Sample records for cfd software package

  1. Comparison of particle tracking algorithms in commercial CFD packages: sedimentation and diffusion.

    PubMed

    Robinson, Risa J; Snyder, Pam; Oldham, Michael J

    2007-05-01

    Computational fluid dynamic modeling software has enabled microdosimetry patterns of inhaled toxins and toxicants to be predicted and visualized, and is being used in inhalation toxicology and risk assessment. These predicted microdosimetry patterns in airway structures are derived from predicted airflow patterns within these airways and particle tracking algorithms used in computational fluid dynamics (CFD) software packages. Although these commercial CFD codes have been tested for accuracy under various conditions, they have not been well tested for respiratory flows in general. Nor has their particle tracking algorithm accuracy been well studied. In this study, three software packages, Fluent Discrete Phase Model (DPM), Fluent Fine Particle Model (FPM), and ANSYS CFX, were evaluated. Sedimentation and diffusion were each isolated in a straight tube geometry and tested for accuracy. A range of flow rates corresponding to adult low activity (minute ventilation = 10 L/min) and to heavy exertion (minute ventilation = 60 L/min) were tested by varying the range of dimensionless diffusion and sedimentation parameters found using the Weibel symmetric 23 generation lung morphology. Numerical results for fully developed parabolic and uniform (slip) profiles were compared respectively, to Pich (1972) and Yu (1977) analytical sedimentation solutions. Schum and Yeh (1980) equations for sedimentation were also compared. Numerical results for diffusional deposition were compared to analytical solutions of Ingham (1975) for parabolic and uniform profiles. Significant differences were found among the various CFD software packages and between numerical and analytical solutions. Therefore, it is prudent to validate CFD predictions against analytical solutions in idealized geometry before tackling the complex geometries of the respiratory tract.

  2. Virtual surgery for patients with nasal obstruction: Use of computational fluid dynamics (MeComLand®, Digbody® & Noseland®) to document objective flow parameters and optimise surgical results.

    PubMed

    Burgos, Manuel A; Sevilla García, Maria Agustina; Sanmiguel Rojas, Enrique; Del Pino, Carlos; Fernández Velez, Carlos; Piqueras, Francisco; Esteban Ortega, Francisco

    Computational fluid dynamics (CFD) is a mathematical tool to analyse airflow. We present a novel CFD software package to improve results following nasal surgery for obstruction. A group of engineers in collaboration with otolaryngologists have developed a very intuitive CFD software package called MeComLand®, which uses the patient's cross-sectional (tomographic) images, thus showing in detail results originated by CFD such as airflow distributions, velocity profiles, pressure, or wall shear stress. NOSELAND® helps medical evaluation with dynamic reports by using a 3D endoscopic view. Using this CFD-based software a patient underwent virtual surgery (septoplasty, turbinoplasty, spreader grafts, lateral crural J-flap and combinations) to choose the best improvement in nasal flow. To present a novel software package to improve nasal surgery results. To apply the software on CT slices from a patient affected by septal deviation. To evaluate several surgical procedures (septoplasty, turbinectomy, spreader-grafts, J-flap and combination among them) to find the best alternative with less morbidity. The combination of all the procedures does not provide the best nasal flow improvement. Septoplasty plus turbinoplasty obtained the best results. Turbinoplasty alone rendered almost similar results to septoplasty in our simulation. CFD provides useful complementary information to cover diagnosis, prognosis, and follow-up of nasal pathologies based on quantitative magnitudes linked to fluid flow. MeComLand®, DigBody® and NoseLand® represent a non-invasive, low-cost alternative for the functional study of patients with nasal obstruction. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.

  3. ICEG2D: An Integrated Software Package for Automated Prediction of Flow Fields for Single-Element Airfoils with Ice Accretion

    NASA Technical Reports Server (NTRS)

    Thompson, David S.; Soni, Bharat K.

    2000-01-01

    An integrated software package, ICEG2D, was developed to automate computational fluid dynamics (CFD) simulations for single-element airfoils with ice accretion. ICEG2D is designed to automatically perform three primary functions: (1) generating a grid-ready, surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generating a high-quality grid using the generated surface point distribution, and (3) generating the input and restart files needed to run the general purpose CFD solver NPARC. ICEG2D can be executed in batch mode using a script file or in an interactive mode by entering directives from a command line. This report summarizes activities completed in the first year of a three-year research and development program to address issues related to CFD simulations for aircraft components with ice accretion. Specifically, this document describes the technology employed in the software, the installation procedure, and a description of the operation of the software package. Validation of the geometry and grid generation modules of ICEG2D is also discussed.

  4. Benchmark tests for a Formula SAE Student car prototyping

    NASA Astrophysics Data System (ADS)

    Mariasiu, Florin

    2011-12-01

    Aerodynamic characteristics of a vehicle are important elements in its design and construction. A low drag coefficient brings significant fuel savings and increased engine power efficiency. In designing and developing vehicles trough computer simulation process to determine the vehicles aerodynamic characteristics are using dedicated CFD (Computer Fluid Dynamics) software packages. However, the results obtained by this faster and cheaper method, are validated by experiments in wind tunnels tests, which are expensive and were complex testing equipment are used in relatively high costs. Therefore, the emergence and development of new low-cost testing methods to validate CFD simulation results would bring great economic benefits for auto vehicles prototyping process. This paper presents the initial development process of a Formula SAE Student race-car prototype using CFD simulation and also present a measurement system based on low-cost sensors through which CFD simulation results were experimentally validated. CFD software package used for simulation was Solid Works with the FloXpress add-on and experimental measurement system was built using four piezoresistive force sensors FlexiForce type.

  5. ICEG2D (v2.0) - An Integrated Software Package for Automated Prediction of Flow Fields for Single-Element Airfoils With Ice Accretion

    NASA Technical Reports Server (NTRS)

    Thompson David S.; Soni, Bharat K.

    2001-01-01

    An integrated geometry/grid/simulation software package, ICEG2D, is being developed to automate computational fluid dynamics (CFD) simulations for single- and multi-element airfoils with ice accretions. The current version, ICEG213 (v2.0), was designed to automatically perform four primary functions: (1) generate a grid-ready surface definition based on the geometrical characteristics of the iced airfoil surface, (2) generate high-quality structured and generalized grids starting from a defined surface definition, (3) generate the input and restart files needed to run the structured grid CFD solver NPARC or the generalized grid CFD solver HYBFL2D, and (4) using the flow solutions, generate solution-adaptive grids. ICEG2D (v2.0) can be operated in either a batch mode using a script file or in an interactive mode by entering directives from a command line within a Unix shell. This report summarizes activities completed in the first two years of a three-year research and development program to address automation issues related to CFD simulations for airfoils with ice accretions. As well as describing the technology employed in the software, this document serves as a users manual providing installation and operating instructions. An evaluation of the software is also presented.

  6. Design Tool

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Developed under a Small Business Innovation Research (SBIR) contract, RAMPANT is a CFD software package for computing flow around complex shapes. The package is flexible, fast and easy to use. It has found a great number of applications, including computation of air flow around a Nordic ski jumper, prediction of flow over an airfoil and computation of the external aerodynamics of motor vehicles.

  7. Combined Uncertainty and A-Posteriori Error Bound Estimates for General CFD Calculations: Theory and Software Implementation

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    2014-01-01

    This workshop presentation discusses the design and implementation of numerical methods for the quantification of statistical uncertainty, including a-posteriori error bounds, for output quantities computed using CFD methods. Hydrodynamic realizations often contain numerical error arising from finite-dimensional approximation (e.g. numerical methods using grids, basis functions, particles) and statistical uncertainty arising from incomplete information and/or statistical characterization of model parameters and random fields. The first task at hand is to derive formal error bounds for statistics given realizations containing finite-dimensional numerical error [1]. The error in computed output statistics contains contributions from both realization error and the error resulting from the calculation of statistics integrals using a numerical method. A second task is to devise computable a-posteriori error bounds by numerically approximating all terms arising in the error bound estimates. For the same reason that CFD calculations including error bounds but omitting uncertainty modeling are only of limited value, CFD calculations including uncertainty modeling but omitting error bounds are only of limited value. To gain maximum value from CFD calculations, a general software package for uncertainty quantification with quantified error bounds has been developed at NASA. The package provides implementations for a suite of numerical methods used in uncertainty quantification: Dense tensorization basis methods [3] and a subscale recovery variant [1] for non-smooth data, Sparse tensorization methods[2] utilizing node-nested hierarchies, Sampling methods[4] for high-dimensional random variable spaces.

  8. Simulating Freak Waves in the Ocean with CFD Modeling

    NASA Astrophysics Data System (ADS)

    Manolidis, M.; Orzech, M.; Simeonov, J.

    2017-12-01

    Rogue, or freak, waves constitute an active topic of research within the world scientific community, as various maritime authorities around the globe seek to better understand and more accurately assess the risks that the occurrence of such phenomena entail. Several experimental studies have shed some light on the mechanics of rogue wave formation. In our work we numerically simulate the formation of such waves in oceanic conditions by means of Computational Fluid Dynamics (CFD) software. For this purpose we implement the NHWAVE and OpenFOAM software packages. Both are non-hydrostatic, turbulent flow solvers, but NHWAVE implements a shock-capturing scheme at the free surface-interface, while OpenFOAM utilizes the Volume Of Fluid (VOF) method. NHWAVE has been shown to accurately reproduce highly nonlinear surface wave phenomena, such as soliton propagation and wave shoaling. We conducted a range of tests simulating rogue wave formation and horizontally varying currents to evaluate and compare the capabilities of the two software packages. Then we used each model to investigate the effect of ocean currents and current gradients on the formation of rogue waves. We present preliminary results.

  9. FAST - A multiprocessed environment for visualization of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon V.; Merritt, Fergus J.; Plessel, Todd C.; Kelaita, Paul G.; Mccabe, R. Kevin

    1991-01-01

    The paper presents the Flow Analysis Software Toolset (FAST) to be used for fluid-mechanics analysis. The design criteria for FAST including the minimization of the data path in the computational fluid-dynamics (CFD) process, consistent user interface, extensible software architecture, modularization, and the isolation of three-dimensional tasks from the application programmer are outlined. Each separate process communicates through the FAST Hub, while other modules such as FAST Central, NAS file input, CFD calculator, surface extractor and renderer, titler, tracer, and isolev might work together to generate the scene. An interprocess communication package making it possible for FAST to operate as a modular environment where resources could be shared among different machines as well as a single host is discussed.

  10. Comparison of fluid dynamic numerical models for a clinical ventricular assist device and experimental validation

    PubMed Central

    Zhang, Jiafeng; Zhang, Pei; Fraser, Katharine H.; Griffith, Bartley P.; Wu, Zhongjun J.

    2012-01-01

    With the recent advances in computer technology, computational fluid dynamics (CFD) has become an important tool to design and improve blood contacting artificial organs, and to study the device-induced blood damage. Commercial CFD software packages are readily available, and multiple CFD models are provided by CFD software developers. However, the best approach of using CFD effectively to characterize fluid flow and to predict blood damage in these medical devices remains debatable. This study aimed to compare these CFD models and provide useful information on the accuracy of each model in modeling blood flow in circulatory assist devices. The laminar and five turbulence models (Spalart-Allmaras, k-ε (k-epsilon), k-ω (k-omega), SST (Menter’s Shear Stress Transport), and Reynolds Stress) were implemented to predict blood flow in a clinically used circulatory assist device, CentriMag® centrifugal blood pump (Thoratec, MA). In parallel, a transparent replica of the CentriMag® pump was constructed and selected views of the flow fields were measured with digital particle image velocimetry (DPIV). CFD results were compared with the DPIV experimental results. Compared with the experiment, all the selected CFD models predicted the flow pattern fairly well except the area of the outlet. However, quantitatively, the laminar model results were the most deviated from the experimental data. On the other hand, k-ε RNG models and Reynolds Stress model are the most accurate. In conclusion, for the circulatory assist devices, turbulence models provide more accurate results than laminar model. Among the selected turbulence models, k-ε and Reynolds Stress Method models are recommended. PMID:23441681

  11. CFD simulation and experimental validation of a GM type double inlet pulse tube refrigerator

    NASA Astrophysics Data System (ADS)

    Banjare, Y. P.; Sahoo, R. K.; Sarangi, S. K.

    2010-04-01

    Pulse tube refrigerator has the advantages of long life and low vibration over the conventional cryocoolers, such as GM and stirling coolers because of the absence of moving parts in low temperature. This paper performs a three-dimensional computational fluid dynamic (CFD) simulation of a GM type double inlet pulse tube refrigerator (DIPTR) vertically aligned, operating under a variety of thermal boundary conditions. A commercial computational fluid dynamics (CFD) software package, Fluent 6.1 is used to model the oscillating flow inside a pulse tube refrigerator. The simulation represents fully coupled systems operating in steady-periodic mode. The externally imposed boundary conditions are sinusoidal pressure inlet by user defined function at one end of the tube and constant temperature or heat flux boundaries at the external walls of the cold-end heat exchangers. The experimental method to evaluate the optimum parameters of DIPTR is difficult. On the other hand, developing a computer code for CFD analysis is equally complex. The objectives of the present investigations are to ascertain the suitability of CFD based commercial package, Fluent for study of energy and fluid flow in DIPTR and to validate the CFD simulation results with available experimental data. The general results, such as the cool down behaviours of the system, phase relation between mass flow rate and pressure at cold end, the temperature profile along the wall of the cooler and refrigeration load are presented for different boundary conditions of the system. The results confirm that CFD based Fluent simulations are capable of elucidating complex periodic processes in DIPTR. The results also show that there is an excellent agreement between CFD simulation results and experimental results.

  12. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has beenmore » developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.« less

  13. Dynamic modelling of an adsorption storage tank using a hybrid approach combining computational fluid dynamics and process simulation

    USGS Publications Warehouse

    Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.

    2004-01-01

    A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.

  14. Consistent multiphysics simulation of a central tower CSP plant as applied to ISTORE

    NASA Astrophysics Data System (ADS)

    Votyakov, Evgeny V.; Papanicolas, Costas N.

    2017-06-01

    We present a unified consistent multiphysics approach to model a central tower CSP plant. The framework for the model includes Monte Carlo ray tracing (RT) and computational fluid dynamics (CFD) components utilizing the OpenFOAM C++ software library. The RT part works effectively with complex surfaces of engineering design given in CAD formats. The CFD simulation, which is based on 3D Navier-Stokes equations, takes into account all possible heat transfer mechanisms: radiation, conduction, and convection. Utilizing this package, the solar field of the experimental Platform for Research, Observation, and TEchnological Applications in Solar Energy (PROTEAS) and the Integrated STOrage and Receiver (ISTORE), developed at the Cyprus Institute, are being examined.

  15. Numerical simulation of heat fluxes in a two-temperature plasma at shock tube walls

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Poniaev, S. A.

    2015-12-01

    Numerical simulation of a two-temperature three-component Xenon plasma flow is presented. A solver based on the OpenFOAM CFD software package is developed. The heat flux at the shock tube end wall is calculated and compared with experimental data. It is shown that the heat flux due to electrons can be as high as 14% of the total heat flux.

  16. Performance Assessment of the Commercial CFD Software for the Prediction of the Reactor Internal Flow

    NASA Astrophysics Data System (ADS)

    Lee, Gong Hee; Bang, Young Seok; Woo, Sweng Woong; Kim, Do Hyeong; Kang, Min Ku

    2014-06-01

    As the computer hardware technology develops the license applicants for nuclear power plant use the commercial CFD software with the aim of reducing the excessive conservatism associated with using simplified and conservative analysis tools. Even if some of CFD software developer and its user think that a state of the art CFD software can be used to solve reasonably at least the single-phase nuclear reactor problems, there is still limitation and uncertainty in the calculation result. From a regulatory perspective, Korea Institute of Nuclear Safety (KINS) is presently conducting the performance assessment of the commercial CFD software for nuclear reactor problems. In this study, in order to examine the validity of the results of 1/5 scaled APR+ (Advanced Power Reactor Plus) flow distribution tests and the applicability of CFD in the analysis of reactor internal flow, the simulation was conducted with the two commercial CFD software (ANSYS CFX V.14 and FLUENT V.14) among the numerous commercial CFD software and was compared with the measurement. In addition, what needs to be improved in CFD for the accurate simulation of reactor core inlet flow was discussed.

  17. RotCFD Software Validation - Computational and Experimental Data Comparison

    NASA Technical Reports Server (NTRS)

    Fernandez, Ovidio Montalvo

    2014-01-01

    RotCFD is a software intended to ease the design of NextGen rotorcraft. Since RotCFD is a new software still in the development process, the results need to be validated to determine the software's accuracy. The purpose of the present document is to explain one of the approaches to accomplish that goal.

  18. CFD RANS Simulations on a Generic Conventional Scale Model Submarine: Comparison between Fluent and OpenFOAM

    DTIC Science & Technology

    2015-09-01

    lift and drag forces on two model car geometries (designated as the VRAK model and the S80 model). For the VRAK model the OpenFOAM drag coefficient was...lift coefficient was 16.5% higher than the Fluent value. Both model car geometries were meshed using Harpoon, which is a commercial software package...2. Clarke, G., Vun, S., Giacobello, M. and Reddy, R., “Estimation of ARH Tiger Fuselage Aerodynamic Characteristics Using Computational Fluid

  19. CFD Modeling of Water Flow through Sudden Contraction and Expansion in a Horizontal Pipe

    ERIC Educational Resources Information Center

    Kaushik, V. V. R.; Ghosh, S.; Das, G.; Das, P. K.

    2011-01-01

    This paper deals with the use of commercial CFD software in teaching graduate level computational fluid dynamics. FLUENT 6.3.26 was chosen as the CFD software to teach students the entire CFD process in a single course. The course objective is to help students to learn CFD, use it in some practical problems and analyze as well as validate the…

  20. Software Framework for Advanced Power Plant Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Widmann; Sorin Munteanu; Aseem Jain

    2010-08-01

    This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. Thesemore » include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.« less

  1. Eddylicious: A Python package for turbulent inflow generation

    NASA Astrophysics Data System (ADS)

    Mukha, Timofey; Liefvendahl, Mattias

    2018-01-01

    A Python package for generating inflow for scale-resolving computer simulations of turbulent flow is presented. The purpose of the package is to unite existing inflow generation methods in a single code-base and make them accessible to users of various Computational Fluid Dynamics (CFD) solvers. The currently existing functionality consists of an accurate inflow generation method suitable for flows with a turbulent boundary layer inflow and input/output routines for coupling with the open-source CFD solver OpenFOAM.

  2. Image-based computational fluid dynamics in blood vessel models: toward developing a prognostic tool to assess cardiovascular function changes in prolonged space flights

    NASA Astrophysics Data System (ADS)

    Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.

    2005-04-01

    One of NASA"s objectives is to be able to perform a complete pre-flight evaluation of possible cardiovascular changes in astronauts scheduled for prolonged space missions. Blood flow is an important component of cardiovascular function. Lately, attention has focused on using computational fluid dynamics (CFD) to analyze flow with realistic vessel geometries. MRI can provide detailed geometrical information and is the only clinical technique to measure all three spatial velocity components. The objective of this study was to investigate the reliability of MRI-based model reconstruction for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction using different resolution settings. The vessel walls were identified and the geometry was reconstructed using existing software. The geometry was then imported into a commercial CFD package for meshing and numerical solution. MRI velocity acquisitions provided true inlet boundary conditions for steady flow, as well as three-directional velocity data at several locations. In addition, an idealized version of each geometry was created from the model drawings. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with mean differences <10%. CFD results from different MRI resolution settings did not show significant differences (<5%). This study showed quantitatively that reliable CFD simulations can be performed in models reconstructed from MRI acquisitions and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system is possible.

  3. Pilot-in-the-Loop CFD Method Development

    DTIC Science & Technology

    2014-06-16

    CFD analysis. Coupled simulations will be run at PSU on the COCOA -4 cluster, a high performance computing cluster. The CRUNCH CFD software has...been installed on the COCOA -4 servers and initial software tests are being conducted. Initial efforts will use the Generic Frigate Shape SFS-2 to

  4. Pre- and Post-Processing Tools to Streamline the CFD Process

    NASA Technical Reports Server (NTRS)

    Dorney, Suzanne Miller

    2002-01-01

    This viewgraph presentation provides information on software development tools to facilitate the use of CFD (Computational Fluid Dynamics) codes. The specific CFD codes FDNS and CORSAIR are profiled, and uses for software development tools with these codes during pre-processing, interim-processing, and post-processing are explained.

  5. Comparison of Computational and Experimental Results for a Transonic Variable-Speed Power-Turbine Blade Operating with Low Inlet Turbulence Levels

    NASA Technical Reports Server (NTRS)

    Booth, David; Flegel, Ashlie

    2015-01-01

    A computational assessment of the aerodynamic performance of the midspan section of a variable-speed power-turbine blade is described. The computation comprises a periodic single blade that represents the 2-D Midspan section VSPT blade that was tested in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. A commercial, off-the-shelf (COTS) software package, Pointwise and CFD++, was used for the grid generation and RANS and URANS computations. The CFD code, which offers flexibility in terms of turbulence and transition modeling options, was assessed in terms of blade loading, loss, and turning against test data from the transonic tunnel. Simulations were assessed at positive and negative incidence angles that represent the turbine cruise and take-off design conditions. The results indicate that the secondary flow induced at the positive incidence cruise condition results in a highly loaded case and transitional flow on the blade is observed. The negative incidence take-off condition is unloaded and the flow is very two-dimensional. The computational results demonstrate the predictive capability of the gridding technique and COTS software for a linear transonic turbine blade cascade with large incidence angle variation.

  6. Comparison of Computational and Experimental Results for a Transonic Variable-speed Power-Turbine Blade Operating with Low Inlet Turbulence Levels

    NASA Technical Reports Server (NTRS)

    Booth, David T.; Flegel, Ashlie B.

    2015-01-01

    A computational assessment of the aerodynamic performance of the midspan section of a variable-speed power-turbine blade is described. The computation comprises a periodic single blade that represents the 2-D Midspan section VSPT blade that was tested in the NASA Glenn Research Center Transonic Turbine Blade Cascade Facility. A commercial, off-the-shelf (COTS) software package, Pointwise and CFD++, was used for the grid generation and RANS and URANS computations. The CFD code, which offers flexibility in terms of turbulence and transition modeling options, was assessed in terms of blade loading, loss, and turning against test data from the transonic tunnel. Simulations were assessed at positive and negative incidence angles that represent the turbine cruise and take-off design conditions. The results indicate that the secondary flow induced at the positive incidence cruise condition results in a highly loaded case and transitional flow on the blade is observed. The negative incidence take-off condition is unloaded and the flow is very two-dimensional. The computational results demonstrate the predictive capability of the gridding technique and COTS software for a linear transonic turbine blade cascade with large incidence angle variation.

  7. Computer Simulation Performed for Columbia Project Cooling System

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  8. Visual analysis of fluid dynamics at NASA's numerical aerodynamic simulation facility

    NASA Technical Reports Server (NTRS)

    Watson, Velvin R.

    1991-01-01

    A study aimed at describing and illustrating visualization tools used in Computational Fluid Dynamics (CFD) and indicating how these tools are likely to change by showing a projected resolution of the human computer interface is presented. The following are outlined using a graphically based test format: the revolution of human computer environments for CFD research; comparison of current environments; current environments with the ideal; predictions for the future CFD environments; what can be done to accelerate the improvements. The following comments are given: when acquiring visualization tools, potential rapid changes must be considered; environmental changes over the next ten years due to human computer interface cannot be fathomed; data flow packages such as AVS, apE, Explorer and Data Explorer are easy to learn and use for small problems, excellent for prototyping, but not so efficient for large problems; the approximation techniques used in visualization software must be appropriate for the data; it has become more cost effective to move jobs that fit on workstations and run only memory intensive jobs on the supercomputer; use of three dimensional skills will be maximized when the three dimensional environment is built in from the start.

  9. Numerical Simulations For the F-16XL Aircraft Configuration

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa A.; Abdol-Hamid, Khaled; Cavallo, Peter A.; Parlette, Edward B.

    2014-01-01

    Numerical simulations of flow around the F-16XL are presented as a contribution to the Cranked Arrow Wing Aerodynamic Project International II (CAWAPI-II). The NASA Tetrahedral Unstructured Software System (TetrUSS) is used to perform numerical simulations. This CFD suite, developed and maintained by NASA Langley Research Center, includes an unstructured grid generation program called VGRID, a postprocessor named POSTGRID, and the flow solver USM3D. The CRISP CFD package is utilized to provide error estimates and grid adaption for verification of USM3D results. A subsonic high angle-of-attack case flight condition (FC) 25 is computed and analyzed. Three turbulence models are used in the calculations: the one-equation Spalart-Allmaras (SA), the two-equation shear stress transport (SST) and the ke turbulence models. Computational results, and surface static pressure profiles are presented and compared with flight data. Solution verification is performed using formal grid refinement studies, the solution of Error Transport Equations, and adaptive mesh refinement. The current study shows that the USM3D solver coupled with CRISP CFD can be used in an engineering environment in predicting vortex-flow physics on a complex configuration at flight Reynolds numbers.

  10. AdapChem

    NASA Technical Reports Server (NTRS)

    Oluwole, Oluwayemisi O.; Wong, Hsi-Wu; Green, William

    2012-01-01

    AdapChem software enables high efficiency, low computational cost, and enhanced accuracy on computational fluid dynamics (CFD) numerical simulations used for combustion studies. The software dynamically allocates smaller, reduced chemical models instead of the larger, full chemistry models to evolve the calculation while ensuring the same accuracy to be obtained for steady-state CFD reacting flow simulations. The software enables detailed chemical kinetic modeling in combustion CFD simulations. AdapChem adapts the reaction mechanism used in the CFD to the local reaction conditions. Instead of a single, comprehensive reaction mechanism throughout the computation, a dynamic distribution of smaller, reduced models is used to capture accurately the chemical kinetics at a fraction of the cost of the traditional single-mechanism approach.

  11. Reduction and Analysis of Phosphor Thermography Data With the IHEAT Software Package

    NASA Technical Reports Server (NTRS)

    Merski, N. Ronald

    1998-01-01

    Detailed aeroheating information is critical to the successful design of a thermal protection system (TPS) for an aerospace vehicle. This report describes NASA Langley Research Center's (LaRC) two-color relative-intensity phosphor thermography method and the IHEAT software package which is used for the efficient data reduction and analysis of the phosphor image data. Development of theory is provided for a new weighted two-color relative-intensity fluorescence theory for quantitatively determining surface temperatures on hypersonic wind tunnel models; an improved application of the one-dimensional conduction theory for use in determining global heating mappings; and extrapolation of wind tunnel data to flight surface temperatures. The phosphor methodology at LaRC is presented including descriptions of phosphor model fabrication, test facilities and phosphor video acquisition systems. A discussion of the calibration procedures, data reduction and data analysis is given. Estimates of the total uncertainties (with a 95% confidence level) associated with the phosphor technique are shown to be approximately 8 to 10 percent in the Langley's 31-Inch Mach 10 Tunnel and 7 to 10 percent in the 20-Inch Mach 6 Tunnel. A comparison with thin-film measurements using two-inch radius hemispheres shows the phosphor data to be within 7 percent of thin-film measurements and to agree even better with predictions via a LATCH computational fluid dynamics solution (CFD). Good agreement between phosphor data and LAURA CFD computations on the forebody of a vertical takeoff/vertical lander configuration at four angles of attack is also shown. In addition, a comparison is given between Mach 6 phosphor data and laminar and turbulent solutions generated using the LAURA, GASP and LATCH CFD codes. Finally, the extrapolation method developed in this report is applied to the X-34 configuration with good agreement between the phosphor extrapolation and LAURA flight surface temperature predictions. The phosphor process outlined in the paper is believed to provide the aerothermodynamic community with a valuable capability for rapidly obtaining (4 to 5 weeks) detailed heating information needed in TPS design.

  12. Computational System For Rapid CFD Analysis In Engineering

    NASA Technical Reports Server (NTRS)

    Barson, Steven L.; Ascoli, Edward P.; Decroix, Michelle E.; Sindir, Munir M.

    1995-01-01

    Computational system comprising modular hardware and software sub-systems developed to accelerate and facilitate use of techniques of computational fluid dynamics (CFD) in engineering environment. Addresses integration of all aspects of CFD analysis process, including definition of hardware surfaces, generation of computational grids, CFD flow solution, and postprocessing. Incorporates interfaces for integration of all hardware and software tools needed to perform complete CFD analysis. Includes tools for efficient definition of flow geometry, generation of computational grids, computation of flows on grids, and postprocessing of flow data. System accepts geometric input from any of three basic sources: computer-aided design (CAD), computer-aided engineering (CAE), or definition by user.

  13. Design of an ammonia closed-loop storage system in a CSP power plant with a power tower cavity receiver

    NASA Astrophysics Data System (ADS)

    Abdiwe, Ramadan; Haider, Markus

    2017-06-01

    In this study the thermochemical system using ammonia as energy storage carrier is investigated and a transient mathematical model using MATLAB software was developed to predict the behavior of the ammonia closed-loop storage system including but not limited to the ammonia solar reactor and the ammonia synthesis reactor. The MATLAB model contains transient mass and energy balances as well as chemical equilibrium model for each relevant system component. For the importance of the dissociation and formation processes in the system, a Computational Fluid Dynamics (CFD) simulation on the ammonia solar and synthesis reactors has been performed. The CFD commercial package FLUENT is used for the simulation study and all the important mechanisms for packed bed reactors are taken into account, such as momentum, heat and mass transfer, and chemical reactions. The FLUENT simulation reveals the profiles inside both reactors and compared them with the profiles from the MATLAB code.

  14. Controls/CFD Interdisciplinary Research Software Generates Low-Order Linear Models for Control Design From Steady-State CFD Results

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    1997-01-01

    The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended somewhat so that linear models can also be generated from two- and three-dimensional steady-state results. Standard techniques are adequate for reducing the order of one-dimensional CFD-based linear models. However, reduction of linear models based on two- and three-dimensional CFD results is complicated by very sparse, ill-conditioned matrices. Some novel approaches are being investigated to solve this problem.

  15. Supersonic civil airplane study and design: Performance and sonic boom

    NASA Technical Reports Server (NTRS)

    Cheung, Samson

    1995-01-01

    Since aircraft configuration plays an important role in aerodynamic performance and sonic boom shape, the configuration of the next generation supersonic civil transport has to be tailored to meet high aerodynamic performance and low sonic boom requirements. Computational fluid dynamics (CFD) can be used to design airplanes to meet these dual objectives. The work and results in this report are used to support NASA's High Speed Research Program (HSRP). CFD tools and techniques have been developed for general usages of sonic boom propagation study and aerodynamic design. Parallel to the research effort on sonic boom extrapolation, CFD flow solvers have been coupled with a numeric optimization tool to form a design package for aircraft configuration. This CFD optimization package has been applied to configuration design on a low-boom concept and an oblique all-wing concept. A nonlinear unconstrained optimizer for Parallel Virtual Machine has been developed for aerodynamic design and study.

  16. Application of a single-fluid model for the steam condensing flow prediction

    NASA Astrophysics Data System (ADS)

    Smołka, K.; Dykas, S.; Majkut, M.; Strozik, M.

    2016-10-01

    One of the results of many years of research conducted in the Institute of Power Engineering and Turbomachinery of the Silesian University of Technology are computational algorithms for modelling steam flows with a non-equilibrium condensation process. In parallel with theoretical and numerical research, works were also started on experimental testing of the steam condensing flow. This paper presents a comparison of calculations of a flow field modelled by means of a single-fluid model using both an in-house CFD code and the commercial Ansys CFX v16.2 software package. The calculation results are compared to inhouse experimental testing.

  17. Arbitrary Shape Deformation in CFD Design

    NASA Technical Reports Server (NTRS)

    Landon, Mark; Perry, Ernest

    2014-01-01

    Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.

  18. DEVELOPMENT AND APPLICATIONS OF CFD SIMULATIONS SUPPORTING URBAN AIR QUALITY AND HOMELAND SECURITY

    EPA Science Inventory

    Prior to September 11, 2001 developments of Computational Fluid Dynamics (CFD) were begun to support air quality applications. CFD models are emerging as a promising technology for such assessments, in part due to the advancing power of computational hardware and software. CFD si...

  19. CFD modeling to improve safe and efficient distribution of chlorine dioxide gas for packaging fresh produce

    USDA-ARS?s Scientific Manuscript database

    The efficiency of the packaging system in inactivating food borne pathogens and prolonging the shelf life of fresh-cut produce is influenced by the design of the package apart from material and atmospheric conditions. Three different designs were considered to determine a specific package design ens...

  20. Integrating Multibody Simulation and CFD: toward Complex Multidisciplinary Design Optimization

    NASA Astrophysics Data System (ADS)

    Pieri, Stefano; Poloni, Carlo; Mühlmeier, Martin

    This paper describes the use of integrated multidisciplinary analysis and optimization of a race car model on a predefined circuit. The objective is the definition of the most efficient geometric configuration that can guarantee the lowest lap time. In order to carry out this study it has been necessary to interface the design optimization software modeFRONTIER with the following softwares: CATIA v5, a three dimensional CAD software, used for the definition of the parametric geometry; A.D.A.M.S./Motorsport, a multi-body dynamic simulation software; IcemCFD, a mesh generator, for the automatic generation of the CFD grid; CFX, a Navier-Stokes code, for the fluid-dynamic forces prediction. The process integration gives the possibility to compute, for each geometrical configuration, a set of aerodynamic coefficients that are then used in the multiboby simulation for the computation of the lap time. Finally an automatic optimization procedure is started and the lap-time minimized. The whole process is executed on a Linux cluster running CFD simulations in parallel.

  1. User Interface Developed for Controls/CFD Interdisciplinary Research

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center, in conjunction with the University of Akron, is developing analytical methods and software tools to create a cross-discipline "bridge" between controls and computational fluid dynamics (CFD) technologies. Traditionally, the controls analyst has used simulations based on large lumping techniques to generate low-order linear models convenient for designing propulsion system controls. For complex, high-speed vehicles such as the High Speed Civil Transport (HSCT), simulations based on CFD methods are required to capture the relevant flow physics. The use of CFD should also help reduce the development time and costs associated with experimentally tuning the control system. The initial application for this research is the High Speed Civil Transport inlet control problem. A major aspect of this research is the development of a controls/CFD interface for non-CFD experts, to facilitate the interactive operation of CFD simulations and the extraction of reduced-order, time-accurate models from CFD results. A distributed computing approach for implementing the interface is being explored. Software being developed as part of the Integrated CFD and Experiments (ICE) project provides the basis for the operating environment, including run-time displays and information (data base) management. Message-passing software is used to communicate between the ICE system and the CFD simulation, which can reside on distributed, parallel computing systems. Initially, the one-dimensional Large-Perturbation Inlet (LAPIN) code is being used to simulate a High Speed Civil Transport type inlet. LAPIN can model real supersonic inlet features, including bleeds, bypasses, and variable geometry, such as translating or variable-ramp-angle centerbodies. Work is in progress to use parallel versions of the multidimensional NPARC code.

  2. Automation of the CFD Process on Distributed Computing Systems

    NASA Technical Reports Server (NTRS)

    Tejnil, Ed; Gee, Ken; Rizk, Yehia M.

    2000-01-01

    A script system was developed to automate and streamline portions of the CFD process. The system was designed to facilitate the use of CFD flow solvers on supercomputer and workstation platforms within a parametric design event. Integrating solver pre- and postprocessing phases, the fully automated ADTT script system marshalled the required input data, submitted the jobs to available computational resources, and processed the resulting output data. A number of codes were incorporated into the script system, which itself was part of a larger integrated design environment software package. The IDE and scripts were used in a design event involving a wind tunnel test. This experience highlighted the need for efficient data and resource management in all parts of the CFD process. To facilitate the use of CFD methods to perform parametric design studies, the script system was developed using UNIX shell and Perl languages. The goal of the work was to minimize the user interaction required to generate the data necessary to fill a parametric design space. The scripts wrote out the required input files for the user-specified flow solver, transferred all necessary input files to the computational resource, submitted and tracked the jobs using the resource queuing structure, and retrieved and post-processed the resulting dataset. For computational resources that did not run queueing software, the script system established its own simple first-in-first-out queueing structure to manage the workload. A variety of flow solvers were incorporated in the script system, including INS2D, PMARC, TIGER and GASP. Adapting the script system to a new flow solver was made easier through the use of object-oriented programming methods. The script system was incorporated into an ADTT integrated design environment and evaluated as part of a wind tunnel experiment. The system successfully generated the data required to fill the desired parametric design space. This stressed the computational resources required to compute and store the information. The scripts were continually modified to improve the utilization of the computational resources and reduce the likelihood of data loss due to failures. An ad-hoc file server was created to manage the large amount of data being generated as part of the design event. Files were stored and retrieved as needed to create new jobs and analyze the results. Additional information is contained in the original.

  3. SIDS-toADF File Mapping Manual

    NASA Technical Reports Server (NTRS)

    McCarthy, Douglas; Smith, Matthew; Poirier, Diane; Smith, Charles A. (Technical Monitor)

    2002-01-01

    The "CFD General Notation System" (CGNS) consists of a collection of conventions, and conforming software, for the storage and retrieval of Computational Fluid Dynamics (CFD) data. It facilitates the exchange of data between sites and applications, and helps stabilize the archiving of aerodynamic data. This effort was initiated in order to streamline the procedures in exchanging data and software between NASA and its customers, but the goal is to develop CGNS into a National Standard for the exchange of aerodynamic data. The CGNS development team is comprised of members from Boeing Commercial Airplane Group, NASA-Ames, NASA-Langley, NASA-Lewis, McDonnell-Douglas Corporation (now Boeing-St. Louis), Air Force-Wright Lab., and ICEM-CFD Engineering. The elements of CGNS address all activities associated with the storage of data on external media and its movement to and from application programs. These elements include: 1) The Advanced Data Format (ADF) Database manager, consisting of both a file format specification and its I/O software, which handles the actual reading and writing of data from and to external storage media; 2) The Standard Interface Data Structures (SIDS), which specify the intellectual content of CFD data and the conventions governing naming and terminology; 3) The SIDS-to-ADF File Mapping conventions, which specify the exact location where the CFD data defined by the SIDS is to be stored within the ADF file(s); and 4) The CGNS Mid-level Library, which provides CFD-knowledgeable routines suitable for direct installation into application codes. The SIDS-toADF File Mapping Manual specifies the exact manner in which, under CGNS conventions, CFD data structures (the SIDS) are to be stored in (i.e., mapped onto) the file structure provided by the database manager (ADF). The result is a conforming CGNS database. Adherence to the mapping conventions guarantees uniform meaning and location of CFD data within ADF files, and thereby allows the construction of universal software to read and write the data.

  4. Dakota Uncertainty Quantification Methods Applied to the CFD code Nek5000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delchini, Marc-Olivier; Popov, Emilian L.; Pointer, William David

    This report presents the state of advancement of a Nuclear Energy Advanced Modeling and Simulation (NEAMS) project to characterize the uncertainty of the computational fluid dynamics (CFD) code Nek5000 using the Dakota package for flows encountered in the nuclear engineering industry. Nek5000 is a high-order spectral element CFD code developed at Argonne National Laboratory for high-resolution spectral-filtered large eddy simulations (LESs) and unsteady Reynolds-averaged Navier-Stokes (URANS) simulations.

  5. Monte Carlo Methodology Serves Up a Software Success

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Widely used for the modeling of gas flows through the computation of the motion and collisions of representative molecules, the Direct Simulation Monte Carlo method has become the gold standard for producing research and engineering predictions in the field of rarefied gas dynamics. Direct Simulation Monte Carlo was first introduced in the early 1960s by Dr. Graeme Bird, a professor at the University of Sydney, Australia. It has since proved to be a valuable tool to the aerospace and defense industries in providing design and operational support data, as well as flight data analysis. In 2002, NASA brought to the forefront a software product that maintains the same basic physics formulation of Dr. Bird's method, but provides effective modeling of complex, three-dimensional, real vehicle simulations and parallel processing capabilities to handle additional computational requirements, especially in areas where computational fluid dynamics (CFD) is not applicable. NASA's Direct Simulation Monte Carlo Analysis Code (DAC) software package is now considered the Agency s premier high-fidelity simulation tool for predicting vehicle aerodynamics and aerothermodynamic environments in rarified, or low-density, gas flows.

  6. MiniWall Tool for Analyzing CFD and Wind Tunnel Large Data Sets

    NASA Technical Reports Server (NTRS)

    Schuh, Michael J.; Melton, John E.; Stremel, Paul M.

    2017-01-01

    It is challenging to review and assimilate large data sets created by Computational Fluid Dynamics (CFD) simulations and wind tunnel tests. Over the past 10 years, NASA Ames Research Center has developed and refined a software tool dubbed the MiniWall to increase productivity in reviewing and understanding large CFD-generated data sets. Under the recent NASA ERA project, the application of the tool expanded to enable rapid comparison of experimental and computational data. The MiniWall software is browser based so that it runs on any computer or device that can display a web page. It can also be used remotely and securely by using web server software such as the Apache HTTP server. The MiniWall software has recently been rewritten and enhanced to make it even easier for analysts to review large data sets and extract knowledge and understanding from these data sets. This paper describes the MiniWall software and demonstrates how the different features are used to review and assimilate large data sets.

  7. MiniWall Tool for Analyzing CFD and Wind Tunnel Large Data Sets

    NASA Technical Reports Server (NTRS)

    Schuh, Michael J.; Melton, John E.; Stremel, Paul M.

    2017-01-01

    It is challenging to review and assimilate large data sets created by Computational Fluid Dynamics (CFD) simulations and wind tunnel tests. Over the past 10 years, NASA Ames Research Center has developed and refined a software tool dubbed the "MiniWall" to increase productivity in reviewing and understanding large CFD-generated data sets. Under the recent NASA ERA project, the application of the tool expanded to enable rapid comparison of experimental and computational data. The MiniWall software is browser based so that it runs on any computer or device that can display a web page. It can also be used remotely and securely by using web server software such as the Apache HTTP Server. The MiniWall software has recently been rewritten and enhanced to make it even easier for analysts to review large data sets and extract knowledge and understanding from these data sets. This paper describes the MiniWall software and demonstrates how the different features are used to review and assimilate large data sets.

  8. Translator for Optimizing Fluid-Handling Components

    NASA Technical Reports Server (NTRS)

    Landon, Mark; Perry, Ernest

    2007-01-01

    A software interface has been devised to facilitate optimization of the shapes of valves, elbows, fittings, and other components used to handle fluids under extreme conditions. This software interface translates data files generated by PLOT3D (a NASA grid-based plotting-and- data-display program) and by computational fluid dynamics (CFD) software into a format in which the files can be read by Sculptor, which is a shape-deformation- and-optimization program. Sculptor enables the user to interactively, smoothly, and arbitrarily deform the surfaces and volumes in two- and three-dimensional CFD models. Sculptor also includes design-optimization algorithms that can be used in conjunction with the arbitrary-shape-deformation components to perform automatic shape optimization. In the optimization process, the output of the CFD software is used as feedback while the optimizer strives to satisfy design criteria that could include, for example, improved values of pressure loss, velocity, flow quality, mass flow, etc.

  9. Viability of Cross-Flow Fan with Helical Blades for Vertical Take-off and Landing Aircraft

    DTIC Science & Technology

    2012-09-01

    fluid dynamics (CFD) software, ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental results...computational fluid dynamics software (CFD), ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental...37 B. SIZING PARAMETERS AND ILLUSTRATION ................................. 37 APPENDIX B. ANSYS CFX PARAMETERS

  10. Application of CFD in aeronautics at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Maksymiuk, Catherine M.; Enomoto, Francis Y.; Vandalsem, William R.

    1995-03-01

    The role of Computational Fluid Dynamics (CFD) at Ames Research Center has expanded to address a broad range of aeronautical problems, including wind tunnel support, flight test support, design, and analysis. Balancing the requirements of each new problem against the available resources - software, hardware, time, and expertise - is critical to the effective use of CFD. Several case studies of recent applications highlight the depth of CFD capability at Ames, the tradeoffs involved in various approaches, and lessons learned in the use of CFD as an engineering tool.

  11. Tuned grid generation with ICEM CFD

    NASA Technical Reports Server (NTRS)

    Wulf, Armin; Akdag, Vedat

    1995-01-01

    ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.

  12. Concurrent extensions to the FORTRAN language for parallel programming of computational fluid dynamics algorithms

    NASA Technical Reports Server (NTRS)

    Weeks, Cindy Lou

    1986-01-01

    Experiments were conducted at NASA Ames Research Center to define multi-tasking software requirements for multiple-instruction, multiple-data stream (MIMD) computer architectures. The focus was on specifying solutions for algorithms in the field of computational fluid dynamics (CFD). The program objectives were to allow researchers to produce usable parallel application software as soon as possible after acquiring MIMD computer equipment, to provide researchers with an easy-to-learn and easy-to-use parallel software language which could be implemented on several different MIMD machines, and to enable researchers to list preferred design specifications for future MIMD computer architectures. Analysis of CFD algorithms indicated that extensions of an existing programming language, adaptable to new computer architectures, provided the best solution to meeting program objectives. The CoFORTRAN Language was written in response to these objectives and to provide researchers a means to experiment with parallel software solutions to CFD algorithms on machines with parallel architectures.

  13. Multi-physics CFD simulations in engineering

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto

    2013-08-01

    Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been sufficiently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in developing machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and efficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.

  14. Active cooling of microvascular composites for battery packaging

    NASA Astrophysics Data System (ADS)

    Pety, Stephen J.; Chia, Patrick X. L.; Carrington, Stephen M.; White, Scott R.

    2017-10-01

    Batteries in electric vehicles (EVs) require a packaging system that provides both thermal regulation and crash protection. A novel packaging scheme is presented that uses active cooling of microvascular carbon fiber reinforced composites to accomplish this multifunctional objective. Microvascular carbon fiber/epoxy composite panels were fabricated and their cooling performance assessed over a range of thermal loads and experimental conditions. Tests were performed for different values of coolant flow rate, channel spacing, panel thermal conductivity, and applied heat flux. More efficient cooling occurs when the coolant flow rate is increased, channel spacing is reduced, and thermal conductivity of the host composite is increased. Computational fluid dynamics (CFD) simulations were also performed and correlate well with the experimental data. CFD simulations of a typical EV battery pack confirm that microvascular composite panels can adequately cool battery cells generating 500 W m-2 heat flux below 40 °C.

  15. CFD Approach To Investigate The Flow Characteristics In Bi-Directional Ventilated Disc Brake

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Yusoff, Mohd. Zamri; Shuaib, Norshah Hafeez; Thangaraju, Savithry K.

    2010-06-01

    This paper presents experimental and Computational Fluids Dynamics (CFD) investigations of the flow in ventilated brake discs. Development of an experiment rig with basic measuring devices are detailed out and following a validation study, the possible improvement in the brake cooling can be further analyzed using CFD analysis. The mass flow rate is determined from basic flow measurement technique following that the conventional bi-directional passenger car is simulated using commercial CFD software FLUENT™. The CFD simulation is used to investigate the flow characteristics in between blade flow of the bi-directional ventilated disc brake.

  16. Software Performs Complex Design Analysis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Designers use computational fluid dynamics (CFD) to gain greater understanding of the fluid flow phenomena involved in components being designed. They also use finite element analysis (FEA) as a tool to help gain greater understanding of the structural response of components to loads, stresses and strains, and the prediction of failure modes. Automated CFD and FEA engineering design has centered on shape optimization, which has been hindered by two major problems: 1) inadequate shape parameterization algorithms, and 2) inadequate algorithms for CFD and FEA grid modification. Working with software engineers at Stennis Space Center, a NASA commercial partner, Optimal Solutions Software LLC, was able to utilize its revolutionary, one-of-a-kind arbitrary shape deformation (ASD) capability-a major advancement in solving these two aforementioned problems-to optimize the shapes of complex pipe components that transport highly sensitive fluids. The ASD technology solves the problem of inadequate shape parameterization algorithms by allowing the CFD designers to freely create their own shape parameters, therefore eliminating the restriction of only being able to use the computer-aided design (CAD) parameters. The problem of inadequate algorithms for CFD grid modification is solved by the fact that the new software performs a smooth volumetric deformation. This eliminates the extremely costly process of having to remesh the grid for every shape change desired. The program can perform a design change in a markedly reduced amount of time, a process that would traditionally involve the designer returning to the CAD model to reshape and then remesh the shapes, something that has been known to take hours, days-even weeks or months-depending upon the size of the model.

  17. CFD Prediction on the Pressure Distribution and Streamlines around an Isolated Single-Storey House Considering the Effect of Topographic Characteristics

    NASA Astrophysics Data System (ADS)

    Abdullah, J.; Zaini, S. S.; Aziz, M. S. A.; Majid, T. A.; Deraman, S. N. C.; Yahya, W. N. W.

    2018-04-01

    Single-storey houses are classified as low rise building and vulnerable to damages under windstorm event. This study was carried out with the aim to investigate the pressure distribution and streamlines around an isolated house by considering the effect of terrain characteristics. The topographic features such as flat, depression, ridge, and valley, are considered in this study. This simulation were analysed with Ansys FLUENT 14.0 software package. The result showed the topography characteristics influence the value of pressure coefficient and streamlines especially when the house was located at ridge terrain. The findings strongly suggested that wind analysis should include all topographic features in the analysis in order to establish the true wind force exerted on any structure.

  18. Development and Analysis of a Bi-Directional Tidal Turbine

    DTIC Science & Technology

    2012-03-01

    commercial CFD software ANSYS CFX was utilized to build a turbine map. The basic turbine map was developed for a 25 blade bi-axial turbine under...directional turbine created for this purpose. In the present study, the commercial CFD software ANSYS CFX was utilized to build a turbine map. The...sheath C. PROBLEM SPECIFICATIONS AND BOUNDARY CONDITIONS The simulation definition was created using ANSYS CFX -Pre. The best measurements to determine

  19. New CFD tools to evaluate nasal airflow.

    PubMed

    Burgos, M A; Sanmiguel-Rojas, E; Del Pino, C; Sevilla-García, M A; Esteban-Ortega, F

    2017-08-01

    Computational fluid dynamics (CFD) is a mathematical tool to analyse airflow. As currently CFD is not a usual tool for rhinologists, a group of engineers in collaboration with experts in Rhinology have developed a very intuitive CFD software. The program MECOMLAND ® only required snapshots from the patient's cross-sectional (tomographic) images, being the output those results originated by CFD, such as airflow distributions, velocity profiles, pressure, temperature, or wall shear stress. This is useful complementary information to cover diagnosis, prognosis, or follow-up of nasal pathologies based on quantitative magnitudes linked to airflow. In addition, the user-friendly environment NOSELAND ® helps the medical assessment significantly in the post-processing phase with dynamic reports using a 3D endoscopic view. Specialists in Rhinology have been asked for a more intuitive, simple, powerful CFD software to offer more quality and precision in their work to evaluate the nasal airflow. We present MECOMLAND ® and NOSELAND ® which have all the expected characteristics to fulfil this demand and offer a proper assessment with the maximum of quality plus safety for the patient. These programs represent a non-invasive, low-cost (as the CT scan is already performed in every patient) alternative for the functional study of the difficult rhinologic case. To validate the software, we studied two groups of patients from the Ear Nose Throat clinic, a first group with normal noses and a second group presenting septal deviations. Wall shear stresses are lower in the cases of normal noses in comparison with those for septal deviation. Besides, velocity field distributions, pressure drop between nasopharynx and the ambient, and flow rates in each nostril were different among the nasal cavities in the two groups. These software modules open up a promising future to simulate the nasal airflow behaviour in virtual surgery intervention scenarios under different pressure or temperature conditions to understand the effects on nasal airflow.

