Sample records for cfhtls deep clusters

  1. VizieR Online Data Catalog: Candidate clusters in 4 CFHTLS T0007 Wide fields (Sarron+, 2018)

    NASA Astrophysics Data System (ADS)

    Sarron, F.; Martinet, N.; Durret, F.; Adami, C.

    2018-06-01

    We have updated the Adami & MAzure Cluster FInder (AMACFI, Mazure et al., 2007A&A...467...49M) and applied it to the CFHTLS final data release T0007 photometric redshift (hereafter photo-z, symbol zphot) catalogues. The original AMACFI algorithm was already applied to the CFHTLS in previous studies: Mazure et al. (2007A&A...467...49M) for the Deep1 field, Adami et al. (2010, Cat. J/A+A/509/A81) for the T0004 data release, and Durret et al. (2011, Cat. J/A+A/535/A65) for the Wide fields of the T0006 data release. (2 data files).

  2. WEAK LENSING MEASUREMENT OF GALAXY CLUSTERS IN THE CFHTLS-WIDE SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan Huanyuan; Tao Charling; Kneib, Jean-Paul

    2012-03-20

    We present the first weak gravitational lensing analysis of the completed Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We study the 64 deg{sup 2} W1 field, the largest of the CFHTLS-Wide survey fields, and present the largest contiguous weak lensing convergence 'mass map' yet made. 2.66 million galaxy shapes are measured, using the Kaiser Squires and Broadhurst Method (KSB) pipeline verified against high-resolution Hubble Space Telescope imaging that covers part of the CFHTLS. Our i'-band measurements are also consistent with an analysis of independent r'-band imaging. The reconstructed lensing convergence map contains 301 peaks with signal-to-noise ratio {nu} > 3.5, consistent withmore » predictions of a {Lambda}CDM model. Of these peaks, 126 lie within 3.'0 of a brightest central galaxy identified from multicolor optical imaging in an independent, red sequence survey. We also identify seven counterparts for massive clusters previously seen in X-ray emission within 6 deg{sup 2} XMM-LSS survey. With photometric redshift estimates for the source galaxies, we use a tomographic lensing method to fit the redshift and mass of each convergence peak. Matching these to the optical observations, we confirm 85 groups/clusters with {chi}{sup 2}{sub reduced} < 3.0, at a mean redshift (z{sub c} ) = 0.36 and velocity dispersion ({sigma}{sub c}) = 658.8 km s{sup -1}. Future surveys, such as DES, LSST, KDUST, and EUCLID, will be able to apply these techniques to map clusters in much larger volumes and thus tightly constrain cosmological models.« less

  3. The Galaxy-Halo Connection in High-redshift Universe: Details and Evolution of Stellar-to-halo Mass Ratios of Lyman Break Galaxies on CFHTLS Deep Fields

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shogo; Kashikawa, Nobunari; Toshikawa, Jun; Tanaka, Masayuki; Hamana, Takashi; Niino, Yuu; Ichikawa, Kohei; Uchiyama, Hisakazu

    2017-05-01

    We present the results of clustering analyses of Lyman break galaxies (LBGs) at z˜ 3, 4, and 5 using the final data release of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). Deep- and wide-field images of the CFHTLS Deep Survey enable us to obtain sufficiently accurate two-point angular correlation functions to apply a halo occupation distribution analysis. The mean halo masses, calculated as < {M}h> ={10}11.7{--}{10}12.8 {h}-1 {M}⊙ , increase with the stellar-mass limit of LBGs. The threshold halo mass to have a central galaxy, {M}\\min , follows the same increasing trend as the low-z results, whereas the threshold halo mass to have a satellite galaxy, M 1, shows higher values at z=3{--}5 than z=0.5{--}1.5, over the entire stellar mass range. Satellite fractions of dropout galaxies, even at less massive halos, are found to drop sharply, from z = 2 down to less than 0.04, at z=3{--}5. These results suggest that satellite galaxies form inefficiently within dark halos at z=3{--}5, even for less massive satellites with {M}\\star < {10}10 {M}⊙ . We compute stellar-to-halo mass ratios (SHMRs) assuming a main sequence of galaxies, which is found to provide SHMRs consistent with those derived from a spectral energy distribution fitting method. The observed SHMRs are in good agreement with model predictions based on the abundance-matching method, within 1σ confidence intervals. We derive observationally, for the first time, {M}{{h}}{pivot}, which is the halo mass at a peak in the star-formation efficiency, at 3< z< 5, and it shows a small increasing trend with cosmic time at z> 3. In addition, {M}{{h}}{pivot} and its normalization are found to be almost unchanged during 0< z< 5. Our study provides observational evidence that galaxy formation is ubiquitously most efficient near a halo mass of {M}{{h}}˜ {10}12 {M}⊙ over cosmic time.

  4. VizieR Online Data Catalog: z~3-6 protoclusters in the CFHTLS deep fields (Toshikawa+, 2016)

    NASA Astrophysics Data System (ADS)

    Toshikawa, J.; Kashikawa, N.; Overzier, R.; Malkan, M. A.; Furusawa, H.; Ishikawa, S.; Onoue, M.; Ota, K.; Tanaka, M.; Niino, Y.; Uchiyama, H.

    2018-03-01

    We made use of publicly available data from the CFHTLS (T0007: Gwyn 2012AJ....143...38G; Hudelot et al. 2012, Cat. II/317), which was obtained with MegaCam mounted at the prime focus of the CFHT. The Deep Fields of the CFHTLS were used in this study, which consist of four independent fields of about 1 deg2 area each (~4 deg2 area in total) observed in the u*, g', r', i', and z' bands. We selected z~3-6 galaxy candidates using the Lyman-break technique (u-, g-, r-, and i-dropout galaxies). We carried out spectroscopic observations using Subaru/FOCAS (Kashikawa et al. 2002PASJ...54..819K), Keck II/DEIMOS (Faber et al. 2003SPIE.4841.1657F), and Gemini-N/GMOS (Hook et al. 2004PASP..116..425H). In these observations, eight protocluster candidates from z~3 to z~6 were observed in total (two at each redshift). All these observations were conducted with Multi-Object Spectroscopy (MOS) mode. (2 data files).

  5. VizieR Online Data Catalog: Improved multi-band photometry from SERVS (Nyland+, 2017)

    NASA Astrophysics Data System (ADS)

    Nyland, K.; Lacy, M.; Sajina, A.; Pforr, J.; Farrah, D.; Wilson, G.; Surace, J.; Haussler, B.; Vaccari, M.; Jarvis, M.

    2017-07-01

    The Spitzer Extragalactic Representative Volume Survey (SERVS) sky footprint includes five well-studied astronomical deep fields with abundant multi-wavelength data spanning an area of ~18deg2 and a co-moving volume of ~0.8Gpc3. The five deep fields included in SERVS are the XMM-LSS field, Lockman Hole (LH), ELAIS-N1 (EN1), ELAIS-S1 (ES1), and Chandra Deep Field South (CDFS). SERVS provides NIR, post-cryogenic imaging in the 3.6 and 4.5um Spitzer/IRAC bands to a depth of ~2uJy. IRAC dual-band source catalogs generated using traditional catalog extraction methods are described in Mauduit+ (2012PASP..124..714M). The Spitzer IRAC data are complemented by ground-based NIR observations from the VISTA Deep Extragalactic Observations (VIDEO; Jarvis+ 2013MNRAS.428.1281J) survey in the south in the Z, Y, J, H, and Ks bands and UKIRT Infrared Deep Sky Survey (UKIDSS; Lawrence+ 2007, see II/319) in the north in the J and K bands. SERVS also provides substantial overlap with infrared data from SWIRE (Lonsdale+ 2003PASP..115..897L) and the Herschel Multitiered Extragalactic Survey (HerMES; Oliver+ 2012, VIII/95). As shown in Figure 1, one square degree of the XMM-LSS field overlaps with ground-based optical data from the Canada-France-Hawaii Telescope Legacy Survey Deep field 1 (CFHTLS-D1). The CFHTLS-D1 region is centered at RAJ2000=02:25:59, DEJ2000=-04:29:40 and includes imaging through the filter set u', g', r', i', and z'. Thus, in combination with the NIR data from SERVS and VIDEO that overlap with the CFHTLS-D1 region, multi-band imaging over a total of 12 bands is available. (2 data files).

  6. VizieR Online Data Catalog: SL2S galaxy-scale sample of lens candidates (Gavazzi+, 2014)

    NASA Astrophysics Data System (ADS)

    Gavazzi, R.; Marshall, P. J.; Treu, T.; Sonnenfeld, A.

    2017-06-01

    The CFHTLS5 is a major photometric survey of more than 450 nights over 5 yr (started on 2003 June 1) using the MegaCam wide-field imager, which covers ~1 deg2 on the sky, with a pixel size of 0.186". The CFHTLS has two components aimed at extragalactic studies: a Deep component consisting of four pencil-beam fields of 1 deg2 and a wide component consisting of four mosaics covering 150 deg2 in total. Both surveys are imaged through five broadband filters. The data are pre-reduced at CFHT with the Elixir pipeline (http://www.cfht.hawaii.edu/Instruments/Elixir/), which removes the instrumental artifacts in individual exposures. The CFHTLS images are then astrometrically calibrated, photometrically inter-calibrated, resampled and stacked by the Terapix group at the Institut d'Astrophysique de Paris, and finally archived at the Canadian Astronomy Data Centre. (2 data files).

  7. K2: A NEW METHOD FOR THE DETECTION OF GALAXY CLUSTERS BASED ON CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY MULTICOLOR IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanjavur, Karun; Willis, Jon; Crampton, David, E-mail: karun@uvic.c

    2009-11-20

    We have developed a new method, K2, optimized for the detection of galaxy clusters in multicolor images. Based on the Red Sequence approach, K2 detects clusters using simultaneous enhancements in both colors and position. The detection significance is robustly determined through extensive Monte Carlo simulations and through comparison with available cluster catalogs based on two different optical methods, and also on X-ray data. K2 also provides quantitative estimates of the candidate clusters' richness and photometric redshifts. Initially, K2 was applied to the two color (gri) 161 deg{sup 2} images of the Canada-France-Hawaii Telescope Legacy Survey Wide (CFHTLS-W) data. Our simulationsmore » show that the false detection rate for these data, at our selected threshold, is only approx1%, and that the cluster catalogs are approx80% complete up to a redshift of z = 0.6 for Fornax-like and richer clusters and to z approx 0.3 for poorer clusters. Based on the g-, r-, and i-band photometric catalogs of the Terapix T05 release, 35 clusters/deg{sup 2} are detected, with 1-2 Fornax-like or richer clusters every 2 deg{sup 2}. Catalogs containing data for 6144 galaxy clusters have been prepared, of which 239 are rich clusters. These clusters, especially the latter, are being searched for gravitational lenses-one of our chief motivations for cluster detection in CFHTLS. The K2 method can be easily extended to use additional color information and thus improve overall cluster detection to higher redshifts. The complete set of K2 cluster catalogs, along with the supplementary catalogs for the member galaxies, are available on request from the authors.« less

  8. A bright lensed galaxy at z = 5.4 with strong Lyα emission

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Clément, Benjamin; Mainali, Ramesh; Stark, Daniel P.; Gronke, Max; Dijkstra, Mark; Fan, Xiaohui; Bian, Fuyan; Frye, Brenda; Jiang, Linhua; Kneib, Jean-Paul; Limousin, Marceau; Walth, Gregory

    2018-05-01

    We present a detailed study of a unusually bright, lensed galaxy at z = 5.424 discovered within the CFHTLS imaging survey. With an observed flux of iAB = 23.0, J141446.82+544631.9 is one of the brightest galaxies known at z > 5. It is characterized by strong Lyα emission, reaching a peak in (observed) flux density of >10-16 erg s-1 cm-2 Å-1. A deep optical spectrum from the LBT places strong constraints on N V and C IV emission, disfavouring an AGN source for the emission. However, a detection of the N IV] λ1486 emission line indicates a hard ionizing continuum, possibly from hot, massive stars. Resolved imaging from HST deblends the galaxy from a foreground interloper; these observations include narrowband imaging of the Lyα emission, which is marginally resolved on ˜few kpc scales and has EW0 ˜ 260Å. The Lyα emission extends over ˜2000 km s-1 and is broadly consistent with expanding shell models. SED fitting that includes Spitzer/IRAC photometry suggests a complex star formation history that include both a recent burst and an evolved population. J1414+5446 lies 30″ from the centre of a known lensing cluster in the CFHTLS; combined with the foreground contribution this leads to a highly uncertain estimate for the lensing magnification in the range 5 ≲ μ ≲ 25. Because of its unusual brightness J1414+5446 affords unique opportunities for detailed study of an individual galaxy near the epoch of reionization and a preview of what can be expected from upcoming wide-area surveys that will yield hundreds of similar objects.

  9. SPACE WARPS- II. New gravitational lens candidates from the CFHTLS discovered through citizen science

    NASA Astrophysics Data System (ADS)

    More, Anupreeta; Verma, Aprajita; Marshall, Philip J.; More, Surhud; Baeten, Elisabeth; Wilcox, Julianne; Macmillan, Christine; Cornen, Claude; Kapadia, Amit; Parrish, Michael; Snyder, Chris; Davis, Christopher P.; Gavazzi, Raphael; Lintott, Chris J.; Simpson, Robert; Miller, David; Smith, Arfon M.; Paget, Edward; Saha, Prasenjit; Küng, Rafael; Collett, Thomas E.

    2016-01-01

    We report the discovery of 29 promising (and 59 total) new lens candidates from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) based on about 11 million classifications performed by citizen scientists as part of the first SPACE WARPS lens search. The goal of the blind lens search was to identify lens candidates missed by robots (the RINGFINDER on galaxy scales and ARCFINDER on group/cluster scales) which had been previously used to mine the CFHTLS for lenses. We compare some properties of the samples detected by these algorithms to the SPACE WARPS sample and find them to be broadly similar. The image separation distribution calculated from the SPACE WARPS sample shows that previous constraints on the average density profile of lens galaxies are robust. SPACE WARPS recovers about 65 per cent of known lenses, while the new candidates show a richer variety compared to those found by the two robots. This detection rate could be increased to 80 per cent by only using classifications performed by expert volunteers (albeit at the cost of a lower purity), indicating that the training and performance calibration of the citizen scientists is very important for the success of SPACE WARPS. In this work we present the SIMCT pipeline, used for generating in situ a sample of realistic simulated lensed images. This training sample, along with the false positives identified during the search, has a legacy value for testing future lens-finding algorithms. We make the pipeline and the training set publicly available.

  10. The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters

    NASA Astrophysics Data System (ADS)

    Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.

    2017-12-01

    An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2

  11. UV/Optical Detections of Candidate Tidal Disruption Events by GALEX and CFHTLS

    NASA Astrophysics Data System (ADS)

    Gezari, S.; Basa, S.; Martin, D. C.; Bazin, G.; Forster, K.; Milliard, B.; Halpern, J. P.; Friedman, P. G.; Morrissey, P.; Neff, S. G.; Schiminovich, D.; Seibert, M.; Small, T.; Wyder, T. K.

    2008-04-01

    We present two luminous UV/optical flares from the nuclei of apparently inactive early-type galaxies at z = 0.37 and 0.33 that have the radiative properties of a flare from the tidal disruption of a star. In this paper we report the second candidate tidal disruption event discovery in the UV by the GALEX Deep Imaging Survey and present simultaneous optical light curves from the CFHTLS Deep Imaging Survey for both UV flares. The first few months of the UV/optical light curves are well fitted with the canonical t-5/3 power-law decay predicted for emission from the fallback of debris from a tidally disrupted star. Chandra ACIS X-ray observations during the flares detect soft X-ray sources with Tbb = (2-5) × 105 K or Γ > 3 and place limits on hard X-ray emission from an underlying AGN down to LX(2-10 keV) lesssim 1041 ergs s-1. Blackbody fits to the UV/optical spectral energy distributions of the flares indicate peak flare luminosities of gtrsim1044-1045 ergs s-1. The temperature, luminosity, and light curves of both flares are in excellent agreement with emission from a tidally disrupted main-sequence star onto a central black hole of several times 107 M⊙. The observed detection rate of our search over ~2.9 deg2 of GALEX Deep Imaging Survey data spanning from 2003 to 2007 is consistent with tidal disruption rates calculated from dynamical models, and we use these models to make predictions for the detection rates of the next generation of optical synoptic surveys. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  12. VizieR Online Data Catalog: Catalog of XMM X-ray galaxy groups (Gozaliasl+, 2014)

    NASA Astrophysics Data System (ADS)

    Gozaliasl, G.; Finoguenov, A.; Khosroshahi, H. G.; Mirkazemi, M.; Salvato, M.; Jassur, D. M. Z.; Erfanianfar, G.; Popesso, P.; Tanaka, M.; Lerchster, M.; Kneib, J. P.; McCracken, H. J.; Mellier, Y.; Egami, E.; Pereira, M. J.; Brimioulle, F.; Erben, T.; Seitz, S.

    2014-10-01

    We analysed the XMM-Newton observations of the CFHTLS wide (W1) field as a part of the XMM-LSS survey (Pierre et al., 2007MNRAS.382..279P, Cat. J/MNRAS/382/279). The details of observations and data reduction are presented in Bielby et al. (2010A&A...523A..66B). We concentrate on the low-z counterparts of the X-ray sources and use all XMM observations performed till 2009, covering an area of 2.276°x2.276°. The CFHTLS wide observations have been carried out in the period between 2003 and 2008, covering an effective survey area of ~154 square degrees. The optical images and data of the CFHTLS were obtained with the MegaPrime instrument mounted on the CFHT in the five filters u*, g', r', i' and z'. (1 data file).

  13. Photometric redshifts for the CFHTLS T0004 deep and wide fields

    NASA Astrophysics Data System (ADS)

    Coupon, J.; Ilbert, O.; Kilbinger, M.; McCracken, H. J.; Mellier, Y.; Arnouts, S.; Bertin, E.; Hudelot, P.; Schultheis, M.; Le Fèvre, O.; Le Brun, V.; Guzzo, L.; Bardelli, S.; Zucca, E.; Bolzonella, M.; Garilli, B.; Zamorani, G.; Zanichelli, A.; Tresse, L.; Aussel, H.

    2009-06-01

    Aims: We compute photometric redshifts in the fourth public release of the Canada-France-Hawaii Telescope Legacy Survey. This unique multi-colour catalogue comprises u^*, g', r', i', z' photometry in four deep fields of 1 deg2 each and 35 deg2 distributed over three wide fields. Methods: We used a template-fitting method to compute photometric redshifts calibrated with a large catalogue of 16 983 high-quality spectroscopic redshifts from the VVDS-F02, VVDS-F22, DEEP2, and the zCOSMOS surveys. The method includes correction of systematic offsets, template adaptation, and the use of priors. We also separated stars from galaxies using both size and colour information. Results: Comparing with galaxy spectroscopic redshifts, we find a photometric redshift dispersion, σΔ z/(1+z_s), of 0.028-0.30 and an outlier rate, |Δ z| ≥ 0.15× (1+z_s), of 3-4% in the deep field at i'_AB < 24. In the wide fields, we find a dispersion of 0.037-0.039 and an outlier rate of 3-4% at i'_AB < 22.5. Beyond i'_AB = 22.5 in the wide fields the number of outliers rises from 5% to 10% at i'_AB < 23 and i'_AB < 24, respectively. For the wide sample the systematic redshift bias stays below 1% to i'_AB < 22.5, whereas we find no significant bias in the deep fields. We investigated the effect of tile-to-tile photometric variations and demonstrated that the accuracy of our photometric redshifts is reduced by at most 21%. Application of our star-galaxy classifier reduced the contamination by stars in our catalogues from 60% to 8% at i'_AB < 22.5 in our field with the highest stellar density while keeping a complete galaxy sample. Our CFHTLS T0004 photometric redshifts are distributed to the community. Our release includes 592891 (i'_AB < 22.5) and 244701 (i'_AB < 24) reliable galaxy photometric redshifts in the wide and deep fields, respectively. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

  14. Evolution of the cluster optical galaxy luminosity function in the CFHTLS: breaking the degeneracy between mass and redshift

    NASA Astrophysics Data System (ADS)

    Sarron, F.; Martinet, N.; Durret, F.; Adami, C.

    2018-06-01

    Obtaining large samples of galaxy clusters is important for cosmology: cluster counts as a function of redshift and mass can constrain the parameters of our Universe. They are also useful in order to understand the formation and evolution of clusters. We develop an improved version of the Adami & MAzure Cluster FInder (AMACFI), now the Adami, MAzure & Sarron Cluster FInder (AMASCFI), and apply it to the 154 deg2 of the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) to obtain a large catalogue of 1371 cluster candidates with mass M200 > 1014 M⊙ and redshift z ≤ 0.7. We derive the selection function of the algorithm from the Millennium simulation, and cluster masses from a richness-mass scaling relation built from matching our candidates with X-ray detections. We study the evolution of these clusters with mass and redshift by computing the i'-band galaxy luminosity functions (GLFs) for the early-type (ETGs) and late-type galaxies (LTGs). This sample is 90% pure and 70% complete, and therefore our results are representative of a large fraction of the cluster population in these redshift and mass ranges. We find an increase in both the ETG and LTG faint populations with decreasing redshift (with Schechter slopes αETG = -0.65 ± 0.03 and αLTG = -0.95 ± 0.04 at z = 0.6, and αETG = -0.79 ± 0.02 and αLTG = -1.26 ± 0.03 at z = 0.2) and also a decrease in the LTG (but not the ETG) bright end. Our large sample allows us to break the degeneracy between mass and redshift, finding that the redshift evolution is more pronounced in high-mass clusters, but that there is no significant dependence of the faint end on mass for a given redshift. These results show that the cluster red sequence is mainly formed at redshift z > 0.7, and that faint ETGs continue to enrich the red sequence through quenching of brighter LTGs at z ≤ 0.7. The efficiency of this quenching is higher in large-mass clusters, while the accretion rate of faint LTGs is lower as the more massive clusters have already emptied most of their environment at higher redshifts. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/IRFU, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.The candidate cluster catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A67

  15. The XMM Large Scale Structure Survey

    NASA Astrophysics Data System (ADS)

    Pierre, Marguerite

    2005-10-01

    We propose to complete, by an additional 5 deg2, the XMM-LSS Survey region overlying the Spitzer/SWIRE field. This field already has CFHTLS and Integral coverage, and will encompass about 10 deg2. The resulting multi-wavelength medium-depth survey, which complements XMM and Chandra deep surveys, will provide a unique view of large-scale structure over a wide range of redshift, and will show active galaxies in the full range of environments. The complete coverage by optical and IR surveys provides high-quality photometric redshifts, so that cosmological results can quickly be extracted. In the spirit of a Legacy survey, we will make the raw X-ray data immediately public. Multi-band catalogues and images will also be made available on short time scales.

  16. CFHTLS

    NASA Astrophysics Data System (ADS)

    Veillet, Christian

    2007-05-01

    The Canada-France-Hawaii Telescope Legacy Survey is for France and Canada an unprecedented endeavor in many ways. With 500 nights over five years devoted to a common project, the CFHTLS represents the largest project ever undertaken at CFHT. With a PI-less structure, the survey is steered by a group of scientists representing the two communities and the three institutions dealing with the operation of the survey (CFHT for the observations and pre-processing, TERAPIX for the data processing, CADC for the data archive and distribution). It had to go through a thorough evaluation process by the CFHT Scientific Advisory Council, but was decided by the national Agencies without the advice of the Time Allocation Committees. The survey had a slow start, but the science considered as the most important was relatively well protected from the initial problems encountered with a brand new instrumentation (MegaPrime-MegaCam) and the unusual bad weather experienced on Mauna Kea these past years. Of the three components initially part of the CFHTLS, one of them had to pay the price of this slow start and to be abandoned on the way. This presentation will describe the overall structure of the CFHTLS. It will look back at the hopes and critics it triggered within the two communities involved and how the real world made the survey, its priorities, and its day-to-day operation evolve over the past four years. It will also highlight the unquestionable overall success of the survey, while considering the impact of such a large project, with its many time constraints and high image quality requirements, on the access and operation of an instrument shared half-half between the survey and PI programs on a telescope offered to more than just France and Canada.

  17. Next Generation Virgo Cluster Survey. XXI. The Weak Lensing Masses of the CFHTLS and NGVS RedGOLD Galaxy Clusters and Calibration of the Optical Richness

    NASA Astrophysics Data System (ADS)

    Parroni, Carolina; Mei, Simona; Erben, Thomas; Van Waerbeke, Ludovic; Raichoor, Anand; Ford, Jes; Licitra, Rossella; Meneghetti, Massimo; Hildebrandt, Hendrik; Miller, Lance; Côté, Patrick; Covone, Giovanni; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Puzia, Thomas H.

    2017-10-01

    We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters detected by the RedGOLD algorithm in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2< z< 0.5, in the optical richness range 10< λ < 70. This is the most comprehensive lensing study of a ˜ 100 % complete and ˜ 80 % pure optical cluster catalog in this redshift range. We test different mass models, and our final model includes a basic halo model with a Navarro Frenk and White profile, as well as correction terms that take into account cluster miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and an a posteriori correction for the intrinsic scatter in the mass-richness relation. With this model, we obtain a mass-richness relation of {log}{M}200/{M}⊙ =(14.46+/- 0.02)+(1.04+/- 0.09){log}(λ /40) (statistical uncertainties). This result is consistent with other published lensing mass-richness relations. We give the coefficients of the scaling relations between the lensing mass and X-ray mass proxies, L X and T X, and compare them with previous results. When compared to X-ray masses and mass proxies, our results are in agreement with most previous results and simulations, and consistent with the expected deviations from self-similarity.

  18. VizieR Online Data Catalog: White dwarf candidates in DECam first field (Belardi+, 2016)

    NASA Astrophysics Data System (ADS)

    Belardi, C.; Kilic, M.; Munn, J. A.; Gianninas, A.; Barber, S. D.; Dey, A.; Stetson, P. B.

    2018-02-01

    We used DECam mounted on the Blanco 4m Telescope on UT 2014 Feb 2-9 to obtain g-band exposures of a three square degree field (corresponding to a single DECam pointing) centred at Right Ascension RA=09:03:02 and Declination DE=-04:35:00. Our observations were performed under the NOAO program 2014A-0073. This field was previously observed by the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS1) between 2003 and 2008, and is part of the CFHTLS Wide 2 field, which is a 25 square degree field with MegaCam ugriz photometry available. The earlier MegaCam data provide the first epoch for our proper motion measurements. (4 data files).

  19. Detection of z~2 Type IIn Supernovae

    NASA Astrophysics Data System (ADS)

    Cooke, Jeff; Sullivan, Mark; Barton, Elizabeth J.

    2009-05-01

    Type IIn supernovae (SNe IIn) result from the deaths of massive stars. The broad magnitude distribution of SNe IIn make these some of the most luminous SN events ever recorded. In addition, they are the most luminous SN type in the rest-frame UV which make them ideal targets for wide-field optical high redshift searches. We briefly describe our method to detect z~2 SNe IIn events that involves monitoring color-selected galaxies in deep stacked images and our program that applies this method to the CFHTLS survey. Initial results have detected four compelling photometric candidates from their subtracted images and light curves. SNe IIn spectra exhibit extremely bright narrow emission lines as a result of the interaction between the SN ejecta and the circumstellar material released in pre-explosion outbursts. These emission lines remain bright for years after outburst and are above the thresholds of current 8 m-class telescope sensitivities to z~3. The deep spectroscopy required to confirm z~2 host galaxies has the potential to detect the SN emission lines and measure their energies. Finally, planned deep, wide-field surveys have the capability to detect and confirm SNe IIn to z~6. The emission lines of such high-redshift events are expected to be above the sensitivity of future 30 m-class telescopes and the James Webb Space Telescope.

  20. A SYSTEMATIC SURVEY OF PROTOCLUSTERS AT z ∼ 3–6 IN THE CFHTLS DEEP FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toshikawa, Jun; Kashikawa, Nobunari; Furusawa, Hisanori

    2016-08-01

    We present the discovery of three protoclusters at z ∼ 3–4 with spectroscopic confirmation in the Canada–France–Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ∼ 3–6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4 σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 10{sup 14} M {sub ⊙} at z = 0. We perform follow-up spectroscopy for eight of the candidatesmore » using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3–4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ∼ 5–6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (∼1.0 physical Mpc). The Ly α equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ∼ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ∼ 6.« less

  1. A Systematic Survey of Protoclusters at z ~ 3-6 in the CFHTLS Deep Fields

    NASA Astrophysics Data System (ADS)

    Toshikawa, Jun; Kashikawa, Nobunari; Overzier, Roderik; Malkan, Matthew A.; Furusawa, Hisanori; Ishikawa, Shogo; Onoue, Masafusa; Ota, Kazuaki; Tanaka, Masayuki; Niino, Yuu; Uchiyama, Hisakazu

    2016-08-01

    We present the discovery of three protoclusters at z ˜ 3-4 with spectroscopic confirmation in the Canada-France-Hawaii Telescope Legacy Survey Deep Fields. In these fields, we investigate the large-scale projected sky distribution of z ˜ 3-6 Lyman-break galaxies and identify 21 protocluster candidates from regions that are overdense at more than 4σ overdensity significance. Based on cosmological simulations, it is expected that more than 76% of these candidates will evolve into a galaxy cluster of at least a halo mass of 1014 M ⊙ at z = 0. We perform follow-up spectroscopy for eight of the candidates using Subaru/FOCAS, Keck II/DEIMOS, and Gemini-N/GMOS. In total we target 462 dropout candidates and obtain 138 spectroscopic redshifts. We confirm three real protoclusters at z = 3-4 with more than five members spectroscopically identified and find one to be an incidental overdense region by mere chance alignment. The other four candidate regions at z ˜ 5-6 require more spectroscopic follow-up in order to be conclusive. A z = 3.67 protocluster, which has 11 spectroscopically confirmed members, shows a remarkable core-like structure composed of a central small region (<0.5 physical Mpc) and an outskirts region (˜1.0 physical Mpc). The Lyα equivalent widths of members of the protocluster are significantly smaller than those of field galaxies at the same redshift, while there is no difference in the UV luminosity distributions. These results imply that some environmental effects start operating as early as at z ˜ 4 along with the growth of the protocluster structure. This study provides an important benchmark for our analysis of protoclusters in the upcoming Subaru/HSC imaging survey and its spectroscopic follow-up with the Subaru/PFS that will detect thousands of protoclusters up to z ˜ 6.

  2. Searching for filaments and large-scale structure around DAFT/FADA clusters

    NASA Astrophysics Data System (ADS)

    Durret, F.; Márquez, I.; Acebrón, A.; Adami, C.; Cabrera-Lavers, A.; Capelato, H.; Martinet, N.; Sarron, F.; Ulmer, M. P.

    2016-04-01

    Context. Clusters of galaxies are located at the intersection of cosmic filaments and are still accreting galaxies and groups along these preferential directions. However, because of their relatively low contrast on the sky, filaments are difficult to detect (unless a large amount of spectroscopic data are available), and unambiguous detections have been limited until now to relatively low redshifts (z< ~ 0.3). Aims: This project is aimed at searching for extensions and filaments around clusters, traced by galaxies selected to be at the cluster redshift based on the red sequence. In the 0.4

  3. Galaxy Clustering, Photometric Redshifts and Diagnosis of Systematics in the DES Science Verification Data

    DOE PAGES

    Crocce, M.

    2015-12-09

    We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg 2 region in five bins of photometric redshift width Δz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-zalgorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterizemore » and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we then measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ 2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. Furthermore, we test a ‘linear bias’ model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 percent accuracy down to scales at least 4–10 times smaller than those on which linear theory is expected to be sufficient.« less

  4. Galaxy Clustering, Photometric Redshifts and Diagnosis of Systematics in the DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocce, M.

    We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg 2 region in five bins of photometric redshift width Δz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-zalgorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterizemore » and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we then measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ 2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. Furthermore, we test a ‘linear bias’ model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 percent accuracy down to scales at least 4–10 times smaller than those on which linear theory is expected to be sufficient.« less

  5. Finding strong lenses in CFHTLS using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Jacobs, C.; Glazebrook, K.; Collett, T.; More, A.; McCarthy, C.

    2017-10-01

    We train and apply convolutional neural networks, a machine learning technique developed to learn from and classify image data, to Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) imaging for the identification of potential strong lensing systems. An ensemble of four convolutional neural networks was trained on images of simulated galaxy-galaxy lenses. The training sets consisted of a total of 62 406 simulated lenses and 64 673 non-lens negative examples generated with two different methodologies. An ensemble of trained networks was applied to all of the 171 deg2 of the CFHTLS wide field image data, identifying 18 861 candidates including 63 known and 139 other potential lens candidates. A second search of 1.4 million early-type galaxies selected from the survey catalogue as potential deflectors, identified 2465 candidates including 117 previously known lens candidates, 29 confirmed lenses/high-quality lens candidates, 266 novel probable or potential lenses and 2097 candidates we classify as false positives. For the catalogue-based search we estimate a completeness of 21-28 per cent with respect to detectable lenses and a purity of 15 per cent, with a false-positive rate of 1 in 671 images tested. We predict a human astronomer reviewing candidates produced by the system would identify 20 probable lenses and 100 possible lenses per hour in a sample selected by the robot. Convolutional neural networks are therefore a promising tool for use in the search for lenses in current and forthcoming surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope.

  6. A CONSTRAINT ON QUASAR CLUSTERING AT z = 5 FROM A BINARY QUASAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGreer, Ian D.; Fan, Xiaohui; Eftekharzadeh, Sarah

    2016-03-15

    We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada–France–Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ∼135more » kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5; the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r{sub 0}){sup −2}, this discovery implies a correlation length of r{sub 0} ≳ 20h{sup −1} Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift.« less

  7. Multiwavelength Properties of Faint Submillimeter Galaxies with Archival ALMA Data

    NASA Astrophysics Data System (ADS)

    Patil, Pallavi; Lacy, Mark; Nyland, Kristina

    2018-01-01

    Detection of Faint submillimeter galaxies was made possible by large improvements in the spatial resolution and sensitivity by interferometric observations. These galaxies are a dominant contributor to the extragalactic background light at millimeter wavelengths and are likely to play a significant role in galaxy evolution. We present a catalog of 28 such galaxies with S(1.1 mm) < 1.0 mJy that have 13-band optical/near IR photometry (Spitzer DeepDrill, VIDEO, CFHTLS, and HSC) and serendipitous detections in ALMA band 6. ALMA 1.1 mm continuum observations were cross-matched with the K-band VIDEO catalog in the XMM-LSS field to identify multiwavelength counterparts. A forced Photometry approach based on the Tractor image modeling code is used to construct the catalog. The median photometric redshift of the sample is z ~ 1.96 along with two high redshift candidates at z ~ 5. We have provided population statistics using multiband photometry and estimated galaxy properties such as dust and gas masses. We aim to provide a detailed characterization of this population to ultimately devise better selection techniques for future wide-area sky surveys.

  8. Investigating the Density of Isolated Field Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ulgen, E. Kaan

    2016-02-01

    In this thesis, 215.590 elliptical galaxies with M(r) ≤ -21 in the CFHTLS-W1 field which is covering 72 sq. deg on the sky are examined . Criterion given by Smith et al. (2004) has been used to determine isolated elliptical galaxies. 118 isolated elliptical galaxies have been determined in total. By using g, r and i photometric bands, the true-colour images of candidates are produced and visually inspected. In order to have a clean list of IfEs some candidates are excluded from the final sample after visual inspection. The final sample consists of 60 IfEs which corresponds to the 0.027 per cent of the whole sample. In other words, IfE density in the W1 is 0.8 IfE / sq.deg. Since the formation of the ellipticals in the isolated regions is not known clearly, it is crucial to determine IfEs and compare their photometric and morphological properties to the normal or cluster ellipticals. When the (g-i) distributions of three different elliptical galaxy class are compared, it is found that they have almost the same colours. When the redshift distributions of the galaxies are considered, it can be seen that IfEs formed later than the cluster and normal ellipticals. The average redshift of IfEs is determined as zphot=0.284, while for normal and cluster ellipticals, it is, respectively, 0.410 and 0.732. In addition, when the effective radii of the three elliptical systems are considered, it is found that the IfEs are bigger than the other two elliptical classes.

  9. Clustering properties of g -selected galaxies at z ~ 0.8

    DOE PAGES

    Favole, Ginevra; Comparat, Johan; Prada, Francisco; ...

    2016-06-21

    In current and future large redshift surveys, as the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (SDSS-IV/eBOSS) or the Dark Energy Spectroscopic Instrument (DESI), we will use emission-line galaxies (ELGs) to probe cosmological models by mapping the large-scale structure of the Universe in the redshift range 0.6 < z < 1.7. We explore the halo-galaxy connection, with current data and by measuring three clustering properties of g-selected ELGs as matter tracers in the redshift range 0.6 < z < 1: (i) the redshift-space two-point correlation function using spectroscopic redshifts from the BOSS ELG sample and VIPERS; (ii)more » the angular two-point correlation function on the footprint of the CFHT-LS; (iii) the galaxy-galaxy lensing signal around the ELGs using the CFHTLenS. Furthermore, we interpret these observations by mapping them on to the latest high-resolution MultiDark Planck N-body simulation, using a novel (Sub)Halo-Abundance Matching technique that accounts for the ELG incompleteness. ELGs at z ~ 0.8 live in haloes of (1 ± 0.5) × 10 12 h -1 M⊙ and 22.5 ± 2.5 per cent of them are satellites belonging to a larger halo. The halo occupation distribution of ELGs indicates that we are sampling the galaxies in which stars form in the most efficient way, according to their stellar-to-halo mass ratio.« less

  10. Evolution of the observed Lyα luminosity function from z = 6.5 to z = 7.7: evidence for the epoch of reionization?

    NASA Astrophysics Data System (ADS)

    Clément, B.; Cuby, J.-G.; Courbin, F.; Fontana, A.; Freudling, W.; Fynbo, J.; Gallego, J.; Hibon, P.; Kneib, J.-P.; Le Fèvre, O.; Lidman, C.; McMahon, R.; Milvang-Jensen, B.; Moller, P.; Moorwood, A.; Nilsson, K. K.; Pentericci, L.; Venemans, B.; Villar, V.; Willis, J.

    2012-02-01

    Aims: Lyα emitters (LAEs) can be detected out to very high redshifts during the epoch of reionization. The evolution of the LAE luminosity function with redshift is a direct probe of the Lyα transmission of the intergalactic medium (IGM), and therefore of the IGM neutral-hydrogen fraction. Measuring the Lyα luminosity function (LF) of Lyα emitters at redshift z = 7.7 therefore allows us to constrain the ionizing state of the Universe at this redshift. Methods: We observed three 7'.5 × 7'.5 fields with the HAWK-I instrument at the VLT with a narrow band filter centred at 1.06 μm and targeting Lyα emitters at redshift z ~ 7.7. The fields were chosen for the availability of multiwavelength data. One field is a galaxy cluster, the Bullet Cluster, which allowed us to use gravitational amplification to probe luminosities that are fainter than in the field. The two other fields are subareas of the GOODS Chandra Deep Field South and CFHTLS-D4 deep field. We selected z = 7.7 LAE candidates from a variety of colour criteria, in particular from the absence of detection in the optical bands. Results: We do not find any LAE candidates at z = 7.7 in ~2.4 × 104 Mpc3 down to a narrow band AB magnitude of ~26, which allows us to infer robust constraints on the Lyα LAE luminosity function at this redshift. Conclusions: The predicted mean number of objects at z = 6.5, derived from somewhat different luminosity functions of Hu et al. (2010, ApJ, 725, 394), Ouchi et al. (2010, ApJ, 723, 869), and Kashikawa et al. (2011, ApJ, 734, 119) are 2.5, 13.7, and 11.6, respectively. Depending on which of these luminosity functions we refer to, we exclude a scenario with no evolution from z = 6.5 to z = 7.7 at 85% confidence without requiring a strong change in the IGM Lyα transmission, or at 99% confidence with a significant quenching of the IGM Lyα transmission, possibly from a strong increase in the high neutral-hydrogen fraction between these two redshifts. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Chile, Prog-Id 181.A-0485, 181.A-0717, 60.A-9284, 084.A-0749. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France (CNRS), and the University of Hawaii. This work is based in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA and in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  11. A Deep Chandra Observation of the Distant Galaxy Cluster MS 1137.5+6625

    NASA Astrophysics Data System (ADS)

    Grego, Laura; Vrtilek, J. M.; Van Speybroeck, Leon; David, Laurence P.; Forman, William; Carlstrom, John E.; Reese, Erik D.; Joy, Marshall K.

    2004-06-01

    We present results from a deep Chandra observation of MS 1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests that the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.

  12. VizieR Online Data Catalog: VIPERS Multi-Lambda Survey (Moutard+, 2016)

    NASA Astrophysics Data System (ADS)

    Moutard, T.; Arnouts, S.; Ilbert, O.; Coupon, J.; Hudelot, P.; Vibert, D.; Comte, V.; Conseil, S.; Davidzon, I.; Guzzo, L.; Llebaria, A.; Martin, C.; McCracken, H. J.; Milliard, B.; Morrison, G.; Schiminovich, D.; Treyer, M.; van Werbaeke, L.

    2016-05-01

    The Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) is an imaging survey performed with Mega-Cam in five optical bands u*, g, r, i, z. we use the images and photometric catalogues of the W1 and W4 fields from the worldwide T00073 release produced by TERAPIX4. Since 2010, we have conducted a Ks-band follow-up of the VIPERS fields with the WIRCam instrument at CFHT. The original motivation was to guarantee an almost complete detection in Ks band of the VIPERS spectroscopic galaxies. (2 data files).

