination is accomplished by adopting a sample pretreatment technique. The method is validated for linearity, accuracy, and precision. The limit of detection for different anions is in the range of 0.3-3 µg/g, and the relative standard deviation is in the range of 4-6% for the overall method.

  3. The cesium-induced delay in myoblast membrane fusion is accompanied by changes in cellular subfraction lipid composition.

    PubMed

    Santini, M T; Indovina, P L; Cantafora, A

    1991-11-18

    We have recently demonstrated that the delay in myoblast membrane fusion induced by cesium is accompanied by changes in isolated membrane lipids (Santini, M.T., Indovina, P.L., Cantafora, A. and Blotta, I. (1990) Biochim. Biophys. Acta 1023, 298-304). In the present study, we have investigated changes in the lipid profile of total cell homogenates and microsomal membrane fractions during myoblast membrane fusion as well as the effects that addition of cesium may have on these lipid variations in order to try to understand the production and translocation of lipids during this myogenic process. The data presented here indicate that the lipid composition of cell homogenates and microsomes varies in a different manner from isolated plasma membranes during myogenic fusion. In addition, cesium affects, in a different manner, the normally-occurring lipid production and distribution which takes place in each subcellular fraction.

  4. Ion exchange removal of cesium from simulated and actual supernate from Hanford tanks 241-SY-101 and 241-SY-103

    SciTech Connect

    Brown, G.N.; Bontha, J.R.; Carlson, C.D.

    1995-09-01

    Pacific Northwest Laboratory (PNL), in conjunction with the Process Chemistry and Statistics Section of Westinghouse Hanford Company (WHC), conducted this study as part of the Supernatant Treatment Development Task for the Initial Pretreatment Module (IPM) Applied Engineering Project. The study assesses the performance of the CS-100 ion exchange material for removing cesium from simulated and actual alkaline supernate from Hanford tanks 241-SY-101 and 241-SY-103. The objective of these experiments is to compare the cesium ion exchange loading and elution profiles of actual and simulated wastes. Specific experimental objectives include (1) demonstration of decontamination factors (DF) for cesium removal, 92) verification of simulant performance, (3) investigation of waste/exchanger chemistry, and (4) determination of the radionuclide content of the regenerated CS-100 resin prior to disposal.

  5. Distribution of global fallouts cesium-137 in taiga and tundra catenae at the Ob River basin

    NASA Astrophysics Data System (ADS)

    Semenkov, I. N.; Usacheva, A. A.; Miroshnikov, A. Yu.

    2015-03-01

    The classification of soil catenae at the Ob River basin is developed and applied. This classification reflects the diverse geochemical conditions that led to the formation of certain soil bodies, their combinations and the migration fields of chemical elements. The soil and geochemical diversity of the Ob River basin catenae was analyzed. The vertical and lateral distribution of global fallouts cesium-137 was studied using the example of the four most common catenae types in Western Siberia tundra and taiga. In landscapes of dwarf birches and dark coniferous forests on gleysols, cryosols, podzols, and cryic-stagnosols, the highest 137Cs activity density and specific activity are characteristic of the upper soil layer of over 30% ash, while the moss-grass-shrub cover is characterized by low 137Cs activity density and specific activity. In landscapes of dwarf birches and pine woods on podzols, the maximum specific activity of cesium-137 is typical for moss-grass-shrub cover, while the maximum reserves are concentrated in the upper soil layer of over 30% ash. Bog landscapes and moss-grass-shrub cover are characterized by a minimum activity of 137Cs, and its reserves in soil generally decrease exponentially with depth. The cesium-137 penetration depth increases in oligotrophic histosols from northern to middle taiga landscapes from 10-15 to 40 cm. 137Cs is accumulated in oligotrophic histosols for increases in pH from 3.3 to 4.0 and in concretionary interlayers of pisoplinthic-cryic-histic-stagnosols. Cryogenic movement, on the one hand, leads to burying organic layers enriched in 137Cs and, on the other hand, to deducing specific activity when mixed with low-active material from lower soil layers.

  6. Transport of iodine and cesium via the grass-cow-milk pathway after the Chernobyl accident

    SciTech Connect

    Kirchner, G.

    1994-06-01

    More than 150 data sets giving time-dependent concentrations of {sup 131}I and {sup 137}Cs in feed and milk of cows after the Chernobyl accident are evaluated using a minimal compartmental modeling approach. Transfer of cesium via the grass-cow-milk pathway is adequately described by a three-compartmental model. No unique model results for {sup 131}I, as a compartment with slow secretion of {sup 131}I into milk, are identified for some datasets only. Frequency distributions of weathering half-lives on grass and of equilibrium feed-to-milk transfer coefficients are approximately lognormal. Mean values of weathering half-lives on plants are 9.1 {plus_minus} 0.6 d for iodine and 11.1 {plus_minus} 0.8 d for cesium, in good agreement with means established from experiments performed before 1986. Mean values of equilibrium feed-to-milk transfer coefficients are 3.4 {plus_minus} 0.4 10{sup {minus}3} d L{sup {minus}1} for {sup 131}I and 5.4 {plus_minus} 0.5 10{sup {minus}3} d L{sup {minus}1} for {sup 137}Cs. Both are lower than means calculated from the pre-Chernobyl data base. Plausible explanations of the differences include (1) reduced availability of fallout compared to soluble tracer; (2) underestimation of post-Chernobyl transfer coefficients by some experiments concluded too early to record slow transport processes; and (3) reduced transfer of {sup 131}I compared to long-lived iodine isotopes due to decay during fixation in the thyroid. Feed-to-milk transfer of {sup 131}I is related to milk yield, but no influence of milk yield and type of feed on transfer is apparent for cesium. 73 refs., 3 figs., 5 tabs.

  7. Al-free active region laser diodes at 894 nm for compact Cesium atomic clocks

    NASA Astrophysics Data System (ADS)

    Von Bandel, N.; Bébé Manga Lobé, J.; Garcia, M.; Larrue, A.; Robert, Y.; Vinet, E.; Lecomte, M.; Drisse, O.; Parillaud, O.; Krakowski, M.

    2015-03-01

    Time-frequency applications are in need of high accuracy and high stability clocks. Compact industrial Cesium atomic clocks optically pumped is a promising area that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of laser diodes that are used for atomic pumping. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for earth applications. This work will provide key experience for further space technology qualification. We are in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894nm (D1 line of Cesium) and 852nm (D2 line). The use of D1 line for pumping will provide simplified clock architecture compared to D2 line pumping thanks to simpler atomic transitions and larger spectral separation between lines in the 894nm case. Also, D1 line pumping overcomes the issue of unpumped "dark states" that occur with D2 line. The modules should provide narrow linewidth (<1MHz), very good reliability in time and, crucially, be insensitive to optical feedback. The development of the 894nm wavelength is grounded on our previous results for 852nm DFB. Thus, we show our first results from Al-free active region with InGaAsP quantum well broad-area lasers (100μm width, with lengths ranging from 2mm to 4mm), for further DFB operation at 894nm. We obtained low internal losses below 2cm-1, the external differential efficiency is 0.49W/A with uncoated facets and a low threshold current density of 190A/cm², for 2mm lasers at 20°C.

  8. Initial evaluation of Sandia National Laboratory-prepared crystalline silico-titanates for cesium recovery

    SciTech Connect

    Bray, L.A.; Carson, K.J.; Elovich, R.J.

    1993-10-01

    Pacific Northwest Laboratory initiated a study of a new class of inorganic ion exchange materials that selectively extracts cesium (Cs), strontium (Sr), and plutonium (Pu) from alkaline radioactive waste solutions. These materials, identified as crystalline silico-titanates (CST), were developed by scientists at the Sandia National Laboratory (SNL) and Texas A&M. This report summarizes preliminary results for the measurement of batch distribution coefficient (K{sub d}) values for the powdered CST materials compared to previously tested ion exchange materials: IONSIV IE-96 (a zeolite produced by UOP), CS-100 (an organic resin produced by Rohm and Haas), and BIB-DJ (a new resorcinol-formaldehyde organic resin produced by Boulder Scientific). Excellent results were obtained for CST inorganic exchangers that could be significant in the development of processes for the near-term pretreatment of Hanford alkaline wastes. The following observations and conclusions resulted from this study: (1) Several CST samples prepared at SNL had a higher capacity to remove Cs from solution as compared to BIB-DJ, IE-96, and CS-100. (2) Cesium distribution results showed that CST samples TAM-40, -42, -43, -70, and -74 had {lambda} values of {approximately}2,200 ({lambda} = Cs K{sub d} {times} {rho}{sub b}; where {lambda} represents the number of exchanger bed volumes of feed that can be loaded on an ion exchange column) at a pH value >14. (3) Cesium distribution values for CST exchangers doubled as the aqueous temperature decreased from 40{degrees} to 10{degrees}C. (4) Crystalline silico-titanates have the capacity to remove Cs as well as Sr and Pu from alkaline wastes unless organic complexants are present. Experimental results indicated that complexed Sr was not removed, and Pu is not expected to be removed.

  9. RESULTS OF CESIUM MASS TRANSFER TESTING FOR NEXT GENERATION SOLVENT WITH HANFORD WASTE SIMULANT AP-101

    SciTech Connect

    Peters, T.; Washington, A.; Fink, S.

    2011-09-27

    SRNL has performed an Extraction, Scrub, Strip (ESS) test using the next generation solvent and AP-101 Hanford Waste simulant. The results indicate that the next generation solvent (MG solvent) has adequate extraction behavior even in the face of a massive excess of potassium. The stripping results indicate poorer behavior, but this may be due to inadequate method detection limits. SRNL recommends further testing using hot tank waste or spiked simulant to provide for better detection limits. Furthermore, strong consideration should be given to performing an actual waste, or spiked waste demonstration using the 2cm contactor bank. The Savannah River Site currently utilizes a solvent extraction technology to selectively remove cesium from tank waste at the Multi-Component Solvent Extraction unit (MCU). This solvent consists of four components: the extractant - BoBCalixC6, a modifier - Cs-7B, a suppressor - trioctylamine, and a diluent, Isopar L{trademark}. This solvent has been used to successfully decontaminate over 2 million gallons of tank waste. However, recent work at Oak Ridge National Laboratory (ORNL), Argonne National Laboratory (ANL), and Savannah River National Laboratory (SRNL) has provided a basis to implement an improved solvent blend. This new solvent blend - referred to as Next Generation Solvent (NGS) - is similar to the current solvent, and also contains four components: the extractant - MAXCalix, a modifier - Cs-7B, a suppressor - LIX-79{trademark} guanidine, and a diluent, Isopar L{trademark}. Testing to date has shown that this 'Next Generation' solvent promises to provide far superior cesium removal efficiencies, and furthermore, is theorized to perform adequately even in waste with high potassium concentrations such that it could be used for processing Hanford wastes. SRNL has performed a cesium mass transfer test in to confirm this behavior, using a simulant designed to simulate Hanford AP-101 waste.