  20. CGNS Mid-Level Software Library and Users Guide

    NASA Technical Reports Server (NTRS)

    Poirier, Diane; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The "CFD General Notation System" (CGNS) consists of a collection of conventions, and conforming software, for the storage and retrieval of Computational Fluid Dynamics (CFD) data. It facilitates the exchange of data between sites and applications, and helps stabilize the archiving of aerodynamic data. This effort was initiated in order to streamline the procedures in exchanging data and software between NASA and its customers, but the goal is to develop CGNS into a National Standard for the exchange of aerodynamic data. The CGNS development team is comprised of members from Boeing Commercial Airplane Group, NASA-Ames, NASA-Langley, NASA-Lewis, McDonnell-Douglas Corporation (now Boeing-St. Louis), Air Force-Wright Lab., and ICEM-CFD Engineering. The elements of CGNS address all activities associated with the storage of data on external media and its movement to and from application programs. These elements include: - The Advanced Data Format (ADF) Database manager, consisting of both a file format specification and its I/O software, which handles the actual reading and writing of data from and to external storage media; - The Standard Interface Data Structures (SIDS), which specify the intellectual content of CFD data and the conventions governing naming and terminology; - The SIDS-to-ADF File Mapping conventions, which specify the exact location where the CFD data defined by the SIDS is to be stored within the ADF file(s); and - The CGNS Mid-level Library, which provides CFD-knowledgeable routines suitable for direct installation into application codes. The CGNS Mid-level Library was designed to ease the implementation of CGNS by providing developers with a collection of handy I/O functions. Since knowledge of the ADF core is not required to use this library, it will greatly facilitate the task of interfacing with CGNS. There are currently 48 user callable functions that comprise the Mid-level library and are described in the Users Guide. The library is written in C, but each function has a FORTRAN counterpart.

  1. Computational Fluid Dynamics (CFD) Analysis Of Optical Payload For Lasercomm Science (OPALS) sealed enclosure module

    NASA Technical Reports Server (NTRS)

    Anderson, Kevin R.; Zayas, Daniel; Turner, Daniel

    2012-01-01

    Computational Fluid Dynamics (CFD) using the commercial CFD package CFDesign has been performed at NASA Jet Propulsion Laboratory (JPL) California Institute of Technology (Caltech) in support of the Phaeton Early Career Hire Program's Optical Payload for Lasercomm Science (OPALS) mission. The OPALS project is one which involves an International Space Station payload that will be using forced convection cooling in a hermetically sealed enclosure at 1 atm of air to cool "off-the-shelf" vendor electronics. The CFD analysis was used to characterize the thermal and fluid flow environment within a complicated labyrinth of electronics boards, fans, instrumentation, harnessing, ductwork and heat exchanger fins. The paradigm of iteratively using CAD/CAE tools and CFD was followed in order to determine the optimum flow geometry and heat sink configuration to yield operational convective film coefficients and temperature survivability limits for the electronics payload. Results from this current CFD analysis and correlation of the CFD model against thermal test data will be presented. Lessons learned and coupled thermal / flow modeling strategies will be shared in this paper.

  2. Development of Flow over Blunt-Nosed Slender Bodies at Transonic Mach Numbers

    NASA Astrophysics Data System (ADS)

    Yanamashetti, Gireesh; Suryanarayana, G. K.; Mukherjee, Rinku

    2017-04-01

    Comparisons of the development of flow over a cylinder with a 20° cone nose and a cylinder with an ogive nose, which represent typical heat-shield configurations are studied using CFD and experiments at transonic Mach numbers. The Cp plots are studied to locate expansion or separation. Experiments are carried out at M = 0.8, 0.9, 0.95 and 1.1 and Re ≈ 2.45 × 106. Computations are carried out using the commercial package, FLUENT 6.3. Inadequate spatial resolution of pressure ports in experiments as well as limitations of the CFD tool result in some differences in experimental and CFD results.

  3. Modeling of microalgal shear-induced flocculation and sedimentation using a coupled CFD-population balance approach.

    PubMed

    Golzarijalal, Mohammad; Zokaee Ashtiani, Farzin; Dabir, Bahram

    2018-01-01

    In this study, shear-induced flocculation modeling of Chlorella sp. microalgae was conducted by combination of population balance modeling and CFD. The inhomogeneous Multiple Size Group (MUSIG) and the Euler-Euler two fluid models were coupled via Ansys-CFX-15 software package to achieve both fluid and particle dynamics during the flocculation. For the first time, a detailed model was proposed to calculate the collision frequency and breakage rate during the microalgae flocculation by means of the response surface methodology as a tool for optimization. The particle size distribution resulted from the model was in good agreement with that of the jar test experiment. Furthermore, the subsequent sedimentation step was also examined by removing the shear rate in both simulations and experiments. Consequently, variation in the shear rate and its effects on the flocculation behavior, sedimentation rate and recovery efficiency were evaluated. Results indicate that flocculation of Chlorella sp. microalgae under shear rates of 37, 182, and 387 s -1 is a promising method of pre-concentration which guarantees the cost efficiency of the subsequent harvesting process by recovering more than 90% of the biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:160-174, 2018. © 2017 American Institute of Chemical Engineers.

  4. Simulating wind and marine hydrokinetic turbines with actuator lines in RANS and LES

    NASA Astrophysics Data System (ADS)

    Bachant, Peter; Wosnik, Martin

    2015-11-01

    As wind and marine hydrokinetic (MHK) turbine designs mature, focus is shifting towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow or horizontal-axis turbines, or taking advantage of constructive wake interaction for cross-flow or vertical-axis turbines. Towards this goal, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier-Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An additional sub-model is considered for injecting turbulence model scalar quantities based on actuator line element loading. Results are presented for the simulation of performance and wake dynamics of axial- and cross-flow turbines and compared with moderate Reynolds number experiments and body-fitted mesh, blade-resolving CFD. Work supported by NSF-CBET grant 1150797.

  5. The VRFurnace: A Virtual Reality Application for Energy System Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Peter Eric

    2001-01-01

    The VRFurnace is a unique VR application designed to analyze a complete coal-combustion CFD model of a power plant furnace. Although other applications have been created that analyze furnace performance, no other has included the added complications of particle tracking and the reactions associated with coal combustion. Currently the VRFurnace is a versatile analysis tool. Data translators have been written to allow data from most of the major commercial CFD software packages as well as standard data formats of hand-written code to be uploaded into the VR application. Because of this almost any type of CFD model of any powermore » plant component can be analyzed immediately. The ease of use of the VRFurnace is another of its qualities. The menu system created for the application not only guides first time users through the various button combinations but it also helps the experienced user keep track of which tool is being used. Because the VRFurnace was designed for use in the C6 device at Iowa State University's Virtual Reality Applications Center it is naturally a collaborative project. The projection-based system allows many people to be involved in the analysis process. This type of environment opens the design process to not only include CFD analysts but management teams and plant operators as well by making it easier for engineers to explain design changes. The 3D visualization allows power plant components to be studied in the context of their natural physical environments giving engineers a chance to use their innate pattern recognition and intuitive skills to bring to light key relationships that may have previously gone unrecognized. More specifically, the tools that have been developed make better use of the third dimension that the synthetic environment provides. Whereas the plane tools make it easier to track down interesting features of a given flow field, the box tools allow the user to focus on these features and reduce the data load on the computer.« less

  6. Advanced Methodology for Simulation of Complex Flows Using Structured Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, Erlendur; Modiano, David

    1995-01-01

    Detailed simulations of viscous flows in complicated geometries pose a significant challenge to current capabilities of Computational Fluid Dynamics (CFD). To enable routine application of CFD to this class of problems, advanced methodologies are required that employ (a) automated grid generation, (b) adaptivity, (c) accurate discretizations and efficient solvers, and (d) advanced software techniques. Each of these ingredients contributes to increased accuracy, efficiency (in terms of human effort and computer time), and/or reliability of CFD software. In the long run, methodologies employing structured grid systems will remain a viable choice for routine simulation of flows in complex geometries only if genuinely automatic grid generation techniques for structured grids can be developed and if adaptivity is employed more routinely. More research in both these areas is urgently needed.

  7. Computational Fluid Dynamics (CFD) investigation onto passenger car disk brake design

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Kanasan Moorthy, Shangkari K.

    2013-06-01

    The aim of this study is to investigate the flow and heat transfer in ventilated disc brakes using Computational Fluid Dynamics (CFD). NACA Series blade is designed for ventilated disc brake and the cooling characteristic is compared to the baseline design. The ventilated disc brakes are simulated using commercial CFD software FLUENTTM using simulation configuration that was obtained from experiment data. The NACA Series blade design shows improvements in Nusselt number compared to baseline design.

  8. Advanced Data Format (ADF) Software Library and Users Guide

    NASA Technical Reports Server (NTRS)

    Smith, Matthew; Smith, Charles A. (Technical Monitor)

    1998-01-01

    The "CFD General Notation System" (CGNS) consists of a collection of conventions, and conforming software, for the storage and retrieval of Computational Fluid Dynamics (CFD) data. It facilitates the exchange of data between sites and applications, and helps stabilize the archiving of aerodynamic data. This effort was initiated in order to streamline the procedures in exchanging data and software between NASA and its customers, but the goal is to develop CGNS into a National Standard for the exchange of aerodynamic data. The CGNS development team is comprised of members from Boeing Commercial. Airplane Group, NASA-Ames, NASA-Langley, NASA-Lewis, McDonnell-Douglas Corporation (now Boeing-St. Louis), Air Force-Wright Lab., and ICEM-CFD Engineering. The elements of CGNS address all activities associated with the storage of data on external media and its movement to and from application programs. These elements include: 1) The Advanced Data Format (ADF) Database manager, consisting of both a file format specification and its 1/0 software, which handles the actual reading and writing of data from and to external storage media; 2) The Standard Interface Data Structures (SIDS), which specify the intellectual content of CFD data and the conventions governing naming and terminology; 3) The SIDS-to-ADF File Mapping conventions, which specify the exact location where the CFD data defined by the SIDS is to be stored within the ADF file(s); and 4) The CGNS Mid-level Library, which provides CFD-knowledgeable routines suitable for direct installation into application codes. The ADF is a generic database manager with minimal intrinsic capability. It was written for the purpose of storing large numerical datasets in an efficient, platform independent manner. To be effective, it must be used in conjunction with external agreements on how the data will be organized within the ADF database such defined by the SIDS. There are currently 34 user callable functions that comprise the ADF Core library and are described in the Users Guide. The library is written in C, but each function has a FORTRAN counterpart.

  9. Recent Updates to the CFD General Notation System (CGNS)

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Wedan, Bruce; Hauser, Thomas; Poinot, Marc

    2012-01-01

    The CFD General Notation System (CGNS) - a general, portable, and extensible standard for the storage and retrieval of computational fluid dynamics (CFD) analysis data has been in existence for more than a decade (Version 1.0 was released in May 1998). Both structured and unstructured CFD data are covered by the standard, and CGNS can be easily extended to cover any sort of data imaginable, while retaining backward compatibility with existing CGNS data files and software. Although originally designed for CFD, it is readily extendable to any field of computational analysis. In early 2011, CGNS Version 3.1 was released, which added significant capabilities. This paper describes these recent enhancements and highlights the continued usefulness of the CGNS methodology.

  10. Ecohydrological implications of aeolian sediment trapping by sparse vegetation in drylands

    USGS Publications Warehouse

    Gonzales, Howell B.; Ravi, Sujith; Li, Junran; Sankey, Joel B.

    2018-01-01

    Aeolian processes are important drivers of ecosystem dynamics in drylands, and important feedbacks exist among aeolian – hydrological processes and vegetation. The trapping of wind-borne sediments by vegetation may result in changes in soil properties beneath the vegetation, which, in turn, can alter hydrological and biogeochemical processes. Despite the relevance of aeolian transport to ecosystem dynamics, the interactions between aeolian transport and vegetation in shaping dryland landscapes where sediment distribution is altered by relatively rapid changes in vegetation composition such as shrub encroachment, is not well understood. Here, we used a computational fluid dynamics (CFD) modeling framework to investigate the sediment trapping efficiencies of vegetation canopies commonly found in a shrub-grass ecotone in the Chihuahuan Desert (New Mexico, USA) and related the results to spatial heterogeneity in soil texture and infiltration measured in the field. A CFD open-source software package was used to simulate aeolian sediment movement through three-dimensional architectural depictions of Creosote shrub (Larrea tridentata) and Black Grama grass (Bouteloua eriopoda) vegetation types. The vegetation structures were created using a computer-aided design software (Blender), with inherent canopy porosities, which were derived using LIDAR (Light Detection and Ranging) measurements of plant canopies. Results show that considerable heterogeneity in infiltration and soil grain size distribution exist between the microsites, with higher infiltration and coarser soil texture under shrubs. Numerical simulations also indicate that the differential trapping of canopies might contribute to the observed heterogeneity in soil texture. In the early stages of encroachment, the shrub canopies, by trapping coarser particles more efficiently, might maintain higher infiltration rates leading to faster development of the microsites (among other factors) with enhanced ecological productivity, which might provide positive feedbacks to shrub encroachment.

  11. Visualization of unsteady computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Haimes, Robert

    1994-11-01

    A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.

  12. Visualization of unsteady computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1994-01-01

    A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.

  13. Numerical modeling of immiscible two-phase flow in micro-models using a commercial CFD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crandall, Dustin; Ahmadia, Goodarz; Smith, Duane H.

    2009-01-01

    Off-the-shelf CFD software is being used to analyze everything from flow over airplanes to lab-on-a-chip designs. So, how accurately can two-phase immiscible flow be modeled flowing through some small-scale models of porous media? We evaluate the capability of the CFD code FLUENT{trademark} to model immiscible flow in micro-scale, bench-top stereolithography models. By comparing the flow results to experimental models we show that accurate 3D modeling is possible.

  14. VAVUQ, Python and Matlab freeware for Verification and Validation, Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Courtney, J. E.; Zamani, K.; Bombardelli, F. A.; Fleenor, W. E.

    2015-12-01

    A package of scripts is presented for automated Verification and Validation (V&V) and Uncertainty Quantification (UQ) for engineering codes that approximate Partial Differential Equations (PDFs). The code post-processes model results to produce V&V and UQ information. This information can be used to assess model performance. Automated information on code performance can allow for a systematic methodology to assess the quality of model approximations. The software implements common and accepted code verification schemes. The software uses the Method of Manufactured Solutions (MMS), the Method of Exact Solution (MES), Cross-Code Verification, and Richardson Extrapolation (RE) for solution (calculation) verification. It also includes common statistical measures that can be used for model skill assessment. Complete RE can be conducted for complex geometries by implementing high-order non-oscillating numerical interpolation schemes within the software. Model approximation uncertainty is quantified by calculating lower and upper bounds of numerical error from the RE results. The software is also able to calculate the Grid Convergence Index (GCI), and to handle adaptive meshes and models that implement mixed order schemes. Four examples are provided to demonstrate the use of the software for code and solution verification, model validation and uncertainty quantification. The software is used for code verification of a mixed-order compact difference heat transport solver; the solution verification of a 2D shallow-water-wave solver for tidal flow modeling in estuaries; the model validation of a two-phase flow computation in a hydraulic jump compared to experimental data; and numerical uncertainty quantification for 3D CFD modeling of the flow patterns in a Gust erosion chamber.

  15. The role of CFD in the design process

    NASA Astrophysics Data System (ADS)

    Jennions, Ian K.

    1994-05-01

    Over the last decade the role played by CFD codes in turbomachinery design has changed remarkably. While convergence/stability or even the existence of unique solutions was discussed fervently ten years ago, CFD codes now form a valuable part of an overall integrated design system and have caused us to re-think much of what we do. The geometric and physical complexities addressed have also evolved, as have the number of software houses competing with in-house developers to provide solutions to daily design problems. This paper reviews how GE Aircraft Engines (GEAE) uses CFD in the turbomachinery design process and examines many of the issues faced in successful code implementation.

  16. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    USDA-ARS?s Scientific Manuscript database

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...

  17. Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS.

    PubMed

    Zaidan, A A; Zaidan, B B; Al-Haiqi, Ahmed; Kiah, M L M; Hussain, Muzammil; Abdulnabi, Mohamed

    2015-02-01

    Evaluating and selecting software packages that meet the requirements of an organization are difficult aspects of software engineering process. Selecting the wrong open-source EMR software package can be costly and may adversely affect business processes and functioning of the organization. This study aims to evaluate and select open-source EMR software packages based on multi-criteria decision-making. A hands-on study was performed and a set of open-source EMR software packages were implemented locally on separate virtual machines to examine the systems more closely. Several measures as evaluation basis were specified, and the systems were selected based a set of metric outcomes using Integrated Analytic Hierarchy Process (AHP) and TOPSIS. The experimental results showed that GNUmed and OpenEMR software can provide better basis on ranking score records than other open-source EMR software packages. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Best Practices for Reduction of Uncertainty in CFD Results

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Childs, Robert E.; Morrison, Joseph H.

    2003-01-01

    This paper describes a proposed best-practices system that will present expert knowledge in the use of CFD. The best-practices system will include specific guidelines to assist the user in problem definition, input preparation, grid generation, code selection, parameter specification, and results interpretation. The goal of the system is to assist all CFD users in obtaining high quality CFD solutions with reduced uncertainty and at lower cost for a wide range of flow problems. The best-practices system will be implemented as a software product which includes an expert system made up of knowledge databases of expert information with specific guidelines for individual codes and algorithms. The process of acquiring expert knowledge is discussed, and help from the CFD community is solicited. Benefits and challenges associated with this project are examined.

  19. Is MRI-based CFD able to improve clinical treatment of coarctations of aorta?

    PubMed

    Goubergrits, L; Riesenkampff, E; Yevtushenko, P; Schaller, J; Kertzscher, U; Berger, F; Kuehne, T

    2015-01-01

    Pressure drop associated with coarctation of the aorta (CoA) can be successfully treated surgically or by stent placement. However, a decreased life expectancy associated with altered aortic hemodynamics was found in long-term studies. Image-based computational fluid dynamics (CFD) is intended to support particular diagnoses, to help in choosing between treatment options, and to improve performance of treatment procedures. This study aimed to prove the ability of CFD to improve aortic hemodynamics in CoA patients. In 13 patients (6 males, 7 females; mean age 25 ± 14 years), we compared pre- and post-treatment peak systole hemodynamics [pressure drops and wall shear stress (WSS)] vs. virtual treatment as proposed by biomedical engineers. Anatomy and flow data for CFD were based on MRI and angiography. Segmentation, geometry reconstruction and virtual treatment geometry were performed using the software ZIBAmira, whereas peak systole flow conditions were simulated with the software ANSYS(®) Fluent(®). Virtual treatment significantly reduced pressure drop compared to post-treatment values by a mean of 2.8 ± 3.15 mmHg, which significantly reduced mean WSS by 3.8 Pa. Thus, CFD has the potential to improve post-treatment hemodynamics associated with poor long-term prognosis of patients with coarctation of the aorta. MRI-based CFD has a huge potential to allow the slight reduction of post-treatment pressure drop, which causes significant improvement (reduction) of the WSS at the stenosis segment.

  20. Packaging Software Assets for Reuse

    NASA Astrophysics Data System (ADS)

    Mattmann, C. A.; Marshall, J. J.; Downs, R. R.

    2010-12-01

    The reuse of existing software assets such as code, architecture, libraries, and modules in current software and systems development projects can provide many benefits, including reduced costs, in time and effort, and increased reliability. Many reusable assets are currently available in various online catalogs and repositories, usually broken down by disciplines such as programming language (Ibiblio for Maven/Java developers, PyPI for Python developers, CPAN for Perl developers, etc.). The way these assets are packaged for distribution can play a role in their reuse - an asset that is packaged simply and logically is typically easier to understand, install, and use, thereby increasing its reusability. A well-packaged asset has advantages in being more reusable and thus more likely to provide benefits through its reuse. This presentation will discuss various aspects of software asset packaging and how they can affect the reusability of the assets. The characteristics of well-packaged software will be described. A software packaging domain model will be introduced, and some existing packaging approaches examined. An example case study of a Reuse Enablement System (RES), currently being created by near-term Earth science decadal survey missions, will provide information about the use of the domain model. Awareness of these factors will help software developers package their reusable assets so that they can provide the most benefits for software reuse.

  1. Simulating flow around scaled model of a hypersonic vehicle in wind tunnel

    NASA Astrophysics Data System (ADS)

    Markova, T. V.; Aksenov, A. A.; Zhluktov, S. V.; Savitsky, D. V.; Gavrilov, A. D.; Son, E. E.; Prokhorov, A. N.

    2016-11-01

    A prospective hypersonic HEXAFLY aircraft is considered in the given paper. In order to obtain the aerodynamic characteristics of a new construction design of the aircraft, experiments with a scaled model have been carried out in a wind tunnel under different conditions. The runs have been performed at different angles of attack with and without hydrogen combustion in the scaled propulsion engine. However, the measured physical quantities do not provide all the information about the flowfield. Numerical simulation can complete the experimental data as well as to reduce the number of wind tunnel experiments. Besides that, reliable CFD software can be used for calculations of the aerodynamic characteristics for any possible design of the full-scale aircraft under different operation conditions. The reliability of the numerical predictions must be confirmed in verification study of the software. The given work is aimed at numerical investigation of the flowfield around and inside the scaled model of the HEXAFLY-CIAM module under wind tunnel conditions. A cold run (without combustion) was selected for this study. The calculations are performed in the FlowVision CFD software. The flow characteristics are compared against the available experimental data. The carried out verification study confirms the capability of the FlowVision CFD software to calculate the flows discussed.

  2. Canputer Science and Technology: Introduction to Software Packages

    DTIC Science & Technology

    1984-04-01

    Table 5 Sources of Software Packages.20 Table 6 Reference Services Matrix . 33 Table 7 Reference Matrix.40 LIST OF FIGURES Figure 1 Document...consideration should be given to the acquisition of appropriate software packages to replace or upgrade existing services and to provide services not...Consequently, there are many companies that produce only software packages, and are committed to providing training, service , and support. These vendors

  3. An Inviscid Computational Study of an X-33 Configuration at Hypersonic Speeds

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    1999-01-01

    This report documents the results of a study conducted to compute the inviscid longitudinal aerodynamic characteristics of a simplified X-33 configuration. The major components of the X-33 vehicle, namely the body, the canted fin, the vertical fin, and the body-flap, were simulated in the CFD (Computational Fluid Dynamic) model. The rear-ward facing surfaces at the base including the aerospike engine surfaces were not simulated. The FELISA software package consisting of an unstructured surface and volume grid generator and two inviscid flow solvers was used for this study. Computations were made for Mach 4.96, 6.0, and 10.0 with perfect gas air option, and for Mach 10 with equilibrium air option with flow condition of a typical point on the X-33 flight trajectory. Computations were also made with CF4 gas option at Mach 6.0 to simulate the CF4 tunnel flow condition. An angle of attack range of 12 to 48 deg was covered. The CFD results were compared with available wind tunnel data. Comparison was good at low angles of attack; at higher angles of attack (beyond 25 deg) some differences were found in the pitching moment. These differences progressively increased with increase in angle of attack, and are attributed to the viscous effects. However, the computed results showed the trends exhibited by the wind tunnel data.

  4. CFD-Modeling of the Multistage Gasifier Capacity of 30 KW

    NASA Astrophysics Data System (ADS)

    Levin, A. A.; Kozlov, A. N.; Svishchev, D. A.; Donskoy, I. G.

    2017-11-01

    Single-stage fuel gasification processes have been developed and widely studied in Russia and abroad throughout the 20th century. They are fundamental to the creation and design of modern gas generator equipment. Many studies have shown that single-stage gasification process, have already reached the limit of perfection, which was a significant improvement in their performance becomes impossible and unprofitable. The most fully meet modern technical requirements of multistage gasification technology. In the first step of the process, is organized allothermic biomass pyrolysis using heat of exhaust gas and generating power plant. At this stage, the yield of volatile products (gas and tar) of fuel. In the second step, the layer of fuel is, the tar is decomposed by the action of hot air and steam, steam-gas mixture is formed further reacts with the charcoal in the third process stage. The paper presents a model developed by the authors of the multi-stage gasifier for wood chips. The model is made with the use of CFD-modeling software package (COMSOL Multiphisics). To describe the kinetics of wood pyrolysis and gasification of charcoal studies were carried out using a set of simultaneous thermal analysis. For this complex developed original methods of interpretation of measurements, including methods of technical analysis of fuels and determine the parameters of the detailed kinetics and mechanism of pyrolysis.

  5. Assessment of CFD capability for prediction of hypersonic shock interactions

    NASA Astrophysics Data System (ADS)

    Knight, Doyle; Longo, José; Drikakis, Dimitris; Gaitonde, Datta; Lani, Andrea; Nompelis, Ioannis; Reimann, Bodo; Walpot, Louis

    2012-01-01

    The aerothermodynamic loadings associated with shock wave boundary layer interactions (shock interactions) must be carefully considered in the design of hypersonic air vehicles. The capability of Computational Fluid Dynamics (CFD) software to accurately predict hypersonic shock wave laminar boundary layer interactions is examined. A series of independent computations performed by researchers in the US and Europe are presented for two generic configurations (double cone and cylinder) and compared with experimental data. The results illustrate the current capabilities and limitations of modern CFD methods for these flows.

  6. Investigation of different modeling approaches for computational fluid dynamics simulation of high-pressure rocket combustors

    NASA Astrophysics Data System (ADS)

    Ivancic, B.; Riedmann, H.; Frey, M.; Knab, O.; Karl, S.; Hannemann, K.

    2016-07-01

    The paper summarizes technical results and first highlights of the cooperation between DLR and Airbus Defence and Space (DS) within the work package "CFD Modeling of Combustion Chamber Processes" conducted in the frame of the Propulsion 2020 Project. Within the addressed work package, DLR Göttingen and Airbus DS Ottobrunn have identified several test cases where adequate test data are available and which can be used for proper validation of the computational fluid dynamics (CFD) tools. In this paper, the first test case, the Penn State chamber (RCM1), is discussed. Presenting the simulation results from three different tools, it is shown that the test case can be computed properly with steady-state Reynolds-averaged Navier-Stokes (RANS) approaches. The achieved simulation results reproduce the measured wall heat flux as an important validation parameter very well but also reveal some inconsistencies in the test data which are addressed in this paper.

  7. A study of the compatibility of an existing CFD package with a broader class of material constitutions

    NASA Technical Reports Server (NTRS)

    French, K. W., Jr.

    1985-01-01

    The flexibility of the PHOENICS computational fluid dynamics package was assessed along two general avenues; parallel modeling and analog modeling. In parallel modeling the dependent and independent variables retain their identity within some scaling factors, even though the boundary conditions and especially the constitutive relations do not correspond to any realistic fluid dynamic situation. PHOENICS was used to generate a CFD model that should exhibit the physical anomalies of a granular medium and permit reasonable similarity with boundary conditions typical to membrane or porous piston loading. A considerable portion of the study was spent prying into the existing code with a prejudice toward rate type and disarming any inherent fluid behavior. The final stages of the study were directed at the more specific problem of multiaxis loading of cylindrical geometry with a concern for the appearance of bulging, cross slab shear failure modes.

  8. Design Optimization Toolkit: Users' Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilo Valentin, Miguel Alejandro

    The Design Optimization Toolkit (DOTk) is a stand-alone C++ software package intended to solve complex design optimization problems. DOTk software package provides a range of solution methods that are suited for gradient/nongradient-based optimization, large scale constrained optimization, and topology optimization. DOTk was design to have a flexible user interface to allow easy access to DOTk solution methods from external engineering software packages. This inherent flexibility makes DOTk barely intrusive to other engineering software packages. As part of this inherent flexibility, DOTk software package provides an easy-to-use MATLAB interface that enables users to call DOTk solution methods directly from the MATLABmore » command window.« less

  9. Selection of software for mechanical engineering undergraduates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheah, C. T.; Yin, C. S.; Halim, T.

    A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.

  10. Virtual Diagnostics Interface: Real Time Comparison of Experimental Data and CFD Predictions for a NASA Ares I-Like Vehicle

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; Fleming, Gary A.

    2007-01-01

    Virtual Diagnostics Interface technology, or ViDI, is a suite of techniques utilizing image processing, data handling and three-dimensional computer graphics. These techniques aid in the design, implementation, and analysis of complex aerospace experiments. LiveView3D is a software application component of ViDI used to display experimental wind tunnel data in real-time within an interactive, three-dimensional virtual environment. The LiveView3D software application was under development at NASA Langley Research Center (LaRC) for nearly three years. LiveView3D recently was upgraded to perform real-time (as well as post-test) comparisons of experimental data with pre-computed Computational Fluid Dynamics (CFD) predictions. This capability was utilized to compare experimental measurements with CFD predictions of the surface pressure distribution of the NASA Ares I Crew Launch Vehicle (CLV) - like vehicle when tested in the NASA LaRC Unitary Plan Wind Tunnel (UPWT) in December 2006 - January 2007 timeframe. The wind tunnel tests were conducted to develop a database of experimentally-measured aerodynamic performance of the CLV-like configuration for validation of CFD predictive codes.

  11. CFD research and systems in Kawasaki Heavy Industries and its future prospects

    NASA Astrophysics Data System (ADS)

    Hiraoka, Koichi

    1990-09-01

    KHI Computational Fluid Dynamics (CFD) system is composed of VP100 computer and 2-D and 3-D Euler and/or Navier-Stokes (NS) analysis softwares. For KHI, this system has become a very powerful aerodynamic tool together with the Kawasaki 1 m Transonic Wind Tunnel. The 2-D Euler/NS software, developed in-house, is fully automated, requires no special skill, and was successfully applied to the design of YXX high lift devices and SST supersonic inlet, etc. The 3-D Euler/NS software, developed under joint research with NAL, has an interactively operated Multi-Block type grid generator and can effectively generate grids around complex airplane shapes. Due to the main memory size limitation, 3-D analysis of relatively simple shape, such as SST wing-body, was computed in-house on VP100, otherwise, such as detailed 3-D analyses of ASUKA and HOPE, were computed on NAL VP400, which is 10 times more powerful than VP100, under KHI-NAL joint research. These analysis results have very good correlation with experimental results. However, the present CFD system is less productive than wind tunnel and has applicability limitations.

  12. Reliability and accuracy of three imaging software packages used for 3D analysis of the upper airway on cone beam computed tomography images.

    PubMed

    Chen, Hui; van Eijnatten, Maureen; Wolff, Jan; de Lange, Jan; van der Stelt, Paul F; Lobbezoo, Frank; Aarab, Ghizlane

    2017-08-01

    The aim of this study was to assess the reliability and accuracy of three different imaging software packages for three-dimensional analysis of the upper airway using CBCT images. To assess the reliability of the software packages, 15 NewTom 5G ® (QR Systems, Verona, Italy) CBCT data sets were randomly and retrospectively selected. Two observers measured the volume, minimum cross-sectional area and the length of the upper airway using Amira ® (Visage Imaging Inc., Carlsbad, CA), 3Diagnosys ® (3diemme, Cantu, Italy) and OnDemand3D ® (CyberMed, Seoul, Republic of Korea) software packages. The intra- and inter-observer reliability of the upper airway measurements were determined using intraclass correlation coefficients and Bland & Altman agreement tests. To assess the accuracy of the software packages, one NewTom 5G ® CBCT data set was used to print a three-dimensional anthropomorphic phantom with known dimensions to be used as the "gold standard". This phantom was subsequently scanned using a NewTom 5G ® scanner. Based on the CBCT data set of the phantom, one observer measured the volume, minimum cross-sectional area, and length of the upper airway using Amira ® , 3Diagnosys ® , and OnDemand3D ® , and compared these measurements with the gold standard. The intra- and inter-observer reliability of the measurements of the upper airway using the different software packages were excellent (intraclass correlation coefficient ≥0.75). There was excellent agreement between all three software packages in volume, minimum cross-sectional area and length measurements. All software packages underestimated the upper airway volume by -8.8% to -12.3%, the minimum cross-sectional area by -6.2% to -14.6%, and the length by -1.6% to -2.9%. All three software packages offered reliable volume, minimum cross-sectional area and length measurements of the upper airway. The length measurements of the upper airway were the most accurate results in all software packages. All software packages underestimated the upper airway dimensions of the anthropomorphic phantom.

  13. Preliminary Computational Fluid Dynamics (CFD) Simulation of EIIB Push Barge in Shallow Water

    NASA Astrophysics Data System (ADS)

    Beneš, Petr; Kollárik, Róbert

    2011-12-01

    This study presents preliminary CFD simulation of EIIb push barge in inland conditions using CFD software Ansys Fluent. The RANSE (Reynolds Averaged Navier-Stokes Equation) methods are used for the viscosity solution of turbulent flow around the ship hull. Different RANSE methods are used for the comparison of their results in ship resistance calculations, for selecting the appropriate and removing inappropriate methods. This study further familiarizes on the creation of geometrical model which considers exact water depth to vessel draft ratio in shallow water conditions, grid generation, setting mathematical model in Fluent and evaluation of the simulations results.

  14. MaMiCo: Transient multi-instance molecular-continuum flow simulation on supercomputers

    NASA Astrophysics Data System (ADS)

    Neumann, Philipp; Bian, Xin

    2017-11-01

    We present extensions of the macro-micro-coupling tool MaMiCo, which was designed to couple continuum fluid dynamics solvers with discrete particle dynamics. To enable local extraction of smooth flow field quantities especially on rather short time scales, sampling over an ensemble of molecular dynamics simulations is introduced. We provide details on these extensions including the transient coupling algorithm, open boundary forcing, and multi-instance sampling. Furthermore, we validate the coupling in Couette flow using different particle simulation software packages and particle models, i.e. molecular dynamics and dissipative particle dynamics. Finally, we demonstrate the parallel scalability of the molecular-continuum simulations by using up to 65 536 compute cores of the supercomputer Shaheen II located at KAUST. Program Files doi:http://dx.doi.org/10.17632/w7rgdrhb85.1 Licensing provisions: BSD 3-clause Programming language: C, C++ External routines/libraries: For compiling: SCons, MPI (optional) Subprograms used: ESPResSo, LAMMPS, ls1 mardyn, waLBerla For installation procedures of the MaMiCo interfaces, see the README files in the respective code directories located in coupling/interface/impl. Journal reference of previous version: P. Neumann, H. Flohr, R. Arora, P. Jarmatz, N. Tchipev, H.-J. Bungartz. MaMiCo: Software design for parallel molecular-continuum flow simulations, Computer Physics Communications 200: 324-335, 2016 Does the new version supersede the previous version?: Yes. The functionality of the previous version is completely retained in the new version. Nature of problem: Coupled molecular-continuum simulation for multi-resolution fluid dynamics: parts of the domain are resolved by molecular dynamics or another particle-based solver whereas large parts are covered by a mesh-based CFD solver, e.g. a lattice Boltzmann automaton. Solution method: We couple existing MD and CFD solvers via MaMiCo (macro-micro coupling tool). Data exchange and coupling algorithmics are abstracted and incorporated in MaMiCo. Once an algorithm is set up in MaMiCo, it can be used and extended, even if other solvers are used (as soon as the respective interfaces are implemented/available). Reasons for the new version: We have incorporated a new algorithm to simulate transient molecular-continuum systems and to automatically sample data over multiple MD runs that can be executed simultaneously (on, e.g., a compute cluster). MaMiCo has further been extended by an interface to incorporate boundary forcing to account for open molecular dynamics boundaries. Besides support for coupling with various MD and CFD frameworks, the new version contains a test case that allows to run molecular-continuum Couette flow simulations out-of-the-box. No external tools or simulation codes are required anymore. However, the user is free to switch from the included MD simulation package to LAMMPS. For details on how to run the transient Couette problem, see the file README in the folder coupling/tests, Remark on MaMiCo V1.1. Summary of revisions: Open boundary forcing; Multi-instance MD sampling; support for transient molecular-continuum systems Restrictions: Currently, only single-centered systems are supported. For access to the LAMMPS-based implementation of DPD boundary forcing, please contact Xin Bian, xin.bian@tum.de. Additional comments: Please see file license_mamico.txt for further details regarding distribution and advertising of this software.

  15. Design requirements for SRB production control system. Volume 3: Package evaluation, modification and hardware

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software package evaluation was designed to analyze commercially available, field-proven, production control or manufacturing resource planning management technology and software package. The analysis was conducted by comparing SRB production control software requirements and conceptual system design to software package capabilities. The methodology of evaluation and the findings at each stage of evaluation are described. Topics covered include: vendor listing; request for information (RFI) document; RFI response rate and quality; RFI evaluation process; and capabilities versus requirements.

  16. Methodology for Computational Fluid Dynamic Validation for Medical Use: Application to Intracranial Aneurysm.

    PubMed

    Paliwal, Nikhil; Damiano, Robert J; Varble, Nicole A; Tutino, Vincent M; Dou, Zhongwang; Siddiqui, Adnan H; Meng, Hui

    2017-12-01

    Computational fluid dynamics (CFD) is a promising tool to aid in clinical diagnoses of cardiovascular diseases. However, it uses assumptions that simplify the complexities of the real cardiovascular flow. Due to high-stakes in the clinical setting, it is critical to calculate the effect of these assumptions in the CFD simulation results. However, existing CFD validation approaches do not quantify error in the simulation results due to the CFD solver's modeling assumptions. Instead, they directly compare CFD simulation results against validation data. Thus, to quantify the accuracy of a CFD solver, we developed a validation methodology that calculates the CFD model error (arising from modeling assumptions). Our methodology identifies independent error sources in CFD and validation experiments, and calculates the model error by parsing out other sources of error inherent in simulation and experiments. To demonstrate the method, we simulated the flow field of a patient-specific intracranial aneurysm (IA) in the commercial CFD software star-ccm+. Particle image velocimetry (PIV) provided validation datasets for the flow field on two orthogonal planes. The average model error in the star-ccm+ solver was 5.63 ± 5.49% along the intersecting validation line of the orthogonal planes. Furthermore, we demonstrated that our validation method is superior to existing validation approaches by applying three representative existing validation techniques to our CFD and experimental dataset, and comparing the validation results. Our validation methodology offers a streamlined workflow to extract the "true" accuracy of a CFD solver.

  17. Guide to NavyFOAM V1.0

    DTIC Science & Technology

    2011-04-01

    NavyFOAM has been developed using an open-source CFD software tool-kit ( OpenFOAM ) that draws heavily upon object-oriented programming. The...numerical methods and the physical models in the original version of OpenFOAM have been upgraded in an effort to improve accuracy and robustness of...computational fluid dynamics OpenFOAM , Object Oriented Programming (OOP) (CFD), NavyFOAM, 16. SECURITY CLASSIFICATION OF: a. REPORT UNCLASSIFIED b

  18. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.

  19. CFD Fuel Slosh Modeling of Fluid-Structure Interaction in Spacecraft Propellant Tanks with Diaphragms

    NASA Technical Reports Server (NTRS)

    Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon

    2010-01-01

    Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.

  20. A comparison of six software packages for evaluation of solid lung nodules using semi-automated volumetry: what is the minimum increase in size to detect growth in repeated CT examinations.

    PubMed

    de Hoop, Bartjan; Gietema, Hester; van Ginneken, Bram; Zanen, Pieter; Groenewegen, Gerard; Prokop, Mathias

    2009-04-01

    We compared interexamination variability of CT lung nodule volumetry with six currently available semi-automated software packages to determine the minimum change needed to detect the growth of solid lung nodules. We had ethics committee approval. To simulate a follow-up examination with zero growth, we performed two low-dose unenhanced CT scans in 20 patients referred for pulmonary metastases. Between examinations, patients got off and on the table. Volumes of all pulmonary nodules were determined on both examinations using six nodule evaluation software packages. Variability (upper limit of the 95% confidence interval of the Bland-Altman plot) was calculated for nodules for which segmentation was visually rated as adequate. We evaluated 214 nodules (mean diameter 10.9 mm, range 3.3 mm-30.0 mm). Software packages provided adequate segmentation in 71% to 86% of nodules (p < 0.001). In case of adequate segmentation, variability in volumetry between scans ranged from 16.4% to 22.3% for the various software packages. Variability with five to six software packages was significantly less for nodules >or=8 mm in diameter (range 12.9%-17.1%) than for nodules <8 mm (range 18.5%-25.6%). Segmented volumes of each package were compared to each of the other packages. Systematic volume differences were detected in 11/15 comparisons. This hampers comparison of nodule volumes between software packages.

  1. Software and package applicating for network meta-analysis: A usage-based comparative study.

    PubMed

    Xu, Chang; Niu, Yuming; Wu, Junyi; Gu, Huiyun; Zhang, Chao

    2017-12-21

    To compare and analyze the characteristics and functions of software applications for network meta-analysis (NMA). PubMed, EMbase, The Cochrane Library, the official websites of Bayesian inference Using Gibbs Sampling (BUGS), Stata and R, and Google were searched to collect the software and packages for performing NMA; software and packages published up to March 2016 were included. After collecting the software, packages, and their user guides, we used the software and packages to calculate a typical example. All characteristics, functions, and computed results were compared and analyzed. Ten types of software were included, including programming and non-programming software. They were developed mainly based on Bayesian or frequentist theory. Most types of software have the characteristics of easy operation, easy mastery, exact calculation, or excellent graphing. However, there was no single software that performed accurate calculations with superior graphing; this could only be achieved through the combination of two or more types of software. This study suggests that the user should choose the appropriate software according to personal programming basis, operational habits, and financial ability. Then, the choice of the combination of BUGS and R (or Stata) software to perform the NMA is considered. © 2017 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, William Eugene

    These slides describe different strategies for installing Python software. Although I am a big fan of Python software development, robust strategies for software installation remains a challenge. This talk describes several different installation scenarios. The Good: the user has administrative privileges - Installing on Windows with an installer executable, Installing with Linux application utility, Installing a Python package from the PyPI repository, and Installing a Python package from source. The Bad: the user does not have administrative privileges - Using a virtual environment to isolate package installations, and Using an installer executable on Windows with a virtual environment. The Ugly:more » the user needs to install an extension package from source - Installing a Python extension package from source, and PyCoinInstall - Managing builds for Python extension packages. The last item referring to PyCoinInstall describes a utility being developed for the COIN-OR software, which is used within the operations research community. COIN-OR includes a variety of Python and C++ software packages, and this script uses a simple plug-in system to support the management of package builds and installation.« less

  3. Computational Methods for HSCT-Inlet Controls/CFD Interdisciplinary Research

    NASA Technical Reports Server (NTRS)

    Cole, Gary L.; Melcher, Kevin J.; Chicatelli, Amy K.; Hartley, Tom T.; Chung, Joongkee

    1994-01-01

    A program aimed at facilitating the use of computational fluid dynamics (CFD) simulations by the controls discipline is presented. The objective is to reduce the development time and cost for propulsion system controls by using CFD simulations to obtain high-fidelity system models for control design and as numerical test beds for control system testing and validation. An interdisciplinary team has been formed to develop analytical and computational tools in three discipline areas: controls, CFD, and computational technology. The controls effort has focused on specifying requirements for an interface between the controls specialist and CFD simulations and a new method for extracting linear, reduced-order control models from CFD simulations. Existing CFD codes are being modified to permit time accurate execution and provide realistic boundary conditions for controls studies. Parallel processing and distributed computing techniques, along with existing system integration software, are being used to reduce CFD execution times and to support the development of an integrated analysis/design system. This paper describes: the initial application for the technology being developed, the high speed civil transport (HSCT) inlet control problem; activities being pursued in each discipline area; and a prototype analysis/design system in place for interactive operation and visualization of a time-accurate HSCT-inlet simulation.

  4. Method for CFD Simulation of Propellant Slosh in a Spherical Tank

    NASA Technical Reports Server (NTRS)

    Benson, David J.; Mason, Paul A.

    2011-01-01

    Propellant sloshing can impart unwanted disturbances to spacecraft, especially if the spacecraft controller is driving the system at the slosh frequency. This paper describes the work performed by the authors in simulating propellant slosh in a spherical tank using computational fluid dynamics (CFD). ANSYS-CFX is the CFD package used to perform the analysis. A 42 in spherical tank is studied with various fill fractions. Results are provided for the forces on the walls and the frequency of the slosh. Snapshots of slosh animation give a qualitative understanding of the propellant slosh. The results show that maximum slosh forces occur at a tank fill fraction of 0.4 and 0.6 due to the amount of mass participating in the slosh and the room available for sloshing to occur. The slosh frequency increases as the tank fill fraction increases.

  5. Validation of thermal effects of LED package by using Elmer finite element simulation method

    NASA Astrophysics Data System (ADS)

    Leng, Lai Siang; Retnasamy, Vithyacharan; Mohamad Shahimin, Mukhzeer; Sauli, Zaliman; Taniselass, Steven; Bin Ab Aziz, Muhamad Hafiz; Vairavan, Rajendaran; Kirtsaeng, Supap

    2017-02-01

    The overall performance of the Light-emitting diode, LED package is critically affected by the heat attribution. In this study, open source software - Elmer FEM has been utilized to study the thermal analysis of the LED package. In order to perform a complete simulation study, both Salome software and ParaView software were introduced as Pre and Postprocessor. The thermal effect of the LED package was evaluated by this software. The result has been validated with commercially licensed software based on previous work. The percentage difference from both simulation results is less than 5% which is tolerable and comparable.

  6. NDE Software Developed at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Martin, Richard E.; Rauser, Richard W.; Nichols, Charles; Bonacuse, Peter J.

    2014-01-01

    NASA Glenn Research Center has developed several important Nondestructive Evaluation (NDE) related software packages for different projects in the last 10 years. Three of the software packages have been created with commercial-grade user interfaces and are available to United States entities for download on the NASA Technology Transfer and Partnership Office server (https://sr.grc.nasa.gov/). This article provides brief overviews of the software packages.

  7. Applications of CFD and visualization techniques

    NASA Technical Reports Server (NTRS)

    Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.

    1992-01-01

    In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, John H.; Belcourt, Kenneth Noel

    Completion of the CASL L3 milestone THM.CFD.P6.03 provides a tabular material properties capability to the Hydra code. A tabular interpolation package used in Sandia codes was modified to support the needs of multi-phase solvers in Hydra. Use of the interface is described. The package was released to Hydra under a government use license. A dummy physics was created in Hydra to prototype use of the interpolation routines. Finally, a test using the dummy physics verifies the correct behavior of the interpolation for a test water table. 3

  9. CFD analyses for advanced pump design

    NASA Technical Reports Server (NTRS)

    Dejong, F. J.; Choi, S.-K.; Govindan, T. R.

    1994-01-01

    As one of the activities of the NASA/MSFC Pump Stage Technology Team, the present effort was focused on using CFD in the design and analysis of high performance rocket engine pumps. Under this effort, a three-dimensional Navier-Stokes code was used for various inducer and impeller flow field calculations. An existing algebraic grid generation procedure was-extended to allow for nonzero blade thickness, splitter blades, and hub/shroud cavities upstream or downstream of the (main) blades. This resulted in a fast, robust inducer/impeller geometry/grid generation package. Problems associated with running a compressible flow code to simulate an incompressible flow were resolved; related aspects of the numerical algorithm (viz., the matrix preconditioning, the artificial dissipation, and the treatment of low Mach number flows) were addressed. As shown by the calculations performed under the present effort, the resulting code, in conjunction with the grid generation package, is an effective tool for the rapid solution of three-dimensional viscous inducer and impeller flows.

  10. NLM microcomputer-based tutorials (for microcomputers). Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, M.

    1990-04-01

    The package consists of TOXLEARN--a microcomputer-based training package for TOXLINE (Toxicology Information Online), CHEMLEARN-a microcomputer-based training package for CHEMLINE (Chemical Information Online), MEDTUTOR--a microcomputer-based training package for MEDLINE (Medical Information Online), and ELHILL LEARN--a microcomputer-based training package for the ELHILL search and retrieval software that supports the above-mentioned databases...Software Description: The programs were developed under PILOTplus using the NLM LEARN Programmer. They run on IBM-PC, XT, AT, PS/2, and fully compatible computers. The programs require 512K RAM memory, one disk drive, and DOS 2.0 or higher. The software supports most monochrome, color graphics, enhanced color graphics, or visual graphics displays.

  11. Numerical investigation of solid mixing in a fluidized bed coating process

    NASA Astrophysics Data System (ADS)

    Kenche, Venkatakrishna; Feng, Yuqing; Ying, Danyang; Solnordal, Chris; Lim, Seng; Witt, Peter J.

    2013-06-01

    Fluidized beds are widely used in many process industries including the food and pharmaceutical sectors. Despite being an intensive research area, there are no design rules or correlations that can be used to quantitatively predict the solid mixing in a specific system for a given set of operating conditions. This paper presents a numerical study of the gas and solid dynamics in a laboratory scale fluidized bed coating process used for food and pharmaceutical industries. An Eulerian-Eulerian model (EEM) with kinetic theory of granular flow is selected as the modeling technique, with the commercial computational fluid dynamics (CFD) software package ANSYS/Fluent being the numerical platform. The flow structure is investigated in terms of the spatial distribution of gas and solid flow. The solid mixing has been evaluated under different operating conditions. It was found that the solid mixing rate in the horizontal direction is similar to that in the vertical direction under the current design and operating conditions. It takes about 5 s to achieve good mixing.

  12. CFD simulation of the combustion process of the low-emission vortex boiler

    NASA Astrophysics Data System (ADS)

    Chernov, A. A.; Maryandyshev, P. A.; Pankratov, E. V.; Lubov, V. K.

    2017-11-01

    Domestic heat and power engineering needs means and methods for optimizing the existing boiler plants in order to increase their technical, economic and environmental work. The development of modern computer technology, methods of numerical modeling and specialized software greatly facilitates the solution of many emerging problems. CFD simulation allows to obtaine precise results of thermochemical and aerodynamic processes taking place in the furnace of boilers in order to optimize their operation modes and develop directions for their modernization. The paper presents the results of simulation of the combustion process of a low-emission vortex coal boiler of the model E-220/100 using the software package Ansys Fluent. A hexahedral grid with a number of 2 million cells was constructed for the chosen boiler model. A stationary problem with a two-phase flow was solved. The gaseous components are air, combustion products and volatile substances. The solid phase is coal particles at different burnup stages. The Euler-Lagrange approach was taken as a basis. Calculation of the coal particles trajectories was carried out using the Discrete Phase Model which distribution of the size particle of coal dust was accounted for using the Rosin-Rammler equation. Partially Premixed combustion model was used as the combustion model which take into account elemental composition of the fuel and heat analysis. To take turbulence into account, a two-parameter k-ε model with a standard wall function was chosen. Heat transfer by radiation was calculated using the P1-approximation of the method of spherical harmonics. The system of spatial equations was numerically solved by the control volume method using the SIMPLE algorithm of Patankar and Spaulding. Comparison of data obtained during the industrial-operational tests of low-emission vortex boilers with the results of mathematical modeling showed acceptable convergence of the tasks of this level, which confirms the adequacy of the realized mathematical model.

  13. CFD-based design load analysis of 5MW offshore wind turbine

    NASA Astrophysics Data System (ADS)

    Tran, T. T.; Ryu, G. J.; Kim, Y. H.; Kim, D. H.