  13. The Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu

    A key question in astrophysics is to constrain the evolution of the largest gravitationally bound structures in the universe. The serendipitous observations of Swift-XRT form an excellent medium-deep and wide soft X-ray survey, with a sky area of 160 square degrees at the flux limit of 5e-15 erg/s/cm^2. This survey is about an order of magnitude deeper than previous surveys of similar areas, and an order of magnitude wider than previous surveys of similar depth. It is comparable to the planned eROSITA deep survey, but already with the data several years ahead. The unique combination of the survey area and depth enables it to fill in the gap between the deep, pencil beam surveys (such as the Chandra Deep Fields) and the shallow, wide area surveys measured with ROSAT. With it, we will place independent and complementary measurements on the number counts and luminosity functions of X-ray sources. It has been proved that this survey is excellent for X-ray selected galaxy cluster surveys, based on our initial analysis of 1/4 of the fields and other independent studies. The highest priority goal is to produce the largest, uniformly selected catalog of X-ray selected clusters and increase the sample of intermediate to high redshift clusters (z > 0.5) by an order of magnitude. From this catalog, we will study the evolution of cluster number counts, luminosity function, scaling relations, and eventually the mass function. For example, various smaller scale surveys concluded divergently on the evolution of a key scaling relation, between temperature and luminosity of clusters. With the statistical power from this large sample, we will resolve the debate whether clusters evolve self-similarly. This is a crucial step in mapping cluster evolution and constraining cosmological models. First, we propose to extract the complete serendipitous extended source list for all Swift-XRT data to 2015. Second, we will use optical/IR observations to further identify galaxy clusters. These optical/IR observations include data from the SDSS, WISE, and deep optical follow-up observations from the APO, MDM, Magellan, and NOAO telescopes. WISE will confirm all z0.5 clusters. We will use ground-based observations to measure redshifts for z>0.5 clusters, with a focus of measuring 1/10 of the spectroscopic redshifts of z>0.5 clusters within the budget period. Third, we will analyze our deep Suzaku Xray follow-up observations of a sample of medium redshift clusters, and the 1/10 bright Swift clusters suitable for spectral analysis. We will also perform stacking analysis using the Swift data for clusters in different redshift bins to constrain the evolution of cluster properties.

  14. A simple prescription for simulating and characterizing gravitational arcs

    NASA Astrophysics Data System (ADS)

    Furlanetto, C.; Santiago, B. X.; Makler, M.; de Bom, C.; Brandt, C. H.; Neto, A. F.; Ferreira, P. C.; da Costa, L. N.; Maia, M. A. G.

    2013-01-01

    Simple models of gravitational arcs are crucial for simulating large samples of these objects with full control of the input parameters. These models also provide approximate and automated estimates of the shape and structure of the arcs, which are necessary for detecting and characterizing these objects on massive wide-area imaging surveys. We here present and explore the ArcEllipse, a simple prescription for creating objects with a shape similar to gravitational arcs. We also present PaintArcs, which is a code that couples this geometrical form with a brightness distribution and adds the resulting object to images. Finally, we introduce ArcFitting, which is a tool that fits ArcEllipses to images of real gravitational arcs. We validate this fitting technique using simulated arcs and apply it to CFHTLS and HST images of tangential arcs around clusters of galaxies. Our simple ArcEllipse model for the arc, associated to a Sérsic profile for the source, recovers the total signal in real images typically within 10%-30%. The ArcEllipse+Sérsic models also automatically recover visual estimates of length-to-width ratios of real arcs. Residual maps between data and model images reveal the incidence of arc substructure. They may thus be used as a diagnostic for arcs formed by the merging of multiple images. The incidence of these substructures is the main factor that prevents ArcEllipse models from accurately describing real lensed systems.

  15. Deep linear autoencoder and patch clustering-based unified one-dimensional coding of image and video

    NASA Astrophysics Data System (ADS)

    Li, Honggui

    2017-09-01

    This paper proposes a unified one-dimensional (1-D) coding framework of image and video, which depends on deep learning neural network and image patch clustering. First, an improved K-means clustering algorithm for image patches is employed to obtain the compact inputs of deep artificial neural network. Second, for the purpose of best reconstructing original image patches, deep linear autoencoder (DLA), a linear version of the classical deep nonlinear autoencoder, is introduced to achieve the 1-D representation of image blocks. Under the circumstances of 1-D representation, DLA is capable of attaining zero reconstruction error, which is impossible for the classical nonlinear dimensionality reduction methods. Third, a unified 1-D coding infrastructure for image, intraframe, interframe, multiview video, three-dimensional (3-D) video, and multiview 3-D video is built by incorporating different categories of videos into the inputs of patch clustering algorithm. Finally, it is shown in the results of simulation experiments that the proposed methods can simultaneously gain higher compression ratio and peak signal-to-noise ratio than those of the state-of-the-art methods in the situation of low bitrate transmission.

  16. The XXL Survey. VII. A supercluster of galaxies at z = 0.43

    NASA Astrophysics Data System (ADS)

    Pompei, E.; Adami, C.; Eckert, D.; Gastaldello, F.; Lavoie, S.; Poggianti, B.; Altieri, B.; Alis, S.; Baran, N.; Benoist, C.; Jaffé, Y. L.; Koulouridis, E.; Maurogordato, S.; Pacaud, F.; Pierre, M.; Sadibekova, T.; Smolčić, V.; Valtchanov, I.

    2016-06-01

    Context. The XXL Survey is the largest homogeneous and contiguous survey carried out with XMM-Newton. Covering an area of 50 deg2 distributed over two fields, it primarily investigates the large-scale structures of the Universe using the distribution of galaxy clusters and active galactic nuclei as tracers of the matter distribution. Aims: Given its depth and sky coverage, XXL is particularly suited to systematically unveiling the clustering of X-ray clusters and to identifying superstructures in a homogeneous X-ray sample down to the typical mass scale of a local massive cluster. Methods: A friends-of-friends algorithm in three-dimensional physical space was run to identify large-scale structures. In this paper we report the discovery of the highest redshift supercluster of galaxies found in the XXL Survey. We describe the X-ray properties of the clusters members of the structure and the optical follow-up. Results: The newly discovered supercluster is composed of six clusters of galaxies at a median redshift z ~ 0.43 and distributed across ~30'× 15' (10 × 5 Mpc) on the sky. This structure is very compact with all the clusters residing in one XMM pointing; for this reason this is the first supercluster discovered with the XXL Survey. Photometric redshifts from the CFHTLS (Canada-France-Hawaii Telescope Legacy Survey) data release T0007 placed the supercluster at an approximate redshift of zphot ~ 0.45; subsequent spectroscopic follow-up with WHT (William Herschel Telescope) and NTT (New Technology Telescope) confirmed a median redshift of z ~ 0.43. An estimate of the X-ray mass and luminosity of this supercluster returns values of 1.7 × 1015 M⊙ and of 1.68 × 1044 erg s-1, respectively, and a total gas mass of Mgas = 9.3 × 1013 M⊙. These values put XLSSC-e at the average mass range of superclusters; its appearance, with two members of equal size, is quite unusual with respect to other superclusters and provides a unique view of the formation process of a massive structure. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA) and on observations obtained at the WHT thanks to the International Time Programme (CCI) and the Opticon FP7 program. It also used observations made with ESO Telescopes at the La Silla Paranal Observatory under programme LP 191.A-0268.The Master Catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A2

  17. Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma.

    PubMed

    Young, Jonathan D; Cai, Chunhui; Lu, Xinghua

    2017-10-03

    One approach to improving the personalized treatment of cancer is to understand the cellular signaling transduction pathways that cause cancer at the level of the individual patient. In this study, we used unsupervised deep learning to learn the hierarchical structure within cancer gene expression data. Deep learning is a group of machine learning algorithms that use multiple layers of hidden units to capture hierarchically related, alternative representations of the input data. We hypothesize that this hierarchical structure learned by deep learning will be related to the cellular signaling system. Robust deep learning model selection identified a network architecture that is biologically plausible. Our model selection results indicated that the 1st hidden layer of our deep learning model should contain about 1300 hidden units to most effectively capture the covariance structure of the input data. This agrees with the estimated number of human transcription factors, which is approximately 1400. This result lends support to our hypothesis that the 1st hidden layer of a deep learning model trained on gene expression data may represent signals related to transcription factor activation. Using the 3rd hidden layer representation of each tumor as learned by our unsupervised deep learning model, we performed consensus clustering on all tumor samples-leading to the discovery of clusters of glioblastoma multiforme with differential survival. One of these clusters contained all of the glioblastoma samples with G-CIMP, a known methylation phenotype driven by the IDH1 mutation and associated with favorable prognosis, suggesting that the hidden units in the 3rd hidden layer representations captured a methylation signal without explicitly using methylation data as input. We also found differentially expressed genes and well-known mutations (NF1, IDH1, EGFR) that were uniquely correlated with each of these clusters. Exploring these unique genes and mutations will allow us to further investigate the disease mechanisms underlying each of these clusters. In summary, we show that a deep learning model can be trained to represent biologically and clinically meaningful abstractions of cancer gene expression data. Understanding what additional relationships these hidden layer abstractions have with the cancer cellular signaling system could have a significant impact on the understanding and treatment of cancer.

  18. VizieR Online Data Catalog: Clusters of galaxies in SDSS-III (Wen+, 2012)

    NASA Astrophysics Data System (ADS)

    Wen, Z. L.; Han, J. L.; Liu, F. S.

    2012-06-01

    Wen et al. (2009, Cat. J/ApJS/183/197) identified 39668 galaxy clusters from the SDSS DR6 by the discrimination of member galaxies of clusters using photometric redshifts of galaxies. Wen & Han (2011ApJ...734...68W) improved the method and successfully identified the high-redshift clusters from the deep fields of the Canada-France-Hawaii Telescope (CFHT) Wide survey, the CHFT Deep survey, the Cosmic Evolution Survey, and the Spitzer Wide-area InfraRed Extragalactic survey. Here, we follow and improve the algorithm to identify clusters from SDSS-III (SDSS Data Release 8; Aihara et al. 2011ApJS..193...29A, see Cat. II/306). (1 data file).

  19. Constraints on deep moonquake focal mechanisms through analyses of tidal stress

    USGS Publications Warehouse

    Weber, R.C.; Bills, B.G.; Johnson, C.L.

    2009-01-01

    [1] A relationship between deep moonquake occurrence and tidal forcing is suggested by the monthly periodicities observed in the occurrence times of events recorded by the Apollo Passive Seismic Experiment. In addition, the typically large S wave to P wave arrival amplitude ratios observed on deep moonquake seismograms are indicative of shear failure. Tidal stress, induced in the lunar interior by the gravitational influence of the Earth, may influence moonquake activity. We investigate the relationship between tidal stress and deep moonquake occurrence by searching for a linear combination of the normal and shear components of tidal stress that best approximates a constant value when evaluated at the times of moonquakes from 39 different moonquake clusters. We perform a grid search at each cluster location, computing the stresses resolved onto a suite of possible failure planes, to obtain the best fitting fault orientation at each location. We find that while linear combinations of stresses (and in some cases stress rates) can fit moonquake occurrence at many clusters quite well; for other clusters, the fit is not strongly dependent on plane orientation. This suggests that deep moonquakes may occur in response to factors other than, or in addition to, tidal stress. Several of our inferences support the hypothesis that deep moonquakes might be related to transformational faulting, in which shear failure is induced by mineral phase changes at depth. The occurrence of this process would have important implications for the lunar interior. Copyright 2009 by the American Geophysical Union.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Scott F.; Linder, Eric V.; Lawrence Berkeley National Laboratory, Berkeley, California

    Deviations from general relativity, such as could be responsible for the cosmic acceleration, would influence the growth of large-scale structure and the deflection of light by that structure. We clarify the relations between several different model-independent approaches to deviations from general relativity appearing in the literature, devising a translation table. We examine current constraints on such deviations, using weak gravitational lensing data of the CFHTLS and COSMOS surveys, cosmic microwave background radiation data of WMAP5, and supernova distance data of Union2. A Markov chain Monte Carlo likelihood analysis of the parameters over various redshift ranges yields consistency with general relativitymore » at the 95% confidence level.« less

  1. Shocks and Bubbles in a Deep Chandra Observation of the Cooling Flow Cluster Abell 2052

    DTIC Science & Technology

    2009-01-01

    the bubble rims related to radio source outbursts have been found in a few clusters including M87/ Virgo (Forman et al. 2005), Hydra A (Nulsen et al...Printed in the U.S.A. SHOCKS AND BUBBLES IN A DEEP CHANDRA OBSERVATION OF THE COOLING FLOW CLUSTER ABELL 2052 E. L. Blanton1, S. W. Randall2, E. M...Douglass1, C. L. Sarazin3, T. E. Clarke4,5, and B. R. McNamara2,6,7 1 Institute for Astrophysical Research , Boston University, 725 Commonwealth Avenue

  2. Clusters, Groups, and Filaments in the Chandra Deep Field-South up to Redshift 1

    NASA Astrophysics Data System (ADS)

    Dehghan, S.; Johnston-Hollitt, M.

    2014-03-01

    We present a comprehensive structure detection analysis of the 0.3 deg2 area of the MUSYC-ACES field, which covers the Chandra Deep Field-South (CDFS). Using a density-based clustering algorithm on the MUSYC and ACES photometric and spectroscopic catalogs, we find 62 overdense regions up to redshifts of 1, including clusters, groups, and filaments. We also present the detection of a relatively small void of ~10 Mpc2 at z ~ 0.53. All structures are confirmed using the DBSCAN method, including the detection of nine structures previously reported in the literature. We present a catalog of all structures present, including their central position, mean redshift, velocity dispersions, and classification based on their morphological and spectroscopic distributions. In particular, we find 13 galaxy clusters and 6 large groups/small clusters. Comparison of these massive structures with published XMM-Newton imaging (where available) shows that 80% of these structures are associated with diffuse, soft-band (0.4-1 keV) X-ray emission, including 90% of all objects classified as clusters. The presence of soft-band X-ray emission in these massive structures (M 200 >= 4.9 × 1013 M ⊙) provides a strong independent confirmation of our methodology and classification scheme. In the closest two clusters identified (z < 0.13) high-quality optical imaging from the Deep2c field of the Garching-Bonn Deep Survey reveals the cD galaxies and demonstrates that they sit at the center of the detected X-ray emission. Nearly 60% of the clusters, groups, and filaments are detected in the known enhanced density regions of the CDFS at z ~= 0.13, 0.52, 0.68, and 0.73. Additionally, all of the clusters, bar the most distant, are found in these overdense redshift regions. Many of the clusters and groups exhibit signs of ongoing formation seen in their velocity distributions, position within the detected cosmic web, and in one case through the presence of tidally disrupted central galaxies exhibiting trails of stars. These results all provide strong support for hierarchical structure formation up to redshifts of 1.

  3. Science Highlights from the First Year of Advanced Camera for Surveys

    NASA Technical Reports Server (NTRS)

    Clampin, M.; Ford, H. C.; Illingworth, G. D.; Hartig, G.; Ardila, D. R.; Blakeslee, J. P.; Bouwens, R. J.; Cross, N. J. G.; Feldman, P. D.; Golimowski, D. A.

    2003-01-01

    The Advanced Camera for Surveys (ACS) is a deep imaging camera installed on the Hubble Space Telescope during the fourth HST servicing mission. ACS recently entered its second year of science operations and continues to perform beyond pre-launch expectations. We present science highlights from the ACS Science Team's GTO program. These highlights include the evolution of Z approx. 6 galaxies from deep imaging observations; deep imaging of strongly lensed clusters which have been used to determine cluster mass, and independently constraint the geometry of the Universe; and coronagraphic observations of debris disks.

  4. Deep and wide photometry of two open clusters NGC 1245 and NGC 2506: dynamical evolution and halo

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kang, Y.-W.; Ann, H. B.

    2013-06-01

    We studied the structure of two old open clusters, NGC 1245 and NGC 2506, from a wide and deep VI photometry data acquired using the CFH12K CCD camera at Canada-France-Hawaii Telescope. We devised a new method for assigning cluster membership probability to individual stars using both spatial positions and positions in the colour-magnitude diagram. From analyses of the luminosity functions at several cluster-centric radii and the radial surface density profiles derived from stars with different luminosity ranges, we found that the two clusters are dynamically relaxed to drive significant mass segregation and evaporation of some fraction of low-mass stars. There seems to be a signature of tidal tail in NGC 1245 but the signal is too low to be confirmed.

  5. Deep HST Photometry of NGC 6388: Age and Horizontal Branch Luminosity

    NASA Technical Reports Server (NTRS)

    Stetson, Peter B.; Catelan, M.; Pritzl, Barton J.; Smith, Horace A.; Kinemuchi, Karen; Layden, Andrew C.; Sweigart, Allen V.; Rich, R. M.

    2006-01-01

    We present the first deep color-magnitude diagram (CMD) of the Galactic globular cluster NGC 6388, obtained with the Hubble Space Telescope, that is able to reach the main-sequence turnoff point of the cluster. From a detailed comparison between the cluster CMD and that of 47 Tucanae (NGC 104), we find that the bulk of the stars in these two clusters have nearly the same age and chemical composition. On the other hand, our results indicate that the blue horizontal branch and RR Lyrae components in NGC 6388 are intrinsically over-luminous, which must be due to one or more, still undetermined, non-canonical second parameter(s) affecting a relatively minor fraction of the stars in NGC 6388.

  6. Scaling Deep Learning on GPU and Knights Landing clusters

    DOE PAGES

    You, Yang; Buluc, Aydin; Demmel, James

    2017-09-26

    The speed of deep neural networks training has become a big bottleneck of deep learning research and development. For example, training GoogleNet by ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. To handle large datasets, they need to fetch data from either CPU memory or remote processors. We use both self-hosted Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From an algorithm aspect, current distributed machine learningmore » systems are mainly designed for cloud systems. These methods are asynchronous because of the slow network and high fault-tolerance requirement on cloud systems. We focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. Original EASGD used round-robin method for communication and updating. The communication is ordered by the machine rank ID, which is inefficient on HPC clusters. First, we redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD, and Hogwild EASGD are faster \\textcolor{black}{than} their existing counterparts (Async SGD, Async MSGD, and Hogwild SGD, resp.) in all the comparisons. Finally, we design Sync EASGD, which ties for the best performance among all the methods while being deterministic. In addition to the algorithmic improvements, we use some system-algorithm codesign techniques to scale up the algorithms. By reducing the percentage of communication from 87% to 14%, our Sync EASGD achieves 5.3x speedup over original EASGD on the same platform. We get 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less

  7. Scaling Deep Learning on GPU and Knights Landing clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Buluc, Aydin; Demmel, James

    The speed of deep neural networks training has become a big bottleneck of deep learning research and development. For example, training GoogleNet by ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. To handle large datasets, they need to fetch data from either CPU memory or remote processors. We use both self-hosted Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From an algorithm aspect, current distributed machine learningmore » systems are mainly designed for cloud systems. These methods are asynchronous because of the slow network and high fault-tolerance requirement on cloud systems. We focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. Original EASGD used round-robin method for communication and updating. The communication is ordered by the machine rank ID, which is inefficient on HPC clusters. First, we redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD, and Hogwild EASGD are faster \\textcolor{black}{than} their existing counterparts (Async SGD, Async MSGD, and Hogwild SGD, resp.) in all the comparisons. Finally, we design Sync EASGD, which ties for the best performance among all the methods while being deterministic. In addition to the algorithmic improvements, we use some system-algorithm codesign techniques to scale up the algorithms. By reducing the percentage of communication from 87% to 14%, our Sync EASGD achieves 5.3x speedup over original EASGD on the same platform. We get 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less

  8. Three-dimensional Identification and Reconstruction of Galaxy Systems within Flux-limited Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Marinoni, Christian; Davis, Marc; Newman, Jeffrey A.; Coil, Alison L.

    2002-11-01

    We have developed a new geometrical method for identifying and reconstructing a homogeneous and highly complete set of galaxy groups within flux-limited redshift surveys. Our method combines information from the three-dimensional Voronoi diagram and its dual, the Delaunay triangulation, to obtain group and cluster catalogs that are remarkably robust over wide ranges in redshift and degree of density enhancement. As free by-products, this Voronoi-Delaunay method (VDM) provides a nonparametric measurement of the galaxy density around each object observed and a quantitative measure of the distribution of cosmological voids in the survey volume. In this paper, we describe the VDM algorithm in detail and test its effectiveness using a family of mock catalogs that simulate the Deep Extragalactic Evolutionary Probe (DEEP2) Redshift Survey, which should present at least as much challenge to cluster reconstruction methods as any other near-future survey that is capable of resolving their velocity dispersions. Using these mock DEEP2 catalogs, we demonstrate that the VDM algorithm can be used to identify a homogeneous set of groups in a magnitude-limited sample throughout the survey redshift window 0.7~400 km s-1. Finally, we argue that the bivariate distribution of systems as a function of redshift and velocity dispersion reconstructed with these techniques reproduces with high fidelity the underlying real space distribution and can thus be used robustly to constrain cosmological parameters. We expect that the VDM algorithm, which has performed so well when faced with the challenges posed by the DEEP2 survey, should only be more effective when applied to the better sampled, larger surveys of the local universe now underway.

  9. Predawn plasma bubble cluster observed in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Watthanasangmechai, Kornyanat; Yamamoto, Mamoru; Saito, Akinori; Tsunoda, Roland; Yokoyama, Tatsuhiro; Supnithi, Pornchai; Ishii, Mamoru; Yatini, Clara

    2016-06-01

    Predawn plasma bubble was detected as deep plasma depletion by GNU Radio Beacon Receiver (GRBR) network and in situ measurement onboard Defense Meteorological Satellite Program F15 (DMSPF15) satellite and was confirmed by sparse GPS network in Southeast Asia. In addition to the deep depletion, the GPS network revealed the coexisting submesoscale irregularities. A deep depletion is regarded as a primary bubble. Submesoscale irregularities are regarded as secondary bubbles. Primary bubble and secondary bubbles appeared together as a cluster with zonal wavelength of 50 km. An altitude of secondary bubbles happened to be lower than that of the primary bubble in the same cluster. The observed pattern of plasma bubble cluster is consistent with the simulation result of the recent high-resolution bubble (HIRB) model. This event is only a single event out of 76 satellite passes at nighttime during 3-25 March 2012 that significantly shows plasma depletion at plasma bubble wall. The inside structure of the primary bubble was clearly revealed from the in situ density data of DMSPF15 satellite and the ground-based GRBR total electron content.

  10. The BUFFALO HST Survey

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles; Jauzac, Mathilde; Capak, Peter; Koekemoer, Anton; Oesch, Pascal; Richard, Johan; Sharon, Keren q.; BUFFALO

    2018-01-01

    Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO) is an astronomical survey built around the six Hubble Space Telescope (HST) Frontier Fields clusters designed to learn about early galactic assembly and clustering and prepare targets for observations with the James Webb Space Telescope. BUFFALO will place significant new constraints on how and when the most massive and luminous galaxies in the universe formed and how early galaxy formation is linked to dark matter assembly. The same data will also probe the temperature and cross section of dark matter in the massive Frontier Fields galaxy clusters, and tell us how the dark matter, cluster gas, and dynamics of the clusters influence the galaxies in and around them. These studies are possible because the Spitzer Space Telescope, Chandra X-ray Observatory, XMM-Newton, and ground based telescopes have already invested heavily in deep observations around the Frontier Fields, so that the addition of HST observations can yield significant new results.

  11. HST Imaging of the Brightest z ∼ 8–9 Galaxies from UltraVISTA: The Extreme Bright End of the UV Luminosity Function

    NASA Astrophysics Data System (ADS)

    Stefanon, Mauro; Labbé, Ivo; Bouwens, Rychard J.; Brammer, Gabriel B.; Oesch, Pascal; Franx, Marijn; Fynbo, Johan P. U.; Milvang-Jensen, Bo; Muzzin, Adam; Illingworth, Garth D.; Le Fèvre, Olivier; Caputi, Karina I.; Holwerda, Benne W.; McCracken, Henry J.; Smit, Renske; Magee, Dan

    2017-12-01

    We report on the discovery of three especially bright candidate {z}{phot}≳ 8 galaxies. Five sources were targeted for follow-up with the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3), selected from a larger sample of 16 bright (24.8≲ H≲ 25.5 mag) candidate z≳ 8 Lyman break galaxies (LBGs) identified over 1.6 degrees2 of the COSMOS/UltraVISTA field. These were selected as Y and J dropouts by leveraging the deep (Y-to-{K}{{S}}∼ 25.3{--}24.8 mag, 5σ ) NIR data from the UltraVISTA DR3 release, deep ground-based optical imaging from the CFHTLS and Suprime-Cam programs, and Spitzer/IRAC mosaics combining observations from the SMUVS and SPLASH programs. Through the refined spectral energy distributions, which now also include new HyperSuprimeCam g-, r-, i-, z-, and Y-band data, we confirm that 3/5 galaxies have robust {z}{phot}∼ 8.0{--}8.7, consistent with the initial selection. The remaining 2/5 galaxies have a nominal {z}{phot}∼ 2. However, with HST data alone, these objects have increased probability of being at z∼ 9. We measure mean UV continuum slopes β =-1.74+/- 0.35 for the three z∼ 8{--}9 galaxies, marginally bluer than similarly luminous z∼ 4{--}6 in CANDELS but consistent with previous measurements of similarly luminous galaxies at z∼ 7. The circularized effective radius for our brightest source is 0.9 ± 0.3 kpc, similar to previous measurements for a bright z∼ 11 galaxy and bright z∼ 7 galaxies. Finally, enlarging our sample to include the six brightest z∼ 8 LBGs identified over UltraVISTA (i.e., including three other sources from Labbé et al.) we estimate for the first time the volume density of galaxies at the extreme bright end ({M}{UV}∼ -22 mag) of the z∼ 8 UV luminosity function. Despite this exceptional result, the still large statistical uncertainties do not allow us to discriminate between a Schechter and a double-power-law form.

  12. FRONTIER FIELDS CLUSTERS: DEEP CHANDRA OBSERVATIONS OF THE COMPLEX MERGER MACS J1149.6+2223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.

    2016-03-10

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. We present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z  =  0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the line of sight.more » The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. If the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.« less

  13. Frontier Fields Clusters: Deep Chandra Observations of the Complex Merger MACS J1149.6+2223

    DOE PAGES

    Ogrean, G. A.; Weeren, R. J. van; Jones, C.; ...

    2016-03-04

    The Hubble Space Telescope Frontier Fields cluster MACS J1149.6+2223 is one of the most complex merging clusters, believed to consist of four dark matter halos. Here, we present results from deep (365 ks) Chandra observations of the cluster, which reveal the most distant cold front (z = 0.544) discovered to date. In the cluster outskirts, we also detect hints of a surface brightness edge that could be the bow shock preceding the cold front. The substructure analysis of the cluster identified several components with large relative radial velocities, thus indicating that at least some collisions occur almost along the linemore » of sight. The inclination of the mergers with respect to the plane of the sky poses significant observational challenges at X-ray wavelengths. MACS J1149.6+2223 possibly hosts a steep-spectrum radio halo. Lastly, if the steepness of the radio halo is confirmed, then the radio spectrum, combined with the relatively regular ICM morphology, could indicate that MACS J1149.6+2223 is an old merging cluster.« less

  14. VizieR Online Data Catalog: Redshift reliability flags (VVDS data) (Jamal+, 2018)

    NASA Astrophysics Data System (ADS)

    Jamal, S.; Le Brun, V.; Le Fevre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2017-09-01

    The VIMOS VLT Deep Survey (Le Fevre et al. 2013A&A...559A..14L) is a combination of 3 i-band magnitude limited surveys: Wide (17.5<=iAB<=22.5; 8.6deg2), Deep (17.5<=iAB<=24; 0.6deg2) and Ultra-Deep (23<=iAB<=24.75; 512arcmin2), that produced a total of 35526 spectroscopic galaxy redshifts between 0 and 6.7 (22434 in Wide, 12051 in Deep and 1041 in UDeep). We supplement spectra of the VIMOS VLT Deep Survey (VVDS) with newly-defined redshift reliability flags obtained from clustering (unsupervised classification in Machine Learning) a set of descriptors from individual zPDFs. In this paper, we exploit a set of 24519 spectra from the VVDS database. After computing zPDFs for each individual spectrum, a set of (8) descriptors of the zPDF are extracted to build a feature matrix X (dimension = 24519 rows, 8 columns). Then, we use a clustering (unsupervised algorithms in Machine Learning) algorithm to partition the feature space into distinct clusters (5 clusters: C1,C2,C3,C4,C5), each depicting a different level of confidence to associate with the measured redshift zMAP (Maximum-A-Posteriori estimate that corresponds to the maximum of the redshift PDF). The clustering results (C1,C2,C3,C4,C5) reported in the table are those used in the paper (Jamal et al, 2017) to present the new methodology of automating the zspec reliability assessment. In particular, we would like to point out that they were obtained from first tests conducted on the VVDS spectroscopic data (end of 2016). Therefore, the table does not depict immutable results (on-going improvements). Future updates of the VVDS redshift reliability flags can be expected. (1 data file).

  15. Protective Benefits of Deep Tube Wells Against Childhood Diarrhea in Matlab, Bangladesh

    PubMed Central

    Winston, Jennifer Jane; Escamilla, Veronica; Perez-Heydrich, Carolina; Carrel, Margaret; Yunus, Mohammad; Streatfield, Peter Kim

    2013-01-01

    Objectives. We investigated whether deep tube wells installed to provide arsenic-free groundwater in rural Bangladesh have the added benefit of reducing childhood diarrheal disease incidence. Methods. We recorded cases of diarrhea in children younger than 5 years in 142 villages of Matlab, Bangladesh, during monthly community health surveys in 2005 and 2006. We surveyed the location and depth of 12 018 tube wells and integrated these data with diarrhea data and other data in a geographic information system. We fit a longitudinal logistic regression model to measure the relationship between childhood diarrhea and deep tube well use. We controlled for maternal education, family wealth, year, and distance to a deep tube well. Results. Household clusters assumed to be using deep tube wells were 48.7% (95% confidence interval = 27.8%, 63.5%) less likely to have a case of childhood diarrhea than were other household clusters. Conclusions. Increased access to deep tube wells may provide dual benefits to vulnerable populations in Matlab, Bangladesh, by reducing the risk of childhood diarrheal disease and decreasing exposure to naturally occurring arsenic in groundwater. PMID:23409905

  16. Swimming in Sculptor

    NASA Image and Video Library

    2016-03-07

    Peering deep into the early Universe, this picturesque parallel field observation from the NASA/ESA Hubble Space Telescope reveals thousands of colourful galaxies swimming in the inky blackness of space. A few foreground stars from our own galaxy, the Milky Way, are also visible. In October 2013 Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) began observing this portion of sky as part of the Frontier Fields programme. This spectacular skyscape was captured during the study of the giant galaxy cluster Abell 2744, otherwise known as Pandora’s Box. While one of Hubble’s cameras concentrated on Abell 2744, the other camera viewed this adjacent patch of sky near to the cluster. Containing countless galaxies of various ages, shapes and sizes, this parallel field observation is nearly as deep as the Hubble Ultra-Deep Field. In addition to showcasing the stunning beauty of the deep Universe in incredible detail, this parallel field — when compared to other deep fields — will help astronomers understand how similar the Universe looks in different directions

  17. Massive open star clusters using the VVV survey. I. Presentation of the data and description of the approach

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Clarke, J. R. A.; Bonatto, C.; Majaess, D. J.; Moni Bidin, C.; Sale, S. E.; Mauro, F.; Kurtev, R.; Baume, G.; Feinstein, C.; Ivanov, V. D.; Geisler, D.; Catelan, M.; Minniti, D.; Lucas, P.; de Grijs, R.; Kumar, M. S. N.

    2012-09-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Aims: The VVV observations will foster the construction of a sample of Galactic star clusters with reliable and homogeneously derived physical parameters (e.g., age, distance, and mass, etc.). In this first paper in a series, the methodology employed to establish cluster parameters for the envisioned database are elaborated upon by analysing four known young open clusters: Danks 1, Danks 2, RCW 79, and DBS 132. The analysis offers a first glimpse of the information that can be gleaned from the VVV observations for clusters in the final database. Methods: Wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: Results are inferred from VVV near-infrared photometry and numerous low resolution spectra (typically more than 10 per cluster). The high quality of the spectra and the deep wide-field VVV photometry enables us to precisely and independently determine the characteristics of the clusters studied, which we compare to previous determinations. An anomalous reddening law in the direction of the Danks clusters is found, specifically E(J - H)/E(H - Ks) = 2.20 ± 0.06, which exceeds published values for the inner Galaxy. The G305 star forming complex, which includes the Danks clusters, lies beyond the Sagittarius-Carina spiral arm and occupies the Centaurus arm. Finally, the first deep infrared colour-magnitude diagram of RCW 79 is presented, which reveals a sizeable pre-main sequence population. A list of candidate variable stars in G305 region is reported. Conclusions: This study demonstrates the strength of the dataset and methodology employed, and constitutes the first step of a broader study which shall include reliable parameters for a sizeable number of poorly characterised and/or newly discovered clusters. Based on observations made with NTT telescope at the La Silla Observatory, ESO, under programme ID 087.D-0490A, and with the Clay telescope at the Las Campanas Observatory under programme CN2011A-086. Also based on data from the VVV survey observed under program ID 172.B-2002.Tables 1, 5 and 6 are available in electronic form at http://www.aanda.org

  18. A Deep Look at the Fornax Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Traditionally, dense cluster centers are cannibalistic environments, with larger galaxies stripping stars from smaller interlopers in minor mergers and dynamical harassment. A recent survey of the Fornax cluster, one example of such an environment, reveals how this cluster may have been built.Clues in HalosContext for the southern constellation Fornax (the furnace). The Fornax cluster is marked with a red circle. [ESO, IAU and Sky Telescope]Deep surveys of dense cluster environments are necessary because the imprint of mass assembly is hidden in galactic halos, the faint outer regions of galaxies. Deep observations can reveal answers to questions about how the galaxies in these extreme environments formed and evolved for instance, did the majority of the galaxies stars form in situ, or were they accreted from interactions with other galaxies?The Fornax Deep Survey (FDS) is just such a campaign. FDS uses the European Southern Observatorys VLT Survey Telescope to obtain deep photometry of the entire 26 square degrees of the Fornax cluster, a spectacular galaxy cluster located 65 million light-years away.Central ObservationsThe FDS team plans to release the full results from the survey soon. For now, in an initial study led by Enrichetta Iodice (INAFs Astronomical Observatory of Capodimonte, Italy), the team presents their first findings from the two square degrees around NGC 1399, a supergiant elliptical galaxy in the cluster center.The two main results from this study are:The discovery of a faint stellar bridge between NGC 1399 and a nearby galaxy, NGC 1387.The characterization of NGC 1399s light profile, which shows that the galaxy consists of two main components separated by a strong break. The bright central galaxy is likely composed of stars that formed in situ, whereas the exponential outer component is a stellar halo composed of stars likely captured from accretion events.What do these points tell us about the history of the center of the Fornax cluster? These observations are indications that the Fornax cluster was built up by mergers and accretion events.A Violent PastThe light profile the authors found is consistent with those of simulated galaxies whose halos were formed through the multiple accretion of progenitors. This suggests that the stellar halo of NGC 1399 has been through a major merging event.This enlarged view of NGC 1399 and 1387 in the g band (top) and gi band (bottom) gives a better view of the faint stellar stream connecting the two galaxies. North is up and east is left. [Iodice et al. 2016]The faint stellar bridge is likely a sign of an ongoing interaction between NGC 1399 and NGC 1387, in which NGC 1387s outer envelope on its east side is being stripped away. But besides this indication, there is little evidence for recent merger activity, which would usually produce a significant number of luminous stellar streams and tidal tails.The authors argue that this means that any major mergers in the Fornax cluster center probably happened in an early formation epoch. The cluster is now in a more dynamically evolved stage, in which most of the gravitational interactions between galaxies have already taken place.Follow-up kinematics studies will be crucial to further interpreting these photometric observations from the center of the Fornax cluster. In the meantime, keep an eye out for future results from FDS!CitationE. Iodice et al 2016 ApJ 820 42. doi:10.3847/0004-637X/820/1/42

  19. Scaling deep learning on GPU and knights landing clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Yang; Buluc, Aydin; Demmel, James

    Training neural networks has become a big bottleneck. For example, training ImageNet dataset on one Nvidia K20 GPU needs 21 days. To speed up the training process, the current deep learning systems heavily rely on the hardware accelerators. However, these accelerators have limited on-chip memory compared with CPUs. We use both self-host Intel Knights Landing (KNL) clusters and multi-GPU clusters as our target platforms. From the algorithm aspect, we focus on Elastic Averaging SGD (EASGD) to design algorithms for HPC clusters. We redesign four efficient algorithms for HPC systems to improve EASGD's poor scaling on clusters. Async EASGD, Async MEASGD,more » and Hogwild EASGD are faster than existing counter-part methods (Async SGD, Async MSGD, and Hogwild SGD) in all comparisons. Sync EASGD achieves 5.3X speedup over original EASGD on the same platform. We achieve 91.5% weak scaling efficiency on 4253 KNL cores, which is higher than the state-of-the-art implementation.« less

  20. Deep Chandra Observations of Abell 586: A Remarkably Relaxed Non-Cool-Core Cluster

    NASA Astrophysics Data System (ADS)

    Richstein, Hannah; Su, Yuanyuan

    2018-01-01

    The dichotomy between cool-core and non-cool-core clusters has been a lasting perplexity in extragalactic astronomy. Nascent cores in non-cool-core clusters may have been disrupted by major mergers, yet the dichotomy cannot be reproduced in cosmology simulations. We present deep Chandra observations of the massive galaxy cluster Abell 586, which resides at z=0.17, thus allowing its gas properties to be measured out to its virial radius. Abell 586 appears remarkably relaxed with a nearly spherical X-ray surface brightness distribution and without any offset between its X-ray and optical centroids. We measure that its temperature profile does not decrease towards the cluster center and its central entropy stays above 100 keV cm2. A non-cool-core emerges in Abell 586 in the absence of any disruptions on the large scale. Our study demonstrates that non-cool-core clusters can be formed without major mergers. The origins of some non-cool-core clusters may be related to conduction, AGN feedback, or preheating.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution.

  1. The Herschel Lensing Survey (HLS): HST Frontier Field Coverage

    NASA Astrophysics Data System (ADS)

    Egami, Eiichi

    2015-08-01

    The Herschel Lensing Survey (HLS; PI: Egami) is a large Far-IR/Submm imaging survey of massive galaxy clusters using the Herschel Space Observatory. Its main goal is to detect and study IR/Submm galaxies that are below the nominal confusion limit of Herschel by taking advantage of the strong gravitational lensing power of massive galaxy clusters. HLS has obtained deep PACS (100/160 um) and SPIRE (250/350/500 um) images for 54 cluster fields (HLS-deep) as well as shallower but nearly confusion-limited SPIRE-only images for 527 cluster fields (HLS-snapshot) with a total observing time of ~420 hours. Extensive multi-wavelength follow-up studies are currently on-going with a variety of observing facilities including ALMA.Here, I will focus on the analysis of the deep Herschel PACS/SPIRE images obtained for the 6 HST Frontier Fields (5 observed by HLS-deep; 1 observed by the Herschel GT programs). The Herschel/SPIRE maps are wide enough to cover the Frontier-Field parallel pointings, and we have detected a total of ~180 sources, some of which are strongly lensed. I will present the sample and discuss the properties of these Herschel-detected dusty star-forming galaxies (DSFGs) identified in the Frontier Fields. Although the majority of these Herschel sources are at moderate redshift (z<3), a small number of extremely high-redshift (z>6) candidates can be identified as "Herschel dropouts" when combined with longer-wavelength data. We have also identified ~40 sources as likely cluster members, which will allow us to study the properties of DSFGs in the dense cluster environment.A great legacy of our HLS project will be the extensive multi-wavelength database that incorporates most of the currently available data/information for the fields of the Frontier-Field, CLASH, and other HLS clusters (e.g., HST/Spitzer/Herschel images, spectroscopic/photometric redshifts, lensing models, best-fit SED models etc.). Provided with a user-friendly GUI and a flexible search engine, this database should serve as a powerful tool for a variety of projects including those with ALMA and JWST in the future. I will conclude by introducing this HLS database system.

  2. VizieR Online Data Catalog: HST/ACS Coma Cluster Survey. VI. (den Brok+, 2011)

    NASA Astrophysics Data System (ADS)

    den Brok, M.; Peletier, R. F.; Valentijn, E. A.; Balcells, M.; Carter, D.; Erwin, P.; Ferguson, H. C.; Goudfrooij, P.; Graham, A. W.; Hammer, D.; Lucey, J. R.; Trentham, N.; Guzman, R.; Hoyos, C.; Verdoes Kleijn, G.; Jogee, S.; Karick, A. M.; Marinova, I.; Mouhcine, M.; Weinzirl, T.

    2018-01-01

    We have used the data from the HST/ACS Coma Cluster Survey, a deep two-passband imaging survey of the Coma cluster. A full description of the observations and data reduction can be found in Paper I (Carter et al., 2008ApJS..176..424C). We have derived colour gradients for a sample of confirmed or very likely Coma cluster members. (2 data files).

  3. Zonation in the deep benthic megafauna : Application of a general test.

    PubMed

    Gardiner, Frederick P; Haedrich, Richard L

    1978-01-01

    A test based on Maxwell-Boltzman statistics, instead of the formerly suggested but inappropriate Bose-Einstein statistics (Pielou and Routledge, 1976), examines the distribution of the boundaries of species' ranges distributed along a gradient, and indicates whether they are random or clustered (zoned). The test is most useful as a preliminary to the application of more instructive but less statistically rigorous methods such as cluster analysis. The test indicates zonation is marked in the deep benthic megafauna living between 200 and 3000 m, but below 3000 m little zonation may be found.

  4. Deep Learning and Developmental Learning: Emergence of Fine-to-Coarse Conceptual Categories at Layers of Deep Belief Network.

    PubMed

    Sadeghi, Zahra

    2016-09-01

    In this paper, I investigate conceptual categories derived from developmental processing in a deep neural network. The similarity matrices of deep representation at each layer of neural network are computed and compared with their raw representation. While the clusters generated by raw representation stand at the basic level of abstraction, conceptual categories obtained from deep representation shows a bottom-up transition procedure. Results demonstrate a developmental course of learning from specific to general level of abstraction through learned layers of representations in a deep belief network. © The Author(s) 2016.

  5. The Fornax Deep Survey with VST. I. The Extended and Diffuse Stellar Halo of NGC 1399 out to 192 kpc

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Capaccioli, M.; Grado, A.; Limatola, L.; Spavone, M.; Napolitano, N. R.; Paolillo, M.; Peletier, R. F.; Cantiello, M.; Lisker, T.; Wittmann, C.; Venhola, A.; Hilker, M.; D'Abrusco, R.; Pota, V.; Schipani, P.