  10. Self-assembly of thiolated cyanine aggregates on Au(111) and Au nanoparticle surfaces

    NASA Astrophysics Data System (ADS)

    Menéndez, Guillermo O.; Cortés, Emiliano; Grumelli, Doris; Méndez de Leo, Lucila P.; Williams, Federico J.; Tognalli, Nicolás G.; Fainstein, Alejandro; Vela, María Elena; Jares-Erijman, Elizabeth A.; Salvarezza, Roberto C.

    2012-01-01

    Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show

  11. The role of cesium suboxides in low-work-function surface layers studied by X-ray photoelectron spectroscopy - Ag-O-Cs

    NASA Technical Reports Server (NTRS)

    Yang, S.-J.; Bates, C. W., Jr.

    1980-01-01

    The oxidation of cesium on silver substrates has been studied using photoyield measurements and X-ray photoelectron spectroscopy. The occurrence of two O1s peaks in the core-level spectrum at 527.5 and 531.5-eV binding energy for cesium and oxygen exposures giving the optimum photoyield proves that two oxides of cesium exist in high-photoyield surfaces, and not Cs2O alone as previously thought. From the shape and position of the cesium peaks and the Auger parameter, the assignment of the O1s peaks at 527.5- and 531.5-eV binding energies to oxygen in Cs2O and Cs11O3, respectively, can be made. Hence the total cesium-oxygen layer is a mixed phase consisting of Cs2O + Cs11O3, approximately 20-40 A thick.

  12. Open-path atmospheric transmission for a diode-pumped cesium laser.

    PubMed

    Rice, Christopher A; Lott, Gordon E; Perram, Glen P

    2012-12-01

    A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ∼0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration. PMID:23207380

  13. Accumulation of uranium, cesium, and radium by microbial cells: bench-scale studies

    SciTech Connect

    Strandberg, G.W.; Shumate, S.E. II

    1982-07-01

    This report describes bench-scale studies on the utilization of microbial cells for the concentration and removal of uranium, radium, and cesium from nuclear processing waste streams. Included are studies aimed at elucidating the basic mechanism of uranium uptake, process development efforts for the use of a combined denitrification-uranium removal process to treat a specific nuclear processing waste stream, and a preliminary investigation of the applicability of microorganisms for the removal of /sup 137/Cs and /sup 226/Ra from existing waste solutions.

  14. Thermionic performance of a cesium diminiode with relatively impure 110-tungsten electrodes

    NASA Technical Reports Server (NTRS)

    Smith, A. L.; Manista, E. J.; Morris, J. F.

    1974-01-01

    Thermionic performance data from a miniature plane cesium diode (diminiode) with 110-tungsten electrodes are presented. The diminiode has a guard-ringed collector and a spacing of 0.23 mm. The data were obtained by using a computerized acquisition system. The diode was tested at increments between 1700 and 1900 K for the emitter, 694 and 1101 K for the collector, and 519 and 650 K for the reservoir. A maximum power density of 4.5 W/sq cm was obtained at an emitter temperature of 1900 K. This relatively low output probably results from high carbon and sodium impurities in the electrode materials.

  15. Emission and transport of cesium-137 from boreal biomass burning in the summer of 2010

    SciTech Connect

    Strode, S.; Ott, Lesley E.; Pawson, Steven; Bowyer, Ted W.

    2012-05-09

    While atmospheric concentrations of cesium-137 have decreased since the nuclear testing era, resuspension of Cs-137 during biomass burning provides an ongoing emission source. The summer of 2010 was an intense biomass burning season in western Russia, with high levels of particulate matter impacting air quality and visibility. A radionuclide monitoring station in western Russia shows enhanced airborne Cs-137 concentrations during the wildfire period. Since Cs-137 binds to aerosols, satellite observations of aerosols and fire occurrences can provide a global-scale context for Cs-137 emissions and transport during biomass burning events.

  16. Cesium oscillator strengths measured with a multiple-path-length absorption cell

    NASA Technical Reports Server (NTRS)

    Exton, R. J.

    1976-01-01

    Absorption-oscillator-strength measurements for the principal series in cesium were measured using a multiple-path-length cell. The optical arrangement included a movable transverse path for checking the uniformity of the alkali density along the length of the cell and which also allowed strength measurements to be made simultaneously on both strong and weak lines. The strengths measured on the first 10 doublets indicate an increasing trend in the doublet ratio. The individual line strengths are in close agreement with the high resolution measurements of Pichler (1974) and with the calculations of Norcross (1973).

  17. Universality of the three-body parameter for Efimov states in ultracold cesium.

    PubMed

    Berninger, M; Zenesini, A; Huang, B; Harm, W; Nägerl, H-C; Ferlaino, F; Grimm, R; Julienne, P S; Hutson, J M

    2011-09-16

    We report on the observation of triatomic Efimov resonances in an ultracold gas of cesium atoms. Exploiting the wide tunability of interactions resulting from three broad Feshbach resonances in the same spin channel, we measure magnetic-field dependent three-body recombination loss. The positions of the loss resonances yield corresponding values for the three-body parameter, which in universal few-body physics is required to describe three-body phenomena and, in particular, to fix the spectrum of Efimov states. Our observations show a robust universal behavior with a three-body parameter that stays essentially constant. PMID:22026757

  18. Open-path atmospheric transmission for a diode-pumped cesium laser.

    PubMed

    Rice, Christopher A; Lott, Gordon E; Perram, Glen P

    2012-12-01

    A tunable diode laser absorption spectroscopy device was developed to study atmospheric propagation for emerging high-energy laser weapons. The cesium diode-pumped alkali laser operates near 895 nm in the vicinity of several water-vapor absorption lines. Temperature, pressure, and water vapor concentration were determined for 150 m and 1 km open paths with statistical errors of ∼0.2%. Comparison with meteorological instruments yields agreement for the 1 km path to within 0.6% for temperature, 3.7% for pressure, and 2.4% for concentration.

  19. Theory of photoemission from cesium antimonide using an alpha-semiconductor model

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Jensen, Barbara L.; Montgomery, Eric J.; Feldman, Donald W.; O'Shea, Patrick G.; Moody, Nathan

    2008-08-01

    A model of photoemission from cesium antimonide (Cs3Sb) that does not rely on adjustable parameters is proposed and compared to the experimental data of Spicer [Phys. Rev. 112, 114 (1958)] and Taft and Philipp [Phys. Rev. 115, 1583 (1959)]. It relies on the following components for the evaluation of all relevant parameters: (i) a multidimensional evaluation of the escape probability from a step-function surface barrier, (ii) scattering rates determined using a recently developed alpha-semiconductor model, and (iii) evaluation of the complex refractive index using a harmonic oscillator model for the evaluation of reflectivity and extinction coefficient.

  20. The reactivity of cesium nickel ferrocyanide towards nitrate and nitrite salts

    SciTech Connect

    Burger, L.L.; Scheele, R.D.

    1991-09-01

    Beginning in late 1988, the Pacific Northwest Laboratory (PNL) began an experimental program at the request of Westinghouse Hanford Company (WHC) to investigate the effects of temperature on the oxidation reaction between synthetic nickel cesium ferrocyanide (FeCN) and nitrates and nitrites representative of materials present in some of the Hanford single-shell tanks (SSTs). After completing a preliminary series of experiments in 1988, the program was expanded to include five tasks to evaluate the effect of selected compositional and operational parameters on the reaction and explosion temperatures of FeCN and nitrate and/or nitrite mixtures. 10 refs., 4 figs., 6 tabs.

  1. Design of a Carousel Process for Removing Cesium from SRS Waste Using Crystalline Silicotitanate Ion Exchanger

    SciTech Connect

    Walker, D.D.

    1999-01-15

    Designs of a three-column carousel process based on crystalline silicotitanate (CST) ion exchanger have been developed for removing radioactive 137Cs+ from Savannah River Site's (SRS) nuclear wastes. A multicomponent ion exchange equilibrium model (Zheng et al., 1997) from Texas A&M University, which is based on batch data obtained from CST powder, is used to generate cesium loading data at different cesium concentrations for various types of SRS wastes. These loading data are fit to the Langmuir equation to obtain effective single-component cesium isotherm parameters. The predictions are in reasonable agreement with batch test data obtained from CST powder, an early CST pellet batch (38B), and a later batch (IE911) using two SRS waste simulants. The ratios between experimental cesium distribution coefficients and predicted values are between 0.56 and 1.0. The variation appears to be due to inadequate equilibration time in some of the batches. Mass transfer parameters are estimated by analyzing column data of a simulated SRS waste and Melton Valley Storage Tank W29 (MVST-W29) waste. The intraparticle diffusivity estimated for the two wastes can be well correlated by means of the Stokes-Einstein equation.Simulations are performed to determine the length of the mass transfer zone for given feed compositions, Cs+ concentrations, and linear velocities. In order to ensure high column utilization during both the transient and cyclic steady state periods, the length of a single segment in the carousel process is chosen to be the mass transfer zone length after the concentration wave achieves a constant pattern. Analysis of the dimensionless groups in the differential mass balance equations reveals that the normalized mass transfer zone length is linearly proportional to the particle Peclet number. The proportionality constant is a function of the waste composition and the Cs+ concentration in the waste. The higher the effective Cs+ capacity and the higher the Cs

  2. Controlled Synthesis of Au@AgAu Yolk-Shell Cuboctahedra with Well-Defined Facets.

    PubMed

    Londono-Calderon, Alejandra; Bahena, Daniel; Yacaman, Miguel J

    2016-08-01

    The synthesis of Au@AgAu yolk-shell cuboctahedra nanoparticles formed by galvanic replacement in a seed-mediated method is described. Initially, single-crystal Au seeds are used for the formation of Au@Ag core-shell nanocubes, which serve as the template material for the deposition of an external Au layer. The well-controlled synthesis yields the formation of cuboctahedra nanoparticles with smooth inner and outer Au/Ag surfaces. The deposition/oxidation process is described to understand the formation of cuboctahedra and octahedra nanoparticles. The Au core maintains the initial morphology of the seed and remains static at the center of the yolk-shell because of residual Ag. Structural analysis of the shell indicates intrinsic stacking faults (SFs) near the surface. Energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) compositional analysis show an Au-Ag nonordered alloy forming the shell. The three-dimensional structure of the nanoparticles presented open facets on the [111] as observed by electron tomography SIRT reconstruction over a stack of high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images. The geometrical model was validated by analyzing the direction of streaks in coherent nanobeam diffraction (NBD). The catalytic activity was evaluated using a model reaction based on the reduction of 4-nitrophenol (4-NTP) by NaBH4 in the presence of Au@AgAu yolk-shell nanoparticles. PMID:27385583