    2012-11-01

    The structure and aerodynamic loads acting on NREL 5MW reference wind turbine blade are calculated and analyzed based on advanced Computational Fluid Dynamics (CFD) and unsteady Blade Element Momentum (BEM). A detailed examination of the six force components has been carried out (three force components and three moment components). Structure load (gravity and inertia load) and aerodynamic load have been obtained by additional structural calculations (CFD or BEM, respectively,). In CFD method, the Reynolds Average Navier-Stokes approach was applied to solve the continuity equation of mass conservation and momentum balance so that the complex flow around wind turbines was modeled. Written in C programming language, a User Defined Function (UDF) code which defines transient velocity profile according to the Extreme Operating Gust condition was compiled into commercial FLUENT package. Furthermore, the unsteady BEM with 3D stall model has also adopted to investigate load components on wind turbine rotor. The present study introduces a comparison between advanced CFD and unsteady BEM for determining load on wind turbine rotor. Results indicate that there are good agreements between both present methods. It is importantly shown that six load components on wind turbine rotor is significant effect under Extreme Operating Gust (EOG) condition. Using advanced CFD and additional structural calculations, this study has succeeded to construct accuracy numerical methodology to estimate total load of wind turbine that compose of aerodynamic load and structure load.

  14. NMRbox: A Resource for Biomolecular NMR Computation.

    PubMed

    Maciejewski, Mark W; Schuyler, Adam D; Gryk, Michael R; Moraru, Ion I; Romero, Pedro R; Ulrich, Eldon L; Eghbalnia, Hamid R; Livny, Miron; Delaglio, Frank; Hoch, Jeffrey C

    2017-04-25

    Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users. Copyright © 2017 Biophysical Society. All rights reserved.

  15. A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers

    NASA Technical Reports Server (NTRS)

    Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on-going study progresses.

  16. Indirect contact freeze water desalination for an ice maker machine - CFD simulation

    NASA Astrophysics Data System (ADS)

    Jayakody, Harith; Al-Dadah, Raya; Mahmoud, Saad

    2017-11-01

    To offer for potable water shortages, sea water desalination is a potential solution for the global rising demand for fresh water. The latent heat of fusion is about one-seventh the latent heat of vaporisation, thus indicating the benefit of lower energy consumption for the freeze desalination process. Limited literature is reported on computational fluid dynamics (CFD) on freeze desalination. Therefore, analysing and investigating thermodynamic processes are easily conducted by the powerful tool of CFD. A single unit of ice formation in an ice maker machine was modelled using ANSYS Fluent software three-dimensionally. Energy, species transport and solidification/melting modules were used in building the CFD model. Parametric analysis was conducted using the established CFD model to predict the effects of freezing temperature and the geometry of the ice maker machine; on ice production and the freezing time. Lower freezing temperatures allowed more ice production and faster freezing. Increasing the diameter and the length of the freezing tube enabled more ice to be produced.

  17. Simulation studies on the standing and traveling wave thermoacoustic prime movers

    NASA Astrophysics Data System (ADS)

    Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.; Kasthurirengan, S.; Behera, Upendra

    2014-01-01

    Thermoacoustic systems have been a focus of recent research due to its structural simplicity, high reliability due to absence of moving parts, and can be driven by low grade energy such as fuel, gas, solar energy, waste heat etc. There has been extensive research on both standing wave and traveling wave systems. Towards the development of such systems, simulations can be carried out by several methods such as (a) solving the energy equation, (b) enthalpy flow model, (c) DeltaEC, a free software available from LANL, USA (d) Computational Fluid Dynamics (CFD) etc. We present here the simulation studies of standing wave and traveling wave thermoacoustic prime movers using CFD and DeltaEC. The CFD analysis is carried out using Fluent 6.3.26, incorporating the necessary boundary conditions with different working fluids at different operating pressures. The results obtained by CFD are compared with those obtained using DeltaEC. Also, the CFD simulation of the thermoacoustically driven refrigerator is presented.

  18. Application of CFD modelling at a full-scale ozonation plant for the removal of micropollutants from secondary effluent.

    PubMed

    Launer, M; Lyko, S; Fahlenkamp, H; Jagemann, P; Ehrhard, P

    2013-01-01

    Since November 2009, Germany's first full-scale ozonation plant for tertiary treatment of secondary effluent is in continuous operation. A kinetic model was developed and combined with the commercial computational fluid dynamics (CFD) software ANSYS(®) CFX(®) to simulate the removal of micropollutants from secondary effluents. Input data like reaction rate constants and initial concentrations of bulk components of the effluent organic matter (EfOM) were derived from experimental batch tests. Additionally, well-known correlations for the mass transfer were implemented into the simulation model. The CFD model was calibrated and validated by full-scale process data and by analytical measurements for micropollutants. The results show a good consistency of simulated values and measured data. Therewith, the validated CFD model described in this study proved to be suited for the application of secondary effluent ozonation. By implementing site-specific ozone exposition and the given reactor geometry the described CFD model can be easily adopted for similar applications.

  19. Simulation studies on the standing and traveling wave thermoacoustic prime movers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skaria, Mathew; Rasheed, K. K. Abdul; Shafi, K. A.

    Thermoacoustic systems have been a focus of recent research due to its structural simplicity, high reliability due to absence of moving parts, and can be driven by low grade energy such as fuel, gas, solar energy, waste heat etc. There has been extensive research on both standing wave and traveling wave systems. Towards the development of such systems, simulations can be carried out by several methods such as (a) solving the energy equation, (b) enthalpy flow model, (c) DeltaEC, a free software available from LANL, USA (d) Computational Fluid Dynamics (CFD) etc. We present here the simulation studies of standingmore » wave and traveling wave thermoacoustic prime movers using CFD and DeltaEC. The CFD analysis is carried out using Fluent 6.3.26, incorporating the necessary boundary conditions with different working fluids at different operating pressures. The results obtained by CFD are compared with those obtained using DeltaEC. Also, the CFD simulation of the thermoacoustically driven refrigerator is presented.« less

  20. Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.

    1994-01-01

    As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.

  1. Evaluation of general non-reflecting boundary conditions for industrial CFD applications

    NASA Astrophysics Data System (ADS)

    Basara, Branislav; Frolov, Sergei; Lidskii, Boris; Posvyanskii, Vladimir

    2007-11-01

    The importance of having proper boundary conditions for the calculation domain is a known issue in Computational Fluid Dynamics (CFD). In many situations, it is very difficult to define a correct boundary condition. The flow may enter and leave the computational domain at the same time and at the same boundary. In such circumstances, it is important that numerical implementation of boundary conditions enforces certain physical constraints leading to correct results which then ensures a better convergence rate. The aim of this paper is to evaluate recently proposed non-reflecting boundary conditions (Frolov et al., 2001, Advances in Chemical Propulsion) on industrial CFD applications. Derivation of the local non-reflecting boundary conditions at the open boundary is based on finding the solution of linearized Euler equations vanishing at infinity for both incompressible and compressible formulations. This is implemented into the in-house CFD package AVL FIRE and some numerical details will be presented as well. The key applications in this paper are from automotive industry, e.g. an external car aerodynamics, an intake port, etc. The results will show benefits of using effective non-reflecting boundary conditions.

  2. Integrated geometry and grid generation system for complex configurations

    NASA Technical Reports Server (NTRS)

    Akdag, Vedat; Wulf, Armin

    1992-01-01

    A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.

  3. pyam: Python Implementation of YaM

    NASA Technical Reports Server (NTRS)

    Myint, Steven; Jain, Abhinandan

    2012-01-01

    pyam is a software development framework with tools for facilitating the rapid development of software in a concurrent software development environment. pyam provides solutions for development challenges associated with software reuse, managing multiple software configurations, developing software product lines, and multiple platform development and build management. pyam uses release-early, release-often development cycles to allow developers to integrate their changes incrementally into the system on a continual basis. It facilitates the creation and merging of branches to support the isolated development of immature software to avoid impacting the stability of the development effort. It uses modules and packages to organize and share software across multiple software products, and uses the concepts of link and work modules to reduce sandbox setup times even when the code-base is large. One sidebenefit is the enforcement of a strong module-level encapsulation of a module s functionality and interface. This increases design transparency, system stability, and software reuse. pyam is written in Python and is organized as a set of utilities on top of the open source SVN software version control package. All development software is organized into a collection of modules. pyam packages are defined as sub-collections of the available modules. Developers can set up private sandboxes for module/package development. All module/package development takes place on private SVN branches. High-level pyam commands support the setup, update, and release of modules and packages. Released and pre-built versions of modules are available to developers. Developers can tailor the source/link module mix for their sandboxes so that new sandboxes (even large ones) can be built up easily and quickly by pointing to pre-existing module releases. All inter-module interfaces are publicly exported via links. A minimal, but uniform, convention is used for building modules.

  4. Fluid-structure coupling for wind turbine blade analysis using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Dose, Bastian; Herraez, Ivan; Peinke, Joachim

    2015-11-01

    Modern wind turbine rotor blades are designed increasingly large and flexible. This structural flexibility represents a problem for the field of Computational Fluid Dynamics (CFD), which is used for accurate load calculations and detailed investigations of rotor aerodynamics. As the blade geometries within CFD simulations are considered stiff, the effect of blade deformation caused by aerodynamic loads cannot be captured by the common CFD approach. Coupling the flow solver with a structural solver can overcome this restriction and enables the investigation of flexible wind turbine blades. For this purpose, a new Finite Element (FE) solver was implemented into the open source CFD code OpenFOAM. Using a beam element formulation based on the Geometrically Exact Beam Theory (GEBT), the structural model can capture geometric non-linearities such as large deformations. Coupled with CFD solvers of the OpenFOAM package, the new framework represents a powerful tool for aerodynamic investigations. In this work, we investigated the aerodynamic performance of a state of the art wind turbine. For different wind speeds, aerodynamic key parameters are evaluated and compared for both, rigid and flexible blade geometries. The present work is funded within the framework of the joint project Smart Blades (0325601D) by the German Federal Ministry for Economic Affairs and Energy (BMWi) under decision of the German Federal Parliament.

  5. Craniux: A LabVIEW-Based Modular Software Framework for Brain-Machine Interface Research

    DTIC Science & Technology

    2011-01-01

    open-source BMI software solu- tions are currently available, we feel that the Craniux software package fills a specific need in the realm of BMI...data, such as cortical source imaging using EEG or MEG recordings. It is with these characteristics in mind that we feel the Craniux software package...S. Adee, “Dean Kamen’s ‘luke arm’ prosthesis readies for clinical trials,” IEEE Spectrum, February 2008, http://spectrum .ieee.org/biomedical

  6. Three-dimensional finite volume modelling of blood flow in simulated angular neck abdominal aortic aneurysm

    NASA Astrophysics Data System (ADS)

    Algabri, Y. A.; Rookkapan, S.; Chatpun, S.

    2017-09-01

    An abdominal aortic aneurysm (AAA) is considered a deadly cardiovascular disease that defined as a focal dilation of blood artery. The healthy aorta size is between 15 and 24 mm based on gender, bodyweight, and age. When the diameter increased to 30 mm or more, the rupture can occur if it is kept growing or untreated. Moreover, the proximal angular neck of aneurysm is categorized as a significant morphological feature with prime harmful effects on endovascular aneurysm repair (EVAR). Flow pattern in pathological vessel can influence the vascular intervention. The aim of this study is to investigate the blood flow behaviours in angular neck abdominal aortic aneurysm with simulated geometry based on patient’s information using computational fluid dynamics (CFD). The 3D angular neck AAA models have been designed by using SolidWorks Software. Consequently, CFD tools are used for simulating these 3D models of angular neck AAA in ANSYS FLUENT Software. Eventually, based on the results, we summarized that the CFD techniques have shown high performance in explaining and investigating the flow patterns for angular neck abdominal aortic aneurysm.

  7. Automated CFD Parameter Studies on Distributed Parallel Computers

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Aftosmis, Michael; Pandya, Shishir; Tejnil, Edward; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The objective of the current work is to build a prototype software system which will automated the process of running CFD jobs on Information Power Grid (IPG) resources. This system should remove the need for user monitoring and intervention of every single CFD job. It should enable the use of many different computers to populate a massive run matrix in the shortest time possible. Such a software system has been developed, and is known as the AeroDB script system. The approach taken for the development of AeroDB was to build several discrete modules. These include a database, a job-launcher module, a run-manager module to monitor each individual job, and a web-based user portal for monitoring of the progress of the parameter study. The details of the design of AeroDB are presented in the following section. The following section provides the results of a parameter study which was performed using AeroDB for the analysis of a reusable launch vehicle (RLV). The paper concludes with a section on the lessons learned in this effort, and ideas for future work in this area.

  8. Astronomical Software Directory Service

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Payne, H.; Hayes, J.

    1998-01-01

    This is the final report on the development of the Astronomical Software Directory Service (ASDS), a distributable, searchable, WWW-based database of software packages and their related documentation. ASDS provides integrated access to 56 astronomical software packages, with more than 16,000 URL's indexed for full-text searching.

  9. Quantitative evaluation of software packages for single-molecule localization microscopy.

    PubMed

    Sage, Daniel; Kirshner, Hagai; Pengo, Thomas; Stuurman, Nico; Min, Junhong; Manley, Suliana; Unser, Michael

    2015-08-01

    The quality of super-resolution images obtained by single-molecule localization microscopy (SMLM) depends largely on the software used to detect and accurately localize point sources. In this work, we focus on the computational aspects of super-resolution microscopy and present a comprehensive evaluation of localization software packages. Our philosophy is to evaluate each package as a whole, thus maintaining the integrity of the software. We prepared synthetic data that represent three-dimensional structures modeled after biological components, taking excitation parameters, noise sources, point-spread functions and pixelation into account. We then asked developers to run their software on our data; most responded favorably, allowing us to present a broad picture of the methods available. We evaluated their results using quantitative and user-interpretable criteria: detection rate, accuracy, quality of image reconstruction, resolution, software usability and computational resources. These metrics reflect the various tradeoffs of SMLM software packages and help users to choose the software that fits their needs.

  10. Browndye: A Software Package for Brownian Dynamics

    PubMed Central

    McCammon, J. Andrew

    2010-01-01

    A new software package, Browndye, is presented for simulating the diffusional encounter of two large biological molecules. It can be used to estimate second-order rate constants and encounter probabilities, and to explore reaction trajectories. Browndye builds upon previous knowledge and algorithms from software packages such as UHBD, SDA, and Macrodox, while implementing algorithms that scale to larger systems. PMID:21132109

  11. Development of a software package for solid-angle calculations using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Chen, Xiulian; Zhang, Changsheng; Li, Gang; Xu, Jiayun; Sun, Guangai

    2014-02-01

    Solid-angle calculations play an important role in the absolute calibration of radioactivity measurement systems and in the determination of the activity of radioactive sources, which are often complicated. In the present paper, a software package is developed to provide a convenient tool for solid-angle calculations in nuclear physics. The proposed software calculates solid angles using the Monte Carlo method, in which a new type of variance reduction technique was integrated. The package, developed under the environment of Microsoft Foundation Classes (MFC) in Microsoft Visual C++, has a graphical user interface, in which, the visualization function is integrated in conjunction with OpenGL. One advantage of the proposed software package is that it can calculate the solid angle subtended by a detector with different geometric shapes (e.g., cylinder, square prism, regular triangular prism or regular hexagonal prism) to a point, circular or cylindrical source without any difficulty. The results obtained from the proposed software package were compared with those obtained from previous studies and calculated using Geant4. It shows that the proposed software package can produce accurate solid-angle values with a greater computation speed than Geant4.

  12. Computational fluid dynamics (CFD) study on the fetal aortic coarctation

    NASA Astrophysics Data System (ADS)

    Zhou, Yue; Zhang, Yutao; Wang, Jingying

    2018-03-01

    Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.

  13. Can I Trust This Software Package? An Exercise in Validation of Computational Results

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Brauner, Neima; Ashurst, W. Robert; Cutlip, Michael B.

    2008-01-01

    Mathematical software packages such as Polymath, MATLAB, and Mathcad are currently widely used for engineering problem solving. Applications of several of these packages to typical chemical engineering problems have been demonstrated by Cutlip, et al. The main characteristic of these packages is that they provide a "problem-solving environment…

  14. Ship Air Wake Detection Using a Small Fixed Wing Unmanned Aerial Vehicle

    NASA Astrophysics Data System (ADS)

    Phelps, David M.

    A ship's air wake is dynamically detected using an airborne inertial measurement unit (IMU) and global positioning system (GPS) attached to a fixed wing unmanned aerial system. A fixed wing unmanned aerial system (UAS) was flown through the air wake created by an underway 108 ft (32.9m) long research vessel in pre designated flight paths. The instrumented aircraft was used to validate computational fluid dynamic (CFD) simulations of naval ship air wakes. Computer models of the research ship and the fixed wing UAS were generated and gridded using NASA's TetrUSS software. Simulations were run using Kestrel, a Department of Defense CFD software to validate the physical experimental data collection method. Air wake simulations were run at various relative wind angles and speeds. The fixed wing UAS was subjected to extensive wind tunnel testing to generate a table of aerodynamic coefficients as a function of control surface deflections, angle of attack and sideslip. The wind tunnel experimental data was compared against similarly structured CFD experiments to validate the grid and model of fixed wing UAS. Finally, a CFD simulation of the fixed wing UAV flying through the generated wake was completed. Forces on the instrumented aircraft were calculated from the data collected by the IMU. Comparison of experimental and simulation data showed that the fixed wing UAS could detect interactions with the ship air wake.

  15. Massive separation around bluff bodies: comparisons among different cfd solvers and turbulence models

    NASA Astrophysics Data System (ADS)

    Armenio, Vincenzo; Fakhari, Ahmad; Petronio, Andrea; Padovan, Roberta; Pittaluga, Chiara; Caprino, Giovanni

    2015-11-01

    Massive flow separation is ubiquitous in industrial applications, ruling drag and hydrodynamic noise. In spite of considerable efforts, its numerical prediction still represents a challenge for CFD models in use in engineering. Aside commercial software, over the latter years the opensource software OpenFOAMR (OF) has emerged as a valid tool for prediction of complex industrial flows. In the present work, we simulate two flows representative of a class of situations occurring in industrial problems: the flow around sphere and that around a wall-mounted square cylinder at Re = 10000 . We compare the performance two different tools, namely OF and ANSYS CFX 15.0 (CFX) using different unstructured grids and turbulence models. The grids have been generated using SNAPPYHEXMESH and ANSYS ICEM CFD 15.0 with different near wall resolutions. The codes have been run in a RANS mode using k - ɛ model (OF) and SST - k - ω (CFX) with and without wall-layer models. OF has been also used in LES, WMLES and DES mode. Regarding the sphere, RANS models were not able to catch separation, while good prediction of separation and distribution of stresses over the surface were obtained using LES, WMLES and DES. Results for the second test case are currently under analysis. Financial support from COSMO ``cfd open source per opera mortta'' PAR FSC 2007-2013, Friuli Venezia Giulia.

  16. International Inventory of Software Packages in the Information Field.

    ERIC Educational Resources Information Center

    Keren, Carl, Ed.; Sered, Irina, Ed.

    Designed to provide guidance in selecting appropriate software for library automation, information storage and retrieval, or management of bibliographic databases, this inventory describes 188 computer software packages. The information was obtained through a questionnaire survey of 600 software suppliers and developers who were asked to describe…

  17. ATLAS software configuration and build tool optimisation

    NASA Astrophysics Data System (ADS)

    Rybkin, Grigory; Atlas Collaboration

    2014-06-01

    ATLAS software code base is over 6 million lines organised in about 2000 packages. It makes use of some 100 external software packages, is developed by more than 400 developers and used by more than 2500 physicists from over 200 universities and laboratories in 6 continents. To meet the challenge of configuration and building of this software, the Configuration Management Tool (CMT) is used. CMT expects each package to describe its build targets, build and environment setup parameters, dependencies on other packages in a text file called requirements, and each project (group of packages) to describe its policies and dependencies on other projects in a text project file. Based on the effective set of configuration parameters read from the requirements files of dependent packages and project files, CMT commands build the packages, generate the environment for their use, or query the packages. The main focus was on build time performance that was optimised within several approaches: reduction of the number of reads of requirements files that are now read once per package by a CMT build command that generates cached requirements files for subsequent CMT build commands; introduction of more fine-grained build parallelism at package task level, i.e., dependent applications and libraries are compiled in parallel; code optimisation of CMT commands used for build; introduction of package level build parallelism, i. e., parallelise the build of independent packages. By default, CMT launches NUMBER-OF-PROCESSORS build commands in parallel. The other focus was on CMT commands optimisation in general that made them approximately 2 times faster. CMT can generate a cached requirements file for the environment setup command, which is especially useful for deployment on distributed file systems like AFS or CERN VMFS. The use of parallelism, caching and code optimisation significantly-by several times-reduced software build time, environment setup time, increased the efficiency of multi-core computing resources utilisation, and considerably improved software developer and user experience.

  18. Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

    The US Army Corps of Engineers Portland District (CENWP) has developed a computational fluid dynamics (CFD) model of the John Day forebay on the Columbia River to aid in the development and design of alternatives to improve juvenile salmon passage at the John Day Project. At the request of CENWP, Pacific Northwest National Laboratory (PNNL) Hydrology Group has conducted a technical review of CENWP's CFD model run in CFD solver software, STAR-CD. PNNL has extensive experience developing and applying 3D CFD models run in STAR-CD for Columbia River hydroelectric projects. The John Day forebay model developed by CENWP is adequatelymore » configured and validated. The model is ready for use simulating forebay hydraulics for structural and operational alternatives. The approach and method are sound, however CENWP has identified some improvements that need to be made for future models and for modifications to this existing model.« less

  19. OpenFOAM: Open source CFD in research and industry

    NASA Astrophysics Data System (ADS)

    Jasak, Hrvoje

    2009-12-01

    The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.

  20. Glioblastoma Segmentation: Comparison of Three Different Software Packages.

    PubMed

    Fyllingen, Even Hovig; Stensjøen, Anne Line; Berntsen, Erik Magnus; Solheim, Ole; Reinertsen, Ingerid

    2016-01-01

    To facilitate a more widespread use of volumetric tumor segmentation in clinical studies, there is an urgent need for reliable, user-friendly segmentation software. The aim of this study was therefore to compare three different software packages for semi-automatic brain tumor segmentation of glioblastoma; namely BrainVoyagerTM QX, ITK-Snap and 3D Slicer, and to make data available for future reference. Pre-operative, contrast enhanced T1-weighted 1.5 or 3 Tesla Magnetic Resonance Imaging (MRI) scans were obtained in 20 consecutive patients who underwent surgery for glioblastoma. MRI scans were segmented twice in each software package by two investigators. Intra-rater, inter-rater and between-software agreement was compared by using differences of means with 95% limits of agreement (LoA), Dice's similarity coefficients (DSC) and Hausdorff distance (HD). Time expenditure of segmentations was measured using a stopwatch. Eighteen tumors were included in the analyses. Inter-rater agreement was highest for BrainVoyager with difference of means of 0.19 mL and 95% LoA from -2.42 mL to 2.81 mL. Between-software agreement and 95% LoA were very similar for the different software packages. Intra-rater, inter-rater and between-software DSC were ≥ 0.93 in all analyses. Time expenditure was approximately 41 min per segmentation in BrainVoyager, and 18 min per segmentation in both 3D Slicer and ITK-Snap. Our main findings were that there is a high agreement within and between the software packages in terms of small intra-rater, inter-rater and between-software differences of means and high Dice's similarity coefficients. Time expenditure was highest for BrainVoyager, but all software packages were relatively time-consuming, which may limit usability in an everyday clinical setting.

  1. Evaluation of copy number variation detection for a SNP array platform

    PubMed Central

    2014-01-01

    Background Copy Number Variations (CNVs) are usually inferred from Single Nucleotide Polymorphism (SNP) arrays by use of some software packages based on given algorithms. However, there is no clear understanding of the performance of these software packages; it is therefore difficult to select one or several software packages for CNV detection based on the SNP array platform. We selected four publicly available software packages designed for CNV calling from an Affymetrix SNP array, including Birdsuite, dChip, Genotyping Console (GTC) and PennCNV. The publicly available dataset generated by Array-based Comparative Genomic Hybridization (CGH), with a resolution of 24 million probes per sample, was considered to be the “gold standard”. Compared with the CGH-based dataset, the success rate, average stability rate, sensitivity, consistence and reproducibility of these four software packages were assessed compared with the “gold standard”. Specially, we also compared the efficiency of detecting CNVs simultaneously by two, three and all of the software packages with that by a single software package. Results Simply from the quantity of the detected CNVs, Birdsuite detected the most while GTC detected the least. We found that Birdsuite and dChip had obvious detecting bias. And GTC seemed to be inferior because of the least amount of CNVs it detected. Thereafter we investigated the detection consistency produced by one certain software package and the rest three software suits. We found that the consistency of dChip was the lowest while GTC was the highest. Compared with the CNVs detecting result of CGH, in the matching group, GTC called the most matching CNVs, PennCNV-Affy ranked second. In the non-overlapping group, GTC called the least CNVs. With regards to the reproducibility of CNV calling, larger CNVs were usually replicated better. PennCNV-Affy shows the best consistency while Birdsuite shows the poorest. Conclusion We found that PennCNV outperformed the other three packages in the sensitivity and specificity of CNV calling. Obviously, each calling method had its own limitations and advantages for different data analysis. Therefore, the optimized calling methods might be identified using multiple algorithms to evaluate the concordance and discordance of SNP array-based CNV calling. PMID:24555668

  2. Features of free software packages in flow cytometry: a comparison between four non-commercial software sources.

    PubMed

    Sahraneshin Samani, Fazel; Moore, Jodene K; Khosravani, Pardis; Ebrahimi, Marzieh

    2014-08-01

    Flow cytometers designed to analyze large particles are enabling new applications in biology. Data analysis is a critical component of the process FCM. In this article we compare features of four free software packages including WinMDI, Cyflogic, Flowing software, and Cytobank.

  3. Development of a Nevada Statewide Database for Safety Analyst Software

    DOT National Transportation Integrated Search

    2017-02-02

    Safety Analyst is a software package developed by the Federal Highway Administration (FHWA) and twenty-seven participating state and local agencies including the Nevada Department of Transportation (NDOT). The software package implemented many of the...

  4. Computer Aided Drafting Packages for Secondary Education. Edition 2. PC DOS Compatible Programs. A MicroSIFT Quarterly Report.

    ERIC Educational Resources Information Center

    Pollard, Jim

    This report reviews eight IBM-compatible software packages that are available to secondary schools to teach computer-aided drafting (CAD). Software packages to be considered were selected following reviews of CAD periodicals, computers in education periodicals, advertisements, and recommendations of teachers. The packages were then rated by…

  5. Integrated Computational System for Aerodynamic Steering and Visualization

    NASA Technical Reports Server (NTRS)

    Hesselink, Lambertus

    1999-01-01

    In February of 1994, an effort from the Fluid Dynamics and Information Sciences Divisions at NASA Ames Research Center with McDonnel Douglas Aerospace Company and Stanford University was initiated to develop, demonstrate, validate and disseminate automated software for numerical aerodynamic simulation. The goal of the initiative was to develop a tri-discipline approach encompassing CFD, Intelligent Systems, and Automated Flow Feature Recognition to improve the utility of CFD in the design cycle. This approach would then be represented through an intelligent computational system which could accept an engineer's definition of a problem and construct an optimal and reliable CFD solution. Stanford University's role focused on developing technologies that advance visualization capabilities for analysis of CFD data, extract specific flow features useful for the design process, and compare CFD data with experimental data. During the years 1995-1997, Stanford University focused on developing techniques in the area of tensor visualization and flow feature extraction. Software libraries were created enabling feature extraction and exploration of tensor fields. As a proof of concept, a prototype system called the Integrated Computational System (ICS) was developed to demonstrate CFD design cycle. The current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching and vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will (1) briefly review the technologies developed during 1995-1997 (2) describe current technologies in the area of comparison techniques, (4) describe the theory of our new method researched during the grant year (5) summarize a few of the results and finally (6) discuss work within the last 6 months that are direct extensions from the grant.

  6. QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.

    PubMed

    Jung, Sang-Kyu; Aleman-Meza, Boanerges; Riepe, Celeste; Zhong, Weiwei

    2014-01-01

    Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.

  7. Vertical bone measurements from cone beam computed tomography images using different software packages.

    PubMed

    Vasconcelos, Taruska Ventorini; Neves, Frederico Sampaio; Moraes, Lívia Almeida Bueno; Freitas, Deborah Queiroz

    2015-01-01

    This article aimed at comparing the accuracy of linear measurement tools of different commercial software packages. Eight fully edentulous dry mandibles were selected for this study. Incisor, canine, premolar, first molar and second molar regions were selected. Cone beam computed tomography (CBCT) images were obtained with i-CAT Next Generation. Linear bone measurements were performed by one observer on the cross-sectional images using three different software packages: XoranCat®, OnDemand3D® and KDIS3D®, all able to assess DICOM images. In addition, 25% of the sample was reevaluated for the purpose of reproducibility. The mandibles were sectioned to obtain the gold standard for each region. Intraclass coefficients (ICC) were calculated to examine the agreement between the two periods of evaluation; the one-way analysis of variance performed with the post-hoc Dunnett test was used to compare each of the software-derived measurements with the gold standard. The ICC values were excellent for all software packages. The least difference between the software-derived measurements and the gold standard was obtained with the OnDemand3D and KDIS3D (-0.11 and -0.14 mm, respectively), and the greatest, with the XoranCAT (+0.25 mm). However, there was no statistical significant difference between the measurements obtained with the different software packages and the gold standard (p> 0.05). In conclusion, linear bone measurements were not influenced by the software package used to reconstruct the image from CBCT DICOM data.

  8. Differential maneuvering simulator data reduction and analysis software

    NASA Technical Reports Server (NTRS)

    Beasley, G. P.; Sigman, R. S.

    1972-01-01

    A multielement data reduction and analysis software package has been developed for use with the Langley differential maneuvering simulator (DMS). This package, which has several independent elements, was developed to support all phases of DMS aircraft simulation studies with a variety of both graphical and tabular information. The overall software package is considered unique because of the number, diversity, and sophistication of the element programs available for use in a single study. The purpose of this paper is to discuss the overall DMS data reduction and analysis package by reviewing the development of the various elements of the software, showing typical results that can be obtained, and discussing how each element can be used.

  9. Advanced applications of numerical modelling techniques for clay extruder design

    NASA Astrophysics Data System (ADS)

    Kandasamy, Saravanakumar

    Ceramic materials play a vital role in our day to day life. Recent advances in research, manufacture and processing techniques and production methodologies have broadened the scope of ceramic products such as bricks, pipes and tiles, especially in the construction industry. These are mainly manufactured using an extrusion process in auger extruders. During their long history of application in the ceramic industry, most of the design developments of extruder systems have resulted from expensive laboratory-based experimental work and field-based trial and error runs. In spite of these design developments, the auger extruders continue to be energy intensive devices with high operating costs. Limited understanding of the physical process involved in the process and the cost and time requirements of lab-based experiments were found to be the major obstacles in the further development of auger extruders.An attempt has been made herein to use Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) based numerical modelling techniques to reduce the costs and time associated with research into design improvement by experimental trials. These two techniques, although used widely in other engineering applications, have rarely been applied for auger extruder development. This had been due to a number of reasons including technical limitations of CFD tools previously available. Modern CFD and FEA software packages have much enhanced capabilities and allow the modelling of the flow of complex fluids such as clay.This research work presents a methodology in using Herschel-Bulkley's fluid flow based CFD model to simulate and assess the flow of clay-water mixture through the extruder and the die of a vacuum de-airing type clay extrusion unit used in ceramic extrusion. The extruder design and the operating parameters were varied to study their influence on the power consumption and the extrusion pressure. The model results were then validated using results from experimental trials on a scaled extruder which seemed to be in reasonable agreement with the former. The modelling methodology was then extended to full-scale industrial extruders. The technical and commercialsuitability of using light weight materials to manufacture extruder components was also investigated. The stress and deformation induced on the components, due to extrusion pressure, was analysed using FEA and suitable alternative materials were identified. A cost comparison was then made for different extruder materials. The results show potential of significant technical and commercial benefits to the ceramic industry.

  10. AirShow 1.0 CFD Software Users' Guide

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2005-01-01

    AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.

  11. Large Scale Software Building with CMake in ATLAS

    NASA Astrophysics Data System (ADS)

    Elmsheuser, J.; Krasznahorkay, A.; Obreshkov, E.; Undrus, A.; ATLAS Collaboration

    2017-10-01

    The offline software of the ATLAS experiment at the Large Hadron Collider (LHC) serves as the platform for detector data reconstruction, simulation and analysis. It is also used in the detector’s trigger system to select LHC collision events during data taking. The ATLAS offline software consists of several million lines of C++ and Python code organized in a modular design of more than 2000 specialized packages. Because of different workflows, many stable numbered releases are in parallel production use. To accommodate specific workflow requests, software patches with modified libraries are distributed on top of existing software releases on a daily basis. The different ATLAS software applications also require a flexible build system that strongly supports unit and integration tests. Within the last year this build system was migrated to CMake. A CMake configuration has been developed that allows one to easily set up and build the above mentioned software packages. This also makes it possible to develop and test new and modified packages on top of existing releases. The system also allows one to detect and execute partial rebuilds of the release based on single package changes. The build system makes use of CPack for building RPM packages out of the software releases, and CTest for running unit and integration tests. We report on the migration and integration of the ATLAS software to CMake and show working examples of this large scale project in production.

  12. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri

    2014-01-01

    This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.

  13. Western aeronautical test range real-time graphics software package MAGIC

    NASA Technical Reports Server (NTRS)

    Malone, Jacqueline C.; Moore, Archie L.

    1988-01-01

    The master graphics interactive console (MAGIC) software package used on the Western Aeronautical Test Range (WATR) of the NASA Ames Research Center is described. MAGIC is a resident real-time research tool available to flight researchers-scientists in the NASA mission control centers of the WATR at the Dryden Flight Research Facility at Edwards, California. The hardware configuration and capabilities of the real-time software package are also discussed.

  14. CheMentor Software System by H. A. Peoples

    NASA Astrophysics Data System (ADS)

    Reid, Brian P.

    1997-09-01

    CheMentor Software System H. A. Peoples. Computerized Learning Enhancements: http://www.ecis.com/~clehap; email: clehap@ecis.com; 1996 - 1997. CheMentor is a series of software packages for introductory-level chemistry, which includes Practice Items (I), Stoichiometry (I), Calculating Chemical Formulae, and the CheMentor Toolkit. The first three packages provide practice problems for students and various types of help to solve them; the Toolkit includes "calculators" for determining chemical quantities as well as the Practice Items (I) set of problems. The set of software packages is designed so that each individual product acts as a module of a common CheMentor program. As the name CheMentor implies, the software is designed as a "mentor" for students learning introductory chemistry concepts and problems. The typical use of the software would be by individual students (or perhaps small groups) as an adjunct to lectures. CheMentor is a HyperCard application and the modules are HyperCard stacks. The requirements to run the packages include a Macintosh computer with at least 1 MB of RAM, a hard drive with several MB of available space depending upon the packages selected (10 MB were required for all the packages reviewed here), and the Mac operating system 6.0.5 or later.

  15. Playing with Plug-ins

    ERIC Educational Resources Information Center

    Thompson, Douglas E.

    2013-01-01

    In today's complex music software packages, many features can remain unexplored and unused. Software plug-ins--available in most every music software package, yet easily overlooked in the software's basic operations--are one such feature. In this article, I introduce readers to plug-ins and offer tips for purchasing plug-ins I have…

  16. A Numerical Modeling Framework for Cohesive Sediment Transport Driven by Waves and Tidal Currents

    DTIC Science & Technology

    2012-09-30

    for sediment transport. The successful extension to multi-dimensions is benefited from an open-source CFD package, OpenFOAM (www.openfoam.org). This...linz.at/Drupal/), which couples the fluid solver OpenFOAM with the Discrete Element Model (DEM) solver LIGGGHTS (an improved LAMMPS for granular flow

  17. PelePhysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2017-05-17

    PelePhysics is a suite of physics packages that provides functionality of use to reacting hydrodynamics CFD codes. The initial release includes an interface to reaction rate mechanism evaluation, transport coefficient evaluation, and a generalized equation of state (EOS) facility. Both generic evaluators and interfaces to code from externally available tools (Fuego for chemical rates, EGLib for transport coefficients) are provided.

  18. An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept

    ERIC Educational Resources Information Center

    Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.

    2007-01-01

    An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,…

  19. Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics.

    PubMed

    Chi, Albert; Curi, Sebastian; Clayton, Kevin; Luciano, David; Klauber, Kameron; Alexander-Katz, Alfredo; D'hers, Sebastian; Elman, Noel M

    2014-08-01

    Rapid Reconstitution Packages (RRPs) are portable platforms that integrate microfluidics for rapid reconstitution of lyophilized drugs. Rapid reconstitution of lyophilized drugs using standard vials and syringes is an error-prone process. RRPs were designed using computational fluid dynamics (CFD) techniques to optimize fluidic structures for rapid mixing and integrating physical properties of targeted drugs and diluents. Devices were manufactured using stereo lithography 3D printing for micrometer structural precision and rapid prototyping. Tissue plasminogen activator (tPA) was selected as the initial model drug to test the RRPs as it is unstable in solution. tPA is a thrombolytic drug, stored in lyophilized form, required in emergency settings for which rapid reconstitution is of critical importance. RRP performance and drug stability were evaluated by high-performance liquid chromatography (HPLC) to characterize release kinetics. In addition, enzyme-linked immunosorbent assays (ELISAs) were performed to test for drug activity after the RRPs were exposed to various controlled temperature conditions. Experimental results showed that RRPs provided effective reconstitution of tPA that strongly correlated with CFD results. Simulation and experimental results show that release kinetics can be adjusted by tuning the device structural dimensions and diluent drug physical parameters. The design of RRPs can be tailored for a number of applications by taking into account physical parameters of the active pharmaceutical ingredients (APIs), excipients, and diluents. RRPs are portable platforms that can be utilized for reconstitution of emergency drugs in time-critical therapies.

  20. Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging.

    PubMed

    Bonekamp, S; Ghosh, P; Crawford, S; Solga, S F; Horska, A; Brancati, F L; Diehl, A M; Smith, S; Clark, J M

    2008-01-01

    To examine five available software packages for the assessment of abdominal adipose tissue with magnetic resonance imaging, compare their features and assess the reliability of measurement results. Feature evaluation and test-retest reliability of softwares (NIHImage, SliceOmatic, Analyze, HippoFat and EasyVision) used in manual, semi-automated or automated segmentation of abdominal adipose tissue. A random sample of 15 obese adults with type 2 diabetes. Axial T1-weighted spin echo images centered at vertebral bodies of L2-L3 were acquired at 1.5 T. Five software packages were evaluated (NIHImage, SliceOmatic, Analyze, HippoFat and EasyVision), comparing manual, semi-automated and automated segmentation approaches. Images were segmented into cross-sectional area (CSA), and the areas of visceral (VAT) and subcutaneous adipose tissue (SAT). Ease of learning and use and the design of the graphical user interface (GUI) were rated. Intra-observer accuracy and agreement between the software packages were calculated using intra-class correlation. Intra-class correlation coefficient was used to obtain test-retest reliability. Three of the five evaluated programs offered a semi-automated technique to segment the images based on histogram values or a user-defined threshold. One software package allowed manual delineation only. One fully automated program demonstrated the drawbacks of uncritical automated processing. The semi-automated approaches reduced variability and measurement error, and improved reproducibility. There was no significant difference in the intra-observer agreement in SAT and CSA. The VAT measurements showed significantly lower test-retest reliability. There were some differences between the software packages in qualitative aspects, such as user friendliness. Four out of five packages provided essentially the same results with respect to the inter- and intra-rater reproducibility. Our results using SliceOmatic, Analyze or NIHImage were comparable and could be used interchangeably. Newly developed fully automated approaches should be compared to one of the examined software packages.

  1. Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging

    PubMed Central

    Bonekamp, S; Ghosh, P; Crawford, S; Solga, SF; Horska, A; Brancati, FL; Diehl, AM; Smith, S; Clark, JM

    2009-01-01

    Objective To examine five available software packages for the assessment of abdominal adipose tissue with magnetic resonance imaging, compare their features and assess the reliability of measurement results. Design Feature evaluation and test–retest reliability of softwares (NIHImage, SliceOmatic, Analyze, HippoFat and EasyVision) used in manual, semi-automated or automated segmentation of abdominal adipose tissue. Subjects A random sample of 15 obese adults with type 2 diabetes. Measurements Axial T1-weighted spin echo images centered at vertebral bodies of L2–L3 were acquired at 1.5 T. Five software packages were evaluated (NIHImage, SliceOmatic, Analyze, HippoFat and EasyVision), comparing manual, semi-automated and automated segmentation approaches. Images were segmented into cross-sectional area (CSA), and the areas of visceral (VAT) and subcutaneous adipose tissue (SAT). Ease of learning and use and the design of the graphical user interface (GUI) were rated. Intra-observer accuracy and agreement between the software packages were calculated using intra-class correlation. Intra-class correlation coefficient was used to obtain test–retest reliability. Results Three of the five evaluated programs offered a semi-automated technique to segment the images based on histogram values or a user-defined threshold. One software package allowed manual delineation only. One fully automated program demonstrated the drawbacks of uncritical automated processing. The semi-automated approaches reduced variability and measurement error, and improved reproducibility. There was no significant difference in the intra-observer agreement in SAT and CSA. The VAT measurements showed significantly lower test–retest reliability. There were some differences between the software packages in qualitative aspects, such as user friendliness. Conclusion Four out of five packages provided essentially the same results with respect to the inter- and intra-rater reproducibility. Our results using SliceOmatic, Analyze or NIHImage were comparable and could be used interchangeably. Newly developed fully automated approaches should be compared to one of the examined software packages. PMID:17700582

  2. Introduction to Software Packages. [Final Report.

    ERIC Educational Resources Information Center

    Frankel, Sheila, Ed.; And Others

    This document provides an introduction to applications computer software packages that support functional managers in government and encourages the use of such packages as an alternative to in-house development. A review of current application areas includes budget/project management, financial management/accounting, payroll, personnel,…

  3. GENERAL PURPOSE ADA PACKAGES

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    Ten families of subprograms are bundled together for the General-Purpose Ada Packages. The families bring to Ada many features from HAL/S, PL/I, FORTRAN, and other languages. These families are: string subprograms (INDEX, TRIM, LOAD, etc.); scalar subprograms (MAX, MIN, REM, etc.); array subprograms (MAX, MIN, PROD, SUM, GET, and PUT); numerical subprograms (EXP, CUBIC, etc.); service subprograms (DATE_TIME function, etc.); Linear Algebra II; Runge-Kutta integrators; and three text I/O families of packages. In two cases, a family consists of a single non-generic package. In all other cases, a family comprises a generic package and its instances for a selected group of scalar types. All generic packages are designed to be easily instantiated for the types declared in the user facility. The linear algebra package is LINRAG2. This package includes subprograms supplementing those in NPO-17985, An Ada Linear Algebra Package Modeled After HAL/S (LINRAG). Please note that LINRAG2 cannot be compiled without LINRAG. Most packages have widespread applicability, although some are oriented for avionics applications. All are designed to facilitate writing new software in Ada. Several of the packages use conventions introduced by other programming languages. A package of string subprograms is based on HAL/S (a language designed for the avionics software in the Space Shuttle) and PL/I. Packages of scalar and array subprograms are taken from HAL/S or generalized current Ada subprograms. A package of Runge-Kutta integrators is patterned after a built-in MAC (MIT Algebraic Compiler) integrator. Those packages modeled after HAL/S make it easy to translate existing HAL/S software to Ada. The General-Purpose Ada Packages program source code is available on two 360K 5.25" MS-DOS format diskettes. The software was developed using VAX Ada v1.5 under DEC VMS v4.5. It should be portable to any validated Ada compiler and it should execute either interactively or in batch. The largest package requires 205K of main memory on a DEC VAX running VMS. The software was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  4. Effects of flow field on the metabolic characteristics of Streptomyces lincolnensis in the industrial fermentation of lincomycin.

    PubMed

    Li, Xiao; Zhang, Jiang; Tan, Ya-Li; Li, Zhi-Hong; Yu, Xue-Feng; Xia, Jian-Ye; Chu, Ju; Ge, You-Qun

    2013-01-01

    In this work, the flow field in the existing fermentor with radial-flow impellers (C1) was studied using the computational fluid dynamics (CFD) software package Fluent, then the fermentor with radial-axial flow impellers (C2) was constructed and was compared with the C1 fermentor by CFD and experimental research. The simulation results revealed that the flow field in C2 fermentor had characteristics such as higher turbulent kinetic energy, gas holdup and shear rates. Metabolic variables of Streptomyces lincolnensis in the two fermentors such as carbon and nitrogen source consumption rates, specific growth rates (μ), hyphae morphologies, and lincomycin productivities were further explored. The correlation analysis between the experimental measurements and the simulation results indicated that the hyphae clustering and dry cell weight (DCW) decreasing at production stage were eliminated in C2 fermentor, which had higher gas volumetric mass transfer coefficient (K(L)a), dissolved oxygen (DO) concentration and consumption rates of nutrient materials. When C2 was employed in the fermentor, the specific growth rate of S. lincolnensis at growth stage was higher, and the maintenance metabolism together with secondary metabolism at production stage was kept at higher levels. As a result, the yield of lincomycin was achieved 7039 μg ml(-1) when the 60 m(3) industrial fermentor was equipped with C2, which was increased by 46% compared to that obtained in the C1 fermentor. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. CFD simulation of local and global mixing time in an agitated tank

    NASA Astrophysics Data System (ADS)

    Li, Liangchao; Xu, Bin

    2017-01-01

    The Issue of mixing efficiency in agitated tanks has drawn serious concern in many industrial processes. The turbulence model is very critical to predicting mixing process in agitated tanks. On the basis of computational fluid dynamics(CFD) software package Fluent 6.2, the mixing characteristics in a tank agitated by dual six-blade-Rushton-turbines(6-DT) are predicted using the detached eddy simulation(DES) method. A sliding mesh(SM) approach is adopted to solve the rotation of the impeller. The simulated flow patterns and liquid velocities in the agitated tank are verified by experimental data in the literature. The simulation results indicate that the DES method can obtain more flow details than Reynolds-averaged Navier-Stokes(RANS) model. Local and global mixing time in the agitated tank is predicted by solving a tracer concentration scalar transport equation. The simulated results show that feeding points have great influence on mixing process and mixing time. Mixing efficiency is the highest for the feeding point at location of midway of the two impellers. Two methods are used to determine global mixing time and get close result. Dimensionless global mixing time remains unchanged with increasing of impeller speed. Parallel, merging and diverging flow pattern form in the agitated tank, respectively, by changing the impeller spacing and clearance of lower impeller from the bottom of the tank. The global mixing time is the shortest for the merging flow, followed by diverging flow, and the longest for parallel flow. The research presents helpful references for design, optimization and scale-up of agitated tanks with multi-impeller.

  6. Reduced order model based on principal component analysis for process simulation and optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Y.; Malacina, A.; Biegler, L.

    2009-01-01

    It is well-known that distributed parameter computational fluid dynamics (CFD) models provide more accurate results than conventional, lumped-parameter unit operation models used in process simulation. Consequently, the use of CFD models in process/equipment co-simulation offers the potential to optimize overall plant performance with respect to complex thermal and fluid flow phenomena. Because solving CFD models is time-consuming compared to the overall process simulation, we consider the development of fast reduced order models (ROMs) based on CFD results to closely approximate the high-fidelity equipment models in the co-simulation. By considering process equipment items with complicated geometries and detailed thermodynamic property models,more » this study proposes a strategy to develop ROMs based on principal component analysis (PCA). Taking advantage of commercial process simulation and CFD software (for example, Aspen Plus and FLUENT), we are able to develop systematic CFD-based ROMs for equipment models in an efficient manner. In particular, we show that the validity of the ROM is more robust within well-sampled input domain and the CPU time is significantly reduced. Typically, it takes at most several CPU seconds to evaluate the ROM compared to several CPU hours or more to solve the CFD model. Two case studies, involving two power plant equipment examples, are described and demonstrate the benefits of using our proposed ROM methodology for process simulation and optimization.« less

  7. Experimental Study and CFD Simulation of a 2D Circulating Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Kallio, S.; Guldén, M.; Hermanson, A.

    Computational fluid dynamics (CFD) gains popularity in fluidized bed modeling. For model validation, there is a need of detailed measurements under well-defined conditions. In the present study, experiments were carried out in a 40 em wide and 3 m high 2D circulating fluidized bed. Two experiments were simulated by means of the Eulerian multiphase models of the Fluent CFD software. The vertical pressure and solids volume fraction profiles and the solids circulation rate obtained from the simulation were compared to the experimental results. In addition, lateral volume fraction profiles could be compared. The simulated CFB flow patterns and the profiles obtained from simulations were in general in a good agreement with the experimental results.

  8. Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions

    NASA Technical Reports Server (NTRS)

    Choo, Yung K. (Compiler)

    1995-01-01

    The NASA Steering Committee for Surface Modeling and Grid Generation (SMAGG) sponsored a workshop on surface modeling, grid generation, and related issues in Computational Fluid Dynamics (CFD) solutions at Lewis Research Center, Cleveland, Ohio, May 9-11, 1995. The workshop provided a forum to identify industry needs, strengths, and weaknesses of the five grid technologies (patched structured, overset structured, Cartesian, unstructured, and hybrid), and to exchange thoughts about where each technology will be in 2 to 5 years. The workshop also provided opportunities for engineers and scientists to present new methods, approaches, and applications in SMAGG for CFD. This Conference Publication (CP) consists of papers on industry overview, NASA overview, five grid technologies, new methods/ approaches/applications, and software systems.

  9. A comparison of InVivoStat with other statistical software packages for analysis of data generated from animal experiments.

    PubMed

    Clark, Robin A; Shoaib, Mohammed; Hewitt, Katherine N; Stanford, S Clare; Bate, Simon T

    2012-08-01

    InVivoStat is a free-to-use statistical software package for analysis of data generated from animal experiments. The package is designed specifically for researchers in the behavioural sciences, where exploiting the experimental design is crucial for reliable statistical analyses. This paper compares the analysis of three experiments conducted using InVivoStat with other widely used statistical packages: SPSS (V19), PRISM (V5), UniStat (V5.6) and Statistica (V9). We show that InVivoStat provides results that are similar to those from the other packages and, in some cases, are more advanced. This investigation provides evidence of further validation of InVivoStat and should strengthen users' confidence in this new software package.

  10. Data Parallel Line Relaxation (DPLR) Code User Manual: Acadia - Version 4.01.1

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; White, Todd; Mangini, Nancy

    2009-01-01

    Data-Parallel Line Relaxation (DPLR) code is a computational fluid dynamic (CFD) solver that was developed at NASA Ames Research Center to help mission support teams generate high-value predictive solutions for hypersonic flow field problems. The DPLR Code Package is an MPI-based, parallel, full three-dimensional Navier-Stokes CFD solver with generalized models for finite-rate reaction kinetics, thermal and chemical non-equilibrium, accurate high-temperature transport coefficients, and ionized flow physics incorporated into the code. DPLR also includes a large selection of generalized realistic surface boundary conditions and links to enable loose coupling with external thermal protection system (TPS) material response and shock layer radiation codes.