    2016-03-01

    We have started a new, deep multi-imaging survey of the Fornax cluster, dubbed the Fornax Deep Survey (FDS), at the VLT Survey Telescope (VST). In this paper we present the deep photometry inside two square degrees around the bright galaxy NGC 1399 in the core of the cluster. We found that the core of the Fornax cluster is characterized by a very extended and diffuse envelope surrounding the luminous galaxy NGC 1399: we map the surface brightness out to 33 arcmin (˜192 kpc) from the galaxy center and down to μg ˜ 31 mag arcsec-2 in the g band. The deep photometry allows us to detect a faint stellar bridge in the intracluster region on the west side of NGC 1399 and toward NGC 1387. By analyzing the integrated colors of this feature, we argue that it could be due to the ongoing interaction between the two galaxies, where the outer envelope of NGC 1387 on its east side is stripped away. By fitting the light profile, we found that there exists a physical break radius in the total light distribution at R = 10 arcmin (˜58 kpc) that sets the transition region between the bright central galaxy and the outer exponential halo, and that the stellar halo contributes 60% of the total light of the galaxy (Section 3.5). We discuss the main implications of this work on the build-up of the stellar halo at the center of the Fornax cluster. By comparing with the numerical simulations of the stellar halo formation for the most massive bright cluster galaxies (I.e., 13\\lt {log}{M}200/{M}⊙ \\lt 14), we find that the observed stellar halo mass fraction is consistent with a halo formed through the multiple accretion of progenitors with stellar mass in the range 108-1011 M⊙. This might suggest that the halo of NGC 1399 has also gone through a major merging event. The absence of a significant number of luminous stellar streams and tidal tails out to 192 kpc suggests that the epoch of this strong interaction goes back to an early formation epoch. Therefore, different from the Virgo cluster, the extended stellar halo around NGC 1399 is characterized by a more diffuse and well-mixed component, including the intracluster light.

  6. Revealing Thermal Instabilities in the Core of the Phoenix Cluster

    NASA Astrophysics Data System (ADS)

    McDonald, Michael

    2017-08-01

    The Phoenix cluster is the most relaxed cluster known, and hosts the strongest cool core of any cluster yet discovered. At the center of this cluster is a massive starburst galaxy, with a SFR of 500-1000 Msun/yr, seemingly satisfying the early cooling flow predictions, despite the presence of strong AGN feedback from the central supermassive black hole. Here we propose deep narrow-band imaging of the central 120 kpc of the cluster, to map the warm (10^4K) ionized gas via the [O II] emission line. In low-z clusters, such as Perseus and Abell 1795, the warm, ionized phase is of critical importance to map out thermal instabilities in the hot gas, and maps of Halpha and [O II] have been used for decades to understand how (and how not) cooling proceeds in the intracluster medium. The data proposed for here, combined with deep ALMA data, a recently-approved Large Chandra Program, and recently-approved multi-frequency JVLA data, will allow us to probe the cooling ICM, the cool, filamentary gas, the cold molecular gas, the star-forming population, and the AGN jets all on scales of <10 kpc. This multi-observatory campaign, focusing on the most extreme cooling cluster, will lead to a more complete understanding of how and why thermal instabilities develop in the hot ICM of cool core clusters.

  7. Deep Imaging of Eridanus II and Its Lone Star Cluster

    NASA Astrophysics Data System (ADS)

    Crnojević, D.; Sand, D. J.; Zaritsky, D.; Spekkens, K.; Willman, B.; Hargis, J. R.

    2016-06-01

    We present deep imaging of the most distant dwarf discovered by the Dark Energy Survey, Eridanus II (Eri II). Our Magellan/Megacam stellar photometry reaches ˜3 mag deeper than previous work and allows us to confirm the presence of a stellar cluster whose position is consistent with Eri II’s center. This makes Eri II, at {M}V=-7.1, the least luminous galaxy known to host a (possibly central) cluster. The cluster is partially resolved, and at {M}V=-3.5 it accounts for ˜4% of Eri II’s luminosity. We derive updated structural parameters for Eri II, which has a half-light radius of ˜280 pc and is elongated (ɛ ˜ 0.48) at a measured distance of D ˜ 370 kpc. The color-magnitude diagram displays a blue, extended horizontal branch, as well as a less populated red horizontal branch. A central concentration of stars brighter than the old main-sequence turnoff hints at a possible intermediate-age (˜3 Gyr) population; alternatively, these sources could be blue straggler stars. A deep Green Bank Telescope observation of Eri II reveals no associated atomic gas. This paper includes data gathered with the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile.

  8. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling.

    PubMed

    Mehrshad, Maliheh; Rodriguez-Valera, Francisco; Amoozegar, Mohammad Ali; López-García, Purificación; Ghai, Rohit

    2018-03-01

    The dark ocean microbiota represents the unknown majority in the global ocean waters. The SAR202 cluster belonging to the phylum Chloroflexi was the first microbial lineage discovered to specifically inhabit the aphotic realm, where they are abundant and globally distributed. The absence of SAR202 cultured representatives is a significant bottleneck towards understanding their metabolic capacities and role in the marine environment. In this work, we use a combination of metagenome-assembled genomes from deep-sea datasets and publicly available single-cell genomes to construct a genomic perspective of SAR202 phylogeny, metabolism and biogeography. Our results suggest that SAR202 cluster members are medium sized, free-living cells with a heterotrophic lifestyle, broadly divided into two distinct clades. We present the first evidence of vertical stratification of these microbes along the meso- and bathypelagic ocean layers. Remarkably, two distinct species of SAR202 cluster are highly abundant in nearly all deep bathypelagic metagenomic datasets available so far. SAR202 members metabolize multiple organosulfur compounds, many appear to be sulfite-oxidizers and are predicted to play a major role in sulfur turnover in the dark water column. This concomitantly suggests an unsuspected availability of these nutrient sources to allow for the high abundance of these microbes in the deep sea.

  9. Focused Crawling of the Deep Web Using Service Class Descriptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocco, D; Liu, L; Critchlow, T

    2004-06-21

    Dynamic Web data sources--sometimes known collectively as the Deep Web--increase the utility of the Web by providing intuitive access to data repositories anywhere that Web access is available. Deep Web services provide access to real-time information, like entertainment event listings, or present a Web interface to large databases or other data repositories. Recent studies suggest that the size and growth rate of the dynamic Web greatly exceed that of the static Web, yet dynamic content is often ignored by existing search engine indexers owing to the technical challenges that arise when attempting to search the Deep Web. To address thesemore » challenges, we present DynaBot, a service-centric crawler for discovering and clustering Deep Web sources offering dynamic content. DynaBot has three unique characteristics. First, DynaBot utilizes a service class model of the Web implemented through the construction of service class descriptions (SCDs). Second, DynaBot employs a modular, self-tuning system architecture for focused crawling of the DeepWeb using service class descriptions. Third, DynaBot incorporates methods and algorithms for efficient probing of the Deep Web and for discovering and clustering Deep Web sources and services through SCD-based service matching analysis. Our experimental results demonstrate the effectiveness of the service class discovery, probing, and matching algorithms and suggest techniques for efficiently managing service discovery in the face of the immense scale of the Deep Web.« less

  10. Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population

    PubMed Central

    Liu, Hongjun; Zhang, Lin; Wang, Jiechen; Li, Changsheng; Zeng, Xing; Xie, Shupeng; Zhang, Yongzhong; Liu, Sisi; Hu, Songlin; Wang, Jianhua; Lee, Michael; Lübberstedt, Thomas; Zhao, Guangwu

    2017-01-01

    Deep-sowing is an effective measure to ensure seeds absorbing water from deep soil layer and emerging normally in arid and semiarid regions. However, existing varieties demonstrate poor germination ability in deep soil layer and some key quantitative trait loci (QTL) or genes related to deep-sowing germination ability remain to be identified and analyzed. In this study, a high-resolution genetic map based on 280 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population which comprised 6618 bin markers was used for the QTL analysis of deep-sowing germination related traits. The results showed significant differences in germination related traits under deep-sowing condition (12.5 cm) and standard-germination condition (2 cm) between two parental lines. In total, 8, 11, 13, 15, and 18 QTL for germination rate, seedling length, mesocotyl length, plumule length, and coleoptile length were detected for the two sowing conditions, respectively. These QTL explained 2.51–7.8% of the phenotypic variance with LOD scores ranging from 2.52 to 7.13. Additionally, 32 overlapping QTL formed 11 QTL clusters on all chromosomes except for chromosome 8, indicating the minor effect genes have a pleiotropic role in regulating various traits. Furthermore, we identified six candidate genes related to deep-sowing germination ability, which were co-located in the cluster regions. The results provide a basis for molecular marker assisted breeding and functional study in deep-sowing germination ability of maize. PMID:28588594

  11. DEWS (DEep White matter hyperintensity Segmentation framework): A fully automated pipeline for detecting small deep white matter hyperintensities in migraineurs.

    PubMed

    Park, Bo-Yong; Lee, Mi Ji; Lee, Seung-Hak; Cha, Jihoon; Chung, Chin-Sang; Kim, Sung Tae; Park, Hyunjin

    2018-01-01

    Migraineurs show an increased load of white matter hyperintensities (WMHs) and more rapid deep WMH progression. Previous methods for WMH segmentation have limited efficacy to detect small deep WMHs. We developed a new fully automated detection pipeline, DEWS (DEep White matter hyperintensity Segmentation framework), for small and superficially-located deep WMHs. A total of 148 non-elderly subjects with migraine were included in this study. The pipeline consists of three components: 1) white matter (WM) extraction, 2) WMH detection, and 3) false positive reduction. In WM extraction, we adjusted the WM mask to re-assign misclassified WMHs back to WM using many sequential low-level image processing steps. In WMH detection, the potential WMH clusters were detected using an intensity based threshold and region growing approach. For false positive reduction, the detected WMH clusters were classified into final WMHs and non-WMHs using the random forest (RF) classifier. Size, texture, and multi-scale deep features were used to train the RF classifier. DEWS successfully detected small deep WMHs with a high positive predictive value (PPV) of 0.98 and true positive rate (TPR) of 0.70 in the training and test sets. Similar performance of PPV (0.96) and TPR (0.68) was attained in the validation set. DEWS showed a superior performance in comparison with other methods. Our proposed pipeline is freely available online to help the research community in quantifying deep WMHs in non-elderly adults.

  12. Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population.

    PubMed

    Liu, Hongjun; Zhang, Lin; Wang, Jiechen; Li, Changsheng; Zeng, Xing; Xie, Shupeng; Zhang, Yongzhong; Liu, Sisi; Hu, Songlin; Wang, Jianhua; Lee, Michael; Lübberstedt, Thomas; Zhao, Guangwu

    2017-01-01

    Deep-sowing is an effective measure to ensure seeds absorbing water from deep soil layer and emerging normally in arid and semiarid regions. However, existing varieties demonstrate poor germination ability in deep soil layer and some key quantitative trait loci (QTL) or genes related to deep-sowing germination ability remain to be identified and analyzed. In this study, a high-resolution genetic map based on 280 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population which comprised 6618 bin markers was used for the QTL analysis of deep-sowing germination related traits. The results showed significant differences in germination related traits under deep-sowing condition (12.5 cm) and standard-germination condition (2 cm) between two parental lines. In total, 8, 11, 13, 15, and 18 QTL for germination rate, seedling length, mesocotyl length, plumule length, and coleoptile length were detected for the two sowing conditions, respectively. These QTL explained 2.51-7.8% of the phenotypic variance with LOD scores ranging from 2.52 to 7.13. Additionally, 32 overlapping QTL formed 11 QTL clusters on all chromosomes except for chromosome 8, indicating the minor effect genes have a pleiotropic role in regulating various traits. Furthermore, we identified six candidate genes related to deep-sowing germination ability, which were co-located in the cluster regions. The results provide a basis for molecular marker assisted breeding and functional study in deep-sowing germination ability of maize.

  13. The Hubble Space Telescope Medium Deep Survey Cluster Sample: Methodology and Data

    NASA Astrophysics Data System (ADS)

    Ostrander, E. J.; Nichol, R. C.; Ratnatunga, K. U.; Griffiths, R. E.

    1998-12-01

    We present a new, objectively selected, sample of galaxy overdensities detected in the Hubble Space Telescope Medium Deep Survey (MDS). These clusters/groups were found using an automated procedure that involved searching for statistically significant galaxy overdensities. The contrast of the clusters against the field galaxy population is increased when morphological data are used to search around bulge-dominated galaxies. In total, we present 92 overdensities above a probability threshold of 99.5%. We show, via extensive Monte Carlo simulations, that at least 60% of these overdensities are likely to be real clusters and groups and not random line-of-sight superpositions of galaxies. For each overdensity in the MDS cluster sample, we provide a richness and the average of the bulge-to-total ratio of galaxies within each system. This MDS cluster sample potentially contains some of the most distant clusters/groups ever detected, with about 25% of the overdensities having estimated redshifts z > ~0.9. We have made this sample publicly available to facilitate spectroscopic confirmation of these clusters and help more detailed studies of cluster and galaxy evolution. We also report the serendipitous discovery of a new cluster close on the sky to the rich optical cluster Cl l0016+16 at z = 0.546. This new overdensity, HST 001831+16208, may be coincident with both an X-ray source and a radio source. HST 001831+16208 is the third cluster/group discovered near to Cl 0016+16 and appears to strengthen the claims of Connolly et al. of superclustering at high redshift.

  14. Spitzer Lensing Cluster Legacy Survey

    NASA Astrophysics Data System (ADS)

    Soifer, Tom; Armus, Lee; Bradac, Marusa; Capak, Peter; Coe, Dan; Siana, Brian; Treu, Tommaso; Vieira, Joaquin

    2015-11-01

    Cluster-scale gravitational lenses act as cosmic telescopes, enabling the study of otherwise unobservable galaxies. They are critical in answering the questions such as what is the star formation history at z > 7, and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z>7-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose a program that obtains shallow Spitzer/IRAC imaging of a large sample of cluster lenses, followed by deep imaging of those clusters with the largest number of z > 7 candidate galaxies. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population. Furthermore, it will enable the measurements of the stellar mass of the galaxy cluster population, thereby allowing us to chart the build-up of the cluster red sequence from z~1 to the present and to determine the physical processes responsible for this stellar mass growth.

  15. Dark-ages reionization and galaxy formation simulation-XI. Clustering and halo masses of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Kim, Han-Seek; Liu, Chuanwu; Trenti, Michele; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-12-01

    We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ∼ 6 - 8. Using the semi-analytical model MERAXES constructed as part of the dark-ages reionization and galaxy-formation observables from numerical simulation (DRAGONS) project, we predict the angular correlation function (ACF) of LBGs at z ∼ 6 - 8. Overall, we find that the predicted ACFs are in good agreement with recent measurements at z ∼ 6 and z ∼ 7.2 from observations consisting of the Hubble eXtreme Deep Field, the Hubble Ultra Deep Field and cosmic sssembly near-infrared deep extragalactic legacy survey field. We confirm the dependence of clustering on luminosity, with more massive dark matter haloes hosting brighter galaxies, remains valid at high redshift. The predicted galaxy bias at fixed luminosity is found to increase with redshift, in agreement with observations. We find that LBGs of magnitude MAB(1600) < -19.4 at 6 ≲ z ≲ 8 reside in dark matter haloes of mean mass ∼1011.0-1011.5 M⊙, and this dark matter halo mass does not evolve significantly during reionisation.

  16. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks

    PubMed Central

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-01-01

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks. PMID:27754380

  17. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    PubMed

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  18. A Chandra Survey of high-redshift (0.7 < z < 0.8) clusters selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2016-09-01

    We propose to observe a complete sample of 10 galaxy clusters at 1e14 < M500 < 5e14 and 0.7 < z < 0.8. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

  19. Deep, wide-field, multi-band imaging of z approximately equal to 0.4 clusters and their environs

    NASA Technical Reports Server (NTRS)

    Silva, David R.; Pierce, Michael J.

    1993-01-01

    The existence of an excess population of blue galaxies in the cores of distant, rich clusters of galaxies, commonly referred to as the 'Butcher-Oemler' effect is now well established. Spectroscopy of clusters at z = 0.2-0.4 has confirmed that the luminous blue populations comprise as much as 20 percent of these clusters. This fraction is much higher that the 2 percent blue fraction found for nearby rich clusters, such as Coma, indicating that rapid galaxy evolution has occurred on a relatively short time scale. Spectroscopy has also shown that the 'blue' galaxies can basically be divided into three classes: 'starburst' galaxies with large (O II) equivalent widths, 'post-starburst' E+A galaxies (i.e. galaxies with strong Balmer lines shortward of 4000A but elliptical-like colors, and normal spiral/irregulars. Unfortunately, it is difficult to obtain enough spectra of individual galaxies in these intermediate redshift clusters to say anything statistically meaningful. Thus, limited information is available about the relative numbers of these three classes of 'blue' galaxies and the associated E/SO population in these intermediate redshift clusters. More statistically meaningful results can be derived from deep imaging of these clusters. However, the best published data to date (e.g. MacLaren et al. 1988; Dressler & Gunn 1992) are limited to the cluster cores and do not sample the galaxy luminosity functions very deeply at the bluest wavelengths. Furthermore, only limited spectro-energy distribution data is available below 4000A in the observed cluster rest frame providing limited sensitivity to 'recent' star formation activity. To improve this situation, we are currently obtaining deep, wide-field UBRI images of all known rich clusters at z approx. equals 0.4. Our main objective is to obtain the necessary color information to distinguish between the E+SO, 'E+A', and spiral/irregular galaxy populations throughout the cluster/supercluster complex. At this redshift, UBRI correspond to rest-frame 2500A/UVR bandpasses. The rest-frame UVR system provides a powerful 'blue' galaxy discriminate given the expected color distribution. Moreover, since 'hot' stars peak near 2500A, that bandpass is a powerful probe of recent star formation activity in all classes of galaxies. In particular, it is sensitive to ellipticals with 'UV excess' populations (MacLaren et al. 1988).

  20. A Deep Near-Infrared Survey of the N 49 Region around the Soft Gamma-Ray Repeater 0526-66

    NASA Technical Reports Server (NTRS)

    Klose, S.; Henden, A. A.; Geppert, U.; Greiner, J.; Guetter, H. H.; Hartmann, D. H.; Kouveliotou, C.; Luginbuhl, C. B.; Stecklurn, B.; Vrba, F. J.

    2004-01-01

    We report the results of a deep near-infrared survey of the vicinity of supernova remnant N49 in the Large Magellanic Cloud (LMC), which contains the soft gamma-ray repeater (SGR) 0526-66. Two of the four confirmed SGRs are potentially associated with compact stellar clusters. We thus searched for a similar association of SGR0526-66, and find the unexplored young stellar cluster SL 463 at a projected distance of approx. 30 pc from the SGR. This constitutes the third cluster-SGR link, and lends support to scenarios in which SGR progenitors originate in young, embedded clusters. If real, the cluster-SGR association constrains the age and thus the initial mass of these stars. In addition, our high-resolution images of the super- nova remnant N49 reveal an area of excess K-band flux in the southeastern part of the SNR. This feature coincides with the maximum flux area at 8.28 microns as detected by the Midcourse Space Experiment (MSX satellite), which we identify with IRAS 052594607.

  1. Providing Multi-Page Data Extraction Services with XWRAPComposer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ling; Zhang, Jianjun; Han, Wei

    2008-04-30

    Dynamic Web data sources – sometimes known collectively as the Deep Web – increase the utility of the Web by providing intuitive access to data repositories anywhere that Web access is available. Deep Web services provide access to real-time information, like entertainment event listings, or present a Web interface to large databases or other data repositories. Recent studies suggest that the size and growth rate of the dynamic Web greatly exceed that of the static Web, yet dynamic content is often ignored by existing search engine indexers owing to the technical challenges that arise when attempting to search the Deepmore » Web. To address these challenges, we present DYNABOT, a service-centric crawler for discovering and clustering Deep Web sources offering dynamic content. DYNABOT has three unique characteristics. First, DYNABOT utilizes a service class model of the Web implemented through the construction of service class descriptions (SCDs). Second, DYNABOT employs a modular, self-tuning system architecture for focused crawling of the Deep Web using service class descriptions. Third, DYNABOT incorporates methods and algorithms for efficient probing of the Deep Web and for discovering and clustering Deep Web sources and services through SCD-based service matching analysis. Our experimental results demonstrate the effectiveness of the service class discovery, probing, and matching algorithms and suggest techniques for efficiently managing service discovery in the face of the immense scale of the Deep Web.« less

  2. Deep Residual Network Predicts Cortical Representation and Organization of Visual Features for Rapid Categorization.

    PubMed

    Wen, Haiguang; Shi, Junxing; Chen, Wei; Liu, Zhongming

    2018-02-28

    The brain represents visual objects with topographic cortical patterns. To address how distributed visual representations enable object categorization, we established predictive encoding models based on a deep residual network, and trained them to predict cortical responses to natural movies. Using this predictive model, we mapped human cortical representations to 64,000 visual objects from 80 categories with high throughput and accuracy. Such representations covered both the ventral and dorsal pathways, reflected multiple levels of object features, and preserved semantic relationships between categories. In the entire visual cortex, object representations were organized into three clusters of categories: biological objects, non-biological objects, and background scenes. In a finer scale specific to each cluster, object representations revealed sub-clusters for further categorization. Such hierarchical clustering of category representations was mostly contributed by cortical representations of object features from middle to high levels. In summary, this study demonstrates a useful computational strategy to characterize the cortical organization and representations of visual features for rapid categorization.

  3. Wild Duck Cluster

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On April 7, 2005, the Deep Impact spacecraft's Impactor Target Sensor camera recorded this image of M11, the Wild Duck cluster, a galactic open cluster located 6 thousand light years away. The camera is located on the impactor spacecraft, which will image comet Tempel 1 beginning 22 hours before impact until about 2 seconds before impact. Impact with comet Tempel 1 is planned for July 4, 2005.

  4. Advances in deep-UV processing using cluster tools

    NASA Astrophysics Data System (ADS)

    Escher, Gary C.; Tepolt, Gary; Mohondro, Robert D.

    1993-09-01

    Deep-UV laser lithography has shown the capability of supporting the manufacture of multiple generations of integrated circuits (ICs) due to its wide process latitude and depth of focus (DOF) for 0.2 micrometers to 0.5 micrometers feature sizes. This capability has been attained through improvements in deep-UV wide field lens technology, excimer lasers, steppers and chemically amplified, positive deep-UV resists. Chemically amplified deep-UV resists are required for 248 nm lithography due to the poor absorption and sensitivity of conventional novolac resists. The acid catalyzation processes of the new resists requires control of the thermal history and environmental conditions of the lithographic process. Work is currently underway at several resist vendors to reduce the need for these controls, but practical manufacturing solutions exist today. One of these solutions is the integration of steppers and resist tracks into a `cluster tool' or `Lithocell' to insure a consistent thermal profile for the resist process and reduce the time the resist is exposed to atmospheric contamination. The work here reports processing and system integration results with a Machine Technology, Inc (MTI) post-exposure bake (PEB) track interfaced with an advanced GCA XLS 7800 deep-UV stepper [31 mm diameter, variable NA (0.35 - 0.53) and variable sigma (0.3 - 0.74)].

  5. Global detection approach for clustered microcalcifications in mammograms using a deep learning network.

    PubMed

    Wang, Juan; Nishikawa, Robert M; Yang, Yongyi

    2017-04-01

    In computerized detection of clustered microcalcifications (MCs) from mammograms, the traditional approach is to apply a pattern detector to locate the presence of individual MCs, which are subsequently grouped into clusters. Such an approach is often susceptible to the occurrence of false positives (FPs) caused by local image patterns that resemble MCs. We investigate the feasibility of a direct detection approach to determining whether an image region contains clustered MCs or not. Toward this goal, we develop a deep convolutional neural network (CNN) as the classifier model to which the input consists of a large image window ([Formula: see text] in size). The multiple layers in the CNN classifier are trained to automatically extract image features relevant to MCs at different spatial scales. In the experiments, we demonstrated this approach on a dataset consisting of both screen-film mammograms and full-field digital mammograms. We evaluated the detection performance both on classifying image regions of clustered MCs using a receiver operating characteristic (ROC) analysis and on detecting clustered MCs from full mammograms by a free-response receiver operating characteristic analysis. For comparison, we also considered a recently developed MC detector with FP suppression. In classifying image regions of clustered MCs, the CNN classifier achieved 0.971 in the area under the ROC curve, compared to 0.944 for the MC detector. In detecting clustered MCs from full mammograms, at 90% sensitivity, the CNN classifier obtained an FP rate of 0.69 clusters/image, compared to 1.17 clusters/image by the MC detector. These results indicate that using global image features can be more effective in discriminating clustered MCs from FPs caused by various sources, such as linear structures, thereby providing a more accurate detection of clustered MCs on mammograms.

  6. Deep Imaging of the HCG 95 Field. I. Ultra-diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Shi, Dong Dong; Zheng, Xian Zhong; Zhao, Hai Bin; Pan, Zhi Zheng; Li, Bin; Zou, Hu; Zhou, Xu; Guo, KeXin; An, Fang Xia; Li, Yu Bin

    2017-09-01

    We present a detection of 89 candidates of ultra-diffuse galaxies (UDGs) in a 4.9 degree2 field centered on the Hickson Compact Group 95 (HCG 95) using deep g- and r-band images taken with the Chinese Near Object Survey Telescope. This field contains one rich galaxy cluster (Abell 2588 at z = 0.199) and two poor clusters (Pegasus I at z = 0.013 and Pegasus II at z = 0.040). The 89 candidates are likely associated with the two poor clusters, giving about 50-60 true UDGs with a half-light radius {r}{{e}}> 1.5 {kpc} and a central surface brightness μ (g,0)> 24.0 mag arcsec-2. Deep z\\prime -band images are available for 84 of the 89 galaxies from the Dark Energy Camera Legacy Survey (DECaLS), confirming that these galaxies have an extremely low central surface brightness. Moreover, our UDG candidates are spread over a wide range in g - r color, and ˜26% are as blue as normal star-forming galaxies, which is suggestive of young UDGs that are still in formation. Interestingly, we find that one UDG linked with HCG 95 is a gas-rich galaxy with H I mass 1.1× {10}9 M ⊙ detected by the Very Large Array, and has a stellar mass of {M}\\star ˜ 1.8× {10}8 M ⊙. This indicates that UDGs at least partially overlap with the population of nearly dark galaxies found in deep H I surveys. Our results show that the high abundance of blue UDGs in the HCG 95 field is favored by the environment of poor galaxy clusters residing in H I-rich large-scale structures.

  7. The Role of Deep Creep in the Timing of Large Earthquakes

    NASA Astrophysics Data System (ADS)

    Sammis, C. G.; Smith, S. W.

    2012-12-01

    The observed temporal clustering of the world's largest earthquakes has been largely discounted for two reasons: a) it is consistent with Poisson clustering, and b) no physical mechanism leading to such clustering has been proposed. This lack of a mechanism arises primarily because the static stress transfer mechanism, commonly used to explain aftershocks and the clustering of large events on localized fault networks, does not work at global distances. However, there is recent observational evidence that the surface waves from large earthquakes trigger non-volcanic tremor at the base of distant fault zones at global distances. Based on these observations, we develop a simple non-linear coupled oscillator model that shows how the triggering of such tremor can lead to the synchronization of large earthquakes on a global scale. A basic assumption of the model is that induced tremor is a proxy for deep creep that advances the seismic cycle of the fault. We support this hypothesis by demonstrating that the 2010 Maule Chile and the 2011 Fukushima Japan earthquakes, which have been shown to induce tremor on the Parkfield segment of the San Andreas Fault, also produce changes in off-fault seismicity that are spatially and temporally consistent with episodes of deep creep on the fault. The observed spatial pattern can be simulated using an Okada dislocation model for deep creep (below 20 km) on the fault plane in which the slip rate decreases from North to South consistent with surface creep measurements and deepens south of the "Parkfield asperity" as indicated by recent tremor locations. The model predicts the off-fault events should have reverse mechanism consistent with observed topography.

  8. A Chandra Survey of low-mass clusters at 0.8 < z < 0.9 selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2016-09-01

    We propose to observe a complete sample of 4 galaxy clusters at 1e14 < M500 < 3e14 and 0.8 < z < 0.9. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

  9. A Chandra Survey of low-mass clusters at 0.7 < z < 0.8 selected in the 100 deg^2 SPT-Pol Deep Field

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph

    2016-09-01

    We propose to observe a complete sample of 4 galaxy clusters at 1e14 < M500 < 3e14 and 0.7 < z < 0.8. These systems were selected from the 100 deg^2 deep field of the SPT-Pol SZ survey. This survey are has significant complementary data, including uniform depth ATCA, Herschel, Spitzer, and DES imaging, enabling a wide variety of astrophysical and cosmological studies. This sample complements the successful SPT-XVP survey, which has a broad redshift range and a narrow mass range, by including clusters over a narrow redshift range and broad mass range. These systems are such low mass and high redshift that they will not be detected in the eRosita all-sky survey.

  10. Prevalence of the Chloroflexi-Related SAR202 Bacterioplankton Cluster throughout the Mesopelagic Zone and Deep Ocean†

    PubMed Central

    Morris, R. M.; Rappé, M. S.; Urbach, E.; Connon, S. A.; Giovannoni, S. J.

    2004-01-01

    Since their initial discovery in samples from the north Atlantic Ocean, 16S rRNA genes related to the environmental gene clone cluster known as SAR202 have been recovered from pelagic freshwater, marine sediment, soil, and deep subsurface terrestrial environments. Together, these clones form a major, monophyletic subgroup of the phylum Chloroflexi. While members of this diverse group are consistently identified in the marine environment, there are currently no cultured representatives, and very little is known about their distribution or abundance in the world's oceans. In this study, published and newly identified SAR202-related 16S rRNA gene sequences were used to further resolve the phylogeny of this cluster and to design taxon-specific oligonucleotide probes for fluorescence in situ hybridization. Direct cell counts from the Bermuda Atlantic time series study site in the north Atlantic Ocean, the Hawaii ocean time series site in the central Pacific Ocean, and along the Newport hydroline in eastern Pacific coastal waters showed that SAR202 cluster cells were most abundant below the deep chlorophyll maximum and that they persisted to 3,600 m in the Atlantic Ocean and to 4,000 m in the Pacific Ocean, the deepest samples used in this study. On average, members of the SAR202 group accounted for 10.2% (±5.7%) of all DNA-containing bacterioplankton between 500 and 4,000 m. PMID:15128540

  11. Integrated piezoelectric actuators in deep drawing tools

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Mainda, P.; Drossel, W.-G.; Kerschner, M.; Wolf, K.

    2011-04-01

    The production of car body panels are defective in succession of process fluctuations. Thus the produced car body panel can be precise or damaged. To reduce the error rate, an intelligent deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen. Mechatronic components in a closed-loop control is the main differentiating factor between an intelligent and a conventional deep drawing tool. In correlation with sensors for process monitoring, the intelligent tool consists of piezoelectric actuators to actuate the deep drawing process. By enabling the usage of sensors and actuators at the die, the forming tool transform to a smart structure. The interface between sensors and actuators will be realized with a closed-loop control. The content of this research will present the experimental results with the piezoelectric actuator. For the analysis a production-oriented forming tool with all automotive requirements were used. The disposed actuators are monolithic multilayer actuators of the piezo injector system. In order to achieve required force, the actuators are combined in a cluster. The cluster is redundant and economical. In addition to the detailed assembly structures, this research will highlight intensive analysis with the intelligent deep drawing tool.

  12. Relative age of Camelot crater and crater clusters near the Apollo 17 landing site

    USGS Publications Warehouse

    Lucchitta, B.K.

    1979-01-01

    Topographic profiles and depth-diameter ratios from the crater Camelot and craters of the central cluster in the Apollo 17 landing area suggest that these craters are of the same age. Therefore, layers that can be recognized in the deep-drill core and that can be identified as ejecta deposits from Camelot or from the cluster craters should yield similar emplacement ages. ?? 1979.

  13. The SWIFT AGN and Cluster Survey. I. Number Counts of AGNs and Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Griffin, Rhiannon D.; Kochanek, Christopher S.; Nugent, Jenna M.; Bregman, Joel N.

    2015-05-01

    The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding γ-ray bursts to provide a medium depth (4× {{10}-15} erg cm-2 s-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present a catalog of 22,563 point sources and 442 extended sources and examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. We use Wide-field Infrared Survey Explorer mid-infrared (MIR) colors to classify the sources. For AGNs we can roughly separate the point sources into MIR-red and MIR-blue AGNs, finding roughly equal numbers of each type in the soft X-ray band (0.5-2 keV), but fewer MIR-blue sources in the hard X-ray band (2-8 keV). The cluster number counts, with 5% uncertainties from cosmic variance, are also consistent with previous surveys but span a much larger continuous flux range. Deep optical or IR follow-up observations of this cluster sample will significantly increase the number of higher-redshift (z\\gt 0.5) X-ray-selected clusters.

  14. Chemical Enrichment History Of Abell 3112 Galaxy Cluster Out To The Virial Radius

    NASA Astrophysics Data System (ADS)

    Ezer, C.; Bulbul, E.; Ercan, E.; Smith, R.; Bautz, M.; Loewenstein, M.; McDonald, M.; Miller, E.

    2017-10-01

    The deep potential well of the galaxy clusters confines all metals produced via supernova explosions within the intra-cluster medium (ICM). The radial distributions of these metals along the ICM are direct records of the metal enrichment history. In this work, we investigate the chemical enrichment history of Abell 3112 galaxy cluster from cluster's core to out to radius R_{200} (˜ 1470 kpc) by analyzing a deep 1.2 Ms Suzaku observations with overlapping 72 ks Chandra observations. The fraction of supernova explosions enriching the ICM is obtained by fitting the X-ray spectra with a robust snapec model implemented in XSPEC. The ratio of supernova type Ia explosions to the core collapse supernova explosions is found in the range 0.12 - 0.16 and uniformly distributed out to R_{200}. The uniform spatial distribution of supernova enrichment indicates an early metal enrichment between the epoch of z ˜ 2 - 3. We also observe that W7, CDD, and WDD SN Ia models equally better explain the highest signal-to-noise region compared to 2D delayed detonation model CDDT. We further report the first time temperature (3.37 ± 0.77 keV) and metallicity (0.22 ± 0.08 Z_{⊙}) measurements of this archetypal cluster at its virial radius.

  15. Deep spectroscopy of nearby galaxy clusters - II. The Hercules cluster

    NASA Astrophysics Data System (ADS)

    Agulli, I.; Aguerri, J. A. L.; Diaferio, A.; Dominguez Palmero, L.; Sánchez-Janssen, R.

    2017-06-01

    We carried out the deep spectroscopic observations of the nearby cluster A 2151 with AF2/WYFFOS@WHT. The caustic technique enables us to identify 360 members brighter than Mr = -16 and within 1.3R200. We separated the members into subsamples according to photometrical and dynamical properties such as colour, local environment and infall time. The completeness of the catalogue and our large sample allow us to analyse the velocity dispersion and the luminosity functions (LFs) of the identified populations. We found evidence of a cluster still in its collapsing phase. The LF of the red population of A 2151 shows a deficit of dwarf red galaxies. Moreover, the normalized LFs of the red and blue populations of A 2151 are comparable to the red and blue LFs of the field, even if the blue galaxies start dominating 1 mag fainter and the red LF is well represented by a single Schechter function rather than a double Schechter function. We discuss how the evolution of cluster galaxies depends on their mass: bright and intermediate galaxies are mainly affected by dynamical friction and internal/mass quenching, while the evolution of dwarfs is driven by environmental processes that need time and a hostile cluster environment to remove the gas reservoirs and halt the star formation.

  16. The enhancement of rapidly quenched galaxies in distant clusters at 0.5 < z < 1.0

    NASA Astrophysics Data System (ADS)

    Socolovsky, Miguel; Almaini, Omar; Hatch, Nina A.; Wild, Vivienne; Maltby, David T.; Hartley, William G.; Simpson, Chris

    2018-05-01

    We investigate the relationship between environment and galaxy evolution in the redshift range 0.5 < z < 1.0. Galaxy overdensities are selected using a friends-of-friends algorithm, applied to deep photometric data in the Ultra-Deep Survey field. A study of the resulting stellar mass functions reveals clear differences between cluster and field environments, with a strong excess of low-mass rapidly quenched galaxies in cluster environments compared to the field. Cluster environments also show a corresponding deficit of young, low-mass star-forming galaxies, which show a sharp radial decline towards cluster centres. By comparing mass functions and radial distributions, we conclude that young star-forming galaxies are rapidly quenched as they enter overdense environments, becoming post-starburst galaxies before joining the red sequence. Our results also point to the existence of two environmental quenching pathways operating in galaxy clusters, operating on different time-scales. Fast quenching acts on galaxies with high specific star formation rates, operating on time-scales shorter than the cluster dynamical time (<1 Gyr). In contrast, slow quenching affects galaxies with moderate specific star formation rates, regardless of their stellar mass, and acts on longer time-scales (≳ 1 Gyr). Of the cluster galaxies in the stellar mass range 9.0 < log (M/M⊙) < 10.5 quenched during this epoch, we find that 73 per cent were transformed through fast quenching, while the remaining 27 per cent followed the slow quenching route.

  17. MUSE spectroscopy and deep observations of a unique compact JWST target, lensing cluster CLIO

    NASA Astrophysics Data System (ADS)

    Griffiths, Alex; Conselice, Christopher J.; Alpaslan, Mehmet; Frye, Brenda L.; Diego, Jose M.; Zitrin, Adi; Yan, Haojing; Ma, Zhiyuan; Barone-Nugent, Robert; Bhatawdekar, Rachana; Driver, Simon P.; Robotham, Aaron S. G.; Windhorst, Rogier A.; Wyithe, J. Stuart B.

    2018-04-01

    We present the results of a VLT MUSE/FORS2 and Spitzer survey of a unique compact lensing cluster CLIO at z = 0.42, discovered through the GAMA survey using spectroscopic redshifts. Compact and massive clusters such as this are understudied, but provide a unique prospective on dark matter distributions and for finding background lensed high-z galaxies. The CLIO cluster was identified for follow-up observations due to its almost unique combination of high-mass and dark matter halo concentration, as well as having observed lensing arcs from ground-based images. Using dual band optical and infra-red imaging from FORS2 and Spitzer, in combination with MUSE optical spectroscopy we identify 89 cluster members and find background sources out to z = 6.49. We describe the physical state of this cluster, finding a strong correlation between environment and galaxy spectral type. Under the assumption of an NFW profile, we measure the total mass of CLIO to be M200 = (4.49 ± 0.25) × 1014 M⊙. We build and present an initial strong-lensing model for this cluster, and measure a relatively low intracluster light (ICL) fraction of 7.21 ± 1.53 per cent through galaxy profile fitting. Due to its strong potential for lensing background galaxies and its low ICL, the CLIO cluster will be a target for our 110 h James Webb Space Telescope `Webb Medium-Deep Field' (WMDF) GTO program.

  18. An Optical and Sunyaev-Zeldovich Blind Cluster Survey

    NASA Astrophysics Data System (ADS)

    Gomez, Percy; Romer, A. Kathy; Holzapfel, William; Peterson, Jeffrey; Ruhl, John; Goldstein, Jon; Daub, Mike

    2005-08-01

    We propose to perform multicolor observations of two deep fields that were observed with the ACBAR bolometer array located at the South Pole. These fields were observed down to a sensitivity of 8 microK/5 arcmin beam at 150 GHz. These observations will be used as control fields for our blind cluster survey which has identified some 30 cluster candidates to date. The goal of the observations is to quantify the number of clusters missed by our SZE survey. This information is important in order to derive constraints on sigma-8 from our SZE blind cluster survey.

  19. Position-specific binding of FUS to nascent RNA regulates mRNA length

    PubMed Central

    Masuda, Akio; Takeda, Jun-ichi; Okuno, Tatsuya; Okamoto, Takaaki; Ohkawara, Bisei; Ito, Mikako; Ishigaki, Shinsuke; Sobue, Gen

    2015-01-01

    More than half of all human genes produce prematurely terminated polyadenylated short mRNAs. However, the underlying mechanisms remain largely elusive. CLIP-seq (cross-linking immunoprecipitation [CLIP] combined with deep sequencing) of FUS (fused in sarcoma) in neuronal cells showed that FUS is frequently clustered around an alternative polyadenylation (APA) site of nascent RNA. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing) of RNA polymerase II (RNAP II) demonstrated that FUS stalls RNAP II and prematurely terminates transcription. When an APA site is located upstream of an FUS cluster, FUS enhances polyadenylation by recruiting CPSF160 and up-regulates the alternative short transcript. In contrast, when an APA site is located downstream from an FUS cluster, polyadenylation is not activated, and the RNAP II-suppressing effect of FUS leads to down-regulation of the alternative short transcript. CAGE-seq (cap analysis of gene expression [CAGE] combined with deep sequencing) and PolyA-seq (a strand-specific and quantitative method for high-throughput sequencing of 3' ends of polyadenylated transcripts) revealed that position-specific regulation of mRNA lengths by FUS is operational in two-thirds of transcripts in neuronal cells, with enrichment in genes involved in synaptic activities. PMID:25995189

  20. Poly(A)-tag deep sequencing data processing to extract poly(A) sites.

    PubMed

    Wu, Xiaohui; Ji, Guoli; Li, Qingshun Quinn

    2015-01-01

    Polyadenylation [poly(A)] is an essential posttranscriptional processing step in the maturation of eukaryotic mRNA. The advent of next-generation sequencing (NGS) technology has offered feasible means to generate large-scale data and new opportunities for intensive study of polyadenylation, particularly deep sequencing of the transcriptome targeting the junction of 3'-UTR and the poly(A) tail of the transcript. To take advantage of this unprecedented amount of data, we present an automated workflow to identify polyadenylation sites by integrating NGS data cleaning, processing, mapping, normalizing, and clustering. In this pipeline, a series of Perl scripts are seamlessly integrated to iteratively map the single- or paired-end sequences to the reference genome. After mapping, the poly(A) tags (PATs) at the same genome coordinate are grouped into one cleavage site, and the internal priming artifacts removed. Then the ambiguous region is introduced to parse the genome annotation for cleavage site clustering. Finally, cleavage sites within a close range of 24 nucleotides and from different samples can be clustered into poly(A) clusters. This procedure could be used to identify thousands of reliable poly(A) clusters from millions of NGS sequences in different tissues or treatments.