  3. Etude de la Production des Mesons d* Sur le PIC de Resonance du Boson Z Observes AU Lep avec le Detecteur Opal

    NASA Astrophysics Data System (ADS)

    Przysiezniak, Helenka

    L'etude de la production des mesons D* est effectuee a partir d'evenements multihadroniques rm Z^0to q| q, avec des donnees prises en 1990, 1991 et 1992 avec le detecteur OPAL au LEP. La notation q definit les quarks des cinq saveurs pouvant etre observees au LEP: up (u), down (d), strange (s), charme (c), beaute (b). Les D* et les correlations D*-leptons sont identifiees et ces dernieres servent a effecteur une separation claire entre les evenements rm Z^0to b| b et Z^0to c| c. On mesure la distribution de la variable de fragmentation x_{rm D^ *}=E_{rm D^*}/E _{rm faisceau} pour les D* produits dans les evenements rm Z^0 to c| c. Elle est notee f _{rm cto D^*}. Ce resultat est a la base d'une publication OPAL (1), avec trois autres methodes de separation etudiees en parallele, donnat la premiere mesure OPAL de f _{rm cto D^*} qui soit independante de toute modelisation de la fragmentation des quarks lourds, ainsi qu'une mesure de Gamma_{rm c| c} parmi les plus precises effectuees a ce jour, ou Gamma_{rm c| c} est la largeur partielle de la desintegration du Z^0 en une paire cc. En ce qui concerne les resultats obtenus dans le cadre de cette these, la valeur moyenne de la distribution f_ {rm cto D^*}, notee < x_{rm cto D^*}>, est donnee par:< x_{rm cto D^*}>=0.530+/-0.027 +/-0.022ou la premiere erreur est statistique, et la seconde est systematique. On mesure aussi le taux de production des mesons D*, donnee par: {Gamma({rm Z^0to D^ *}X)overGamma_{rm hadrons}}=0.207+/-0.007+/-0.017 ou Gamma_{rm hadrons } est la largeur totale de la desintegration du Z^0 en paires de qq des cinq saveurs. La separation entre evenements rm Z^0to b| b et Z^0 to c| c, dans lesquels sont produits des D* se desintegrant selon rm D^ *to D^0pito (Kpi)pi, nous donne:(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI)La variable de fragmentation x_ {rm cto D^*} est utilisee pour tester les modeles des processes perturbatifs et non-perturbatifs qui entrent en jeu lors de la fragmentation des

  4. Au40: A Large Tetrahedral Magic Cluster

    SciTech Connect

    Jiang, Deen; Walter, Michael

    2011-01-01

    40 is a magic number for tetrahedral symmetry predicted in both nuclear physics and the electronic jellium model. We show that Au{sub 40} could be such a magic cluster from density functional theory-based basin hopping for global minimization. The putative global minimum found for Au{sub 40} has a twisted pyramid structure, reminiscent of the famous tetrahedral Au{sub 20}, and a sizable HOMO-LUMO gap of 0.69 eV, indicating its molecular nature. Analysis of the electronic states reveals that the gap is related to shell closings of the metallic electrons in a tetrahedrally distorted effective potential.

  5. H{sup -} beam extraction from a cesium seeded field effect transistor based radio frequency negative hydrogen ion source

    SciTech Connect

    Ando, A.; Matsuno, T.; Funaoi, T.; Tanaka, N.; Tsumori, K.; Takeiri, Y.

    2012-02-15

    H{sup -} beam was successfully extracted from a cesium seeded ion source operated using a field effect transistor inverter power supply as a radio frequency (RF) wave source. High density hydrogen plasma more than 10{sup 19} m{sup -3} was obtained using an external type antenna with RF frequency of lower than 0.5 MHz. The source was isolated by an isolation transformer and H{sup -} ion beam was extracted from a single aperture. Acceleration current and extraction current increased with the increase of extraction voltage. Addition of a small amount of cesium vapor into the source enhanced the currents.

  6. Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water.

    PubMed

    Vipin, Adavan Kiliyankil; Hu, Baiyang; Fugetsu, Bunshi

    2013-08-15

    Prussian blue encapsulated in alginate beads reinforced with highly dispersed carbon nanotubes were prepared for the safe removal of cesium ions from aqueous solutions. Equilibrium and kinetic studies were conducted using different models and the goodness of mathematical fitting of the experimental data on the adsorption isotherms was in the order Langmuir>Freundlich, and that of the kinetic models were in the order of pseudo second order>pseudo first order. Fixed bed adsorption column analysis indicated that the beads can be used for large scale treatment of cesium contaminated water.

  7. Theoretical studies of Resonance Enhanced Stimulated Raman Scattering (RESRS) of frequency-doubled Alexandrite laser wavelength in cesium vapor

    NASA Technical Reports Server (NTRS)

    Lawandy, Nabil M.

    1987-01-01

    The solutions for the imaginary susceptibility of the Raman field transition with arbitrary relaxation rates and field strengths are examined for three different sets of relaxation rates. These rates correspond to: (1) Far Infrared (FIR) Raman lasers in the diabatic collision regime without consideration of coupled population decay in a closed system, (2) Raman FIR lasers in the diabatic collision regime with coupled population conserving decay, and (3) IR Raman gain in cesium vapor. The model is further expanded to include Doppler broadening and used to predict the peak gain as a function of detuning for a frequency doubled Alexandrite laser-pumped cesium vapor gain cell.

  8. Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms

    SciTech Connect

    Zhang Yichi; Ma Jie; Li Yuqing; Wu Jizhou; Zhang Linjie; Chen Gang; Wang Lirong; Zhao Yanting; Xiao Liantuan; Jia Suotang

    2012-09-24

    We report on a quantitative experimental determination of the laser-induced frequency shift rate of the ultracold cesium molecules formed via photoassociation (PA) by means of the trap loss measurement of the losses of trapped atoms in a standard magneto-optical trap. The experiment was directly performed by varying the photoassociation laser intensity without any additional frequency monitor technologies. Our experimental method utilized dependences of the losses on the laser-induced frequency shift rate based on the conditions of the identified photoassociation spectral shape. We demonstrated that the method is sensitive enough to determine small frequency shifts of rovibrational levels of ultracold cesium molecules.

  9. Temporal compression of cw diode-laser output into short pulses with cesium-vapor group-velocity dispersion.

    PubMed

    Choi, K; Menders, J; Ross, D; Korevaar, E

    1993-11-15

    Using a technique similar to chirped pulse compression, we have compressed the 50-mW cw output of a diode laser into pulses of greater than 500-mW peak power and less than 400-ps duration. By applying a small current modulation to the diode, we induced a small wavelength modulation in the vicinity of the 6s(1/2)-to-6p(3/2) cesium resonance transition at 852 nm. Group-velocity dispersion on propagation through a cesium vapor cell then led to pulse compression. We developed a simple model to make predictions of output pulse shapes by using different modulation waveforms. PMID:19829441

  10. The Effect of Carbonate, Oxalate and Peroxide on the Cesium Loading of Ionsiv IE-910 and IE-911

    SciTech Connect

    Fondeur, F.F.

    2000-12-19

    The Savannah River Site (SRS) continues to examine three processes for the removal of radiocesium from high-level waste. One option involves the use of crystalline silicotitanate (CST) as a non-elutable ion exchange medium. The process uses CST in its engineered form - IONSIV IE-911 made by UOP, LLC. - in a column to contact the liquid waste. Cesium exchanges with sodium ions residing inside the CST particles. The design disposes of the cesium-loaded CST by vitrification within the Defense Waste Processing Facility.

  11. Re-suspension of Cesium-134/137 into the Canadian Environment and the Contribution Stemming from the Fukushima-Daiichi Nuclear Incident

    NASA Astrophysics Data System (ADS)

    Mercier, Jean-Francois; Zhang, Weihua; Loignon-Houle, Francis; Cooke, Michael W.; Ungar, Kurt R.; Pellerin, Eric R.

    2013-04-01

    Cesium-137 (t1/2 = 30 yr) and cesium-134 (t1/2 = 2yr) constitute major fission by-products observed as the result of a nuclear incident. Such radioisotopes become integrated into the soil and biomass, and can therefore undergo re-suspension into the environment via activities such as forest fires. The Canadian Radiological Monitoring Network (CRMN), which consists of 26 environmental monitoring stations spread across the country, commonly observes cesium-137 in air filters due to re-suspension of material originating from long-past weapons testing. Cesium-134 is not observed owing to its relatively short half-life. The Fukushima-Daiichi nuclear power plant incident of March 2011 caused a major release of radioactive materials into the environment. In Canada, small quantities of both cesium-137 and cesium-134 fallout were detected with great frequency in the weeks which followed, falling off rapidly beginning in July 2011. Since September 2011, the CRMN has detected both cesium-137 and cesium-134 from air filters collected at Yellowknife, Resolute, and Quebec City locations. Using the known initial cesium-134/cesium-137 ratio stemming from this incident, along with a statistical assessment of the normality of the data distribution, we herein present evidence that strongly suggests that these activity spikes are due to re-suspended hot particles originating from the Fukushima-Daiichi nuclear power plant incident. Moreover, we have evidence to suggest that this re-suspension is localized in nature. This study provided empirical insight into the transport and uptake of radionuclides over vast distances, and it demonstrates that the CRMN was able to detect evidence of a re-suspension of Fukushima-Daiichi related isotopes.

  12. Ir-induced activation of Au towards CO adsorption: Ir films deposited on Au{111}

    NASA Astrophysics Data System (ADS)

    Zhang, Tianfu; Driver, Stephen M.; Pratt, Stephanie J.; Jenkins, Stephen J.; King, David A.

    2016-06-01

    We have investigated the interaction of CO with Ir/Au{111} bimetallic surfaces, and the influence of morphology changes as Ir moves sub-surface into the Au bulk, using reflection-absorption infrared spectroscopy (RAIRS). The presence of Ir stabilises CO on exposed regions of the Au surface at temperatures up to around 200 K: we attribute this to low-coordinated Au sites, probably associated with lifting of the clean-surface 'herringbone' reconstruction by Ir deposition. The highest density of active Au sites is obtained after annealing the bimetallic surface to 500-600 K: we attribute this to morphology changes associated with the movement of Ir into bulk Au.

  13. Longitudinal scaling of net-protons in AuAu and pp collisions at RHIC energies

    NASA Astrophysics Data System (ADS)

    Videbaek, Flemming

    2008-10-01

    BRAHMS has studied net-protons distributions in Au+Au and p+p collisions at √sNN=62.4 and 200 GeV. Net-proton distributions reflect the net-baryon yields and can be used to extract the nuclear stopping in the collisions, thus providing information on baryon number transport and energy available for particle production. The talk will present final and preliminary results from the above mentioned systems. It will be shown that in p+p and in Au+Au central collisions that net-proton distributions exhibit longitudinal scaling once the target contribution to the projectile rapidity range is corrected for. The difference between p+p and Au+Au will be discussed. Aspects of future measurements at the LHC of net-baryons at mid-rapidity will be brought forth.