  11. RSEIS and RFOC: Seismic Analysis in R

    NASA Astrophysics Data System (ADS)

    Lees, J. M.

    2015-12-01

    Open software is essential for reproducible scientific exchange. R-packages provide a platform for development of seismological investigation software that can be properly documented and traced for data processing. A suite of R packages designed for a wide range of seismic analysis is currently available in the free software platform called R. R is a software platform based on the S-language developed at Bell Labs decades ago. Routines in R can be run as standalone function calls, or developed in object-oriented mode. R comes with a base set of routines, and thousands of user developed packages. The packages developed at UNC include subroutines and interactive codes for processing seismic data, analyzing geographic information (GIS) and inverting data involved in a variety of geophysical applications. On CRAN (Comprehensive R Archive Network, http://www.r-project.org/) currently available packages related to seismic analysis are RSEIS, Rquake, GEOmap, RFOC, zoeppritz, RTOMO, and geophys, Rwave, PEIP, hht, rFDSN. These include signal processing, data management, mapping, earthquake location, deconvolution, focal mechanisms, wavelet transforms, Hilbert-Huang Transforms, tomographic inversion, and Mogi deformation among other useful functionality. All software in R packages is required to have detailed documentation, making the exchange and modification of existing software easy. In this presentation, I will focus on packages RSEIS and RFOC, showing examples from a variety of seismic analyses. The R approach has similarities to the popular (and expensive) MATLAB platform, although R is open source and free to down load.

  12. Laboratory Connections: Review of Two Commercial Interfacing Packages.

    ERIC Educational Resources Information Center

    Powers, Michael H.

    1989-01-01

    Evaluates two Apple II interfacing packages designed to measure pH: (1) "Experiments in Chemistry" by HRM Software and (2) "Voltage Plotter III" by Vernier Software. Provides characteristics and screen dumps of each package. Reports both systems are suitable for high school or beginning college laboratories. (MVL)

  13. MicroSIFT Courseware Evaluations [Set 15 (362-388) and Set 16 (389-441), with an Index Listing the Contents of Each Set (Sets 1-16) and a Cumulative Subject Index (Sets 1-16)].

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This document consists of 80 microcomputer software package evaluations prepared by the MicroSIFT (Microcomputer Software and Information for Teachers) Clearinghouse at the Northwest Regional Education Laboratory. Set 15 consists of 27 packages; set 16 consists of 53 packages. Each software review lists producer, time and place of evaluation,…

  14. Basic analysis of reflectometry data software package for the analysis of multilayered structures according to reflectometry data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astaf'ev, S. B., E-mail: bard@ns.crys.ras.ru; Shchedrin, B. M.; Yanusova, L. G.

    2012-01-15

    The main principles of developing the Basic Analysis of Reflectometry Data (BARD) software package, which is aimed at obtaining a unified (standardized) tool for analyzing the structure of thin multilayer films and nanostructures of different nature based on reflectometry data, are considered. This software package contains both traditionally used procedures for processing reflectometry data and the authors' original developments on the basis of new methods for carrying out and analyzing reflectometry experiments. The structure of the package, its functional possibilities, examples of application, and prospects of development are reviewed.

  15. Is liver perfusion CT reproducible? A study on intra- and interobserver agreement of normal hepatic haemodynamic parameters obtained with two different software packages.

    PubMed

    Bretas, Elisa Almeida Sathler; Torres, Ulysses S; Torres, Lucas Rios; Bekhor, Daniel; Saito Filho, Celso Fernando; Racy, Douglas Jorge; Faggioni, Lorenzo; D'Ippolito, Giuseppe

    2017-10-01

    To evaluate the agreement between the measurements of perfusion CT parameters in normal livers by using two different software packages. This retrospective study was based on 78 liver perfusion CT examinations acquired for detecting suspected liver metastasis. Patients with any morphological or functional hepatic abnormalities were excluded. The final analysis included 37 patients (59.7 ± 14.9 y). Two readers (1 and 2) independently measured perfusion parameters using different software packages from two major manufacturers (A and B). Arterial perfusion (AP) and portal perfusion (PP) were determined using the dual-input vascular one-compartmental model. Inter-reader agreement for each package and intrareader agreement between both packages were assessed with intraclass correlation coefficients (ICC) and Bland-Altman statistics. Inter-reader agreement was substantial for AP using software A (ICC = 0.82) and B (ICC = 0.85-0.86), fair for PP using software A (ICC = 0.44) and fair to moderate for PP using software B (ICC = 0.56-0.77). Intrareader agreement between software A and B ranged from slight to moderate (ICC = 0.32-0.62) for readers 1 and 2 considering the AP parameters, and from fair to moderate (ICC = 0.40-0.69) for readers 1 and 2 considering the PP parameters. At best there was only moderate agreement between both software packages, resulting in some uncertainty and suboptimal reproducibility. Advances in knowledge: Software-dependent factors may contribute to variance in perfusion measurements, demanding further technical improvements. AP measurements seem to be the most reproducible parameter to be adopted when evaluating liver perfusion CT.

  16. A Comparison of Authoring Software for Developing Mathematics Self-Learning Software Packages.

    ERIC Educational Resources Information Center

    Suen, Che-yin; Pok, Yang-ming

    Four years ago, the authors started to develop a self-paced mathematics learning software called NPMaths by using an authoring package called Tencore. However, NPMaths had some weak points. A development team was hence formed to develop similar software called Mathematics On Line. This time the team used another development language called…

  17. Technology Assessment Software Package: Final Report.

    ERIC Educational Resources Information Center

    Hutinger, Patricia L.

    This final report describes the Technology Assessment Software Package (TASP) Project, which produced developmentally appropriate technology assessment software for children from 18 months through 8 years of age who have moderate to severe disabilities that interfere with their interaction with people, objects, tasks, and events in their…

  18. The Hidden Cost of Buying a Computer.

    ERIC Educational Resources Information Center

    Johnson, Michael

    1983-01-01

    In order to process data in a computer, application software must be either developed or purchased. Costs for modifications of the software package and maintenance are often hidden. The decision to buy or develop software packages should be based upon factors of time and maintenance. (MLF)

  19. Software for Managing Personal Files.

    ERIC Educational Resources Information Center

    Lundeen, Gerald

    1989-01-01

    Discusses the special characteristics of personal file management software and compares four microcomputer software packages: Notebook II with Bibliography and Convert, Pro-Cite with Biblio-Links, askSam, and Reference Manager. Each package is evaluated in terms of the user interface, file maintenance, retrieval capabilities, output, and…

  20. Software design for analysis of multichannel intracardial and body surface electrocardiograms.

    PubMed

    Potse, Mark; Linnenbank, André C; Grimbergen, Cornelis A

    2002-11-01

    Analysis of multichannel ECG recordings (body surface maps (BSMs) and intracardial maps) requires special software. We created a software package and a user interface on top of a commercial data analysis package (MATLAB) by a combination of high-level and low-level programming. Our software was created to satisfy the needs of a diverse group of researchers. It can handle a large variety of recording configurations. It allows for interactive usage through a fast and robust user interface, and batch processing for the analysis of large amounts of data. The package is user-extensible, includes routines for both common and experimental data processing tasks, and works on several computer platforms. The source code is made intelligible using software for structured documentation and is available to the users. The package is currently used by more than ten research groups analysing ECG data worldwide.

  1. System Engineering Approach to Assessing Integrated Survivability

    DTIC Science & Technology

    2009-08-01

    based response for the above engagements using LS- Dyna for blast modelling, MADYMO for safety and human response, CFD software (Fluent) is used to...Simulation JFAS Joint Force Analysis Simulation JANUS Joint Army Navy Uniform Simulation LS- DYNA Livermore Software-Dynamics MADYMO...management technologies. The “don’t be killed” layer of survivability protection accounts for many of the mitigation technologies (i.e. blast

  2. 1986 Petroleum Software Directory. [800 mini, micro and mainframe computer software packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    Pennwell's 1986 Petroleum Software Directory is a complete listing of software created specifically for the petroleum industry. Details are provided on over 800 mini, micro and mainframe computer software packages from more than 250 different companies. An accountant can locate programs to automate bookkeeping functions in large oil and gas production firms. A pipeline engineer will find programs designed to calculate line flow and wellbore pressure drop.

  3. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers.

    PubMed

    Li, Jun-De

    2013-02-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected.

  4. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers

    PubMed Central

    Li, Jun-De

    2013-01-01

    This paper presents the simulation of the condensation of water vapour in the presence of non-condensable gas using computational fluid dynamics (CFD) for turbulent flows in a vertical cylindrical condenser tube. The simulation accounts for the turbulent flow of the gas mixture, the condenser wall and the turbulent flow of the coolant in the annular channel with no assumptions of constant wall temperature or heat flux. The condensate film is assumed to occupy a negligible volume and its effect on the condensation of the water vapour has been taken into account by imposing a set of boundary conditions. A new strategy is used to overcome the limitation of the currently available commercial CFD package to solve the simultaneous simulation of flows involving multispecies and fluids of gas and liquid in separate channels. The results from the CFD simulations are compared with the experimental results from the literature for the condensation of water vapour with air as the non-condensable gas and for inlet mass fraction of the water vapour from 0.66 to 0.98. The CFD simulation results in general agree well with the directly measured quantities and it is found that the variation of heat flux in the condenser tube is more complex than a simple polynomial curve fit. The CFD results also show that, at least for flows involving high water vapour content, the axial velocity of the gas mixture at the interface between the gas mixture and the condensate film is in general not small and cannot be neglected. PMID:24850953

  5. Diagnostic evaluation of three cardiac software packages using a consecutive group of patients

    PubMed Central

    2011-01-01

    Purpose The aim of this study was to compare the diagnostic performance of the three software packages 4DMSPECT (4DM), Emory Cardiac Toolbox (ECTb), and Cedars Quantitative Perfusion SPECT (QPS) for quantification of myocardial perfusion scintigram (MPS) using a large group of consecutive patients. Methods We studied 1,052 consecutive patients who underwent 2-day stress/rest 99mTc-sestamibi MPS studies. The reference/gold-standard classifications for the MPS studies were obtained from three physicians, with more than 25 years each of experience in nuclear cardiology, who re-evaluated all MPS images. Automatic processing was carried out using 4DM, ECTb, and QPS software packages. Total stress defect extent (TDE) and summed stress score (SSS) based on a 17-segment model were obtained from the software packages. Receiver-operating characteristic (ROC) analysis was performed. Results A total of 734 patients were classified as normal and the remaining 318 were classified as having infarction and/or ischemia. The performance of the software packages calculated as the area under the SSS ROC curve were 0.87 for 4DM, 0.80 for QPS, and 0.76 for ECTb (QPS vs. ECTb p = 0.03; other differences p < 0.0001). The area under the TDE ROC curve were 0.87 for 4DM, 0.82 for QPS, and 0.76 for ECTb (QPS vs. ECTb p = 0.0005; other differences p < 0.0001). Conclusion There are considerable differences in performance between the three software packages with 4DM showing the best performance and ECTb the worst. These differences in performance should be taken in consideration when software packages are used in clinical routine or in clinical studies. PMID:22214226

  6. A Study of Visualization for Mathematics Education

    NASA Technical Reports Server (NTRS)

    Daugherty, Sarah C.

    2008-01-01

    Graphical representations such as figures, illustrations, and diagrams play a critical role in mathematics and they are equally important in mathematics education. However, graphical representations in mathematics textbooks are static, Le. they are used to illustrate only a specific example or a limited set. of examples. By using computer software to visualize mathematical principles, virtually there is no limit to the number of specific cases and examples that can be demonstrated. However, we have not seen widespread adoption of visualization software in mathematics education. There are currently a number of software packages that provide visualization of mathematics for research and also software packages specifically developed for mathematics education. We conducted a survey of mathematics visualization software packages, summarized their features and user bases, and analyzed their limitations. In this survey, we focused on evaluating the software packages for their use with mathematical subjects adopted by institutions of secondary education in the United States (middle schools and high schools), including algebra, geometry, trigonometry, and calculus. We found that cost, complexity, and lack of flexibility are the major factors that hinder the widespread use of mathematics visualization software in education.

  7. Dill: an algorithm and a symbolic software package for doing classical supersymmetry calculations

    NASA Astrophysics Data System (ADS)

    Luc̆ić, Vladan

    1995-11-01

    An algorithm is presented that formalizes different steps in a classical Supersymmetric (SUSY) calculation. Based on the algorithm Dill, a symbolic software package, that can perform the calculations, is developed in the Mathematica programming language. While the algorithm is quite general, the package is created for the 4 - D, N = 1 model. Nevertheless, with little modification, the package could be used for other SUSY models. The package has been tested and some of the results are presented.

  8. CFD modeling using PDF approach for investigating the flame length in rotary kilns

    NASA Astrophysics Data System (ADS)

    Elattar, H. F.; Specht, E.; Fouda, A.; Bin-Mahfouz, Abdullah S.

    2016-12-01

    Numerical simulations using computational fluid dynamics (CFD) are performed to investigate the flame length characteristics in rotary kilns using probability density function (PDF) approach. A commercial CFD package (ANSYS-Fluent) is employed for this objective. A 2-D axisymmetric model is applied to study the effect of both operating and geometric parameters of rotary kiln on the characteristics of the flame length. Three types of gaseous fuel are used in the present work; methane (CH4), carbon monoxide (CO) and biogas (50 % CH4 + 50 % CO2). Preliminary comparison study of 2-D modeling outputs of free jet flames with available experimental data is carried out to choose and validate the proper turbulence model for the present numerical simulations. The results showed that the excess air number, diameter of kiln air entrance, radiation modeling consideration and fuel type have remarkable effects on the flame length characteristics. Numerical correlations for the rotary kiln flame length are presented in terms of the studied kiln operating and geometric parameters within acceptable error.

  9. Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

    NASA Astrophysics Data System (ADS)

    Joung, Tae-Hwan; Sammut, Karl; He, Fangpo; Lee, Seung-Keon

    2012-03-01

    Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys™. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters

  10. An Ada Linear-Algebra Software Package Modeled After HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, Allan R.; Lawson, Charles L.

    1990-01-01

    New avionics software written more easily. Software package extends Ada programming language to include linear-algebra capabilities similar to those of HAL/S programming language. Designed for such avionics applications as Space Station flight software. In addition to built-in functions of HAL/S, package incorporates quaternion functions used in Space Shuttle and Galileo projects and routines from LINPAK solving systems of equations involving general square matrices. Contains two generic programs: one for floating-point computations and one for integer computations. Written on IBM/AT personal computer running under PC DOS, v.3.1.

  11. On Fitting Generalized Linear Mixed-effects Models for Binary Responses using Different Statistical Packages

    PubMed Central

    Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W.; Xia, Yinglin; Tu, Xin M.

    2011-01-01

    Summary The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. PMID:21671252

  12. NDAS Hardware Translation Layer Development

    NASA Technical Reports Server (NTRS)

    Nazaretian, Ryan N.; Holladay, Wendy T.

    2011-01-01

    The NASA Data Acquisition System (NDAS) project is aimed to replace all DAS software for NASA s Rocket Testing Facilities. There must be a software-hardware translation layer so the software can properly talk to the hardware. Since the hardware from each test stand varies, drivers for each stand have to be made. These drivers will act more like plugins for the software. If the software is being used in E3, then the software should point to the E3 driver package. If the software is being used at B2, then the software should point to the B2 driver package. The driver packages should also be filled with hardware drivers that are universal to the DAS system. For example, since A1, A2, and B2 all use the Preston 8300AU signal conditioners, then the driver for those three stands should be the same and updated collectively.

  13. Academic Web Authoring Mulitmedia Development and Course Management Tools

    ERIC Educational Resources Information Center

    Halloran, Margaret E.

    2005-01-01

    Course management software enables faculty members to learn one software package for web-based curriculum, assessment, synchronous and asynchronous discussions, collaborative work, multimedia and interactive resource development. There are as many as 109 different course management software packages on the market and several studies have evaluated…

  14. Highly efficient spatial data filtering in parallel using the opensource library CPPPO

    NASA Astrophysics Data System (ADS)

    Municchi, Federico; Goniva, Christoph; Radl, Stefan

    2016-10-01

    CPPPO is a compilation of parallel data processing routines developed with the aim to create a library for "scale bridging" (i.e. connecting different scales by mean of closure models) in a multi-scale approach. CPPPO features a number of parallel filtering algorithms designed for use with structured and unstructured Eulerian meshes, as well as Lagrangian data sets. In addition, data can be processed on the fly, allowing the collection of relevant statistics without saving individual snapshots of the simulation state. Our library is provided with an interface to the widely-used CFD solver OpenFOAM®, and can be easily connected to any other software package via interface modules. Also, we introduce a novel, extremely efficient approach to parallel data filtering, and show that our algorithms scale super-linearly on multi-core clusters. Furthermore, we provide a guideline for choosing the optimal Eulerian cell selection algorithm depending on the number of CPU cores used. Finally, we demonstrate the accuracy and the parallel scalability of CPPPO in a showcase focusing on heat and mass transfer from a dense bed of particles.

  15. An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.

    PubMed

    Makhijani, V B; Yang, H Q; Singhal, A K; Hwang, N H

    1994-04-01

    A combined experimental-computational study was performed to investigate the flow mechanics which could cause cavitation during the squeezing and rebounding phases of valve closure in the 29 mm mitral bileaflet Edwards-Duromedics (ED) mechanical heart valve (MHV). Leaflet closing motion was measured in vitro, and input into a computational fluid mechanics software package, CFD-ACE, to compute flow velocities and pressures in the small gap space between the occluder tip and valve housing. The possibility of cavitation inception was predicted when fluid pressures dropped below the saturated vapor pressure for blood plasma. The computational analysis indicated that cavitation is more likely to be induced during valve rebound rather than the squeezing phase of valve closure in the 29 mm ED-MHV. Also, there is a higher probability of cavitation at lower values of the gap width at the point of impact between the leaflet tip and housing. These predictions of cavitation inception are not likely to be significantly influenced by the water-hammer pressure gradient that develops during valve closure.

  16. Data from fitting Gaussian process models to various data sets using eight Gaussian process software packages.

    PubMed

    Erickson, Collin B; Ankenman, Bruce E; Sanchez, Susan M

    2018-06-01

    This data article provides the summary data from tests comparing various Gaussian process software packages. Each spreadsheet represents a single function or type of function using a particular input sample size. In each spreadsheet, a row gives the results for a particular replication using a single package. Within each spreadsheet there are the results from eight Gaussian process model-fitting packages on five replicates of the surface. There is also one spreadsheet comparing the results from two packages performing stochastic kriging. These data enable comparisons between the packages to determine which package will give users the best results.

  17. Modeling and MBL: Software Tools for Science.

    ERIC Educational Resources Information Center

    Tinker, Robert F.

    Recent technological advances and new software packages put unprecedented power for experimenting and theory-building in the hands of students at all levels. Microcomputer-based laboratory (MBL) and model-solving tools illustrate the educational potential of the technology. These tools include modeling software and three MBL packages (which are…

  18. A Characteristics Approach to the Evaluation of Economics Software Packages.

    ERIC Educational Resources Information Center

    Lumsden, Keith; Scott, Alex

    1988-01-01

    Utilizes Bloom's Taxonomy to identify elements of teacher and student interest. Depicts the way in which these interests are developed into characteristics for use in analytically evaluating software. Illustrates the use of this evaluating technique by appraising the much used software package "Running the British Economy." (KO)

  19. Scientific Software: How to Find What You Need and Get What You Pay for.

    ERIC Educational Resources Information Center

    Gabaldon, Diana J.

    1984-01-01

    Provides examples of software for the sciences, including: packages for pathology/toxicology laboratories (costing over $15,000), DNA sequencing, and data acquisition/analysis; general-purpose software for scientific uses; and "custom" packages, including a program to maintain a listing of "Escherichia coli" strains and a…

  20. Learn by Yourself: The Self-Learning Tools for Qualitative Analysis Software Packages

    ERIC Educational Resources Information Center

    Freitas, Fábio; Ribeiro, Jaime; Brandão, Catarina; Reis, Luís Paulo; de Souza, Francislê Neri; Costa, António Pedro

    2017-01-01

    Computer Assisted Qualitative Data Analysis Software (CAQDAS) are tools that help researchers to develop qualitative research projects. These software packages help the users with tasks such as transcription analysis, coding and text interpretation, writing and annotation, content search and analysis, recursive abstraction, grounded theory…

  1. Interactive Visualization of Assessment Data: The Software Package Mondrian

    ERIC Educational Resources Information Center

    Unlu, Ali; Sargin, Anatol

    2009-01-01

    Mondrian is state-of-the-art statistical data visualization software featuring modern interactive visualization techniques for a wide range of data types. This article reviews the capabilities, functionality, and interactive properties of this software package. Key features of Mondrian are illustrated with data from the Programme for International…

  2. An Overview of Software for Conducting Dimensionality Assessment in Multidimensional Models

    ERIC Educational Resources Information Center

    Svetina, Dubravka; Levy, Roy

    2012-01-01

    An overview of popular software packages for conducting dimensionality assessment in multidimensional models is presented. Specifically, five popular software packages are described in terms of their capabilities to conduct dimensionality assessment with respect to the nature of analysis (exploratory or confirmatory), types of data (dichotomous,…

  3. Cognitive Foundry v. 3.0 (OSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basilico, Justin; Dixon, Kevin; McClain, Jonathan

    2009-11-18

    The Cognitive Foundry is a unified collection of tools designed for research and applications that use cognitive modeling, machine learning, or pattern recognition. The software library contains design patterns, interface definitions, and default implementations of reusable software components and algorithms designed to support a wide variety of research and development needs. The library contains three main software packages: the Common package that contains basic utilities and linear algebraic methods, the Cognitive Framework package that contains tools to assist in implementing and analyzing theories of cognition, and the Machine Learning package that provides general algorithms and methods for populating Cognitive Frameworkmore » components from domain-relevant data.« less

  4. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in python.

    PubMed

    Gorgolewski, Krzysztof; Burns, Christopher D; Madison, Cindee; Clark, Dav; Halchenko, Yaroslav O; Waskom, Michael L; Ghosh, Satrajit S

    2011-01-01

    Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research.

  5. Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python

    PubMed Central

    Gorgolewski, Krzysztof; Burns, Christopher D.; Madison, Cindee; Clark, Dav; Halchenko, Yaroslav O.; Waskom, Michael L.; Ghosh, Satrajit S.

    2011-01-01

    Current neuroimaging software offer users an incredible opportunity to analyze their data in different ways, with different underlying assumptions. Several sophisticated software packages (e.g., AFNI, BrainVoyager, FSL, FreeSurfer, Nipy, R, SPM) are used to process and analyze large and often diverse (highly multi-dimensional) data. However, this heterogeneous collection of specialized applications creates several issues that hinder replicable, efficient, and optimal use of neuroimaging analysis approaches: (1) No uniform access to neuroimaging analysis software and usage information; (2) No framework for comparative algorithm development and dissemination; (3) Personnel turnover in laboratories often limits methodological continuity and training new personnel takes time; (4) Neuroimaging software packages do not address computational efficiency; and (5) Methods sections in journal articles are inadequate for reproducing results. To address these issues, we present Nipype (Neuroimaging in Python: Pipelines and Interfaces; http://nipy.org/nipype), an open-source, community-developed, software package, and scriptable library. Nipype solves the issues by providing Interfaces to existing neuroimaging software with uniform usage semantics and by facilitating interaction between these packages using Workflows. Nipype provides an environment that encourages interactive exploration of algorithms, eases the design of Workflows within and between packages, allows rapid comparative development of algorithms and reduces the learning curve necessary to use different packages. Nipype supports both local and remote execution on multi-core machines and clusters, without additional scripting. Nipype is Berkeley Software Distribution licensed, allowing anyone unrestricted usage. An open, community-driven development philosophy allows the software to quickly adapt and address the varied needs of the evolving neuroimaging community, especially in the context of increasing demand for reproducible research. PMID:21897815

  6. MicroSIFT Courseware Evaluations. [Set 11 (223-259), Set 12 (260-293), and a Special Set of 99 LIBRA Reviews of Junior High School Science Software, Including Subject and Title Indexes Covering Sets 1-12 and Special Set L].

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This document consists of 170 microcomputer software package evaluations prepared by the MicroSIFT (Microcomputer Software and Information for Teachers) Clearinghouse at the Northwest Regional Education Laboratory. Set 11 consists of 37 packages. Set 12 consists of 34 packages. A special unnumbered set, entitled LIBRA Reviews, treats 99 packages…

  7. DRUGDOG 3.0: U.S. Navy Random Urinalysis Software Package

    DTIC Science & Technology

    1994-03-15

    NAVAL PO11GRADUATE SCHOOL Monterey, California AD-A281 748 THESIS LJuEoTE DRUGDOG 3.0: U. S . NAVY RANDOM URINALYSIS SOFTWARE PACKAGE by (% Dale E...ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 15 MAR 94 Master’s Thesis 4. TITLE AND SUBTITLE DRUGDOG 3.0: U. S . NAVY RANDOM 5...FUNDING NUMBERS URINALYSIS SOFTWARE PACKAGE 6. AUTHOR( S ) Dale E. Wilson 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING Naval

  8. Device Scale Modeling of Solvent Absorption using MFIX-TFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carney, Janine E.; Finn, Justin R.

    Recent climate change is largely attributed to greenhouse gases (e.g., carbon dioxide, methane) and fossil fuels account for a large majority of global CO 2 emissions. That said, fossil fuels will continue to play a significant role in the generation of power for the foreseeable future. The extent to which CO 2 is emitted needs to be reduced, however, carbon capture and sequestration are also necessary actions to tackle climate change. Different approaches exist for CO 2 capture including both post-combustion and pre-combustion technologies, oxy-fuel combustion and/or chemical looping combustion. The focus of this effort is on post-combustion solvent-absorption technology.more » To apply CO 2 technologies at commercial scale, the availability and maturity and the potential for scalability of that technology need to be considered. Solvent absorption is a proven technology but not at the scale needed by typical power plant. The scale up and down and design of laboratory and commercial packed bed reactors depends heavily on the specific knowledge of two-phase pressure drop, liquid holdup, the wetting efficiency and mass transfer efficiency as a function of operating conditions. Simple scaling rules often fail to provide proper design. Conventional reactor design modeling approaches will generally characterize complex non-ideal flow and mixing patterns using simplified and/or mechanistic flow assumptions. While there are varying levels of complexity used within these approaches, none of these models resolve the local velocity fields. Consequently, they are unable to account for important design factors such as flow maldistribution and channeling from a fundamental perspective. Ideally design would be aided by development of predictive models based on truer representation of the physical and chemical processes that occur at different scales. Computational fluid dynamic (CFD) models are based on multidimensional flow equations with first principle foundations. CFD models can include a more accurate physical description of flow processes and be modified to include more complex behavior. Wetting performance and spatial liquid distribution inside the absorber are recognized as weak areas of knowledge requiring further investigation. CFD tools offer a possible method to investigating such topics and gaining a better understanding of their influence on reactor performance. This report focuses first on describing a hydrodynamic model for countercurrent gas-liquid flow through a packed column and then on the chemistry, heat and mass transfer specific to CO 2 absorption using monoethanolamine (MEA). The indicated model is implemented in MFIX, a CFD open source software package. The user defined functions needed to build this model are described in detail along with the keywords for the corresponding input file. A test case is outlined along with a few results. The example serves to briefly illustrate the developed CFD tool and its potential capability to investigate solvent absorption.« less

  9. Using an architectural approach to integrate heterogeneous, distributed software components

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Purtilo, James M.

    1995-01-01

    Many computer programs cannot be easily integrated because their components are distributed and heterogeneous, i.e., they are implemented in diverse programming languages, use different data representation formats, or their runtime environments are incompatible. In many cases, programs are integrated by modifying their components or interposing mechanisms that handle communication and conversion tasks. For example, remote procedure call (RPC) helps integrate heterogeneous, distributed programs. When configuring such programs, however, mechanisms like RPC must be used explicitly by software developers in order to integrate collections of diverse components. Each collection may require a unique integration solution. This paper describes improvements to the concepts of software packaging and some of our experiences in constructing complex software systems from a wide variety of components in different execution environments. Software packaging is a process that automatically determines how to integrate a diverse collection of computer programs based on the types of components involved and the capabilities of available translators and adapters in an environment. Software packaging provides a context that relates such mechanisms to software integration processes and reduces the cost of configuring applications whose components are distributed or implemented in different programming languages. Our software packaging tool subsumes traditional integration tools like UNIX make by providing a rule-based approach to software integration that is independent of execution environments.

  10. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  11. Improving the quality of EHR recording in primary care: a data quality feedback tool.

    PubMed

    van der Bij, Sjoukje; Khan, Nasra; Ten Veen, Petra; de Bakker, Dinny H; Verheij, Robert A

    2017-01-01

    Electronic health record (EHR) data are used to exchange information among health care providers. For this purpose, the quality of the data is essential. We developed a data quality feedback tool that evaluates differences in EHR data quality among practices and software packages as part of a larger intervention. The tool was applied in 92 practices in the Netherlands using different software packages. Practices received data quality feedback in 2010 and 2012. We observed large differences in the quality of recording. For example, the percentage of episodes of care that had a meaningful diagnostic code ranged from 30% to 100%. Differences were highly related to the software package. A year after the first measurement, the quality of recording had improved significantly and differences decreased, with 67% of the physicians indicating that they had actively changed their recording habits based on the results of the first measurement. About 80% found the feedback helpful in pinpointing recording problems. One of the software vendors made changes in functionality as a result of the feedback. Our EHR data quality feedback tool is capable of highlighting differences among practices and software packages. As such, it also stimulates improvements. As substantial variability in recording is related to the software package, our study strengthens the evidence that data quality can be improved substantially by standardizing the functionalities of EHR software packages. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Information Metacatalog for a Grid

    NASA Technical Reports Server (NTRS)

    Kolano, Paul

    2007-01-01

    SWIM is a Software Information Metacatalog that gathers detailed information about the software components and packages installed on a grid resource. Information is currently gathered for Executable and Linking Format (ELF) executables and shared libraries, Java classes, shell scripts, and Perl and Python modules. SWIM is built on top of the POUR framework, which is described in the preceding article. SWIM consists of a set of Perl modules for extracting software information from a system, an XML schema defining the format of data that can be added by users, and a POUR XML configuration file that describes how these elements are used to generate periodic, on-demand, and user-specified information. Periodic software information is derived mainly from the package managers used on each system. SWIM collects information from native package managers in FreeBSD, Solaris, and IRX as well as the RPM, Perl, and Python package managers on multiple platforms. Because not all software is available, or installed in package form, SWIM also crawls the set of relevant paths from the File System Hierarchy Standard that defines the standard file system structure used by all major UNIX distributions. Using these two techniques, the vast majority of software installed on a system can be located. SWIM computes the same information gathered by the periodic routines for specific files on specific hosts, and locates software on a system given only its name and type.

  13. The Package-Based Development Process in the Flight Dynamics Division

    NASA Technical Reports Server (NTRS)

    Parra, Amalia; Seaman, Carolyn; Basili, Victor; Kraft, Stephen; Condon, Steven; Burke, Steven; Yakimovich, Daniil

    1997-01-01

    The Software Engineering Laboratory (SEL) has been operating for more than two decades in the Flight Dynamics Division (FDD) and has adapted to the constant movement of the software development environment. The SEL's Improvement Paradigm shows that process improvement is an iterative process. Understanding, Assessing and Packaging are the three steps that are followed in this cyclical paradigm. As the improvement process cycles back to the first step, after having packaged some experience, the level of understanding will be greater. In the past, products resulting from the packaging step have been large process documents, guidebooks, and training programs. As the technical world moves toward more modularized software, we have made a move toward more modularized software development process documentation, as such the products of the packaging step are becoming smaller and more frequent. In this manner, the QIP takes on a more spiral approach rather than a waterfall. This paper describes the state of the FDD in the area of software development processes, as revealed through the understanding and assessing activities conducted by the COTS study team. The insights presented include: (1) a characterization of a typical FDD Commercial Off the Shelf (COTS) intensive software development life-cycle process, (2) lessons learned through the COTS study interviews, and (3) a description of changes in the SEL due to the changing and accelerating nature of software development in the FDD.

  14. Modern software approaches applied to a Hydrological model: the GEOtop Open-Source Software Project

    NASA Astrophysics Data System (ADS)

    Cozzini, Stefano; Endrizzi, Stefano; Cordano, Emanuele; Bertoldi, Giacomo; Dall'Amico, Matteo

    2017-04-01

    The GEOtop hydrological scientific package is an integrated hydrological model that simulates the heat and water budgets at and below the soil surface. It describes the three-dimensional water flow in the soil and the energy exchange with the atmosphere, considering the radiative and turbulent fluxes. Furthermore, it reproduces the highly non-linear interactions between the water and energy balance during soil freezing and thawing, and simulates the temporal evolution of snow cover, soil temperature and moisture. The core components of the package were presented in the 2.0 version (Endrizzi et al, 2014), which was released as Free Software Open-source project. However, despite the high scientific quality of the project, a modern software engineering approach was still missing. Such weakness hindered its scientific potential and its use both as a standalone package and, more importantly, in an integrate way with other hydrological software tools. In this contribution we present our recent software re-engineering efforts to create a robust and stable scientific software package open to the hydrological community, easily usable by researchers and experts, and interoperable with other packages. The activity takes as a starting point the 2.0 version, scientifically tested and published. This version, together with several test cases based on recent published or available GEOtop applications (Cordano and Rigon, 2013, WRR, Kollet et al, 2016, WRR) provides the baseline code and a certain number of referenced results as benchmark. Comparison and scientific validation can then be performed for each software re-engineering activity performed on the package. To keep track of any single change the package is published on its own github repository geotopmodel.github.io/geotop/ under GPL v3.0 license. A Continuous Integration mechanism by means of Travis-CI has been enabled on the github repository on master and main development branches. The usage of CMake configuration tool and the suite of tests (easily manageable by means of ctest tools) greatly reduces the burden of the installation and allows us to enhance portability on different compilers and Operating system platforms. The package was also complemented by several software tools which provide web-based visualization of results based on R plugins, in particular "shiny" (Chang at al, 2016), "geotopbricks" and "geotopOptim2" (Cordano et al, 2016) packages, which allow rapid and efficient scientific validation of new examples and tests. The software re-engineering activities are still under development. However, our first results are promising enough to eventually reach a robust and stable software project that manages in a flexible way a complex state-of-the-art hydrological model like GEOtop and integrates it into wider workflows.

  15. Global review of open access risk assessment software packages valid for global or continental scale analysis

    NASA Astrophysics Data System (ADS)

    Daniell, James; Simpson, Alanna; Gunasekara, Rashmin; Baca, Abigail; Schaefer, Andreas; Ishizawa, Oscar; Murnane, Rick; Tijssen, Annegien; Deparday, Vivien; Forni, Marc; Himmelfarb, Anne; Leder, Jan

    2015-04-01

    Over the past few decades, a plethora of open access software packages for the calculation of earthquake, volcanic, tsunami, storm surge, wind and flood have been produced globally. As part of the World Bank GFDRR Review released at the Understanding Risk 2014 Conference, over 80 such open access risk assessment software packages were examined. Commercial software was not considered in the evaluation. A preliminary analysis was used to determine whether the 80 models were currently supported and if they were open access. This process was used to select a subset of 31 models that include 8 earthquake models, 4 cyclone models, 11 flood models, and 8 storm surge/tsunami models for more detailed analysis. By using multi-criteria analysis (MCDA) and simple descriptions of the software uses, the review allows users to select a few relevant software packages for their own testing and development. The detailed analysis evaluated the models on the basis of over 100 criteria and provides a synopsis of available open access natural hazard risk modelling tools. In addition, volcano software packages have since been added making the compendium of risk software tools in excess of 100. There has been a huge increase in the quality and availability of open access/source software over the past few years. For example, private entities such as Deltares now have an open source policy regarding some flood models (NGHS). In addition, leaders in developing risk models in the public sector, such as Geoscience Australia (EQRM, TCRM, TsuDAT, AnuGA) or CAPRA (ERN-Flood, Hurricane, CRISIS2007 etc.), are launching and/or helping many other initiatives. As we achieve greater interoperability between modelling tools, we will also achieve a future wherein different open source and open access modelling tools will be increasingly connected and adapted towards unified multi-risk model platforms and highly customised solutions. It was seen that many software tools could be improved by enabling user-defined exposure and vulnerability. Without this function, many tools can only be used regionally and not at global or continental scale. It is becoming increasingly easy to use multiple packages for a single region and/or hazard to characterize the uncertainty in the risk, or use as checks for the sensitivities in the analysis. There is a potential for valuable synergy between existing software. A number of open source software packages could be combined to generate a multi-risk model with multiple views of a hazard. This extensive review has simply attempted to provide a platform for dialogue between all open source and open access software packages and to hopefully inspire collaboration between developers, given the great work done by all open access and open source developers.

  16. On fitting generalized linear mixed-effects models for binary responses using different statistical packages.

    PubMed

    Zhang, Hui; Lu, Naiji; Feng, Changyong; Thurston, Sally W; Xia, Yinglin; Zhu, Liang; Tu, Xin M

    2011-09-10

    The generalized linear mixed-effects model (GLMM) is a popular paradigm to extend models for cross-sectional data to a longitudinal setting. When applied to modeling binary responses, different software packages and even different procedures within a package may give quite different results. In this report, we describe the statistical approaches that underlie these different procedures and discuss their strengths and weaknesses when applied to fit correlated binary responses. We then illustrate these considerations by applying these procedures implemented in some popular software packages to simulated and real study data. Our simulation results indicate a lack of reliability for most of the procedures considered, which carries significant implications for applying such popular software packages in practice. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Development of a large scale Chimera grid system for the Space Shuttle Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Pearce, Daniel G.; Stanley, Scott A.; Martin, Fred W., Jr.; Gomez, Ray J.; Le Beau, Gerald J.; Buning, Pieter G.; Chan, William M.; Chiu, Ing-Tsau; Wulf, Armin; Akdag, Vedat

    1993-01-01

    The application of CFD techniques to large problems has dictated the need for large team efforts. This paper offers an opportunity to examine the motivations, goals, needs, problems, as well as the methods, tools, and constraints that defined NASA's development of a 111 grid/16 million point grid system model for the Space Shuttle Launch Vehicle. The Chimera approach used for domain decomposition encouraged separation of the complex geometry into several major components each of which was modeled by an autonomous team. ICEM-CFD, a CAD based grid generation package, simplified the geometry and grid topology definition by provoding mature CAD tools and patch independent meshing. The resulting grid system has, on average, a four inch resolution along the surface.

  18. On the Use of Computers for Teaching Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1994-01-01

    Several approaches for improving the teaching of basic fluid mechanics using computers are presented. There are two objectives to these approaches: to increase the involvement of the student in the learning process and to present information to the student in a variety of forms. Items discussed include: the preparation of educational videos using the results of computational fluid dynamics (CFD) calculations, the analysis of CFD flow solutions using workstation based post-processing graphics packages, and the development of workstation or personal computer based simulators which behave like desk top wind tunnels. Examples of these approaches are presented along with observations from working with undergraduate co-ops. Possible problems in the implementation of these approaches as well as solutions to these problems are also discussed.

  19. General-Purpose Ada Software Packages

    NASA Technical Reports Server (NTRS)

    Klumpp, Allan R.

    1991-01-01

    Collection of subprograms brings to Ada many features from other programming languages. All generic packages designed to be easily instantiated for types declared in user's facility. Most packages have widespread applicability, although some oriented for avionics applications. All designed to facilitate writing new software in Ada. Written on IBM/AT personal computer running under PC DOS, v.3.1.

  20. Advance Directives and Do Not Resuscitate Orders

    MedlinePlus

    ... a form. Call a lawyer. Use a computer software package for legal documents. Advance directives and living ... you write by yourself or with a computer software package should follow your state laws. You may ...

  1. Nested Cohort - R software package

    Cancer.gov

    NestedCohort is an R software package for fitting Kaplan-Meier and Cox Models to estimate standardized survival and attributable risks for studies where covariates of interest are observed on only a sample of the cohort.

  2. An Integrated Software Package to Enable Predictive Simulation Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Fitzhenry, Erin B.; Jin, Shuangshuang

    The power grid is increasing in complexity due to the deployment of smart grid technologies. Such technologies vastly increase the size and complexity of power grid systems for simulation and modeling. This increasing complexity necessitates not only the use of high-performance-computing (HPC) techniques, but a smooth, well-integrated interplay between HPC applications. This paper presents a new integrated software package that integrates HPC applications and a web-based visualization tool based on a middleware framework. This framework can support the data communication between different applications. Case studies with a large power system demonstrate the predictive capability brought by the integrated software package,more » as well as the better situational awareness provided by the web-based visualization tool in a live mode. Test results validate the effectiveness and usability of the integrated software package.« less

  3. Software packager user's guide

    NASA Technical Reports Server (NTRS)

    Callahan, John R.

    1995-01-01

    Software integration is a growing area of concern for many programmers and software managers because the need to build new programs quickly from existing components is greater than ever. This includes building versions of software products for multiple hardware platforms and operating systems, building programs from components written in different languages, and building systems from components that must execute on different machines in a distributed network. The goal of software integration is to make building new programs from existing components more seamless -- programmers should pay minimal attention to the underlying configuration issues involved. Libraries of reusable components and classes are important tools but only partial solutions to software development problems. Even though software components may have compatible interfaces, there may be other reasons, such as differences between execution environments, why they cannot be integrated. Often, components must be adapted or reimplemented to fit into another application because of implementation differences -- they are implemented in different programming languages, dependent on different operating system resources, or must execute on different physical machines. The software packager is a tool that allows programmers to deal with interfaces between software components and ignore complex integration details. The packager takes modular descriptions of the structure of a software system written in the package specification language and produces an integration program in the form of a makefile. If complex integration tools are needed to integrate a set of components, such as remote procedure call stubs, their use is implied by the packager automatically and stub generation tools are invoked in the corresponding makefile. The programmer deals only with the components themselves and not the details of how to build the system on any given platform.

  4. Validation of CFD/Heat Transfer Software for Turbine Blade Analysis

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter D.

    2004-01-01

    I am an intern in the Turbine Branch of the Turbomachinery and Propulsion Systems Division. The division is primarily concerned with experimental and computational methods of calculating heat transfer effects of turbine blades during operation in jet engines and land-based power systems. These include modeling flow in internal cooling passages and film cooling, as well as calculating heat flux and peak temperatures to ensure safe and efficient operation. The branch is research-oriented, emphasizing the development of tools that may be used by gas turbine designers in industry. The branch has been developing a computational fluid dynamics (CFD) and heat transfer code called GlennHT to achieve the computational end of this analysis. The code was originally written in FORTRAN 77 and run on Silicon Graphics machines. However the code has been rewritten and compiled in FORTRAN 90 to take advantage of more modem computer memory systems. In addition the branch has made a switch in system architectures from SGI's to Linux PC's. The newly modified code therefore needs to be tested and validated. This is the primary goal of my internship. To validate the GlennHT code, it must be run using benchmark fluid mechanics and heat transfer test cases, for which there are either analytical solutions or widely accepted experimental data. From the solutions generated by the code, comparisons can be made to the correct solutions to establish the accuracy of the code. To design and create these test cases, there are many steps and programs that must be used. Before a test case can be run, pre-processing steps must be accomplished. These include generating a grid to describe the geometry, using a software package called GridPro. Also various files required by the GlennHT code must be created including a boundary condition file, a file for multi-processor computing, and a file to describe problem and algorithm parameters. A good deal of this internship will be to become familiar with these programs and the structure of the GlennHT code. Additional information is included in the original extended abstract.

  5. MicroSIFT Courseware Evaluations (169-198). Set 9. Including Subject and Title Indexes Covering Sets 1-9.

    ERIC Educational Resources Information Center

    Weaver, Dave, Ed.

    This document consists of 30 microcomputer software package evaluations prepared for the MicroSIFT (Microcomputer Software and Information for Teachers) Clearinghouse at the Northwest Regional Educational Laboratory (NWREL). The concise, single-sheet resume describing and evaluating each software package includes source, cost, ability level,…

  6. Annotated Bibliography of Computer Software for Teaching Early Reading and Spelling. Project RIMES 2000.

    ERIC Educational Resources Information Center

    Rhein, Deborah; Alibrandi, Mary; Lyons, Mary; Sammons, Janice; Doyle, Luther

    This bibliography, developed by Project RIMES (Reading Instructional Methods of Efficacy with Students) lists 80 software packages for teaching early reading and spelling to students at risk for reading and spelling failure. The software packages are presented alphabetically by title. Entries usually include a grade level indicator, a brief…

  7. A CFD Approach to Modeling Spacecraft Fuel Slosh

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon; Gangadharan, Sathya; Chatman, Yadira; Sudermann, James; Schlee, Keith; Ristow, James E.

    2009-01-01

    Energy dissipation and resonant coupling from sloshing fuel in spacecraft fuel tanks is a problem that occurs in the design of many spacecraft. In the case of a spin stabilized spacecraft, this energy dissipation can cause a growth in the spacecrafts' nutation (wobble) that may lead to disastrous consequences for the mission. Even in non-spinning spacecraft, coupling between the spacecraft or upper stage flight control system and an unanticipated slosh resonance can result in catastrophe. By using a Computational Fluid Dynamics (CFD) solver such as Fluent, a model for this fuel slosh can be created. The accuracy of the model must be tested by comparing its results to an experimental test case. Such a model will allow for the variation of many different parameters such as fluid viscosity and gravitational field, yielding a deeper understanding of spacecraft slosh dynamics. In order to gain a better understanding of the dynamics behind sloshing fluids, the Launch Services Program (LSP) at the NASA Kennedy Space Center (KSC) is interested in finding ways to better model this behavior. Thanks to past research, a state-of-the-art fuel slosh research facility was designed and fabricated at Embry Riddle Aeronautical University (ERAU). This test facility has produced interesting results and a fairly reliable parameter estimation process to predict the necessary values that accurately characterize a mechanical pendulum analog model. The current study at ERAU uses a different approach to model the free surface sloshing of liquid in a spherical tank using Computational Fluid Dynamics (CFD) methods. Using a software package called Fluent, a model was created to simulate the sloshing motion of the propellant. This finite volume program uses a technique called the Volume of Fluid (VOF) method to model the interaction between two fluids [4]. For the case of free surface slosh, the two fluids are the propellant and air. As the fuel sloshes around in the tank, it naturally displaces the air. Using the conservation of mass, momentum, and energy equations, as well as the VOF equations, one can predict the behavior of the sloshing fluid and calculate the forces, pressure gradients, and velocity field for the entire liquid as a function of time.

  8. Numerical evaluation of an innovative cup layout for open volumetric solar air receivers

    NASA Astrophysics Data System (ADS)

    Cagnoli, Mattia; Savoldi, Laura; Zanino, Roberto; Zaversky, Fritz

    2016-05-01

    This paper proposes an innovative volumetric solar absorber design to be used in high-temperature air receivers of solar power tower plants. The innovative absorber, a so-called CPC-stacked-plate configuration, applies the well-known principle of a compound parabolic concentrator (CPC) for the first time in a volumetric solar receiver, heating air to high temperatures. The proposed absorber configuration is analyzed numerically, applying first the open-source ray-tracing software Tonatiuh in order to obtain the solar flux distribution on the absorber's surfaces. Next, a Computational Fluid Dynamic (CFD) analysis of a representative single channel of the innovative receiver is performed, using the commercial CFD software ANSYS Fluent. The solution of the conjugate heat transfer problem shows that the behavior of the new absorber concept is promising, however further optimization of the geometry will be necessary in order to exceed the performance of the classical absorber designs.

  9. Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F4 Configuration

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.; Frink, Neal T.

    2002-01-01

    An application of the NASA unstructured grid software system TetrUSS is presented for the prediction of aerodynamic drag on a transport configuration. The paper briefly describes the underlying methodology and summarizes the results obtained on the DLR-F4 transport configuration recently presented in the first AIAA computational fluid dynamics (CFD) Drag Prediction Workshop. TetrUSS is a suite of loosely coupled unstructured grid CFD codes developed at the NASA Langley Research Center. The meshing approach is based on the advancing-front and the advancing-layers procedures. The flow solver employs a cell-centered, finite volume scheme for solving the Reynolds Averaged Navier-Stokes equations on tetrahedral grids. For the present computations, flow in the viscous sublayer has been modeled with an analytical wall function. The emphasis of the paper is placed on the practicality of the methodology for accurately predicting aerodynamic drag data.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salama, A.; Mikhail, M.

    Comprehensive software packages have been developed at the Western Research Centre as tools to help coal preparation engineers analyze, evaluate, and control coal cleaning processes. The COal Preparation Software package (COPS) performs three functions: (1) data handling and manipulation, (2) data analysis, including the generation of washability data, performance evaluation and prediction, density and size modeling, evaluation of density and size partition characteristics and attrition curves, and (3) generation of graphics output. The Separation ChARacteristics Estimation software packages (SCARE) are developed to balance raw density or size separation data. The cases of density and size separation data are considered. Themore » generated balanced data can take the balanced or normalized forms. The scaled form is desirable for direct determination of the partition functions (curves). The raw and generated separation data are displayed in tabular and/or graphical forms. The computer softwares described in this paper are valuable tools for coal preparation plant engineers and operators for evaluating process performance, adjusting plant parameters, and balancing raw density or size separation data. These packages have been applied very successfully in many projects carried out by WRC for the Canadian coal preparation industry. The software packages are designed to run on a personal computer (PC).« less

  11. Software Library for Bruker TopSpin NMR Data Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A software library for parsing and manipulating frequency-domain data files that have been processed using the Bruker TopSpin NMR software package. In the context of NMR, the term "processed" indicates that the end-user of the Bruker TopSpin NMR software package has (a) Fourier transformed the raw, time-domain data (the Free Induction Decay) into the frequency-domain and (b) has extracted the list of NMR peaks.

  12. Investigation into the development of computer aided design software for space based sensors

    NASA Technical Reports Server (NTRS)

    Pender, C. W.; Clark, W. L.

    1987-01-01

    The described effort is phase one of the development of a Computer Aided Design (CAD) software to be used to perform radiometric sensor design. The software package will be referred to as SCAD and is directed toward the preliminary phase of the design of space based sensor system. The approach being followed is to develop a modern, graphic intensive, user friendly software package using existing software as building blocks. The emphasis will be directed toward the development of a shell containing menus, smart defaults, and interfaces, which can accommodate a wide variety of existing application software packages. The shell will offer expected utilities such as graphics, tailored menus, and a variety of drivers for I/O devices. Following the development of the shell, the development of SCAD is planned as chiefly selection and integration of appropriate building blocks. The phase one development activities have included: the selection of hardware which will be used with SCAD; the determination of the scope of SCAD; the preliminary evaluation of a number of software packages for applicability to SCAD; determination of a method for achieving required capabilities where voids exist; and then establishing a strategy for binding the software modules into an easy to use tool kit.

  13. Certainties and Uncertainties in CFD Prediction of the End of the Vortex Behaviour in Centrifugal Separators

    NASA Astrophysics Data System (ADS)

    Pisarev, Gleb I.; Hoffmann, Alex C.