  1. A measurement of multi-jet rates in deep-inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abt, I.; Ahmed, T.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Bärwolff, H.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Biddulph, P.; Binder, E.; Bischoff, A.; Bizot, J. C.; Blobel, V.; Borras, K.; Bosetti, P. C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dann, A. W. E.; Dau, W. D.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; Devel, M.; de Roeck, A.; Dingus, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Drescher, A.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebbinghaus, R.; Eberle, M.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N. N.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Fensome, I. F.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Flauger, W.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Genzel, H.; Gerhards, R.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E. M.; Hapke, M.; Harjes, J.; Haydar, R.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hildesheim, W.; Hill, P.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Huet, Ph.; Hufnagel, H.; Huot, N.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kasarian, S.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Kubenka, J. P.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Langkau, R.; Lanius, P.; Laporte, J. F.; Lebedev, A.; Leuschner, A.; Leverenz, C.; Levonian, S.; Lewin, D.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüers, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, A.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milone, V.; Monnier, E.; Moreau, F.; Moreels, J.; Morris, J. V.; Müller, K.; Murín, P.; Murray, S. A.; Nagovizin, V.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Orenstein, S.; Ould-Saada, F.; Pascaud, C.; Patel, G. D.; Peppel, E.; Peters, S.; Phillips, H. T.; Phillips, J. P.; Pichler, Ch.; Pilgram, W.; Pitzl, D.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Rauschnabel, K.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rudowicz, M.; Ruffer, M.; Rusakov, S.; Rybicki, K.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmitz, W.; Schöning, A.; Schröder, V.; Schulz, M.; Schwab, B.; Schwind, A.; Scobel, W.; Seehausen, U.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Smolik, L.; Soloviev, Y.; Spitzer, H.; Staroba, P.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Urban, L.; Usik, A.; Valkar, S.; Valkarova, A.; Vallée, C.; van Esch, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Vick, R.; Villet, G.; Vogel, E.; Wacker, K.; Walker, I. W.; Walther, A.; Weber, G.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wolff, Th.; Womersley, L. A.; Wright, A. E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Závada, P.; Zeitnitz, C.; Ziaeepour, H.; Zimmer, M.; Zimmermann, W.; Zomer, F.

    1994-03-01

    Multi-jet production is observed in deep-inelastic electron proton scattering with the H1 detector at HERA. Jet rates for momentum transfers squared up to 500 GeV2 are determined using the JADE jet clustering algorithm. They are found to be in agreement with predictions from QCD based models.

  2. The Origin of Clusters and Large-Scale Structures: Panoramic View of the High-z Universe

    NASA Astrophysics Data System (ADS)

    Ouchi, Masami

    We will report results of our on-going survey for proto-clusters and large-scale structures at z=3-6. We carried out very wide and deep optical imaging down to i=27 for a 1 deg^2 field of the Subaru/XMM Deep Field with 8.2m Subaru Telescope. We obtain maps of the Universe traced by ~1,000 Ly-a galaxies at z=3, 4, and 6 and by ~10,000 Lyman break galaxies at z=3-6. These cosmic maps have a transverse dimension of ~150 Mpc x 150 Mpc in comoving units at these redshifts, and provide us, for the first time, a panoramic view of the high-z Universe from the scales of galaxies, clusters to large-scale structures. Major results and implications will be presented in our talk. (Part of this work is subject to press embargo.)

  3. Flemish palliative-care nurses' attitudes to palliative sedation: a quantitative study.

    PubMed

    Gielen, Joris; Van den Branden, Stef; Van Iersel, Trudie; Broeckaert, Bert

    2012-09-01

    Palliative sedation is an option of last resort to control refractory suffering. In order to better understand palliative-care nurses' attitudes to palliative sedation, an anonymous questionnaire was sent to all nurses (589) employed in palliative care in Flanders (Belgium). In all, 70.5% of the nurses (n = 415) responded. A large majority did not agree that euthanasia is preferable to palliative sedation, were against non-voluntary euthanasia in the case of a deeply and continuously sedated patient and considered it generally better not to administer artificial floods or fluids to such a patient. Two clusters were found: 58.5% belonged to the cluster of advocates of deep and continuous sedation and 41.5% belonged to the cluster of nurses restricting the application of deep and continuous sedation. These differences notwithstanding, overall the attitudes of the nurses are in accordance with the practice and policy of palliative sedation in Flemish palliative-care units.

  4. The structure of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Fox, David Charles

    When infalling gas is accreted onto a cluster of galaxies, its kinetic energy is converted to thermal energy in a shock, heating the ions. Using a self-similar spherical model, we calculate the collisional heating of the electrons by the ions, and predict the electron and ion temperature profiles. While there are significant differences between the two, they occur at radii larger than currently observable, and too large to explain observed X-ray temperature declines in clusters. Numerical simulations by Navarro, Frenk, & White (1996) predict a universal dark matter density profile. We calculate the expected number of multiply-imaged background galaxies in the Hubble Deep Field due to foreground groups and clusters with this profile. Such groups are up to 1000 times less efficient at lensing than the standard singular isothermal spheres. However, with either profile, the expected number of galaxies lensed by groups in the Hubble Deep Field is at most one, consistent with the lack of clearly identified group lenses. X-ray and Sunyaev-Zel'dovich (SZ) effect observations can be combined to determine the distance to clusters of galaxies, provided the clusters are spherical. When applied to an aspherical cluster, this method gives an incorrect distance. We demonstrate a method for inferring the three-dimensional shape of a cluster and its correct distance from X-ray, SZ effect, and weak gravitational lensing observations, under the assumption of hydrostatic equilibrium. We apply this method to simple, analytic models of clusters, and to a numerically simulated cluster. Using artificial observations based on current X-ray and SZ effect instruments, we recover the true distance without detectable bias and with uncertainties of 4 percent.

  5. High star formation activity in the central region of a distant cluster at z = 1.46

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Kodama, Tadayuki; Koyama, Yusei; Tanaka, Ichi; Shimasaku, Kazuhiro; Okamura, Sadanori

    2010-03-01

    We present an unbiased deep [OII] emission survey of a cluster XMMXCS J2215.9-1738 at z = 1.46, the most distant cluster to date with a detection of extended X-ray emission. With wide-field optical and near-infrared cameras (Suprime-Cam and MOIRCS, respectively) on Subaru telescope, we performed deep imaging with a narrow-band filter NB912 (λc = 9139 Å, Δλ = 134 Å) as well as broad-band filters (B,z',J and Ks). From the photometric catalogues, we have identified 44 [OII] emitters in the cluster central region of 6 × 6 arcmin2 down to a dust-free star formation rate (SFR) of 2.6Msolaryr-1 (3σ). Interestingly, it is found that there are many [OII] emitters even in the central high-density region. In fact, the fraction of [OII] emitters to the cluster members as well as their SFRs and equivalent widths stay almost constant with decreasing cluster-centric distance up to the cluster core. Unlike clusters at lower redshifts (z <~ 1) where star formation activity is mostly quenched in their central regions, this higher redshift XMMXCS J2215.9-1738 cluster shows its high star formation activity even at its centre, suggesting that we are beginning to enter the formation epoch of some galaxies in the cluster core eventually. Moreover, we find a deficit of galaxies on the red sequence at magnitudes fainter than ~M* + 0.5 on the colour-magnitude diagram. This break magnitude is brighter than that of lower redshift clusters, and it is likely that we are seeing the formation phase of more massive red galaxies in the cluster core at z ~ 1. These results may indicate inside-out and down-sizing propagation of star formation activity in the course of cluster evolution.

  6. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  7. Precise weak lensing constraints from deep high-resolution Ks images: VLT/HAWK-I analysis of the super-massive galaxy cluster RCS2 J 232727.7-020437 at z = 0.70

    NASA Astrophysics Data System (ADS)

    Schrabback, Tim; Schirmer, Mischa; van der Burg, Remco F. J.; Hoekstra, Henk; Buddendiek, Axel; Applegate, Douglas; Bradač, Maruša; Eifler, Tim; Erben, Thomas; Gladders, Michael D.; Hernández-Martín, Beatriz; Hildebrandt, Hendrik; Hoag, Austin; Klaes, Dominik; von der Linden, Anja; Marchesini, Danilo; Muzzin, Adam; Sharon, Keren; Stefanon, Mauro

    2018-03-01

    We demonstrate that deep good-seeing VLT/HAWK-I Ks images complemented with g + z-band photometry can yield a sensitivity for weak lensing studies of massive galaxy clusters at redshifts 0.7 ≲ z ≲ 1.1, which is almost identical to the sensitivity of HST/ACS mosaics of single-orbit depth. Key reasons for this good performance are the excellent image quality frequently achievable for Ks imaging from the ground, a highly effective photometric selection of background galaxies, and a galaxy ellipticity dispersion that is noticeably lower than for optically observed high-redshift galaxy samples. Incorporating results from the 3D-HST and UltraVISTA surveys we also obtained a more accurate calibration of the source redshift distribution than previously achieved for similar optical weak lensing data sets. Here we studied the extremely massive galaxy cluster RCS2 J232727.7-020437 (z = 0.699), combining deep VLT/HAWK-I Ks images (point spread function with a 0.''35 full width at half maximum) with LBT/LBC photometry. The resulting weak lensing mass reconstruction suggests that the cluster consists of a single overdensity, which is detected with a peak significance of 10.1σ. We constrained the cluster mass to M200c/(1015 M⊙) = 2.06-0.26+0.28(stat.) ± 0.12(sys.) assuming a spherical Navarro, Frenk & White model and simulation-based priors on the concentration, making it one of the most massive galaxy clusters known in the z ≳ 0.7 Universe. We also cross-checked the HAWK-I measurements through an analysis of overlapping HST/ACS images, yielding fully consistent estimates of the lensing signal. Based on observations conducted with the ESO Very Large Telescope, the Large Binocular Telescope, and the NASA/ESA Hubble Space Telescope, as detailed in the acknowledgements.

  8. Correlation of shallow marine, deep marine, and coastal terrestrial records of central California: asynchronous responses to paleoceanographic and paleoclimatic change during the past 19,000 years

    NASA Astrophysics Data System (ADS)

    McGann, M.

    2016-12-01

    Benthic and planktic foraminiferal census data combined with pollen data acquired from the continental margin off central California (core S3-15G, 3491 m depth from the western levy of the Monterey Fan; 36°23.53'N, 123°20.52'W) provide a unique opportunity to document concurrent paleoceanographic and paleoclimatic changes in the region during the late Quaternary. Radiocarbon dates and the ratio of the planktic foraminiferal species Neogloboquardrina pachyderma (Ehrenberg) to Neogloboquardrina incompta (Cifelli) provide a good age-depth model for the last 19,000 years. Q-mode cluster analysis of the benthic foraminifera grouped the fauna into two clusters reflecting faunal adaptation to changing climatic conditions during the Pleistocene and Holocene, whereas the R-mode cluster analysis identified glacial (Uvigerina senticosa and Globobulimina auriculata) and interglacial (Melonis pompilioides and Gyroidina planulata) faunas. A slight increase in oxygen concentration in the deep sea across the Pleistocene-Holocene transition is suggested by a reduction in abundance of G. auriculata and increased frequency of M. pompilioides. Q-mode cluster analysis of the planktic foraminifera indicates a change in the surface water from a glacial subpolar fauna in the Pleistocene to a transitional fauna in the Holocene. The pollen flora separated into three clusters by Q-mode cluster analysis, two of Pleistocene age (glacial and transitional) and one in the Holocene (interglacial), reflecting adaptation of the flora in the California Coast Ranges of central California to the warmer climate in the Holocene. Decoupling is evident between the benthic foraminiferal, planktic foraminiferal, and terrestrial floral responses to changing oceanographic and climatic conditions. The floral response leads the surface-dwelling planktic fauna by several millennia, and is followed by the deep-dwelling benthic fauna a millennium later.

  9. Progressive reactivation of the volcanic plumbing system beneath Tolbachik volcano (Kamchatka, Russia) revealed by long-period seismicity

    NASA Astrophysics Data System (ADS)

    Frank, William B.; Shapiro, Nikolaï M.; Gusev, Alexander A.

    2018-07-01

    After lying dormant for 36 yr, the Tolbachik volcano of the Klyuchevskoy group started to erupt on 27 November 2012. We investigate the preparatory phase of this eruption via a statistical analysis of the temporal behavior of long-period (LP) earthquakes that occurred beneath this volcanic system. The LP seismicity occurs close to the surface beneath the main volcanic edifices and at 30 km depth in the vicinity of a deep magmatic reservoir. The deep LP earthquakes and those beneath the Klyuchevskoy volcano occur quasi-periodically, while the LP earthquakes beneath Tolbachik are clustered in time. As the seismicity rate increased beneath Tolbachik days before the eruption, the level of the time clustering decreased. We interpret this as a manifestation of the evolution of the volcano plumbing system. We suggest that when a plumbing system awakes after quiescence, multiple cracks and channels are reactivated simultaneously and their interaction results in the strong time clustering of LP earthquakes. With time, this network of channels and cracks evolves into a more stable state with an overall increased permeability, where fluids flow uninhibited throughout the plumbing system except for a few remaining impediments that continue to generate seismic radiation. The inter-seismic source interaction and the level of earthquake time clustering in this latter state is weak. This scenario suggests that the observed evolution of the statistical behavior of the shallow LP seismicity beneath Tolbachik is an indicator of the reactivation and consolidation of the near-surface plumbing system prior to the Tolbachik eruption. The parts of the plumbing system above the deep magmatic reservoir and beneath the Klyuchevskoy volcano remain in nearly permanent activity, as demonstrated by the continuous occurrence of the deep LP earthquakes and very frequent Klyuchevskoy eruptions. This implies that these parts of the plumbing system remain in a stable permeable state and contain a few weakly interacting seismogenic sources. Our results provide new constraints on future mechanical models of the magmatic plumbing systems and demonstrate that the level of time clustering of LP earthquakes can be a useful parameter to infer information about the state of the plumbing system.

  10. Radio Selection of the Most Distant Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Daddi, E.; Jin, S.; Strazzullo, V.; Sargent, M. T.; Wang, T.; Ferrari, C.; Schinnerer, E.; Smolčić, V.; Calabró, A.; Coogan, R.; Delhaize, J.; Delvecchio, I.; Elbaz, D.; Gobat, R.; Gu, Q.; Liu, D.; Novak, M.; Valentino, F.

    2017-09-01

    We show that the most distant X-ray-detected cluster known to date, Cl J1001 at {z}{spec}=2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10\\prime\\prime ) in deep 0\\buildrel{\\prime\\prime}\\over{.} 75 resolution VLA 3 GHz imaging, with {S}3{GHz}> 8 μ {Jy}. Of the six, an active galactic nucleus (AGN) likely affects the radio emission in two galaxies, while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2 deg2 field using radio-detected 3 GHz sources and looking for peaks in {{{Σ }}}5 density maps. Cl J1001 is the strongest overdensity by far with > 10σ , with a simple {z}{phot}> 1.5 preselection. A cruder photometric rejection of z< 1 radio foregrounds leaves Cl J1001 as the second strongest overdensity, while even using all radio sources Cl J1001 remains among the four strongest projected overdensities. We conclude that there are great prospects for future deep and wide-area radio surveys to discover large samples of the first generation of forming galaxy clusters. In these remarkable structures, widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z≳ 2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.

  11. Deep Sea Actinomycetes and Their Secondary Metabolites

    PubMed Central

    Kamjam, Manita; Sivalingam, Periyasamy; Deng, Zinxin; Hong, Kui

    2017-01-01

    Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces. PMID:28507537

  12. A Fast SVM-Based Tongue's Colour Classification Aided by k-Means Clustering Identifiers and Colour Attributes as Computer-Assisted Tool for Tongue Diagnosis.

    PubMed

    Kamarudin, Nur Diyana; Ooi, Chia Yee; Kawanabe, Tadaaki; Odaguchi, Hiroshi; Kobayashi, Fuminori

    2017-01-01

    In tongue diagnosis, colour information of tongue body has kept valuable information regarding the state of disease and its correlation with the internal organs. Qualitatively, practitioners may have difficulty in their judgement due to the instable lighting condition and naked eye's ability to capture the exact colour distribution on the tongue especially the tongue with multicolour substance. To overcome this ambiguity, this paper presents a two-stage tongue's multicolour classification based on a support vector machine (SVM) whose support vectors are reduced by our proposed k -means clustering identifiers and red colour range for precise tongue colour diagnosis. In the first stage, k -means clustering is used to cluster a tongue image into four clusters of image background (black), deep red region, red/light red region, and transitional region. In the second-stage classification, red/light red tongue images are further classified into red tongue or light red tongue based on the red colour range derived in our work. Overall, true rate classification accuracy of the proposed two-stage classification to diagnose red, light red, and deep red tongue colours is 94%. The number of support vectors in SVM is improved by 41.2%, and the execution time for one image is recorded as 48 seconds.

  13. A Fast SVM-Based Tongue's Colour Classification Aided by k-Means Clustering Identifiers and Colour Attributes as Computer-Assisted Tool for Tongue Diagnosis

    PubMed Central

    Ooi, Chia Yee; Kawanabe, Tadaaki; Odaguchi, Hiroshi; Kobayashi, Fuminori

    2017-01-01

    In tongue diagnosis, colour information of tongue body has kept valuable information regarding the state of disease and its correlation with the internal organs. Qualitatively, practitioners may have difficulty in their judgement due to the instable lighting condition and naked eye's ability to capture the exact colour distribution on the tongue especially the tongue with multicolour substance. To overcome this ambiguity, this paper presents a two-stage tongue's multicolour classification based on a support vector machine (SVM) whose support vectors are reduced by our proposed k-means clustering identifiers and red colour range for precise tongue colour diagnosis. In the first stage, k-means clustering is used to cluster a tongue image into four clusters of image background (black), deep red region, red/light red region, and transitional region. In the second-stage classification, red/light red tongue images are further classified into red tongue or light red tongue based on the red colour range derived in our work. Overall, true rate classification accuracy of the proposed two-stage classification to diagnose red, light red, and deep red tongue colours is 94%. The number of support vectors in SVM is improved by 41.2%, and the execution time for one image is recorded as 48 seconds. PMID:29065640

  14. Deep Brain Stimulation of the Subthalamic Nucleus Improves Lexical Switching in Parkinsons Disease Patients.

    PubMed

    Vonberg, Isabelle; Ehlen, Felicitas; Fromm, Ortwin; Kühn, Andrea A; Klostermann, Fabian

    2016-01-01

    Reduced verbal fluency (VF) has been reported in patients with Parkinson's disease (PD), especially those treated by Deep Brain Stimulation of the subthalamic nucleus (STN DBS). To delineate the nature of this dysfunction we aimed at identifying the particular VF-related operations modified by STN DBS. Eleven PD patients performed VF tasks in their STN DBS ON and OFF condition. To differentiate VF-components modulated by the stimulation, a temporal cluster analysis was performed, separating production spurts (i.e., 'clusters' as correlates of automatic activation spread within lexical fields) from slower cluster transitions (i.e., 'switches' reflecting set-shifting towards new lexical fields). The results were compared to those of eleven healthy control subjects. PD patients produced significantly more switches accompanied by shorter switch times in the STN DBS ON compared to the STN DBS OFF condition. The number of clusters and time intervals between words within clusters were not affected by the treatment state. Although switch behavior in patients with DBS ON improved, their task performance was still lower compared to that of healthy controls. Beyond impacting on motor symptoms, STN DBS seems to influence the dynamics of cognitive procedures. Specifically, the results are in line with basal ganglia roles for cognitive switching, in the particular case of VF, from prevailing lexical concepts to new ones.

  15. Cluster outskirts and the missing baryons

    NASA Astrophysics Data System (ADS)

    Eckert, D.

    2016-06-01

    Galaxy clusters are located at the crossroads of intergalactic filaments and are still forming through the continuous merging and accretion of smaller structures from the surrounding cosmic web. Deep, wide-field X-ray studies of the outskirts of the most massive clusters bring us valuable insight into the processes leading to the growth of cosmic structures. In addition, cluster outskirts are privileged sites to search for the missing baryons, which are thought to reside within the filaments of the cosmic web. I will present the XMM cluster outskirts project, a VLP that aims at mapping the outskirts of 13 nearby clusters. Based on the results obtained with this program, I will then explore ideas to exploit the capabilities of XMM during the next decade.

  16. Intermediate-depth icequakes and harmonic tremor in an Alpine glacier (Glacier d'Argentière, France): Evidence for hydraulic fracturing?

    NASA Astrophysics Data System (ADS)

    Helmstetter, Agnès.; Moreau, Luc; Nicolas, Barbara; Comon, Pierre; Gay, Michel

    2015-03-01

    We detected several thousand deep englacial icequakes on Glacier d'Argentière (Mont-Blanc massif) between 30 March and 3 May 2012. These events have been classified in eight clusters. Inside each cluster, the waveforms are similar for P waves and S waves, although the time delay between the P waves and the S waves vary by up to 0.03 s, indicating an extended source area. Although these events were recorded by a single accelerometer, they were roughly located using a polarization analysis. The deepest events were located at a depth of 130 m, 60 m above the ice/bed interface. The clusters are separated in space. The largest cluster extends over about 100 m. For this cluster, the strike of the rupture plane is nearly parallel to the direction of the open crevasses, and the dip angle is 56°. Deep icequakes occur in bursts of activity that last for a few hours and are separated by quiet periods. Many events occurred on 28 and 29 April 2012, during the warmest days, when snowmelting was likely important. The distributions of interevent times and peak amplitudes obey power laws as also observed for earthquakes, but with larger exponents. The polarity of the P waves for all of the events is consistent with tensile faulting. Finally, between 25 April and 3 May, we observed a gliding harmonic tremor with a fundamental resonance frequency that varied between 30 Hz and 38 Hz, with additional higher-frequency harmonics. During this time we also observed shallow hybrid events with high-frequency onsets and a monochromatic coda. These events might be produced by the propagation of fractures and the subsequent flow of water into the fracture. The strongest resonance was observed just after a strong burst of deep icequakes and during an unusually warm period when the snow height decreased by 60 cm in 1 week. The resonance frequency shows a succession of several sharp decreases and phases of progressive increases. One of the strongest negative steps of the resonance frequency on 28 April coincides with a burst of deep icequakes. These events appear to be associated with the propagation of fractures, which can explain the decrease in the resonance frequency. Finally, we observed an acceleration of glacier flow on 29 April, suggesting that meltwater had reached the ice/bed interface. These observations suggest that deep icequakes are due to hydraulic fracturing and that they can be used to track fluid flow inside glaciers.

  17. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraft, R. P.; Roediger, E.; Machacek, M.

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffusemore » emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high- β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.« less

  18. Stripped Elliptical Galaxies as Probes of ICM Physics. III. Deep Chandra Observations of NGC 4552: Measuring the Viscosity of the Intracluster Medium

    NASA Astrophysics Data System (ADS)

    Kraft, R. P.; Roediger, E.; Machacek, M.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Churazov, E.; Randall, S.; Su, Y.; Sheardown, A.

    2017-10-01

    We present results from a deep (200 ks) Chandra observation of the early-type galaxy NGC 4552 (M89), which is falling into the Virgo cluster. Previous shallower X-ray observations of this galaxy showed a remnant gas core, a tail to the South of the galaxy, and twin “horns” attached to the northern edge of the gas core. In our deeper data, we detect a diffuse, low surface brightness extension to the previously known tail, and measure the temperature structure within the tail. We combine the deep Chandra data with archival XMM-Newton observations to put a strong upper limit on the diffuse emission of the tail out to a large distance (10× the radius of the remnant core) from the galaxy center. In our two previous papers, we presented the results of hydrodynamical simulations of ram pressure stripping specifically for M89 falling into the Virgo cluster and investigated the effect of intracluster medium (ICM) viscosity. In this paper, we compare our deep data with our specifically tailored simulations and conclude that the observed morphology of the stripped tail in NGC 4552 is most similar to the inviscid models. We conclude that, to the extent the transport processes can be simply modeled as a hydrodynamic viscosity, the ICM viscosity is negligible. More generally, any micro-scale description of the transport processes in the high-β plasma of the cluster ICM must be consistent with the efficient mixing observed in the stripped tail on macroscopic scales.

  19. Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition

    PubMed Central

    Shen, Sheng; Yao, Xiaohui; Sheng, Meiping; Wang, Chen

    2018-01-01

    Underwater acoustic target recognition based on ship-radiated noise belongs to the small-sample-size recognition problems. A competitive deep-belief network is proposed to learn features with more discriminative information from labeled and unlabeled samples. The proposed model consists of four stages: (1) A standard restricted Boltzmann machine is pretrained using a large number of unlabeled data to initialize its parameters; (2) the hidden units are grouped according to categories, which provides an initial clustering model for competitive learning; (3) competitive training and back-propagation algorithms are used to update the parameters to accomplish the task of clustering; (4) by applying layer-wise training and supervised fine-tuning, a deep neural network is built to obtain features. Experimental results show that the proposed method can achieve classification accuracy of 90.89%, which is 8.95% higher than the accuracy obtained by the compared methods. In addition, the highest accuracy of our method is obtained with fewer features than other methods. PMID:29570642

  20. Precise location of San Andreas Fault tremors near Cholame, California using seismometer clusters: Slip on the deep extension of the fault?

    USGS Publications Warehouse

    Shelly, D.R.; Ellsworth, W.L.; Ryberg, T.; Haberland, C.; Fuis, G.S.; Murphy, J.; Nadeau, R.M.; Burgmann, R.

    2009-01-01

    We examine a 24-hour period of active San Andreas Fault (SAF) tremor and show that this tremor is largely composed of repeated similar events. Utilizing this similarity, we locate the subset of the tremor with waveforms similar to an identified low frequency earthquake (LFE) "master template," located using P and S wave arrivals to be ???26 km deep. To compensate for low signal-to-noise, we estimate event-pair differential times at "clusters" of nearby stations rather than at single stations. We find that the locations form a near-linear structure in map view, striking parallel to the SAF and near the surface trace. Therefore, we suggest that at least a portion of the tremor occurs on the deep extension of the fault, likely reflecting shear slip, similar to subduction zone tremor. If so, the SAF may extend to the base of the crust, ???10 km below the deepest regular earthquakes on the fault. ?? 2009 by the American Geophysical Union.

  1. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  2. Cluster mass calibration at high redshift: HST weak lensing analysis of 13 distant galaxy clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    NASA Astrophysics Data System (ADS)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; Hoekstra, H.; Bocquet, S.; Gonzalez, A. H.; von der Linden, A.; McDonald, M.; Morrison, C. B.; Raihan, S. F.; Allen, S. W.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Chiu, I.; Desai, S.; Foley, R. J.; de Haan, T.; High, F. W.; Hilbert, S.; Mantz, A. B.; Massey, R.; Mohr, J.; Reichardt, C. L.; Saro, A.; Simon, P.; Stern, C.; Stubbs, C. W.; Zenteno, A.

    2018-02-01

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (zmedian = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z)M500c/1014 M⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81^{+0.24}_{-0.14}(stat.) {± } 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  3. Extended Star Formation or a Range of Stellar Rotation Velocities? The Nature of Extended Main Sequence Turnoffs in Intermediate-Age Star Clusters

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    2016-10-01

    Recently, deep color-magnitude diagrams (CMDs) from HST data revealed that several massive intermediate-age star clusters in the Magellanic Clouds exhibit extended main-sequence turn-offs (eMSTOs), and in some cases also dual red clumps. This poses serious questions regarding the mechanisms responsible for the formation of massive star clusters and their well-known light-element abundance variations. The nature of eMSTOs is currently a hotly debated topic of study. Several recent studies indicate that the eMSTOs are caused by an age spread of about 100-500 Myr among cluster stars, while other studies indicate that eMSTOs can be caused by a coeval population in which the relevant stars span a range of rotation velocities. Formal evidence to (dis-)prove either scenario still remains at large, mainly because the available stellar tracks that incorporate the effects of rotation are only available for masses > 1.7 Msun whereas the stars in the known eMSTOs of intermediate-age clusters are less massive. To circumvent this issue, we identified a massive star cluster in the Large Magellanic Cloud (LMC) that has the right dynamical properties to host an eMSTO along with an age at which the effects of age spreads to CMD morphology are substantially different from those of spreads of rotation rates: the 600 Myr old cluster NGC 1831. We propose to obtain deep WFC3/UVIS imaging with filters F336W and F814W to analyze the morphologies of the MSTO and upper MS regions of NGC 1831 at high precision and compare with model predictions. This will have a lasting impact on our understanding of the eMSTO phenomenon and of star cluster formation in general.

  4. The sensitivity of harassment to orbit: mass loss from early-type dwarfs in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sánchez-Janssen, R.; Beasley, M. A.; Candlish, G. N.; Gibson, B. K.; Puzia, T. H.; Janz, J.; Knebe, A.; Aguerri, J. A. L.; Lisker, T.; Hensler, G.; Fellhauer, M.; Ferrarese, L.; Yi, S. K.

    2015-12-01

    We conduct a comprehensive numerical study of the orbital dependence of harassment on early-type dwarfs consisting of 168 different orbits within a realistic, Virgo-like cluster, varying in eccentricity and pericentre distance. We find harassment is only effective at stripping stars or truncating their stellar discs for orbits that enter deep into the cluster core. Comparing to the orbital distribution in cosmological simulations, we find that the majority of the orbits (more than three quarters) result in no stellar mass loss. We also study the effects on the radial profiles of the globular cluster systems of early-type dwarfs. We find these are significantly altered only if harassment is very strong. This suggests that perhaps most early-type dwarfs in clusters such as Virgo have not suffered any tidal stripping of stars or globular clusters due to harassment, as these components are safely embedded deep within their dark matter halo. We demonstrate that this result is actually consistent with an earlier study of harassment of dwarf galaxies, despite the apparent contradiction. Those few dwarf models that do suffer stellar stripping are found out to the virial radius of the cluster at redshift = 0, which mixes them in with less strongly harassed galaxies. However when placed on phase-space diagrams, strongly harassed galaxies are found offset to lower velocities compared to weakly harassed galaxies. This remains true in a cosmological simulation, even when haloes have a wide range of masses and concentrations. Thus phase-space diagrams may be a useful tool for determining the relative likelihood that galaxies have been strongly or weakly harassed.

  5. First LOCSMITH locations of deep moonquakes

    NASA Astrophysics Data System (ADS)

    Hempel, S.; Knapmeyer, M.; Sens-Schönfelder, C.; Oberst, J.

    2008-09-01

    Introduction Several thousand seismic events were recorded by the Apollo seismic network from 19691977. Different types of events can be distinguished: meteoroid impacts, thermal quakes and internally caused moonquakes. The latter subdivide into shallow (100 to 300km) and deep moonquakes (700 to 1100km), which are by far the most common events. The deep quakes would be no immediate danger to inhabitated stations on the Earth's Moon because of their relatively low magnitude and great depth. However, they bear important information on lunar structure and evolution, and their distribution probably reflects their source mechanism. In this study, we reinvestigate location patterns of deep lunar quakes. LOCSMITH The core of this study is a new location method (LOCSMITH, [1]). This algorithm uses time intervals rather than time instants as input, which contain the dedicated arrival with probability 1. LOCSMITH models and compares theoretical and actual travel times on a global scale and uses an adaptive grid to search source locations compatible with all observations. The output is a set of all possible hypocenters for the considered region of repeating, tidally triggered moonquake activity, called clusters. The shape and size of these sets gives a better estimate of the location uncertainty than the formal standard deviations returned by classical methods. This is used for grading of deep moonquake clusters according to the currently available data quality. Classification of deep moonquakes As first step, we establish a reciprocal dependence of size and shape of LOCSMITH location clouds on number of arrivals. Four different shapes are recognized, listed here in an order corresponding to decreasing spatial resolution: 1. "Balls", which are well defined and relatively small types of sets resembling the commonly assumed error ellipsoid. These are found in the best cases with many observations. Locations in this shape are obtained for clusters 1, 18 or 33, these were already well located by earlier works [2,3]. 2. The next best shape of a location set is the "banana" as found for clusters 5, 39 or 53 [Fig. 1]. In this case, only limited depth resolution is available, and the solution spreads over a large volume. The size of a "banana" could be minimized by either finding a not yet discovered shear wave arrival or estimating a S arrival time interval by considering the coda instead of a clear S arrival. 3. Shape of clouds we call "cones" are formed by clusters for which no compressional wave arrivals, but three S arrivals were picked. Such solutions were found for clusters 35, 201 or 218 [Fig. 2]. A depth limitation is given only by the surface of the Moon's far side. In previous works, locations of these clusters were usually determined with a fixed depth, thus neglecting all depth uncertainty [2]. 4. The fourth and worst class shows a "disc"like shape with no depth resolution and almost no latitude resolution. Clusters of this class, like 4, 23 or 43, were not located so far. From class 1 ("ball") to 4 ("disc") the amount of possible hypocenters increases. So we also found a correlation between size and shape of volumes containing possible hypocenter solutions. Aim We classified all clusters according to the solution set scheme by using arrival times of [2] with an estimated error of ±10s as input for LOCSMITH. We reprocess selected clusters of each class to come up with the special requirements and possibilities of this new location method. As said above, one of the requirements of LOCSMITH is the definition of a time interval instead of a time instant for input, and an interesting option is using an estimated S arrival time interval derived from coda and scattering model, lacking a clear S arrival. We try to find fully automated methods for each processing step, dependent on the quality of data. Methods For despiking we merged methods by [4] and [5] and achieve very good results even for worst case as already presented in [6]. Prior to stacking we developed a complex multiparameter correlation algorithm to calculate the optimum time shift. Results We present relocations of selected deep moonquakes in context of data availability and quality. Previous locations are often contained in our location clouds, but realistic location uncertainties allow large deviations from the best fitting solutions, including locations on the far side of the Moon. Perspective By developing new methods for data processing and using the LOCSMITH locating algorithm we hope to reduce the location uncertainty sufficiently to make sure that all sources are on the near side, or to prove a far side origin of some of them. This would answer questions of hemispheric symmetry of lunar deep seismicity and the Moon's internal structure. References [1] Knapmeyer (2008) accepted to GJI. [2] Nakamura (2005) JGR, 110, E01001. [3] Lognonné (2003) EPSL, 211, 2744. [4] Bulow (2005) JGR, 110, E10003. [5] Sonnemann (2005) EGU05A07960. [6] Hempel, Knapmeyer, Oberst (2008) EGU2008A07989.

  6. Discovery of a large-scale clumpy structure around the Lynx supercluster at z~ 1.27

    NASA Astrophysics Data System (ADS)

    Nakata, Fumiaki; Kodama, Tadayuki; Shimasaku, Kazuhiro; Doi, Mamoru; Furusawa, Hisanori; Hamabe, Masaru; Kimura, Masahiko; Komiyama, Yutaka; Miyazaki, Satoshi; Okamura, Sadanori; Ouchi, Masami; Sekiguchi, Maki; Ueda, Yoshihiro; Yagi, Masafumi; Yasuda, Naoki

    2005-03-01

    We report the discovery of a probable large-scale structure composed of many galaxy clumps around the known twin clusters at z= 1.26 and 1.27 in the Lynx region. Our analysis is based on deep, panoramic, and multicolour imaging, 26.4 × 24.1 arcmin2 in VRi'z' bands with the Suprime-Cam on the 8.2-m Subaru telescope. This unique, deep and wide-field imaging data set allows us for the first time to map out the galaxy distribution in the highest-redshift supercluster known. We apply a photometric redshift technique to extract plausible cluster members at z~ 1.27 down to i'= 26.15 (5σ) corresponding to ~M*+ 2.5 at this redshift. From the two-dimensional distribution of these photometrically selected galaxies, we newly identify seven candidates of galaxy groups or clusters where the surface density of red galaxies is significantly high (>5σ), in addition to the two known clusters. These candidates show clear red colour-magnitude sequences consistent with a passive evolution model, which suggests the existence of additional high-density regions around the Lynx superclusters.

  7. Non Thermal Emission from Clusters of Galaxies: the Importance of a Joint LOFAR/Simbol-X View

    NASA Astrophysics Data System (ADS)

    Ferrari, C.

    2009-05-01

    Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources (``halos'' and ``relics'') related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. I will outline our current knowledge about the presence and properties of this non-thermal cluster component. Despite the recent progress made in observational and theoretical studies of the non-thermal emission in galaxy clusters, a number of open questions about its origin and its effects on the thermo-dynamical evolution of galaxy clusters need to be answered. I will show the importance of combining galaxy cluster observations by new-generation instruments such as LOFAR and Simbol-X. A deeper knowledge of the non-thermal cluster component, together with statistical studies of radio halos and relics, will allow to test the current cluster formation scenario and to better constrain the physics of large scale structure evolution.

  8. OGLE Collection of Star Clusters. New Objects in the Outskirts of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sitek, M.; Szymański, M. K.; Skowron, D. M.; Udalski, A.; Kostrzewa-Rutkowska, Z.; Skowron, J.; Karczmarek, P.; Cieślar, M.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; Soszyński, I.; Mróz, P.; Pawlak, M.; Poleski, R.; Ulaczyk, K.

    2016-09-01

    The Magellanic System (MS), consisting of the Large Magellanic Cloud (LMC), the Small Magellanic Cloud (SMC) and the Magellanic Bridge (MBR), contains diverse sample of star clusters. Their spatial distribution, ages and chemical abundances may provide important information about the history of formation of the whole System. We use deep photometric maps derived from the images collected during the fourth phase of the Optical Gravitational Lensing Experiment (OGLE-IV) to construct the most complete catalog of star clusters in the Large Magellanic Cloud using the homogeneous photometric data. In this paper we present the collection of star clusters found in the area of about 225 square degrees in the outer regions of the LMC. Our sample contains 679 visually identified star cluster candidates, 226 of which were not listed in any of the previously published catalogs. The new clusters are mainly young small open clusters or clusters similar to associations.

  9. Early Results from Swift AGN and Cluster Survey

    NASA Astrophysics Data System (ADS)

    Dai, Xinyu; Griffin, Rhiannon; Nugent, Jenna; Kochanek, Christopher S.; Bregman, Joel N.

    2016-04-01

    The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. SACS provides excellent constraints on the AGN and cluster number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z > 1 for massive clusters. In the second paper, we use SDSS DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. These analysis results suggest that our Swift cluster selection algorithm presented in our first paper has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. In the end, we will discuss our ongoing optical identification of z>0.5 cluster sample, using MDM, KPNO, CTIO, and Magellan data, and discuss SACS as a pilot for eROSITA deep surveys.

  10. FAR-FLUNG GALAXY CLUSTERS MAY REVEAL FATE OF UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A selection of NASA Hubble Space Telescope snapshots of huge galaxy clusters that lie far away and far back in time. These are selected from a catalog of 92 new clusters uncovered during a six-year Hubble observing program known as the Medium Deep Survey. If the distances and masses of the clusters are confirmed by ground based telescopes, the survey may hold clues to how galaxies quickly formed into massive large-scale structures after the big bang, and what that may mean for the eventual fate of the expanding universe. The images are each a combination of two exposures in yellow and deep red taken with Hubble's Wide Field and Planetary Camera 2. Each cluster's distance is inferred from the reddening of the starlight, which is due to the expansion of space. Astronomers assume these clusters all formed early in the history of the universe. HST133617-00529 (left) This collection of spiral and elliptical galaxies lies an estimated 4 to 6 billion light-years away. It is in the constellation of Virgo not far from the 3rd magnitude star Zeta Virginis. The brighter galaxies in this cluster have red magnitudes between 20 and 22 near the limit of the Palomar Sky Survey. The bright blue galaxy (upper left) is probably a foreground galaxy, and not a cluster member. The larger of the galaxies in the cluster are probably about the size of our Milky Way Galaxy. The diagonal line at lower right is an artificial satellite trail. HST002013+28366 (upper right) This cluster of galaxies lies in the constellation of Andromeda a few degrees from the star Alpheratz in the northeast corner of the constellation Pegasus. It is at an estimated distance of 4 billion light-years, which means the light we are seeing from the cluster is as it appeared when the universe was roughly 2/3 of its present age. HST035528+09435 (lower right) At an estimated distance of about 7 to 10 billion light-years (z=1), this is one of the farthest clusters in the Hubble sample. The cluster lies in the constellation of Taurus. Credit: K. Ratnatunga, R. Griffiths (Carnegie Mellon University); and NASA

  11. Do X-ray dark or underluminous galaxy clusters exist?

    NASA Astrophysics Data System (ADS)

    Andreon, S.; Moretti, A.

    2011-12-01

    We study the X-ray properties of a color-selected sample of clusters at 0.1 < z < 0.3, to quantify the real aboundance of the population of X-ray dark or underluminous clusters and at the same time the spurious detection contamination level of color-selected cluster catalogs. Starting from a local sample of color-selected clusters, we restrict our attention to those with sufficiently deep X-ray observations to probe their X-ray luminosity down to very faint values and without introducing any X-ray bias. This allowed us to have an X-ray- unbiased sample of 33 clusters to measure the LX-richness relation. Swift 1.4 Ms X-ray observations show that at least 89% of the color-detected clusters are real objects with a potential well deep enough to heat and retain an intracluster medium. The percentage rises to 94% when one includes the single spectroscopically confirmed color-selected cluster whose X-ray emission is not secured. Looking at our results from the opposite perspective, the percentage of X-ray dark clusters among color-selected clusters is very low: at most about 11 per cent (at 90% confidence). Supplementing our data with those from literature, we conclude that X-ray- and color- cluster surveys sample the same population and consequently that in this regard we can safely use clusters selected with any of the two methods for cosmological purposes. This is an essential and promising piece of information for upcoming surveys in both the optical/IR (DES, EUCLID) and X-ray (eRosita). Richness correlates with X-ray luminosity with a large scatter, 0.51 ± 0.08 (0.44 ± 0.07) dex in lgLX at a given richness, when Lx is measured in a 500 (1070) kpc aperture. We release data and software to estimate the X-ray flux, or its upper limit, of a source with over-Poisson background fluctuations (found in this work to be ~20% on cluster angular scales) and to fit X-ray luminosity vs richness if there is an intrinsic scatter. These Bayesian applications rigorously account for boundaries (e.g., the X-ray luminosity and the richness cannot be negative).

  12. Dynamics, Chemical Abundances, and ages of Globular Clusters in the Virgo Cluster of Galaxies

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; NGVS Collaboration

    2018-01-01

    We present a study of the dynamics, metallicities, and ages of globular clusters (GCs) in the Next Generation Virgo cluster Survey (NGVS), a deep, multi-band (u, g, r, i, z, and Ks), wide-field (104 deg2) imaging survey carried out using the 3.6-m Canada-France-Hawaii Telescope and MegaCam imager. GC candidates were selected from the NGVS survey using photometric and image morphology criteria and these were followed up with deep, medium-resolution, multi-object spectroscopy using the Keck II 10-m telescope and DEIMOS spectrograph. The primary spectroscopic targets were candidate GC satellites of dwarf elliptical (dE) and ultra-diffuse galaxies (UDGs) in the Virgo cluster. While many objects were confirmed as GC satellites of Virgo dEs and UDGs, many turned out to be non-satellites based on their radial velocity and/or positional mismatch any identifiable Virgo cluster galaxy. We have used a combination of spectral characteristics (e.g., presence of absorption vs. emission lines), new Gaussian mixture modeling of radial velocity and sky position data, and a new extreme deconvolution analysis of ugrizKs photometry and image morphology, to classify all the objects in our sample into: (1) GC satellites of dE galaxies, (2) GC satellites of UDGs, (3) intra-cluster GCs (ICGCs) in the Virgo cluster, (4) GCs in the outer halo of the central cluster galaxy M87, (5) foreground Milky Way stars, and (6) distant background galaxies. We use these data to study the dynamics and dark matter content of dE and UDGs in the Virgo cluster, place important constraints on the nature of dE nuclei, and study the origin of ICGCs versus GCs in the remote M87 halo.We are grateful for financial support from the NSF and NASA/STScI.