  14. Thermal Expansion of AuIn2

    SciTech Connect

    Saw, C K; Siekhaus, W J

    2004-07-12

    The thermal expansion of AuIn{sub 2} gold is of great interest in soldering technology. Indium containing solders have been used to make gold wire interconnects at low soldering temperature and over time, AuIn{sub 2} is formed between the gold wire and the solder due to the high heat of formation and the high inter-metallic diffusion of indium. Hence, the thermal expansion of AuIn{sub 2} alloy in comparison with that of the gold wire and the indium-containing solder is critical in determining the integrity of the connection. We present the results of x-ray diffraction measurement of the coefficient of linear expansion of AuIn{sub 2} as well as the bulk expansion and density changes over the temperature range of 30 to 500 C.

  15. RHIC Au beam in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  16. X-ray atomic absorption of cesium and xenon in the L-edge region

    SciTech Connect

    Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Aquilanti, G.

    2010-08-15

    X-ray absorption of atomic cesium is measured in the L-edge region, using a beryllium-window cell for cesium vapor. For comparison, absorption in Xe gas in the same energy region is remeasured with improved signal-to-noise ratio. By combining deconvolution and modeling, the edge profiles are studied to determine the threshold energies and the shape of the edge apex with exponential slope of the high-energy flank. In both elements, multielectron excitations show the same basic ordering in compact groups, largely independent of the core-hole subshell, following the energy sequence of coexcited valence and subvalence orbitals. The main effect of 6s electron in Cs, apart from 2(s,p)6s excitation, is the enhancement of single- as well as some multielectron resonant channels. The spectra of both elements show the ''polarization effect'': a convex basic curvature of the L{sub 2} and L{sub 3} segments, a concave L{sub 1} segment. Previously, Kutzner demonstrated a convincing theoretical explanation of the effect on Xe in a relativistic random-phase approximation with relaxation involving overlap integrals with continuum [Rad. Phys. Chem. 70, 95 (2004)].

  17. Cesium and strontium extraction using a mixed extractant solvent including crown ether and calixarene extractants

    DOEpatents

    Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.

    2007-11-06

    A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.

  18. Nickel oxide grafted andic soil for efficient cesium removal from aqueous solution: adsorption behavior and mechanisms.

    PubMed

    Ding, Dahu; Lei, Zhongfang; Yang, Yingnan; Feng, Chuanping; Zhang, Zhenya

    2013-10-23

    An andic soil, akadama clay, was modified with nickel oxide and tested for its potential application in the removal of cesium from aqueous solution. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and powder X-ray diffraction (XRD) results revealed the nickel oxide was successfully grafted into akadama clay. N2 adsorption-desorption isotherms indicated the surface area decreased remarkably after modification while the portion of mesopores increased greatly. Thermogravimetric-differential thermal analysis (TG-DTA) showed the modified akadama clay had better thermostability than the pristine akadama clay. Decreases in cation exchange capacity (CEC) and ζ-potential were also detected after the modification. Adsorption kinetic and isotherm studies indicated the adsorption of Cs+ on the modified akadama clay was a monolayer adsorption process. Adsorption capacity was greatly enhanced for the modified akadama clay probably due to the increase in negative surface charge caused by the modification. The adsorption of Cs+ on the modified akadama clay was dominated by an electrostatic adsorption process. Results of this work are of great significance for the application of akadama clay as a promising adsorbent material for cesium removal from aqueous solutions.

  19. The transfer of radioactive cesium and potassium from rice to sake.

    PubMed

    Okuda, Masaki; Hashiguchi, Tomokazu; Joyo, Midori; Tsukamoto, Kaori; Endo, Michiko; Matsumaru, Katsumi; Goto-Yamamoto, Nami; Yamaoka, Hiroshi; Suzuki, Kenji; Shimoi, Hitoshi

    2013-09-01

    Using rice grains contaminated with radioactive cesium ((134)Cs and (137)Cs) that was released by the Fukushima Daiichi Nuclear Power Plant Accident in March of 2011, we investigated the behaviors of the radioactive cesium and potassium (total K and (40)K) during sake brewing. Cesiumis a congener of K, and yeast cells have the ability to take up Cs using known K transporters. During rice polishing, the concentrations of radioactive Cs and K in the polished rice grains decreased gradually until a milling ratio (polished rice weight/brown rice weight) of 70% was reached. No significant changes were observed below this milling ratio. Sake was brewed on a small scale using the 70% polished rice. The transfer ratio of radioactive Cs to sake and to the sake cake was significantly different than the ratio of K. Approximately 36% and 23% of radioactive Cs in the polished rice was transferred to the sake and sake cake, respectively; however, 40% was removed by washing and steeping the rice grains. On the other hand, 25% and 40% of K in the polished rice was recovered in the sake and sake cake, respectively, and 35% was removed by washing and steeping the rice grains. From the present results, the concentration of radioactive Cs in sake would be 4 Bq/kg fresh weight, which is well below the regulation values (100 Bq/kg), even using brown rice containing 100 Bq/kg of radioactive Cs.

  20. Experimental approaches to assessing the impact of a cesium chloride radiological dispersal device

    USGS Publications Warehouse

    Lee, S.; Gibb, Snyder E.; Barzyk, J.; McGee, J.; Koenig, A.

    2008-01-01

    The US EPA, as a part of the Chemical, Biological, Radiological-Nuclear, and Explosives (CBRNE) Research and Technology Initiative (CRTI) project team, is currently working to assess the impacts of an urban radiological dispersion device (RDD) and to develop containment and decontamination strategies. Three efforts in this area are currently underway: development of a laboratory-scale cesium chloride deposition method to mimic a RDD; assessment of cesium (Cs) penetration depth and pathways in urban materials using two dimensional (2-D) mapping laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS); and experimental determination of distribution coefficients (kd) for Cs in water-building material systems. It is critical that, when performing laboratory-scale experiments to assess the fate of Cs from an RDD, the Cs particle deposition method mimics the RDD deposition. Once Cs particles are deposited onto urban surfaces, 2-D mapping of Cs concentrations using LA-ICP-MS is a critical tool for determining Cs transport pathways through these materials. Lastly, distribution coefficients are critical for understanding the transport of Cs in urban settings when direct measurements of its penetration depth are unavailable. An assessment of the newly developed deposition method along with preliminary results from the penetration experiments are presented in this paper.

  1. Atomic Structure of a Cesium Aluminosilicate Geopolymer: A Pair Distribution Function Study

    SciTech Connect

    Bell, J.; Sarin, P; Provis, J; Haggerty, R; Driemeyer, P; Chupas, P; van Deventer, J; Kriven, W

    2008-01-01

    The atomic pair distribution function (PDF) method was used to study the structure of cesium aluminosilicate geopolymer. The geopolymer was prepared by reacting metakaolin with cesium silicate solution followed by curing at 50C for 24 h in a sealed container. Heating of Cs-geopolymer above 1000C resulted in formation of crystalline pollucite (CsAlSi{sub 2}O{sub 6}). PDF refinement of the pollucite phase formed displayed an excellent fit over the 10-30 {angstrom} range when compared with a cubic pollucite model. A poorer fit was attained from 1-10 {angstrom} due to an additional amorphous phase present in the heated geopolymer. On the basis of PDF analysis, unheated Cs-geopolymer displayed structural ordering similar to pollucite up to a length scale of 9 {angstrom}, despite some differences. Our results suggest that hydrated Cs{sup +} ions were an integral part of the Cs-geopolymer structure and that most of the water present was not associated with Al-OH or Si-OH bonds.

  2. Distribution of radioactive cesium ((134)Cs plus (137)Cs) in rice fractions during polishing and cooking.

    PubMed

    Hachinohe, Mayumi; Okunishi, Tomoya; Hagiwara, Shoji; Todoriki, Setsuko; Kawamoto, Shinichi; Hamamatsu, Shioka

    2015-03-01

    We investigated the distribution of cesium-134 ((134)Cs) and cesium-137 ((137)Cs) during polishing and cooking of rice to obtain their processing factors (Pf) and food processing retention factors (Fr) to make the information available for an adequate understanding of radioactive Cs dynamics. Polishing brown rice resulted in a decreased radioactive Cs concentration of the polished rice, but the bran and germ (outer layers) exhibited higher concentrations than brown rice. The Pf values for 100% polished rice and outer layers ranged from 0.47 to 0.48 and 6.5 to 7.8, respectively. The Fr values for 100% polished rice and outer layers were 0.43 and 0.58 to 0.60, respectively. The distribution of radioactive Cs in polished rice and outer layers was estimated at approximately 40 and 60%, respectively. On the other hand, cooked rice showed significantly lower levels of radioactive Cs than polished rice, and transfer of radioactive Cs into wash water was observed. The Pf and Fr values for cooked rice were 0.28 and 0.65 to 0.66, respectively. From these results, we can calculate that if the radioactive Cs concentration in brown rice is 100 Bq/kg, the concentrations of Cs in polished rice and cooked rice will be 47 to 48 Bq/kg and 13 Bq/kg, respectively. PMID:25719881

  3. Strontium and cesium radionuclide leak detection alternatives in a capsule storage pool

    SciTech Connect

    Larson, D.E.; Crawford, T.W.; Joyce, S.M.

    1981-08-01

    A study was performed to assess radionuclide leak-detection systems for use in locating a capsule leaking strontium-90 or cesium-137 into a water-filled pool. Each storage pool contains about 35,000 L of water and up to 715 capsules, each of which contains up to 150 kCi strontium-90 or 80 kCi cesium-137. Potential systems assessed included instrumental chemical analyses, radionuclide detection, visual examination, and other nondestructive nuclear-fuel examination techniques. Factors considered in the assessment include: cost, simplicity of maintenance and operation, technology availability, reliability, remote operation, sensitivity, and ability to locate an individual leaking capsule in its storage location. The study concluded that an adaption of the spent nuclear-fuel examination technique of wet sipping be considered for adaption. In the suggested approoch, samples would be taken continuously from pool water adjacent to the capsule(s) being examined for remote radiation detection. In-place capsule isolation and subsequent water sampling would confirm that a capsule was leaking radionuclides. Additional studies are needed before implementing this option. Two other techniques that show promise are ultrasonic testing and eddy-current testing.