    2011-09-01

    This paper compares CFD simulations of the `end of the vortex' (EoV) behaviour in centrifugal separators with experiment. The EoV was studied in `swirl tubes', cylindrical cyclone separators with swirl vanes. We refer to the EoV as the phenomenon whereby the core of the vortex does not reach the bottom of the separator, but deviates from the swirl tube axis and attaches to the wall, where it rotates at some level above the bottom. The crucial parameters governing the EoV are geometrical, specifically the ratio of the separator length to its diameter (L/D), and operational, specifically the fluid flowrate. Swirl tubes with varying body lengths have been studied experimentally and numerically. CFD simulations were carried out using the commercial package Star-CD. The 3-D Navier-Stokes equations were solved using the finite volume method based on the SIMPLE pressure-correction algorithm and the LES turbulence model. The vortex behaviour was very similar between the experiments and the numerical simulations, this agreement being both qualitative and quantitative. However, there were some cases where the CFD predictions showed only qualitative agreement with experiments, with some of the parameter-values delimiting given types of flows being somewhat different between experiment and simulations.

  14. Software Review. Macintosh Laboratory Automation: Three Software Packages.

    ERIC Educational Resources Information Center

    Jezl, Barbara Ann

    1990-01-01

    Reviewed are "LABTECH NOTEBOOK,""LabVIEW," and "Parameter Manager pmPLUS/pmTALK." Each package is described including functions, uses, hardware, and costs. Advantages and disadvantages of this type of laboratory approach are discussed. (CW)

  15. Computing and software

    USGS Publications Warehouse

    White, Gary C.; Hines, J.E.

    2004-01-01

    The reality is that the statistical methods used for analysis of data depend upon the availability of software. Analysis of marked animal data is no different than the rest of the statistical field. The methods used for analysis are those that are available in reliable software packages. Thus, the critical importance of having reliable, up–to–date software available to biologists is obvious. Statisticians have continued to develop more robust models, ever expanding the suite of potential analysis methodsavailable. But without software to implement these newer methods, they will languish in the abstract, and not be applied to the problems deserving them.In the Computers and Software Session, two new software packages are described, a comparison of implementation of methods for the estimation of nest survival is provided, and a more speculative paper about how the next generation of software might be structured is presented.Rotella et al. (2004) compare nest survival estimation with different software packages: SAS logistic regression, SAS non–linear mixed models, and Program MARK. Nests are assumed to be visited at various, possibly infrequent, intervals. All of the approaches described compute nest survival with the same likelihood, and require that the age of the nest is known to account for nests that eventually hatch. However, each approach offers advantages and disadvantages, explored by Rotella et al. (2004).Efford et al. (2004) present a new software package called DENSITY. The package computes population abundance and density from trapping arrays and other detection methods with a new and unique approach. DENSITY represents the first major addition to the analysis of trapping arrays in 20 years.Barker & White (2004) discuss how existing software such as Program MARK require that each new model’s likelihood must be programmed specifically for that model. They wishfully think that future software might allow the user to combine pieces of likelihood functions together to generate estimates. The idea is interesting, and maybe some bright young statistician can work out the specifics to implement the procedure.Choquet et al. (2004) describe MSURGE, a software package that implements the multistate capture–recapture models. The unique feature of MSURGE is that the design matrix is constructed with an interpreted language called GEMACO. Because MSURGE is limited to just multistate models, the special requirements of these likelihoods can be provided.The software and methods presented in these papers gives biologists and wildlife managers an expanding range of possibilities for data analysis. Although ease–of–use is generally getting better, it does not replace the need for understanding of the requirements and structure of the models being computed. The internet provides access to many free software packages as well as user–discussion groups to share knowledge and ideas. (A starting point for wildlife–related applications is (http://www.phidot.org).

  16. CFD Simulation of the distribution of ClO2 in fresh produce to improve safety

    USDA-ARS?s Scientific Manuscript database

    The shelf life of fresh-cut produce may be prolonged with the injection of bactericide gases like chlorine dioxide (ClO2). A comparative study has been conducted by modeling the injection of three different gases, CO2, ClO2 and N2 inside a PET clamshell containers commonly use to package fresh produ...

  17. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses.

    PubMed

    Chiastra, Claudio; Wu, Wei; Dickerhoff, Benjamin; Aleiou, Ali; Dubini, Gabriele; Otake, Hiromasa; Migliavacca, Francesco; LaDisa, John F

    2016-07-26

    The optimal stenting technique for coronary artery bifurcations is still debated. With additional advances computational simulations can soon be used to compare stent designs or strategies based on verified structural and hemodynamics results in order to identify the optimal solution for each individual's anatomy. In this study, patient-specific simulations of stent deployment were performed for 2 cases to replicate the complete procedure conducted by interventional cardiologists. Subsequent computational fluid dynamics (CFD) analyses were conducted to quantify hemodynamic quantities linked to restenosis. Patient-specific pre-operative models of coronary bifurcations were reconstructed from CT angiography and optical coherence tomography (OCT). Plaque location and composition were estimated from OCT and assigned to models, and structural simulations were performed in Abaqus. Artery geometries after virtual stent expansion of Xience Prime or Nobori stents created in SolidWorks were compared to post-operative geometry from OCT and CT before being extracted and used for CFD simulations in SimVascular. Inflow boundary conditions based on body surface area, and downstream vascular resistances and capacitances were applied at branches to mimic physiology. Artery geometries obtained after virtual expansion were in good agreement with those reconstructed from patient images. Quantitative comparison of the distance between reconstructed and post-stent geometries revealed a maximum difference in area of 20.4%. Adverse indices of wall shear stress were more pronounced for thicker Nobori stents in both patients. These findings verify structural analyses of stent expansion, introduce a workflow to combine software packages for solid and fluid mechanics analysis, and underscore important stent design features from prior idealized studies. The proposed approach may ultimately be useful in determining an optimal choice of stent and position for each patient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Decoupled CFD-based optimization of efficiency and cavitation performance of a double-suction pump

    NASA Astrophysics Data System (ADS)

    Škerlavaj, A.; Morgut, M.; Jošt, D.; Nobile, E.

    2017-04-01

    In this study the impeller geometry of a double-suction pump ensuring the best performances in terms of hydraulic efficiency and reluctance of cavitation is determined using an optimization strategy, which was driven by means of the modeFRONTIER optimization platform. The different impeller shapes (designs) are modified according to the optimization parameters and tested with a computational fluid dynamics (CFD) software, namely ANSYS CFX. The simulations are performed using a decoupled approach, where only the impeller domain region is numerically investigated for computational convenience. The flow losses in the volute are estimated on the base of the velocity distribution at the impeller outlet. The best designs are then validated considering the computationally more expensive full geometry CFD model. The overall results show that the proposed approach is suitable for quick impeller shape optimization.

  19. Computational hemodynamics of an implanted coronary stent based on three-dimensional cine angiography reconstruction.

    PubMed

    Chen, Mounter C Y; Lu, Po-Chien; Chen, James S Y; Hwang, Ned H C

    2005-01-01

    Coronary stents are supportive wire meshes that keep narrow coronary arteries patent, reducing the risk of restenosis. Despite the common use of coronary stents, approximately 20-35% of them fail due to restenosis. Flow phenomena adjacent to the stent may contribute to restenosis. Three-dimensional computational fluid dynamics (CFD) and reconstruction based on biplane cine angiography were used to assess coronary geometry and volumetric blood flows. A patient-specific left anterior descending (LAD) artery was reconstructed from single-plane x-ray imaging. With corresponding electrocardiographic signals, images from the same time phase were selected from the angiograms for dynamic three-dimensional reconstruction. The resultant three-dimensional LAD artery at end-diastole was adopted for detailed analysis. Both the geometries and flow fields, based on a computational model from CAE software (ANSYS and CATIA) and full three-dimensional Navier-Stroke equations in the CFD-ACE+ software, respectively, changed dramatically after stent placement. Flow fields showed a complex three-dimensional spiral motion due to arterial tortuosity. The corresponding wall shear stresses, pressure gradient, and flow field all varied significantly after stent placement. Combined angiography and CFD techniques allow more detailed investigation of flow patterns in various segments. The implanted stent(s) may be quantitatively studied from the proposed hemodynamic modeling approach.

  20. Comparison of estimates of left ventricular ejection fraction obtained from gated blood pool imaging, different software packages and cameras.

    PubMed

    Steyn, Rachelle; Boniaszczuk, John; Geldenhuys, Theodore

    2014-01-01

    To determine how two software packages, supplied by Siemens and Hermes, for processing gated blood pool (GBP) studies should be used in our department and whether the use of different cameras for the acquisition of raw data influences the results. The study had two components. For the first component, 200 studies were acquired on a General Electric (GE) camera and processed three times by three operators using the Siemens and Hermes software packages. For the second part, 200 studies were acquired on two different cameras (GE and Siemens). The matched pairs of raw data were processed by one operator using the Siemens and Hermes software packages. The Siemens method consistently gave estimates that were 4.3% higher than the Hermes method (p < 0.001). The differences were not associated with any particular level of left ventricular ejection fraction (LVEF). There was no difference in the estimates of LVEF obtained by the three operators (p = 0.1794). The reproducibility of estimates was good. In 95% of patients, using the Siemens method, the SD of the three estimates of LVEF by operator 1 was ≤ 1.7, operator 2 was ≤ 2.1 and operator 3 was ≤ 1.3. The corresponding values for the Hermes method were ≤ 2.5, ≤ 2.0 and ≤ 2.1. There was no difference in the results of matched pairs of data acquired on different cameras (p = 0.4933) CONCLUSION: Software packages for processing GBP studies are not interchangeable. The report should include the name and version of the software package used. Wherever possible, the same package should be used for serial studies. If this is not possible, the report should include the limits of agreement of the different packages. Data acquisition on different cameras did not influence the results.

  1. ELAS: A powerful, general purpose image processing package

    NASA Technical Reports Server (NTRS)

    Walters, David; Rickman, Douglas

    1991-01-01

    ELAS is a software package which has been utilized as an image processing tool for more than a decade. It has been the source of several commercial packages. Now available on UNIX workstations it is a very powerful, flexible set of software. Applications at Stennis Space Center have included a very wide range of areas including medicine, forestry, geology, ecological modeling, and sonar imagery. It remains one of the most powerful image processing packages available, either commercially or in the public domain.

  2. On the release of cppxfel for processing X-ray free-electron laser images.

    PubMed

    Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K; Stuart, David Ian

    2016-06-01

    As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Here cppxfel , a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set. Cppxfel is released with the hope that the unique and useful elements of this package can be repurposed for existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.

  3. Analyzing longitudinal data with the linear mixed models procedure in SPSS.

    PubMed

    West, Brady T

    2009-09-01

    Many applied researchers analyzing longitudinal data share a common misconception: that specialized statistical software is necessary to fit hierarchical linear models (also known as linear mixed models [LMMs], or multilevel models) to longitudinal data sets. Although several specialized statistical software programs of high quality are available that allow researchers to fit these models to longitudinal data sets (e.g., HLM), rapid advances in general purpose statistical software packages have recently enabled analysts to fit these same models when using preferred packages that also enable other more common analyses. One of these general purpose statistical packages is SPSS, which includes a very flexible and powerful procedure for fitting LMMs to longitudinal data sets with continuous outcomes. This article aims to present readers with a practical discussion of how to analyze longitudinal data using the LMMs procedure in the SPSS statistical software package.

  4. On the release of cppxfel for processing X-ray free-electron laser images

    DOE PAGES

    Ginn, Helen Mary; Evans, Gwyndaf; Sauter, Nicholas K.; ...

    2016-05-11

    As serial femtosecond crystallography expands towards a variety of delivery methods, including chip-based methods, and smaller collected data sets, the requirement to optimize the data analysis to produce maximum structure quality is becoming increasingly pressing. Herecppxfel, a software package primarily written in C++, which showcases several data analysis techniques, is released. This software package presently indexes images using DIALS (diffraction integration for advanced light sources) and performs an initial orientation matrix refinement, followed by post-refinement of individual images against a reference data set.Cppxfelis released with the hope that the unique and useful elements of this package can be repurposed formore » existing software packages. However, as released, it produces high-quality crystal structures and is therefore likely to be also useful to experienced users of X-ray free-electron laser (XFEL) software who wish to maximize the information extracted from a limited number of XFEL images.« less

  5. Office Computer Software: A Comprehensive Review of Software Programs.

    ERIC Educational Resources Information Center

    Secretary, 1992

    1992-01-01

    Describes types of software including system software, application software, spreadsheets, accounting software, graphics packages, desktop publishing software, database, desktop and personal information management software, project and records management software, groupware, and shareware. (JOW)

  6. Three-Dimensional (3D) Nanometrology Based on Scanning Electron Microscope (SEM) Stereophotogrammetry.

    PubMed

    Tondare, Vipin N; Villarrubia, John S; Vlada R, András E

    2017-10-01

    Three-dimensional (3D) reconstruction of a sample surface from scanning electron microscope (SEM) images taken at two perspectives has been known for decades. Nowadays, there exist several commercially available stereophotogrammetry software packages. For testing these software packages, in this study we used Monte Carlo simulated SEM images of virtual samples. A virtual sample is a model in a computer, and its true dimensions are known exactly, which is impossible for real SEM samples due to measurement uncertainty. The simulated SEM images can be used for algorithm testing, development, and validation. We tested two stereophotogrammetry software packages and compared their reconstructed 3D models with the known geometry of the virtual samples used to create the simulated SEM images. Both packages performed relatively well with simulated SEM images of a sample with a rough surface. However, in a sample containing nearly uniform and therefore low-contrast zones, the height reconstruction error was ≈46%. The present stereophotogrammetry software packages need further improvement before they can be used reliably with SEM images with uniform zones.

  7. Visual Environments for CFD Research

    NASA Technical Reports Server (NTRS)

    Watson, Val; George, Michael W. (Technical Monitor)

    1994-01-01

    This viewgraph presentation gives an overview of the visual environments for computational fluid dynamics (CFD) research. It includes details on critical needs from the future computer environment, features needed to attain this environment, prospects for changes in and the impact of the visualization revolution on the human-computer interface, human processing capabilities, limits of personal environment and the extension of that environment with computers. Information is given on the need for more 'visual' thinking (including instances of visual thinking), an evaluation of the alternate approaches for and levels of interactive computer graphics, a visual analysis of computational fluid dynamics, and an analysis of visualization software.

  8. Numerical wind-tunnel simulation for Spar platform

    NASA Astrophysics Data System (ADS)

    Shen, Wenjun

    2017-05-01

    ANSYS Fluent software is used in the simulation analysis of numerical wind tunnel model for the upper Spar platform module. Design Modeler (DM), Meshing, FLUENT and CFD-POST are chosen in the numerical calculation. And DM is used to deal with and repair the geometric model, and Meshing is used to mesh the model, Fluent is used to set up and solve the calculation condition, finally CFD-POST is used for post-processing of the results. The wind loads are obtained under different direction and incidence angles. Finally, comparison is made between numerical results and empirical formula.

  9. MOPEX: a software package for astronomical image processing and visualization

    NASA Astrophysics Data System (ADS)

    Makovoz, David; Roby, Trey; Khan, Iffat; Booth, Hartley

    2006-06-01

    We present MOPEX - a software package for astronomical image processing and display. The package is a combination of command-line driven image processing software written in C/C++ with a Java-based GUI. The main image processing capabilities include creating mosaic images, image registration, background matching, point source extraction, as well as a number of minor image processing tasks. The combination of the image processing and display capabilities allows for much more intuitive and efficient way of performing image processing. The GUI allows for the control over the image processing and display to be closely intertwined. Parameter setting, validation, and specific processing options are entered by the user through a set of intuitive dialog boxes. Visualization feeds back into further processing by providing a prompt feedback of the processing results. The GUI also allows for further analysis by accessing and displaying data from existing image and catalog servers using a virtual observatory approach. Even though originally designed for the Spitzer Space Telescope mission, a lot of functionalities are of general usefulness and can be used for working with existing astronomical data and for new missions. The software used in the package has undergone intensive testing and benefited greatly from effective software reuse. The visualization part has been used for observation planning for both the Spitzer and Herschel Space Telescopes as part the tool Spot. The visualization capabilities of Spot have been enhanced and integrated with the image processing functionality of the command-line driven MOPEX. The image processing software is used in the Spitzer automated pipeline processing, which has been in operation for nearly 3 years. The image processing capabilities have also been tested in off-line processing by numerous astronomers at various institutions around the world. The package is multi-platform and includes automatic update capabilities. The software package has been developed by a small group of software developers and scientists at the Spitzer Science Center. It is available for distribution at the Spitzer Science Center web page.

  10. User Documentation for Multiple Software Releases

    NASA Technical Reports Server (NTRS)

    Humphrey, R.

    1982-01-01

    In proposed solution to problems of frequent software releases and updates, documentation would be divided into smaller packages, each of which contains data relating to only one of several software components. Changes would not affect entire document. Concept would improve dissemination of information regarding changes and would improve quality of data supporting packages. Would help to insure both timeliness and more thorough scrutiny of changes.

  11. CFD simulation research on residential indoor air quality.

    PubMed

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Versatile Software Package For Near Real-Time Analysis of Experimental Data

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Hoadley, Sherwood T.

    1998-01-01

    This paper provides an overview of a versatile software package developed for time- and frequency-domain analyses of experimental wind-tunnel data. This package, originally developed for analyzing data in the NASA Langley Transonic Dynamics Tunnel (TDT), is applicable for analyzing any time-domain data. A Matlab-based software package, TDT-analyzer, provides a compendium of commonly-required dynamic analysis functions in a user-friendly interactive and batch processing environment. TDT-analyzer has been used extensively to provide on-line near real-time and post-test examination and reduction of measured data acquired during wind tunnel tests of aeroelastically-scaled models of aircraft and rotorcraft as well as a flight test of the NASA High Alpha Research Vehicle (HARV) F-18. The package provides near real-time results in an informative and timely manner far exceeding prior methods of data reduction at the TDT.

  13. Development and acceleration of unstructured mesh-based cfd solver

    NASA Astrophysics Data System (ADS)

    Emelyanov, V.; Karpenko, A.; Volkov, K.

    2017-06-01

    The study was undertaken as part of a larger effort to establish a common computational fluid dynamics (CFD) code for simulation of internal and external flows and involves some basic validation studies. The governing equations are solved with ¦nite volume code on unstructured meshes. The computational procedure involves reconstruction of the solution in each control volume and extrapolation of the unknowns to find the flow variables on the faces of control volume, solution of Riemann problem for each face of the control volume, and evolution of the time step. The nonlinear CFD solver works in an explicit time-marching fashion, based on a three-step Runge-Kutta stepping procedure. Convergence to a steady state is accelerated by the use of geometric technique and by the application of Jacobi preconditioning for high-speed flows, with a separate low Mach number preconditioning method for use with low-speed flows. The CFD code is implemented on graphics processing units (GPUs). Speedup of solution on GPUs with respect to solution on central processing units (CPU) is compared with the use of different meshes and different methods of distribution of input data into blocks. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  14. Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis

    PubMed Central

    2011-01-01

    Background A variety of neuroimaging software packages have been released from various laboratories worldwide, and many researchers use these packages in combination. Though most of these software packages are freely available, some people find them difficult to install and configure because they are mostly based on UNIX-like operating systems. We developed a live USB-bootable Linux package named "Lin4Neuro." This system includes popular neuroimaging analysis tools. The user interface is customized so that even Windows users can use it intuitively. Results The boot time of this system was only around 40 seconds. We performed a benchmark test of inhomogeneity correction on 10 subjects of three-dimensional T1-weighted MRI scans. The processing speed of USB-booted Lin4Neuro was as fast as that of the package installed on the hard disk drive. We also installed Lin4Neuro on a virtualization software package that emulates the Linux environment on a Windows-based operation system. Although the processing speed was slower than that under other conditions, it remained comparable. Conclusions With Lin4Neuro in one's hand, one can access neuroimaging software packages easily, and immediately focus on analyzing data. Lin4Neuro can be a good primer for beginners of neuroimaging analysis or students who are interested in neuroimaging analysis. It also provides a practical means of sharing analysis environments across sites. PMID:21266047

  15. Lin4Neuro: a customized Linux distribution ready for neuroimaging analysis.

    PubMed

    Nemoto, Kiyotaka; Dan, Ippeita; Rorden, Christopher; Ohnishi, Takashi; Tsuzuki, Daisuke; Okamoto, Masako; Yamashita, Fumio; Asada, Takashi

    2011-01-25

    A variety of neuroimaging software packages have been released from various laboratories worldwide, and many researchers use these packages in combination. Though most of these software packages are freely available, some people find them difficult to install and configure because they are mostly based on UNIX-like operating systems. We developed a live USB-bootable Linux package named "Lin4Neuro." This system includes popular neuroimaging analysis tools. The user interface is customized so that even Windows users can use it intuitively. The boot time of this system was only around 40 seconds. We performed a benchmark test of inhomogeneity correction on 10 subjects of three-dimensional T1-weighted MRI scans. The processing speed of USB-booted Lin4Neuro was as fast as that of the package installed on the hard disk drive. We also installed Lin4Neuro on a virtualization software package that emulates the Linux environment on a Windows-based operation system. Although the processing speed was slower than that under other conditions, it remained comparable. With Lin4Neuro in one's hand, one can access neuroimaging software packages easily, and immediately focus on analyzing data. Lin4Neuro can be a good primer for beginners of neuroimaging analysis or students who are interested in neuroimaging analysis. It also provides a practical means of sharing analysis environments across sites.

  16. Numerical simulation of flows around deformed aircraft model in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Lysenkov, A. V.; Bosnyakov, S. M.; Glazkov, S. A.; Gorbushin, A. R.; Kuzmina, S. I.; Kursakov, I. A.; Matyash, S. V.; Ishmuratov, F. Z.

    2016-10-01

    To obtain accurate data of calculation method error requires detailed simulation of the experiment in wind tunnel with keeping all features of the model, installation and gas flow. Two examples of such detailed data comparison are described in this paper. The experimental characteristics of NASA CRM model obtained in the ETW wind tunnel (Cologne, Germany), and CFD characteristics of this model obtained with the use of EWT-TsAGI application package are compared. Following comparison is carried out for an airplane model in the T-128 wind tunnel (TsAGI, Russia). It is seen that deformation influence on integral characteristics grows with increasing Re number and, accordingly, the dynamic pressure. CFD methods application for problems of experimental research in the wind tunnel allows to separate viscosity and elasticity effects.

  17. Open Source Software Openfoam as a New Aerodynamical Simulation Tool for Rocket-Borne Measurements

    NASA Astrophysics Data System (ADS)

    Staszak, T.; Brede, M.; Strelnikov, B.

    2015-09-01

    The only way to do in-situ measurements, which are very important experimental studies for atmospheric science, in the mesoshere/lower thermosphere (MLT) is to use sounding rockets. The drawback of using rockets is the shock wave appearing because of the very high speed of the rocket motion (typically about 1000 mIs). This shock wave disturbs the density, the temperature and the velocity fields in the vicinity of the rocket, compared to undisturbed values of the atmosphere. This effect, however, can be quantified and the measured data has to be corrected not just to make it more precise but simply usable. The commonly accepted and widely used tool for this calculations is the Direct Simulation Monte Carlo (DSMC) technique developed by GA. Bird which is available as stand-alone program limited to use a single processor. Apart from complications with simulations of flows around bodies related to different flow regimes in the altitude range of MLT, that rise due to exponential density change by several orders of magnitude, a particular hardware configuration introduces significant difficulty for aerodynamical calculations due to choice of the grid sizes mainly depending on the demands on adequate DSMCs and good resolution of geometries with scale differences of factor of iO~. This makes either the calculation time unreasonably long or even prevents the calculation algorithm from converging. In this paper we apply the free open source software OpenFOAM (licensed under GNU GPL) for a three-dimensional CFD-Simulation of a flow around a sounding rocket instrumentation. An advantage of this software package, among other things, is that it can run on high performance clusters, which are easily scalable. We present the first results and discuss the potential of the new tool in applications for sounding rockets.

  18. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  19. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  20. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  1. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  2. Environmental databases and other computerized information tools

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    1995-01-01

    Increasing environmental legislation has brought about the development of many new environmental databases and software application packages to aid in the quest for environmental compliance. These databases and software packages are useful tools and applicable to a wide range of environmental areas from atmospheric modeling to materials replacement technology. The great abundance of such products and services can be very overwhelming when trying to identify the tools which best meet specific needs. This paper will discuss the types of environmental databases and software packages available. This discussion will also encompass the affected environmental areas of concern, product capabilities, and hardware requirements for product utilization.

  3. Reviews.

    ERIC Educational Resources Information Center

    Radcliffe, George; And Others

    1988-01-01

    Reviews three software packages: 1) a package containing 68 programs covering general topics in chemistry; 2) a package dealing with acid-base titration curves and allows for variables to be changed; 3) a chemistry tutorial and drill package. (MVL)

  4. Design and Implementation of Scientific Software Components to Enable Multiscale Modeling: The Effective Fragment Potential (QM/EFP) Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaenko, Alexander; Windus, Theresa L.; Sosonkina, Masha

    2012-10-19

    The design and development of scientific software components to provide an interface to the effective fragment potential (EFP) methods are reported. Multiscale modeling of physical and chemical phenomena demands the merging of software packages developed by research groups in significantly different fields. Componentization offers an efficient way to realize new high performance scientific methods by combining the best models available in different software packages without a need for package readaptation after the initial componentization is complete. The EFP method is an efficient electronic structure theory based model potential that is suitable for predictive modeling of intermolecular interactions in large molecularmore » systems, such as liquids, proteins, atmospheric aerosols, and nanoparticles, with an accuracy that is comparable to that of correlated ab initio methods. The developed components make the EFP functionality accessible for any scientific component-aware software package. The performance of the component is demonstrated on a protein interaction model, and its accuracy is compared with results obtained with coupled cluster methods.« less

  5. Prediction of pressure drop in fluid tuned mounts using analytical and computational techniques

    NASA Technical Reports Server (NTRS)

    Lasher, William C.; Khalilollahi, Amir; Mischler, John; Uhric, Tom

    1993-01-01

    A simplified model for predicting pressure drop in fluid tuned isolator mounts was developed. The model is based on an exact solution to the Navier-Stokes equations and was made more general through the use of empirical coefficients. The values of these coefficients were determined by numerical simulation of the flow using the commercial computational fluid dynamics (CFD) package FIDAP.

  6. Wall adjustment strategy software for use with the NASA Langley 0.3-meter transonic cryogenic tunnel adaptive wall test section

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1988-01-01

    The Wall Adjustment Strategy (WAS) software provides successful on-line control of the 2-D flexible walled test section of the Langley 0.3-m Transonic Cryogenic Tunnel. This software package allows the level of operator intervention to be regulated as necessary for research and production type 2-D testing using and Adaptive Wall Test Section (AWTS). The software is designed to accept modification for future requirements, such as 3-D testing, with a minimum of complexity. The WAS software described is an attempt to provide a user friendly package which could be used to control any flexible walled AWTS. Control system constraints influence the details of data transfer, not the data type. Then this entire software package could be used in different control systems, if suitable interface software is available. A complete overview of the software highlights the data flow paths, the modular architecture of the software and the various operating and analysis modes available. A detailed description of the software modules includes listings of the code. A user's manual is provided to explain task generation, operating environment, user options and what to expect at execution.

  7. Performance Improvements to the Naval Postgraduate School Turbopropulsion Labs Transonic Axially Splittered Rotor

    DTIC Science & Technology

    2013-12-01

    Implementation of current NPS TPL design procedure that uses COTS software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and...procedure that uses commercial-off-the-shelf software (MATLAB, SolidWorks, and ANSYS - CFX ) for the geometric rendering and analysis was modified and... CFX The CFD simulation program in ANSYS Workbench. CFX -Pre CFX boundary conditions and solver settings module. CFX -Solver CFX solver program. CFX

  8. AFOSR BRI: Co-Design of Hardware/Software for Predicting MAV Aerodynamics

    DTIC Science & Technology

    2016-09-27

    DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 6. AUTHOR(S) 7...703-588-8494 AFOSR BRI While Moore’s Law theoretically doubles processor performance every 24 months, much of the realizable performance remains...past efforts to develop such CFD codes on accelerated processors showed limited success, our hardware/software co-design approach created malleable

  9. User’s guide for MapMark4—An R package for the probability calculations in three-part mineral resource assessments

    USGS Publications Warehouse

    Ellefsen, Karl J.

    2017-06-27

    MapMark4 is a software package that implements the probability calculations in three-part mineral resource assessments. Functions within the software package are written in the R statistical programming language. These functions, their documentation, and a copy of this user’s guide are bundled together in R’s unit of shareable code, which is called a “package.” This user’s guide includes step-by-step instructions showing how the functions are used to carry out the probability calculations. The calculations are demonstrated using test data, which are included in the package.

  10. Combining ray tracing and CFD in the thermal analysis of a parabolic dish tubular cavity receiver

    NASA Astrophysics Data System (ADS)

    Craig, Ken J.; Marsberg, Justin; Meyer, Josua P.

    2016-05-01

    This paper describes the numerical evaluation of a tubular receiver used in a dish Brayton cycle. In previous work considering the use of Computational Fluid Dynamics (CFD) to perform the calculation of the absorbed radiation from the parabolic dish into the cavity as well as the resulting conjugate heat transfer, it was shown that an axi-symmetric model of the dish and receiver absorbing surfaces was useful in reducing the computational cost required for a full 3-D discrete ordinates solution, but concerns remained about its accuracy. To increase the accuracy, the Monte Carlo ray tracer SolTrace is used to perform the calculation of the absorbed radiation profile to be used in the conjugate heat transfer CFD simulation. The paper describes an approach for incorporating a complex geometry like a tubular receiver generated using CFD software into SolTrace. The results illustrate the variation of CFD mesh density that translates into the number of elements in SolTrace as well as the number of rays used in the Monte Carlo approach and their effect on obtaining a resolution-independent solution. The conjugate heat transfer CFD simulation illustrates the effect of applying the SolTrace surface heat flux profile solution as a volumetric heat source to heat up the air inside the tube. Heat losses due to convection and thermal re-radiation are also determined as a function of different tube absorptivities.

  11. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...-compatible format. All databases must be supported with adequate documentation on data attributes, SQL...

  12. Scout 2008 Version 1.0 User Guide

    EPA Science Inventory

    The Scout 2008 version 1.0 software package provides a wide variety of classical and robust statistical methods that are not typically available in other commercial software packages. A major part of Scout deals with classical, robust, and resistant univariate and multivariate ou...

  13. INTERFACING SAS TO ORACLE IN THE UNIX ENVIRONMENT

    EPA Science Inventory

    SAS is an EPA standard data and statistical analysis software package while ORACLE is EPA's standard data base management system software package. RACLE has the advantage over SAS in data retrieval and storage capabilities but has limited data and statistical analysis capability....

  14. Simulation of SiO2 etching in an inductively coupled CF4 plasma

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Li, Yu-Xing; Li, Xiao-Ning; Wang, Jia-Bin; Yang, Fan; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Plasma etching technology is an indispensable processing method in the manufacturing process of semiconductor devices. Because of the high fluorine/carbon ratio of CF4, the CF4 gas is often used for etching SiO2. A commercial software ESI-CFD is used to simulate the process of plasma etching with an inductively coupled plasma model. For the simulation part, CFD-ACE is used to simulate the chamber, and CFD-TOPO is used to simulate the surface of the sample. The effects of chamber pressure, bias voltage and ICP power on the reactant particles were investigated, and the etching profiles of SiO2 were obtained. Simulation can be used to predict the effects of reaction conditions on the density, energy and angular distributions of reactant particles, which can play a good role in guiding the etching process.

  15. ’Pushing a Big Rock Up a Steep Hill’: Acquisition Lessons Learned from DoD Applications Storefront

    DTIC Science & Technology

    2014-04-30

    software patches, web applications, widgets, and mobile application packages. The envisioned application store will deliver software from a central...automated delivery of software patches, web applications, widgets, and mobile application packages. The envisioned application store will deliver... mobile technologies, hoping to enhance warfighter situational awareness and access to information. Unfortunately, the Defense Acquisition System has not

  16. MicroSIFT Courseware Evaluation. [Set 13 (294-319), Set 14 (320-361), with Hardware (HRD) and Subject (SBJ) Indexes to Both Sets.

    ERIC Educational Resources Information Center

    Northwest Regional Educational Lab., Portland, OR.

    This document consists of 68 microcomputer software package evaluations prepared by MicroSIFT (Microcomputer Software and Information for Teachers) Clearinghouse at the Northwest Regional Education Laboratory. There are 26 packages in set 13 and 42 in set 14. Each software review lists producer, time and place of evaluation, cost, ability level,…

  17. PIV Data Validation Software Package

    NASA Technical Reports Server (NTRS)

    Blackshire, James L.

    1997-01-01

    A PIV data validation and post-processing software package was developed to provide semi-automated data validation and data reduction capabilities for Particle Image Velocimetry data sets. The software provides three primary capabilities including (1) removal of spurious vector data, (2) filtering, smoothing, and interpolating of PIV data, and (3) calculations of out-of-plane vorticity, ensemble statistics, and turbulence statistics information. The software runs on an IBM PC/AT host computer working either under Microsoft Windows 3.1 or Windows 95 operating systems.

  18. FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.; Vasta, Veer; Carlson, Jan-Renee; Park, Mike; Mineck, Raymond E.

    2010-01-01

    This paper presents grid refinement and adaptation studies performed in conjunction with computational aeroelastic analyses of the Ares crew launch vehicle (CLV). The unstructured grids used in this analysis were created with GridTool and VGRID while the adaptation was performed using the Computational Fluid Dynamic (CFD) code FUN3D with a feature based adaptation software tool. GridTool was developed by ViGYAN, Inc. while the last three software suites were developed by NASA Langley Research Center. The feature based adaptation software used here operates by aligning control volumes with shock and Mach line structures and by refining/de-refining where necessary. It does not redistribute node points on the surface. This paper assesses the sensitivity of the complex flow field about a launch vehicle to grid refinement. It also assesses the potential of feature based grid adaptation to improve the accuracy of CFD analysis for a complex launch vehicle configuration. The feature based adaptation shows the potential to improve the resolution of shocks and shear layers. Further development of the capability to adapt the boundary layer and surface grids of a tetrahedral grid is required for significant improvements in modeling the flow field.

  19. Flow analysis of new type propulsion system for UV’s

    NASA Astrophysics Data System (ADS)

    Eimanis, M.; Auzins, J.

    2017-10-01

    This paper presents an original design of an autonomous underwater vehicle where thrust force is created by the helicoidal shape of the hull rather than screw propellers. Propulsion force is created by counter-rotating bow and stern parts. The middle part of the vehicle has the function of a cargo compartment containing all control mechanisms and communications. It’s made of elastic material, containing a Cardan-joint mechanism, which allows changing the direction of vehicle, actuated by bending drives. A bending drive velocity control algorithm for the automatic control of vehicle movement direction is proposed. The dynamics of AUV are simulated using multibody simulation software MSC Adams. For the simulation of water resistance forces and torques the surrogate polynomial metamodels are created on the basis of computer experiments with CFD software. For flow interaction with model geometry the simplified vehicle model is submerged in fluid medium using special CFD software, with the same idea used in wind tunnel experiments. The simulation results are compared with measurements of the AUV prototype, created at Institute of Mechanics of Riga Technical University. Experiments with the prototype showed good agreement with simulation results and confirmed the effectiveness and the future potential of the proposed principle.

  20. AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S

    NASA Technical Reports Server (NTRS)

    Klumpp, A. R.

    1994-01-01

    This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.

  1. SIMA: Python software for analysis of dynamic fluorescence imaging data.

    PubMed

    Kaifosh, Patrick; Zaremba, Jeffrey D; Danielson, Nathan B; Losonczy, Attila

    2014-01-01

    Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs), and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI) for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.

  2. New generation of exploration tools: interactive modeling software and microcomputers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krajewski, S.A.

    1986-08-01

    Software packages offering interactive modeling techniques are now available for use on microcomputer hardware systems. These packages are reasonably priced for both company and independent explorationists; they do not require users to have high levels of computer literacy; they are capable of rapidly completing complex ranges of sophisticated geologic and geophysical modeling tasks; and they can produce presentation-quality output for comparison with real-world data. For example, interactive packages are available for mapping, log analysis, seismic modeling, reservoir studies, and financial projects as well as for applying a variety of statistical and geostatistical techniques to analysis of exploration data. More importantly,more » these packages enable explorationists to directly apply their geologic expertise when developing and fine-tuning models for identifying new prospects and for extending producing fields. As a result of these features, microcomputers and interactive modeling software are becoming common tools in many exploration offices. Gravity and magnetics software programs illustrate some of the capabilities of such exploration tools.« less

  3. Image-Based Computational Fluid Dynamics in Blood Vessel Models: Toward Developing a Prognostic Tool to Assess Cardiovascular Function Changes in Prolonged Space Flights

    NASA Technical Reports Server (NTRS)

    Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.

    2004-01-01

    One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.

  4. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applicationsmore » and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished.« less

  5. Component-based integration of chemistry and optimization software.

    PubMed

    Kenny, Joseph P; Benson, Steven J; Alexeev, Yuri; Sarich, Jason; Janssen, Curtis L; McInnes, Lois Curfman; Krishnan, Manojkumar; Nieplocha, Jarek; Jurrus, Elizabeth; Fahlstrom, Carl; Windus, Theresa L

    2004-11-15

    Typical scientific software designs make rigid assumptions regarding programming language and data structures, frustrating software interoperability and scientific collaboration. Component-based software engineering is an emerging approach to managing the increasing complexity of scientific software. Component technology facilitates code interoperability and reuse. Through the adoption of methodology and tools developed by the Common Component Architecture Forum, we have developed a component architecture for molecular structure optimization. Using the NWChem and Massively Parallel Quantum Chemistry packages, we have produced chemistry components that provide capacity for energy and energy derivative evaluation. We have constructed geometry optimization applications by integrating the Toolkit for Advanced Optimization, Portable Extensible Toolkit for Scientific Computation, and Global Arrays packages, which provide optimization and linear algebra capabilities. We present a brief overview of the component development process and a description of abstract interfaces for chemical optimizations. The components conforming to these abstract interfaces allow the construction of applications using different chemistry and mathematics packages interchangeably. Initial numerical results for the component software demonstrate good performance, and highlight potential research enabled by this platform.

  6. Diagnosis diagrams for passing signals on an automatic block signaling railway section

    NASA Astrophysics Data System (ADS)

    Spunei, E.; Piroi, I.; Chioncel, C. P.; Piroi, F.

    2018-01-01

    This work presents a diagnosis method for railway traffic security installations. More specifically, the authors present a series of diagnosis charts for passing signals on a railway block equipped with an automatic block signaling installation. These charts are based on the exploitation electric schemes, and are subsequently used to develop a diagnosis software package. The thus developed software package contributes substantially to a reduction of failure detection and remedy for these types of installation faults. The use of the software package eliminates making wrong decisions in the fault detection process, decisions that may result in longer remedy times and, sometimes, to railway traffic events.

  7. Orbit determination for ISRO satellite missions

    NASA Astrophysics Data System (ADS)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  8. Prototyping with Data Dictionaries for Requirements Analysis.

    DTIC Science & Technology

    1985-03-01

    statistical packages and software for screen layout. These items work at a higher level than another category of prototyping tool, program generators... Program generators are software packages which, when given specifications, produce source listings, usually in a high order language such as COBCL...with users and this will not happen if he must stop to develcp a detailed program . [Ref. 241] Hardware as well as software should be considered in

  9. Electronic and software subsystems for an autonomous roving vehicle. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Doig, G. A.

    1980-01-01

    The complete electronics packaging which controls the Mars roving vehicle is described in order to provide a broad overview of the systems that are part of that package. Some software debugging tools are also discussed. Particular emphasis is given to those systems that are controlled by the microprocessor. These include the laser mast, the telemetry system, the command link prime interface board, and the prime software.

  10. The Shock and Vibration Digest. Volume 17, Number 4

    DTIC Science & Technology

    1985-04-01

    software packages for engineering signed to be easy to use from the outset, computations which were specifically writ- and this design philosophy is largely...re- ten for use on microcomputers. Software sponsible for their increasing popularity; packages related to shock and vibration are this same design...philosophy appears to have available for both experimental and for been carried over to the design of today’s analytical applications. Typical software

  11. Hierarchical Petascale Simulation Framework For Stress Corrosion Cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grama, Ananth

    2013-12-18

    A number of major accomplishments resulted from the project. These include: • Data Structures, Algorithms, and Numerical Methods for Reactive Molecular Dynamics. We have developed a range of novel data structures, algorithms, and solvers (amortized ILU, Spike) for use with ReaxFF and charge equilibration. • Parallel Formulations of ReactiveMD (Purdue ReactiveMolecular Dynamics Package, PuReMD, PuReMD-GPU, and PG-PuReMD) for Messaging, GPU, and GPU Cluster Platforms. We have developed efficient serial, parallel (MPI), GPU (Cuda), and GPU Cluster (MPI/Cuda) implementations. Our implementations have been demonstrated to be significantly better than the state of the art, both in terms of performance and scalability.more » • Comprehensive Validation in the Context of Diverse Applications. We have demonstrated the use of our software in diverse systems, including silica-water, silicon-germanium nanorods, and as part of other projects, extended it to applications ranging from explosives (RDX) to lipid bilayers (biomembranes under oxidative stress). • Open Source Software Packages for Reactive Molecular Dynamics. All versions of our soft- ware have been released over the public domain. There are over 100 major research groups worldwide using our software. • Implementation into the Department of Energy LAMMPS Software Package. We have also integrated our software into the Department of Energy LAMMPS software package.« less

  12. Developing a Virtual Physics World

    ERIC Educational Resources Information Center

    Wegener, Margaret; McIntyre, Timothy J.; McGrath, Dominic; Savage, Craig M.; Williamson, Michael

    2012-01-01

    In this article, the successful implementation of a development cycle for a physics teaching package based on game-like virtual reality software is reported. The cycle involved several iterations of evaluating students' use of the package followed by instructional and software development. The evaluation used a variety of techniques, including…

  13. Teaching Science and Mathematics Subjects Using the Excel Spreadsheet Package

    ERIC Educational Resources Information Center

    Ibrahim, Dogan

    2009-01-01

    The teaching of scientific subjects usually require laboratories where students can put the theory they have learned into practice. Traditionally, electronic programmable calculators, dedicated software, or expensive software simulation packages, such as MATLAB have been used to simulate scientific experiments. Recently, spreadsheet programs have…

  14. Description of the IV + V System Software Package.

    ERIC Educational Resources Information Center

    Microcomputers for Information Management: An International Journal for Library and Information Services, 1984

    1984-01-01

    Describes the IV + V System, a software package designed by the Institut fur Maschinelle Dokumentation for the United Nations General Information Programme and UNISIST to support automation of local information and documentation services. Principle program features and functions outlined include input/output, databank, text image, output, and…

  15. Computation of Sensitivity Derivatives of Navier-Stokes Equations using Complex Variables

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.

    2004-01-01

    Accurate computation of sensitivity derivatives is becoming an important item in Computational Fluid Dynamics (CFD) because of recent emphasis on using nonlinear CFD methods in aerodynamic design, optimization, stability and control related problems. Several techniques are available to compute gradients or sensitivity derivatives of desired flow quantities or cost functions with respect to selected independent (design) variables. Perhaps the most common and oldest method is to use straightforward finite-differences for the evaluation of sensitivity derivatives. Although very simple, this method is prone to errors associated with choice of step sizes and can be cumbersome for geometric variables. The cost per design variable for computing sensitivity derivatives with central differencing is at least equal to the cost of three full analyses, but is usually much larger in practice due to difficulty in choosing step sizes. Another approach gaining popularity is the use of Automatic Differentiation software (such as ADIFOR) to process the source code, which in turn can be used to evaluate the sensitivity derivatives of preselected functions with respect to chosen design variables. In principle, this approach is also very straightforward and quite promising. The main drawback is the large memory requirement because memory use increases linearly with the number of design variables. ADIFOR software can also be cumber-some for large CFD codes and has not yet reached a full maturity level for production codes, especially in parallel computing environments.

  16. Chimera Grid Tools

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert

    2005-01-01

    Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.

  17. User’s guide for GcClust—An R package for clustering of regional geochemical data

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David B.

    2016-04-08

    GcClust is a software package developed by the U.S. Geological Survey for statistical clustering of regional geochemical data, and similar data such as regional mineralogical data. Functions within the software package are written in the R statistical programming language. These functions, their documentation, and a copy of the user’s guide are bundled together in R’s unit of sharable code, which is called a “package.” The user’s guide includes step-by-step instructions showing how the functions are used to cluster data and to evaluate the clustering results. These functions are demonstrated in this report using test data, which are included in the package.

  18. Pilot-in-the-Loop CFD Method Development

    DTIC Science & Technology

    2017-02-01

    Penn State University. All software supporting piloted simulations must run at real time speeds or faster. This requirement drives the number of...dynamics of interacting blade tip vortices with a ground plane,” American Helicopter Society 64 th Annual Forum Proceedings, 2008. [2] Johnson, W

  19. GPU-accelerated Lattice Boltzmann method for anatomical extraction in patient-specific computational hemodynamics

    NASA Astrophysics Data System (ADS)

    Yu, H.; Wang, Z.; Zhang, C.; Chen, N.; Zhao, Y.; Sawchuk, A. P.; Dalsing, M. C.; Teague, S. D.; Cheng, Y.

    2014-11-01

    Existing research of patient-specific computational hemodynamics (PSCH) heavily relies on software for anatomical extraction of blood arteries. Data reconstruction and mesh generation have to be done using existing commercial software due to the gap between medical image processing and CFD, which increases computation burden and introduces inaccuracy during data transformation thus limits the medical applications of PSCH. We use lattice Boltzmann method (LBM) to solve the level-set equation over an Eulerian distance field and implicitly and dynamically segment the artery surfaces from radiological CT/MRI imaging data. The segments seamlessly feed to the LBM based CFD computation of PSCH thus explicit mesh construction and extra data management are avoided. The LBM is ideally suited for GPU (graphic processing unit)-based parallel computing. The parallel acceleration over GPU achieves excellent performance in PSCH computation. An application study will be presented which segments an aortic artery from a chest CT dataset and models PSCH of the segmented artery.

  20. The numerical simulation based on CFD of hydraulic turbine pump

    NASA Astrophysics Data System (ADS)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  1. An Interface for Specifying Rigid-Body Motions for CFD Applications

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Chan, William; Aftosmis, Michael; Meakin, Robert L.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    An interface for specifying rigid-body motions for CFD applications is presented. This interface provides a means of describing a component hierarchy in a geometric configuration, as well as the motion (prescribed or six-degree-of-freedom) associated with any component. The interface consists of a general set of datatypes, along with rules for their interaction, and is designed to be flexible in order to evolve as future needs dictate. The specification is currently implemented with an XML file format which is portable across platforms and applications. The motion specification is capable of describing general rigid body motions, and eliminates the need to write and compile new code within the application software for each dynamic configuration, allowing client software to automate dynamic simulations. The interface is integrated with a GUI tool which allows rigid body motions to be prescribed and verified interactively, promoting access to non-expert users. Illustrative examples, as well as the raw XML source of the file specifications, are included.

  2. Numerical investigation of flow on NACA4412 aerofoil with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Demir, Hacımurat; Özden, Mustafa; Genç, Mustafa Serdar; Çağdaş, Mücahit

    2016-03-01

    In this study, the flow over NACA4412 was investigated both numerically and experimentally at a different Reynolds numbers. The experiments were carried out in a low speed wind tunnel with various angles of attack and different Reynolds numbers (25000 and 50000). Airfoil was manufactured using 3D printer with a various aspect ratios (AR = 1 and AR = 3). Smoke-wire and oil flow visualization methods were used to visualize the surface flow patterns. NACA4412 aerofoil was designed by using SOLIDWORKS. The structural grid of numerical model was constructed by ANSYS ICEM CFD meshing software. Furthermore, ANSYS FLUENT™ software was used to perform numerical calculations. The numerical results were compared with experimental results. Bubble formation was shown in CFD streamlines and smoke-wire experiments at z / c = 0.4. Furthermore, bubble shrunk at z / c = 0.2 by reason of the effects of tip vortices in both numerical and experimental studies. Consequently, it was seen that there was a good agreement between numerical and experimental results.

  3. Modeling Tools Predict Flow in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."

  4. InterFace: A software package for face image warping, averaging, and principal components analysis.

    PubMed

    Kramer, Robin S S; Jenkins, Rob; Burton, A Mike

    2017-12-01

    We describe InterFace, a software package for research in face recognition. The package supports image warping, reshaping, averaging of multiple face images, and morphing between faces. It also supports principal components analysis (PCA) of face images, along with tools for exploring the "face space" produced by PCA. The package uses a simple graphical user interface, allowing users to perform these sophisticated image manipulations without any need for programming knowledge. The program is available for download in the form of an app, which requires that users also have access to the (freely available) MATLAB Runtime environment.

  5. Evolution of a modular software network

    PubMed Central

    Fortuna, Miguel A.; Bonachela, Juan A.; Levin, Simon A.

    2011-01-01

    “Evolution behaves like a tinkerer” (François Jacob, Science, 1977). Software systems provide a singular opportunity to understand biological processes using concepts from network theory. The Debian GNU/Linux operating system allows us to explore the evolution of a complex network in a unique way. The modular design detected during its growth is based on the reuse of existing code in order to minimize costs during programming. The increase of modularity experienced by the system over time has not counterbalanced the increase in incompatibilities between software packages within modules. This negative effect is far from being a failure of design. A random process of package installation shows that the higher the modularity, the larger the fraction of packages working properly in a local computer. The decrease in the relative number of conflicts between packages from different modules avoids a failure in the functionality of one package spreading throughout the entire system. Some potential analogies with the evolutionary and ecological processes determining the structure of ecological networks of interacting species are discussed. PMID:22106260

  6. Image analysis software versus direct anthropometry for breast measurements.

    PubMed

    Quieregatto, Paulo Rogério; Hochman, Bernardo; Furtado, Fabianne; Machado, Aline Fernanda Perez; Sabino Neto, Miguel; Ferreira, Lydia Masako

    2014-10-01

    To compare breast measurements performed using the software packages ImageTool(r), AutoCAD(r) and Adobe Photoshop(r) with direct anthropometric measurements. Points were marked on the breasts and arms of 40 volunteer women aged between 18 and 60 years. When connecting the points, seven linear segments and one angular measurement on each half of the body, and one medial segment common to both body halves were defined. The volunteers were photographed in a standardized manner. Photogrammetric measurements were performed by three independent observers using the three software packages and compared to direct anthropometric measurements made with calipers and a protractor. Measurements obtained with AutoCAD(r) were the most reproducible and those made with ImageTool(r) were the most similar to direct anthropometry, while measurements with Adobe Photoshop(r) showed the largest differences. Except for angular measurements, significant differences were found between measurements of line segments made using the three software packages and those obtained by direct anthropometry. AutoCAD(r) provided the highest precision and intermediate accuracy; ImageTool(r) had the highest accuracy and lowest precision; and Adobe Photoshop(r) showed intermediate precision and the worst accuracy among the three software packages.

  7. PyPedal, an open source software package for pedigree analysis

    USDA-ARS?s Scientific Manuscript database

    The open source software package PyPedal (http://pypedal.sourceforge.net/) was first released in 2002, and provided users with a set of simple tools for manipulating pedigrees. Its flexibility has been demonstrated by its used in a number of settings for large and small populations. After substantia...