  13. Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara

    PubMed Central

    Quaiser, Achim; Zivanovic, Yvan; Moreira, David; López-García, Purificación

    2011-01-01

    To extend comparative metagenomic analyses of the deep-sea, we produced metagenomic data by direct 454 pyrosequencing from bathypelagic plankton (1000 m depth) and bottom sediment of the Sea of Marmara, the gateway between the Eastern Mediterranean and the Black Seas. Data from small subunit ribosomal RNA (SSU rRNA) gene libraries and direct pyrosequencing of the same samples indicated that Gamma- and Alpha-proteobacteria, followed by Bacteroidetes, dominated the bacterial fraction in Marmara deep-sea plankton, whereas Planctomycetes, Delta- and Gamma-proteobacteria were the most abundant groups in high bacterial-diversity sediment. Group I Crenarchaeota/Thaumarchaeota dominated the archaeal plankton fraction, although group II and III Euryarchaeota were also present. Eukaryotes were highly diverse in SSU rRNA gene libraries, with group I (Duboscquellida) and II (Syndiniales) alveolates and Radiozoa dominating plankton, and Opisthokonta and Alveolates, sediment. However, eukaryotic sequences were scarce in pyrosequence data. Archaeal amo genes were abundant in plankton, suggesting that Marmara planktonic Thaumarchaeota are ammonia oxidizers. Genes involved in sulfate reduction, carbon monoxide oxidation, anammox and sulfatases were over-represented in sediment. Genome recruitment analyses showed that Alteromonas macleodii ‘surface ecotype', Pelagibacter ubique and Nitrosopumilus maritimus were highly represented in 1000 m-deep plankton. A comparative analysis of Marmara metagenomes with ALOHA deep-sea and surface plankton, whale carcasses, Peru subsurface sediment and soil metagenomes clustered deep-sea Marmara plankton with deep-ALOHA plankton and whale carcasses, likely because of the suboxic conditions in the deep Marmara water column. The Marmara sediment clustered with the soil metagenome, highlighting the common ecological role of both types of microbial communities in the degradation of organic matter and the completion of biogeochemical cycles. PMID:20668488

  14. A deep staring campaign in the σ Orionis cluster. Variability in substellar members

    NASA Astrophysics Data System (ADS)

    Elliott, P.; Scholz, A.; Jayawardhana, R.; Eislöffel, J.; Hébrard, E. M.

    2017-12-01

    Context. The young star cluster near σ Orionis is one of the primary environments to study the properties of young brown dwarfs down to masses comparable to those of giant planets. Aims: Deep optical imaging is used to study time-domain properties of young brown dwarfs over typical rotational timescales and to search for new substellar and planetary-mass cluster members. Methods: We used the Visible Multi Object Spectrograph (VIMOS) at the Very Large Telescope (VLT) to monitor a 24'× 16' field in the I-band. We stared at the same area over a total integration time of 21 h, spanning three observing nights. Using the individual images from this run we investigated the photometric time series of nine substellar cluster members with masses from 10 to 60 MJup. The deep stacked image shows cluster members down to ≈5 MJup. We searched for new planetary-mass objects by combining our deep I-band photometry with public J-band magnitudes and by examining the nearby environment of known very low mass members for possible companions. Results: We find two brown dwarfs, with significantly variable, aperiodic light curves, both with masses around 50 MJup, one of which was previously unknown to be variable. The physical mechanism responsible for the observed variability is likely to be different for the two objects. The variability of the first object, a single-lined spectroscopic binary, is most likely linked to its accretion disc; the second may be caused by variable extinction by large grains. We find five new candidate members from the colour-magnitude diagram and three from a search for companions within 2000 au. We rule all eight sources out as potential members based on non-stellar shape and/or infrared colours. The I-band photometry is made available as a public dataset. Conclusions: We present two variable brown dwarfs. One is consistent with ongoing accretion, the other exhibits apparent transient variability without the presence of an accretion disc. Our analysis confirms the existing census of substellar cluster members down to ≈7 MJup. The zero result from our companion search agrees with the low occurrence rate of wide companions to brown dwarfs found in other works. Based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 078.C-0042.Full Table B.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A66

  15. Abell 1142 and the Missing Central Galaxy – A Cluster in Transition?

    NASA Astrophysics Data System (ADS)

    Jones, Alexander; Su, Yuanyuan; Buote, David; Forman, William; van Weeren, Reinout; Jones, Christine; Gastaldello, Fabio; Kraft, Ralph; Randall, Scott

    2018-01-01

    Two types of galaxy clusters exist: cool core (CC) clusters which exhibit centrally-peaked metallicity and X-ray emission and non-cool core (NCC) clusters, possessing comparably homogeneous metallicity and X-ray emission distributions. However, the origin of this dichotomy is still unknown. The current prevailing theories state that either there is a primordial entropy limit, above which a CC is unable to form, or that clusters can change type through major mergers and radiative cooling. Abell 1142 is a galaxy cluster that can provide a unique probe of the root of this cluster-type division. It is formed of two merging sub-clusters, each with its own brightest cluster galaxies (BCG). Its enriched X-ray centroid (possible CC remnant) lies between these two BCGs. We present the thermal and chemical distributions of this system using deep (180ks) XMM-Newton observations to shed light on the role of mergers in the evolution of galaxy clusters.

  16. X-ray and optical substructures of the DAFT/FADA survey clusters

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Durret, F.; Adami, C.; Lima Neto, G. B.

    2013-04-01

    We have undertaken the DAFT/FADA survey with the double aim of setting constraints on dark energy based on weak lensing tomography and of obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range 0.4-0.9 for which there were HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. Out of these, a spatial analysis was possible for 30 clusters, but only 23 had deep enough X-ray data for a really robust analysis. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. Altogether, the X-ray sample of 23 clusters and the optical sample of 26 clusters have 14 clusters in common. We present preliminary results on the coupled X-ray and dynamical analyses of these 14 clusters.

  17. Spectroscopy of Giant Arcs Behind the Strongest Lenses in the Universe

    NASA Astrophysics Data System (ADS)

    Hennawi, Joseph F.; Gladders, Michael; Oguri, Masamune; Koester, Benjamin; Bayliss, Matt; Dahle, Hakon; Natarajan, Priya

    2009-02-01

    We have conducted a deep ((mu)_g ≲ 24) imaging survey using the WIYN 4-m telescope, the UH 88-inch telescope, and the 2.5m Nordic Optical Telescope (NOT) to search for giant arcs behind the richest clusters identified in the Gpc^3 volume of the SDSS. By imaging nearly 500 massive clusters, this ongoing survey has uncovered some of the most dramatic examples of gravitational lensing ever discovered, similar to `poster-children' like Abell 1689 and CL0024+1654. We propose to use GMOS on Gemini-North and the Blue Channel Spectrograph on the MMT to determine arc redshifts in these new lenses. When combined with our GMOS data from a similar program in 2008A, this proposal will result in a sample of 60 gravitationally lensed galaxies behind ~ 25 clusters. These arc redshifts pinpoint the mass of dark matter interior to the Einstein radius in the cluster core (R < 200 kpc; comoving). The larger scale (R ~ 1-5 Mpc) weak lensing shear has been measured for more than half of our targets from deep imaging at NOT, WIYN, Subaru, and using archival data from HST. GMOS arc redshifts combined with weak and strong lensing will allow us to measure the density profile of dark matter halos on scales 200 kpc < R < 5 Mpc for the statistical sample of lensing clusters, providing a powerful test of the (Lambda)CDM paradigm.

  18. The Wide Field X-ray Telescope Mission

    NASA Astrophysics Data System (ADS)

    Murray, Stephen S.; WFXT Team

    2010-01-01

    To explore the high-redshift Universe to the era of galaxy formation requires an X-ray survey that is both sensitive and extensive, which complements deep wide-field surveys at other wavelengths. The Wide-Field X-ray Telescope (WFXT) is designed to be two orders of magnitude more effective than previous and planned X-ray missions for surveys. WFXT consists of three co-aligned wide-field X-ray telescopes with a 1 sq. deg. field of view and <10 arc sec (goal of 5 arc sec) angular resolution over the full field. With nearly ten times Chandra's collecting area and more than ten times Chandra's field of view, WFXT will perform sensitive deep surveys that will discover and characterize extremely large populations of high redshift AGN and galaxy clusters. In five years, WFXT will perform three extragalactic surveys: 1) 20,000 sq. deg. of extragalactic sky at 100-1000 times the sensitivity, and twenty times better angular resolution than the ROSAT All Sky Survey; 2) 3000 sq.deg. to deep Chandra sensitivity; and 3) 100 sq.deg. to the deepest Chandra sensitivity. WFXT will generate a legacy dataset of >500,000 galaxy clusters to redshifts about 2, measuring redshift, gas abundance and temperature for a significant fraction of them, and a sample of more than 10 million AGN to redshifts > 6, many with X-ray spectra sufficient to distinguish obscured from unobscured quasars. These surveys will address fundamental questions of how supermassive black holes grow and influence the evolution of the host galaxy and how clusters form and evolve, as well as providing large samples of massive clusters that can be used in cosmological studies. WFXT surveys will map systems spanning many square degrees including Galactic star forming regions, the Magellanic Clouds and the Virgo Cluster. WFXT data will become public through annual Data Releases that will constitute a vast scientific legacy.

  19. AzTEC/ASTE 1.1 mm Deep Surveys: Number Counts and Clustering of Millimeter-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Hatsukade, B.

    2011-11-01

    We present results of a 1.1 mm deep survey of the AKARI Deep Field South (ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment (ASTE). We obtained a map of 0.25 deg2 area with an rms noise level of 0.32-0.71 mJy. This is one of the deepest and widest maps thus far at millimetre and submillimetre wavelengths. We uncovered 198 sources with a significance of 3.5-15.6σ, providing the largest catalog of 1.1 mm sources in a contiguous region. Most of the sources are not detected in the far-infrared bands of the AKARI satellite, suggesting that they are mostly at z ≥ 1.5 given the detection limits. We construct differential and cumulative number counts of the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest constraints on the faint end. The integration of the differential number counts of the ADF-S find that the contribution of 1.1 mm sources with ≥1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with ≥1 mJy using the differential number counts and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z ~ 2-3. Clustering analyses of AzTEC sources in the ADF-S and the SXDF find that bright (>3 mJy) AzTEC sources are more strongly clustered than faint (< 3 mJy) AzTEC sources and the average mass of dark halos hosting bright AzTEC sources was calculated to be 1013-1014M⊙. Comparison of correlation length of AzTEC sources with other populations and with a bias evolution model suggests that dark halos hosting bright AzTEC sources evolve into systems of clusters at present universe and the AzTEC sources residing the dark halos evolve into massive elliptical galaxies located in the center of clusters.

  20. Fully convolutional network with cluster for semantic segmentation

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Chen, Zhongbi; Zhang, Jianlin

    2018-04-01

    At present, image semantic segmentation technology has been an active research topic for scientists in the field of computer vision and artificial intelligence. Especially, the extensive research of deep neural network in image recognition greatly promotes the development of semantic segmentation. This paper puts forward a method based on fully convolutional network, by cluster algorithm k-means. The cluster algorithm using the image's low-level features and initializing the cluster centers by the super-pixel segmentation is proposed to correct the set of points with low reliability, which are mistakenly classified in great probability, by the set of points with high reliability in each clustering regions. This method refines the segmentation of the target contour and improves the accuracy of the image segmentation.

  1. The WIYN Open Cluster Study: A 15-Year Report

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; WOCS Collaboration

    2013-06-01

    The WIYN 3.5m telescope combines large aperture, wide field of view and superb image quality. The WIYN consortium includes investigators in numerous areas of open cluster research. The combination spawned the WIYN Open Cluster Study (WOCS) over a decade ago, with the goals of producing 1) comprehensive photometric, astrometric and spectroscopic data for new fundamental open clusters and 2) addressing key astrophysical problems with these data. The set of core WOCS open clusters spans age and metallicity. Low reddening, solar proximity and richness were also desirable features in selecting core open clusters. More than 50 WIYN Open Cluster Study papers have been published in refereed journals. Highlights include: deep and wide-field photometry of NGC 188, NGC 2168 (M35), and NGC 6819 (WOCS I, II, XI and LII); deep and wide-field proper-motion studies of the old open clusters NGC 188, NGC 2682 (M67) and NGC 6791 (WOCS XVII, XXXIII and XLVI); comprehensive radial-velocity surveys of NGC 188, NGC 2168 and NGC 6819 (WOCS XXXII, XXIV, and XXXVIII); metallicity and lithium abundances in NGC 2168 (WOCS V); comprehensive definition of the hard-binary populations of NGC 188 and NGC 2168 (WOCS XXII and XLVIII); rotation period distributions in NGC 1039 (M34) and NGC 2168 (WOCS XXXV, XLIII, and XLV); study of chromospheric activity in NGC 2682 (WOCS XVIII); photometric variability surveys in NGC 188 and NGC 2682 (IX and XV); new Bayesian techniques for determination of cluster parameters (WOCS XXIII); a new infrared age-diagnostic for open clusters (WOCS XL); theoretical studies of stellar rotation (WOCS XIII and XIV); sophisticated N-body simulations of NGC 188 (WOCS LI); and the discovery of a high binary frequency and white dwarf companions among NGC 188 blue stragglers. While the WIYN 3.5m telescope remains at its heart, today the WIYN Open Cluster Study collaboration extends beyond both the WIYN observatory and consortium, and continues as a vital and productive exploration into these fundamental stellar systems. Publication list can be found at http://www.astro.ufl.edu ata/wocs/pubs.html. The WIYN Open Cluster Study has been continuously supported by grants from the National Science Foundation.

  2. RELICS of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Bradac, Marusa; Coe, Dan; Strait, Victoria; Salmon, Brett; Hoag, Austin; Bradley, Larry; Ryan, Russell; Dawson, Will; Zitrin, Adi; Jones, Christine; Sharon, Keren; Trenti, Michele; Stark, Daniel; Oesch, Pascal; Lam, Danel; Carrasco Nunez, Daniela Patricia; Paterno-Mahler, Rachel; Frye, Brenda

    2018-05-01

    When did galaxies start forming stars? What is the role of distant galaxies in galaxy formation models and epoch of reionization? Recent observations indicate at least two critical puzzles in these studies. (1) First galaxies might have started forming stars earlier than previously thought (<400Myr after the Big Bang). (2) It is still unclear what is their star formation history and whether these galaxies can reionize the Universe. Accurate knowledge of stellar masses, ages, and star formation rates at this epoch requires measuring both rest-frame UV and optical light, which only Spitzer and HST can probe at z 6-11 for a large enough sample of typical galaxies. To address this cosmic puzzle, we propose to complete deep Spitzer imaging of the fields behind the 10 most powerful cosmic telescopes selected using HST, Spitzer, and Planck data from the RELICS and SRELICS programs (Reionization Lensing Cluster Survey; 41 clusters, 190 HST orbits, 440 Spitzer hours). 6 clusters out of 10 are still lacking deep data. This proposal will be a valuable Legacy complement to the existing IRAC deep surveys, and it will open up a new parameter space by probing the ordinary yet magnified population with much improved sample variance. The program will allow us to study stellar properties of a large number, 60 galaxies at z 6-11. Deep Spitzer data will be crucial to unambiguously measure their stellar properties (age, SFR, M*). Finally this proposal will establish the presence (or absence) of an unusually early established stellar population, as was recently observed in MACS1149JD at z 9. If confirmed in a larger sample, this result will require a paradigm shift in our understanding of the earliest star formation.

  3. Discovering Massive z > 1 Galaxy Clusters with Spitzer and SPTpol

    NASA Astrophysics Data System (ADS)

    Bleem, Lindsey; Brodwin, Mark; Ashby, Matthew; Stalder, Brian; Klein, Matthias; Gladders, Michael; Stanford, Spencer; Canning, Rebecca

    2018-05-01

    We propose to obtain Spitzer/IRAC imaging of 50 high-redshift galaxy cluster candidates derived from two new completed SZ cluster surveys by the South Pole Telescope. Clusters from the deep SPTpol 500-square-deg main survey will extend high-redshift SZ cluster science to lower masses (median M500 2x10^14Msun) while systems drawn from the wider 2500-sq-deg SPTpol Extended Cluster Survey are some of the rarest most massive high-z clusters in the observable universe. The proposed small 10 h program will enable (1) confirmation of these candidates as high-redshift clusters, (2) measurements of the cluster redshifts (sigma_z/(1+z) 0.03), and (3) estimates of the stellar masses of the brightest cluster members. These observations will yield exciting and timely targets for the James Webb Space Telescope--and, combined with lower-z systems--will both extend cluster tests of dark energy to z>1 as well as enable studies of galaxy evolution in the richest environments for a mass-limited cluster sample from 0

  4. The Evolution of Globular Cluster Systems In Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl

    1999-07-01

    We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.

  5. Dwarf galaxies in the coma cluster: Star formation properties and evolution

    NASA Astrophysics Data System (ADS)

    Hammer, Derek M.

    The infall regions of galaxy clusters are unique laboratories for studying the impact of environment on galaxy evolution. This intermediate region links the low-density field environment and the dense core of the cluster, and is thought to host recently accreted galaxies whose star formation is being quenched by external processes associated with the cluster. In this dissertation, we measure the star formation properties of galaxies at the infall region of the nearby rich cluster of galaxies, Coma. We rely primarily on Ultraviolet (UV) data owing to its sensitivity to recent star formation and we place more emphasis on the properties of dwarf galaxies. Dwarf galaxies are good tracers of external processes in clusters but their evolution is poorly constrained as they are intrinsically faint and hence more challenging to detect. We make use of deep GALEX far-UV and near-UV observations at the infall region of the Coma cluster. This area of the cluster has supporting photometric coverage at optical and IR wavelengths in addition to optical spectroscopic data that includes deep redshift coverage of dwarf galaxies in Coma. Our GALEX observations were the deepest exposures taken for a local galaxy cluster. The depth of these images required alternative data analysis techniques to overcome systematic effects that limit the default GALEX pipeline analysis. Specifically, we used a deblending method that improved detection efficiency by a factor of ˜2 and allowed reliable photometry a few magnitudes deeper than the pipeline catalog. We performed deep measurements of the total UV galaxy counts in our field that were used to measure the source confusion limit for crowded GALEX fields. The star formation properties of Coma members were studied for galaxies that span from starbursts to passive galaxies. Star-forming galaxies in Coma tend to have lower specific star formation rates, on average, as compared to field galaxies. We show that the majority of these galaxies are likely in the process of being quenched or were only recently quenched. We modeled the quenching timescales for transition galaxies, or “green valley” objects, and found that the majority are quenched in less than 1 Gyr. This timescale is consistent with rapid dynamical processes that are active in the cluster environment as opposed to the more gradual quenching mechanisms that exist in the group environment. For the passive galaxy population, we have measured an average stellar age of 6-8 Gyr for the red sequence which is consistent with previous studies based on spectroscopic observations. We note that the star formation properties of Coma member galaxies were established from photometry alone, as opposed to using spectroscopic data which are more challenging to obtain for dwarf galaxies. We have measured the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are 3.5 mag fainter than previous studies in Coma, and are sufficiently deep that we reach the dwarf passive galaxy population for the first time. We have introduced a new technique for measuring the LF which avoids color selection effects associated with previous methods. The UV LFs constructed separately for star-forming and passive galaxies follow a similar distribution at faint magnitudes, which suggests that the recent quenching of infalling dwarf star-forming galaxies is sufficient to build the dwarf passive population in Coma. The Coma UV LFs show a turnover at faint magnitudes as compared to the field, owing to a deficit of dwarf galaxies with stellar masses below M∗ = 108 M⊙ . We show that the UV LFs for the field behind the Coma cluster are nearly identical to the average field environment, and do not show evidence for a turnover at faint magnitudes. We suspect that the missing dwarf galaxies in Coma are severely disrupted by tidal processes as they are accreted onto the cluster, just prior to reaching the infall region studied here.

  6. DISCOVERY OF A DISSOCIATIVE GALAXY CLUSTER MERGER WITH LARGE PHYSICAL SEPARATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawson, William A.; Wittman, David; Jee, M. James

    2012-03-10

    We present DLSCL J0916.2+2951 (z = 0.53), a newly discovered major cluster merger in which the collisional cluster gas has become dissociated from the collisionless galaxies and dark matter (DM). We identified the cluster using optical and weak-lensing observations as part of the Deep Lens Survey. Our follow-up observations with Keck, Subaru, Hubble Space Telescope, and Chandra show that the cluster is a dissociative merger and constrain the DM self-interaction cross-section {sigma}{sub DM} m{sup -1}{sub DM} {approx}< 7 cm{sup 2} g{sup -1}. The system is observed at least 0.7 {+-} 0.2 Gyr since first pass-through, thus providing a picture ofmore » cluster mergers 2-5 times further progressed than similar systems observed to date. This improved temporal leverage has implications for our understanding of merging clusters and their impact on galaxy evolution.« less

  7. Merging Clusters, Cluster Outskirts, and Large Scale Filaments

    NASA Astrophysics Data System (ADS)

    Randall, Scott; Alvarez, Gabriella; Bulbul, Esra; Jones, Christine; Forman, William; Su, Yuanyuan; Miller, Eric D.; Bourdin, Herve; Scott Randall

    2018-01-01

    Recent X-ray observations of the outskirts of clusters show that entropy profiles of the intracluster medium (ICM) generally flatten and lie below what is expected from purely gravitational structure formation near the cluster's virial radius. Possible explanations include electron/ion non-equilibrium, accretion shocks that weaken during cluster formation, and the presence of unresolved cool gas clumps. Some of these mechanisms are expected to correlate with large scale structure (LSS), such that the entropy is lower in regions where the ICM interfaces with LSS filaments and, presumably, the warm-hot intergalactic medium (WHIM). Major, binary cluster mergers are expected to take place at the intersection of LSS filaments, with the merger axis initially oriented along a filament. We present results from deep X-ray observations of the virialization regions of binary, early-stage merging clusters, including a possible detection of the dense end of the WHIM along a LSS filament.

  8. AzTEC/ASTE 1.1 mm Deep Surveys: Number Counts and Clustering of Millimeter-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Hatsukade, B.; Kohno, K.; Aretxaga, I.; Austermann, J. E.; Ezawa, H.; Hughes, D. H.; Ikarashi, S.; Iono, D.; Kawabe, R.; Matsuo, H.; Matsuura, S.; Nakanishi, K.; Oshima, T.; Perera, T.; Scott, K. S.; Shirahata, M.; Takeuchi, T. T.; Tamura, Y.; Tanaka, K.; Tosaki, T.; Wilson, G. W.; Yun, M. S.

    2010-10-01

    We present number counts and clustering properties of millimeter-bright galaxies uncovered by the AzTEC camera mounted on the Atacama Submillimeter Telescope Experiment (ASTE). We surveyed the AKARI Deep Field South (ADF-S), the Subaru/XMM Newton Deep Field (SXDF), and the SSA22 fields with an area of ~0.25 deg2 each with an rms noise level of ~0.4-1.0 mJy. We constructed differential and cumulative number counts, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which the number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with >=1 mJy using the best-fit number counts in the ADF-S and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z~2-3. The average mass of dark halos hosting bright 1.1 mm sources was calculated to be 1013-1014 Msolar. Comparison of correlation lengths of 1.1 mm sources with other populations and with a bias evolution model suggests that dark halos hosting bright 1.1 mm sources evolve into systems of clusters at present universe and the 1.1 mm sources residing the dark halos evolve into massive elliptical galaxies located in the center of clusters.

  9. In Situ Scanning Tunneling Microscopy Topography Changes of Gold (111) in Aqueous Sulfuric Acid Produced by Electrochemical Surface Oxidation and Reduction and Relaxation Phenomena

    NASA Astrophysics Data System (ADS)

    Pasquale, M. A.; Nieto, F. J. Rodríguez; Arvia, A. J.

    The electrochemical formation and reduction of O-layers on gold (111) films in 1 m sulfuric acid under different potentiodynamic routines are investigated utilizing in situ scanning tunneling microscopy. The surface dynamics is interpreted considering the anodic and cathodic reaction pathways recently proposed complemented with concurrent relaxation phenomena occurring after gold (111) lattice mild disruption (one gold atom deep) and moderate disruption (several atoms deep). The dynamics of both oxidized and reduced gold topographies depends on the potentiodynamic routine utilized to form OH/O surface species. The topography resulting from a mild oxidative disruption is dominated by quasi-2D holes and hillocks of the order of 5 nm, involving about 500-600 gold atoms each, and their coalescence. A cooperative turnover process at the O-layer, in which the anion ad-layer and interfacial water play a key role, determines the oxidized surface topography. The reduction of these O-layers results in gold clusters, their features depending on the applied potential routine. A moderate oxidative disruption produces a surface topography of hillocks and holes several gold atoms high and deep, respectively. The subsequent reduction leads to a spinodal gold pattern. Concurrent coalescence appears to be the result of an Ostwald ripening that involves the surface diffusion of both gold atoms and clusters. These processes produce an increase in surface roughness and an incipient gold faceting. The dynamics of different topographies can be qualitatively explained employing the arguments from colloidal science theory. For 1.1 V ≤ E ≅ Epzc weak electrostatic repulsions favor gold atom/cluster coalescence, whereas for E < Epzc the attenuated electrostatic repulsions among gold surfaces stabilize small clusters over the substrate producing string-like patterns.

  10. The X-ray cluster Abell 744

    NASA Technical Reports Server (NTRS)

    Kurtz, M. J.; Huchra, J. P.; Beers, T. C.; Geller, M. J.; Gioia, I. M.

    1985-01-01

    X-ray and optical observations of the cluster of galaxies Abell 744 are presented. The X-ray flux (assuming H(0) = 100 km/s per Mpc) is about 9 x 10 to the 42nd erg/s. The X-ray source is extended, but shows no other structure. Photographic photometry (in Kron-Cousins R), calibrated by deep CCD frames, is presented for all galaxies brighter than 19th magnitude within 0.75 Mpc of the cluster center. The luminosity function is normal, and the isopleths show little evidence of substructure near the cluster center. The cluster has a dominant central galaxy, which is classified as a normal brightest-cluster elliptical on the basis of its luminosity profile. New redshifts were obtained for 26 galaxies in the vicinity of the cluster center; 20 appear to be cluster members. The spatial distribution of redshifts is peculiar; the dispersion within the 150 kpc core radius is much greater than outside. Abell 744 is similar to the nearby cluster Abell 1060.

  11. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Jeremy J.; Harris, William E.; Sills, Alison, E-mail: webbjj@mcmaster.ca

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and bluemore » sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.« less

  12. Deep Chandra study of the truncated cool core of the Ophiuchus cluster

    NASA Astrophysics Data System (ADS)

    Werner, N.; Zhuravleva, I.; Canning, R. E. A.; Allen, S. W.; King, A. L.; Sanders, J. S.; Simionescu, A.; Taylor, G. B.; Morris, R. G.; Fabian, A. C.

    2016-08-01

    We present the results of a deep Chandra observation of the Ophiuchus cluster, the second brightest galaxy cluster in the X-ray sky. The cluster hosts a truncated cool core, with a temperature increasing from kT ˜ 1 keV in the core to kT ˜ 9 keV at r ˜ 30 kpc. Beyond r ˜ 30 kpc, the intracluster medium (ICM) appears remarkably isothermal. The core is dynamically disturbed with multiple sloshing-induced cold fronts, with indications for both Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The residual image reveals a likely subcluster south of the core at the projected distance of r ˜ 280 kpc. The cluster also harbours a likely radio phoenix, a source revived by adiabatic compression by gas motions in the ICM. Even though the Ophiuchus cluster is strongly dynamically active, the amplitude of density fluctuations outside of the cooling core is low, indicating velocities smaller than ˜100 km s-1. The density fluctuations might be damped by thermal conduction in the hot and remarkably isothermal ICM, resulting in our underestimate of gas velocities. We find a surprising, sharp surface brightness discontinuity, that is curved away from the core, at r ˜ 120 kpc to the south-east of the cluster centre. We conclude that this feature is most likely due to gas dynamics associated with a merger. The cooling core lacks any observable X-ray cavities and the active galactic nucleus (AGN) only displays weak, point-like radio emission, lacking lobes or jets. The lack of strong AGN activity may be due to the bulk of the cooling taking place offset from the central supermassive black hole.

  13. Relativistic protons in the Coma galaxy cluster: first gamma-ray constraints ever on turbulent reacceleration

    NASA Astrophysics Data System (ADS)

    Brunetti, G.; Zimmer, S.; Zandanel, F.

    2017-12-01

    The Fermi-LAT (Large Area Telescope) collaboration recently published deep upper limits to the gamma-ray emission of the Coma cluster, a cluster hosting the prototype of giant radio haloes. In this paper, we extend previous studies and use a formalism that combines particle reacceleration by turbulence and the generation of secondary particles in the intracluster medium to constrain relativistic protons and their role for the origin of the radio halo. We conclude that a pure hadronic origin of the halo is clearly disfavoured as it would require excessively large magnetic fields. However, secondary particles can still generate the observed radio emission if they are reaccelerated. For the first time the deep gamma-ray limits allow us to derive meaningful constraints if the halo is generated during phases of reacceleration of relativistic protons and their secondaries by cluster-scale turbulence. In this paper, we explore a relevant range of parameter space of reacceleration models of secondaries. Within this parameter space, a fraction of model configurations is already ruled out by current gamma-ray limits, including the cases that assume weak magnetic fields in the cluster core, B ≤ 2-3 μG. Interestingly, we also find that the flux predicted by a large fraction of model configurations assuming magnetic fields consistent with Faraday rotation measures (RMs) is not far from the limits. This suggests that a detection of gamma-rays from the cluster might be possible in the near future, provided that the electrons generating the radio halo are secondaries reaccelerated and the magnetic field in the cluster is consistent with that inferred from RM.

  14. Deep observation of A2163: studying a new bullet cluster

    NASA Astrophysics Data System (ADS)

    Bourdin, Herve

    2011-10-01

    Exhibiting a clear spatial separation between the gas and dark matter component of a fastly accreted subcluster, the `bullet cluster', 1E 0657-56, has provided us a unique laboratory to investigate the impact of violent cluster mergers on the Intra-Cluster Medium, galaxies and dark matter properties. In recent analyses of X-ray, optical and weak-lensing data, we show that the massive cluster A2163 also exhibits a crossing gas bullet separated from a galaxy and dark matter over-density, and suggest that both A2163 and 1E 0657-56 share a common merging scenario possibly just differing in the time elapsed after the closest cluster encounters. With this deeper XMM observation of A2163, we propose to refine our knowledge of the dynamics and geometry of the on-going subcluster accretion.

  15. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  16. Theoretical Prediction of Si 2–Si 33 Absorption Spectra

    DOE PAGES

    Zhao, Li -Zhen; Lu, Wen -Cai; Qin, Wei; ...

    2017-07-07

    Here, the optical absorption spectra of Si 2–Si 33 clusters were systematically studied by a time-dependent density functional theory approach. The calculations revealed that the absorption spectrum becomes significantly broad with increasing cluster size, stretching from ultraviolet to the infrared region. The absorption spectra are closely related to the structural motifs. With increasing cluster size, the absorption intensity of cage structures gradually increases, but the absorption curves of the prolate and the Y-shaped structures are very sensitive to cluster size. If the transition energy reaches ~12 eV, it is noted that all the clusters have remarkable absorption in deep ultravioletmore » region of 100–200 nm, and the maximum absorption intensity is ~100 times that in the visible region. Further, the optical responses to doping in the Si clusters were studied.« less

  17. Hubble Sees a Legion of Galaxies

    NASA Image and Video Library

    2017-12-08

    Peering deep into the early universe, this picturesque parallel field observation from the NASA/ESA Hubble Space Telescope reveals thousands of colorful galaxies swimming in the inky blackness of space. A few foreground stars from our own galaxy, the Milky Way, are also visible. In October 2013 Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) began observing this portion of sky as part of the Frontier Fields program. This spectacular skyscape was captured during the study of the giant galaxy cluster Abell 2744, otherwise known as Pandora’s Box. While one of Hubble’s cameras concentrated on Abell 2744, the other camera viewed this adjacent patch of sky near to the cluster. Containing countless galaxies of various ages, shapes and sizes, this parallel field observation is nearly as deep as the Hubble Ultra-Deep Field. In addition to showcasing the stunning beauty of the deep universe in incredible detail, this parallel field — when compared to other deep fields — will help astronomers understand how similar the universe looks in different directions. Image credit: NASA, ESA and the HST Frontier Fields team (STScI), NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Deep CO(1-0) Observations of z = 1.62 Cluster Galaxies with Substantial Molecular Gas Reservoirs and Normal Star Formation Efficiencies

    NASA Astrophysics Data System (ADS)

    Rudnick, Gregory; Hodge, Jacqueline; Walter, Fabian; Momcheva, Ivelina; Tran, Kim-Vy; Papovich, Casey; da Cunha, Elisabete; Decarli, Roberto; Saintonge, Amelie; Willmer, Christopher; Lotz, Jennifer; Lentati, Lindley

    2017-11-01

    We present an extremely deep CO(1-0) observation of a confirmed z = 1.62 galaxy cluster. We detect two spectroscopically confirmed cluster members in CO(1-0) with signal-to-noise ratio > 5. Both galaxies have log({{ M }}\\star /{{ M }}⊙ ) > 11 and are gas rich, with {{ M }}{mol}/({{ M }}\\star +{{ M }}{mol}) ˜ 0.17-0.45. One of these galaxies lies on the star formation rate (SFR)-{{ M }}\\star sequence, while the other lies an order of magnitude below. We compare the cluster galaxies to other SFR-selected galaxies with CO measurements and find that they have CO luminosities consistent with expectations given their infrared luminosities. We also find that they have gas fractions and star formation efficiencies (SFE) comparable to what is expected from published field galaxy scaling relations. The galaxies are compact in their stellar light distribution, at the extreme end for all high-redshift star-forming galaxies. However, their SFE is consistent with other field galaxies at comparable compactness. This is similar to two other sources selected in a blind CO survey of the HDF-N. Despite living in a highly quenched protocluster core, the molecular gas properties of these two galaxies, one of which may be in the process of quenching, appear entirely consistent with field scaling relations between the molecular gas content, stellar mass, star formation rate, and redshift. We speculate that these cluster galaxies cannot have any further substantive gas accretion if they are to become members of the dominant passive population in z< 1 clusters.

  19. Opening the Window on Galaxy Assembly: Ages and Structural Parameters of Globular Clusters Towards the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Cohen, Roger

    2015-10-01

    The primary aim of this program is to undertake a systematic investigation of highly reddened Galactic globular clusters (GGCs) located towards the Galactic bulge. These clusters have been excluded from deep space-based photometric surveys due to their severe total and differential extinction. We will exploit the photometric depth and homogeneity of two existing Treasury programs (the ACS GGC Treasury Survey and the WFC3 Bulge Treasury Program) along with the unique optical+IR parallel imaging capabilities of HST to finally place the bulge GGCs in the context of their optically well-studied counterparts. Specifically, by leveraging ACS/WFC together with WFC3/IR, we first exploit the reddening sensitivity at optical wavelengths to map severe, small-scale differential reddening in the cluster cores. Corrected two-color WFC3/IR photometry will then be used to measure cluster ages to better than 1 Gyr relative precision, finally completing the age-metallicity relation of the Milky Way GGC system. Ages are obtained using a demonstrated procedure which is strictly differential, and therefore insensitive to total distance, reddening, reddening law, or photometric calibration uncertainties. At the same time, deep archival Treasury survey imaging of the Galactic bulge will be used to decontaminate cluster luminosity functions, yielding measurements of bulge GGC mass functions and mass segregation on par with results from the ACS GGC Treasury survey. Finally, the imaging which we propose will be combined with existing wide-field near-IR PSF photometry, yielding complete radial number density profiles, structural and morphological parameters.

  20. Lens models under the microscope: comparison of Hubble Frontier Field cluster magnification maps

    NASA Astrophysics Data System (ADS)

    Priewe, Jett; Williams, Liliya L. R.; Liesenborgs, Jori; Coe, Dan; Rodney, Steven A.

    2017-02-01

    Using the power of gravitational lensing magnification by massive galaxy clusters, the Hubble Frontier Fields provide deep views of six patches of the high-redshift Universe. The combination of deep Hubble imaging and exceptional lensing strength has revealed the greatest numbers of multiply-imaged galaxies available to constrain models of cluster mass distributions. However, even with O(100) images per cluster, the uncertainties associated with the reconstructions are not negligible. The goal of this paper is to show the diversity of model magnification predictions. We examine seven and nine mass models of Abell 2744 and MACS J0416, respectively, submitted to the Mikulski Archive for Space Telescopes for public distribution in 2015 September. The dispersion between model predictions increases from 30 per cent at common low magnifications (μ ˜ 2) to 70 per cent at rare high magnifications (μ ˜ 40). MACS J0416 exhibits smaller dispersions than Abell 2744 for 2 < μ < 10. We show that magnification maps based on different lens inversion techniques typically differ from each other by more than their quoted statistical errors. This suggests that some models underestimate the true uncertainties, which are primarily due to various lensing degeneracies. Though the exact mass sheet degeneracy is broken, its generalized counterpart is not broken at least in Abell 2744. Other local degeneracies are also present in both clusters. Our comparison of models is complementary to the comparison of reconstructions of known synthetic mass distributions. By focusing on observed clusters, we can identify those that are best constrained, and therefore provide the clearest view of the distant Universe.

  1. A deep view on the Virgo cluster core

    NASA Astrophysics Data System (ADS)

    Lieder, S.; Lisker, T.; Hilker, M.; Misgeld, I.; Durrell, P.

    2012-02-01

    Studies of dwarf spheroidal (dSph) galaxies with statistically significant sample sizes are still rare beyond the Local Group, since these low surface brightness objects can only be identified with deep imaging data. In galaxy clusters, where they constitute the dominant population in terms of number, they represent the faint end slope of the galaxy luminosity function and provide important insight on the interplay between galaxy mass and environment. In this study we investigate the optical photometric properties of early-type galaxies (dwarf ellipticals (dEs) and dSphs) in the Virgo cluster core region, by analysing their location on the colour magnitude relation (CMR) and the structural scaling relations down to faint magnitudes, and by constructing the luminosity function to compare it with theoretical expectations. Our work is based on deep CFHT V- and I-band data covering several square degrees of the Virgo cluster core that were obtained in 1999 using the CFH12K instrument. We visually select potential cluster members based on morphology and angular size, excluding spiral galaxies. A photometric analysis has been carried out for 295 galaxies, using surface brightness profile shape and colour as further criteria to identify probable background contaminants. 216 galaxies are considered to be certain or probable Virgo cluster members. Our study reveals 77 galaxies not catalogued in the VCC (with 13 of them already found in previous studies) that are very likely Virgo cluster members because they follow the Virgo CMR and exhibit low Sérsic indices. Those galaxies reach MV = -8.7 mag. The CMR shows a clear change in slope from dEs to dSphs, while the scatter of the CMR in the dSph regime does not increase significantly. Our sample might, however, be somewhat biased towards redder colours. The scaling relations given by the dEs appear to be continued by the dSphs indicating a similar origin. The observed change in the CMR slope may mark the point at which gas loss prevented significant metal enrichment. The almost constant scatter around the CMR possibly indicates a short formation period, resulting in similar stellar populations. The luminosity function shows a Schechter function's faint end slope of α = -1.50 ± 0.17, implying a lack of galaxies related to the expected number of low-mass dark matter haloes from theoretical models. Our findings could be explained by suppressed star formation in low-mass dark matter halos or by tidal disruption of dwarfs in the dense core region of the cluster. Tables 3 and 4 are available in electronic form at http://www.aanda.org

  2. Small vs. Large Convective Cloud Objects from CERES Aqua Observations: Where are the Intraseasonal Variation Signals?

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2016-01-01

    During inactive phases of Madden-Julian oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES observations for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation directions/speeds.

  3. A Survey of Variable Extragalactic Sources with XTE's All Sky Monitor (ASM)

    NASA Technical Reports Server (NTRS)

    Jernigan, Garrett

    1998-01-01

    The original goal of the project was the near real-time detection of AGN utilizing the SSC 3 of the ASM on XTE which does a deep integration on one 100 square degree region of the sky. While the SSC never performed sufficiently well to allow the success of this goal, the work on the project has led to the development of a new analysis method for coded aperture systems which has now been applied to ASM data for mapping regions near clusters of galaxies such as the Perseus Cluster and the Coma Cluster. Publications are in preparation that describe both the new method and the results from mapping clusters of galaxies.

  4. Earth system modelling on system-level heterogeneous architectures: EMAC (version 2.42) on the Dynamical Exascale Entry Platform (DEEP)

    NASA Astrophysics Data System (ADS)

    Christou, Michalis; Christoudias, Theodoros; Morillo, Julián; Alvarez, Damian; Merx, Hendrik

    2016-09-01

    We examine an alternative approach to heterogeneous cluster-computing in the many-core era for Earth system models, using the European Centre for Medium-Range Weather Forecasts Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model as a pilot application on the Dynamical Exascale Entry Platform (DEEP). A set of autonomous coprocessors interconnected together, called Booster, complements a conventional HPC Cluster and increases its computing performance, offering extra flexibility to expose multiple levels of parallelism and achieve better scalability. The EMAC model atmospheric chemistry code (Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA)) was taskified with an offload mechanism implemented using OmpSs directives. The model was ported to the MareNostrum 3 supercomputer to allow testing with Intel Xeon Phi accelerators on a production-size machine. The changes proposed in this paper are expected to contribute to the eventual adoption of Cluster-Booster division and Many Integrated Core (MIC) accelerated architectures in presently available implementations of Earth system models, towards exploiting the potential of a fully Exascale-capable platform.