  4. Accumulation of Radioactive Cesium Released from Fukushima Daiichi Nuclear Power Plant in Terrestrial Cyanobacteria Nostoc commune

    PubMed Central

    Sasaki, Hideaki; Shirato, Susumu; Tahara, Tomoya; Sato, Kenji; Takenaka, Hiroyuki

    2013-01-01

    The Fukushima Daiichi Nuclear Power Plant accident released large amounts of radioactive substances into the environment and contaminated the soil of Tohoku and Kanto districts in Japan. Removal of radioactive material from the environment is an urgent problem, and soil purification using plants is being considered. In this study, we investigated the ability of 12 seed plant species and a cyanobacterium to accumulate radioactive material. The plants did not accumulate radioactive material at high levels, but high accumulation was observed in the terrestrial cyanobacterium Nostoc commune. In Nihonmatsu City, Fukushima Prefecture, N. commune accumulated 415,000 Bq/kg dry weight 134Cs and 607,000 Bq kg−1 dry weight 137Cs. The concentration of cesium in N. commune tended to be high in areas where soil radioactivity was high. A cultivation experiment confirmed that N. commune absorbed radioactive cesium from polluted soil. These data demonstrated that radiological absorption using N. commune might be suitable for decontaminating polluted soil. PMID:24256969

  5. Water-soluble molecular capsule for the complexation of cesium and thallium cations.

    PubMed

    Brotin, Thierry; Cavagnat, Dominique; Berthault, Patrick; Montserret, Roland; Buffeteau, Thierry

    2012-09-01

    Binding properties of cesium and thallium cations by an enantiopure cryptophane derivative PP-1 have been investigated in water under basic conditions. The binding process has been evidenced using electronic circular dichroism (ECD), and binding constants of the Cs(+)@PP-1 and Tl(+)@PP-1 complexes have been determined from isothermal titration calorimetry (ITC) experiments in LiOH/H(2)O, NaOH/H(2)O, and KOH/H(2)O solutions. In addition, Tl(+)@PP-1 complex has been characterized for the first time by (205)Tl NMR spectroscopy. Cryptophane 1 exhibits an exceptionally high affinity for thallium and cesium cations in a large range of experimental conditions (nature, concentration of the counterion, and temperature). For example, binding constants as high as 2.9 × 10(9) M(-1) and 5.3 × 10(8) M(-1) have been measured by ITC at 298 K in NaOH/H(2)O (0.1 M) solution, for the Tl(+)@PP-1 and Cs(+)@PP-1 complexes, respectively. The high affinity of cryptophane 1 for Cs(+) and Tl(+) cations is preserved at higher LiOH, NaOH, and KOH concentrations and under extreme basic conditions, revealing the stability and the great selectivity of this supramolecular system toward Li(+), Na(+), and K(+) cations.

  6. Tracking the Fate of Particle Associated Fukushima Daiichi Cesium in the Ocean off Japan.

    PubMed

    Buesseler, Ken O; German, Christopher R; Honda, Makio C; Otosaka, Shigeyoshi; Black, Erin E; Kawakami, Hajime; Manganini, Steven J; Pike, Steven M

    2015-08-18

    A three year time-series of particle fluxes is presented from sediment traps deployed at 500 and 1000 m at a site 115 km southeast of Fukushima Daiichi Nuclear Power Plant (FDNPP). Results show a high fraction of lithogenic material and mass flux peaks that do not align between the trap depths, suggesting a lateral source of sediments. Fukushima cesium-137 and cesium-134 were enhanced in flux peaks that, given variations in trap (137)Cs/(210)Pbex ratios, are characteristic of material derived from shelf and slope sediments found from <120 to >500 m. These lateral flux peaks are possibly triggered by passing typhoons. The Cs fluxes are an order of magnitude higher than were previously reported for the trap located 100 km due east of FDNPP. We attribute this large difference to the position of our trap under the southeasterly currents that carry contaminated waters and resuspended sediments away from FDNPP and into the Pacific. These higher Cs sedimentary fluxes offshore are still small relative to the inventory of Cs currently buried nearshore. Consequently, we do not expect them to effect any rapid decrease in Cs levels for the coastal sediments near FDNPP that have been linked to enhanced Cs in demersal fish.

  7. Characterization of a state-insensitive dipole trap for cesium atoms

    SciTech Connect

    Phoonthong, P.; Douglas, P.; Wickenbrock, A.; Renzoni, F.

    2010-07-15

    In this work we characterize a state-insensitive dipole trap for cold cesium atoms, as realized by tightly focusing a single running laser beam at the magic wavelength. The use of trapping light at the magic wavelength of 935.6 nm resulted in the same ac Stark shift for the {sup 6}S{sub 1/2} ground state and the {sup 6}P{sub 3/2} excited state. A complete characterization of the trap is given, which includes the dependence of the lifetime on the trap depth, an analysis of the important role played by a depumper beam, and a comparison with dipole trapping at different (nonmagic) wavelengths. In particular, we measured the differential light shift of the relevant optical transition as a function of the trapping light wavelength, and showed that it becomes zero at the magic wavelength. Our results are compared to previous realizations of state-insensitive dipole traps for cesium atoms. We also discuss the possible role of the state-insensitive trap, its limitations, and possible developments for the study of ground-state quantum coherence phenomena and related applications.

  8. Distribution of radioactive cesium ((134)Cs plus (137)Cs) in rice fractions during polishing and cooking.

    PubMed

    Hachinohe, Mayumi; Okunishi, Tomoya; Hagiwara, Shoji; Todoriki, Setsuko; Kawamoto, Shinichi; Hamamatsu, Shioka

    2015-03-01

    We investigated the distribution of cesium-134 ((134)Cs) and cesium-137 ((137)Cs) during polishing and cooking of rice to obtain their processing factors (Pf) and food processing retention factors (Fr) to make the information available for an adequate understanding of radioactive Cs dynamics. Polishing brown rice resulted in a decreased radioactive Cs concentration of the polished rice, but the bran and germ (outer layers) exhibited higher concentrations than brown rice. The Pf values for 100% polished rice and outer layers ranged from 0.47 to 0.48 and 6.5 to 7.8, respectively. The Fr values for 100% polished rice and outer layers were 0.43 and 0.58 to 0.60, respectively. The distribution of radioactive Cs in polished rice and outer layers was estimated at approximately 40 and 60%, respectively. On the other hand, cooked rice showed significantly lower levels of radioactive Cs than polished rice, and transfer of radioactive Cs into wash water was observed. The Pf and Fr values for cooked rice were 0.28 and 0.65 to 0.66, respectively. From these results, we can calculate that if the radioactive Cs concentration in brown rice is 100 Bq/kg, the concentrations of Cs in polished rice and cooked rice will be 47 to 48 Bq/kg and 13 Bq/kg, respectively.

  9. Uncertainty of cesium-beam time standards due to beam asymmetry

    NASA Astrophysics Data System (ADS)

    Becker, G.

    1980-12-01

    As a consequence of the spatial phase distribution in the resonators of cesium-beam time and frequency standards, the generated frequency depends on the specific path of the atomic beam. A change of the position of the atomic beam source may result in a beam displacement normal to the beam direction. For a deflection system consisting of a combination of quadrupole and hexapole magnets for two-dimensional beam deflection, the displacement of the center of mass of the beam resulting from a misalignment of the beam source is computed. To this end, the distribution of the beam intensity on the collector is first determined. It is shown that for the cesium-beam time and frequency standard CS1 of the Physikalisch-Technische Bundesanstalt (PTB), the uncertainty of the position of the center of mass of the beam entails a contribution to the uncertainty of the standard of less than 1 x 10 to the -15th. The amount of the displacement of the center of mass of the beam can be determined from the decrease of the beam flux on the collector caused by an adjustment of the beam source.

  10. Physical properties of a new flat panel detector with cesium-iodide technology

    NASA Astrophysics Data System (ADS)

    Hahn, Andreas; Penchev, Petar; Fiebich, Martin

    2016-03-01

    Flat panel detectors have become the standard technology in projection radiography. Further progress in detector technology will result in an improvement of MTF and DQE. The new detector (DX-D45C; Agfa; Mortsel/Belgium) is based on cesium-iodine crystals and has a change in the detector material and the readout electronics. The detector has a size of 30 cm x 24 cm and a pixel matrix of 2560 x 2048 with a pixel pitch of 124 μm. The system includes an automatic exposure detector, which enables the use of the detector without a connection to the x-ray generator. The physical properties of the detector were determined following IEC 62220-1-1 in a laboratory setting. The MTF showed an improvement compared to the previous version of cesium-iodine based flat-panel detectors. Thereby the DQE is also improved especially for the higher frequencies. The new detector showed an improvement in the physical properties compared to the previous versions. This enables a potential for further dose reductions in clinical imaging.

  11. Tracking the Fate of Particle Associated Fukushima Daiichi Cesium in the Ocean off Japan.

    PubMed

    Buesseler, Ken O; German, Christopher R; Honda, Makio C; Otosaka, Shigeyoshi; Black, Erin E; Kawakami, Hajime; Manganini, Steven J; Pike, Steven M

    2015-08-18

    A three year time-series of particle fluxes is presented from sediment traps deployed at 500 and 1000 m at a site 115 km southeast of Fukushima Daiichi Nuclear Power Plant (FDNPP). Results show a high fraction of lithogenic material and mass flux peaks that do not align between the trap depths, suggesting a lateral source of sediments. Fukushima cesium-137 and cesium-134 were enhanced in flux peaks that, given variations in trap (137)Cs/(210)Pbex ratios, are characteristic of material derived from shelf and slope sediments found from <120 to >500 m. These lateral flux peaks are possibly triggered by passing typhoons. The Cs fluxes are an order of magnitude higher than were previously reported for the trap located 100 km due east of FDNPP. We attribute this large difference to the position of our trap under the southeasterly currents that carry contaminated waters and resuspended sediments away from FDNPP and into the Pacific. These higher Cs sedimentary fluxes offshore are still small relative to the inventory of Cs currently buried nearshore. Consequently, we do not expect them to effect any rapid decrease in Cs levels for the coastal sediments near FDNPP that have been linked to enhanced Cs in demersal fish. PMID:26158389

  12. Functionalized magnetic nanoparticles for the decontamination of water polluted with cesium

    NASA Astrophysics Data System (ADS)

    Helal, Ahmed S.; Decorse, Philippe; Perruchot, Christian; Novak, Sophie; Lion, Claude; Ammar, Souad; El Hage Chahine, Jean-Michel; Hémadi, Miryana

    2016-05-01

    Magnetic nanoparticles are attracting considerable interest because of their potential applications in practically all fields of science and technology, including the removal of heavy metals from contaminated waters. It is, therefore, of great importance to adapt the surfaces of these nanoparticles according to the application. In this work advanced nanoparticles (NPs) with well-tailored surface functionalities were synthesized using the polyol method. The efficiency of a chelating agent, succinyl-β-cyclodextrin (SBCD), was first investigated spectrophotometrically and by Isothermal Titration Calorimetry (ITC). SBCD was then grafted onto nanoparticles previously functionalized with 3-aminopropyl triethoxsilane (NP-APTES). The resulting NP-SBCD system was then incubated with a solution of cesium. After magnetic separation, the solid residue was removed from the supernatant and characterized by X-Ray Photoelectron spectrometry (XPS), X-Ray Fluorescence spectrometry (XRF) and Superconducting QUantum Interference Device (SQUID) magnetometry. These characterizations show the presence of cesium in the solid residue, which indicates Cs uptake by the NP-SBCD system. This nanohybrid system constitutes a promising model for heavy metal decontamination.