  8. A Simple Interactive Software Package for Plotting, Animating, and Calculating

    ERIC Educational Resources Information Center

    Engelhardt, Larry

    2012-01-01

    We introduce a new open source (free) software package that provides a simple, highly interactive interface for carrying out certain mathematical tasks that are commonly encountered in physics. These tasks include plotting and animating functions, solving systems of coupled algebraic equations, and basic calculus (differentiating and integrating…

  9. A Software Development Approach for Computer Assisted Language Learning

    ERIC Educational Resources Information Center

    Cushion, Steve

    2005-01-01

    Over the last 5 years we have developed, produced, tested, and evaluated an authoring software package to produce web-based, interactive, audio-enhanced language-learning material. That authoring package has been used to produce language-learning material in French, Spanish, German, Arabic, and Tamil. We are currently working on increasing…

  10. Analysis of Variance: What Is Your Statistical Software Actually Doing?

    ERIC Educational Resources Information Center

    Li, Jian; Lomax, Richard G.

    2011-01-01

    Users assume statistical software packages produce accurate results. In this article, the authors systematically examined Statistical Package for the Social Sciences (SPSS) and Statistical Analysis System (SAS) for 3 analysis of variance (ANOVA) designs, mixed-effects ANOVA, fixed-effects analysis of covariance (ANCOVA), and nested ANOVA. For each…

  11. A Multi-User Microcomputer System for Small Libraries.

    ERIC Educational Resources Information Center

    Leggate, Peter

    1988-01-01

    Describes the development of Bookshelf, a multi-user microcomputer system for small libraries that uses an integrated software package. The discussion covers the design parameters of the package, which were based on a survey of seven small libraries, and some characteristics of the software. (three notes with references) (CLB)

  12. Microcomputer Software Programs for Vocational Education.

    ERIC Educational Resources Information Center

    Rodenstein, Judith, Ed.; Lambert, Roger, Ed.

    Over 200 microcomputer software packages applicable to vocational education are listed. Most of the programs are available for the Apple, TRS-80, and Commodore microcomputers. The packages have been reviewed, but have not been formally evaluated. Titles of the programs with names and addresses of the distributors are provided. Telephone numbers…

  13. Software, Copyright, and Site-License Agreements: Publishers' Perspective of Library Practice.

    ERIC Educational Resources Information Center

    Happer, Stephanie K.

    Thirty-one academic publishers of stand-alone software and book/disk packages were surveyed to determine whether publishers have addressed the copyright issues inherent in circulating these packages within the library environment. Twenty-two questionnaires were returned, providing a 71% return rate. There were 18 usable questionnaires. Publishers…

  14. Computerised data reduction.

    PubMed

    Datson, D J; Carter, N G

    1988-10-01

    The use of personal computers in accountancy and business generally has been stimulated by the availability of flexible software packages. We describe the implementation of a commercial software package designed for interfacing with laboratory instruments and highlight the ease with which it can be implemented, without the need for specialist computer programming staff.

  15. wbstats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piburn, Jesse

    2016-04-22

    Availability of accessing the World Bank Data API through the R language was limited to one existing package, which is limited in its ability. The software provides access to all of the features in World Bank API in one software package for the R language and provides functions for searching and downloading data from the World Bank API.

  16. Propensity Score Analysis in R: A Software Review

    ERIC Educational Resources Information Center

    Keller, Bryan; Tipton, Elizabeth

    2016-01-01

    In this article, we review four software packages for implementing propensity score analysis in R: "Matching, MatchIt, PSAgraphics," and "twang." After briefly discussing essential elements for propensity score analysis, we apply each package to a data set from the Early Childhood Longitudinal Study in order to estimate the…

  17. Software engineering and data management for automated payload experiment tool

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Provancha, Anna; Chattam, David

    1994-01-01

    The Microgravity Projects Office identified a need to develop a software package that will lead experiment developers through the development planning process, obtain necessary information, establish an electronic data exchange avenue, and allow easier manipulation/reformatting of the collected information. An MS-DOS compatible software package called the Automated Payload Experiment Tool (APET) has been developed and delivered. The objective of this task is to expand on the results of the APET work previously performed by UAH and provide versions of the software in a Macintosh and Windows compatible format.

  18. Advanced fingerprint verification software

    NASA Astrophysics Data System (ADS)

    Baradarani, A.; Taylor, J. R. B.; Severin, F.; Maev, R. Gr.

    2016-05-01

    We have developed a fingerprint software package that can be used in a wide range of applications from law enforcement to public and private security systems, and to personal devices such as laptops, vehicles, and door- locks. The software and processing units are a unique implementation of new and sophisticated algorithms that compete with the current best systems in the world. Development of the software package has been in line with the third generation of our ultrasonic fingerprinting machine1. Solid and robust performance is achieved in the presence of misplaced and low quality fingerprints.

  19. Theoretical study of nanoparticle formation in thermal plasma processing: Nucleation, coagulation and aggregation

    NASA Astrophysics Data System (ADS)

    Mendoza Gonzalez, Norma Yadira

    This work presents a mathematical modeling study of the synthesis of nanoparticles in radio frequency (RF) inductively coupled plasma (ICP) reactors. The purpose is to further investigate the influence of process parameters on the final size and morphology of produced particles. The proposed model involves the calculation of flow and temperature fields of the plasma gas. Evaporation of raw particles is also accounted with the particle trajectory and temperature history calculated with a Lagrangian approach. The nanoparticle formation is considered by homogeneous nucleation and the growth is caused by condensation and Brownian coagulation. The growth of fractal aggregates is considered by introducing a power law exponent Df. Transport of nanoparticles occurs by convection, thermophoresis and Brownian diffusion. The method of moments is used to solve the particle dynamics equation. The model is validated using experimental results from plasma reactors at laboratory scale. The results are presented in the following manner. First, use is made of the computational fluid dynamics software (CFD), Fluent 6.1 with a commercial companion package specifically developped for aerosols named: Fine Particle Model (FPM). This package is used to study the relationship between the operating parameters effect and the properties of the end products at the laboratory scale. Secondly, a coupled hybrid model for the synthesis of spherical particles and fractal aggregates is developped in place of the FPM package. Results obtained from this model will allow to identify the importance of each parameter in defining the morphology of spherical primary particles and fractal aggregates of nanoparticles. The solution of the model was made using the geometries and operating conditions of existing reactors at the Centre de Recherche en Energie, Plasma et Electrochimie (CREPE) of the Universite de Sherbrooke, for which experimental results were obtained experimentally. Additionally, this study demonstrates the importance of the flow and temperature fields on the growth of fractal particles; namely the aggregates.

  20. The Role of Computational Fluid Dynamics in the Management of Unruptured Intracranial Aneurysms: A Clinicians' View

    PubMed Central

    Singh, Pankaj K.; Marzo, Alberto; Coley, Stuart C.; Berti, Guntram; Bijlenga, Philippe; Lawford, Patricia V.; Villa-Uriol, Mari-Cruz; Rufenacht, Daniel A.; McCormack, Keith M.; Frangi, Alejandro; Patel, Umang J.; Hose, D. Rodney

    2009-01-01

    Objective. The importance of hemodynamics in the etiopathogenesis of intracranial aneurysms (IAs) is widely accepted. Computational fluid dynamics (CFD) is being used increasingly for hemodynamic predictions. However, alogn with the continuing development and validation of these tools, it is imperative to collect the opinion of the clinicians. Methods. A workshop on CFD was conducted during the European Society of Minimally Invasive Neurological Therapy (ESMINT) Teaching Course, Lisbon, Portugal. 36 delegates, mostly clinicians, performed supervised CFD analysis for an IA, using the @neuFuse software developed within the European project @neurIST. Feedback on the workshop was collected and analyzed. The performance was assessed on a scale of 1 to 4 and, compared with experts' performance. Results. Current dilemmas in the management of unruptured IAs remained the most important motivating factor to attend the workshop and majority of participants showed interest in participating in a multicentric trial. The participants achieved an average score of 2.52 (range 0–4) which was 63% (range 0–100%) of an expert user. Conclusions. Although participants showed a manifest interest in CFD, there was a clear lack of awareness concerning the role of hemodynamics in the etiopathogenesis of IAs and the use of CFD in this context. More efforts therefore are required to enhance understanding of the clinicians in the subject. PMID:19696903

  1. Evaluation of a CFD Method for Aerodynamic Database Development using the Hyper-X Stack Configuration

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Engelund, Walter; Armand, Sasan; Bittner, Robert

    2004-01-01

    A computational fluid dynamic (CFD) study is performed on the Hyper-X (X-43A) Launch Vehicle stack configuration in support of the aerodynamic database generation in the transonic to hypersonic flow regime. The main aim of the study is the evaluation of a CFD method that can be used to support aerodynamic database development for similar future configurations. The CFD method uses the NASA Langley Research Center developed TetrUSS software, which is based on tetrahedral, unstructured grids. The Navier-Stokes computational method is first evaluated against a set of wind tunnel test data to gain confidence in the code s application to hypersonic Mach number flows. The evaluation includes comparison of the longitudinal stability derivatives on the complete stack configuration (which includes the X-43A/Hyper-X Research Vehicle, the launch vehicle and an adapter connecting the two), detailed surface pressure distributions at selected locations on the stack body and component (rudder, elevons) forces and moments. The CFD method is further used to predict the stack aerodynamic performance at flow conditions where no experimental data is available as well as for component loads for mechanical design and aero-elastic analyses. An excellent match between the computed and the test data over a range of flow conditions provides a computational tool that may be used for future similar hypersonic configurations with confidence.

  2. Lactation in the Human Breast From a Fluid Dynamics Point of View.

    PubMed

    Negin Mortazavi, S; Geddes, Donna; Hassanipour, Fatemeh

    2017-01-01

    This study is a collaborative effort among lactation specialists and fluid dynamic engineers. The paper presents clinical results for suckling pressure pattern in lactating human breast as well as a 3D computational fluid dynamics (CFD) modeling of milk flow using these clinical inputs. The investigation starts with a careful, statistically representative measurement of suckling vacuum pressure, milk flow rate, and milk intake in a group of infants. The results from clinical data show that suckling action does not occur with constant suckling rate but changes in a rhythmic manner for infants. These pressure profiles are then used as the boundary condition for the CFD study using commercial ansys fluent software. For the geometric model of the ductal system of the human breast, this work takes advantage of a recent advance in the development of a validated phantom that has been produced as a ground truth for the imaging applications for the breast. The geometric model is introduced into CFD simulations with the aforementioned boundary conditions. The results for milk intake from the CFD simulation and clinical data were compared and cross validated. Also, the variation of milk intake versus suckling pressure are presented and analyzed. Both the clinical and CFD simulation show that the maximum milk flow rate is not related to the largest vacuum pressure or longest feeding duration indicating other factors influence the milk intake by infants.

  3. Report: Scientific Software.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1985-01-01

    Discusses various aspects of scientific software, including evaluation and selection of commercial software products; program exchanges, catalogs, and other information sources; major data analysis packages; statistics and chemometrics software; and artificial intelligence. (JN)

  4. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felberg, Lisa E.; Brookes, David H.; Yap, Eng-Hui

    2016-11-02

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized Poisson Boltzmann equation. The PB-AM software package includes the generation of outputs files appropriate for visualization using VMD, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmannmore » Solver (APBS) software package to make it more accessible to a larger group of scientists, educators and students that are more familiar with the APBS framework.« less

  5. The AIROPA software package: milestones for testing general relativity in the strong gravity regime with AO

    NASA Astrophysics Data System (ADS)

    Witzel, Gunther; Lu, Jessica R.; Ghez, Andrea M.; Martinez, Gregory D.; Fitzgerald, Michael P.; Britton, Matthew; Sitarski, Breann N.; Do, Tuan; Campbell, Randall D.; Service, Maxwell; Matthews, Keith; Morris, Mark R.; Becklin, E. E.; Wizinowich, Peter L.; Ragland, Sam; Doppmann, Greg; Neyman, Chris; Lyke, James; Kassis, Marc; Rizzi, Luca; Lilley, Scott; Rampy, Rachel

    2016-07-01

    General relativity can be tested in the strong gravity regime by monitoring stars orbiting the supermassive black hole at the Galactic Center with adaptive optics. However, the limiting source of uncertainty is the spatial PSF variability due to atmospheric anisoplanatism and instrumental aberrations. The Galactic Center Group at UCLA has completed a project developing algorithms to predict PSF variability for Keck AO images. We have created a new software package (AIROPA), based on modified versions of StarFinder and Arroyo, that takes atmospheric turbulence profiles, instrumental aberration maps, and images as inputs and delivers improved photometry and astrometry on crowded fields. This software package will be made publicly available soon.

  6. WannierTools: An open-source software package for novel topological materials

    NASA Astrophysics Data System (ADS)

    Wu, QuanSheng; Zhang, ShengNan; Song, Hai-Feng; Troyer, Matthias; Soluyanov, Alexey A.

    2018-03-01

    We present an open-source software package WannierTools, a tool for investigation of novel topological materials. This code works in the tight-binding framework, which can be generated by another software package Wannier90 (Mostofi et al., 2008). It can help to classify the topological phase of a given material by calculating the Wilson loop, and can get the surface state spectrum, which is detected by angle resolved photoemission (ARPES) and in scanning tunneling microscopy (STM) experiments. It also identifies positions of Weyl/Dirac points and nodal line structures, calculates the Berry phase around a closed momentum loop and Berry curvature in a part of the Brillouin zone (BZ).

  7. Use of symbolic computation in robotics education

    NASA Technical Reports Server (NTRS)

    Vira, Naren; Tunstel, Edward

    1992-01-01

    An application of symbolic computation in robotics education is described. A software package is presented which combines generality, user interaction, and user-friendliness with the systematic usage of symbolic computation and artificial intelligence techniques. The software utilizes MACSYMA, a LISP-based symbolic algebra language, to automatically generate closed-form expressions representing forward and inverse kinematics solutions, the Jacobian transformation matrices, robot pose error-compensation models equations, and Lagrange dynamics formulation for N degree-of-freedom, open chain robotic manipulators. The goal of such a package is to aid faculty and students in the robotics course by removing burdensome tasks of mathematical manipulations. The software package has been successfully tested for its accuracy using commercially available robots.

  8. ImagePy: an open-source, Python-based and platform-independent software package for boimage analysis.

    PubMed

    Wang, Anliang; Yan, Xiaolong; Wei, Zhijun

    2018-04-27

    This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis. ImagePy is free and open source software, with documentation and code available at https://github.com/Image-Py/imagepy under the BSD license. It has been tested on the Windows, Mac and Linux operating systems. wzjdlut@dlut.edu.cn or yxdragon@imagepy.org.

  9. A User-Friendly Software Package for HIFU Simulation

    NASA Astrophysics Data System (ADS)

    Soneson, Joshua E.

    2009-04-01

    A freely-distributed, MATLAB (The Mathworks, Inc., Natick, MA)-based software package for simulating axisymmetric high-intensity focused ultrasound (HIFU) beams and their heating effects is discussed. The package (HIFU_Simulator) consists of a propagation module which solves the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and a heating module which solves Pennes' bioheat transfer (BHT) equation. The pressure, intensity, heating rate, temperature, and thermal dose fields are computed, plotted, the output is released to the MATLAB workspace for further user analysis or postprocessing.

  10. Comparison of requirements and capabilities of major multipurpose software packages.

    PubMed

    Igo, Robert P; Schnell, Audrey H

    2012-01-01

    The aim of this chapter is to introduce the reader to commonly used software packages and illustrate their input requirements, analysis options, strengths, and limitations. We focus on packages that perform more than one function and include a program for quality control, linkage, and association analyses. Additional inclusion criteria were (1) programs that are free to academic users and (2) currently supported, maintained, and developed. Using those criteria, we chose to review three programs: Statistical Analysis for Genetic Epidemiology (S.A.G.E.), PLINK, and Merlin. We will describe the required input format and analysis options. We will not go into detail about every possible program in the packages, but we will give an overview of the packages requirements and capabilities.

  11. Wall roughness effect on gas dynamics in supersonic ejector

    NASA Astrophysics Data System (ADS)

    Aronson, K. E.; Brezgin, D. V.

    2016-10-01

    The paper presents the numerical simulations results in order to figure out the influence of the wall surface roughness on gas-dynamic processes inside the supersonic ejector. For these purposes two commercial CFD-solvers (Star-CCM+ and Fluent) were used. A detailed comparative study of the built-in tools and approaches in both CFD-packages for evaluation of surface roughness effects on the logarithmic law velocity distribution inside the boundary layer is carried out. Influence of ejector surface roughness is compared with the influence of the backpressure. It is found out that either increasing the backpressure behind the ejector or increasing the surface roughness height, the appearance section of a pressure shock is displaced upstream (closer to the primary nozzle). The numerical simulations results of the ejector with rough walls in both CFD-solvers are well quantitative agreed between each other in terms of the mass flow rates and are well qualitative consistent in terms of the local flow parameters distribution. It is found out that in case of exceeding the "critical roughness height" for the given geometry and boundary conditions, the ejector switches to the "off-design" mode and its performance is significantly reduced.

  12. Software package for modeling spin-orbit motion in storage rings

    NASA Astrophysics Data System (ADS)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  13. Reference datasets for bioequivalence trials in a two-group parallel design.

    PubMed

    Fuglsang, Anders; Schütz, Helmut; Labes, Detlew

    2015-03-01

    In order to help companies qualify and validate the software used to evaluate bioequivalence trials with two parallel treatment groups, this work aims to define datasets with known results. This paper puts a total 11 datasets into the public domain along with proposed consensus obtained via evaluations from six different software packages (R, SAS, WinNonlin, OpenOffice Calc, Kinetica, EquivTest). Insofar as possible, datasets were evaluated with and without the assumption of equal variances for the construction of a 90% confidence interval. Not all software packages provide functionality for the assumption of unequal variances (EquivTest, Kinetica), and not all packages can handle datasets with more than 1000 subjects per group (WinNonlin). Where results could be obtained across all packages, one showed questionable results when datasets contained unequal group sizes (Kinetica). A proposal is made for the results that should be used as validation targets.

  14. Painting a picture across the landscape with ModelMap

    Treesearch

    Brian Cooke; Elizabeth Freeman; Gretchen Moisen; Tracey Frescino

    2017-01-01

    Scientists and statisticians working for the Rocky Mountain Research Station have created a software package that simplifies and automates many of the processes needed for converting models into maps. This software package, called ModelMap, has helped a variety of specialists and land managers to quickly convert data into easily understood graphical images. The...

  15. "FluSpec": A Simulated Experiment in Fluorescence Spectroscopy

    ERIC Educational Resources Information Center

    Bigger, Stephen W.; Bigger, Andrew S.; Ghiggino, Kenneth P.

    2014-01-01

    The "FluSpec" educational software package is a fully contained tutorial on the technique of fluorescence spectroscopy as well as a simulator on which experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that are obtained using the software.

  16. Comparative Analyses of MIRT Models and Software (BMIRT and flexMIRT)

    ERIC Educational Resources Information Center

    Yavuz, Guler; Hambleton, Ronald K.

    2017-01-01

    Application of MIRT modeling procedures is dependent on the quality of parameter estimates provided by the estimation software and techniques used. This study investigated model parameter recovery of two popular MIRT packages, BMIRT and flexMIRT, under some common measurement conditions. These packages were specifically selected to investigate the…

  17. Macintosh Computer Classroom and Laboratory Security: Preventing Unwanted Changes to the System.

    ERIC Educational Resources Information Center

    Senn, Gary J.; Smyth, Thomas J. C.

    Because of the graphical interface and "openness" of the operating system, Macintosh computers are susceptible to undesirable changes by the user. This presentation discusses the advantages and disadvantages of software packages that offer protection for the Macintosh system. The two basic forms of software security packages include a…

  18. Virginia Transit Performance Evaluation Package (VATPEP).

    DOT National Transportation Integrated Search

    1987-01-01

    The Virginia Transit Performance Evaluation Package (VATPEP), a computer software package, is documented. This is the computerized version of the methodology used by the Virginia Department of Transportation to evaluate the performance of public tran...

  19. Cooperative Work and Sustainable Scientific Software Practices in R

    NASA Astrophysics Data System (ADS)

    Weber, N.

    2013-12-01

    Most scientific software projects are dependent on the work of many diverse people, institutions and organizations. Incentivizing these actors to cooperatively develop software that is both reliable, and sustainable is complicated by the fact that the reward structures of these various actors greatly differ: research scientists want results from a software or model run in order to publish papers, produce new data, or test a hypothesis; software engineers and research centers want compilable, well documented code that is refactorable, reusable and reproducible in future research scenarios. While much research has been done on incentives and motivations for participating in open source software projects or cyberinfrastrcture development, little work has been done on what motivates or incentivizes developers to maintain scientific software projects beyond their original application. This poster will present early results of research into the incentives and motivation for cooperative scientific software development. In particular, this work focuses on motivations for the maintenance and repair of libraries on the software platform R. Our work here uses a sample of R packages that were created by research centers, or are specific to earth, environmental and climate science applications. We first mined 'check' logs from the Comprehensive R Archive Network (CRAN) to determine the amount of time a package has existed, the number of versions it has gone through over this time, the number of releases, and finally the contact information for each official package 'maintainer'. We then sent a survey to each official maintainer, asking them questions about what role they played in developing the original package, and what their motivations were for sustaining the project over time. We will present early results from this mining and our survey of R maintainers.

  20. Laser velocimeter data acquisition system for the Langley 14- by 22-foot subsonic tunnel. Software reference guide version 3.3

    NASA Technical Reports Server (NTRS)

    Jumper, Judith K.

    1994-01-01

    The Laser Velocimeter Data Acquisition System (LVDAS) in the Langley 14- by 22-Foot Tunnel is controlled by a comprehensive software package. The software package was designed to control the data acquisition process during wind tunnel tests which employ a laser velocimeter measurement system. This report provides detailed explanations on how to configure and operate the LVDAS system to acquire laser velocimeter and static wind tunnel data.

  1. Software engineering the mixed model for genome-wide association studies on large samples.

    PubMed

    Zhang, Zhiwu; Buckler, Edward S; Casstevens, Terry M; Bradbury, Peter J

    2009-11-01

    Mixed models improve the ability to detect phenotype-genotype associations in the presence of population stratification and multiple levels of relatedness in genome-wide association studies (GWAS), but for large data sets the resource consumption becomes impractical. At the same time, the sample size and number of markers used for GWAS is increasing dramatically, resulting in greater statistical power to detect those associations. The use of mixed models with increasingly large data sets depends on the availability of software for analyzing those models. While multiple software packages implement the mixed model method, no single package provides the best combination of fast computation, ability to handle large samples, flexible modeling and ease of use. Key elements of association analysis with mixed models are reviewed, including modeling phenotype-genotype associations using mixed models, population stratification, kinship and its estimation, variance component estimation, use of best linear unbiased predictors or residuals in place of raw phenotype, improving efficiency and software-user interaction. The available software packages are evaluated, and suggestions made for future software development.

  2. Space-Shuttle Emulator Software

    NASA Technical Reports Server (NTRS)

    Arnold, Scott; Askew, Bill; Barry, Matthew R.; Leigh, Agnes; Mermelstein, Scott; Owens, James; Payne, Dan; Pemble, Jim; Sollinger, John; Thompson, Hiram; hide

    2007-01-01

    A package of software has been developed to execute a raw binary image of the space shuttle flight software for simulation of the computational effects of operation of space shuttle avionics. This software can be run on inexpensive computer workstations. Heretofore, it was necessary to use real flight computers to perform such tests and simulations. The package includes a program that emulates the space shuttle orbiter general- purpose computer [consisting of a central processing unit (CPU), input/output processor (IOP), master sequence controller, and buscontrol elements]; an emulator of the orbiter display electronics unit and models of the associated cathode-ray tubes, keyboards, and switch controls; computational models of the data-bus network; computational models of the multiplexer-demultiplexer components; an emulation of the pulse-code modulation master unit; an emulation of the payload data interleaver; a model of the master timing unit; a model of the mass memory unit; and a software component that ensures compatibility of telemetry and command services between the simulated space shuttle avionics and a mission control center. The software package is portable to several host platforms.

  3. Development of high performance scientific components for interoperability of computing packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulabani, Teena Pratap

    2008-01-01

    Three major high performance quantum chemistry computational packages, NWChem, GAMESS and MPQC have been developed by different research efforts following different design patterns. The goal is to achieve interoperability among these packages by overcoming the challenges caused by the different communication patterns and software design of each of these packages. A chemistry algorithm is hard to develop as well as being a time consuming process; integration of large quantum chemistry packages will allow resource sharing and thus avoid reinvention of the wheel. Creating connections between these incompatible packages is the major motivation of the proposed work. This interoperability is achievedmore » by bringing the benefits of Component Based Software Engineering through a plug-and-play component framework called Common Component Architecture (CCA). In this thesis, I present a strategy and process used for interfacing two widely used and important computational chemistry methodologies: Quantum Mechanics and Molecular Mechanics. To show the feasibility of the proposed approach the Tuning and Analysis Utility (TAU) has been coupled with NWChem code and its CCA components. Results show that the overhead is negligible when compared to the ease and potential of organizing and coping with large-scale software applications.« less

  4. AlgoRun: a Docker-based packaging system for platform-agnostic implemented algorithms.

    PubMed

    Hosny, Abdelrahman; Vera-Licona, Paola; Laubenbacher, Reinhard; Favre, Thibauld

    2016-08-01

    There is a growing need in bioinformatics for easy-to-use software implementations of algorithms that are usable across platforms. At the same time, reproducibility of computational results is critical and often a challenge due to source code changes over time and dependencies. The approach introduced in this paper addresses both of these needs with AlgoRun, a dedicated packaging system for implemented algorithms, using Docker technology. Implemented algorithms, packaged with AlgoRun, can be executed through a user-friendly interface directly from a web browser or via a standardized RESTful web API to allow easy integration into more complex workflows. The packaged algorithm includes the entire software execution environment, thereby eliminating the common problem of software dependencies and the irreproducibility of computations over time. AlgoRun-packaged algorithms can be published on http://algorun.org, a centralized searchable directory to find existing AlgoRun-packaged algorithms. AlgoRun is available at http://algorun.org and the source code under GPL license is available at https://github.com/algorun laubenbacher@uchc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Predictive Utility of Marketed Volumetric Software Tools in Subjects at Risk for Alzheimer's: Do Regions Outside the Hippocampus Matter?

    PubMed Central

    Tanpitukpongse, Teerath P.; Mazurowski, Maciej A.; Ikhena, John; Petrella, Jeffrey R.

    2016-01-01

    Background and Purpose To assess prognostic efficacy of individual versus combined regional volumetrics in two commercially-available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer's disease. Materials and Methods Data was obtained through the Alzheimer's Disease Neuroimaging Initiative. 192 subjects (mean age 74.8 years, 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1WI MRI sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant® and Neuroreader™. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated using a univariable approach employing individual regional brain volumes, as well as two multivariable approaches (multiple regression and random forest), combining multiple volumes. Results On univariable analysis of 11 NeuroQuant® and 11 Neuroreader™ regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69 NeuroQuant®, 0.68 Neuroreader™), and was not significantly different (p > 0.05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63 logistic regression, 0.60 random forest NeuroQuant®; 0.65 logistic regression, 0.62 random forest Neuroreader™). Conclusion Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer's disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in MCI, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker. PMID:28057634

  6. Comparison of Perfusion CT Software to Predict the Final Infarct Volume After Thrombectomy.

    PubMed

    Austein, Friederike; Riedel, Christian; Kerby, Tina; Meyne, Johannes; Binder, Andreas; Lindner, Thomas; Huhndorf, Monika; Wodarg, Fritz; Jansen, Olav

    2016-09-01

    Computed tomographic perfusion represents an interesting physiological imaging modality to select patients for reperfusion therapy in acute ischemic stroke. The purpose of our study was to determine the accuracy of different commercial perfusion CT software packages (Philips (A), Siemens (B), and RAPID (C)) to predict the final infarct volume (FIV) after mechanical thrombectomy. Single-institutional computed tomographic perfusion data from 147 mechanically recanalized acute ischemic stroke patients were postprocessed. Ischemic core and FIV were compared about thrombolysis in cerebral infarction (TICI) score and time interval to reperfusion. FIV was measured at follow-up imaging between days 1 and 8 after stroke. In 118 successfully recanalized patients (TICI 2b/3), a moderately to strongly positive correlation was observed between ischemic core and FIV. The highest accuracy and best correlation are shown in early and fully recanalized patients (Pearson r for A=0.42, B=0.64, and C=0.83; P<0.001). Bland-Altman plots and boxplots demonstrate smaller ranges in package C than in A and B. Significant differences were found between the packages about over- and underestimation of the ischemic core. Package A, compared with B and C, estimated more than twice as many patients with a malignant stroke profile (P<0.001). Package C best predicted hypoperfusion volume in nonsuccessfully recanalized patients. Our study demonstrates best accuracy and approximation between the results of a fully automated software (RAPID) and FIV, especially in early and fully recanalized patients. Furthermore, this software package overestimated the FIV to a significantly lower degree and estimated a malignant mismatch profile less often than other software. © 2016 American Heart Association, Inc.

  7. Thermal management of LEDs: package to system

    NASA Astrophysics Data System (ADS)

    Arik, Mehmet; Becker, Charles A.; Weaver, Stanton E.; Petroski, James

    2004-01-01

    Light emitting diodes, LEDs, historically have been used for indicators and produced low amounts of heat. The introduction of high brightness LEDs with white light and monochromatic colors have led to a movement towards general illumination. The increased electrical currents used to drive the LEDs have focused more attention on the thermal paths in the developments of LED power packaging. The luminous efficiency of LEDs is soon expected to reach over 80 lumens/W, this is approximately 6 times the efficiency of a conventional incandescent tungsten bulb. Thermal management for the solid-state lighting applications is a key design parameter for both package and system level. Package and system level thermal management is discussed in separate sections. Effect of chip packages on junction to board thermal resistance was compared for both SiC and Sapphire chips. The higher thermal conductivity of the SiC chip provided about 2 times better thermal performance than the latter, while the under-filled Sapphire chip package can only catch the SiC chip performance. Later, system level thermal management was studied based on established numerical models for a conceptual solid-state lighting system. A conceptual LED illumination system was chosen and CFD models were created to determine the availability and limitations of passive air-cooling.

  8. User's Guide for MapIMG 2: Map Image Re-projection Software Package

    USGS Publications Warehouse

    Finn, Michael P.; Trent, Jason R.; Buehler, Robert A.

    2006-01-01

    BACKGROUND Scientists routinely accomplish small-scale geospatial modeling in the raster domain, using high-resolution datasets for large parts of continents and low-resolution to high-resolution datasets for the entire globe. Direct implementation of point-to-point transformation with appropriate functions yields the variety of projections available in commercial software packages, but implementation with data other than points requires specific adaptation of the transformation equations or prior preparation of the data to allow the transformation to succeed. It seems that some of these packages use the U.S. Geological Survey's (USGS) General Cartographic Transformation Package (GCTP) or similar point transformations without adaptation to the specific characteristics of raster data (Usery and others, 2003a). Usery and others (2003b) compiled and tabulated the accuracy of categorical areas in projected raster datasets of global extent. Based on the shortcomings identified in these studies, geographers and applications programmers at the USGS expanded and evolved a USGS software package, MapIMG, for raster map projection transformation (Finn and Trent, 2004). Daniel R. Steinwand of Science Applications International Corporation, National Center for Earth Resources Observation and Science, originally developed MapIMG for the USGS, basing it on GCTP. Through previous and continuing efforts at the USGS' National Geospatial Technical Operations Center, this program has been transformed from an application based on command line input into a software package based on a graphical user interface for Windows, Linux, and other UNIX machines.

  9. CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.

    PubMed

    Zheng, Guangyong; Xu, Yaochen; Zhang, Xiujun; Liu, Zhi-Ping; Wang, Zhuo; Chen, Luonan; Zhu, Xin-Guang

    2016-12-23

    A gene regulatory network (GRN) represents interactions of genes inside a cell or tissue, in which vertexes and edges stand for genes and their regulatory interactions respectively. Reconstruction of gene regulatory networks, in particular, genome-scale networks, is essential for comparative exploration of different species and mechanistic investigation of biological processes. Currently, most of network inference methods are computationally intensive, which are usually effective for small-scale tasks (e.g., networks with a few hundred genes), but are difficult to construct GRNs at genome-scale. Here, we present a software package for gene regulatory network reconstruction at a genomic level, in which gene interaction is measured by the conditional mutual information measurement using a parallel computing framework (so the package is named CMIP). The package is a greatly improved implementation of our previous PCA-CMI algorithm. In CMIP, we provide not only an automatic threshold determination method but also an effective parallel computing framework for network inference. Performance tests on benchmark datasets show that the accuracy of CMIP is comparable to most current network inference methods. Moreover, running tests on synthetic datasets demonstrate that CMIP can handle large datasets especially genome-wide datasets within an acceptable time period. In addition, successful application on a real genomic dataset confirms its practical applicability of the package. This new software package provides a powerful tool for genomic network reconstruction to biological community. The software can be accessed at http://www.picb.ac.cn/CMIP/ .

  10. Surface CHEMKIN (Version 4. 0): A Fortran package for analyzing heterogeneous chemical kinetics at a solid-surface---gas-phase interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coltrin, M.E.; Kee, R.J.; Rupley, F.M.

    1991-07-01

    Heterogeneous reaction at the interface between a solid surface and adjacent gas is central to many chemical processes. Our purpose for developing the software package SURFACE CHEMKIN was motivated by our need to understand the complex surface chemistry in chemical vapor deposition systems involving silicon, silicon nitride, and gallium arsenide. However, we have developed the approach and implemented the software in a general setting. Thus, we expect it will find use in such diverse applications as chemical vapor deposition, chemical etching, combustion of solids, and catalytic processes, and for a wide range of chemical systems. We believe that it providesmore » a powerful capability to help model, understand, and optimize important industrial and research chemical processes. The SURFACE CHEMKIN software is designed to work in conjunction with the CHEMKIN-2 software, which handles the chemical kinetics in the gas phase. It may also be used in conjunction with the Transport Property Package, which provides information about molecular diffusion. Thus, these three packages provide a foundation on which a user can build applications software to analyze gas-phase and heterogeneous chemistry in flowing systems. These packages should not be considered programs'' in the ordinary sense. That is, they are not designed to accept input, solve a particular problem, and report the answer. Instead, they are software tools intended to help a user work efficiently with large systems of chemical reactions and develop Fortran representations of systems of equations that define a particular problem. It is up the user to solve the problem and interpret the answer. 11 refs., 15 figs., 5 tabs.« less

  11. Comparison of four software packages for CT lung volumetry in healthy individuals.

    PubMed

    Nemec, Stefan F; Molinari, Francesco; Dufresne, Valerie; Gosset, Natacha; Silva, Mario; Bankier, Alexander A

    2015-06-01

    To compare CT lung volumetry (CTLV) measurements provided by different software packages, and to provide normative data for lung densitometric measurements in healthy individuals. This retrospective study included 51 chest CTs of 17 volunteers (eight men and nine women; mean age, 30 ± 6 years), who underwent spirometrically monitored CT at total lung capacity (TLC), functional residual capacity (FRC), and mean inspiratory capacity (MIC). Volumetric differences assessed by four commercial software packages were compared with analysis of variance (ANOVA) for repeated measurements and benchmarked against the threshold for acceptable variability between spirometric measurements. Mean lung density (MLD) and parenchymal heterogeneity (MLD-SD) were also compared with ANOVA. Volumetric differences ranged from 12 to 213 ml (0.20 % to 6.45 %). Although 16/18 comparisons (among four software packages at TLC, MIC, and FRC) were statistically significant (P < 0.001 to P = 0.004), only 3/18 comparisons, one at MIC and two at FRC, exceeded the spirometry variability threshold. MLD and MLD-SD significantly increased with decreasing volumes, and were significantly larger in lower compared to upper lobes (P < 0.001). Lung volumetric differences provided by different software packages are small. These differences should not be interpreted based on statistical significance alone, but together with absolute volumetric differences. • Volumetric differences, assessed by different CTLV software, are small but statistically significant. • Volumetric differences are smaller at TLC than at MIC and FRC. • Volumetric differences rarely exceed spirometric repeatability thresholds at MIC and FRC. • Differences between CTLV measurements should be interpreted based on comparison of absolute differences. • MLD increases with decreasing volumes, and is larger in lower compared to upper lobes.

  12. Flight simulation software at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Norlin, Ken A.

    1995-01-01

    The NASA Dryden Flight Research Center has developed a versatile simulation software package that is applicable to a broad range of fixed-wing aircraft. This package has evolved in support of a variety of flight research programs. The structure is designed to be flexible enough for use in batch-mode, real-time pilot-in-the-loop, and flight hardware-in-the-loop simulation. Current simulations operate on UNIX-based platforms and are coded with a FORTRAN shell and C support routines. This paper discusses the features of the simulation software design and some basic model development techniques. The key capabilities that have been included in the simulation are described. The NASA Dryden simulation software is in use at other NASA centers, within industry, and at several universities. The straightforward but flexible design of this well-validated package makes it especially useful in an engineering environment.

  13. The Ettention software package.

    PubMed

    Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp

    2016-02-01

    We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.

    PubMed

    Felberg, Lisa E; Brookes, David H; Yap, Eng-Hui; Jurrus, Elizabeth; Baker, Nathan A; Head-Gordon, Teresa

    2017-06-05

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized PB equation, for molecules represented as non-overlapping spherical cavities. The PB-AM software package includes the generation of outputs files appropriate for visualization using visual molecular dynamics, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators, and students that are more familiar with the APBS framework. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor

    NASA Astrophysics Data System (ADS)

    Belhocien, Ali; Omar, Wan Zaidi Wan

    Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for the safe retarding of the vehicles. During the braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behavior of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC) on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.

  16. PEGASUS 5: An Automated Pre-Processor for Overset-Grid CFD

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart E.; Suhs, Norman; Dietz, William; Rogers, Stuart; Nash, Steve; Chan, William; Tramel, Robert; Onufer, Jeff

    2006-01-01

    This viewgraph presentation reviews the use and requirements of Pegasus 5. PEGASUS 5 is a code which performs a pre-processing step for the Overset CFD method. The code prepares the overset volume grids for the flow solver by computing the domain connectivity database, and blanking out grid points which are contained inside a solid body. PEGASUS 5 successfully automates most of the overset process. It leads to dramatic reduction in user input over previous generations of overset software. It also can lead to an order of magnitude reduction in both turn-around time and user expertise requirements. It is also however not a "black-box" procedure; care must be taken to examine the resulting grid system.

  17. Conversion of Component-Based Point Definition to VSP Model and Higher Order Meshing

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian

    2011-01-01

    Vehicle Sketch Pad (VSP) has become a powerful conceptual and parametric geometry tool with numerous export capabilities for third-party analysis codes as well as robust surface meshing capabilities for computational fluid dynamics (CFD) analysis. However, a capability gap currently exists for reconstructing a fully parametric VSP model of a geometry generated by third-party software. A computer code called GEO2VSP has been developed to close this gap and to allow the integration of VSP into a closed-loop geometry design process with other third-party design tools. Furthermore, the automated CFD surface meshing capability of VSP are demonstrated for component-based point definition geometries in a conceptual analysis and design framework.

  18. Wind-US Flow Calculations for the M2129 S-Duct Using Structured and Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Mohler, Stanley R., Jr.

    2003-01-01

    Computational Fluid Dynamics (CFD) flow solutions for the M2129 diffusing S-duct with and without vane effectors were computed by the Wind-US flow solver. Both structured and unstructured 3-D grids were used. Without vane effectors, the duct exhibited massive flow separation in both experiment and CFD. With vane effectors installed, the flow remained attached and aerodynamic losses were reduced. Total pressure recovery and distortion near the duct outlet were computed from the solutions and compared favorably to experimental values. These calculations are part of a validation effort for the Wind-US code. They also provide an example case to aid engineers in learning to use the Wind-US software.

  19. Geospatial approach towards enumerative analysis of suspended sediment concentration for Ganges-Brahmaputra Bay

    NASA Astrophysics Data System (ADS)

    Pandey, Palak; Kunte, Pravin D.

    2016-10-01

    This study presents an easy, modular, user-friendly, and flexible software package for processing of Landsat 7 ETM and Landsat 8 OLI-TIRS data for estimating suspended particulate matter concentrations in the coastal waters. This package includes 1) algorithm developed using freely downloadable SCILAB package, 2) ERDAS Models for iterative processing of Landsat images and 3) ArcMAP tool for plotting and map making. Utilizing SCILAB package, a module is written for geometric corrections, radiometric corrections and obtaining normalized water-leaving reflectance by incorporating Landsat 8 OLI-TIRS and Landsat 7 ETM+ data. Using ERDAS models, a sequence of modules are developed for iterative processing of Landsat images and estimating suspended particulate matter concentrations. Processed images are used for preparing suspended sediment concentration maps. The applicability of this software package is demonstrated by estimating and plotting seasonal suspended sediment concentration maps off the Bengal delta. The software is flexible enough to accommodate other remotely sensed data like Ocean Color monitor (OCM) data, Indian Remote Sensing data (IRS), MODIS data etc. by replacing a few parameters in the algorithm, for estimating suspended sediment concentration in coastal waters.

  20. Detection And Mapping (DAM) package. Volume 4A: Software System Manual, part 1

    NASA Technical Reports Server (NTRS)

    Schlosser, E. H.

    1980-01-01

    The package is an integrated set of manual procedures, computer programs, and graphic devices designed for efficient production of precisely registered and formatted maps from digital LANDSAT multispectral scanner (MSS) data. The software can be readily implemented on any Univac 1100 series computer with standard peripheral equipment. This version of the software includes predefined spectral limits for use in classifying and mapping surface water for LANDSAT-1, LANDSAT-2, and LANDSAT-3. Tape formats supported include X, AM, and PM.

  1. TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Myers, R. A.; Topp, D. A.; Delaney, R. A.

    1995-01-01

    The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document is intended to serve as a user's manual for the computer programs which comprise the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework.

  2. A Microcomputer-Based Software Package for Eye-Monitoring Research. Technical Report No. 434.

    ERIC Educational Resources Information Center

    McConkie, George W.; And Others

    A software package is described that collects and reduces eye behavior data (eye position and pupil size) using an IBM-PC compatible computer. Written in C language for speed and portability, it includes several features: (1) data can be simultaneously collected from other sources (such as electroencephalography and electromyography); (2)…

  3. Overview of Current Activities in Combustion Instability

    DTIC Science & Technology

    2015-10-02

    and avoid liquid rocket engine combustion stability problems Approach:  1) Develop a  SOA  combustion stability software package  called Stable...phase II will invest in Multifidelity Tools and Methodologies – CSTD will develop a SOA combustion stability software package called Stable Combustion

  4. Sigma 2 Graphic Display Software Program Description

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.

    1973-01-01

    A general purpose, user oriented graphic support package was implemented. A comprehensive description of the two software components comprising this package is given: Display Librarian and Display Controller. These programs have been implemented in FORTRAN on the XDS Sigma 2 Computer Facility. This facility consists of an XDS Sigma 2 general purpose computer coupled to a Computek Display Terminal.

  5. Textbook Software versus Professional Software: Which Is Better for Instructional Purposes?

    ERIC Educational Resources Information Center

    Snell, Meggan; Yatsenko, Olga

    2002-01-01

    Compares textbook software with professional packages such as Peachtree for teaching accounting, in terms of cost, availability, ease of teaching and learning, and applicability. Makes suggestions for choosing accounting software. (SK)

  6. Object-oriented design of medical imaging software.

    PubMed

    Ligier, Y; Ratib, O; Logean, M; Girard, C; Perrier, R; Scherrer, J R

    1994-01-01

    A special software package for interactive display and manipulation of medical images was developed at the University Hospital of Geneva, as part of a hospital wide Picture Archiving and Communication System (PACS). This software package, called Osiris, was especially designed to be easily usable and adaptable to the needs of noncomputer-oriented physicians. The Osiris software has been developed to allow the visualization of medical images obtained from any imaging modality. It provides generic manipulation tools, processing tools, and analysis tools more specific to clinical applications. This software, based on an object-oriented paradigm, is portable and extensible. Osiris is available on two different operating systems: the Unix X-11/OSF-Motif based workstations, and the Macintosh family.

  7. DigBody®: A new 3D modeling tool for nasal virtual surgery.

    PubMed

    Burgos, M A; Sanmiguel-Rojas, E; Singh, Narinder; Esteban-Ortega, F

    2018-07-01

    Recent studies have demonstrated that a significant number of surgical procedures for nasal airway obstruction (NAO) have a high rate of surgical failure. In part, this problem is due to the lack of reliable objective clinical parameters to aid surgeons during preoperative planning. Modeling tools that allow virtual surgery to be performed do exist, but all require direct manipulation of computed tomography (CT) or magnetic resonance imaging (MRI) data. Specialists in Rhinology have criticized these tools for their complex user interface, and have requested more intuitive, user-friendly and powerful software to make virtual surgery more accessible and realistic. In this paper we present a new virtual surgery software tool, DigBody ® . This new surgery module is integrated into the computational fluid dynamics (CFD) program MeComLand ® , which was developed exclusively to analyze nasal airflow. DigBody ® works directly with a 3D nasal model that mimics real surgery. Furthermore, this surgery module permits direct assessment of the operated cavity following virtual surgery by CFD simulation. The effectiveness of DigBody ® has been demonstrated by real surgery on two patients based on prior virtual operation results. Both subjects experienced excellent surgical outcomes with no residual nasal obstruction. This tool has great potential to aid surgeons in modeling potential surgical maneuvers, minimizing complications, and being confident that patients will receive optimal postoperative outcomes, validated by personalized CFD testing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. StreamThermal: A software package for calculating thermal metrics from stream temperature data

    USGS Publications Warehouse

    Tsang, Yin-Phan; Infante, Dana M.; Stewart, Jana S.; Wang, Lizhu; Tingly, Ralph; Thornbrugh, Darren; Cooper, Arthur; Wesley, Daniel

    2016-01-01

    Improving quality and better availability of continuous stream temperature data allows natural resource managers, particularly in fisheries, to understand associations between different characteristics of stream thermal regimes and stream fishes. However, there is no convenient tool to efficiently characterize multiple metrics reflecting stream thermal regimes with the increasing amount of data. This article describes a software program packaged as a library in R to facilitate this process. With this freely-available package, users will be able to quickly summarize metrics that describe five categories of stream thermal regimes: magnitude, variability, frequency, timing, and rate of change. The installation and usage instruction of this package, the definition of calculated thermal metrics, as well as the output format from the package are described, along with an application showing the utility for multiple metrics. We believe this package can be widely utilized by interested stakeholders and greatly assist more studies in fisheries.

  9. Melanie II--a third-generation software package for analysis of two-dimensional electrophoresis images: I. Features and user interface.

    PubMed

    Appel, R D; Palagi, P M; Walther, D; Vargas, J R; Sanchez, J C; Ravier, F; Pasquali, C; Hochstrasser, D F

    1997-12-01

    Although two-dimensional electrophoresis (2-DE) computer analysis software packages have existed ever since 2-DE technology was developed, it is only now that the hardware and software technology allows large-scale studies to be performed on low-cost personal computers or workstations, and that setting up a 2-DE computer analysis system in a small laboratory is no longer considered a luxury. After a first attempt in the seventies and early eighties to develop 2-DE analysis software systems on hardware that had poor or even no graphical capabilities, followed in the late eighties by a wave of innovative software developments that were possible thanks to new graphical interface standards such as XWindows, a third generation of 2-DE analysis software packages has now come to maturity. It can be run on a variety of low-cost, general-purpose personal computers, thus making the purchase of a 2-DE analysis system easily attainable for even the smallest laboratory that is involved in proteome research. Melanie II 2-D PAGE, developed at the University Hospital of Geneva, is such a third-generation software system for 2-DE analysis. Based on unique image processing algorithms, this user-friendly object-oriented software package runs on multiple platforms, including Unix, MS-Windows 95 and NT, and Power Macintosh. It provides efficient spot detection and quantitation, state-of-the-art image comparison, statistical data analysis facilities, and is Internet-ready. Linked to proteome databases such as those available on the World Wide Web, it represents a valuable tool for the "Virtual Lab" of the post-genome area.

  10. ''Do-it-yourself'' software program calculates boiler efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1984-03-01

    An easy-to-use software package is described which runs on the IBM Personal Computer. The package calculates boiler efficiency, an important parameter of operating costs and equipment wellbeing. The program stores inputs and calculated results for 20 sets of boiler operating data, called cases. Cases can be displayed and modified on the CRT screen through multiple display pages or copied to a printer. All intermediate calculations are performed by this package. They include: steam enthalpy; water enthalpy; air humidity; gas, oil, coal, and wood heat capacity; and radiation losses.

  11. Network Meta-Analysis Using R: A Review of Currently Available Automated Packages

    PubMed Central

    Neupane, Binod; Richer, Danielle; Bonner, Ashley Joel; Kibret, Taddele; Beyene, Joseph

    2014-01-01

    Network meta-analysis (NMA) – a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously – has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i) data input and network plotting, (ii) modeling options, (iii) assumption checking and diagnostic testing, and (iv) inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA. PMID:25541687

  12. Network meta-analysis using R: a review of currently available automated packages.

    PubMed

    Neupane, Binod; Richer, Danielle; Bonner, Ashley Joel; Kibret, Taddele; Beyene, Joseph

    2014-01-01

    Network meta-analysis (NMA)--a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously--has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i) data input and network plotting, (ii) modeling options, (iii) assumption checking and diagnostic testing, and (iv) inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA.

  13. The NOD3 software package: A graphical user interface-supported reduction package for single-dish radio continuum and polarisation observations

    NASA Astrophysics Data System (ADS)

    Müller, Peter; Krause, Marita; Beck, Rainer; Schmidt, Philip

    2017-10-01

    Context. The venerable NOD2 data reduction software package for single-dish radio continuum observations, which was developed for use at the 100-m Effelsberg radio telescope, has been successfully applied over many decades. Modern computing facilities, however, call for a new design. Aims: We aim to develop an interactive software tool with a graphical user interface for the reduction of single-dish radio continuum maps. We make a special effort to reduce the distortions along the scanning direction (scanning effects) by combining maps scanned in orthogonal directions or dual- or multiple-horn observations that need to be processed in a restoration procedure. The package should also process polarisation data and offer the possibility to include special tasks written by the individual user. Methods: Based on the ideas of the NOD2 package we developed NOD3, which includes all necessary tasks from the raw maps to the final maps in total intensity and linear polarisation. Furthermore, plot routines and several methods for map analysis are available. The NOD3 package is written in Python, which allows the extension of the package via additional tasks. The required data format for the input maps is FITS. Results: The NOD3 package is a sophisticated tool to process and analyse maps from single-dish observations that are affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. The "basket-weaving" tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. The new restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density. Conclusions: This software package is available under the open source license GPL for free use at other single-dish radio telescopes of the astronomical community. The NOD3 package is designed to be extendable to multi-channel data represented by data cubes in Stokes I, Q, and U.

  14. High-Fidelity Thermal Radiation Models and Measurements for High-Pressure Reacting Laminar and Turbulent Flows

    DTIC Science & Technology

    2013-06-26

    flow code used ( OpenFOAM ) to include differential diffusion and cell-based stochastic RTE solvers. The models were validated by simulation of laminar...wavenumber selection is improved about by a factor of 10. (5) OpenFOAM Improvements for Laminar Flames A laminar-diffusion combustion solver, taking into...account the effects of differential diffusion, was developed within the open source CFD package OpenFOAM [18]. In addition, OpenFOAM was augmented to take

  15. Nonstationary Extreme Value Analysis in a Changing Climate: A Software Package

    NASA Astrophysics Data System (ADS)

    Cheng, L.; AghaKouchak, A.; Gilleland, E.