  5. Searches for 3.5 keV Absorption Features in Cluster AGN Spectra

    NASA Astrophysics Data System (ADS)

    Conlon, Joseph P.

    2018-06-01

    We investigate possible evidence for a spectral dip around 3.5 keV in central cluster AGNs, motivated by previous results for archival Chandra observations of the Perseus cluster and the general interest in novel spectral features around 3.5 keV that may arise from dark matter physics. We use two deep Chandra observations of the Perseus and Virgo clusters that have recently been made public. In both cases, mild improvements in the fit (Δχ2 = 4.2 and Δχ2 = 2.5) are found by including such a dip at 3.5 keV into the spectrum. A comparable result (Δχ2 = 6.5) is found re-analysing archival on-axis Chandra ACIS-S observations of the centre of the Perseus cluster.

  6. Direct Numerical Simulation of Fluid Flow and Mass Transfer in Particle Clusters

    PubMed Central

    2018-01-01

    In this paper, an efficient ghost-cell based immersed boundary method is applied to perform direct numerical simulation (DNS) of mass transfer problems in particle clusters. To be specific, a nine-sphere cuboid cluster and a random-generated spherical cluster consisting of 100 spheres are studied. In both cases, the cluster is composed of active catalysts and inert particles, and the mutual influence of particles on their mass transfer performance is studied. To simulate active catalysts the Dirichlet boundary condition is imposed at the external surface of spheres, while the zero-flux Neumann boundary condition is applied for inert particles. Through our studies, clustering is found to have negative influence on the mass transfer performance, which can be then improved by dilution with inert particles and higher Reynolds numbers. The distribution of active/inert particles may lead to large variations of the cluster mass transfer performance, and individual particle deep inside the cluster may possess a high Sherwood number. PMID:29657359

  7. Looking Wider and Further: The Evolution of Galaxies Inside Galaxy Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuanyuan

    2016-01-01

    Galaxy clusters are rare objects in the universe, but on-going wide field optical surveys are identifying many thousands of them to redshift 1.0 and beyond. Using early data from the Dark Energy Survey (DES) and publicly released data from the Sloan Digital Sky Survey (SDSS), this dissertation explores the evolution of cluster galaxies in the redshift range from 0 to 1.0. As it is common for deep wide field sky surveys like DES to struggle with galaxy detection efficiency at cluster core, the first component of this dissertation describes an efficient package that helps resolving the issue. The second partmore » focuses on the formation of cluster galaxies. The study quantifies the growth of cluster bright central galaxies (BCGs), and argues for the importance of merging and intra-cluster light production during BCG evolution. An analysis of cluster red sequence galaxy luminosity function is also performed, demonstrating that the abundance of these galaxies is mildly dependent on cluster mass and redshift. The last component of the dissertation characterizes the properties of galaxy filaments to help understanding cluster environments« less

  8. Deep X-ray and UV Surveys of Galaxies with Chandra, XMM-Newton, and GALEX

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2006-01-01

    Only with the deepest Chandra surveys has X-ray emission from normal and star forming galaxies (as opposed to AGN, which dominate the X-ray sky) been accessible at cosmologically interesting distances. The X-ray emission from accreting binaries provide a critical glimpse into the binary phase of stellar evolution and studies of the hot gas reservoir constrain past star formation. UV studies provide important, sensitive diagnostics of the young star forming populations and provide the most mature means for studying galaxies at 2 < zeta < 4. This talk will review current progress on studying X-ray emission in concert with UV emission from normal/star-forming galaxies at higher redshift. We will also report on our new, deep surveys with GALEX and XMM-Newton in the nearby Coma cluster. These studies are relevant to DEEP06 as Coma is the nearest rich cluster of galaxies and provides an important benchmark for high-redshift studies in the X-ray and UV wavebands. The 30 ks GALEX (note: similar depth to the GALEX Deep Imaging Survey) and the 110 ks XMM observations provide extremely deep coverage of a Coma outskirts field, allowing the construction of the UV and X-ray luminosity function of galaxies and important constraints on star formation scaling relations such as the X-ray-Star Formation Rate correlation and the X-ray/Stellar Mass correlation. We will discuss what we learn from these deep observations of Coma, including the recently established suppression of the X-ray emission from galaxies in the Coma outskirts that is likely associated with lower levels of past star formation and/or the results of tidal gas stripping.

  9. Motivational Profiles of Medical Students of Nepalese Army Institute of Health Sciences.

    PubMed

    Shrestha, Lochana; Pant, Shambhu Nath

    2018-01-01

    Students enter the medical study with different types of motives. Given the importance of academic motivation for good academic achievement of the students, the present study was designed to reveal the possible relationship between academic motivation and achievement in medical students. In this cross-sectional study medical students (N=364) of Nepalese Army institute of Health Sciences were participated and classified to different subgroups using intrinsic and controlled motivation scores. Cluster membership was used as an independent variable to assess differences in study strategies and academic performance. Four clusters were obtained: High Intrinsic High Controlled, Low Intrinsic High Controlled, High Intrinsic Low Controlled, and Low Intrinsic Low Controlled. High Intrinsic High Controlled and High Intrinsic Low Controlled profile students constituted 36.1%, 22.6% of the population, respectively. No significant differences were observed as regards to deep strategy and surface strategy between high interest status motivated and high interest-motivated students. However, both of the clusters had significantly deeper, surface strategy and better academic performance than status-motivated and low-motivation clusters (p < 0.001). The interest status motivated and interest-motivated medical students were associated with good deep and surface study strategy and good academic performance. Low-motivation and status-motivated students were associated with the least academic performance with less interest learning behaviors. This reflected that motivation is important required component for good learning outcomes for medical students Keywords: Academic performance; controlled motivation; clusters; intrinsic motivation; motivation.

  10. Thalamic deep brain stimulation decelerates automatic lexical activation.

    PubMed

    Ehlen, Felicitas; Vonberg, Isabelle; Tiedt, Hannes O; Horn, Andreas; Fromm, Ortwin; Kühn, Andrea A; Klostermann, Fabian

    2017-02-01

    Deep Brain Stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) is a therapeutic option for patients with essential tremor. Despite a generally low risk of side effects, declines in verbal fluency (VF) have previously been reported. We aimed to specify effects of VIM-DBS on major cognitive operations needed for VF task performance, represented by clusters and switches. Clusters are word production spurts, thought to arise from automatic activation of associated information pertaining to a given lexical field. Switches are slow word-to-word transitions, presumed to indicate controlled operations for stepping from one lexical field to another. Thirteen essential tremor patients with VIM-DBS performed verbal fluency tasks in their VIM-DBS ON and OFF conditions. Clusters and switches were formally defined by mathematical criteria. All results were compared to those of fifteen healthy control subjects, and significant OFF-ON-change scores were correlated to stimulation parameters. Patients produced fewer words than healthy controls. DBS ON compared to DBS OFF aggravated this deficit by prolonging the intervals between words within clusters, whereas switches remained unaffected. This stimulation effect correlated with more anterior electrode positions. VIM-DBS seems to influence word output dynamics during verbal fluency tasks on the level of word clustering. This suggests a perturbation of automatic lexical co-activation by thalamic stimulation, particularly if delivered relatively anteriorly. The findings are discussed in the context of the hypothesized role of the thalamus in lexical processing. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia.

    PubMed

    Crane, Nicole L; Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle

    2017-01-01

    The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1-oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2-oceanic and inhabited (high human impact); and cluster 3-lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an 'opportunistic' scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities.

  12. Estudio de la población estelar de varios cúmulos en Carina

    NASA Astrophysics Data System (ADS)

    Molina-Lera, J. A.; Baume, G. L.; Carraro, G.; Costa, E.

    2015-08-01

    Based on deep photometric data in the bands, complemented with infrared 2MASS data, we conducted an analysis of the fundamental parameters of six open clusters located in the Carina region. To perform a systematic study we developed a specialized code. In particular, we investigated the behavior of the respective lower main sequences. Our analysis indicated the presence of a significant population of pre-sequence stars in several of the clusters. We therefore obtained estimated values of contraction ages. Furthermore, we have determined the slopes of the initial mass functions of the studied clusters.

  13. Chandra Observations of the Brightest Sunyaev-Zeldovich Effect Cluster

    NASA Astrophysics Data System (ADS)

    Hughes, John

    2011-09-01

    We propose deep Chandra observations of ACT-CL J0102-4915, the brightest Sunyaev-Zeldovich effect cluster discovered by the Atacama Cosmology Telescope and South Pole Telescope surveys. These surveys covered approximately 3000 square degrees and are essentially complete to high redshift. Our recent Chandra and VLT optical data reveal ACL-CL J0102-4915 to be undergoing a major merger. It is likely a high redshift (z=0.870) counterpart to the famous ``bullet'' cluster. New Chandra data will determine the properties of the merger shock and the HST/ACS data will provide a weak lensing mass map.

  14. Update on ONC's Substellar IMF: A Second Peak in the Brown Dwarf Regime

    NASA Astrophysics Data System (ADS)

    Drass, Holger; Bayo, A.; Chini, R.; Haas, M.

    2017-06-01

    The Orion Nebular Cluster (ONC) has become the prototype cluster for studying the Initial Mass Function (IMF). In a deep JHK survey of the ONC with HAWK-I we detected a large population of 900 Brown Dwarfs and Planetary Mass Object candidates presenting a pronounced second peak in the substellar IMF. One of the most obvious issues of this result is the verification of cluster membership. The analysis so far was mainly based on statistical consideration. In this presentation I will show the results from using different high-resolution extinction map to determine the ONC membership.

  15. White Dwarf Stars

    NASA Image and Video Library

    1999-12-01

    Peering deep inside a cluster of several hundred thousand stars, NASA Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe.

  16. Comparison of gain degradation and deep level transient spectroscopy in pnp Si bipolar junction transistors irradiated with different ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, B. A.; Bielejec, E.; Fleming, R. M.

    Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less

  17. A Deep Chandra Observation of the Centaurus Cluster:Bubbles, Filaments and Edges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabian, A.C.

    2005-03-14

    X-ray images and gas temperatures taken from a deep {approx}200 ks Chandra observation of the Centaurus cluster are presented. Multiple inner bubbles and outer semicircular edges are revealed, together with wispy filaments of soft X-ray emitting gas. The frothy central structure and eastern edge are likely due to the central radio source blowing bubbles in the intracluster gas. The semicircular edges to the surface brightness maps 32 kpc to the east and 17.5 kpc to the west are marked by sharp temperature increases and abundance drops. The edges could be due to sloshing motions of the central potential, or aremore » possibly enhanced by earlier radio activity. The high abundance of the innermost gas (about 2.5 times Solar) limits the amount of diffusion and mixing taking place.« less

  18. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels.

    PubMed

    Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R

    2018-01-01

    Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.

  19. Comparison of gain degradation and deep level transient spectroscopy in pnp Si bipolar junction transistors irradiated with different ion species

    DOE PAGES

    Aguirre, B. A.; Bielejec, E.; Fleming, R. M.; ...

    2016-12-09

    Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less

  20. The disposition to understand for oneself at university: integrating learning processes with motivation and metacognition.

    PubMed

    Entwistle, Noel; McCune, Velda

    2013-06-01

    A re-analysis of several university-level interview studies has suggested that some students show evidence of a deep and stable approach to learning, along with other characteristics that support the approach. This combination, it was argued, could be seen to indicate a disposition to understand for oneself. To identify a group of students who showed high and consistent scores on deep approach, combined with equivalently high scores on effort and monitoring studying, and to explore these students' experiences of the teaching-learning environments they had experienced. Re-analysis of data from 1,896 students from 25 undergraduate courses taking four contrasting subject areas in eleven British universities. Inventories measuring approaches to studying were given at the beginning and the end of a semester, with the second inventory also exploring students' experiences of teaching. K-means cluster analysis was used to identify groups of students with differing patterns of response on the inventory scales, with a particular focus on students showing high, stable scores. One cluster clearly showed the characteristics expected of the disposition to understand and was also fairly stable over time. Other clusters also had deep approaches, but also showed either surface elements or lower scores on organized effort or monitoring their studying. Combining these findings with interview studies previously reported reinforces the idea of there being a disposition to understand for oneself that could be identified from an inventory scale or through further interviews. © 2013 The British Psychological Society.

  1. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.

    Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less

  2. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrabback, T.; Applegate, D.; Dietrich, J. P.

    We present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z(median) = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in Vmore » - I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration-mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass-temperature scaling relation ln (E(z) M-500c/10(14)M(circle dot)) = A + 1.5ln (kT/7.2 keV) to A = 1.81(-0.14)(+0.24)(stat.)+/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c(200c) = 5.6(-1.8)(+3.7).« less

  3. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel’dovich Survey

    DOE PAGES

    Schrabback, T.; Applegate, D.; Dietrich, J. P.; ...

    2017-10-14

    Here we present an HST/Advanced Camera for Surveys (ACS) weak gravitational lensing analysis of 13 massive high-redshift (z median = 0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev–Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass–observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the concentration–mass relation using simulations. In combination with temperature estimates from Chandra we constrain the normalization of the mass–temperature scaling relation ln (E(z)M 500c/10 14 M ⊙) = A + 1.5ln (kT/7.2 keV) to A=1.81more » $$+0.24\\atop{-0.14}$$(stat.)±0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c 200c=5.6$$+3.7\\atop{-1.8}$$.« less

  4. Studies in the X-Ray Emission of Clusters of Galaxies and Other Topics

    NASA Technical Reports Server (NTRS)

    Vrtilek, Jan; Thronson, Harley (Technical Monitor)

    2001-01-01

    The paper discusses the following: (1) X-ray study of groups of galaxies with Chandra and XMM. (2) X-ray properties of point sources in Chandra deep fields. (3) Study of cluster substructure using wavelet techniques. (4) Combined study of galaxy clusters with X-ray and the S-Z effect. Groups of galaxies are the fundamental building blocks of large scale structure in the Universe. X-ray study of the intragroup medium offers a powerful approach to addressing some of the major questions that still remain about almost all aspects of groups: their ages, origins, importance of composition of various galaxy types, relations to clusters, and origin and enrichment of the intragroup gas. Long exposures with Chandra have opened new opportunities for the study of X-ray background. The presence of substructure within clusters of galaxies has substantial implications for our understanding of cluster evolution as well as fundamental questions in cosmology.

  5. Detection of massive tidal tails around the globular cluster Pal 5 with SDSS commissioning data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odenkirchen, Michael; Grebel, Eva K.; Rockosi, Constance M.

    2000-12-01

    We report the discovery of two well-defined tidal tails emerging from the sparse remote globular cluster Palomar 5. These tails stretch out symmetrically to both sides of the cluster in the direction of constant Galactic latitude and subtend an angle of 2.6{sup o} on the sky. The tails have been detected in commissioning data of the Sloan Digital Sky Survey (SDSS), providing deep five-color photometry in a 2.5{sup o}-wide band along the equator. The stars in the tails make up a substantial part ({approx} 1/3) of the current total population of cluster stars in the magnitude interval 19.5 {le} i*more » {le} 22.0. This reveals that the cluster is subject to heavy mass loss. The orientation of the tails provides an important key for the determination of the cluster's Galactic orbit.« less

  6. Probing the non-thermal emission in Abell 2146 and the Perseus cluster with the JVLA

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Hlavacek-Larrondo, Julie; van Weeren, Reinout; Clarke, Tracy; Intema, Huib; Russell, Helen; Edge, Alastair; Fabian, Andy; Olamaie, Malak; Rumsey, Clare; King, Lindsay; McNamara, Brian; Fecteau-Beaucage, David; Hogan, Michael; Mezcua, Mar; Taylor, Gregory; Blundell, Katherine; Sanders, Jeremy

    2018-01-01

    Jets created from accretion onto supermassive black holes release relativistic particles on large distances. These strongly affect the intracluster medium when located in the center of a brightest cluster galaxy. The hierarchical merging of subclusters and groups, from which cluster originate, also generates perturbations into the intracluster medium through shocks and turbulence, constituting a potential source of reacceleration for these particles. I will present deep multi-configuration low radio frequency observations from the Karl G. Jansky Very Large Array of two unique clusters, probing the non-thermal emission from the old particle population of the AGN outflows.Recently awarded of 550 hours of Chandra observations, Abell 2146 is one of the rare clusters undergoing a spectacular merger in the plane of the sky. Our recent deep multi-configuration JVLA 1.4 GHz observations have revealed the presence of a structure extending to 850 kpc in size, consisting of one component associated with the upstream shock and classified as a radio relic, and one associated with the subcluster core, consistent with a radio halo bounded by the bow shock. Theses structures have some of the lowest radio powers detected thus far in any cluster. The flux measurements of the halo, its morphology and measurements of the dynamical state of the cluster suggest that the halo was recently created (~ 0.3 Gyr after core passage). This makes A2146 extremely interesting to study, allowing us to probe the complete evolutionary stages of halos.I will also present results on 230-470 MHz JVLA observations of the Perseus cluster. Our observations of this nearby relaxed cool core cluster have revealed a multitude of new structures associated with the mini-halo, extending to hundreds of kpc in size. Its irregular morphology seems to be have been influenced both by the AGN activity and by the sloshing motion of the cluster’ gas. In addition, it has a filamentary structure similar to that seen in radio relics found in merging clusters.These results both illustrate the high-quality images that can be obtained with the new JVLA at low radio-frequencies.

  7. Substructures in DAFT/FADA survey clusters based on XMM and optical data

    NASA Astrophysics Data System (ADS)

    Durret, F.; DAFT/FADA Team

    2014-07-01

    The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.

  8. Fuzzy Clustering of Multiple Instance Data

    DTIC Science & Technology

    2015-11-30

    depth is not. To illustrate this data, in figure 1 we display the GPR signatures of the same mine buried at 3 in deep in two geographically different...target signature depends on the soil properties of the site. The same mine type is buried at 3in deep in both sites. Since its formal introduction...drug design [15], and the problem of handwritten digit recognition [16]. To the best of our knowledge, Diet - terich, et. al [1] were the first to

  9. Dawn in the Apollo Valley

    NASA Image and Video Library

    2013-12-18

    Beam Wave Guide antennas at Goldstone, known as the Beam Waveguide Cluster. They are located in an area at Goldstone called Apollo Valley. The Goldstone Deep Space Communications Complex is located in the Mojave Desert in California, USA.

  10. The Grism Lens-amplified Survey from Space (GLASS). IV. Mass Reconstruction of the Lensing Cluster Abell 2744 from Frontier Field Imaging and GLASS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hoag, A.; Huang, K.-H.; Treu, T.; Bradač, M.; Schmidt, K. B.; Brammer, G. B.; Vulcani, B.; Jones, T. A.; Ryan, R. E., Jr.; Amorín, R.; Castellano, M.; Fontana, A.; Merlin, E.; Trenti, M.

    2015-09-01

    We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometric redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.

  11. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). IV. MASS RECONSTRUCTION OF THE LENSING CLUSTER ABELL 2744 FROM FRONTIER FIELD IMAGING AND GLASS SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Schmidt, K. B.; Jones, T. A.

    2015-09-20

    We present a strong and weak lensing reconstruction of the massive cluster Abell 2744, the first cluster for which deep Hubble Frontier Fields (HFF) images and spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS) are available. By performing a targeted search for emission lines in multiply imaged sources using the GLASS spectra, we obtain five high-confidence spectroscopic redshifts and two tentative ones. We confirm one strongly lensed system by detecting the same emission lines in all three multiple images. We also search for additional line emitters blindly and use the full GLASS spectroscopic catalog to test reliability of photometricmore » redshifts for faint line emitters. We see a reasonable agreement between our photometric and spectroscopic redshift measurements, when including nebular emission in photometric redshift estimations. We introduce a stringent procedure to identify only secure multiple image sets based on colors, morphology, and spectroscopy. By combining 7 multiple image systems with secure spectroscopic redshifts (at 5 distinct redshift planes) with 18 multiple image systems with secure photometric redshifts, we reconstruct the gravitational potential of the cluster pixellated on an adaptive grid, using a total of 72 images. The resulting mass map is compared with a stellar mass map obtained from the deep Spitzer Frontier Fields data to study the relative distribution of stars and dark matter in the cluster. We find that the stellar to total mass ratio varies substantially across the cluster field, suggesting that stars do not trace exactly the total mass in this interacting system. The maps of convergence, shear, and magnification are made available in the standard HFF format.« less

  12. Multistep Ionization of Argon Clusters in Intense Femtosecond Extreme Ultraviolet Pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostedt, C.; Thomas, H.; Hoener, M.

    The interaction of intense extreme ultraviolet femtosecond laser pulses ({lambda}=32.8 nm) from the FLASH free electron laser (FEL) with clusters has been investigated by means of photoelectron spectroscopy and modeled by Monte Carlo simulations. For laser intensities up to 5x10{sup 13} W/cm{sup 2}, we find that the cluster ionization process is a sequence of direct electron emission events in a developing Coulomb field. A nanoplasma is formed only at the highest investigated power densities where ionization is frustrated due to the deep cluster potential. In contrast with earlier studies in the IR and vacuum ultraviolet spectral regime, we find nomore » evidence for electron emission from plasma heating processes.« less

  13. The Mass Function of Young Star Clusters in the "Antennae" Galaxies.

    PubMed

    Zhang; Fall

    1999-12-20

    We determine the mass function of young star clusters in the merging galaxies known as the "Antennae" (NGC 4038/9) from deep images taken with the Wide Field Planetary Camera 2 on the refurbished Hubble Space Telescope. This is accomplished by means of reddening-free parameters and a comparison with stellar population synthesis tracks to estimate the intrinsic luminosity and age, and hence the mass, of each cluster. We find that the mass function of the young star clusters (with ages less, similar160 Myr) is well represented by a power law of the form psi&parl0;M&parr0;~M-2 over the range 104 less, similarM less, similar106 M middle dot in circle. This result may have important implications for our understanding of the origin of globular clusters during the early phases of galactic evolution.

  14. BATMAN flies: a compact spectro-imager for space observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frederic; Ilbert, Olivier; Zoubian, Julien; Delsanti, Audrey; Boissier, Samuel; Lancon, Ariane

    2014-08-01

    BATMAN flies is a compact spectro-imager based on MOEMS for generating reconfigurable slit masks, and feeding two arms in parallel. The FOV is 25 x 12 arcmin2 for a 1m telescope, in infrared (0.85-1.7μm) and 500-1000 spectral resolution. Unique science cases for Space Observation are reachable with this deep spectroscopic multi-survey instrument: deep survey of high-z galaxies down to H=25 on 5 deg2 with continuum detection and all z>7 candidates at H=26.2 over 5 deg2; deep survey of young stellar clusters in nearby galaxies; deep survey of the Kuiper Belt of ALL known objects down to H=22. Pathfinder towards BATMAN in space is already running with ground-based demonstrators.

  15. U-series vs 14C ages of deep-sea corals from the southern Labrador Sea: Sporadic development of corals and geochemical processes hampering estimation of ambient water ventilation ages

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, Claude; Maccali, Jenny; Ménabréaz, Lucie; Ghaleb, Bassam; Blénet, Aurélien; Edinger, Evan

    2017-04-01

    Deep-sea scleractinian corals were collected with the remotely operated ROPOS vehicle off Newfounland. Fossil specimens of Desmophyllum dianthus were raised from coral graveyards at Orphan Knoll (˜1700m depth) and Flemish cap (˜2200 m depth), while live specimens were collected directly in overlying steep rock slopes. D. dianthus has an aragonitic skeleton and is thus particularly suited for U-Th dating. We obtained > 70 U-series ages along with > 20 14C measurements. Results display a discrete age distribution with two age clusters: a Bølling-Allerød and Holocene cluster with > 20 samples, and a Marine Isotope Stage (MIS) 5c cluster with ˜50 samples. Only two samples lay outside these clusters, at ˜ 64 ka and at ˜181 ka. Contrary to the New England seamounts where coral presence seems to have been continue through the last 70 ka, Orphan Knoll and Flemish Cap graveyards are marked by the absence of preserved specimens from MIS 2 to MIS 4 and throughout MIS 6. For filter-feeding deep-sea corals, access to food-rich waters is essential. Hence the Holocene and MIS 5 clusters observed in the Labrador basin might represent intervals linked to high food availability, either through production in the overlying water column, more effectively in relation to particulate and dissolved organic carbon transport via an active Western Boundary Undercurrent. Comparison of 230Th-ages vs 14C-ages in order to document changes in ventilation ages of the ambient water masses is equivocal due to the presence of some diagenetic and/or initial 230Th-excess. In addition, discrete diagenetic U-fluxes can be documented from 234U/238U vs 230Th/238U data. They point to a recent winnowing of sediment overlying the fossil corals that we link to the Holocene intensification of the Western Boundary Undercurrent, which resulted in driving Fe-Mn coatings.

  16. Deep Galex Observations of the Coma Cluster: Source Catalog and Galaxy Counts

    NASA Technical Reports Server (NTRS)

    Hammer, D.; Hornschemeier, A. E.; Mobasher, B.; Miller, N.; Smith, R.; Arnouts, S.; Milliard, B.; Jenkins, L.

    2010-01-01

    We present a source catalog from deep 26 ks GALEX observations of the Coma cluster in the far-UV (FUV; 1530 Angstroms) and near-UV (NUV; 2310 Angstroms) wavebands. The observed field is centered 0.9 deg. (1.6 Mpc) south-west of the Coma core, and has full optical photometric coverage by SDSS and spectroscopic coverage to r-21. The catalog consists of 9700 galaxies with GALEX and SDSS photometry, including 242 spectroscopically-confirmed Coma member galaxies that range from giant spirals and elliptical galaxies to dwarf irregular and early-type galaxies. The full multi-wavelength catalog (cluster plus background galaxies) is 80% complete to NUV=23 and FUV=23.5, and has a limiting depth at NUV=24.5 and FUV=25.0 which corresponds to a star formation rate of 10(exp -3) solar mass yr(sup -1) at the distance of Coma. The GALEX images presented here are very deep and include detections of many resolved cluster members superposed on a dense field of unresolved background galaxies. This required a two-fold approach to generating a source catalog: we used a Bayesian deblending algorithm to measure faint and compact sources (using SDSS coordinates as a position prior), and used the GALEX pipeline catalog for bright and/or extended objects. We performed simulations to assess the importance of systematic effects (e.g. object blends, source confusion, Eddington Bias) that influence source detection and photometry when using both methods. The Bayesian deblending method roughly doubles the number of source detections and provides reliable photometry to a few magnitudes deeper than the GALEX pipeline catalog. This method is also free from source confusion over the UV magnitude range studied here: conversely, we estimate that the GALEX pipeline catalogs are confusion limited at NUV approximately 23 and FUV approximately 24. We have measured the total UV galaxy counts using our catalog and report a 50% excess of counts across FUV=22-23.5 and NUV=21.5-23 relative to previous GALEX measurements, which is not attributed to cluster member galaxies. Our galaxy counts are a better match to deeper UV counts measured with HST.

  17. deepTools2: a next generation web server for deep-sequencing data analysis.

    PubMed

    Ramírez, Fidel; Ryan, Devon P; Grüning, Björn; Bhardwaj, Vivek; Kilpert, Fabian; Richter, Andreas S; Heyne, Steffen; Dündar, Friederike; Manke, Thomas

    2016-07-08

    We present an update to our Galaxy-based web server for processing and visualizing deeply sequenced data. Its core tool set, deepTools, allows users to perform complete bioinformatic workflows ranging from quality controls and normalizations of aligned reads to integrative analyses, including clustering and visualization approaches. Since we first described our deepTools Galaxy server in 2014, we have implemented new solutions for many requests from the community and our users. Here, we introduce significant enhancements and new tools to further improve data visualization and interpretation. deepTools continue to be open to all users and freely available as a web service at deeptools.ie-freiburg.mpg.de The new deepTools2 suite can be easily deployed within any Galaxy framework via the toolshed repository, and we also provide source code for command line usage under Linux and Mac OS X. A public and documented API for access to deepTools functionality is also available. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. A fully automatic microcalcification detection approach based on deep convolution neural network

    NASA Astrophysics Data System (ADS)

    Cai, Guanxiong; Guo, Yanhui; Zhang, Yaqin; Qin, Genggeng; Zhou, Yuanpin; Lu, Yao

    2018-02-01

    Breast cancer is one of the most common cancers and has high morbidity and mortality worldwide, posing a serious threat to the health of human beings. The emergence of microcalcifications (MCs) is an important signal of early breast cancer. However, it is still challenging and time consuming for radiologists to identify some tiny and subtle individual MCs in mammograms. This study proposed a novel computer-aided MC detection algorithm on the full field digital mammograms (FFDMs) using deep convolution neural network (DCNN). Firstly, a MC candidate detection system was used to obtain potential MC candidates. Then a DCNN was trained using a novel adaptive learning strategy, neutrosophic reinforcement sample learning (NRSL) strategy to speed up the learning process. The trained DCNN served to recognize true MCs. After been classified by DCNN, a density-based regional clustering method was imposed to form MC clusters. The accuracy of the DCNN with our proposed NRSL strategy converges faster and goes higher than the traditional DCNN at same epochs, and the obtained an accuracy of 99.87% on training set, 95.12% on validation set, and 93.68% on testing set at epoch 40. For cluster-based MC cluster detection evaluation, a sensitivity of 90% was achieved at 0.13 false positives (FPs) per image. The obtained results demonstrate that the designed DCNN plays a significant role in the MC detection after being prior trained.

  19. Neurostimulation for Treatment of Migraine and Cluster Headache

    PubMed Central

    Schwedt, Todd J.; Vargas, Bert

    2015-01-01

    Objective The objective of this narrative review was to summarize the current state of neurostimulation therapies for the treatment of migraine and/or cluster. Methods For this narrative review, publications were identified by searching PubMed using the search terms “migraine” or “cluster” combined with “vagal nerve stimulation”, “transcranial magnetic stimulation”, “supraorbital nerve stimulation”, “sphenopalatine ganglion stimulation”, “occipital nerve stimulation”, “deep brain stimulation”, “neurostimulation”, or “neuromodulation”. Publications were chosen based upon the quality of data that were provided and their relevance to the chosen topics of interest for this review. Reference lists of chosen articles and the authors own files were used to identify additional publications. Current clinical trials were identified by searching clinicaltrials.org. Results and Conclusions Neurostimulation of the vagal nerve, supraorbital nerve, occipital nerve and sphenopalatine ganglion, transcranial magnetic stimulation, and deep brain stimulation have been investigated for the treatment of migraine and/or cluster. Whereas invasive methods of neurostimulation would be reserved for patients with very severe and treatment refractory migraine or cluster, non-invasive methods of stimulation might serve as useful adjuncts to more conventional therapies. Currently, transcutaneous supraorbital nerve stimulation is FDA approved and commercially available for migraine prevention and transcranial magnetic stimulation is FDA approved for the treatment of migraine with aura. The potential utility of each type of neurostimulation has yet to be completely defined. PMID:26177612

  20. ULTRA-DEEP GEMINI NEAR-INFRARED OBSERVATIONS OF THE BULGE GLOBULAR CLUSTER NGC 6624

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.

    2016-11-20

    We used ultra-deep J and K {sub s} images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a ( K {sub s} , J - K {sub s} ) color–magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K {sub s} ∼ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K {submore » s} ∼ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 ( t {sub age} = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ∼ 0.45 M{sub ⊙}, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution.« less

  1. Deep Chandra Observations of NGC 1404: Cluster Plasma Physics Revealed by an Infalling Early-type Galaxy

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Kraft, Ralph P.; Roediger, Elke; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-01-01

    The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra, and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin-Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μG to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.

  2. The SCUBA-2 Cosmology Legacy Survey: the clustering of submillimetre galaxies in the UKIDSS UDS field

    NASA Astrophysics Data System (ADS)

    Wilkinson, Aaron; Almaini, Omar; Chen, Chian-Chou; Smail, Ian; Arumugam, Vinodiran; Blain, Andrew; Chapin, Edward L.; Chapman, Scott C.; Conselice, Christopher J.; Cowley, William I.; Dunlop, James S.; Farrah, Duncan; Geach, James; Hartley, William G.; Ivison, Rob J.; Maltby, David T.; Michałowski, Michał J.; Mortlock, Alice; Scott, Douglas; Simpson, Chris; Simpson, James M.; van der Werf, Paul; Wild, Vivienne

    2017-01-01

    Submillimetre galaxies (SMGs) are among the most luminous dusty galaxies in the Universe, but their true nature remains unclear; are SMGs the progenitors of the massive elliptical galaxies we see in the local Universe, or are they just a short-lived phase among more typical star-forming galaxies? To explore this problem further, we investigate the clustering of SMGs identified in the SCUBA-2 Cosmology Legacy Survey. We use a catalogue of submillimetre (850 μm) source identifications derived using a combination of radio counterparts and colour/infrared selection to analyse a sample of 610 SMG counterparts in the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Survey (UKIDSS) Ultra Deep Survey (UDS), making this the largest high-redshift sample of these galaxies to date. Using angular cross-correlation techniques, we estimate the halo masses for this large sample of SMGs and compare them with passive and star-forming galaxies selected in the same field. We find that SMGs, on average, occupy high-mass dark matter haloes (Mhalo > 1013 M⊙) at redshifts z > 2.5, consistent with being the progenitors of massive quiescent galaxies in present-day galaxy clusters. We also find evidence of downsizing, in which SMG activity shifts to lower mass haloes at lower redshifts. In terms of their clustering and halo masses, SMGs appear to be consistent with other star-forming galaxies at a given redshift.

  3. The HST Frontier Fields: High-Level Science Data Products for the First 4 Completed Clusters, and Latest Data on the Remaining Clusters

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Borncamp, David; Gunning, Heather C.; Hilbert, Bryan; Khandrika, Harish G.; Lucas, Ray A.; Ogaz, Sara; Porterfield, Blair; Grogin, Norman A.; Robberto, Massimo; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2016-01-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The first four of these clusters are now complete, namely Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223, with each of these having been observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, using ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W). The remaining two clusters, Abell 370 and Abell S1063, are currently in progress. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including a total of 24 separate cumulative-depth data releases during each epoch, as well as full-depth version 1.0 releases at the end of each completed epoch. These products include all the full-depth distortion-corrected mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The resulting high-level science products are delivered via the Mikulski Archive for Space Telescopes (MAST) to the community on a rapid timescale to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  4. The HST Frontier Fields: High-Level Science Data Products for the First 4 Completed Clusters, and for the Last 2 Clusters Currently in Progress

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Borncamp, David; Gunning, Heather C.; Hilbert, Bryan; Khandrika, Harish G.; Lucas, Ray A.; Ogaz, Sara; Porterfield, Blair; Sunnquist, Ben; Grogin, Norman A.; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2016-06-01

    The Hubble Space Telescope Frontier Fields program (PI: J. Lotz) is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The first four of these clusters are now complete, namely Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223, with each of these having been observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, using ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W). The remaining two clusters, Abell 370 and Abell S1063, are currently in progress, with the first epoch for each having been completed. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth v0.5 data releases during each epoch, as well as full-depth version 1.0 releases after the completion of each epoch. These products include all the full-depth distortion-corrected mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  5. A Science Portal and Archive for Extragalactic Globular Cluster Systems Data

    NASA Astrophysics Data System (ADS)

    Young, Michael; Rhode, Katherine L.; Gopu, Arvind

    2015-01-01

    For several years we have been carrying out a wide-field imaging survey of the globular cluster populations of a sample of giant spiral, S0, and elliptical galaxies with distances of ~10-30 Mpc. We use mosaic CCD cameras on the WIYN 3.5-m and Kitt Peak 4-m telescopes to acquire deep BVR imaging of each galaxy and then analyze the data to derive global properties of the globular cluster system. In addition to measuring the total numbers, specific frequencies, spatial distributions, and color distributions for the globular cluster populations, we have produced deep, high-quality images and lists of tens to thousands of globular cluster candidates for the ~40 galaxies included in the survey.With the survey nearing completion, we have been exploring how to efficiently disseminate not only the overall results, but also all of the relevant data products, to the astronomical community. Here we present our solution: a scientific portal and archive for extragalactic globular cluster systems data. With a modern and intuitive web interface built on the same framework as the WIYN One Degree Imager Portal, Pipeline, and Archive (ODI-PPA), our system will provide public access to the survey results and the final stacked mosaic images of the target galaxies. In addition, the astrometric and photometric data for thousands of identified globular cluster candidates, as well as for all point sources detected in each field, will be indexed and searchable. Where available, spectroscopic follow-up data will be paired with the candidates. Advanced imaging tools will enable users to overlay the cluster candidates and other sources on the mosaic images within the web interface, while metadata charting tools will allow users to rapidly and seamlessly plot the survey results for each galaxy and the data for hundreds of thousands of individual sources. Finally, we will appeal to other researchers with similar data products and work toward making our portal a central repository for data related to well-studied giant galaxy globular cluster systems. This work is supported by NSF Faculty Early Career Development (CAREER) award AST-0847109.

  6. T-ReX Spies the Stars of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Broos, Patrick; Townsley, Leisa K.; Pollock, Andrew; Crowther, Paul

    2017-08-01

    30 Doradus (the Tarantula Nebula) is the Local Group's most massive young star-forming complex. At its heart is R136, the most massive resolved stellar cluster; R136 contains, in turn, the most massive stars known. The Chandra X-ray Observatory has recently observed 30 Dor for the 2-megasecond X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX). This deep observation exploits Chandra's fine spatial resolution to study the full complement of massive stars and the brightest pre-main sequence stars that trace 25 Myrs of star formation in this incomparable nearby starburst. Here we give preliminary results from the ongoing analyses of the data, focusing on the massive stars. While many remain undetected even in this deep ACIS-I observation, a few show dramatic X-ray lightcurves and/or high luminosities befitting this amazing starburst cluster.

  7. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels

    PubMed Central

    Sornapudi, Sudhir; Stanley, Ronald Joe; Stoecker, William V.; Almubarak, Haidar; Long, Rodney; Antani, Sameer; Thoma, George; Zuna, Rosemary; Frazier, Shelliane R.

    2018-01-01

    Background: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. Methods: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. Results: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. Conclusions: The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods. PMID:29619277

  8. Chandra Observations of the Brightest Sunyaev-Zeldovich Effect Cluster

    NASA Astrophysics Data System (ADS)

    Hughes, John

    2011-10-01

    We propose deep Chandra observations of ACT-CL J0102-4915, the brightest Sunyaev-Zeldovich effect cluster discovered by the Atacama Cosmology Telescope and South Pole Telescope surveys. These surveys covered approximately 3000 square degrees and are essentially complete to high redshift. Our recent Chandra and VLT optical data reveal ACL-CL J0102-4915 to be undergoing a major merger. It is likely a high redshift {z=0.870} counterpart to the famous A?A?bulletA?A? cluster. New Chandra data will determine the properties of the merger shock and the HST/ACS data will provide a weak lensing mass map.

  9. Galaxy Merger Candidates in High-redshift Cluster Environments

    NASA Astrophysics Data System (ADS)

    Delahaye, A. G.; Webb, T. M. A.; Nantais, J.; DeGroot, A.; Wilson, G.; Muzzin, A.; Yee, H. K. C.; Foltz, R.; Noble, A. G.; Demarco, R.; Tudorica, A.; Cooper, M. C.; Lidman, C.; Perlmutter, S.; Hayden, B.; Boone, K.; Surace, J.

    2017-07-01

    We compile a sample of spectroscopically and photometrically selected cluster galaxies from four high-redshift galaxy clusters (1.59< z< 1.71) from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), and a comparison field sample selected from the UKIDSS Deep Survey. Using near-infrared imaging from the Hubble Space Telescope, we classify potential mergers involving massive ({M}* ≥slant 3× {10}10 {M}⊙ ) cluster members by eye, based on morphological properties such as tidal distortions, double nuclei, and projected near neighbors within 20 kpc. With a catalog of 23 spectroscopic and 32 photometric massive cluster members across the four clusters and 65 spectroscopic and 26 photometric comparable field galaxies, we find that after taking into account contamination from interlopers, {11.0}-5.6+7.0 % of the cluster members are involved in potential mergers, compared to {24.7}-4.6+5.3 % of the field galaxies. We see no evidence of merger enhancement in the central cluster environment with respect to the field, suggesting that galaxy-galaxy merging is not a stronger source of galaxy evolution in cluster environments compared to the field at these redshifts.

  10. Atoll-scale patterns in coral reef community structure: Human signatures on Ulithi Atoll, Micronesia

    PubMed Central

    Nelson, Peter; Abelson, Avigdor; Precoda, Kristin; Rulmal, John; Bernardi, Giacomo; Paddack, Michelle

    2017-01-01

    The dynamic relationship between reefs and the people who utilize them at a subsistence level is poorly understood. This paper characterizes atoll-scale patterns in shallow coral reef habitat and fish community structure, and correlates these with environmental characteristics and anthropogenic factors, critical to conservation efforts for the reefs and the people who depend on them. Hierarchical clustering analyses by site for benthic composition and fish community resulted in the same 3 major clusters: cluster 1–oceanic (close proximity to deep water) and uninhabited (low human impact); cluster 2–oceanic and inhabited (high human impact); and cluster 3–lagoonal (facing the inside of the lagoon) and inhabited (highest human impact). Distance from village, reef exposure to deep water and human population size had the greatest effect in predicting the fish and benthic community structure. Our study demonstrates a strong association between benthic and fish community structure and human use across the Ulithi Atoll (Yap State, Federated States of Micronesia) and confirms a pattern observed by local people that an ‘opportunistic’ scleractinian coral (Montipora sp.) is associated with more highly impacted reefs. Our findings suggest that small human populations (subsistence fishing) can nevertheless have considerable ecological impacts on reefs due, in part, to changes in fishing practices rather than overfishing per se, as well as larger global trends. Findings from this work can assist in building local capacity to manage reef resources across an atoll-wide scale, and illustrates the importance of anthropogenic impact even in small communities. PMID:28489903

  11. Graphical classification of DNA sequences of HLA alleles by deep learning.

    PubMed

    Miyake, Jun; Kaneshita, Yuhei; Asatani, Satoshi; Tagawa, Seiichi; Niioka, Hirohiko; Hirano, Takashi

    2018-04-01

    Alleles of human leukocyte antigen (HLA)-A DNAs are classified and expressed graphically by using artificial intelligence "Deep Learning (Stacked autoencoder)". Nucleotide sequence data corresponding to the length of 822 bp, collected from the Immuno Polymorphism Database, were compressed to 2-dimensional representation and were plotted. Profiles of the two-dimensional plots indicate that the alleles can be classified as clusters are formed. The two-dimensional plot of HLA-A DNAs gives a clear outlook for characterizing the various alleles.