  13. Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures

    NASA Astrophysics Data System (ADS)

    Harding, Philip J.; Pinkse, Pepijn W. H.; Mosk, Allard P.; Vos, Willem L.

    2015-01-01

    We study a hybrid system consisting of a narrow-band atomic optical resonance and the long-range periodic order of an opaline photonic nanostructure. To this end, we have infiltrated atomic cesium vapor in a thin silica opal photonic crystal. With increasing temperature, the frequencies of the opal's reflectivity peaks shift down by >20 % due to chemical reduction of the silica. Simultaneously, the photonic bands and gaps shift relative to the fixed near-infrared cesium D1 transitions. As a result the narrow atomic resonances with high finesse (ω /Δ ω =8 ×105 ) dramatically change shape from a usual dispersive shape at the blue edge of a stop gap, to an inverted dispersion line shape at the red edge of a stop gap. The line shape, amplitude, and off-resonance reflectivity are well modeled with a transfer-matrix model that includes the dispersion and absorption of Cs hyperfine transitions and the chemically reduced opal. An ensemble of atoms in a photonic crystal is an intriguing hybrid system that features narrow defectlike resonances with a strong dispersion, with potential applications in slow light, sensing, and optical memory.

  14. Laser-cooled cesium atoms confined in a fiber-guided magic-wavelength dipole trap

    NASA Astrophysics Data System (ADS)

    Yoon, Taehyun; Haapamaki, Christopher; Flannery, Jeremy; Bappi, Golam; Al Maruf, Rubayet; Alshehri, Omar; Bajcsy, Michal

    2016-05-01

    Strong light-matter interactions crucial for the achievement of optical nonlinearities with small photon numbers can be implemented by confining both photons and an atomic ensemble inside a hollow-core optical waveguide. We have developed an experimental setup trapping cesium atoms in a magneto-optical trap (MOT) and loading them into a hollow-core photonic crystal fiber (HCPCF) where they are transversely confined by a red-detuned optical dipole trap that is also guided by the fiber. This dipole trap is realized at cesium's `magic wavelength' (935.6nm), which results in a state-insensitive trap and suppression of the radially varying AC-Stark shift for the confined atomic cloud. This was not possible with rubidium atoms used the previous experiments in this platform since rubidium does not have a convenient magic wavelength for the red-detuned dipole trap. We report our procedure to load and probe the laser-cooled atoms inside the HCPCF and discuss the outlooks of this system for implementing nonlinear optics with single photons. We also describe our progress on integrating cavities into the HCPCF that could potentially allow transforming the fiber into a cQED system in the strong coupling regime.

  15. Molecular dynamics simulation of energetic atom depositions of Au/Au(100) film

    NASA Astrophysics Data System (ADS)

    Qing-yu, Zhang; Zheng-ying, Pan; Jia-yong, Tang

    1999-04-01

    The energetic atom deposition of thin Au/Au(100) film has been studied by molecular dynamics simulation using the Au-Au interatomic interaction potential with embedded atom method. By investigating the variation of coverage curves and Bragg diffraction intensities during the film growth, the transition of Stranski-Kranstanov growth mode to Frank-van der Merwe growth mode was observed with the increase of the incident energy of deposition atoms. The role of energetic atoms in the film growth is discussed by analyzing the transport properties of deposited atoms and the evolution of incident energy and substrate temperatures.

  16. Unravelling Thiol's Role in Directing Asymmetric Growth of Au Nanorod-Au Nanoparticle Dimers.

    PubMed

    Huang, Jianfeng; Zhu, Yihan; Liu, Changxu; Shi, Zhan; Fratalocchi, Andrea; Han, Yu

    2016-01-13

    Asymmetric nanocrystals have practical significance in nanotechnologies but present fundamental synthetic challenges. Thiol ligands have proven effective in breaking the symmetric growth of metallic nanocrystals but their exact roles in the synthesis remain elusive. Here, we synthesized an unprecedented Au nanorod-Au nanoparticle (AuNR-AuNP) dimer structure with the assistance of a thiol ligand. On the basis of our experimental observations, we unraveled for the first time that the thiol could cause an inhomogeneous distribution of surface strains on the seed crystals as well as a modulated reduction rate of metal precursors, which jointly induced the asymmetric growth of monometallic dimers.

  17. Counterion-Mediated Assembly of Spherical Nucleic Acid-Au Nanoparticle Conjugates (SNA-AuNPs)

    NASA Astrophysics Data System (ADS)

    Kewalramani, Sumit; Moreau, Liane; Guerrero-García, Guillermo; Mirkin, Chad; Olvera de La Cruz, Monica; Bedzyk, Michael; Afosr Muri Team

    2015-03-01

    Controlled crystallization of colloids from solution has been a goal of material scientists for decades. Recently, nucleic acid functionalized spherical Au nanoparticles (SNA-AuNPs) have been programmed to assemble in a wide variety of crystal structures. In this approach, the assembly is driven by Watson-Crick hybridization between DNAs coating the AuNPs. Here, we show that counterions can induce ordered assembly of SNA-AuNPs in bulk solutions, even in the absence of base pairing interactions. The electrostatics-driven assembly of spherical nucleic acid-Au nanoparticle conjugates (SNA-AuNPs) is probed as a function of counterion concentration and counterion valency [ +1 (Na+) or +2 (Ca2+) ] by in situ solution X-ray scattering. Assemblies of AuNPs capped with single-stranded (ss-) or double-stranded (ds-) DNA are examined. SAXS reveals disordered (gas-like) --> face-centered-cubic (FCC) --> glass-like phase transitions with increasing solution ionic strength. These studies demonstrate how non-base-pairing interactions can be tuned to create crystalline assemblies of SNA-AuNPs. The dependence of the inter-SNA-AuNP interactions on counterion valency and stiffness of the DNA corona will be discussed.

  18. Kinetics of Phase Transformations in CuAu Alloys

    NASA Astrophysics Data System (ADS)

    Malis, O.; Ludwig, K.

    1997-03-01

    We have performed time resolved x-ray scattering studies of the kinetics of phase transformations in CuAu alloys. The equilibrium phase diagram of CuAu presents two first-order ordering transitions which separate the stability range of a high temperature disordered phase and two ordered phases: CuAuI and CuAuII. CuAuII is a modulated phase having a wavelength ten times larger than CuAuI. Our study focused on the competition between CuAuI and CuAuII as well as on the interaction between order and strain as the lattice changes from cubic in the disordered phase to tetragonal in CuAuI. During CuAuI formation from the disordered phase, CuAuII appears and persists even for quenches deep below the coexistence point of CuAuI and CuAuII. We have also found that the formation of CuAuI from CuAuII is considerably slower than the formation of CuAuI from the disordered phase for equal quench temperatures. Langevin simulations based on EMT are in good qualitative agreement with the x-ray results(Elder, Malis, Ludwig, Chakraborty, Goldenfeld in preparation.). With increasing quench depth we also observe a change in kinetics from an incoherent nucleation process to a continuous transformation of the lattice while ordering.

  19. Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

    SciTech Connect

    STAR Coll

    2009-04-11

    Identified charged particle spectra of {pi}{sup {+-}}, K{sup {+-}}, p and {bar p} at mid-rapidity (|y| < 0.1) measured by the dE/dx method in the STAR-TPC are reported for pp and d + Au collisions at {radical}s{sub NN} = 200 GeV and for Au + Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm{sub 3} for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters due to the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase

  20. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    PubMed

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home. PMID:22129747

  1. Feasibility study for the processing of Hanford Site cesium and strontium isotopic sources in the Hanford Waste Vitrification Plant

    SciTech Connect

    Anantatmula, R.P.; Watrous, R.A.; Nelson, J.L.; Perez, J.M.; Peters, R.D.; Peterson, M.E.

    1991-09-01

    The final environmental impact statement for the disposal of defense-related wastes at the Hanford Site (Final Environmental Impact Statement: Disposal of Hanford Defense High-Level, Transuranic and Tank Wastes [HDW-EIS] [DOE 1987]) states that the preferred alternative for disposal of cesium and strontium wastes at the Hanford Site will be to package and ship these wastes to the commercial high-level waste repository. The Record of Decision for this EIS states that before shipment to a geologic repository, these wastes will be packaged in accordance with repository waste acceptance criteria. However, the high cost per canister for repository disposal and uncertainty about the acceptability of overpacked capsules by the repository suggest that additional alternative means of disposal be considered. Vitrification of the cesium and strontium salts in the Hanford Waste Vitrification Plant (HWVP) has been identified as a possible alternative to overpacking. Subsequently, Westinghouse Hanford Company`s (Westinghouse Hanford) Projects Technical Support Office undertook a feasibility study to determine if any significant technical issues preclude the vitrification of the cesium and strontium salts. Based on the information presented in this report, it is considered technically feasible to blend the cesium chloride and strontium fluoride salts with neutralized current acid waste (NCAW) and/or complexant concentrate (CC) waste feedstreams, or to blend the salts with fresh frit and process the waste through the HWVP.

  2. COMPARISONS OF CRYSTALLINE SILICOTITANATE AND RESORCINOL FORMALDEHYDE MEDIA FOR CESIUM REMOVAL BY IN-TANK COLUMN PROCESSING

    SciTech Connect

    King, W; Frank02 Smith, F; Si Lee, S; Daniel McCabe, D

    2007-11-07

    Chemical and thermal performance of crystalline silicotitanate (CST) and resorcinol-formaldehyde (RF) ion exchange media were predicted for column configurations designed for installation in high level waste tanks and intended for cesium removal from radioactive waste supernates. Modeling predictions for the processing of a known Savannah River Site tank waste composition were generated. In a two column configuration under presumed nominal operating conditions (432 gallon packed bed, 10 gpm liquid flow, 25 C, 45 nCi/g average breakthrough limit) with lead/lag column rotation between processing cycles, approximately two cycles were predicted to treat 1,000,000 gallons of radioactive waste with CST as compared to three cycles predicted for RF. However, this processing mode was shown to be highly unfavorable for RF due to the fact that the lead column is unnecessarily exposed to large radiation doses during movement of the cesium mass transfer zone into the lag column. Thermal modeling calculations indicated that maximum temperatures within stagnant, packed CST and RF columns containing the highest anticipated cesium loading and no active cooling will reach 128 and 78 C, respectively, within 6 days. Active cooling maintains the cesium-saturated CST and RF columns below 88 and 41 C, respectively, under stagnant flow conditions.