    2013-12-01

    Numerous studies show that climatic extremes have increased substantially in the second half of the 20th century. For this reason, analysis of extremes under a nonstationary assumption has received a great deal of attention. This paper presents a software package developed for estimation of return levels, return periods, and risks of climatic extremes in a changing climate. This MATLAB software package offers tools for analysis of climate extremes under both stationary and non-stationary assumptions. The Nonstationary Extreme Value Analysis (hereafter, NEVA) provides an efficient and generalized framework for analyzing extremes using Bayesian inference. NEVA estimates the extreme value parameters using a Differential Evolution Markov Chain (DE-MC) which utilizes the genetic algorithm Differential Evolution (DE) for global optimization over the real parameter space with the Markov Chain Monte Carlo (MCMC) approach and has the advantage of simplicity, speed of calculation and convergence over conventional MCMC. NEVA also offers the confidence interval and uncertainty bounds of estimated return levels based on the sampled parameters. NEVA integrates extreme value design concepts, data analysis tools, optimization and visualization, explicitly designed to facilitate analysis extremes in geosciences. The generalized input and output files of this software package make it attractive for users from across different fields. Both stationary and nonstationary components of the package are validated for a number of case studies using empirical return levels. The results show that NEVA reliably describes extremes and their return levels.

  16. Optimizing Performance of Scientific Visualization Software to Support Frontier-Class Computations

    DTIC Science & Technology

    2015-08-01

    Hypersonic Sciences Branch) for providing sample datasets and permission to use an image of Q_Criterion isosurface for this report; Dr Anders Grimsrud...10.1. EnSight CSM and CFD Post processing; c2014 [accessed 2015 July 6] http:// www.ceisoftware.com. Main Page. XDMF; 2014 Nov 7 [2015 July 6] http

  17. Automated data collection in single particle electron microscopy

    PubMed Central

    Tan, Yong Zi; Cheng, Anchi; Potter, Clinton S.; Carragher, Bridget

    2016-01-01

    Automated data collection is an integral part of modern workflows in single particle electron microscopy (EM) research. This review surveys the software packages available for automated single particle EM data collection. The degree of automation at each stage of data collection is evaluated, and the capabilities of the software packages are described. Finally, future trends in automation are discussed. PMID:26671944

  18. Defense AT and L. Volume 42, Number 1

    DTIC Science & Technology

    2013-02-01

    Agnish The U.S. Army late last year began equipping brigade combat teams with its first package of radios, satellite systems, software applications...Army’s first package of radios, satellite systems, software applications, smartphone-like devices, and other network components that provide integrated... satellite communications, intelligence, mission command applications, and the integration of C4ISR equip- ment onto various vehicle platforms. This

  19. Increasing the Number of Replications in Item Response Theory Simulations: Automation through SAS and Disk Operating System

    ERIC Educational Resources Information Center

    Gagne, Phill; Furlow, Carolyn; Ross, Terris

    2009-01-01

    In item response theory (IRT) simulation research, it is often necessary to use one software package for data generation and a second software package to conduct the IRT analysis. Because this can substantially slow down the simulation process, it is sometimes offered as a justification for using very few replications. This article provides…

  20. Software for Teaching about AIDS & Sex: A Critical Review of Products. A MicroSIFT Report.

    ERIC Educational Resources Information Center

    Weaver, Dave

    This document contains critical reviews of 10 microcomputer software packages and two interactive videodisc products designed for use in teaching about Acquired Immune Deficiency Syndrome (AIDS) and sex at the secondary school level and above. Each package was reviewed by one or two secondary school health teachers and by a staff member from the…

  1. User's manual for the VAX-Gerber link software package. Revision 1. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isobe, G.W.

    1985-10-01

    This manual provides a user the information necessary to run the VAX-Gerber link software package. It is expected that the user already knows how to login to the VAX, and is familiar with the Gerber Photo Plotter. It is also highly desirable that the user be familiar with the full screen editor on the VAX, EDT.

  2. Sampling and sensitivity analyses tools (SaSAT) for computational modelling

    PubMed Central

    Hoare, Alexander; Regan, David G; Wilson, David P

    2008-01-01

    SaSAT (Sampling and Sensitivity Analysis Tools) is a user-friendly software package for applying uncertainty and sensitivity analyses to mathematical and computational models of arbitrary complexity and context. The toolbox is built in Matlab®, a numerical mathematical software package, and utilises algorithms contained in the Matlab® Statistics Toolbox. However, Matlab® is not required to use SaSAT as the software package is provided as an executable file with all the necessary supplementary files. The SaSAT package is also designed to work seamlessly with Microsoft Excel but no functionality is forfeited if that software is not available. A comprehensive suite of tools is provided to enable the following tasks to be easily performed: efficient and equitable sampling of parameter space by various methodologies; calculation of correlation coefficients; regression analysis; factor prioritisation; and graphical output of results, including response surfaces, tornado plots, and scatterplots. Use of SaSAT is exemplified by application to a simple epidemic model. To our knowledge, a number of the methods available in SaSAT for performing sensitivity analyses have not previously been used in epidemiological modelling and their usefulness in this context is demonstrated. PMID:18304361

  3. cit: hypothesis testing software for mediation analysis in genomic applications.

    PubMed

    Millstein, Joshua; Chen, Gary K; Breton, Carrie V

    2016-08-01

    The challenges of successfully applying causal inference methods include: (i) satisfying underlying assumptions, (ii) limitations in data/models accommodated by the software and (iii) low power of common multiple testing approaches. The causal inference test (CIT) is based on hypothesis testing rather than estimation, allowing the testable assumptions to be evaluated in the determination of statistical significance. A user-friendly software package provides P-values and optionally permutation-based FDR estimates (q-values) for potential mediators. It can handle single and multiple binary and continuous instrumental variables, binary or continuous outcome variables and adjustment covariates. Also, the permutation-based FDR option provides a non-parametric implementation. Simulation studies demonstrate the validity of the cit package and show a substantial advantage of permutation-based FDR over other common multiple testing strategies. The cit open-source R package is freely available from the CRAN website (https://cran.r-project.org/web/packages/cit/index.html) with embedded C ++ code that utilizes the GNU Scientific Library, also freely available (http://www.gnu.org/software/gsl/). joshua.millstein@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Software engineering and data management for automated payload experiment tool

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Provancha, Anna; Chattam, David

    1994-01-01

    The Microgravity Projects Office identified a need to develop a software package that will lead experiment developers through the development planning process, obtain necessary information, establish an electronic data exchange avenue, and allow easier manipulation/reformatting of the collected information. An MS-DOS compatible software package called the Automated Payload Experiment Tool (APET) has been developed and delivered. The objective of this task is to expand on the results of the APET work previously performed by University of Alabama in Huntsville (UAH) and provide versions of the software in a Macintosh and Windows compatible format. Appendix 1 science requirements document (SRD) Users Manual is attached.

  5. PsyToolkit: a software package for programming psychological experiments using Linux.

    PubMed

    Stoet, Gijsbert

    2010-11-01

    PsyToolkit is a set of software tools for programming psychological experiments on Linux computers. Given that PsyToolkit is freely available under the Gnu Public License, open source, and designed such that it can easily be modified and extended for individual needs, it is suitable not only for technically oriented Linux users, but also for students, researchers on small budgets, and universities in developing countries. The software includes a high-level scripting language, a library for the programming language C, and a questionnaire presenter. The software easily integrates with other open source tools, such as the statistical software package R. PsyToolkit is designed to work with external hardware (including IoLab and Cedrus response keyboards and two common digital input/output boards) and to support millisecond timing precision. Four in-depth examples explain the basic functionality of PsyToolkit. Example 1 demonstrates a stimulus-response compatibility experiment. Example 2 demonstrates a novel mouse-controlled visual search experiment. Example 3 shows how to control light emitting diodes using PsyToolkit, and Example 4 shows how to build a light-detection sensor. The last two examples explain the electronic hardware setup such that they can even be used with other software packages.

  6. Modular modeling system for building distributed hydrologic models with a user-friendly software package

    NASA Astrophysics Data System (ADS)

    Wi, S.; Ray, P. A.; Brown, C.

    2015-12-01

    A software package developed to facilitate building distributed hydrologic models in a modular modeling system is presented. The software package provides a user-friendly graphical user interface that eases its practical use in water resources-related research and practice. The modular modeling system organizes the options available to users when assembling models according to the stages of hydrological cycle, such as potential evapotranspiration, soil moisture accounting, and snow/glacier melting processes. The software is intended to be a comprehensive tool that simplifies the task of developing, calibrating, validating, and using hydrologic models through the inclusion of intelligent automation to minimize user effort, and reduce opportunities for error. Processes so far automated include the definition of system boundaries (i.e., watershed delineation), climate and geographical input generation, and parameter calibration. Built-in post-processing toolkits greatly improve the functionality of the software as a decision support tool for water resources system management and planning. Example post-processing toolkits enable streamflow simulation at ungauged sites with predefined model parameters, and perform climate change risk assessment by means of the decision scaling approach. The software is validated through application to watersheds representing a variety of hydrologic regimes.

  7. Software package for modeling spin–orbit motion in storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de

    2015-12-15

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less

  8. SEMModComp: An R Package for Calculating Likelihood Ratio Tests for Mean and Covariance Structure Models

    ERIC Educational Resources Information Center

    Levy, Roy

    2010-01-01

    SEMModComp, a software package for conducting likelihood ratio tests for mean and covariance structure modeling is described. The package is written in R and freely available for download or on request.

  9. The design, deployment, and testing of kriging models in GEOframe with SIK-0.9.8

    NASA Astrophysics Data System (ADS)

    Bancheri, Marialaura; Serafin, Francesco; Bottazzi, Michele; Abera, Wuletawu; Formetta, Giuseppe; Rigon, Riccardo

    2018-06-01

    This work presents a software package for the interpolation of climatological variables, such as temperature and precipitation, using kriging techniques. The purposes of the paper are (1) to present a geostatistical software that is easy to use and easy to plug in to a hydrological model; (2) to provide a practical example of an accurately designed software from the perspective of reproducible research; and (3) to demonstrate the goodness of the results of the software and so have a reliable alternative to other, more traditional tools. A total of 11 types of theoretical semivariograms and four types of kriging were implemented and gathered into Object Modeling System-compliant components. The package provides real-time optimization for semivariogram and kriging parameters. The software was tested using a year's worth of hourly temperature readings and a rain storm event (11 h) recorded in 2008 and retrieved from 97 meteorological stations in the Isarco River basin, Italy. For both the variables, good interpolation results were obtained and then compared to the results from the R package gstat.

  10. Advanced Software Development Workstation Project

    NASA Technical Reports Server (NTRS)

    Lee, Daniel

    1989-01-01

    The Advanced Software Development Workstation Project, funded by Johnson Space Center, is investigating knowledge-based techniques for software reuse in NASA software development projects. Two prototypes have been demonstrated and a third is now in development. The approach is to build a foundation that provides passive reuse support, add a layer that uses domain-independent programming knowledge, add a layer that supports the acquisition of domain-specific programming knowledge to provide active support, and enhance maintainability and modifiability through an object-oriented approach. The development of new application software would use specification-by-reformulation, based on a cognitive theory of retrieval from very long-term memory in humans, and using an Ada code library and an object base. Current tasks include enhancements to the knowledge representation of Ada packages and abstract data types, extensions to support Ada package instantiation knowledge acquisition, integration with Ada compilers and relational databases, enhancements to the graphical user interface, and demonstration of the system with a NASA contractor-developed trajectory simulation package. Future work will focus on investigating issues involving scale-up and integration.

  11. Designing and Implementing an OVERFLOW Reader for ParaView and Comparing Performance Between Central Processing Units and Graphical Processing Units

    NASA Technical Reports Server (NTRS)

    Chawner, David M.; Gomez, Ray J.

    2010-01-01

    In the Applied Aerosciences and CFD branch at Johnson Space Center, computational simulations are run that face many challenges. Two of which are the ability to customize software for specialized needs and the need to run simulations as fast as possible. There are many different tools that are used for running these simulations and each one has its own pros and cons. Once these simulations are run, there needs to be software capable of visualizing the results in an appealing manner. Some of this software is called open source, meaning that anyone can edit the source code to make modifications and distribute it to all other users in a future release. This is very useful, especially in this branch where many different tools are being used. File readers can be written to load any file format into a program, to ease the bridging from one tool to another. Programming such a reader requires knowledge of the file format that is being read as well as the equations necessary to obtain the derived values after loading. When running these CFD simulations, extremely large files are being loaded and having values being calculated. These simulations usually take a few hours to complete, even on the fastest machines. Graphics processing units (GPUs) are usually used to load the graphics for computers; however, in recent years, GPUs are being used for more generic applications because of the speed of these processors. Applications run on GPUs have been known to run up to forty times faster than they would on normal central processing units (CPUs). If these CFD programs are extended to run on GPUs, the amount of time they would require to complete would be much less. This would allow more simulations to be run in the same amount of time and possibly perform more complex computations.

  12. The STARLINK software collection

    NASA Astrophysics Data System (ADS)

    Penny, A. J.; Wallace, P. T.; Sherman, J. C.; Terret, D. L.

    1993-12-01

    A demonstration will be given of some recent Starlink software. STARLINK is: a network of computers used by UK astronomers; a collection of programs for the calibration and analysis of astronomical data; a team of people giving hardware, software and administrative support. The Starlink Project has been in operation since 1980 to provide UK astronomers with interactive image processing and data reduction facilities. There are now Starlink computer systems at 25 UK locations, serving about 1500 registered users. The Starlink software collection now has about 25 major packages covering a wide range of astronomical data reduction and analysis techniques, as well as many smaller programs and utilities. At the core of most of the packages is a common `software environment', which provides many of the functions which applications need and offers standardized methods of structuring and accessing data. The software environment simplifies programming and support, and makes it easy to use different packages for different stages of the data reduction. Users see a consistent style, and can mix applications without hitting problems of differing data formats. The Project group coordinates the writing and distribution of this software collection, which is Unix based. Outside the UK, Starlink is used at a large number of places, which range from installations at major UK telescopes, which are Starlink-compatible and managed like Starlink sites, to individuals who run only small parts of the Starlink software collection.

  13. ELF/VLF/LF Radio Propagation and Systems Aspects (La Propagation des Ondes Radio ELF/VLF/LF et les Aspects Systemes)

    DTIC Science & Technology

    1993-05-01

    limitation of the software package would not allow DATE/I’ME FREQUENCY (kHz) the program to run over 2359 to 0001 UT. This was 18.1 19.0 21.4 24.0...Capability (LWPC), software package devel- oped at NOSC (FERGUSON et al 1989) and adapted by us to the Macintosh personal computer. We find that this... software works very well. Our investigations are to I evaluate and devise geophysical models to be used with . LWPC in assessing VLF communications and

  14. Software engineering and automatic continuous verification of scientific software

    NASA Astrophysics Data System (ADS)

    Piggott, M. D.; Hill, J.; Farrell, P. E.; Kramer, S. C.; Wilson, C. R.; Ham, D.; Gorman, G. J.; Bond, T.

    2011-12-01

    Software engineering of scientific code is challenging for a number of reasons including pressure to publish and a lack of awareness of the pitfalls of software engineering by scientists. The Applied Modelling and Computation Group at Imperial College is a diverse group of researchers that employ best practice software engineering methods whilst developing open source scientific software. Our main code is Fluidity - a multi-purpose computational fluid dynamics (CFD) code that can be used for a wide range of scientific applications from earth-scale mantle convection, through basin-scale ocean dynamics, to laboratory-scale classic CFD problems, and is coupled to a number of other codes including nuclear radiation and solid modelling. Our software development infrastructure consists of a number of free tools that could be employed by any group that develops scientific code and has been developed over a number of years with many lessons learnt. A single code base is developed by over 30 people for which we use bazaar for revision control, making good use of the strong branching and merging capabilities. Using features of Canonical's Launchpad platform, such as code review, blueprints for designing features and bug reporting gives the group, partners and other Fluidity uers an easy-to-use platform to collaborate and allows the induction of new members of the group into an environment where software development forms a central part of their work. The code repositoriy are coupled to an automated test and verification system which performs over 20,000 tests, including unit tests, short regression tests, code verification and large parallel tests. Included in these tests are build tests on HPC systems, including local and UK National HPC services. The testing of code in this manner leads to a continuous verification process; not a discrete event performed once development has ceased. Much of the code verification is done via the "gold standard" of comparisons to analytical solutions via the method of manufactured solutions. By developing and verifying code in tandem we avoid a number of pitfalls in scientific software development and advocate similar procedures for other scientific code applications.

  15. The GRIDView Visualization Package

    NASA Astrophysics Data System (ADS)

    Kent, B. R.

    2011-07-01

    Large three-dimensional data cubes, catalogs, and spectral line archives are increasingly important elements of the data discovery process in astronomy. Visualization of large data volumes is of vital importance for the success of large spectral line surveys. Examples of data reduction utilizing the GRIDView software package are shown. The package allows users to manipulate data cubes, extract spectral profiles, and measure line properties. The package and included graphical user interfaces (GUIs) are designed with pipeline infrastructure in mind. The software has been used with great success analyzing spectral line and continuum data sets obtained from large radio survey collaborations. The tools are also important for multi-wavelength cross-correlation studies and incorporate Virtual Observatory client applications for overlaying database information in real time as cubes are examined by users.

  16. Simulating Effects of High Angle of Attack on Turbofan Engine Performance

    NASA Technical Reports Server (NTRS)

    Liu, Yuan; Claus, Russell W.; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A method of investigating the effects of high angle of attack (AOA) flight on turbofan engine performance is presented. The methodology involves combining a suite of diverse simulation tools. Three-dimensional, steady-state computational fluid dynamics (CFD) software is used to model the change in performance of a commercial aircraft-type inlet and fan geometry due to various levels of AOA. Parallel compressor theory is then applied to assimilate the CFD data with a zero-dimensional, nonlinear, dynamic turbofan engine model. The combined model shows that high AOA operation degrades fan performance and, thus, negatively impacts compressor stability margins and engine thrust. In addition, the engine response to high AOA conditions is shown to be highly dependent upon the type of control system employed.

  17. Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr; Badyda, Krzysztof

    2011-12-01

    The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.

  18. User's manual for Interactive Data Display System (IDDS)

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.

    1992-01-01

    A computer graphics package for the visualization of three-dimensional flow in turbomachinery has been developed and tested. This graphics package, called IDDS (Interactive Data Display System), is able to 'unwrap' the volumetric data cone associated with a centrifugal compressor and display the results in an easy to understand two-dimensional manner. IDDS will provide the majority of the visualization and analysis capability for the ICE (Integrated CFD and Experiment) system. This document is intended to serve as a user's manual for IDDS in a stand-alone mode. Currently, IDDS is capable of plotting two- or three-dimensional simulation data, but work is under way to expand IDDS so that experimental data can be accepted, plotted, and compared with a simulation dataset of the actual hardware being tested.

  19. Design and Implementation of a C++ Software Package to scan for and parse Tsunami Messages issued by the Tsunami Warning Centers for Operational use at the Pacific Tsunami Warning Center

    NASA Astrophysics Data System (ADS)

    Sardina, V.

    2012-12-01

    The US Tsunami Warning Centers (TWCs) have traditionally generated their tsunami message products primarily as blocks of text then tagged with headers that identify them on each particular communications' (comms) circuit. Each warning center has a primary area of responsibility (AOR) within which it has an authoritative role regarding parameters such as earthquake location and magnitude. This means that when a major tsunamigenic event occurs the other warning centers need to quickly access the earthquake parameters issued by the authoritative warning center before issuing their message products intended for customers in their own AOR. Thus, within the operational context of the TWCs the scientists on duty have an operational need to access the information contained in the message products issued by other warning centers as quickly as possible. As a solution to this operational problem we designed and implemented a C++ software package that allows scanning for and parsing the entire suite of tsunami message products issued by the Pacific Tsunami Warning Center (PTWC), the West Coast and Alaska Tsunami Warning Center (WCATWC), and the Japan Meteorological Agency (JMA). The scanning and parsing classes composing the resulting C++ software package allow parsing both non-official message products(observatory messages) routinely issued by the TWCs, and all official tsunami message products such as tsunami advisories, watches, and warnings. This software package currently allows scientists on duty at the PTWC to automatically retrieve the parameters contained in tsunami messages issued by WCATWC, JMA, or PTWC itself. Extension of the capabilities of the classes composing the software package would make it possible to generate XML and CAP compliant versions of the TWCs' message products until new messaging software natively adds this capabilities. Customers who receive the TWCs' tsunami message products could also use the package to automatically retrieve information from messages sent via any text-based communications' circuit currently used by the TWCs to disseminate their tsunami message products.

  20. 21 CFR 801.50 - Labeling requirements for stand-alone software.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Labeling requirements for stand-alone software....50 Labeling requirements for stand-alone software. (a) Stand-alone software that is not distributed... in packaged form, stand-alone software regulated as a medical device must provide its unique device...

  1. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.

    PubMed

    McGibbon, Robert T; Beauchamp, Kyle A; Harrigan, Matthew P; Klein, Christoph; Swails, Jason M; Hernández, Carlos X; Schwantes, Christian R; Wang, Lee-Ping; Lane, Thomas J; Pande, Vijay S

    2015-10-20

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Community-driven computational biology with Debian Linux.

    PubMed

    Möller, Steffen; Krabbenhöft, Hajo Nils; Tille, Andreas; Paleino, David; Williams, Alan; Wolstencroft, Katy; Goble, Carole; Holland, Richard; Belhachemi, Dominique; Plessy, Charles

    2010-12-21

    The Open Source movement and its technologies are popular in the bioinformatics community because they provide freely available tools and resources for research. In order to feed the steady demand for updates on software and associated data, a service infrastructure is required for sharing and providing these tools to heterogeneous computing environments. The Debian Med initiative provides ready and coherent software packages for medical informatics and bioinformatics. These packages can be used together in Taverna workflows via the UseCase plugin to manage execution on local or remote machines. If such packages are available in cloud computing environments, the underlying hardware and the analysis pipelines can be shared along with the software. Debian Med closes the gap between developers and users. It provides a simple method for offering new releases of software and data resources, thus provisioning a local infrastructure for computational biology. For geographically distributed teams it can ensure they are working on the same versions of tools, in the same conditions. This contributes to the world-wide networking of researchers.

  3. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories

    PubMed Central

    McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.; Klein, Christoph; Swails, Jason M.; Hernández, Carlos X.; Schwantes, Christian R.; Wang, Lee-Ping; Lane, Thomas J.; Pande, Vijay S.

    2015-01-01

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. PMID:26488642

  4. Predictive Utility of Marketed Volumetric Software Tools in Subjects at Risk for Alzheimer Disease: Do Regions Outside the Hippocampus Matter?

    PubMed

    Tanpitukpongse, T P; Mazurowski, M A; Ikhena, J; Petrella, J R

    2017-03-01

    Alzheimer disease is a prevalent neurodegenerative disease. Computer assessment of brain atrophy patterns can help predict conversion to Alzheimer disease. Our aim was to assess the prognostic efficacy of individual-versus-combined regional volumetrics in 2 commercially available brain volumetric software packages for predicting conversion of patients with mild cognitive impairment to Alzheimer disease. Data were obtained through the Alzheimer's Disease Neuroimaging Initiative. One hundred ninety-two subjects (mean age, 74.8 years; 39% female) diagnosed with mild cognitive impairment at baseline were studied. All had T1-weighted MR imaging sequences at baseline and 3-year clinical follow-up. Analysis was performed with NeuroQuant and Neuroreader. Receiver operating characteristic curves assessing the prognostic efficacy of each software package were generated by using a univariable approach using individual regional brain volumes and 2 multivariable approaches (multiple regression and random forest), combining multiple volumes. On univariable analysis of 11 NeuroQuant and 11 Neuroreader regional volumes, hippocampal volume had the highest area under the curve for both software packages (0.69, NeuroQuant; 0.68, Neuroreader) and was not significantly different ( P > .05) between packages. Multivariable analysis did not increase the area under the curve for either package (0.63, logistic regression; 0.60, random forest NeuroQuant; 0.65, logistic regression; 0.62, random forest Neuroreader). Of the multiple regional volume measures available in FDA-cleared brain volumetric software packages, hippocampal volume remains the best single predictor of conversion of mild cognitive impairment to Alzheimer disease at 3-year follow-up. Combining volumetrics did not add additional prognostic efficacy. Therefore, future prognostic studies in mild cognitive impairment, combining such tools with demographic and other biomarker measures, are justified in using hippocampal volume as the only volumetric biomarker. © 2017 by American Journal of Neuroradiology.

  5. Enhanced heat sink with geometry induced wall-jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities alongmore » the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.« less

  6. CFD analysis on effect of front windshield angle on aerodynamic drag

    NASA Astrophysics Data System (ADS)

    Abdellah, Essaghouri; Wang, Bo

    2017-09-01

    The external aerodynamics plays an important role in the design process of any automotive. The whole performance of the vehicle can be improved with the help of external aerodynamics. The aerodynamic analysis nowadays is implemented in the recent research in the automotive industry to achieve better cars in terms of design and efficiency. The major objective of the present work is to find out the effect of changing the angle between the engine hood and the front windshield on reducing the car air resistance. A full scale three dimensional (BMW 3 series) sedan car model was carried out using the ALIAS AUTOSTUDIO 2016 a NURBS modeling tool with high quality surfaces, only the external shape of the car was modeled while the interior was not modeled. The ANSYS 17.0 WORKBENCH software package was used to analyse the airflow around the external shape of the car - the solutions of Reynolds Average Navier Stokes (RANS) equations has been carried out using realizable k-epsilon turbulence model (which is perfectly suitable for the automated calculation process) for the given car domain. In this work, the boundary layer, mesh quality, and turbulent value simulation has been compared and discussed in the result section. Finally the optimal model was selected and the redesigned car was analysed to verify the results.

  7. DEVELOPMENT OF A PORTABLE SOFTWARE LANGUAGE FOR PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODELS

    EPA Science Inventory

    The PBPK modeling community has had a long-standing problem with modeling software compatibility. The numerous software packages used for PBPK models are, at best, minimally compatible. This creates problems ranging from model obsolescence due to software support discontinuation...

  8. Common Ada (tradename) Missile Package (CAMP) Project. Missile Software Parts. Volume 8. Detail Design Document

    DTIC Science & Technology

    1988-03-01

    PACKAGE BODY ) TLCSC P661 (CATALOG #P106-0) This package contains the CAMP parts required to do the vaypoint steering portion of navigation. The...3.3.4.1.6 PROCESSING The following describes the processing performed by this part: package body WaypointSteering is package body ...Steering_Vector_Operations is separate; package body Steering_Vector_Operations_with_Arcsin is separate; procedure Compute Turn_Angle_and Direction (UnitNormal C

  9. Enforcing elemental mass and energy balances for reduced order models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J.; Agarwal, K.; Sharma, P.

    2012-01-01

    Development of economically feasible gasification and carbon capture, utilization and storage (CCUS) technologies requires a variety of software tools to optimize the designs of not only the key devices involved (e., g., gasifier, CO{sub 2} adsorber) but also the entire power generation system. High-fidelity models such as Computational Fluid Dynamics (CFD) models are capable of accurately simulating the detailed flow dynamics, heat transfer, and chemistry inside the key devices. However, the integration of CFD models within steady-state process simulators, and subsequent optimization of the integrated system, still presents significant challenges due to the scale differences in both time and length,more » as well the high computational cost. A reduced order model (ROM) generated from a high-fidelity model can serve as a bridge between the models of different scales. While high-fidelity models are built upon the principles of mass, momentum, and energy conservations, ROMs are usually developed based on regression-type equations and hence their predictions may violate the mass and energy conservation laws. A high-fidelity model may also have the mass and energy balance problem if it is not tightly converged. Conservations of mass and energy are important when a ROM is integrated to a flowsheet for the process simulation of the entire chemical or power generation system, especially when recycle streams are connected to the modeled device. As a part of the Carbon Capture Simulation Initiative (CCSI) project supported by the U.S. Department of Energy, we developed a software framework for generating ROMs from CFD simulations and integrating them with Process Modeling Environments (PMEs) for system-wide optimization. This paper presents a method to correct the results of a high-fidelity model or a ROM such that the elemental mass and energy are conserved perfectly. Correction factors for the flow rates of individual species in the product streams are solved using a minimization algorithm based on Lagrangian multiplier method. Enthalpies of product streams are also modified to enforce the energy balance. The approach is illustrated for two ROMs, one based on a CFD model of an entrained-flow gasifier and the other based on the CFD model of a multiphase CO{sub 2} adsorber.« less

  10. Assessment of left ventricular mechanical dyssynchrony by phase analysis of gated-SPECT myocardial perfusion imaging and tissue Doppler imaging: comparison between QGS and ECTb software packages.

    PubMed

    Rastgou, Fereydoon; Shojaeifard, Maryam; Amin, Ahmad; Ghaedian, Tahereh; Firoozabadi, Hasan; Malek, Hadi; Yaghoobi, Nahid; Bitarafan-Rajabi, Ahmad; Haghjoo, Majid; Amouzadeh, Hedieh; Barati, Hossein

    2014-12-01

    Recently, the phase analysis of gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) has become feasible via several software packages for the evaluation of left ventricular mechanical dyssynchrony. We compared two quantitative software packages, quantitative gated SPECT (QGS) and Emory cardiac toolbox (ECTb), with tissue Doppler imaging (TDI) as the conventional method for the evaluation of left ventricular mechanical dyssynchrony. Thirty-one patients with severe heart failure (ejection fraction ≤35%) and regular heart rhythm, who referred for gated-SPECT MPI, were enrolled. TDI was performed within 3 days after MPI. Dyssynchrony parameters derived from gated-SPECT MPI were analyzed by QGS and ECTb and were compared with the Yu index and septal-lateral wall delay measured by TDI. QGS and ECTb showed a good correlation for assessment of phase histogram bandwidth (PHB) and phase standard deviation (PSD) (r = 0.664 and r = 0.731, P < .001, respectively). However, the mean value of PHB and PSD by ECTb was significantly higher than that of QGS. No significant correlation was found between ECTb and QGS and the Yu index. Nevertheless, PHB, PSD, and entropy derived from QGS revealed a significant (r = 0.424, r = 0.478, r = 0.543, respectively; P < .02) correlation with septal-lateral wall delay. Despite a good correlation between QGS and ECTb software packages, different normal cut-off values of PSD and PHB should be defined for each software package. There was only a modest correlation between phase analysis of gated-SPECT MPI and TDI data, especially in the population of heart failure patients with both narrow and wide QRS complex.

  11. An image-processing software package: UU and Fig for optical metrology applications

    NASA Astrophysics Data System (ADS)

    Chen, Lujie

    2013-06-01

    Modern optical metrology applications are largely supported by computational methods, such as phase shifting [1], Fourier Transform [2], digital image correlation [3], camera calibration [4], etc, in which image processing is a critical and indispensable component. While it is not too difficult to obtain a wide variety of image-processing programs from the internet; few are catered for the relatively special area of optical metrology. This paper introduces an image-processing software package: UU (data processing) and Fig (data rendering) that incorporates many useful functions to process optical metrological data. The cross-platform programs UU and Fig are developed based on wxWidgets. At the time of writing, it has been tested on Windows, Linux and Mac OS. The userinterface is designed to offer precise control of the underline processing procedures in a scientific manner. The data input/output mechanism is designed to accommodate diverse file formats and to facilitate the interaction with other independent programs. In terms of robustness, although the software was initially developed for personal use, it is comparably stable and accurate to most of the commercial software of similar nature. In addition to functions for optical metrology, the software package has a rich collection of useful tools in the following areas: real-time image streaming from USB and GigE cameras, computational geometry, computer vision, fitting of data, 3D image processing, vector image processing, precision device control (rotary stage, PZT stage, etc), point cloud to surface reconstruction, volume rendering, batch processing, etc. The software package is currently used in a number of universities for teaching and research.

  12. MOSAIC: Software for creating mosaics from collections of images

    NASA Technical Reports Server (NTRS)

    Varosi, F.; Gezari, D. Y.

    1992-01-01

    We have developed a powerful, versatile image processing and analysis software package called MOSAIC, designed specifically for the manipulation of digital astronomical image data obtained with (but not limited to) two-dimensional array detectors. The software package is implemented using the Interactive Data Language (IDL), and incorporates new methods for processing, calibration, analysis, and visualization of astronomical image data, stressing effective methods for the creation of mosaic images from collections of individual exposures, while at the same time preserving the photometric integrity of the original data. Since IDL is available on many computers, the MOSAIC software runs on most UNIX and VAX workstations with the X-Windows or Sun View graphics interface.

  13. R-Based Software for the Integration of Pathway Data into Bioinformatic Algorithms

    PubMed Central

    Kramer, Frank; Bayerlová, Michaela; Beißbarth, Tim

    2014-01-01

    Putting new findings into the context of available literature knowledge is one approach to deal with the surge of high-throughput data results. Furthermore, prior knowledge can increase the performance and stability of bioinformatic algorithms, for example, methods for network reconstruction. In this review, we examine software packages for the statistical computing framework R, which enable the integration of pathway data for further bioinformatic analyses. Different approaches to integrate and visualize pathway data are identified and packages are stratified concerning their features according to a number of different aspects: data import strategies, the extent of available data, dependencies on external tools, integration with further analysis steps and visualization options are considered. A total of 12 packages integrating pathway data are reviewed in this manuscript. These are supplemented by five R-specific packages for visualization and six connector packages, which provide access to external tools. PMID:24833336

  14. CASL VMA Milestone Report FY16 (L3:VMA.VUQ.P13.08): Westinghouse Mixing with STAR-CCM+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilkey, Lindsay Noelle

    2016-09-30

    STAR-CCM+ (STAR) is a high-resolution computational fluid dynamics (CFD) code developed by CD-adapco. STAR includes validated physics models and a full suite of turbulence models including ones from the k-ε and k-ω families. STAR is currently being developed to be able to do two phase flows, but the current focus of the software is single phase flow. STAR can use imported meshes or use the built in meshing software to create computation domains for CFD. Since the solvers generally require a fine mesh for good computational results, the meshes used with STAR tend to number in the millions of cells,more » with that number growing with simulation and geometry complexity. The time required to model the flow of a full 5x5 Mixing Vane Grid Assembly (5x5MVG) in the current STAR configuration is on the order of hours, and can be very computationally expensive. COBRA-TF (CTF) is a low-resolution subchannel code that can be trained using high fidelity data from STAR. CTF does not have turbulence models and instead uses a turbulent mixing coefficient β. With a properly calibrated β, CTF can be used a low-computational cost alternative to expensive full CFD calculations performed with STAR. During the Hi2Lo work with CTF and STAR, STAR-CCM+ will be used to calibrate β and to provide high-resolution results that can be used in the place of and in addition to experimental results to reduce the uncertainty in the CTF results.« less

  15. Evolutionary algorithm based optimization of hydraulic machines utilizing a state-of-the-art block coupled CFD solver and parametric geometry and mesh generation tools

    NASA Astrophysics Data System (ADS)

    S, Kyriacou; E, Kontoleontos; S, Weissenberger; L, Mangani; E, Casartelli; I, Skouteropoulou; M, Gattringer; A, Gehrer; M, Buchmayr

    2014-03-01

    An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure.

  16. FTOOLS: A FITS Data Processing and Analysis Software Package

    NASA Astrophysics Data System (ADS)

    Blackburn, J. K.

    FTOOLS, a highly modular collection of over 110 utilities for processing and analyzing data in the FITS (Flexible Image Transport System) format, has been developed in support of the HEASARC (High Energy Astrophysics Science Archive Research Center) at NASA's Goddard Space Flight Center. Each utility performs a single simple task such as presentation of file contents, extraction of specific rows or columns, appending or merging tables, binning values in a column or selecting subsets of rows based on a boolean expression. Individual utilities can easily be chained together in scripts to achieve more complex operations such as the generation and displaying of spectra or light curves. The collection of utilities provides both generic processing and analysis utilities and utilities specific to high energy astrophysics data sets used for the ASCA, ROSAT, GRO, and XTE missions. A core set of FTOOLS providing support for generic FITS data processing, FITS image analysis and timing analysis can easily be split out of the full software package for users not needing the high energy astrophysics mission utilities. The FTOOLS software package is designed to be both compatible with IRAF and completely stand alone in a UNIX or VMS environment. The user interface is controlled by standard IRAF parameter files. The package is self documenting through the IRAF help facility and a stand alone help task. Software is written in ANSI C and \\fortran to provide portability across most computer systems. The data format dependencies between hardware platforms are isolated through the FITSIO library package.

  17. Courseware Review.

    ERIC Educational Resources Information Center

    Risley, John, Ed.

    1988-01-01

    Compares the features of the sonic rangers available from HRM Software, MICROMEASUREMENTS, NAGAWTIS Software Research, and PASCO Scientific for demonstrations and experiments in mechanics. Presents the advantages of the sonic rangers and the typical graphics displayed by each software package. (YP)

  18. Mesoscale and severe storms (Mass) data management and analysis system

    NASA Technical Reports Server (NTRS)

    Hickey, J. S.; Karitani, S.; Dickerson, M.

    1984-01-01

    Progress on the Mesoscale and Severe Storms (MASS) data management and analysis system is described. An interactive atmospheric data base management software package to convert four types of data (Sounding, Single Level, Grid, Image) into standard random access formats is implemented and integrated with the MASS AVE80 Series general purpose plotting and graphics display data analysis software package. An interactive analysis and display graphics software package (AVE80) to analyze large volumes of conventional and satellite derived meteorological data is enhanced to provide imaging/color graphics display utilizing color video hardware integrated into the MASS computer system. Local and remote smart-terminal capability is provided by installing APPLE III computer systems within individual scientist offices and integrated with the MASS system, thus providing color video display, graphics, and characters display of the four data types.

  19. Reference Gene Validation for RT-qPCR, a Note on Different Available Software Packages

    PubMed Central

    De Spiegelaere, Ward; Dern-Wieloch, Jutta; Weigel, Roswitha; Schumacher, Valérie; Schorle, Hubert; Nettersheim, Daniel; Bergmann, Martin; Brehm, Ralph; Kliesch, Sabine; Vandekerckhove, Linos; Fink, Cornelia

    2015-01-01

    Background An appropriate normalization strategy is crucial for data analysis from real time reverse transcription polymerase chain reactions (RT-qPCR). It is widely supported to identify and validate stable reference genes, since no single biological gene is stably expressed between cell types or within cells under different conditions. Different algorithms exist to validate optimal reference genes for normalization. Applying human cells, we here compare the three main methods to the online available RefFinder tool that integrates these algorithms along with R-based software packages which include the NormFinder and GeNorm algorithms. Results 14 candidate reference genes were assessed by RT-qPCR in two sample sets, i.e. a set of samples of human testicular tissue containing carcinoma in situ (CIS), and a set of samples from the human adult Sertoli cell line (FS1) either cultured alone or in co-culture with the seminoma like cell line (TCam-2) or with equine bone marrow derived mesenchymal stem cells (eBM-MSC). Expression stabilities of the reference genes were evaluated using geNorm, NormFinder, and BestKeeper. Similar results were obtained by the three approaches for the most and least stably expressed genes. The R-based packages NormqPCR, SLqPCR and the NormFinder for R script gave identical gene rankings. Interestingly, different outputs were obtained between the original software packages and the RefFinder tool, which is based on raw Cq values for input. When the raw data were reanalysed assuming 100% efficiency for all genes, then the outputs of the original software packages were similar to the RefFinder software, indicating that RefFinder outputs may be biased because PCR efficiencies are not taken into account. Conclusions This report shows that assay efficiency is an important parameter for reference gene validation. New software tools that incorporate these algorithms should be carefully validated prior to use. PMID:25825906

  20. Reference gene validation for RT-qPCR, a note on different available software packages.

    PubMed

    De Spiegelaere, Ward; Dern-Wieloch, Jutta; Weigel, Roswitha; Schumacher, Valérie; Schorle, Hubert; Nettersheim, Daniel; Bergmann, Martin; Brehm, Ralph; Kliesch, Sabine; Vandekerckhove, Linos; Fink, Cornelia

    2015-01-01

    An appropriate normalization strategy is crucial for data analysis from real time reverse transcription polymerase chain reactions (RT-qPCR). It is widely supported to identify and validate stable reference genes, since no single biological gene is stably expressed between cell types or within cells under different conditions. Different algorithms exist to validate optimal reference genes for normalization. Applying human cells, we here compare the three main methods to the online available RefFinder tool that integrates these algorithms along with R-based software packages which include the NormFinder and GeNorm algorithms. 14 candidate reference genes were assessed by RT-qPCR in two sample sets, i.e. a set of samples of human testicular tissue containing carcinoma in situ (CIS), and a set of samples from the human adult Sertoli cell line (FS1) either cultured alone or in co-culture with the seminoma like cell line (TCam-2) or with equine bone marrow derived mesenchymal stem cells (eBM-MSC). Expression stabilities of the reference genes were evaluated using geNorm, NormFinder, and BestKeeper. Similar results were obtained by the three approaches for the most and least stably expressed genes. The R-based packages NormqPCR, SLqPCR and the NormFinder for R script gave identical gene rankings. Interestingly, different outputs were obtained between the original software packages and the RefFinder tool, which is based on raw Cq values for input. When the raw data were reanalysed assuming 100% efficiency for all genes, then the outputs of the original software packages were similar to the RefFinder software, indicating that RefFinder outputs may be biased because PCR efficiencies are not taken into account. This report shows that assay efficiency is an important parameter for reference gene validation. New software tools that incorporate these algorithms should be carefully validated prior to use.

  1. Attributes and Behaviors of Performance-Centered Systems.

    ERIC Educational Resources Information Center

    Gery, Gloria

    1995-01-01

    Examines attributes, characteristics, and behaviors of performance-centered software packages that are emerging in the consumer software marketplace and compares them with large-scale systems software being designed by internal information systems staffs and vendors of large-scale software designed for financial, manufacturing, processing, and…

  2. WGCNA: an R package for weighted correlation network analysis.

    PubMed

    Langfelder, Peter; Horvath, Steve

    2008-12-29

    Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.

  3. WGCNA: an R package for weighted correlation network analysis

    PubMed Central

    Langfelder, Peter; Horvath, Steve

    2008-01-01

    Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at . PMID:19114008

  4. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data.

    PubMed

    Yavorska, Olena O; Burgess, Stephen

    2017-12-01

    MendelianRandomization is a software package for the R open-source software environment that performs Mendelian randomization analyses using summarized data. The core functionality is to implement the inverse-variance weighted, MR-Egger and weighted median methods for multiple genetic variants. Several options are available to the user, such as the use of robust regression, fixed- or random-effects models and the penalization of weights for genetic variants with heterogeneous causal estimates. Extensions to these methods, such as allowing for variants to be correlated, can be chosen if appropriate. Graphical commands allow summarized data to be displayed in an interactive graph, or the plotting of causal estimates from multiple methods, for comparison. Although the main method of data entry is directly by the user, there is also an option for allowing summarized data to be incorporated from the PhenoScanner database of genotype-phenotype associations. We hope to develop this feature in future versions of the package. The R software environment is available for download from [https://www.r-project.org/]. The MendelianRandomization package can be downloaded from the Comprehensive R Archive Network (CRAN) within R, or directly from [https://cran.r-project.org/web/packages/MendelianRandomization/]. Both R and the MendelianRandomization package are released under GNU General Public Licenses (GPL-2|GPL-3). © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association.

  5. Data Packages for the Hanford Immobilized Low Activity Tank Waste Performance Assessment 2001 Version [SEC 1 THRU 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    Data package supporting the 2001 Immobilized Low-Activity Waste Performance Analysis. Geology, hydrology, geochemistry, facility, waste form, and dosimetry data based on recent investigation are provided. Verification and benchmarking packages for selected software codes are provided.

  6. An Integrated Research Program for the Modeling, Analysis and Control of Aerospace Systems

    DTIC Science & Technology

    1992-03-03

    Fabiano, Jr. - Brown University Mitchell Feigenbaum - Rockefeller University Elena Fernandez - Institudo de Desarrollo Techologico, para la Industria...system. The system runs under DEC Ultrix; we have installed the GKS graphics system and language compilers (FORTRAN and C). The DELIGHT.MIMO software ...which links a sophisticated non-smooth optimization package to some linear system software , is on the system. The package was kindly furnished by

  7. An Integrated Research Program for the Modeling, Analysis and Control of Aerospace Systems

    DTIC Science & Technology

    1992-03-03

    Mitchell Feigenbaum - Rockefeller University Elena Fernandez - Institudo de Desarrollo Techologico, para la Industria Quimica Wilfred M. Greenlee...Ultrix; we have installed the GKS graphics system and language compilers (FORTRAN and C). The DELIGHT.MIMO software , which links a sophisticated non...smooth optimization package to some linear system software , is on the system. The package was kindly furnished by Professor E. Polak, Electrical and

  8. Advanced Simulation in Undergraduate Pilot Training: Automatic Instructional System

    DTIC Science & Technology

    1975-10-01

    an addressable reel-to--reel audio tape recorder, a random access audio memory drum , and an interactive software package which permits the user to...audio memory drum , and an interactive software package which permits the user to develop preptogtahmed exercises. Figure 2 illustrates overall...Data Recprding System consists of two elements; an overlay program which performs the real-time sampling of specified variables and stores data to disc

  9. Experimental investigation and CFD simulation of multi-pipe earth-to-air heat exchangers (EAHEs) flow performance

    NASA Astrophysics Data System (ADS)

    Amanowicz, Łukasz; Wojtkowiak, Janusz

    2017-11-01

    In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-air heat exchangers (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe exchangers was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the exchanger pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and Air Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.

  10. CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.

    PubMed

    Wu, Binxin

    2010-07-01

    This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.

  11. Numerical study of Tallinn storm-water system flooding conditions using CFD simulations of multi-phase flow in a large-scale inverted siphon

    NASA Astrophysics Data System (ADS)

    Kaur, K.; Laanearu, J.; Annus, I.

    2017-10-01

    The numerical experiments are carried out for qualitative and quantitative interpretation of a multi-phase flow processes associated with malfunctioning of the Tallinn storm-water system during rain storms. The investigations are focused on the single-line inverted siphon, which is used as under-road connection of pipes of the storm-water system under interest. A multi-phase flow solver of Computational Fluid Dynamics software OpenFOAM is used for simulating the three-phase flow dynamics in the hydraulic system. The CFD simulations are performed with different inflow rates under same initial conditions. The computational results are compared essentially in two cases 1) design flow rate and 2) larger flow rate, for emptying the initially filled inverted siphon from a slurry-fluid. The larger flow-rate situations are under particular interest to detected possible flooding. In this regard, it is anticipated that the CFD solutions provide an important insight to functioning of inverted siphon under a restricted water-flow conditions at simultaneous presence of air and slurry-fluid.

  12. Simulation of Rotary-Wing Near-Wake Vortex Structures Using Navier-Stokes CFD Methods

    NASA Technical Reports Server (NTRS)

    Kenwright, David; Strawn, Roger; Ahmad, Jasim; Duque, Earl; Warmbrodt, William (Technical Monitor)

    1997-01-01

    This paper will use high-resolution Navier-Stokes computational fluid dynamics (CFD) simulations to model the near-wake vortex roll-up behind rotor blades. The locations and strengths of the trailing vortices will be determined from newly-developed visualization and analysis software tools applied to the CFD solutions. Computational results for rotor nearwake vortices will be used to study the near-wake vortex roll up for highly-twisted tiltrotor blades. These rotor blades typically have combinations of positive and negative spanwise loading and complex vortex wake interactions. Results of the computational studies will be compared to vortex-lattice wake models that are frequently used in rotorcraft comprehensive codes. Information from these comparisons will be used to improve the rotor wake models in the Tilt-Rotor Acoustic Code (TRAC) portion of NASA's Short Haul Civil Transport program (SHCT). Accurate modeling of the rotor wake is an important part of this program and crucial to the successful design of future civil tiltrotor aircraft. The rotor wake system plays an important role in blade-vortex interaction noise, a major problem for all rotorcraft including tiltrotors.

  13. Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Hedayat, Ali; Lopez, Alfredo; Grayson, Gary D.; Chandler, Frank O.; Hastings, Leon J.

    2008-01-01

    A computational fluid dynamics (CFD) model is developed to simulate pressure control of an ellipsoidal-shaped liquid hydrogen tank under external heating in low gravity. Pressure control is provided by an axial jet thermodynamic vent system (TVS) centered within the vessel that injects cooler liquid into the tank, mixing the contents and reducing tank pressure. The two-phase cryogenic tank model considers liquid hydrogen in its own vapor with liquid density varying with temperature only and a fully compressible ullage. The axisymmetric model is developed using a custom version of the commercially available FLOW-3D software and simulates low gravity extrapolations of engineering checkout tests performed at Marshall Space Flight Center in 1999 in support of the Solar Thermal Upper Stage Technology Demonstrator (STUSTD) program. Model results illustrate that stable low gravity liquid-gas interfaces are maintained during all phases of the pressure control cycle. Steady and relatively smooth ullage pressurization rates are predicted. This work advances current low gravity CFD modeling capabilities for cryogenic pressure control and aids the development of a low cost CFD-based design process for space hardware.

  14. Free-Flowing Solutions for CFD

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Licensed to over 1,500 customers worldwide, an advanced computational fluid dynamics (CFD) post-processor with a quick learning curve is consistently providing engineering solutions, with just the right balance of visual insight and hard data. FIELDVIEW is the premier product of JMSI, Inc., d.b.a. Intelligent Light, a woman-owned, small business founded in 1994 and located in Lyndhurst, New Jersey. In the early 1990s, Intelligent Light entered into a joint development contract with a research based company to commercialize the post-processing FIELDVIEW code. As Intelligent Light established itself, it purchased the exclusive rights to the code, and structured its business solely around the software technology. As a result, it is enjoying profits and growing at a rate of 25 to 30 percent per year. Advancements made from the earliest commercial launch of FIELDVIEW, all the way up to the recently released versions 8 and 8.2 of the program, have been backed by research collaboration with NASA's Langley Research Center, where some of the world's most progressive work in transient (also known as time-varying) CFD takes place.

  15. Evaluation of Agricultural Accounting Software. Improved Decision Making. Third Edition.

    ERIC Educational Resources Information Center

    Lovell, Ashley C., Comp.

    Following a discussion of the evaluation criteria for choosing accounting software, this guide contains reviews of 27 accounting software programs that could be used by farm or ranch business managers. The information in the reviews was provided by the software vendors and covers the following points for each software package: general features,…

  16. Sustaining Software-Intensive Systems

    DTIC Science & Technology

    2006-05-01

    2.2 Multi- Service Operational Test and Evaluation .......................................4 2.3 Stable Software Baseline...or equivalent document • completed Multi- Service Operational Test and Evaluation (MOT&E) for the potential production software package (or OT&E if...not multi- service ) • stable software production baseline • complete and current software documentation • Authority to Operate (ATO) for an

  17. Nuclear Data Online Services at Peking University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, T.S.; Guo, Z.Y.; Ye, W.G.

    2005-05-24

    The Institute of Heavy Ion Physics at Peking University has developed a new nuclear data online services software package. Through the web site (http://ndos.nst.pku.edu.cn), it offers online access to main relational nuclear databases: five evaluated neutron libraries (BROND, CENDL, ENDF, JEF, JENDL), the ENSDF library, the EXFOR library, the IAEA photonuclear library and the charged particle data of the FENDL library. This software allows the comparison and graphic representations of the different data sets. The computer programs of this package are based on the Linux implementation of PHP and the MySQL software.