  12. Young Galaxy Candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zitrin, Adi; Infante, Leopoldo; Laporte, Nicolas; Huang, Xingxing; Moustakas, John; Ford, Holland C.; Shu, Xinwen; Wang, Junxian; Diego, Jose M.; Bauer, Franz E.; Troncoso Iribarren, Paulina; Broadhurst, Tom; Molino, Alberto

    2017-02-01

    We search for high-redshift dropout galaxies behind the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, a powerful cosmic lens that has revealed a number of unique objects in its field. Using the deep images from the Hubble and Spitzer space telescopes, we find 11 galaxies at z > 7 in the MACS J1149.5+2223 cluster field, and 11 in its parallel field. The high-redshift nature of the bright z ≃ 9.6 galaxy MACS1149-JD, previously reported by Zheng et al., is further supported by non-detection in the extremely deep optical images from the HFF campaign. With the new photometry, the best photometric redshift solution for MACS1149-JD reduces slightly to z = 9.44 ± 0.12. The young galaxy has an estimated stellar mass of (7+/- 2)× {10}8 {M}⊙ , and was formed at z={13.2}-1.6+1.9 when the universe was ≈300 Myr old. Data available for the first four HFF clusters have already enabled us to find faint galaxies to an intrinsic magnitude of {M}{UV}≃ -15.5, approximately a factor of 10 deeper than the parallel fields.

  13. Tracing Large-Scale Structure with Radio Sources

    NASA Astrophysics Data System (ADS)

    Lindsay, S. N.

    2015-02-01

    In this thesis, I investigate the spatial distribution of radio sources, and quantify their clustering strength over a range of redshifts, up to z _ 2:2, using various forms of the correlation function measured with data from several multi-wavelength surveys. I present the optical spectra of 30 radio AGN (S1:4 > 100 mJy) in the GAMA/H-ATLAS fields, for which emission line redshifts could be deduced, from observations of 79 target sources with the EFOSC2 spectrograph on the NTT. The mean redshift of these sources is z = 1:2; 12 were identified as quasars (40 per cent), and 6 redshifts (out of 24 targets) were found for AGN hosts to multiple radio components. While obtaining spectra for hosts of these multi-component sources is possible, their lower success rate highlights the difficulty in acheiving a redshift-complete radio sample. Taking an existing spectroscopic redshift survey (GAMA) and radio sources from the FIRST survey (S1:4 > 1 mJy), I then present a cross-matched radio sample with 1,635 spectroscopic redshifts with a median value of z = 0:34. The spatial correlation function of this sample is used to find the redshiftspace (s0) and real-space correlation lengths (r0 _ 8:2 h Mpc), and a mass bias of _1.9. Insight into the redshift-dependence of these quantities is gained by using the angular correlation function and Limber inversion to measure the same spatial clustering parameters. Photometric redshifts! from SDSS/UKIDSS are incorporated to produce a larger matched radio sample at z ' 0:48 (and low- and high-redshift subsamples at z ' 0:30 and z ' 0:65), while their redshift distribution is subtracted from that taken from the SKADS radio simulations to estimate the redshift distribution of the remaining unmatched sources (z ' 1:55). The observed bias evolution over this redshift range is compared with model predictions based on the SKADS simulations, with good agreement at low redshift. The bias found at high redshift significantly exceeds these predictions, however, suggesting a more massive population of galaxies than expected, either due to the relative proportions of different radio sources, or a greater typical halo mass for the high-redshift sources. Finally, the reliance on a model redshift distribution to reach to higher redshifts is removed, as the angular cross-correlation function is used with deep VLA data (S1:4 > 90 _Jy) and optical/IR data from VIDEO/CFHTLS (Ks < 23:5) over 1 square degree. With high-quality photometric redshifts up to z _ 4, and a high signal-to-noise clustering measurement (due to the _100,000 Ks-selected galaxies), I am able to find the bias of a matched sample of only 766 radio sources (as well as of v vi the VIDEO sources), divided into 4 redshift bins reaching a median bias at z ' 2:15. Again, at high redshift, the measured bias appears to exceed the prediction made from the SKADS simulations. Applying luminosity cuts to the radio sample at L > 1023 WHz and higher (removing any non-AGN sources), I find a bias of 8-10 at z _ 1:5, considerably higher than for the full sample, and consistent with the more numerous FRI AGN having similar mass to the FRIIs (M _ 10^14 M_), contrary to the assumptions made in the SKADS simulations. Applying this adjustment to the model bias produces a better fit to the observations for the FIRST radio sources cross-matched with GAMA/SDSS/UKIDSS, as well as for the high-redshift radio sources in VIDEO. Therefore, I have shown that we require a more robust model of the evolution of AGN, and their relation to the underlying dark matter distribution. In particular, understanding these quantities for the abundant FRI population is crucial if we are to use such sources to probe the cosmological model as has been suggested by a number of authors (e.g. Raccanelli et al., 2012; Camera et al., 2012; Ferramacho et al., 2014).

  14. Endoventricular Deep Brain Stimulation of the Third Ventricle: Proof of Concept and Application to Cluster Headache.

    PubMed

    Chabardès, Stéphan; Carron, Romain; Seigneuret, Eric; Torres, Napoleon; Goetz, Laurent; Krainik, Alexandre; Piallat, Brigitte; Pham, Pascale; David, Olivier; Giraud, Pierrick; Benabid, Alim Louis

    2016-12-01

    The third ventricle (3rd V) is surrounded by centers related to satiety, homeostasis, hormones, sleep, memory, and pain. Stimulation of the wall of the 3rd V could be useful to treat disorders related to dysfunction of the hypothalamus. To assess safety and efficacy of endoventricular electrical stimulation of the hypothalamus using a floating deep brain stimulation (DBS) lead laid on the floor of the 3rd V to treat refractory cluster headaches (CH). Seven patients, aged 24 to 60 years, experiencing chronic CH (mean chronic duration 5.8 ± 2.5 years) were enrolled in this pilot, prospective, open study assessing the safety and potential efficacy of chronic DBS of the 3rd V. Number of attacks was collected during baseline and was compared with those occurring at 3, 6, and 12 months postoperation. Any side effects that occurred during or after surgery were reported. Effect on mood was assessed using the Hospital Anxiety and Depression scale during baseline and at 6 and 12 months postoperation. Insertion of the lead into the posterior 3rd V and chronic stimulation was feasible and safe in all patients. The voltage ranged from 0.9 to 2.3 volts. The most common side effect was transient trembling vision during stimulation. At 12 months, 3 of 7 patients were pain free, 2 had 90% improvement, 1 of 7 had 75% improvement, and 1 of 7 was not significantly improved. This proof of concept demonstrates the feasibility, safety, and potential efficacy of 3rd V DBS using an endoventricular road that could be applied to treat various diseases involving hypothalamic areas. CCH, chronic cluster headacheCH, cluster headacheDBS, deep brain stimulationHAD, hospital anxiety depressionONS, occipital nerve stimulationPAG, periaqueductal gray matterPH, posterior hypothalamusPVG, periventricular gray matter3rd V, third ventricle.

  15. FRONTIER FIELDS: HIGH-REDSHIFT PREDICTIONS AND EARLY RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Dan; Bradley, Larry; Zitrin, Adi, E-mail: DCoe@STScI.edu

    2015-02-20

    The Frontier Fields program is obtaining deep Hubble and Spitzer Space Telescope images of new ''blank'' fields and nearby fields gravitationally lensed by massive galaxy clusters. The Hubble images of the lensed fields are revealing nJy sources (AB mag > 31), the faintest galaxies yet observed. The full program will transform our understanding of galaxy evolution in the first 600 million years (z > 9). Previous programs have yielded a dozen or so z > 9 candidates, including perhaps fewer than expected in the Ultra Deep Field and more than expected in shallower Hubble images. In this paper, we present high-redshift (z >more » 6) number count predictions for the Frontier Fields and candidates in three of the first Hubble images. We show the full Frontier Fields program may yield up to ∼70 z > 9 candidates (∼6 per field). We base this estimate on an extrapolation of luminosity functions observed between 4 < z < 8 and gravitational lensing models submitted by the community. However, in the first two deep infrared Hubble images obtained to date, we find z ∼ 8 candidates but no strong candidates at z > 9. We defer quantitative analysis of the z > 9 deficit (including detection completeness estimates) to future work including additional data. At these redshifts, cosmic variance (field-to-field variation) is expected to be significant (greater than ±50%) and include clustering of early galaxies formed in overdensities. The full Frontier Fields program will significantly mitigate this uncertainty by observing six independent sightlines each with a lensing cluster and nearby blank field.« less

  16. Gas Dynamics in the Fornax Cluster: Viscosity, turbulence, and sloshing

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph; Su, Yuanyuan; Sheardown, Alexander; Roediger, Elke; Nulsen, Paul; Forman, William; Jones, Christine; Churazov, Eugene

    2018-01-01

    We present results from deep Chandra and XMM-Newton observations of the ICM in the Fornax cluster, and combine these data with specifically-tailored hydrodynamic simulations for an unprecedented view of the gas dynamics in this nearby cluster. We report the detection of four sloshing fronts (Su+2017). Based on our simulations, all four of these fronts can plausibly be attributed to the infall of the early-type galaxy NGC 1404 into the cluster potential. We argue that the presence of these sloshing cold fronts, the lack of its own extended gas halo, and the approximately transonic infall velocity indicate that this must be at least the second core passage for NGC 1404. Additionally, there is virtually no stripped tail of cool gas behind NGC 1404, conclusively demonstrating that the stripped gas is efficiently mixed with the cluster ICM. This mixing most likely occurs via small-scale Kelvin-Helmholtz instabilities formed in the high Reynolds number flow.

  17. Blue straggler stars: lessons from open clusters.

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.

    Open clusters enable a deep dive into blue straggler characteristics. Recent work shows that the binary properties (frequency, orbital elements and companion masses and evolutionary states) of the blue stragglers are the most important diagnostic for determining their origins. To date the multi-epoch radial-velocity observations necessary for characterizing these blue straggler binaries have only been carried out in open clusters. In this paper, I highlight recent results in the open clusters NGC 188, NGC 2682 (M67) and NGC 6819. The characteristics of many of the blue stragglers in these open clusters point directly to origins through mass transfer from an evolved donor star. Additionally, a handful of blue stragglers show clear signatures of past dynamical encounters. These comprehensive, diverse and detailed observations also reveal important challenges for blue straggler formation models (and particularly the mass-transfer channel), which we must overcome to fully understand the origins of blue straggler stars and other mass-transfer products.

  18. Deep CCD Photometry of the Rich Galaxy Cluster Abel 1656 Characteristics of the Dwarf Elliptical Galaxy Population in the Cluster Core

    NASA Astrophysics Data System (ADS)

    Secker, Jeffrey Alan

    1995-01-01

    We have developed a statistically rigorous and automated method to implement the detection, photometry and classification of faint objects on digital images. We use these methods to analyze deep R- and B-band CCD images of the central ~ 700 arcmin ^2 of the Coma cluster core, and an associated control field. We have detected and measured total R magnitudes and (B-R) colors for a sample of 3741 objects on the galaxy cluster fields, and 1164 objects on a remote control field, complete to a limiting magnitude of R = 22.5 mag. The typical uncertainties are +/- 0.06 and +/-0.12 mag in total magnitude and color respectively. The dwarf elliptical (dE) galaxies are confined to a well-defined sequence in the color range given by 0.7<= (B-R)<= 1.9 mag: within this interval there are 2535 dE candidates on our fields in the cluster core, and 694 objects on the control field. With an image scale of 0.53 arcsec/pixel and seeing near 1.2 arcsec, a large fraction of the dE galaxy candidates are resolved. We find a significant metallicity gradient in the radial distribution of the dwarf elliptical galaxies, which goes as Z~ R^{-0.32 } outwards from the cluster center at NGC 4874. As well, there is a strong color-luminosity correlation, in the sense that more luminous dE galaxies are redder in the mean. These effects give rise to a radial variation in the cluster luminosity function. The spatial distribution of the faint dE galaxies is well fit by a standard King model with a central surface density of Sigma _0 = 1.44 dEs arcmin^{ -2}, a core radius R_{ rm c} = 18.7 arcmin (~eq 0.44 Mpc), and a tidal radius of 1.44 deg ( ~eq 2.05 Mpc). This core is significantly larger than R_{rm c} = 12.3 arcmin (~eq 0.29 Mpc) found for the bright cluster galaxies. The composite luminosity function for Coma galaxies is modeled as the sum of a log -normal distribution for the giant galaxies and a Schechter function for the dwarf elliptical galaxies, with a faint -end slope of alpha = -1.41, consistent with known faint-end slopes for the Virgo and Fornax clusters. The early-type dwarf-to-giant ratio for the Coma cluster core is consistent with that of the Virgo cluster, and thus with the rich Coma cluster being formed as the merger of multiple less-rich galaxy clusters.

  19. Deep brain stimulation as a functional scalpel.

    PubMed

    Broggi, G; Franzini, A; Tringali, G; Ferroli, P; Marras, C; Romito, L; Maccagnano, E

    2006-01-01

    Since 1995, at the Istituto Nazionale Neurologico "Carlo Besta" in Milan (INNCB,) 401 deep brain electrodes were implanted to treat several drug-resistant neurological syndromes (Fig. 1). More than 200 patients are still available for follow-up and therapeutical considerations. In this paper our experience is reviewed and pioneered fields are highlighted. The reported series of patients extends the use of deep brain stimulation beyond the field of Parkinson's disease to new fields such as cluster headache, disruptive behaviour, SUNCt, epilepsy and tardive dystonia. The low complication rate, the reversibility of the procedure and the available image guided surgery tools will further increase the therapeutic applications of DBS. New therapeutical applications are expected for this functional scalpel.

  20. Discovery of a large-scale clumpy structure of the Lynx supercluster at z[similar]1.27

    NASA Astrophysics Data System (ADS)

    Nakata, Fumiaki; Kodama, Tadayuki; Shimasaku, Kazuhiro; Doi, Mamoru; Furusawa, Hisanori; Hamabe, Masaru; Kimura, Masahiko; Komiyama, Yutaka; Miyazaki, Satoshi; Okamura, Sadanori; Ouchi, Masami; Sekiguchi, Maki; Yagi, Masafumi; Yasuda, Naoki

    2004-07-01

    We report the discovery of a probable large-scale structure composed of many galaxy clumps around the known twin clusters at z=1.26 and z=1.27 in the Lynx region. Our analysis is based on deep, panoramic, and multi-colour imaging with the Suprime-Cam on the 8.2 m Subaru telescope. We apply a photometric redshift technique to extract plausible cluster members at z˜1.27 down to ˜ M*+2.5. From the 2-D distribution of these photometrically selected galaxies, we newly identify seven candidates of galaxy groups or clusters where the surface density of red galaxies is significantly high (>5σ), in addition to the two known clusters, comprising the largest most distant supercluster ever identified.

  1. The Multiple Stellar Populations in the Ancient LMC Globular Clusters Hodge 11 and NGC 2210

    NASA Astrophysics Data System (ADS)

    Chaboyer, Brian; Gilligan, Christina; Wagner-Kaiser, Rachel; Mackey, Dougal; Sarajedini, Ata; Cummings, Jeffrey; Grocholski, Aaron; Geisler, Doug; Cohen, Roger; Villanova, Sandro; Yang, Soung-Chul; Parisi, Celeste

    2018-01-01

    Hubble Space telescope images of the ancient LMC globular clusters Hodge 11 and NGC 2210 in the F336W, F606W and F814W filters were obtained between June 2016 and April 2017. These deep images has been analyzed with the Dolphot software package. High quality photometry has been obtained from three magnitudes brighter than the horizontal branch, to about four magnitudes fainter than the main sequence turn-off. Both clusters show an excess of red main sequence stars in the F336W filter, indicating that multiple stellar populations exist in both clusters. Hodge 11 shows irregularities in its horizontal branch morphology, which is indicative of the presence of an approximately 0.1 dex internal helium abundance spread.

  2. A Giant Warm Baryonic Halo for the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Bonamente, Max; Lieu, Richard; Joy, Marshall K.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Several deep PSPC observations of the Coma cluster unveil a very large-scale halo of soft X-ray emission, substantially in excess of the well know radiation from the hot intra-cluster medium. The excess emission, previously reported in the central cluster regions through lower-sensitivity EUVE and ROSAT data, is now evident out to a radius of 2.5 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The spectrum at these large radii cannot be modeled non-thermally, but is consistent with the original scenario of thermal emission at warm temperatures. The mass of this plasma is at least on par with that of the hot X-ray emitting plasma, and significantly more massive if the plasma resides in low-density filamentary structures. Thus the data lend vital support to current theories of cosmic evolution, which predict greater than 50 percent by mass of today's baryons reside in warm-hot filaments converging at clusters of galaxies.

  3. Diffuse radio emission in the complex merging galaxy cluster Abell2069

    NASA Astrophysics Data System (ADS)

    Drabent, A.; Hoeft, M.; Pizzo, R. F.; Bonafede, A.; van Weeren, R. J.; Klein, U.

    2015-03-01

    Context. Galaxy clusters with signs of a recent merger in many cases show extended diffuse radio features. This emission originates from relativistic electrons that suffer synchrotron losses due to the intracluster magnetic field. The mechanisms of particle acceleration and the properties of the magnetic field are still poorly understood. Aims: We search for diffuse radio emission in galaxy clusters. Here, we study the complex galaxy cluster Abell 2069, for which X-ray observations indicate a recent merger. Methods: We investigate the cluster's radio continuum emission by deep Westerbork Synthesis Radio Telescope (WSRT) observations at 346 MHz and Giant Metrewave Radio Telescope (GMRT) observations at 322 MHz. Results: We find an extended diffuse radio feature roughly coinciding with the main component of the cluster. We classify this emission as a radio halo and estimate its lower limit flux density at 25 ± 9 mJy. Moreover, we find a second extended diffuse source located at the cluster's companion and estimate its flux density at 15 ± 2 mJy. We speculate that this is a small halo or a mini-halo. If true, this cluster is the first example of a double-halo in a single galaxy cluster.

  4. Galaxy clusters in the cosmic web

    NASA Astrophysics Data System (ADS)

    Acebrón, A.; Durret, F.; Martinet, N.; Adami, C.; Guennou, L.

    2014-12-01

    Simulations of large scale structure formation in the universe predict that matter is essentially distributed along filaments at the intersection of which lie galaxy clusters. We have analysed 9 clusters in the redshift range 0.4

  5. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yue; Brandt, W. N.; Dawson, Kyle S.

    2015-01-01

    The Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg{sup 2} field with the SDSS-III Baryon Oscillation Spectroscopic Survey spectrograph. The RM quasar sample is flux-limited to i {sub psf} = 21.7 mag, and covers a redshift range of 0.1 < z < 4.5 without any other cuts on quasar properties. Optical spectroscopy was performed during 2014 January-July dark/gray time, with an average cadence of ∼4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bandsmore » was conducted at multiple facilities including the Canada-France-Hawaii Telescope (CFHT) and the Steward Observatory Bok telescope in 2014, with a cadence of ∼2 days and covering all lunar phases. The RM field (R.A., decl. = 14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM six month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ∼10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z > 0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design, and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.« less

  6. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digitalmore » Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you want) to get some initial images loaded. Then, additional images corresponding to the region you are browsing will be loaded automatically. So far, you have access to all the co-added images. But you still do not have the galaxy cluster position information to look at. In order to see the galaxy clusters, you need to download another kmz file that tell Google Earth where to find the galaxy clusters in the co-added data region. We provide a kmz file for a few galaxy clusters in the stripe 82 region and you can download and open it with Google Earth. In the SDSS co-added region (stripe 82 region), the imagery from Google Earth itself is from the Digitized Sky Survey (2007), which is in very poor quality. In Figure1 and Figure2, we show screenshots of a cluster with and without the new co-added imagery in Google Earth. Much more details have been revealed with the deep images.« less

  7. The HST Frontier Fields: Complete High-Level Science Data Products for All 6 Clusters

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2017-01-01

    The Hubble Space Telescope Frontier Fields program (PI: J. Lotz) is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  8. The HST Frontier Fields: Complete Observations and High-Level Science Data Products for All 6 Clusters

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt; HST Frontier Fields Team

    2017-06-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  9. A Dozen New Galaxies Caught in the Act: Gas Stripping and Extended Emission Line Regions in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Yagi, Masafumi; Yoshida, Michitoshi; Komiyama, Yutaka; Kashikawa, Nobunari; Furusawa, Hisanori; Okamura, Sadanori; Graham, Alister W.; Miller, Neal A.; Carter, David; Mobasher, Bahram; Jogee, Shardha

    2010-12-01

    We present images of extended Hα clouds associated with 14 member galaxies in the Coma cluster obtained from deep narrowband imaging observations with the Suprime-Cam at the Subaru Telescope. The parent galaxies of the extended Hα clouds are distributed farther than 0.2 Mpc from the peak of the X-ray emission of the cluster. Most of the galaxies are bluer than g - r ≈ 0.5 and they account for 57% of the blue (g - r < 0.5) bright (r < 17.8 mag) galaxies in the central region of the Coma cluster. They reside near the red- and blueshifted edges of the radial velocity distribution of Coma cluster member galaxies. Our findings suggest that most of the parent galaxies were recently captured by the Coma cluster potential and are now infalling toward the cluster center with their disk gas being stripped off and producing the observed Hα clouds. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  10. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  11. Radio emission in the directions of cD and related galaxies in poor clusters. III. VLA observations at 20 cm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, J.O.; White, R.A.; Hough, D.H.

    1981-01-01

    VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approx.70%). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approx.25% of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies ismore » seen from rich to poor clusters. We speculate that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. We briefly discuss galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and x-ray emission.« less

  12. Radio emission in the directions of cD and related galaxies in poor clusters. III - VLA observations at 20 cm

    NASA Technical Reports Server (NTRS)

    Burns, J. O.; White, R. A.; Hough, D. H.

    1981-01-01

    VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approximately 70 percent). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approximately 25 percent of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies is seen from rich to poor clusters. It is speculated that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. Galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and X-ray emission are discussed

  13. OGLE Collection of Star Clusters. New Objects in the Magellanic Bridge and the Outskirts of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Sitek, M.; Szymański, M. K.; Udalski, A.; Skowron, D. M.; Kostrzewa-Rutkowska, Z.; Skowron, J.; Karczmarek, P.; Cieślar, M.; Wyrzykowski, Ł.; Kozłowski, S.; Pietrukowicz, P.; Soszyński, I.; Mróz, P.; Pawlak, M.; Poleski, R.; Ulaczyk, K.

    2017-12-01

    The Magellanic System (MS) encompasses the nearest neighbors of the Milky Way, the Large (LMC) and Small (SMC) Magellanic Clouds, and the Magellanic Bridge (MBR). This system contains a diverse sample of star clusters. Their parameters, such as the spatial distribution, chemical composition and age distribution yield important information about the formation scenario of the whole Magellanic System. Using deep photometric maps compiled in the fourth phase of the Optical Gravitational Lensing Experiment (OGLE-IV) we present the most complete catalog of star clusters in the Magellanic System ever constructed from homogeneous, long time-scale photometric data. In this second paper of the series, we show the collection of star clusters found in the area of about 360 square degrees in the MBR and in the outer regions of the SMC. Our sample contains 198 visually identified star cluster candidates, 75 of which were not listed in any of the previously published catalogs. The new discoveries are mainly young small open clusters or clusters similar to associations.

  14. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    PubMed

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.

  15. Large Occurrence Patterns of New Zealand Deep Earthquakes: Characterization by Use of a Switching Poisson Model

    NASA Astrophysics Data System (ADS)

    Shaochuan, Lu; Vere-Jones, David

    2011-10-01

    The paper studies the statistical properties of deep earthquakes around North Island, New Zealand. We first evaluate the catalogue coverage and completeness of deep events according to cusum (cumulative sum) statistics and earlier literature. The epicentral, depth, and magnitude distributions of deep earthquakes are then discussed. It is worth noting that strong grouping effects are observed in the epicentral distribution of these deep earthquakes. Also, although the spatial distribution of deep earthquakes does not change, their occurrence frequencies vary from time to time, active in one period, relatively quiescent in another. The depth distribution of deep earthquakes also hardly changes except for events with focal depth less than 100 km. On the basis of spatial concentration we partition deep earthquakes into several groups—the Taupo-Bay of Plenty group, the Taranaki group, and the Cook Strait group. Second-order moment analysis via the two-point correlation function reveals only very small-scale clustering of deep earthquakes, presumably limited to some hot spots only. We also suggest that some models usually used for shallow earthquakes fit deep earthquakes unsatisfactorily. Instead, we propose a switching Poisson model for the occurrence patterns of deep earthquakes. The goodness-of-fit test suggests that the time-varying activity is well characterized by a switching Poisson model. Furthermore, detailed analysis carried out on each deep group by use of switching Poisson models reveals similar time-varying behavior in occurrence frequencies in each group.

  16. Construction risk assessment of deep foundation pit in metro station based on G-COWA method

    NASA Astrophysics Data System (ADS)

    You, Weibao; Wang, Jianbo; Zhang, Wei; Liu, Fangmeng; Yang, Diying

    2018-05-01

    In order to get an accurate understanding of the construction safety of deep foundation pit in metro station and reduce the probability and loss of risk occurrence, a risk assessment method based on G-COWA is proposed. Firstly, relying on the specific engineering examples and the construction characteristics of deep foundation pit, an evaluation index system based on the five factors of “human, management, technology, material and environment” is established. Secondly, the C-OWA operator is introduced to realize the evaluation index empowerment and weaken the negative influence of expert subjective preference. The gray cluster analysis and fuzzy comprehensive evaluation method are combined to construct the construction risk assessment model of deep foundation pit, which can effectively solve the uncertainties. Finally, the model is applied to the actual project of deep foundation pit of Qingdao Metro North Station, determine its construction risk rating is “medium”, evaluate the model is feasible and reasonable. And then corresponding control measures are put forward and useful reference are provided.

  17. Large Scale Structures in the GOODS-SOUTH Field up to z~2.5

    NASA Astrophysics Data System (ADS)

    Trevese, D.; Castellano, M.; Salimbeni, S.; Pentericci, L.; Fiore, F.

    2009-05-01

    We apply a density evaluation technique based on photometric redshifts, developed by our group, to estimate galaxy space density on the deep (z450~26) multi-wavelength GOODS-MUSIC catalogue. We find several groups and clusters in the redshift range 0.4-2.5. We present here an outline of the X-ray properties of our cluster sample as computed from the Chandra 2Ms data. A group at z = 0.96 could be associated to an extended X-ray source, while two clusters with masses of few times 1014Msolar have upper limits on their X-ray emission significantly lower than expected from their optical properties.

  18. DEEP CHANDRA OBSERVATIONS OF NGC 1404: CLUSTER PLASMA PHYSICS REVEALED BY AN INFALLING EARLY-TYPE GALAXY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul

    The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc)more » due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra , and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μ G to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.« less

  19. Endohedral gallide cluster superconductors and superconductivity in ReGa5.

    PubMed

    Xie, Weiwei; Luo, Huixia; Phelan, Brendan F; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph

    2015-12-22

    We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures.

  20. The Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey

    NASA Astrophysics Data System (ADS)

    Squires, Gordon K.; Lubin, L. M.; Gal, R. R.

    2007-05-01

    We present the motivation, design, and latest results from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 Mpc around 20 known galaxy clusters at z > 0.6. When complete, the survey will cover nearly 5 square degrees, all targeted at high-density regions, making it complementary and comparable to field surveys such as DEEP2, GOODS, and COSMOS. For the survey, we are using the Large Format Camera on the Palomar 5-m and SuPRIME-Cam on the Subaru 8-m to obtain optical/near-infrared imaging of an approximately 30 arcmin region around previously studied high-redshift clusters. Colors are used to identify likely member galaxies which are targeted for follow-up spectroscopy with the DEep Imaging Multi-Object Spectrograph on the Keck 10-m. This technique has been used to identify successfully the Cl 1604 supercluster at z = 0.9, a large scale structure containing at least eight clusters (Gal & Lubin 2004; Gal, Lubin & Squires 2005). We present the most recent structures to be photometrically and spectroscopically confirmed through this program, discuss the properties of the member galaxies as a function of environment, and describe our planned multi-wavelength (radio, mid-IR, and X-ray) observations of these systems. The goal of this survey is to identify and examine a statistical sample of large scale structures during an active period in the assembly history of the most massive clusters. With such a sample, we can begin to constrain large scale cluster dynamics and determine the effect of the larger environment on galaxy evolution.

  1. Clusters of deep-sea egg-brooding octopods associated with warm fluid discharge: An ill-fated fragment of a larger, discrete population?

    NASA Astrophysics Data System (ADS)

    Hartwell, Anne M.; Voight, Janet R.; Wheat, C. Geoffrey

    2018-05-01

    Benthic octopods cluster on bare rock on Dorado Outcrop, a 3000 m deep basalt exposure. The outcrop hosts intermittent discharge of relatively cool (up to 12.3 °C) hydrothermal fluid that carries about half as much oxygen as bottom seawater ( 54 μM vs. 108 μM). We analyzed 231 h of video footage and still images taken by sub-sea vehicles in 2013 and 2014 that documented the clustered octopods, members of the poorly-known genus Muusoctopus. The largest cluster (102 octopods) occurred in a 19 m2 area of fluid discharge, where the basalt was sediment-free; individual octopods were also seen across the outcrop. The clustered octopods appeared to be brooding eggs and a total of 11 egg clutches were confirmed. None of the 186 eggs closely examined showed embryonic development. The intermittent fluid discharge may clear the basalt of sediment and attract gravid octopods which then spawn. However, the increased temperature and limited oxygen of the discharging fluids may threaten the octopods' survival. Octopods in/near areas of discharging fluid had significantly higher estimated respiration rates (3.1-9.8 contractions/min) than did octopods away from discharging fluid (0.8-6.0 contractions/min). Warm fluids likely increase the octopods' metabolic rate and thus their oxygen demand but provide only limited oxygen. The resultant physiological stress is hypothesized to eventually kill eggs near fluid discharge. We hypothesize, because these eggs do not survive, the population is sustained by a larger pool of undetectable females that brood their eggs inside cool conduits of this and perhaps other, unstudied basalt outcrops.

  2. UBO Detector - A cluster-based, fully automated pipeline for extracting white matter hyperintensities.

    PubMed

    Jiang, Jiyang; Liu, Tao; Zhu, Wanlin; Koncz, Rebecca; Liu, Hao; Lee, Teresa; Sachdev, Perminder S; Wen, Wei

    2018-07-01

    We present 'UBO Detector', a cluster-based, fully automated pipeline for extracting and calculating variables for regions of white matter hyperintensities (WMH) (available for download at https://cheba.unsw.edu.au/group/neuroimaging-pipeline). It takes T1-weighted and fluid attenuated inversion recovery (FLAIR) scans as input, and SPM12 and FSL functions are utilised for pre-processing. The candidate clusters are then generated by FMRIB's Automated Segmentation Tool (FAST). A supervised machine learning algorithm, k-nearest neighbor (k-NN), is applied to determine whether the candidate clusters are WMH or non-WMH. UBO Detector generates both image and text (volumes and the number of WMH clusters) outputs for whole brain, periventricular, deep, and lobar WMH, as well as WMH in arterial territories. The computation time for each brain is approximately 15 min. We validated the performance of UBO Detector by showing a) high segmentation (similarity index (SI) = 0.848) and volumetric (intraclass correlation coefficient (ICC) = 0.985) agreement between the UBO Detector-derived and manually traced WMH; b) highly correlated (r 2  > 0.9) and a steady increase of WMH volumes over time; and c) significant associations of periventricular (t = 22.591, p < 0.001) and deep (t = 14.523, p < 0.001) WMH volumes generated by UBO Detector with Fazekas rating scores. With parallel computing enabled in UBO Detector, the processing can take advantage of multi-core CPU's that are commonly available on workstations. In conclusion, UBO Detector is a reliable, efficient and fully automated WMH segmentation pipeline. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Identifying nearby field T dwarfs in the UKIDSS Galactic Clusters Survey

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Burningham, B.; Hambly, N. C.; Pinfield, D. J.

    2009-07-01

    We present the discovery of two new late-T dwarfs identified in the UKIRT Infrared Deep Sky Survey (UKIDSS) Galactic Clusters Survey (GCS) Data Release 2 (DR2). These T dwarfs are nearby old T dwarfs along the line of sight to star-forming regions and open clusters targeted by the UKIDSS GCS. They are found towards the αPer cluster and Orion complex, respectively, from a search in 54deg2 surveyed in five filters. Photometric candidates were picked up in two-colour diagrams, in a very similar manner to candidates extracted from the UKIDSS Large Area Survey (LAS) but taking advantage of the Z filter employed by the GCS. Both candidates exhibit near-infrared J-band spectra with strong methane and water absorption bands characteristic of late-T dwarfs. We derive spectral types of T6.5 +/- 0.5 and T7 +/- 1 and estimate photometric distances less than 50 pc for UGCS J030013.86+490142.5 and UGCS J053022.52-052447.4, respectively. The space density of T dwarfs found in the GCS seems consistent with discoveries in the larger areal coverage of the UKIDSS LAS, indicating one T dwarf in 6-11deg2. The final area surveyed by the GCS, 1000deg2 in five passbands, will allow expansion of the LAS search area by 25 per cent, increase the probability of finding ultracool brown dwarfs, and provide optimal estimates of contamination by old field brown dwarfs in deep surveys to identify such objects in open clusters and star-forming regions. Based on observations made with the United Kingdom Infrared Telescope, operated by the Joint Astronomy Centre on behalf of the U.K. Science Technology and Facility Council. E-mail: nlodieu@iac.es

  4. Testing the Large-scale Environments of Cool-core and Non-cool-core Clusters with Clustering Bias

    NASA Astrophysics Data System (ADS)

    Medezinski, Elinor; Battaglia, Nicholas; Coupon, Jean; Cen, Renyue; Gaspari, Massimo; Strauss, Michael A.; Spergel, David N.

    2017-02-01

    There are well-observed differences between cool-core (CC) and non-cool-core (NCC) clusters, but the origin of this distinction is still largely unknown. Competing theories can be divided into internal (inside-out), in which internal physical processes transform or maintain the NCC phase, and external (outside-in), in which the cluster type is determined by its initial conditions, which in turn leads to different formation histories (I.e., assembly bias). We propose a new method that uses the relative assembly bias of CC to NCC clusters, as determined via the two-point cluster-galaxy cross-correlation function (CCF), to test whether formation history plays a role in determining their nature. We apply our method to 48 ACCEPT clusters, which have well resolved central entropies, and cross-correlate with the SDSS-III/BOSS LOWZ galaxy catalog. We find that the relative bias of NCC over CC clusters is b = 1.42 ± 0.35 (1.6σ different from unity). Our measurement is limited by the small number of clusters with core entropy information within the BOSS footprint, 14 CC and 34 NCC clusters. Future compilations of X-ray cluster samples, combined with deep all-sky redshift surveys, will be able to better constrain the relative assembly bias of CC and NCC clusters and determine the origin of the bimodality.

  5. Testing the Large-scale Environments of Cool-core and Non-cool-core Clusters with Clustering Bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medezinski, Elinor; Battaglia, Nicholas; Cen, Renyue

    2017-02-10

    There are well-observed differences between cool-core (CC) and non-cool-core (NCC) clusters, but the origin of this distinction is still largely unknown. Competing theories can be divided into internal (inside-out), in which internal physical processes transform or maintain the NCC phase, and external (outside-in), in which the cluster type is determined by its initial conditions, which in turn leads to different formation histories (i.e., assembly bias). We propose a new method that uses the relative assembly bias of CC to NCC clusters, as determined via the two-point cluster-galaxy cross-correlation function (CCF), to test whether formation history plays a role in determiningmore » their nature. We apply our method to 48 ACCEPT clusters, which have well resolved central entropies, and cross-correlate with the SDSS-III/BOSS LOWZ galaxy catalog. We find that the relative bias of NCC over CC clusters is b = 1.42 ± 0.35 (1.6 σ different from unity). Our measurement is limited by the small number of clusters with core entropy information within the BOSS footprint, 14 CC and 34 NCC clusters. Future compilations of X-ray cluster samples, combined with deep all-sky redshift surveys, will be able to better constrain the relative assembly bias of CC and NCC clusters and determine the origin of the bimodality.« less

  6. The VMC Survey. XI. Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Rubele, Stefano; Wang, Chuchu; Bekki, Kenji; Cioni, Maria-Rosa L.; Clementini, Gisella; Emerson, Jim; For, Bi-Qing; Girardi, Leo; Groenewegen, Martin A. T.; Guandalini, Roald; Gullieuszik, Marco; Marconi, Marcella; Piatti, Andrés E.; Ripepi, Vincenzo; van Loon, Jacco Th.

    2014-07-01

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K s survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  7. Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Deng, Licai

    2015-01-01

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, Ks survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red-giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant-branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from Y = 0.28, Z = 0.005 in the cluster core to Y = 0.25, Z = 0.003 in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  8. Understanding and Practical Use of Ligand and Metal Exchange Reactions in Thiolate-Protected Metal Clusters to Synthesize Controlled Metal Clusters.

    PubMed

    Niihori, Yoshiki; Hossain, Sakiat; Sharma, Sachil; Kumar, Bharat; Kurashige, Wataru; Negishi, Yuichi

    2017-05-01

    It is now possible to accurately synthesize thiolate (SR)-protected gold clusters (Au n (SR) m ) with various chemical compositions with atomic precision. The geometric structure, electronic structure, physical properties, and functions of these clusters are well known. In contrast, the ligand or metal atom exchange reactions between these clusters and other substances have not been studied extensively until recently, even though these phenomena were observed during early studies. Understanding the mechanisms of these reactions could allow desired functional metal clusters to be produced via exchange reactions. Therefore, we have studied the exchange reactions between Au n (SR) m and analogous clusters and other substances for the past four years. The results have enabled us to gain deep understanding of ligand exchange with respect to preferential exchange sites, acceleration means, effect on electronic structure, and intercluster exchange. We have also synthesized several new metal clusters using ligand and metal exchange reactions. In this account, we summarize our research on ligand and metal exchange reactions. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cluster Masses Derived from X-ray and Sunyaev-Zeldovich Effect Measurements

    NASA Technical Reports Server (NTRS)

    Laroque, S.; Joy, Marshall; Bonamente, M.; Carlstrom, J.; Dawson, K.

    2003-01-01

    We infer the gas mass and total gravitational mass of 11 clusters using two different methods; analysis of X-ray data from the Chandra X-ray Observatory and analysis of centimeter-wave Sunyaev-Zel'dovich Effect (SZE) data from the BIMA and OVRO interferometers. This flux-limited sample of clusters from the BCS cluster catalogue was chosen so as to be well above the surface brightness limit of the ROSAT All Sky Survey; this is therefore an orientation unbiased sample. The gas mass fraction, f_g, is calculated for each cluster using both X-ray and SZE data, and the results are compared at a fiducial radius of r_500. Comparison of the X-ray and SZE results for this orientation unbiased sample allows us to constrain cluster systematics, such as clumping of the intracluster medium. We derive an upper limit on Omega_M assuming that the mass composition of clusters within r_500 reflects the universal mass composition Omega_M h_100 is greater than Omega _B / f-g. We also demonstrate how the mean f_g derived from the sample can be used to estimate the masses of clusters discovered by upcoming deep SZE surveys.

  10. Discovery of a loose star cluster in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2016-06-01

    We present results for an up-to-date uncatalogued star cluster projected towards the Eastern side of the Large Magellanic Cloud (LMC) outer disc. The new object was discovered from a search of loose star cluster in the Magellanic Clouds' (MCs) outskirts using kernel density estimators on Washington CT1 deep images. Contrarily to what would be commonly expected, the star cluster resulted to be a young object (log(t yr-1) = 8.45) with a slightly subsolar metal content (Z = 0.013) and a total mass of 650 M⊙. Its core, half-mass and tidal radii also are within the frequent values of LMC star clusters. However, the new star cluster is placed at the Small Magellanic Cloud distance and at 11.3 kpc from the LMC centre. We speculate with the possibility that it was born in the inner body of the LMC and soon after expelled into the intergalactic space during the recent Milky Way/MCs interaction. Nevertheless, radial velocity and chemical abundance measurements are needed to further understand its origin, as well as extensive search for loose star clusters in order to constrain the effectiveness of star cluster scattering during galaxy interactions.

  11. The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai

    2014-07-20

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can verymore » well be described by adopting an age spread of ∼0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.« less

  12. A first determination of the surface density of galaxy clusters at very low x-ray fluxes

    NASA Technical Reports Server (NTRS)

    Rosati, Piero; Della Ceca, Roberta; Burg, Richard; Norman, Colin; Giacconi, Riccardo

    1995-01-01

    We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT position sensitive proportional counter (PSPC) pointed observations at high Galactic latitude. The survey is being carried out using a wavelet-based detection algorithm which is not biased against extended, low surface brightness sources. A new flux-diameter limited sample of 10 cluster candidates has been created from approximately 3 deg(exp 2) surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low- to moderate-redshift groups or intermediate- to high-redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 1 x 10(exp -14) ergs cm(exp -2) s(exp -1) (0.5-2.0 keV). This extends the log N-log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.

  13. Integrative Data Analysis of Multi-Platform Cancer Data with a Multimodal Deep Learning Approach.

    PubMed

    Liang, Muxuan; Li, Zhizhong; Chen, Ting; Zeng, Jianyang

    2015-01-01

    Identification of cancer subtypes plays an important role in revealing useful insights into disease pathogenesis and advancing personalized therapy. The recent development of high-throughput sequencing technologies has enabled the rapid collection of multi-platform genomic data (e.g., gene expression, miRNA expression, and DNA methylation) for the same set of tumor samples. Although numerous integrative clustering approaches have been developed to analyze cancer data, few of them are particularly designed to exploit both deep intrinsic statistical properties of each input modality and complex cross-modality correlations among multi-platform input data. In this paper, we propose a new machine learning model, called multimodal deep belief network (DBN), to cluster cancer patients from multi-platform observation data. In our integrative clustering framework, relationships among inherent features of each single modality are first encoded into multiple layers of hidden variables, and then a joint latent model is employed to fuse common features derived from multiple input modalities. A practical learning algorithm, called contrastive divergence (CD), is applied to infer the parameters of our multimodal DBN model in an unsupervised manner. Tests on two available cancer datasets show that our integrative data analysis approach can effectively extract a unified representation of latent features to capture both intra- and cross-modality correlations, and identify meaningful disease subtypes from multi-platform cancer data. In addition, our approach can identify key genes and miRNAs that may play distinct roles in the pathogenesis of different cancer subtypes. Among those key miRNAs, we found that the expression level of miR-29a is highly correlated with survival time in ovarian cancer patients. These results indicate that our multimodal DBN based data analysis approach may have practical applications in cancer pathogenesis studies and provide useful guidelines for personalized cancer therapy.