  3. Sugar-metal ion interactions: The coordination behavior of cesium ion with lactose, D-arabinose and L-arabinose

    NASA Astrophysics Data System (ADS)

    Jiang, Ye; Xue, Junhui; Wen, Xiaodong; Zhai, Yanjun; Yang, Limin; Xu, Yizhuang; Zhao, Guozhong; Kou, Kuan; Liu, Kexin; Chen, Jia'er; Wu, Jinguang

    2016-04-01

    The novel cesium chloride-lactose complex (CsCl·C12H22O10 (Cs-Lac), cesium chloride-D-arabinose and L-arabinose complexes (CsCl·C5H10O5, Cs-D-Ara and Cs-L-Ara) have been synthesized and characterized using X-ray diffraction, FTIR, FIR, THz and Raman spectroscopies. Cs+ is 9-coordinated to two chloride ions and seven hydroxyl groups from five lactose molecules in Cs-Lac. In the structures of CsCl-D-arabinose and CsCl-L-arabinose complexes, two kinds of Cs+ ions coexist in the structures. Cs1 is 10-coordinated with two chloride ions and eight hydroxyl groups from five arabinose molecule; Cs2 is 9-coordinated to three chloride ions and six hydroxyl groups from five arabinose molecules. Two coordination modes of arabinose coexist in the structures. α-D-arabinopyranose and α-L-arabinopyranose appear in the structures of Cs-D-Ara and Cs-L-Ara complexes. FTIR and Raman results indicate variations of hydrogen bonds and the conformation of the ligands after complexation. FIR and THz spectra also confirm the formation of Cs-complexes. Crystal structure, FTIR, FIR, THz and Raman spectra provide detailed information on the structure and coordination of hydroxyl groups to metal ions in the cesium chloride-lactose, cesium chloride-D- and L-arabinose complexes.

  4. Adsorption of cesium from aqueous solution using agricultural residue--walnut shell: equilibrium, kinetic and thermodynamic modeling studies.

    PubMed

    Ding, Dahu; Zhao, Yingxin; Yang, Shengjiong; Shi, Wansheng; Zhang, Zhenya; Lei, Zhongfang; Yang, Yingnan

    2013-05-01

    A novel biosorbent derived from agricultural residue - walnut shell (WS) is reported to remove cesium from aqueous solution. Nickel hexacyanoferrate (NiHCF) was incorporated into this biosorbent, serving as a high selectivity trap agent for cesium. Field emission scanning electron microscope (FE-SEM) and thermogravimetric and differential thermal analysis (TG-DTA) were utilized for the evaluation of the developed biosorbent. Determination of kinetic parameters for adsorption was carried out using pseudo first-order, pseudo second-order kinetic models and intra-particle diffusion models. Adsorption equilibrium was examined using Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. A satisfactory correlation coefficient and relatively low chi-square analysis parameter χ(2) between the experimental and predicted values of the Freundlich isotherm demonstrate that cesium adsorption by NiHCF-WS is a multilayer chemical adsorption. Thermodynamic studies were conducted under different reaction temperatures and results indicate that cesium adsorption by NiHCF-WS is an endothermic (ΔH° > 0) and spontaneous (ΔG° < 0) process.

  5. Use of charcoals and broiler litter biochar for removal of radioactive cesium (Cs-134 plus Cs-137) from contaminated water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various charcoals (used in food processing and water treatment) and broiler litter biochar were examined for ability to adsorb water-soluble low-level radioactive cesium (ca. 200-250 Bq/kg) extracted from contaminated wheat bran. Among the materials tested, steam activated broiler litter biochar was...

  6. Documentation associated with the WESF preparation for receiving 25 cesium capsules from the Applied Radiant Energy Corporation (ARECO)

    SciTech Connect

    Pawlak, M.W.

    1996-10-21

    The purpose of this report is to compile all documentation associated with facility preparation of WESF to receive 25 cesium capsules from ARECO. The WESF validated it`s preparedness by completing a facility preparedness review using a performance indicator checklist.

  7. Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig 644 Resin

    SciTech Connect

    Hamm, L.L.

    2000-08-23

    A proposed facility is being designed for the immobilization of Hanford high-level radioactive waste. One unit process in the facility is designed to remove radioactive cesium by ion-exchange from the strongly alkaline aqueous phase. A resin specifically designed with high selectivity of cesium under alkaline conditions is being investigated. The resin also is elutable under more acidic conditions. The proposed design of the facility consists of two sets of two packed columns placed in series (i.e., a lead column followed by a lag (guard) column configuration). During operation, upon reaching a specified cesium concentration criterion at the exit of the lag column, operation is switched to the second set of lead and lag columns. The cesium-loaded lead column is processed (i.e., washed and eluted) and switched to the lag position. the previous lag column is then placed in the lead position (without eluting) and the system is ready for use in the next cycle. For a well designed process, the loading and elution processes result in significant volume reductions in aqueous high-level waste.

  8. Removal efficiency of water purifier and adsorbent for iodine, cesium, strontium, barium and zirconium in drinking water.

    PubMed

    Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji

    2011-01-01

    The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.

  9. Suppression of ϒ production in d +Au and Au+Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Grosnick, D.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hill, K.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Munhoz, M. G.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wimsatt, G.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.

    2014-07-01

    We report measurements of ϒ meson production in p + p, d +Au, and Au +Au collisions using the STAR detector at RHIC. We compare the ϒ yield to the measured cross section in p + p collisions in order to quantify any modifications of the yield in cold nuclear matter using d +Au data and in hot nuclear matter using Au +Au data separated into three centrality classes. Our p + p measurement is based on three times the statistics of our previous result. We obtain a nuclear modification factor for ϒ (1 S + 2 S + 3 S) in the rapidity range | y | < 1 in d +Au collisions of RdAu = 0.79 ± 0.24 (stat.) ± 0.03 (syst.) ± 0.10 (p + p syst.). A comparison with models including shadowing and initial state parton energy loss indicates the presence of additional cold-nuclear matter suppression. Similarly, in the top 10% most-central Au +Au collisions, we measure a nuclear modification factor of RAA = 0.49 ± 0.1 (stat.) ± 0.02 (syst.) ± 0.06 (p + psyst.), which is a larger suppression factor than that seen in cold nuclear matter. Our results are consistent with complete suppression of excited-state ϒ mesons in Au +Au collisions. The additional suppression in Au +Au is consistent with the level expected in model calculations that include the presence of a hot, deconfined Quark-Gluon Plasma. However, understanding the suppression seen in d +Au is still needed before any definitive statements about the nature of the suppression in Au +Au can be made.

  10. 100-MeV proton beam intensity measurement by Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions

    NASA Astrophysics Data System (ADS)

    Mokhtari Oranj, Leila; Jung, Nam-Suk; Oh, Joo-Hee; Lee, Hee-Seock

    2016-05-01

    The proton beam intensity of a 100-MeV proton linac at the Korea Multi-purpose Accelerator Complex (KOMAC) was measured by an Au activation analysis using 197Au(p, pn)196Au and 197Au(p, p3n)194Au reactions to determine the accuracy and precision of beam intensity measurement using Gafchromic film dosimetry method. The target, irradiated by 100-MeV protons, was arranged in a stack consisting of Au, Al foils and Pb plates. The yields of produced radio-nuclei in Au foils were obtained by gamma-ray spectroscopy. The FLUKA code was employed to calculate the energy spectrum of protons onto the front surface of Au foils located at three different depth points of the target and also to investigate the condition of incident beam on the target. A good agreement was found between the beam intensity measurements using the activation analysis method at three different depth points of the target. An excellent agreement was also observed between the beam intensity measurements using the Au activation analysis method and the dosimetry method using Gafchromic film.

  11. Extractant compositions for co-extracting cesium and strontium, a method of separating cesium and strontium from an aqueous feed, and calixarene compounds

    DOEpatents

    Peterman,Dean R.; Meikrantz,David H.; Law,Jack D.; Riddle,Catherine L.; Todd,Terry A.; Greenhalgh,Mitchell R.; Tillotson,Richard D.; Bartsch,Richard A.; Moyer,Bruce A.; Delmau,Laetitia H.; Bonnesen,Peter V.

    2012-04-17

    A mixed extractant solvent that includes at least one dialkyloxycalix[4]arenebenzocrown-6 compound, 4',4',(5')-di-(t-butyldicyclohexano)-18-crown-6, at least one modifier, and, optionally, a diluent. The dialkyloxycalix[4]arenebenzocrown-6 compound is 1,3-alternate-25,27-di(octyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(decyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(dodecyloxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(2-ethylhexyl-1-oxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(3,7-dimethyloctyl-1-oxy)calix[4]arenebenzocrown-6, 1,3-alternate-25,27-di(4-butyloctyl-1-oxy)calix[4]arenebenzocrown-6, or combinations thereof. The modifier is a primary alcohol. A method of separating cesium and strontium from an aqueous feed is also disclosed, as are dialkyloxycalix[4]arenebenzocrown-6 compounds and an alcohol modifier.

  12. Electrochemical Characterization of Protein Adsorption onto YNGRT-Au and VLGXE-Au Surfaces

    PubMed Central

    Trzeciakiewicz, Hanna; Esteves-Villanueva, Jose; Soudy, Rania; Kaur, Kamaljit; Martic-Milne, Sanela

    2015-01-01

    The adsorption of the proteins CD13, mucin and bovine serum albumin on VLGXE-Au and YNGRT-Au interfaces was monitored by electrochemical impedance spectroscopy in the presence of [Fe(CN)6]3−/4−. The hydrophobicity of the Au surface was tailored using specific peptides, blocking agents and diluents. The combination of blocking agents (ethanolamine or n-butylamine) and diluents (hexanethiol or 2-mercaptoethanol) was used to prepare various peptide-modified Au surfaces. Protein adsorption onto the peptide-Au surfaces modified with the combination of n-butylamine and hexanethiol produced a dramatic decrease in the charge transfer resistance, Rct, for all three proteins. In contrast, polar peptide-surfaces induced a minimal change in Rct for all three proteins. Furthermore, an increase in Rct was observed with CD13 (an aminopeptidase overexpressed in certain cancers) in comparison to the other proteins when the VLGXE-Au surface was modified with n-butylamine as a blocking agent. The electrochemical data indicated that protein adsorption may be modulated by tailoring the peptide sequence on Au surfaces and that blocking agents and diluents play a key role in promoting or preventing protein adsorption. The peptide-Au platform may also be used for targeting cancer biomarkers with designer peptides. PMID:26262621

  13. Using supported Au nanoparticles as starting material for preparing uniform Au/Pd bimetallic catalysts

    SciTech Connect

    Villa, Alberto; Prati, Laura; Su, Dangshen; Wang, Di; Veith, Gabriel M

    2010-01-01

    One of the best methods for producing bulk homogeneous (composition) supported bimetallic AuPd clusters involves the immobilization of a protected Au seed followed by the addition of Pd. This paper investigates the importance of this gold seed in controlling the resulting bimetallic AuPd clusters structures, sizes and catalytic activities by investigating three different gold seeds. Uniform Au-Pd alloy were obtained when a steric/electrostatic protecting group, poly(vinyl alcohol) (PVA), was used to form the gold clusters on activated carbon (AC). In contrast Au/AC precursors prepared using Au nanoparticles with only electrostatic stabilization (tetrakis(hydroxypropyl)phosphonium chloride (THPC)), or no stabilization (magnetron sputtering) produced inhomogeneous alloys and segregation of the gold and palladium. The uniform alloyed catalyst (Pd{at}Au{sub PVA}/AC) is the most active and selective catalyst, while the inhomogenous catalysts are less active and selective. Further study of the PVA protected Au clusters revealed that the amount of PVA used is also critical for the preparation of uniform alloyed catalyst, their stability, and their catalytic activity.