  18. Nuclear Data Online Services at Peking University

    NASA Astrophysics Data System (ADS)

    Fan, T. S.; Guo, Z. Y.; Ye, W. G.; Liu, W. L.; Liu, T. J.; Liu, C. X.; Chen, J. X.; Tang, G. Y.; Shi, Z. M.; Huang, X. L.; Chen, J. E.

    2005-05-01

    The Institute of Heavy Ion Physics at Peking University has developed a new nuclear data online services software package. Through the web site (http://ndos.nst.pku.edu.cn), it offers online access to main relational nuclear databases: five evaluated neutron libraries (BROND, CENDL, ENDF, JEF, JENDL), the ENSDF library, the EXFOR library, the IAEA photonuclear library and the charged particle data of the FENDL library. This software allows the comparison and graphic representations of the different data sets. The computer programs of this package are based on the Linux implementation of PHP and the MySQL software.

  19. ATTIRE (analytical tools for thermal infrared engineering): A sensor simulation and modeling package

    NASA Astrophysics Data System (ADS)

    Jaggi, S.

    1993-02-01

    The Advanced Sensor Development Laboratory (ASDL) at the Stennis Space Center develops, maintains and calibrates remote sensing instruments for the National Aeronautics & Space Administration (NASA). To perform system design trade-offs, analysis, and establish system parameters, ASDL has developed a software package for analytical simulation of sensor systems. This package called 'Analytical Tools for Thermal InfraRed Engineering' - ATTIRE, simulates the various components of a sensor system. The software allows each subsystem of the sensor to be analyzed independently for its performance. These performance parameters are then integrated to obtain system level information such as Signal-to-Noise Ratio (SNR), Noise Equivalent Radiance (NER), Noise Equivalent Temperature Difference (NETD) etc. This paper describes the uses of the package and the physics that were used to derive the performance parameters.

  20. scraps: An open-source Python-based analysis package for analyzing and plotting superconducting resonator data

    DOE PAGES

    Carter, Faustin Wirkus; Khaire, Trupti S.; Novosad, Valentyn; ...

    2016-11-07

    We present "scraps" (SuperConducting Analysis and Plotting Software), a Python package designed to aid in the analysis and visualization of large amounts of superconducting resonator data, specifically complex transmission as a function of frequency, acquired at many different temperatures and driving powers. The package includes a least-squares fitting engine as well as a Monte-Carlo Markov Chain sampler for sampling the posterior distribution given priors, marginalizing over nuisance parameters, and estimating covariances. A set of plotting tools for generating publication-quality figures is also provided in the package. Lastly, we discuss the functionality of the software and provide some examples of itsmore » utility on data collected from a niobium-nitride coplanar waveguide resonator fabricated at Argonne National Laboratory.« less

  1. tsiR: An R package for time-series Susceptible-Infected-Recovered models of epidemics.

    PubMed

    Becker, Alexander D; Grenfell, Bryan T

    2017-01-01

    tsiR is an open source software package implemented in the R programming language designed to analyze infectious disease time-series data. The software extends a well-studied and widely-applied algorithm, the time-series Susceptible-Infected-Recovered (TSIR) model, to infer parameters from incidence data, such as contact seasonality, and to forward simulate the underlying mechanistic model. The tsiR package aggregates a number of different fitting features previously described in the literature in a user-friendly way, providing support for their broader adoption in infectious disease research. Also included in tsiR are a number of diagnostic tools to assess the fit of the TSIR model. This package should be useful for researchers analyzing incidence data for fully-immunizing infectious diseases.

  2. Aspects on Transfer of Aided - Design Files

    NASA Astrophysics Data System (ADS)

    Goanta, A. M.; Anghelache, D. G.

    2016-08-01

    At this stage of development of hardware and software, each company that makes design software packages has a certain type of file created and customized in time to distinguish that company from its competitors. Thus today are widely known the DWG files belonging AutoCAD, IPT / IAM belonging to Inventor, PAR / ASM of Solid Edge's, PRT from the NX and so on. Behind every type of file there is a mathematical model which is common to more types of files. A specific aspect of the computer -aided design is that all softwares are working with both individual parts and assemblies, but their approach is different in that some use the same type of file both for each part and for the whole (PRT ), while others use different types of files (IPT / IAM, PAR / ASM, etc.). Another aspect of the computer -aided design is to transfer files between different companies which use different software packages or even the same software package but in different versions. Each of these situations generates distinct issues. Thus, to solve the partial reading by a project different from the native one, transfer files of STEP and IGES type are used

  3. BMRF-Net: a software tool for identification of protein interaction subnetworks by a bagging Markov random field-based method.

    PubMed

    Shi, Xu; Barnes, Robert O; Chen, Li; Shajahan-Haq, Ayesha N; Hilakivi-Clarke, Leena; Clarke, Robert; Wang, Yue; Xuan, Jianhua

    2015-07-15

    Identification of protein interaction subnetworks is an important step to help us understand complex molecular mechanisms in cancer. In this paper, we develop a BMRF-Net package, implemented in Java and C++, to identify protein interaction subnetworks based on a bagging Markov random field (BMRF) framework. By integrating gene expression data and protein-protein interaction data, this software tool can be used to identify biologically meaningful subnetworks. A user friendly graphic user interface is developed as a Cytoscape plugin for the BMRF-Net software to deal with the input/output interface. The detailed structure of the identified networks can be visualized in Cytoscape conveniently. The BMRF-Net package has been applied to breast cancer data to identify significant subnetworks related to breast cancer recurrence. The BMRF-Net package is available at http://sourceforge.net/projects/bmrfcjava/. The package is tested under Ubuntu 12.04 (64-bit), Java 7, glibc 2.15 and Cytoscape 3.1.0. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. KymoKnot: A web server and software package to identify and locate knots in trajectories of linear or circular polymers.

    PubMed

    Tubiana, Luca; Polles, Guido; Orlandini, Enzo; Micheletti, Cristian

    2018-06-07

    The KymoKnot software package and web server identifies and locates physical knots or proper knots in a series of polymer conformations. It is mainly intended as an analysis tool for trajectories of linear or circular polymers, but it can be used on single instances too, e.g. protein structures in PDB format. A key element of the software package is the so-called minimally interfering chain closure algorithm that is used to detect physical knots in open chains and to locate the knotted region in both open and closed chains. The web server offers a user-friendly graphical interface that identifies the knot type and highlights the knotted region on each frame of the trajectory, which the user can visualize interactively from various viewpoints. The dynamical evolution of the knotted region along the chain contour is presented as a kymograph. All data can be downloaded in text format. The KymoKnot package is licensed under the BSD 3-Clause licence. The server is publicly available at http://kymoknot.sissa.it/kymoknot/interactive.php .

  5. Development and Use of an Open-Source, User-Friendly Package to Simulate Voltammetry Experiments

    ERIC Educational Resources Information Center

    Wang, Shuo; Wang, Jing; Gao, Yanjing

    2017-01-01

    An open-source electrochemistry simulation package has been developed that simulates the electrode processes of four reaction mechanisms and two typical electroanalysis techniques: cyclic voltammetry and chronoamperometry. Unlike other open-source simulation software, this package balances the features with ease of learning and implementation and…

  6. Increasing Accessibility by Pooling Digital Resources

    ERIC Educational Resources Information Center

    Cushion, Steve

    2004-01-01

    There are now many CALL authoring packages that can create interactive websites and a large number of language teachers are writing materials for the whole range of such packages. Currently, each product stores its data in different formats thus hindering interoperability, pooling of digital resources and moving between software packages based in…

  7. Multiple-Group Analysis Using the sem Package in the R System

    ERIC Educational Resources Information Center

    Evermann, Joerg

    2010-01-01

    Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…

  8. LANZ: Software solving the large sparse symmetric generalized eigenproblem

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1990-01-01

    A package, LANZ, for solving the large symmetric generalized eigenproblem is described. The package was tested on four different architectures: Convex 200, CRAY Y-MP, Sun-3, and Sun-4. The package uses a Lanczos' method and is based on recent research into solving the generalized eigenproblem.

  9. Development of a radial ventricular assist device using numerical predictions and experimental haemolysis.

    PubMed

    Carswell, Dave; Hilton, Andy; Chan, Chris; McBride, Diane; Croft, Nick; Slone, Avril; Cross, Mark; Foster, Graham

    2013-08-01

    The objective of this study was to demonstrate the potential of Computational Fluid Dynamics (CFD) simulations in predicting the levels of haemolysis in ventricular assist devices (VADs). Three different prototypes of a radial flow VAD have been examined experimentally and computationally using CFD modelling to assess device haemolysis. Numerical computations of the flow field were computed using a CFD model developed with the use of the commercial software Ansys CFX 13 and a set of custom haemolysis analysis tools. Experimental values for the Normalised Index of Haemolysis (NIH) have been calculated as 0.020 g/100 L, 0.014 g/100 L and 0.0042 g/100 L for the three designs. Numerical analysis predicts an NIH of 0.021 g/100 L, 0.017 g/100 L and 0.0057 g/100 L, respectively. The actual differences between experimental and numerical results vary between 0.0012 and 0.003 g/100 L, with a variation of 5% for Pump 1 and slightly larger percentage differences for the other pumps. The work detailed herein demonstrates how CFD simulation and, more importantly, the numerical prediction of haemolysis may be used as an effective tool in order to help the designers of VADs manage the flow paths within pumps resulting in a less haemolytic device. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. 1D-3D coupling for hydraulic system transient simulations

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Nilsson, Håkan; Yang, Jiandong; Petit, Olivier

    2017-01-01

    This work describes a coupling between the 1D method of characteristics (MOC) and the 3D finite volume method of computational fluid dynamics (CFD). The coupling method is applied to compressible flow in hydraulic systems. The MOC code is implemented as a set of boundary conditions in the OpenFOAM open source CFD software. The coupling is realized by two linear equations originating from the characteristics equation and the Riemann constant equation, respectively. The coupling method is validated using three simple water hammer cases and several coupling configurations. The accuracy and robustness are investigated with respect to the mesh size ratio across the interface, and 3D flow features close to the interface. The method is finally applied to the transient flow caused by the closing and opening of a knife valve (gate) in a pipe, where the flow is driven by the difference in free surface elevation between two tanks. A small region surrounding the moving gate is resolved by CFD, using a dynamic mesh library, while the rest of the system is modeled by MOC. Minor losses are included in the 1D region, corresponding to the contraction of the flow from the upstream tank into the pipe, a separate stationary flow regulation valve, and a pipe bend. The results are validated with experimental data. A 1D solution is provided for comparison, using the static gate characteristics obtained from steady-state CFD simulations.

  11. Simulation of Grouting Process in Rock Masses Under a Dam Foundation Characterized by a 3D Fracture Network

    NASA Astrophysics Data System (ADS)

    Deng, Shaohui; Wang, Xiaoling; Yu, Jia; Zhang, Yichi; Liu, Zhen; Zhu, Yushan

    2018-06-01

    Grouting plays a crucial role in dam safety. Due to the concealment of grouting activities, complexity of fracture distribution in rock masses and rheological properties of cement grout, it is difficult to analyze the effects of grouting. In this paper, a computational fluid dynamics (CFD) simulation approach of dam foundation grouting based on a 3D fracture network model is proposed. In this approach, the 3D fracture network model, which is based on an improved bootstrap sampling method and established by VisualGeo software, can provide a reliable and accurate geometric model for CFD simulation of dam foundation grouting. Based on the model, a CFD simulation is performed, in which the Papanastasiou regularized model is used to express the grout rheological properties, and the volume of fluid technique is utilized to capture the grout fronts. Two sets of tests are performed to verify the effectiveness of the Papanastasiou regularized model. When applying the CFD simulation approach for dam foundation grouting, three technical issues can be solved: (1) collapsing potential of the fracture samples, (2) inconsistencies in the geometric model in actual fractures under complex geological conditions, and (3) inappropriate method of characterizing the rheological properties of cement grout. The applicability of the proposed approach is demonstrated by an illustrative case study—a hydropower station dam foundation in southwestern China.

  12. Educational Software for Illustration of Drainage, Evapotranspiration, and Crop Yield.

    ERIC Educational Resources Information Center

    Khan, A. H.; And Others

    1996-01-01

    Describes a study that developed a software package for illustrating drainage, evapotranspiration, and crop yield as influenced by water conditions. The software is a tool for depicting water's influence on crop production in western Kansas. (DDR)

  13. Increase of Gas-Turbine Plant Efficiency by Optimizing Operation of Compressors

    NASA Astrophysics Data System (ADS)

    Matveev, V.; Goriachkin, E.; Volkov, A.

    2018-01-01

    The article presents optimization method for improving of the working process of axial compressors of gas turbine engines. Developed method allows to perform search for the best geometry of compressor blades automatically by using optimization software IOSO and CFD software NUMECA Fine/Turbo. The calculation of the compressor parameters was performed for work and stall point of its performance map on each optimization step. Study was carried out for seven-stage high-pressure compressor and three-stage low-pressure compressors. As a result of optimization, improvement of efficiency was achieved for all investigated compressors.

  14. Modelling robotic systems with DADS

    NASA Technical Reports Server (NTRS)

    Churchill, L. W.; Sharf, I.

    1993-01-01

    With the appearance of general off-the-shelf software packages for the simulation of mechanical systems, modelling and simulation of mechanisms has become an easier task. The authors have recently used one such package, DADS, to model the dynamics of rigid and flexible-link robotic manipulators. In this paper, we present this overview of our learning experiences with DADS, in the hope that it will shorten the learning process for others interested in this software.

  15. Aviation Design Software

    NASA Technical Reports Server (NTRS)

    1997-01-01

    DARcorporation developed a General Aviation CAD package through a Small Business Innovation Research contract from Langley Research Center. This affordable, user-friendly preliminary design system for General Aviation aircraft runs on the popular 486 IBM-compatible personal computers. Individuals taking the home-built approach, small manufacturers of General Aviation airplanes, as well as students and others interested in the analysis and design of aircraft are possible users of the package. The software can cut design and development time in half.

  16. A streamlined Python framework for AT-TPC data analysis

    NASA Astrophysics Data System (ADS)

    Taylor, J. Z.; Bradt, J.; Bazin, D.; Kuchera, M. P.

    2017-09-01

    User-friendly data analysis software has been developed for the Active-Target Time Projection Chamber (AT-TPC) experiment at the National Superconducting Cyclotron Laboratory at Michigan State University. The AT-TPC, commissioned in 2014, is a gas-filled detector that acts as both the detector and target for high-efficiency detection of low-intensity, exotic nuclear reactions. The pytpc framework is a Python package for analyzing AT-TPC data. The package was developed for the analysis of 46Ar(p, p) data. The existing software was used to analyze data produced by the 40Ar(p, p) experiment that ran in August, 2015. Usage of the package was documented in an analysis manual both to improve analysis steps and aid in the work of future AT-TPC users. Software features and analysis methods in the pytpc framework will be presented along with the 40Ar results.

  17. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials

    NASA Astrophysics Data System (ADS)

    Niu, Yingli; Li, Wenqiang; Peng, Qian; Geng, Hua; Yi, Yuanping; Wang, Linjun; Nan, Guangjun; Wang, Dong; Shuai, Zhigang

    2018-04-01

    MOlecular MAterials Property Prediction Package (MOMAP) is a software toolkit for molecular materials property prediction. It focuses on luminescent properties and charge mobility properties. This article contains a brief descriptive introduction of key features, theoretical models and algorithms of the software, together with examples that illustrate the performance. First, we present the theoretical models and algorithms for molecular luminescent properties calculation, which includes the excited-state radiative/non-radiative decay rate constant and the optical spectra. Then, a multi-scale simulation approach and its algorithm for the molecular charge mobility are described. This approach is based on hopping model and combines with Kinetic Monte Carlo and molecular dynamics simulations, and it is especially applicable for describing a large category of organic semiconductors, whose inter-molecular electronic coupling is much smaller than intra-molecular charge reorganisation energy.

  18. Faster than Real-Time Dynamic Simulation for Large-Size Power System with Detailed Dynamic Models using High-Performance Computing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Jin, Shuangshuang; Chen, Yousu

    This paper presents a faster-than-real-time dynamic simulation software package that is designed for large-size power system dynamic simulation. It was developed on the GridPACKTM high-performance computing (HPC) framework. The key features of the developed software package include (1) faster-than-real-time dynamic simulation for a WECC system (17,000 buses) with different types of detailed generator, controller, and relay dynamic models, (2) a decoupled parallel dynamic simulation algorithm with optimized computation architecture to better leverage HPC resources and technologies, (3) options for HPC-based linear and iterative solvers, (4) hidden HPC details, such as data communication and distribution, to enable development centered on mathematicalmore » models and algorithms rather than on computational details for power system researchers, and (5) easy integration of new dynamic models and related algorithms into the software package.« less

  19. KiT: a MATLAB package for kinetochore tracking.

    PubMed

    Armond, Jonathan W; Vladimirou, Elina; McAinsh, Andrew D; Burroughs, Nigel J

    2016-06-15

    During mitosis, chromosomes are attached to the mitotic spindle via large protein complexes called kinetochores. The motion of kinetochores throughout mitosis is intricate and automated quantitative tracking of their motion has already revealed many surprising facets of their behaviour. Here, we present 'KiT' (Kinetochore Tracking)-an easy-to-use, open-source software package for tracking kinetochores from live-cell fluorescent movies. KiT supports 2D, 3D and multi-colour movies, quantification of fluorescence, integrated deconvolution, parallel execution and multiple algorithms for particle localization. KiT is free, open-source software implemented in MATLAB and runs on all MATLAB supported platforms. KiT can be downloaded as a package from http://www.mechanochemistry.org/mcainsh/software.php The source repository is available at https://bitbucket.org/jarmond/kit and under continuing development. Supplementary data are available at Bioinformatics online. jonathan.armond@warwick.ac.uk. © The Author 2016. Published by Oxford University Press.

  20. MPTinR: analysis of multinomial processing tree models in R.

    PubMed

    Singmann, Henrik; Kellen, David

    2013-06-01

    We introduce MPTinR, a software package developed for the analysis of multinomial processing tree (MPT) models. MPT models represent a prominent class of cognitive measurement models for categorical data with applications in a wide variety of fields. MPTinR is the first software for the analysis of MPT models in the statistical programming language R, providing a modeling framework that is more flexible than standalone software packages. MPTinR also introduces important features such as (1) the ability to calculate the Fisher information approximation measure of model complexity for MPT models, (2) the ability to fit models for categorical data outside the MPT model class, such as signal detection models, (3) a function for model selection across a set of nested and nonnested candidate models (using several model selection indices), and (4) multicore fitting. MPTinR is available from the Comprehensive R Archive Network at http://cran.r-project.org/web/packages/MPTinR/ .

  1. Reviews.

    ERIC Educational Resources Information Center

    Science Teacher, 1988

    1988-01-01

    Reviews four software packages available for IBM PC or Apple II. Includes "Graphical Analysis III"; "Space Max: Space Station Construction Simulation"; "Guesstimation"; and "Genetic Engineering Toolbox." Focuses on each packages' strengths in a high school context. (CW)

  2. Numerical investigation of heat transfer in annulus laminar flow of multi tubes-in-tube helical coil

    NASA Astrophysics Data System (ADS)

    Nada, S. A.; Elattar, H. F.; Fouda, A.; Refaey, H. A.

    2018-03-01

    In the present study, a CFD analysis using ANSYS-FLUENT 14.5 CFD package is used to investigate the characteristics of heat transfer of laminar flow in annulus formed by multi tubes in tube helically coiled heat exchanger. The numerical results are validated by comparison with previous experimental data and fair agreements were existed. The influences of the design and operation parameters such as heat flux, Reynolds numbers and annulus geometry on the heat transfer characteristics are investigated. Different annulus of different numbers of inner tubes, specifically 1, 2, 3, 4 and 5 tubes, are tested. The Results showed that for all the studied annulus, the heat flux has no effect on the Nusselt number and compactness parameter. The annulus formed by using five inner tubes showed the best heat transfer performance and compactness parameter. Correlation of predicting Nusselt number in terms of Reynolds number and number of inner tubes are presented.

  3. Volumetric neuroimage analysis extensions for the MIPAV software package.

    PubMed

    Bazin, Pierre-Louis; Cuzzocreo, Jennifer L; Yassa, Michael A; Gandler, William; McAuliffe, Matthew J; Bassett, Susan S; Pham, Dzung L

    2007-09-15

    We describe a new collection of publicly available software tools for performing quantitative neuroimage analysis. The tools perform semi-automatic brain extraction, tissue classification, Talairach alignment, and atlas-based measurements within a user-friendly graphical environment. They are implemented as plug-ins for MIPAV, a freely available medical image processing software package from the National Institutes of Health. Because the plug-ins and MIPAV are implemented in Java, both can be utilized on nearly any operating system platform. In addition to the software plug-ins, we have also released a digital version of the Talairach atlas that can be used to perform regional volumetric analyses. Several studies are conducted applying the new tools to simulated and real neuroimaging data sets.

  4. [Microcomputer control of a LED stimulus display device].

    PubMed

    Ohmoto, S; Kikuchi, T; Kumada, T

    1987-02-01

    A visual stimulus display system controlled by a microcomputer was constructed at low cost. The system consists of a LED stimulus display device, a microcomputer, two interface boards, a pointing device (a "mouse") and two kinds of software. The first software package is written in BASIC. Its functions are: to construct stimulus patterns using the mouse, to construct letter patterns (alphabet, digit, symbols and Japanese letters--kanji, hiragana, katakana), to modify the patterns, to store the patterns on a floppy disc, to translate the patterns into integer data which are used to display the patterns in the second software. The second software package, written in BASIC and machine language, controls display of a sequence of stimulus patterns in predetermined time schedules in visual experiments.

  5. TLM-Tracker: software for cell segmentation, tracking and lineage analysis in time-lapse microscopy movies.

    PubMed

    Klein, Johannes; Leupold, Stefan; Biegler, Ilona; Biedendieck, Rebekka; Münch, Richard; Jahn, Dieter

    2012-09-01

    Time-lapse imaging in combination with fluorescence microscopy techniques enable the investigation of gene regulatory circuits and uncovered phenomena like culture heterogeneity. In this context, computational image processing for the analysis of single cell behaviour plays an increasing role in systems biology and mathematical modelling approaches. Consequently, we developed a software package with graphical user interface for the analysis of single bacterial cell behaviour. A new software called TLM-Tracker allows for the flexible and user-friendly interpretation for the segmentation, tracking and lineage analysis of microbial cells in time-lapse movies. The software package, including manual, tutorial video and examples, is available as Matlab code or executable binaries at http://www.tlmtracker.tu-bs.de.

  6. LHCb Build and Deployment Infrastructure for run 2

    NASA Astrophysics Data System (ADS)

    Clemencic, M.; Couturier, B.

    2015-12-01

    After the successful run 1 of the LHC, the LHCb Core software team has taken advantage of the long shutdown to consolidate and improve its build and deployment infrastructure. Several of the related projects have already been presented like the build system using Jenkins, as well as the LHCb Performance and Regression testing infrastructure. Some components are completely new, like the Software Configuration Database (using the Graph DB Neo4j), or the new packaging installation using RPM packages. Furthermore all those parts are integrated to allow easier and quicker releases of the LHCb Software stack, therefore reducing the risk of operational errors. Integration and Regression tests are also now easier to implement, allowing to improve further the software checks.

  7. MathBrowser: Web-Enabled Mathematical Software with Application to the Chemistry Curriculum, v 1.0

    NASA Astrophysics Data System (ADS)

    Goldsmith, Jack G.

    1997-10-01

    MathSoft: Cambridge, MA, 1996; free via ftp from www.mathsoft.com. The movement to provide computer-based applications in chemistry has come to focus on three main areas: software aimed at specific applications (drawing, simulation, data analysis, etc.), multimedia applications designed to assist in the presentation of conceptual information, and packages to be used in conjunction with a particular textbook at a specific point in the chemistry curriculum. The result is a situation where no single software package devoted to problem solving can be used across a large segment of the curriculum. Adoption of World Wide Web (WWW) technology by a manufacturer of mathematical software, however, has produced software that provides an attractive means of providing a problem-solving resource to students in courses from freshman through senior level.

  8. MINDS: A microcomputer interactive data system for 8086-based controllers

    NASA Technical Reports Server (NTRS)

    Soeder, J. F.

    1985-01-01

    A microcomputer interactive data system (MINDS) software package for the 8086 family of microcomputers is described. To enhance program understandability and ease of code maintenance, the software is written in PL/M-86, Intel Corporation's high-level system implementation language. The MINDS software is intended to run in residence with real-time digital control software to provide displays of steady-state and transient data. In addition, the MINDS package provides classic monitor capabilities along with extended provisions for debugging an executing control system. The software uses the CP/M-86 operating system developed by Digital Research, Inc., to provide program load capabilities along with a uniform file structure for data and table storage. Finally, a library of input and output subroutines to be used with consoles equipped with PL/M-86 and assembly language is described.

  9. Long-term Preservation of Data Analysis Capabilities

    NASA Astrophysics Data System (ADS)

    Gabriel, C.; Arviset, C.; Ibarra, A.; Pollock, A.

    2015-09-01

    While the long-term preservation of scientific data obtained by large astrophysics missions is ensured through science archives, the issue of data analysis software preservation has hardly been addressed. Efforts by large data centres have contributed so far to maintain some instrument or mission-specific data reduction packages on top of high-level general purpose data analysis software. However, it is always difficult to keep software alive without support and maintenance once the active phase of a mission is over. This is especially difficult in the budgetary model followed by space agencies. We discuss the importance of extending the lifetime of dedicated data analysis packages and review diverse strategies under development at ESA using new paradigms such as Virtual Machines, Cloud Computing, and Software as a Service for making possible full availability of data analysis and calibration software for decades at minimal cost.

  10. Software Tools for Development on the Peregrine System | High-Performance

    Science.gov Websites

    Computing | NREL Software Tools for Development on the Peregrine System Software Tools for and manage software at the source code level. Cross-Platform Make and SCons The "Cross-Platform Make" (CMake) package is from Kitware, and SCons is a modern software build tool based on Python

  11. Observation of the wing deformation and the CFD study of cicada

    NASA Astrophysics Data System (ADS)

    Dai, Hu; Mohd Adam Das, Shahrizan; Luo, Haoxiang

    2011-11-01

    We studied the wing properties and kinematics of cicada when the 13-year species emerged in amazingly large numbers in middle Tennessee during May 2011. Using a high-speed camera, we recorded the wing motion of the insect and then reconstructed the three-dimensional wing kinematics using a video digitization software. Like many other insects, the deformation of the cicada wing is asymmetric between the downstroke and upstroke half cycles, and this particular deformation pattern would benefit production of the lift and propulsive forces. Both two-dimensional and three-dimensional CFD studies are carried out based on the reconstructed wing motion. The implication of the study on the role of the aerodynamic force in the wing deformation will be discussed. This work is sponsored by the NSF.

  12. Stability Analysis of a mortar cover ejected at various Mach numbers and angles of attack

    NASA Astrophysics Data System (ADS)

    Schwab, Jane; Carnasciali, Maria-Isabel; Andrejczyk, Joe; Kandis, Mike

    2011-11-01

    This study utilized CFD software to predict the aerodynamic coefficient of a wedge-shaped mortar cover which is ejected from a spacecraft upon deployment of its Parachute Recovery System (PRS). Concern over recontact or collision between the mortar cover and spacecraft served as the impetus for this study in which drag and moment coefficients were determined at Mach numbers from 0.3 to 1.6 at 30-degree increments. These CFD predictions were then used as inputs to a two-dimensional, multi-body, three-DoF trajectory model to calculate the relative motion of the mortar cover and spacecraft. Based upon those simulations, the study concluded a minimal/zero risk of collision with either the spacecraft or PRS. Sponsored by Pioneer Aerospace.

  13. Progress in the Development of a Prototype Reuse Enablement System

    NASA Astrophysics Data System (ADS)

    Marshall, J. J.; Downs, R. R.; Gilliam, L. J.; Wolfe, R. E.

    2008-12-01

    An important part of promoting software reuse is to ensure that reusable software assets are readily available to the software developers who want to use them. Through dialogs with the community, the NASA Earth Science Data Systems Software Reuse Working Group has learned that the lack of a centralized, domain- specific software repository or catalog system addressing the needs of the Earth science community is a major barrier to software reuse within the community. The Working Group has proposed the creation of such a reuse enablement system, which would provide capabilities for contributing and obtaining reusable software, to remove this barrier. The Working Group has recommended the development of a Reuse Enablement System to NASA and has performed a trade study to review systems with similar capabilities and to identify potential platforms for the proposed system. This was followed by an architecture study to determine an expeditious and cost-effective solution for this system. A number of software packages and systems were examined through both creating prototypes and examining existing systems that use the same software packages and systems. Based on the results of the architecture study, the Working Group developed a prototype of the proposed system using the recommended software package, through an iterative process of identifying needed capabilities and improving the system to provide those capabilities. Policies for the operation and maintenance of the system are being established for the system, and the identification of system policies also has contributed to the development process. Additionally, a test plan is being developed for formal testing of the prototype, to ensure that it meets all of the requirements previously developed by the Working Group. This poster summarizes the results of our work to date, focusing on the most recent activities.

  14. Toward an Efficient Icing CFD Process Using an Interactive Software Toolkit: Smagglce 2D

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Choo, Yung K.; Schilling, Herbert W.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.

    2001-01-01

    Two-dimensional CID analysis for iced airfoils can be a labor-intensive task. The software toolkit SmaggIce 2D is being developed to help streamline the CID process and provide the unique features needed for icing. When complete, it will include a combination of partially automated and fully interactive tools for all aspects of the tasks leading up to the flow analysis: geometry preparation, domain decomposition. block boundary demoralization. gridding, and linking with a flow solver. It also includes tools to perform ice shape characterization, an important aid in determining the relationship between ice characteristics and their effects on aerodynamic performance. Completed tools, work-in-progress, and planned features of the software toolkit are presented here.

  15. Smagglce: Surface Modeling and Grid Generation for Iced Airfoils: Phase 1 Results

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Choo, Yung K.; Braun, Donald C.; Baez, Marivell; Gnepp, Steven

    1999-01-01

    SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils) is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils with grid-based Computational Fluid Dynamics (CFD). It includes tools for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. SmaggIce provides the underlying computations to perform these functions, a GUI (Graphical User Interface) to control and interact with those functions, and graphical displays of results, it is being developed at NASA Glenn Research Center. This paper discusses the overall design of SmaggIce as well as what has been implemented in Phase 1. Phase 1 results provide two types of software tools: interactive ice shape probing and interactive ice shape control. The ice shape probing tools will provide aircraft icing engineers and scientists with an interactive means to measure the physical characteristics of ice shapes. On the other hand, the ice shape control features of SmaggIce will allow engineers to examine input geometry data, correct or modify any deficiencies in the geometry, and perform controlled systematic smoothing to a level that will make the CFD process manageable.

  16. Tracking Debris Shed by a Space-Shuttle Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Stuart, Phillip C.; Rogers, Stuart E.

    2009-01-01

    The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.

  17. Visualization in aerospace research with a large wall display system

    NASA Astrophysics Data System (ADS)

    Matsuo, Yuichi

    2002-05-01

    National Aerospace Laboratory of Japan has built a large- scale visualization system with a large wall-type display. The system has been operational since April 2001 and comprises a 4.6x1.5-meter (15x5-foot) rear projection screen with 3 BARCO 812 high-resolution CRT projectors. The reason we adopted the 3-gun CRT projectors is support for stereoscopic viewing, ease with color/luminosity matching and accuracy of edge-blending. The system is driven by a new SGI Onyx 3400 server of distributed shared-memory architecture with 32 CPUs, 64Gbytes memory, 1.5TBytes FC RAID disk and 6 IR3 graphics pipelines. Software is another important issue for us to make full use of the system. We have introduced some applications available in a multi- projector environment such as AVS/MPE, EnSight Gold and COVISE, and been developing some software tools that create volumetric images with using SGI graphics libraries. The system is mainly used for visualization fo computational fluid dynamics (CFD) simulation sin aerospace research. Visualized CFD results are of our help for designing an improved configuration of aerospace vehicles and analyzing their aerodynamic performances. These days we also use it for various collaborations among researchers.

  18. FTOOLS: A general package of software to manipulate FITS files

    NASA Astrophysics Data System (ADS)

    Blackburn, J. K.; Shaw, R. A.; Payne, H. E.; Hayes, J. J. E.; Heasarc

    1999-12-01

    FTOOLS, a highly modular collection of utilities for processing and analyzing data in the FITS (Flexible Image Transport System) format, has been developed in support of the HEASARC (High Energy Astrophysics Research Archive Center) at NASA's Goddard Space Flight Center. The FTOOLS package contains many utility programs which perform modular tasks on any FITS image or table, as well as higher-level analysis programs designed specifically for data from current and past high energy astrophysics missions. The utility programs for FITS tables are especially rich and powerful, and provide functions for presentation of file contents, extraction of specific rows or columns, appending or merging tables, binning values in a column or selecting subsets of rows based on a boolean expression. Individual FTOOLS programs can easily be chained together in scripts to achieve more complex operations such as the generation and displaying of spectra or light curves. FTOOLS development began in 1991 and has produced the main set of data analysis software for the current ASCA and RXTE space missions and for other archival sets of X-ray and gamma-ray data. The FTOOLS software package is supported on most UNIX platforms and on Windows machines. The user interface is controlled by standard parameter files that are very similar to those used by IRAF. The package is self documenting through a stand alone help task called fhelp. Software is written in ANSI C and FORTRAN to provide portability across most computer systems. The data format dependencies between hardware platforms are isolated through the FITSIO library package.

  19. A Freeware Path to Neutron Computed Tomography

    NASA Astrophysics Data System (ADS)

    Schillinger, Burkhard; Craft, Aaron E.

    Neutron computed tomography has become a routine method at many neutron sources due to the availability of digital detection systems, powerful computers and advanced software. The commercial packages Octopus by Inside Matters and VGStudio by Volume Graphics have been established as a quasi-standard for high-end computed tomography. However, these packages require a stiff investment and are available to the users only on-site at the imaging facility to do their data processing. There is a demand from users to have image processing software at home to do further data processing; in addition, neutron computed tomography is now being introduced even at smaller and older reactors. Operators need to show a first working tomography setup before they can obtain a budget to build an advanced tomography system. Several packages are available on the web for free; however, these have been developed for X-rays or synchrotron radiation and are not immediately useable for neutron computed tomography. Three reconstruction packages and three 3D-viewers have been identified and used even for Gigabyte datasets. This paper is not a scientific publication in the classic sense, but is intended as a review to provide searchable help to make the described packages usable for the tomography community. It presents the necessary additional preprocessing in ImageJ, some workarounds for bugs in the software, and undocumented or badly documented parameters that need to be adapted for neutron computed tomography. The result is a slightly complicated, but surprisingly high-quality path to neutron computed tomography images in 3D, but not a replacement for the even more powerful commercial software mentioned above.

  20. Parallel computation and the Basis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.R.

    1992-12-16

    A software package has been written that can facilitate efforts to develop powerful, flexible, and easy-to-use programs that can run in single-processor, massively parallel, and distributed computing environments. Particular attention has been given to the difficulties posed by a program consisting of many science packages that represent subsystems of a complicated, coupled system. Methods have been found to maintain independence of the packages by hiding data structures without increasing the communication costs in a parallel computing environment. Concepts developed in this work are demonstrated by a prototype program that uses library routines from two existing software systems, Basis and Parallelmore » Virtual Machine (PVM). Most of the details of these libraries have been encapsulated in routines and macros that could be rewritten for alternative libraries that possess certain minimum capabilities. The prototype software uses a flexible master-and-slaves paradigm for parallel computation and supports domain decomposition with message passing for partitioning work among slaves. Facilities are provided for accessing variables that are distributed among the memories of slaves assigned to subdomains. The software is named PROTOPAR.« less

  1. Parallel computation and the basis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, G.R.

    1993-05-01

    A software package has been written that can facilitate efforts to develop powerful, flexible, and easy-to use programs that can run in single-processor, massively parallel, and distributed computing environments. Particular attention has been given to the difficulties posed by a program consisting of many science packages that represent subsystems of a complicated, coupled system. Methods have been found to maintain independence of the packages by hiding data structures without increasing the communications costs in a parallel computing environment. Concepts developed in this work are demonstrated by a prototype program that uses library routines from two existing software systems, Basis andmore » Parallel Virtual Machine (PVM). Most of the details of these libraries have been encapsulated in routines and macros that could be rewritten for alternative libraries that possess certain minimum capabilities. The prototype software uses a flexible master-and-slaves paradigm for parallel computation and supports domain decomposition with message passing for partitioning work among slaves. Facilities are provided for accessing variables that are distributed among the memories of slaves assigned to subdomains. The software is named PROTOPAR.« less

  2. GUIdock-VNC: using a graphical desktop sharing system to provide a browser-based interface for containerized software

    PubMed Central

    Mittal, Varun; Hung, Ling-Hong; Keswani, Jayant; Kristiyanto, Daniel; Lee, Sung Bong

    2017-01-01

    Abstract Background: Software container technology such as Docker can be used to package and distribute bioinformatics workflows consisting of multiple software implementations and dependencies. However, Docker is a command line–based tool, and many bioinformatics pipelines consist of components that require a graphical user interface. Results: We present a container tool called GUIdock-VNC that uses a graphical desktop sharing system to provide a browser-based interface for containerized software. GUIdock-VNC uses the Virtual Network Computing protocol to render the graphics within most commonly used browsers. We also present a minimal image builder that can add our proposed graphical desktop sharing system to any Docker packages, with the end result that any Docker packages can be run using a graphical desktop within a browser. In addition, GUIdock-VNC uses the Oauth2 authentication protocols when deployed on the cloud. Conclusions: As a proof-of-concept, we demonstrated the utility of GUIdock-noVNC in gene network inference. We benchmarked our container implementation on various operating systems and showed that our solution creates minimal overhead. PMID:28327936

  3. Community-driven computational biology with Debian Linux

    PubMed Central

    2010-01-01

    Background The Open Source movement and its technologies are popular in the bioinformatics community because they provide freely available tools and resources for research. In order to feed the steady demand for updates on software and associated data, a service infrastructure is required for sharing and providing these tools to heterogeneous computing environments. Results The Debian Med initiative provides ready and coherent software packages for medical informatics and bioinformatics. These packages can be used together in Taverna workflows via the UseCase plugin to manage execution on local or remote machines. If such packages are available in cloud computing environments, the underlying hardware and the analysis pipelines can be shared along with the software. Conclusions Debian Med closes the gap between developers and users. It provides a simple method for offering new releases of software and data resources, thus provisioning a local infrastructure for computational biology. For geographically distributed teams it can ensure they are working on the same versions of tools, in the same conditions. This contributes to the world-wide networking of researchers. PMID:21210984

  4. WinTRAX: A raytracing software package for the design of multipole focusing systems

    NASA Astrophysics Data System (ADS)

    Grime, G. W.

    2013-07-01

    The software package TRAX was a simulation tool for modelling the path of charged particles through linear cylindrical multipole fields described by analytical expressions and was a development of the earlier OXRAY program (Grime and Watt, 1983; Grime et al., 1982) [1,2]. In a 2005 comparison of raytracing software packages (Incerti et al., 2005) [3], TRAX/OXRAY was compared with Geant4 and Zgoubi and was found to give close agreement with the more modern codes. TRAX was a text-based program which was only available for operation in a now rare VMS workstation environment, so a new program, WinTRAX, has been developed for the Windows operating system. This implements the same basic computing strategy as TRAX, and key sections of the code are direct translations from FORTRAN to C++, but the Windows environment is exploited to make an intuitive graphical user interface which simplifies and enhances many operations including system definition and storage, optimisation, beam simulation (including with misaligned elements) and aberration coefficient determination. This paper describes the program and presents comparisons with other software and real installations.

  5. PINT, A Modern Software Package for Pulsar Timing

    NASA Astrophysics Data System (ADS)

    Luo, Jing; Ransom, Scott M.; Demorest, Paul; Ray, Paul S.; Stovall, Kevin; Jenet, Fredrick; Ellis, Justin; van Haasteren, Rutger; Bachetti, Matteo; NANOGrav PINT developer team

    2018-01-01

    Pulsar timing, first developed decades ago, has provided an extremely wide range of knowledge about our universe. It has been responsible for many important discoveries, such as the discovery of the first exoplanet and the orbital period decay of double neutron star systems. Currently pulsar timing is the leading technique for detecting low frequency (about 10^-9 Hertz) gravitational waves (GW) using an array of pulsars as the detectors. To achieve this goal, high precision pulsar timing data, at about nanoseconds level, is required. Most high precision pulsar timing data are analyzed using the widely adopted software TEMPO/TEMPO2. But for a robust and believable GW detection, it is important to have independent software that can cross-check the result. In this poster we present the new generation pulsar timing software PINT. This package will provide a robust system to cross check high-precision timing results, completely independent of TEMPO and TEMPO2. In addition, PINT is designed to be a package that is easy to extend and modify, through use of flexible code architecture and a modern programming language, Python, with modern technology and libraries.

  6. Fragment-Based Docking: Development of the CHARMMing Web User Interface as a Platform for Computer-Aided Drug Design

    PubMed Central

    2015-01-01

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser.1 One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing’s capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of “re-dockings” with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing’s docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening. PMID:25151852

  7. Fragment-based docking: development of the CHARMMing Web user interface as a platform for computer-aided drug design.

    PubMed

    Pevzner, Yuri; Frugier, Emilie; Schalk, Vinushka; Caflisch, Amedeo; Woodcock, H Lee

    2014-09-22

    Web-based user interfaces to scientific applications are important tools that allow researchers to utilize a broad range of software packages with just an Internet connection and a browser. One such interface, CHARMMing (CHARMM interface and graphics), facilitates access to the powerful and widely used molecular software package CHARMM. CHARMMing incorporates tasks such as molecular structure analysis, dynamics, multiscale modeling, and other techniques commonly used by computational life scientists. We have extended CHARMMing's capabilities to include a fragment-based docking protocol that allows users to perform molecular docking and virtual screening calculations either directly via the CHARMMing Web server or on computing resources using the self-contained job scripts generated via the Web interface. The docking protocol was evaluated by performing a series of "re-dockings" with direct comparison to top commercial docking software. Results of this evaluation showed that CHARMMing's docking implementation is comparable to many widely used software packages and validates the use of the new CHARMM generalized force field for docking and virtual screening.

  8. GUIdock-VNC: using a graphical desktop sharing system to provide a browser-based interface for containerized software.

    PubMed

    Mittal, Varun; Hung, Ling-Hong; Keswani, Jayant; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee

    2017-04-01

    Software container technology such as Docker can be used to package and distribute bioinformatics workflows consisting of multiple software implementations and dependencies. However, Docker is a command line-based tool, and many bioinformatics pipelines consist of components that require a graphical user interface. We present a container tool called GUIdock-VNC that uses a graphical desktop sharing system to provide a browser-based interface for containerized software. GUIdock-VNC uses the Virtual Network Computing protocol to render the graphics within most commonly used browsers. We also present a minimal image builder that can add our proposed graphical desktop sharing system to any Docker packages, with the end result that any Docker packages can be run using a graphical desktop within a browser. In addition, GUIdock-VNC uses the Oauth2 authentication protocols when deployed on the cloud. As a proof-of-concept, we demonstrated the utility of GUIdock-noVNC in gene network inference. We benchmarked our container implementation on various operating systems and showed that our solution creates minimal overhead. © The Authors 2017. Published by Oxford University Press.

  9. Microcomputer Software Packages--Choose with Caution.

    ERIC Educational Resources Information Center

    Naumer, Janet Noll

    1983-01-01

    Briefly discusses types of software available for library and media center operations and library instruction, suggests three sources of software reviews, and describes almost 50 specific application programs available for bibliographic management, cataloging, circulation, inventory and purchasing, readability, and teaching library skills in…

  10. ConcreteWorks v3 training/user manual (P1) : ConcreteWorks software (P2).

    DOT National Transportation Integrated Search

    2017-04-01

    ConcreteWorks is designed to be a user-friendly software package that can help concrete : professionals optimize concrete mixture proportioning, perform a concrete thermal analysis, and : increase the chloride diffusion service life. The software pac...

  11. SuperLab LT: Evaluation and Uses in Teaching Experimental Psychology

    ERIC Educational Resources Information Center

    Ragozzine, Frank

    2002-01-01

    I describe and evaluate SuperLab LT (Chase & Abboud, 1990), a software package that enables students to replicate classic experiments in cognitive psychology. I also discuss the package with respect to its uses in teaching an undergraduate course in Experimental Psychology. Although the package has minor flaws, SuperLab LT provides numerous…

  12. Quality Assurance Information for R Packages "aqfig" and "M3"

    EPA Science Inventory

    R packages “aqfig" and “M3" are optional modules for use with R statistical software (http://www.r-project.org). Package “aqfig" contains functions to aid users in the preparation of publication-quality figures for the display of air quality and other environmental data (e.g., le...

  13. Diagnostic Testing Package DX v 2.0 Technical Specification. Methodology Project.

    ERIC Educational Resources Information Center

    McArthur, David

    This paper contains the technical specifications, schematic diagrams, and program printout for a computer software package for the development and administration of diagnostic tests. The second version of the Diagnostic Testing Package DX consists of a PASCAL-based set of modules located in two main programs: (1) EDITTEST creates, modifies, and…

  14. Transit safety retrofit package development : applications requirements document.

    DOT National Transportation Integrated Search

    2014-05-01

    This Application Requirements Document for the Transit Safety Retrofit Package (TRP) Development captures the system, hardware and software requirements towards fulfilling the technical objectives stated within the contract. To achieve the objective ...

  15. Mass decomposition of galaxies using DECA software package

    NASA Astrophysics Data System (ADS)

    Mosenkov, A. V.

    2014-01-01

    The new DECA software package, which is designed to perform photometric analysis of the images of disk and elliptical galaxies having a regular structure, is presented. DECA is written in Python interpreted language and combines the capabilities of several widely used packages for astronomical data processing such as IRAF, SExtractor, and the GALFIT code used to perform two-dimensional decomposition of galaxy images into several photometric components (bulge+disk). DECA has the advantage that it can be applied to large samples of galaxies with different orientations with respect to the line of sight (including edge-on galaxies) and requires minimum human intervention. Examples of using the package to study a sample of simulated galaxy images and a sample of real objects are shown to demonstrate that DECA can be a reliable tool for the study of the structure of galaxies.

  16. Software Reviews.

    ERIC Educational Resources Information Center

    Kimball, Jeffrey P.; And Others

    1987-01-01

    Describes a variety of computer software. The packages reviewed include a variety of simulations, a spread sheet, a printer driver and an alternative operating system for DBM.PCs and compatible programs. (BSR)

  17. An experimental and numerical study of gas jet diffusion flames enveloped by a cascade of venturis

    NASA Astrophysics Data System (ADS)

    Qubbaj, Ala Rafat

    1999-06-01

    A new technique to control carbon monoxide, nitric oxide, and soot emissions of a propane diffusion flame by modifying the air infusion rate into the flame was developed. In this study, the effectiveness of the ``venturi-cascading'' technique was experimentally as well numerically investigated. Propane jet diffusion flames at three burner-exit Reynolds numbers ( 3600, 5100 and 6500) corresponding to burner-rim-attached, undergoing transition from attached to lifted, and fully-lifted configurations were examined with several sets of venturis of different sizes and spacing arrangements. Temperature, and the concentrations of carbon dioxide, oxygen, carbon monoxide and nitric oxide in the exhaust products were measured before and after the modification, and optimal conditions to minimize pollutant emissions were obtained. The optimal value of venturi throat/burner-exit diameter ratio (D/d) was 32 +/- 3, which corresponded to an approximate clearance of 5 +/- 2 mm between the venturi throat and the burning jet width at the mid-flame height. The venturi-cascading technique at its optimal conditions resulted in a decrease of 87% and 33% in CO and NO emission indices along with a 24% decrease in soot emission from a propane jet flame, compared to the baseline condition (same flame without venturis). The reduction of NO without increasing CO was the main attraction of this technique. The temperature and composition measurements, at the optimal conditions, showed that, in the near-burner region, the venturi-cascaded flame had lower temperature and CO2 concentration by an average of 5% and 7%, respectively, than the baseline flame. However, in the mid-flame and far-burner regions, it has higher temperature by 13% and 12%, and higher CO2 concentration by 16% and 13%, in average values, respectively. Laser Induced Fluorescence (LIF) measurements, in the near-burner region of the venturi-cascaded flame, indicated an average decrease of 18%, 24% and 12% in OH, CH and CN radical species, respectively, along with 11% drop in soot precursors (PAR), from their baseline values. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The CO and NO concentrations were determined through CFD-POST, a post processing utility program for CFD-ACE+. The final simulated results were compared with the experimental data. Good agreement was found in the near-burner region. (Abstract shortened by UMI.)

  18. Development of the FITS tools package for multiple software environments

    NASA Technical Reports Server (NTRS)

    Pence, W. D.; Blackburn, J. K.

    1992-01-01

    The HEASARC is developing a package of general purpose software for analyzing data files in FITS format. This paper describes the design philosophy which makes the software both machine-independent (it runs on VAXs, Suns, and DEC-stations) and software environment-independent. Currently the software can be compiled and linked to produce IRAF tasks, or alternatively, the same source code can be used to generate stand-alone tasks using one of two implementations of a user-parameter interface library. The machine independence of the software is achieved by writing the source code in ANSI standard Fortran or C, using the machine-independent FITSIO subroutine interface for all data file I/O, and using a standard user-parameter subroutine interface for all user I/O. The latter interface is based on the Fortran IRAF Parameter File interface developed at STScI. The IRAF tasks are built by linking to the IRAF implementation of this parameter interface library. Two other implementations of this parameter interface library, which have no IRAF dependencies, are now available which can be used to generate stand-alone executable tasks. These stand-alone tasks can simply be executed from the machine operating system prompt either by supplying all the task parameters on the command line or by entering the task name after which the user will be prompted for any required parameters. A first release of this FTOOLS package is now publicly available. The currently available tasks are described, along with instructions on how to obtain a copy of the software.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valassi, A.; Clemencic, M.; Dykstra, D.

    The Persistency Framework consists of three software packages (CORAL, COOL and POOL) addressing the data access requirements of the LHC experiments in different areas. It is the result of the collaboration between the CERN IT Department and the three experiments (ATLAS, CMS and LHCb) that use this software to access their data. POOL is a hybrid technology store for C++ objects, metadata catalogs and collections. CORAL is a relational database abstraction layer with an SQL-free API. COOL provides specific software tools and components for the handling of conditions data. This paper reports on the status and outlook of the projectmore » and reviews in detail the usage of each package in the three experiments.« less

  20. Echelle Data Reduction Cookbook

    NASA Astrophysics Data System (ADS)

    Clayton, Martin

    This document is the first version of the Starlink Echelle Data Reduction Cookbook. It contains scripts and procedures developed by regular or heavy users of the existing software packages. These scripts are generally of two types; templates which readers may be able to modify to suit their particular needs and utilities which carry out a particular common task and can probably be used `off-the-shelf'. In the nature of this subject the recipes given are quite strongly tied to the software packages, rather than being science-data led. The major part of this document is divided into two sections dealing with scripts to be used with IRAF and with Starlink software (SUN/1).

Top