  14. The extraction characteristic of Au-Ag from Au concentrate by thiourea solution

    NASA Astrophysics Data System (ADS)

    Kim, Bongju; Cho, Kanghee; On, Hyunsung; Choi, Nagchoul; Park, Cheonyoung

    2013-04-01

    The cyanidation process has been used commercially for the past 100 years, there are ores that are not amenable to treatment by cyanide. Interest in alternative lixiviants, such as thiourea, halogens, thiosulfate and malononitrile, has been revived as a result of a major increase in gold price, which has stimulated new developments in extraction technology, combined with environmental concern. The Au extraction process using the thiourea solvent has many advantages over the cyanidation process, including higher leaching rates, faster extraction time and less than toxicity. The purpose of this study was investigated to the extraction characteristic of Au-Ag from two different Au concentrate (sulfuric acid washing and roasting) under various experiment conditions (thiourea concentration, pH of solvent, temperature) by thiourea solvent. The result of extraction experiment showed that the Au-Ag extraction was a fast extraction process, reaching equilibrium (maximum extraction rate) within 30 min. The Au-Ag extraction rate was higher in the roasted concentrate than in the sulfuric acid washing. The higher the Au-Ag extraction rate (Au - 70.87%, Ag - 98.12%) from roasted concentrate was found when the more concentration of thiourea increased, pH decreased and extraction temperature increased. This study informs extraction method basic knowledge when thiourea was a possibility to eco-/economic resources of Au-Ag utilization studies including the hydrometallurgy.

  15. Study on the Volatility of Cesium in Dry Ashing Pretreatment and Dissolution of Ash by Microwave Digestion System - 13331

    SciTech Connect

    Choi, Kwang-Soon; Lee, Chang Heon; Ahn, Hong-Joo; Park, Yong Joon; Song, Kyuseok

    2013-07-01

    Based on the regulation of the activity concentration of Cs-137, Co-58, Co-60, Fe-55, Ni-59, Ni-63, Sr-90, Nb-94, and Tc-99, and the total alpha from the radioactive waste acceptance criteria, the measurement of the activity concentration of these nuclides in low and intermediate levels of radioactive waste such as in paper, cotton, vinyl and plastic samples was investigated. A dry ashing method was applied to obtain a concentration effect of the samples. Owing to the temperature dependence of the volatility for cesium, the temperature of 300 to 650 deg. C was examined. It was found that 450 deg. C is the optimum dry ashing temperature. After dry ashing, the produced ash was dissolved with HNO{sub 3}, HCl, and HF by a high-performance microwave digestion system. The ash sample, for the most part, was completely dissolved with 10 mL of HNO{sub 3}, 4 mL of HCl, and 0.25 mL of HF by a high-performance microwave digestion system using a nova high temperature rotor at 250 deg. C for 90 min until reaching 0.2 g. To confirm the reliability of cesium loss after the performance of the dry ashing procedure, a cesium standard solution for AAS and a Cs-137 standard solution for gamma spectrometry were added to a paper towel or a planchet of stainless steel, respectively. Cesium was measured by AAS, ICP-MS, and gamma spectrometry. The volatility of cesium did not occur until 450 deg. C ashing. (authors)

  16. Measurements to Elucidate the Mechanism of Thermal and Radiation Enhanced Diffusion of Cesium, Europium, and Strontium in Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Dwaraknath, Shyam S.

    Containment of fission products (FP) within the TRISO fuel particle is critical to the success of the very high temperature reactor (VHTR). Over sixty years of experience developing and testing this fuel has yet to identify the mechanism by which several key fission products (cesium, europium, and strontium) escape through intact SiC at temperatures between 900C and 1,300C. A novel diffusion couple was developed that was successful in making the first measurements of fission product diffusion in SiC. This design allows for the isolation of thermal diffusion and investigation of radiation enhanced diffusion using ion irradiation as a simulant for neutron radiation damage. The thermal and radiation enhanced diffusion of cesium, europium, and strontium were measured between 900°C and 1,300°C. The ion irradiation significantly enhanced the diffusion of all three fission products with enhancement factors ranging from 100x to 107x over thermal diffusion. All three fission products exhibits mixed diffusion kinetics between 900°C and 1,300°C under purely thermal conditions, and between 900°C and 1,100°C under ion irradiation. This indicates that both bulk and grain boundary diffusion are active mechanisms for fission product release. A defect reaction model indicates that fission product diffusion can occur on both the silicon or carbon sub-lattices. Comparison of cesium diffusion with the literature suggests that the best quality TRISO fuel should exhibit minimal cesium release and that cesium release is a good indicator of TRISO fuel failure.

  17. DFB-ridge laser diodes at 894 nm for Cesium atomic clocks

    NASA Astrophysics Data System (ADS)

    von Bandel, N.; Garcia, M.; Lecomte, M.; Larrue, A.; Robert, Y.; Vinet, E.; Driss, O.; Parrilaud, O.; Krakowski, M.; Gruet, F.; Matthey, R.; Mileti, G.

    2016-02-01

    Time and frequency applications are in need of high accuracy and high stability clocks. Optically pumped compact industrial Cesium atomic clocks are a promising approach that could satisfy these demands. However, the stability of these clocks relies, among others, on the performances of the laser diodes that are used. This issue has led the III-V Lab to commit to the European Euripides-LAMA project that aims to provide competitive compact optical Cesium clocks for ground applications. This work will provide key experience for further space technology qualification. III-V Lab is in charge of the design, fabrication and reliability of Distributed-Feedback diodes (DFB) at 894 nm (D1 line of Cesium) and 852 nm (D2 line). LTF-Unine is in charge of their spectral characterisation. The use of D1 line for pumping will provide simplified clock architecture compared to the D2 line pumping thanks to simpler atomic transitions and a larger spectral separation between lines in the 894 nm case. Also, D1 line pumping overcomes the issue of unpumped "idle states" that occur with D2 line. The modules should provide narrow linewidth (<1 MHz), very good reliability in time and, crucially, be less sensitive to optical feedback. The development of the 894 nm wavelength is grounded on III-V Lab results for 852 nm DFB. We show here results from Al-free active region with InGaAsP quantum well Ridge DFB lasers. We obtain the D1 Cs line (894.4 nm) at 67°C and 165 mA (optical power of 40 mW) with a high side mode suppression ratio. The wavelength evolution with temperature and current are respectively 0.06 nm/K and 0.003 nm/mA. The laser linewidth is less than 1 MHz. The Relative Intensity Noise (RIN) and the frequency noise are respectively less than 10-12 Hz-1 @ f >= 10 Hz and 109 Hz2/Hz @ f >= 10 Hz.

  18. Adsorbate-modified Electron Relaxation in Au-Au_2S Nanoshells

    NASA Astrophysics Data System (ADS)

    Westcott, Sarah; Averitt, Richard; Wolfgang, John; Nordlander, Peter; Halas, Naomi

    2001-03-01

    Au-Au_2S nanoshells are 50 nm nanoparticles consisting of an Au_2S core encapsulated by a thin (<5 nm) Au shell. Their optical properties are determined by the metallic shell layer, whose inner and outer radii control plasmon frequency and whose thickness determines plasmon linewidth[1]. We studied the time-resolved relaxation of hot electrons in the Au shell, using degenerate pump-probe spectroscopy. The electron relaxation for nanoshells in solution was appreciably slower than relaxation for bulk gold, moreover, adsorbed molecules on the nanoshell surface strongly modify this relaxation. Density functional theory calculations indicate that the molecules providing the strongest modification of relaxation possess the largest induced dipole moments above a metal surface, indicating that the adsorbate-induced perturbation of the nanoshell electron dynamics appears to be primarily electronic in nature. [1] R. D. Averitt, D. Sarkar and N. J. Halas, Phys. Rev. Lett. 78, 4217 (1997).

  19. Odd-Even Pattern Observed in Polyaniline/(Au0 – Au8) Composites

    SciTech Connect

    Jonke, Alex P.; Josowicz, Mira A.; Janata, Jiri

    2012-01-12

    Theoretically predicted effect of odd-even pattern of electron pairing on behavior of gold clusters in polyaniline/AuN (N = 0 to 8) has been confirmed experimentally. In these composites the atomic Au clusters with even number of atoms exhibit higher catalytic activity for electrochemical oxidation of n-propanol in 1 M NaOH than the odd-number atoms clusters. Also, infrared spectroscopy shows that even numbered PANI/AuN composites affect the N-H stretching vibration more strongly than the corresponding odd numbered ones. This behavior matches the theoretically predicted variations of HOMO-LUMO gap energy and the stability of the atomic Au clusters. It also agrees with the earlier experimental work in which the UPS spectra of isolated, mass-selected Au clusters have been reported.

  20. Jets and dijets in Au+Au and p+p collisions at RHIC

    SciTech Connect

    Hardtke, D.; STAR Collaboration

    2002-12-09

    Recent data from RHIC suggest novel nuclear effects in the production of high p{sub T} hadrons. We present results from the STAR detector on high p{sub T} angular correlations in Au+Au and p+p collisions at {radical}S = 200 GeV/c. These two-particle angular correlation measurements verify the presence of a partonic hard scattering and fragmentation component at high p{sub T} in both central and peripheral Au+Au collisions. When triggering on a leading hadron with p{sub T}>4 GeV, we observe a quantitative agreement between the jet cone properties in p+p and all centralities of Au+Au collisions. This quantitative agreement indicates that nearly all hadrons with p{sub T}>4 GeV/c come from jet fragmentation and that jet fragmentation properties are not substantially modified in Au+Au collisions. STAR has also measured the strength of back-to-back high p{sub T} charged hadron correlations, and observes a small suppression of the back-to-back correlation strength in peripheral collisions, and a nearly complete disappearance o f back-to-back correlations in central Au+Au events. These phenomena, together with the observed strong suppression of inclusive yields and large value of elliptic flow at high p{sub T}, are consistent with a model where high p{sub T} hadrons come from partons created near the surface of the collision region, and where partons that originate or propagate towards the center of the collision region are substantially slowed or completely absorbed.