  14. Gemini Observations of Galaxies in Rich Early Environments (GOGREEN) I: survey description

    NASA Astrophysics Data System (ADS)

    Balogh, Michael L.; Gilbank, David G.; Muzzin, Adam; Rudnick, Gregory; Cooper, Michael C.; Lidman, Chris; Biviano, Andrea; Demarco, Ricardo; McGee, Sean L.; Nantais, Julie B.; Noble, Allison; Old, Lyndsay; Wilson, Gillian; Yee, Howard K. C.; Bellhouse, Callum; Cerulo, Pierluigi; Chan, Jeffrey; Pintos-Castro, Irene; Simpson, Rane; van der Burg, Remco F. J.; Zaritsky, Dennis; Ziparo, Felicia; Alonso, María Victoria; Bower, Richard G.; De Lucia, Gabriella; Finoguenov, Alexis; Lambas, Diego Garcia; Muriel, Hernan; Parker, Laura C.; Rettura, Alessandro; Valotto, Carlos; Wetzel, Andrew

    2017-10-01

    We describe a new Large Program in progress on the Gemini North and South telescopes: Gemini Observations of Galaxies in Rich Early Environments (GOGREEN). This is an imaging and deep spectroscopic survey of 21 galaxy systems at 1 < z < 1.5, selected to span a factor >10 in halo mass. The scientific objectives include measuring the role of environment in the evolution of low-mass galaxies, and measuring the dynamics and stellar contents of their host haloes. The targets are selected from the SpARCS, SPT, COSMOS, and SXDS surveys, to be the evolutionary counterparts of today's clusters and groups. The new red-sensitive Hamamatsu detectors on GMOS, coupled with the nod-and-shuffle sky subtraction, allow simultaneous wavelength coverage over λ ˜ 0.6-1.05 μm, and this enables a homogeneous and statistically complete redshift survey of galaxies of all types. The spectroscopic sample targets galaxies with AB magnitudes z΄ < 24.25 and [3.6] μm < 22.5, and is therefore statistically complete for stellar masses M* ≳ 1010.3 M⊙, for all galaxy types and over the entire redshift range. Deep, multiwavelength imaging has been acquired over larger fields for most systems, spanning u through K, in addition to deep IRAC imaging at 3.6 μm. The spectroscopy is ˜50 per cent complete as of semester 17A, and we anticipate a final sample of ˜500 new cluster members. Combined with existing spectroscopy on the brighter galaxies from GCLASS, SPT, and other sources, GOGREEN will be a large legacy cluster and field galaxy sample at this redshift that spectroscopically covers a wide range in stellar mass, halo mass, and clustercentric radius.

  15. DEEP ULTRAVIOLET LUMINOSITY FUNCTIONS AT THE INFALL REGION OF THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, D. M.; Hornschemeier, A. E.; Jenkins, L.

    2012-02-01

    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest ultraviolet (UV) luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M{sub UV} = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes ({alpha} Almost-Equal-To -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechtermore » model provides a slightly better parameterization of the UV LFs resulting in a faint-end slope of {alpha} Almost-Equal-To -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than {alpha} = -1 (a turnover) for the LFs constructed separately for passive and star-forming galaxies. The UV LFs for star-forming galaxies show a turnover at M{sub UV} Almost-Equal-To -14 owing to a deficit of dwarf star-forming galaxies in Coma with stellar masses below M{sub *} = 10{sup 8} M{sub Sun }. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star-forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star-forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star-forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.« less

  16. A broad survey reveals substitution tolerance of residues ligating FeS clusters in [NiFe] hydrogenase

    PubMed Central

    2014-01-01

    Background In order to understand the effects of FeS cluster attachment in [NiFe] hydrogenase, we undertook a study to substitute all 12 amino acid positions normally ligating the three FeS clusters in the hydrogenase small subunit. Using the hydrogenase from Alteromonas macleodii “deep ecotype” as a model, we substituted one of four amino acids (Asp, His, Asn, Gln) at each of the 12 ligating positions because these amino acids are alternative coordinating residues in otherwise conserved-cysteine positions found in a broad survey of NiFe hydrogenase sequences. We also hoped to discover an enzyme with elevated hydrogen evolution activity relative to a previously reported “G1” (H230C/P285C) improved enzyme in which the medial FeS cluster Pro and the distal FeS cluster His were each substituted for Cys. Results Among all the substitutions screened, aspartic acid substitutions were generally well-tolerated, and examination suggests that the observed deficiency in enzyme activity may be largely due to misprocessing of the small subunit of the enzyme. Alignment of hydrogenase sequences from sequence databases revealed many rare substitutions; the five substitutions present in databases that we tested all exhibited measurable hydrogen evolution activity. Select substitutions were purified and tested, supporting the results of the screening assay. Analysis of these results confirms the importance of small subunit processing. Normalizing activity to quantity of mature small subunit, indicative of total enzyme maturation, weakly suggests an improvement over the “G1” enzyme. Conclusions We have comprehensively screened 48 amino acid substitutions of the hydrogenase from A. macleodii “deep ecotype”, to understand non-canonical ligations of amino acids to FeS clusters and to improve hydrogen evolution activity of this class of hydrogenase. Our studies show that non-canonical ligations can be functional and also suggests a new limiting factor in the production of active enzyme. PMID:24934472

  17. Deep UV Luminosity Functions at the Infall Region of the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Hammer, D. M.; Hornschemeier, A. E.; Salim, S.; Smith, R.; Jenkins, L.; Mobasher, B.; Miller, N.; Ferguson, H.

    2011-01-01

    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest UV luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M(sub uv) = -10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (alpha approximately equal to -1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parametrization of the UV LFs resulting in a faint-end slope of alpha approximately equal to -1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than alpha = -1 (a turnover) for the LFs constructed separately for passive and star forming galaxies. The UV LFs for star forming galaxies show a turnover at M(sub UV) approximately equal to -14 owing to a deficit of dwarf star forming galaxies in Coma with stellar masses below M(sub *) = 10(sup 8) solar mass. A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.

  18. Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery

    PubMed Central

    Pallavaram, Srivatsan; Remple, Michael S.; Neimat, Joseph S.; Kao, Chris; Konrad, Peter E.; D’Haese, Pierre-François

    2011-01-01

    Purpose In the recent past many groups have tried to build functional atlases of the deep brain using intra-operatively acquired information such as stimulation responses or micro-electrode recordings. An underlying assumption in building such atlases is that anatomical structures do not move between pre-operative imaging and intra-operative recording. In this study, we present evidences that this assumption is not valid. We quantify the effect of brain shift between pre-operative imaging and intra-operative recording on the creation of functional atlases using intra-operative somatotopy recordings and stimulation response data. Methods A total of 73 somatotopy points from 24 bilateral subthalamic nucleus (STN) implantations and 52 eye deviation stimulation response points from 17 bilateral STN implantations were used. These points were spatially normalized on a magnetic resonance imaging (MRI) atlas using a fully automatic non-rigid registration algorithm. Each implantation was categorized as having low, medium or large brain shift based on the amount of pneumocephalus visible on post-operative CT. The locations of somatotopy clusters and stimulation maps were analyzed for each category. Results The centroid of the large brain shift cluster of the somatotopy data (posterior, lateral, inferior: 3.06, 11.27, 5.36 mm) was found posterior, medial and inferior to that of the medium cluster (2.90, 13.57, 4.53 mm) which was posterior, medial and inferior to that of the low shift cluster (1.94, 13.92, 3.20 mm). The coordinates are referenced with respect to the mid-commissural point. Euclidean distances between the centroids were 1.68, 2.44 and 3.59 mm, respectively for low-medium, medium-large and low-large shift clusters. We found similar trends for the positions of the stimulation maps. The Euclidian distance between the highest probability locations on the low and medium-large shift maps was 4.06 mm. Conclusion The effect of brain shift in deep brain stimulation (DBS) surgery has been demonstrated using intra-operative somatotopy recordings as well as stimulation response data. The results not only indicate that considerable brain shift happens before micro-electrode recordings in DBS but also that brain shift affects the creation of accurate functional atlases. Therefore, care must be taken when building and using such atlases of intra-operative data and also when using intra-operative data to validate anatomical atlases. PMID:20033503

  19. SELECTION OF BURST-LIKE TRANSIENTS AND STOCHASTIC VARIABLES USING MULTI-BAND IMAGE DIFFERENCING IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Gezari, S.; Heinis, S.

    2015-03-20

    We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SVs) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g {sub P1}, r {sub P1}, i {sub P1}, and z {sub P1}. We use three deterministic light-curve models to fit BL transients; a Gaussian, a Gamma distribution, and anmore » analytic supernova (SN) model, and one stochastic light-curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGNs). We assess the quality of fit of the models band-wise and source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications, resulting in two measures of classification quality, from the averages across the photometric filters of (1) the classifications determined from the closest K-means cluster centers, and (2) the square distances from the clustering centers in the K-means clustering spaces. For a verification set of AGNs and SNe, we show that SV and BL occupy distinct regions in the plane constituted by these measures. We use our clustering method to characterize 4361 extragalactic image difference detected sources, in the first 2.5 yr of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGNs, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to define a robust photometric sample of 1233 AGNs and 812 SNe. With these two samples, we characterize their variability and host galaxy properties, and identify simple photometric priors that would enable their real-time identification in future wide-field synoptic surveys.« less

  20. VizieR Online Data Catalog: WINGS: Deep optical phot. of 77 nearby clusters (Varela+, 2009)

    NASA Astrophysics Data System (ADS)

    Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, J. W.; Dressler, A.; Kjaergaard, P.; Moles, M.; Pignatelli, E.; Poggianti, M. B.; Valentinuzzi, T.

    2009-05-01

    This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04200deg). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. We publish deep optical photometric catalogs (90% complete at V21.7, which translates to ~ MV* + 6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of "unknown" classification (~16%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2m. The star/galaxy classification of the bright objects (V<20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data with that from deep counts of galaxies and star counts from models of our Galaxy. Both sets turned out to be consistent with our data within ~5% (in the ratio galaxies/total) up to V~24. Finally, we remark that the application of our special procedure to remove large halos improves the photometry of the large galaxies in our sample with respect to the use of blind automatic procedures and increases (~16%) the detection rate of objects projected onto them. (4 data files).

  1. Anatomy of a Merger: A Deep Chandra Observation of Abell 115

    NASA Astrophysics Data System (ADS)

    Forman, William R.

    2017-08-01

    A deep Chandra observation of Abell 115 provides a unique probe of the anatomy of cluster mergers. The X-ray image shows two prominent subclusters, A115N (north) and A115S (south) with a projected separation of almost 1 Mpc. The X-ray subclusters each have ram-pressure stripped tails that unambiguously indicate the directions of motion. The central BCG of A115N hosts the radio source 3C28 which shows a pair of jets, almost perpendicular to the direction of the sucluster's motion. The jets terminate in lobes each of which has a "tail" pointing IN the direction of motion of the subcluster. The Chandra analysis provides details of the merger including the velocities of the subclusters both through analysis of the cold front and a weak shock. The motion of A115N through the cluster generates counter-rotating vortices in the subcluster gas that form the two radio tails. Hydrodynamic modeling yields circulation velocities within the A115N sub cluster. Thus, the radio emitting plasma acts as a dye tracing the motions of the X-ray emitting plasma. A115S shows two "cores", one coincident with the BCG and a second appears as a ram pressure stripped tail.

  2. Information System through ANIS at CeSAM

    NASA Astrophysics Data System (ADS)

    Moreau, C.; Agneray, F.; Gimenez, S.

    2015-09-01

    ANIS (AstroNomical Information System) is a web generic tool developed at CeSAM to facilitate and standardize the implementation of astronomical data of various kinds through private and/or public dedicated Information Systems. The architecture of ANIS is composed of a database server which contains the project data, a web user interface template which provides high level services (search, extract and display imaging and spectroscopic data using a combination of criteria, an object list, a sql query module or a cone search interfaces), a framework composed of several packages, and a metadata database managed by a web administration entity. The process to implement a new ANIS instance at CeSAM is easy and fast : the scientific project has to submit data or a data secure access, the CeSAM team installs the new instance (web interface template and the metadata database), and the project administrator can configure the instance with the web ANIS-administration entity. Currently, the CeSAM offers through ANIS a web access to VO compliant Information Systems for different projects (HeDaM, HST-COSMOS, CFHTLS-ZPhots, ExoDAT,...).

  3. Community detection in complex networks using deep auto-encoded extreme learning machine

    NASA Astrophysics Data System (ADS)

    Wang, Feifan; Zhang, Baihai; Chai, Senchun; Xia, Yuanqing

    2018-06-01

    Community detection has long been a fascinating topic in complex networks since the community structure usually unveils valuable information of interest. The prevalence and evolution of deep learning and neural networks have been pushing forward the advancement in various research fields and also provide us numerous useful and off the shelf techniques. In this paper, we put the cascaded stacked autoencoders and the unsupervised extreme learning machine (ELM) together in a two-level embedding process and propose a novel community detection algorithm. Extensive comparison experiments in circumstances of both synthetic and real-world networks manifest the advantages of the proposed algorithm. On one hand, it outperforms the k-means clustering in terms of the accuracy and stability thus benefiting from the determinate dimensions of the ELM block and the integration of sparsity restrictions. On the other hand, it endures smaller complexity than the spectral clustering method on account of the shrinkage in time spent on the eigenvalue decomposition procedure.

  4. Cosmological parameter constraints with the Deep Lens Survey using galaxy-shear correlations and galaxy clustering properties

    NASA Astrophysics Data System (ADS)

    Yoon, Mijin; Jee, Myungkook James; Tyson, Tony

    2018-01-01

    The Deep Lens Survey (DLS), a precursor to the Large Synoptic Survey Telescope (LSST), is a 20 sq. deg survey carried out with NOAO’s Blanco and Mayall telescopes. The strength of the survey lies in its depth reaching down to ~27th mag in BVRz bands. This enables a broad redshift baseline study and allows us to investigate cosmological evolution of the large-scale structure. In this poster, we present the first cosmological analysis from the DLS using galaxy-shear correlations and galaxy clustering signals. Our DLS shear calibration accuracy has been validated through the most recent public weak-lensing data challenge. Photometric redshift systematic errors are tested by performing lens-source flip tests. Instead of real-space correlations, we reconstruct band-limited power spectra for cosmological parameter constraints. Our analysis puts a tight constraint on the matter density and the power spectrum normalization parameters. Our results are highly consistent with our previous cosmic shear analysis and also with the Planck CMB results.

  5. Secondary chronic cluster headache treated by posterior hypothalamic deep brain stimulation: first reported case.

    PubMed

    Messina, Giuseppe; Rizzi, Michele; Cordella, Roberto; Caraceni, Augusto; Zecca, Ernesto; Bussone, Gennaro; Franzini, Angelo; Leone, Massimo

    2013-01-01

    Deep brain stimulation (DBS) of the posterior hypothalamus (pHyp) has been reported as an effective treatment for primary, drug-refractory and chronic cluster headache (CCH). We here describe the use of such a procedure for the treatment of secondary CCH due to a neoplasm affecting the soft tissues of the right hemiface. A 27-year-old man affected by infiltrating angiomyolipoma of the right hemiface who subsequently developed drug refractory homolateral CCH underwent DBS of the right pHyp region at the Fondazione IRCCS Istituto Nazionale Neurologico Carlo Besta. After surgery, the patient presented a significant reduction in frequency of pain bouts. However, because of a subsequent infection, the entire system was removed. After re-implantation of the system, successful outcome was observed at 2 years follow-up. This brief report shows the feasibility of pHyp DBS in secondary drug-refractory CCH syndromes; future reports are needed in order to confirm our positive result.

  6. RaptorX-Angle: real-value prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning.

    PubMed

    Gao, Yujuan; Wang, Sheng; Deng, Minghua; Xu, Jinbo

    2018-05-08

    Protein dihedral angles provide a detailed description of protein local conformation. Predicted dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly, thus aiding protein tertiary structure prediction. However, direct angle prediction from sequence alone is challenging. In this article, we present a novel method (named RaptorX-Angle) to predict real-valued angles by combining clustering and deep learning. Tested on a subset of PDB25 and the targets in the latest two Critical Assessment of protein Structure Prediction (CASP), our method outperforms the existing state-of-art method SPIDER2 in terms of Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE). Our result also shows approximately linear relationship between the real prediction errors and our estimated bounds. That is, the real prediction error can be well approximated by our estimated bounds. Our study provides an alternative and more accurate prediction of dihedral angles, which may facilitate protein structure prediction and functional study.

  7. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  8. The Luminosity Function of Star Clusters in 20 Star-Forming Galaxies Based on Hubble Legacy Archive Photometry

    NASA Astrophysics Data System (ADS)

    Bowers, Ariel; Whitmore, B. C.; Chandar, R.; Larsen, S. S.

    2014-01-01

    Luminosity functions have been determined for star cluster populations in 20 nearby (4 - 30 Mpc), star-forming galaxies based on ACS source lists generated by the Hubble Legacy Archive (http://hla.stsci.edu). These cluster catalogs provide one of the largest sets of uniform, automatically-generated cluster candidates available in the literature at present. Comparisons are made with other recently generated cluster catalogs demonstrating that the HLA-generated catalogs are of similar quality, but in general do not go as deep. A typical cluster luminosity function can be approximated by a power-law, dN/dL ∝ Lα, with an average value for α of -2.37 and rms scatter = 0.18. A comparison of fitting results based on methods which use binned and unbinned data shows good agreement, although there may be a systematic tendency for the unbinned (maximum-likelihood) method to give slightly more negative values of α for galaxies with steper luminosity functions. Our uniform database results in a small scatter (0.5 magnitude) in the correlation between the magnitude of the brightest cluster (Mbrightest) and Log of the number of clusters brighter than MI = -9 (Log N). We also examine the magnitude of the brightest cluster vs. Log SFR for a sample including LIRGS and ULIRGS.

  9. The Observational and Theoretical Tidal Radii of Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  10. Tails and streams around the Galactic globular clusters NGC 1851, NGC 1904, NGC 2298 and NGC 2808

    NASA Astrophysics Data System (ADS)

    Carballo-Bello, Julio A.; Martínez-Delgado, David; Navarrete, Camila; Catelan, Márcio; Muñoz, Ricardo R.; Antoja, Teresa; Sollima, Antonio

    2018-02-01

    We present Dark Energy Camera imaging for the peculiar Galactic globular clusters NGC 1851, NGC 1904 (M 79), NGC 2298 and NGC 2808. Our deep photometry reveals that all the clusters have an important contribution of stars beyond their King tidal radii and present tails with different morphologies. We have also explored the surroundings of the clusters where the presence of the Canis Major overdensity and/or the low Galactic latitude Monoceros ring at d⊙ ˜ 8 kpc is evident. A second stellar system is found at d⊙ ˜ 17 kpc and spans at least 18 deg × 15 deg in the sky. As one of the possible scenarios to explain that feature, we propose that the unveiled system is part of Monoceros explained as a density wave moving towards the outer Milky Way. Alternatively, the unveiled system might be connected with other known halo substructures or associated with the progenitor dwarf galaxy of NGC 1851 and NGC 1904, which are widely considered accreted globular clusters.

  11. Photometric Calibrations of Gemini Images of NGC 6253

    NASA Astrophysics Data System (ADS)

    Pearce, Sean; Jeffery, Elizabeth

    2017-01-01

    We present preliminary results of our analysis of the metal-rich open cluster NGC 6253 using imaging data from GMOS on the Gemini-South Observatory. These data are part of a larger project to observe the effects of high metallicity on white dwarf cooling processes, especially the white dwarf cooling age, which have important implications on the processes of stellar evolution. To standardize the Gemini photometry, we have also secured imaging data of both the cluster and standard star fields using the 0.6-m SARA Observatory at CTIO. By analyzing and comparing the standard star fields of both the SARA data and the published Gemini zero-points of the standard star fields, we will calibrate the data obtained for the cluster. These calibrations are an important part of the project to obtain a standardized deep color-magnitude diagram to analyze the cluster. We present the process of verifying our standardization process. With a standardized CMD, we also present an analysis of the cluster's main sequence turn off age.

  12. The Stormy Life of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Rudnick, Lawrence

    2018-01-01

    Galaxy clusters, the largest gravitationally bound structures, hold the full history of their baryonic evolution, serve as important cosmological tools and allow us to probe unique physical regimes in their diffuse plasmas. With characteristic dynamical timescales of 107-109 years, these diffuse thermal and relativistic media continue to evolve, as dark matter drives major mergers and more gentle continuing accretion. The history of this assembly is encoded in the plasmas, and a wide range of observational and theoretical investigations are aimed at decoding their signatures. X-ray temperature and density variations, low Mach number shocks, and "cold front" discontinuities all illuminate clusters' continued evolution. Radio structures and spectra are passive indicators of merger shocks, while radio galaxy distortions reveal the complex motions in the intracluster medium. Deep in cluster cores, AGNs associated with brightest cluster galaxies provide ongoing energy, and perhaps even stabilize the intracluster medium. In this talk, we will recount this evolving picture of the stormy ICM, and suggest areas of likely advance in the coming years.

  13. PatterNet: a system to learn compact physical design pattern representations for pattern-based analytics

    NASA Astrophysics Data System (ADS)

    Lutich, Andrey

    2017-07-01

    This research considers the problem of generating compact vector representations of physical design patterns for analytics purposes in semiconductor patterning domain. PatterNet uses a deep artificial neural network to learn mapping of physical design patterns to a compact Euclidean hyperspace. Distances among mapped patterns in this space correspond to dissimilarities among patterns defined at the time of the network training. Once the mapping network has been trained, PatterNet embeddings can be used as feature vectors with standard machine learning algorithms, and pattern search, comparison, and clustering become trivial problems. PatterNet is inspired by the concepts developed within the framework of generative adversarial networks as well as the FaceNet. Our method facilitates a deep neural network (DNN) to learn directly the compact representation by supplying it with pairs of design patterns and dissimilarity among these patterns defined by a user. In the simplest case, the dissimilarity is represented by an area of the XOR of two patterns. Important to realize that our PatterNet approach is very different to the methods developed for deep learning on image data. In contrast to "conventional" pictures, the patterns in the CAD world are the lists of polygon vertex coordinates. The method solely relies on the promise of deep learning to discover internal structure of the incoming data and learn its hierarchical representations. Artificial intelligence arising from the combination of PatterNet and clustering analysis very precisely follows intuition of patterning/optical proximity correction experts paving the way toward human-like and human-friendly engineering tools.

  14. The Hubble Space Telescope Frontier Fields Program

    NASA Astrophysics Data System (ADS)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt

    2017-08-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  15. Chandra/HETG Observations of NGC1275

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher

    2017-09-01

    NGC1275 is the active galactic nucleus (AGN) at the heart of the Perseus cluster of galaxies responsible for the mechanical heating of the intracluster medium (ICM) cool core. We propose a deep (500ks) HETG observation of NGC1275, allowing the first high-S/N, high resolution spectrum of this AGN free from contamination by the bright ICM. We will seek the signatures of powerful winds, answering the central question of whether galactic-scale quasar-mode feedback is occuring simultaneously with cluster-scale radio-mode feedback. We also probe circumnuclear gas (i.e. the fuel supply) through the 6.4keV line previously seen by XMM and Hitomi. These issues are crucial unknowns in our models for the evolution of the most massive galaxies and cluster cores.

  16. MC 2 : galaxy imaging and redshift analysis of the merging cluster Ciza J2242.8+5301

    DOE PAGES

    Dawson, William A.; Jee, M. James; Stroe, Andra; ...

    2015-05-28

    X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep (i < 25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which ismore » the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter.« less

  17. Antisense oligonucleotide therapeutics for iron-sulphur cluster deficiency myopathy.

    PubMed

    Kollberg, Gittan; Holme, Elisabeth

    2009-12-01

    Iron-sulphur cluster deficiency myopathy is caused by a deep intronic mutation in ISCU resulting in inclusion of a cryptic exon in the mature mRNA. ISCU encodes the iron-sulphur cluster assembly protein IscU. Iron-sulphur clusters are essential for most basic redox transformations including the respiratory-chain function. Most patients are homozygous for the mutation with a phenotype characterized by a non-progressive myopathy with childhood onset of early fatigue, dyspnoea and palpitation on trivial exercise. A more severe phenotype with early onset of a slowly progressive severe muscle weakness, severe exercise intolerance and cardiomyopathy is caused by a missense mutation in compound with the intronic mutation. Treatment of cultured fibroblasts derived from three homozygous patients with an antisense phosphorodiamidate morpholino oligonucleotide for 48 h resulted in 100% restoration of the normal splicing pattern. The restoration was stable and after 21 days the correctly spliced mRNA still was the dominating RNA species.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lii-Rosales, Ann; Zhou, Yinghui; Wallingford, Mark

    When using scanning tunneling microscopy, we characterize a surface carbide that forms such that Dy is deposited on the basal plane of graphite. In order to form carbide islands on terraces, Dy is first deposited at 650–800 K, which forms large metallic islands. Upon annealing at 1000 K, these clusters convert to carbide. Deposition directly at 1000 K is ineffective because nucleation on terraces is inhibited. Reaction is signaled by the fact that each carbide cluster is partially or totally surrounded by an etch pit. The etch pit is one carbon layer deep for most carbide clusters. Carbide clusters aremore » also identifiable by striations on their surfaces. Based on mass balance, and assuming that only the surface layer of carbon is involved in the reaction, the carbide has stoichiometry D y 2 C . This is Dy-rich compared with the most common bulk carbide Dy C 2 , which may reflect limited surface carbon transport to the carbide.« less

  19. Background Noises Versus Intraseasonal Variation Signals: Small vs. Large Convective Cloud Objects From CERES Aqua Observations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2015-01-01

    During inactive phases of Madden-Julian Oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES (Clouds and the Earth's Radiant Energy System) observations between July 2006 and June 2010 for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index, which assigns the tropics to one of the eight MJO phases each day. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The criteria for defining these cloud types are overcast footprints and cloud top pressures less than 400 hPa, but DC has higher cloud optical depths (=10) than those of CS (<10). The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the large cloud clusters while the small cloud clusters represent the background noises resulting from various types of the tropical waves with different wavenumbers and propagation speeds/directions.

  20. Endohedral gallide cluster superconductors and superconductivity in ReGa5

    PubMed Central

    Xie, Weiwei; Luo, Huixia; Phelan, Brendan F.; Klimczuk, Tomasz; Cevallos, Francois Alexandre; Cava, Robert Joseph

    2015-01-01

    We present transition metal-embedded (T@Gan) endohedral Ga-clusters as a favorable structural motif for superconductivity and develop empirical, molecule-based, electron counting rules that govern the hierarchical architectures that the clusters assume in binary phases. Among the binary T@Gan endohedral cluster systems, Mo8Ga41, Mo6Ga31, Rh2Ga9, and Ir2Ga9 are all previously known superconductors. The well-known exotic superconductor PuCoGa5 and related phases are also members of this endohedral gallide cluster family. We show that electron-deficient compounds like Mo8Ga41 prefer architectures with vertex-sharing gallium clusters, whereas electron-rich compounds, like PdGa5, prefer edge-sharing cluster architectures. The superconducting transition temperatures are highest for the electron-poor, corner-sharing architectures. Based on this analysis, the previously unknown endohedral cluster compound ReGa5 is postulated to exist at an intermediate electron count and a mix of corner sharing and edge sharing cluster architectures. The empirical prediction is shown to be correct and leads to the discovery of superconductivity in ReGa5. The Fermi levels for endohedral gallide cluster compounds are located in deep pseudogaps in the electronic densities of states, an important factor in determining their chemical stability, while at the same time limiting their superconducting transition temperatures. PMID:26644566

  1. Elimination-Fusion Self-Assembly of a Nanometer-Scale 72-Nucleus Silver Cluster Caging a Pair of [EuW10 O36 ]9- Polyoxometalates.

    PubMed

    Zhang, Shan-Shan; Su, Hai-Feng; Wang, Zhi; Wang, Xing-Po; Chen, Wen-Xian; Zhao, Quan-Qin; Tung, Chen-Ho; Sun, Di; Zheng, Lan-Sun

    2018-02-06

    The largest known polyoxometalate (POM)-templated silver-alkynyl cluster, [(EuW 10 O 36 ) 2 @Ag 72 (tBuC≡C) 48 Cl 2 ⋅4 BF 4 ] (SD/Ag20), was isolated under solvothermal conditions and structurally characterized. It was confirmed by single-crystal X-ray diffraction (SCXRD) as a {EuW 10 } 2 -in-{Ag 72 } clusters-in-cluster rod-like compound. The high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) shows that such a double anion-templated cluster is assembled from a crucial single anion-templated Ag 42 intermediate in the solution. The crystallization of Ag 42 species (SD/Ag21), followed by SCXRD, gave an important clue about the assembly route of SD/Ag20 in solution: the Ag 42 cluster eliminates six silver atoms laterally, then fuses together at the vacant face to form the final Ag 72 cluster (elimination-fusion mechanism). The characteristic emission of [EuW 10 O 36 ] 9- is well maintained in SD/Ag20. This work not only provides a new method for the synthesis of larger silver clusters as well as the functional integration of the silver cluster and POMs, but also gives deep insights about the high-nuclear silver cluster assembly mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Deep near-infrared adaptive-optics observations of a young embedded cluster at the edge of the RCW 41 H II region

    NASA Astrophysics Data System (ADS)

    Neichel, B.; Samal, M. R.; Plana, H.; Zavagno, A.; Bernard, A.; Fusco, T.

    2015-04-01

    Aims: We investigate the star formation activity in a young star forming cluster embedded at the edge of the RCW 41 H ii region. As a complementary goal, we aim to demonstrate the gain provided by wide-field adaptive optics (WFAO) instruments to study young clusters. Methods: We used deep, JHKs images from the newly commissioned Gemini-GeMS/GSAOI instrument, complemented with Spitzer IRAC observations, in order to study the photometric properties of the young stellar cluster. GeMS is a WFAO instrument that delivers almost diffraction-limited images over a field of ~2' across. The exquisite angular resolution allows us to reach a limiting magnitude of J ~ 22 for 98% completeness. The combination of the IRAC photometry with our JHKs catalog is used to build color-color diagrams, and select young stellar object (YSO) candidates. The JHKs photometry is also used in conjunction with pre-main sequence evolutionary models to infer masses and ages. The K-band luminosity function is derived, and then used to build the initial mass function (IMF) of the cluster. Results: We detect the presence of 80 YSO candidates. Those YSOs are used to infer the cluster age, which is found to be in the range 1 to 5 Myr. More precisely, we find that 1/3 of the YSOs are in a range between 3 to 5 Myr, while 2/3 of the YSO are ≤3 Myr. When looking at the spatial distribution of these two populations, we find evidence of a potential age gradient across the field that suggests sequential star formation. We construct the IMF and show that we can sample the mass distribution well into the brown dwarf regime (down to ~0.01 M⊙). The logarithmic mass function rises to peak at ~0.3 M⊙, before turning over and declining into the brown dwarf regime. The total cluster mass derived is estimated to be 78 ± 18 M⊙, while the ratio derived of brown dwarfs to star is 18 ± 5%. When comparing it with other young clusters, we find that the IMF shape of the young cluster embedded within RCW 41 is consistent with those of Trapezium, IC 348, or Chamaeleon I, except for the IMF peak, which happens to be at higher mass. This characteristic is also seen in clusters like NGC 6611 or even Taurus. These results suggest that the medium-to-low mass end of the IMF possibly depends on environment.

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2)

    NASA Astrophysics Data System (ADS)

    Scodeggio, M.; Guzzo, L.; Garilli, B.; Granett, B. R.; Bolzonella, M.; de la Torre, S.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marchetti, A.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Branchini, E.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moutard, T.; Peacock, J. A.; Zamorani, G.; Burden, A.; Fumana, M.; Jullo, E.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Percival, W. J.

    2018-01-01

    We present the full public data release (PDR-2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS), performed at the ESO VLT. We release redshifts, spectra, CFHTLS magnitudes and ancillary information (as masks and weights) for a complete sample of 86 775 galaxies (plus 4732 other objects, including stars and serendipitous galaxies); we also include their full photometrically-selected parent catalogue. The sample is magnitude limited to iAB ≤ 22.5, with an additional colour-colour pre-selection devised as to exclude galaxies at z < 0.5. This practically doubles the effective sampling of the VIMOS spectrograph over the range 0.5 < z < 1.2 (reaching 47% on average), yielding a final median local galaxy density close to 5 × 10-3h3 Mpc-3. The total area spanned by the final data set is ≃ 23.5 deg2, corresponding to 288 VIMOS fields with marginal overlaps, split over two regions within the CFHTLS-Wide W1 and W4 equatorial fields (at RA ≃ 2 and ≃ 22 h, respectively). Spectra were observed at a resolution R = 220, covering a wavelength range 5500-9500 Å. Data reduction and redshift measurements were performed through a fully automated pipeline; all redshift determinations were then visually validated and assigned a quality flag. Measurements with a quality flag ≥ 2 are shown to have a confidence level of 96% or larger and make up 88% of all measured galaxy redshifts (76 552 out of 86 775), constituting the VIPERS prime catalogue for statistical investigations. For this sample the rms redshift error, estimated using repeated measurements of about 3000 galaxies, is found to be σz = 0.00054(1 + z). All data are available at http://vipers.inaf.it and on the ESO Archive. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  4. FORTY-SEVEN MILKY WAY-SIZED, EXTREMELY DIFFUSE GALAXIES IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Dokkum, Pieter G.; Merritt, Allison; Geha, Marla

    2015-01-10

    We report the discovery of 47 low surface brightness objects in deep images of a 3° × 3° field centered on the Coma cluster, obtained with the Dragonfly Telephoto Array. The objects have central surface brightness μ(g, 0) ranging from 24-26 mag arcsec{sup –2} and effective radii r {sub eff} = 3''-10'', as measured from archival Canada-France-Hawaii Telescope images. From their spatial distribution we infer that most or all of the objects are galaxies in the Coma cluster. This relatively large distance is surprising as it implies that the galaxies are very large: with r {sub eff} = 1.5-4.6 kpcmore » their sizes are similar to those of L {sub *} galaxies even though their median stellar mass is only ∼6 × 10{sup 7} M {sub ☉}. The galaxies are relatively red and round, with (g – i) = 0.8 and (b/a) = 0.74. One of the 47 galaxies is fortuitously covered by a deep Hubble Space Telescope Advanced Camera for Surveys (ACS) observation. The ACS imaging shows a large spheroidal object with a central surface brightness μ{sub 475} = 25.8 mag arcsec{sup –2}, a Sérsic index n = 0.6, and an effective radius of 7'', corresponding to 3.4 kpc at the distance of Coma. The galaxy is not resolved into stars, consistent with expectations for a Coma cluster object. We speculate that these ''ultra-diffuse galaxies'' may have lost their gas supply at early times, possibly resulting in very high dark matter fractions.« less

  5. Exploring the origin of a large cavity in Abell 1795 using deep Chandra observations

    NASA Astrophysics Data System (ADS)

    Walker, S. A.; Fabian, A. C.; Kosec, P.

    2014-12-01

    We examine deep stacked Chandra observations of the galaxy cluster Abell 1795 (over 700 ks) to study in depth a large (34 kpc radius) cavity in the X-ray emission. Curiously, despite the large energy required to form this cavity (4PV = 4 × 1060 erg), there is no obvious counterpart to the cavity on the opposite side of the cluster, which would be expected if it has formed due to jets from the central active galactic nucleus (AGN) inflating bubbles. There is also no radio emission associated with the cavity, and no metal enhancement or filaments between it and the brightest cluster galaxy, which are normally found for bubbles inflated by AGN which have risen from the core. One possibility is that this is an old ghost cavity, and that gas sloshing has dominated the distribution of metals around the core. Projection effects, particularly the long X-ray bright filament to the south-east, may prevent us from seeing the companion bubble on the opposite side of the cluster core. We calculate that such a companion bubble would easily have been able to uplift the gas in the southern filament from the core. Interestingly, it has recently been found that inside the cavity is a highly variable X-ray point source coincident with a small dwarf galaxy. Given the remarkable spatial correlation of this point source and the X-ray cavity, we explore the possibility that an outburst from this dwarf galaxy in the past could have led to the formation of the cavity, but find this to be an unlikely scenario.

  6. FIRST RESULTS FROM Z -FOURGE : DISCOVERY OF A CANDIDATE CLUSTER AT z = 2.2 IN COSMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitler, Lee R.; Glazebrook, Karl; Poole, Gregory B.

    2012-04-01

    We report the first results from the Z -FOURGE survey: the discovery of a candidate galaxy cluster at z = 2.2 consisting of two compact overdensities with red galaxies detected at {approx}> 20{sigma} above the mean surface density. The discovery was made possible by a new deep (K{sub s} {approx}< 24.8 AB 5{sigma}) Magellan/FOURSTAR near-IR imaging survey with five custom medium-bandwidth filters. The filters pinpoint the location of the Balmer/4000 A break in evolved stellar populations at 1.5 < z < 3.5, yielding significantly more accurate photometric redshifts than possible with broadband imaging alone. The overdensities are within 1' ofmore » each other in the COSMOS field and appear to be embedded in a larger structure that contains at least one additional overdensity ({approx}10{sigma}). Considering the global properties of the overdensities, the z = 2.2 system appears to be the most distant example of a galaxy cluster with a population of red galaxies. A comparison to a large {Lambda}CDM simulation suggests that the system may consist of merging subclusters, with properties in between those of z > 2 protoclusters with more diffuse distributions of blue galaxies and the lower-redshift galaxy clusters with prominent red sequences. The structure is completely absent in public optical catalogs in COSMOS and only weakly visible in a shallower near-IR survey. The discovery showcases the potential of deep near-IR surveys with medium-band filters to advance the understanding of environment and galaxy evolution at z > 1.5.« less

  7. The shape of galaxy dark matter halos in massive galaxy clusters: Insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-04-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and VLT/MUSE spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z=0.397, M(R < 200 kpc)=1.6×1014M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar halos are allowed, the model improves by 35%. This technique may provide a new way to investigate the processes and timescales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  8. The shape of galaxy dark matter haloes in massive galaxy clusters: insights from strong gravitational lensing

    NASA Astrophysics Data System (ADS)

    Jauzac, Mathilde; Harvey, David; Massey, Richard

    2018-07-01

    We assess how much unused strong lensing information is available in the deep Hubble Space Telescope imaging and Very Large Telescope/Multi Unit Spectroscopic Explorer spectroscopy of the Frontier Field clusters. As a pilot study, we analyse galaxy cluster MACS J0416.1-2403 (z = 0.397, M(R < 200 kpc) = 1.6 × 1014 M⊙), which has 141 multiple images with spectroscopic redshifts. We find that many additional parameters in a cluster mass model can be constrained, and that adding even small amounts of extra freedom to a model can dramatically improve its figures of merit. We use this information to constrain the distribution of dark matter around cluster member galaxies, simultaneously with the cluster's large-scale mass distribution. We find tentative evidence that some galaxies' dark matter has surprisingly similar ellipticity to their stars (unlike in the field, where it is more spherical), but that its orientation is often misaligned. When non-coincident dark matter and stellar haloes are allowed, the model improves by 35 per cent. This technique may provide a new way to investigate the processes and time-scales on which dark matter is stripped from galaxies as they fall into a massive cluster. Our preliminary conclusions will be made more robust by analysing the remaining five Frontier Field clusters.

  9. Individual participant data meta-analyses should not ignore clustering

    PubMed Central

    Abo-Zaid, Ghada; Guo, Boliang; Deeks, Jonathan J.; Debray, Thomas P.A.; Steyerberg, Ewout W.; Moons, Karel G.M.; Riley, Richard David

    2013-01-01

    Objectives Individual participant data (IPD) meta-analyses often analyze their IPD as if coming from a single study. We compare this approach with analyses that rather account for clustering of patients within studies. Study Design and Setting Comparison of effect estimates from logistic regression models in real and simulated examples. Results The estimated prognostic effect of age in patients with traumatic brain injury is similar, regardless of whether clustering is accounted for. However, a family history of thrombophilia is found to be a diagnostic marker of deep vein thrombosis [odds ratio, 1.30; 95% confidence interval (CI): 1.00, 1.70; P = 0.05] when clustering is accounted for but not when it is ignored (odds ratio, 1.06; 95% CI: 0.83, 1.37; P = 0.64). Similarly, the treatment effect of nicotine gum on smoking cessation is severely attenuated when clustering is ignored (odds ratio, 1.40; 95% CI: 1.02, 1.92) rather than accounted for (odds ratio, 1.80; 95% CI: 1.29, 2.52). Simulations show models accounting for clustering perform consistently well, but downwardly biased effect estimates and low coverage can occur when ignoring clustering. Conclusion Researchers must routinely account for clustering in IPD meta-analyses; otherwise, misleading effect estimates and conclusions may arise. PMID:23651765

  10. Spectroscopic Confirmation of a Massive Red-sequence Selected Galaxy Cluster at Z=1.34 in the SpARCS-South Cluster Survey

    NASA Technical Reports Server (NTRS)

    Wilson, Gillian; Demarco, Ricardo; Muzzin, Adam; Yee, H.K.C.; Lacy, Mark; Surace, Jason; Gilbank, David; Blindert, Kris; Hoekstra, Henk; Majumdar, Subhabrata; hide

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a z'-passband imaging survey, consisting of deep (z' approx. 24 AB) observations made from both hemispheres using the CFHT 3.6m and CTIO 4m telescopes. The survey was designed with the primary aim of detecting galaxy clusters at z > 1. In tandem with pre-existing 3.6 micron observations from the Spitzer Space Telescope SWIRE Legacy Survey, SpARCS detects clusters using an infrared adaptation of the two-filter red-sequence cluster technique. The total effective area of the SpARCS cluster survey is 41.9 sq deg. In this paper, we provide an overview of the 13.6 sq deg Southern CTIO/MOSAICII observations. The 28.3 sq deg Northern CFHT/MegaCam observations are summarized in a companion paper by Muzzin et al. (2008a). In this paper, we also report spectroscopic confirmation of SpARCS J003550-431224, a very rich galaxy cluster at z = 1.335, discovered in the ELAIS-S1 field. To date, this is the highest spectroscopically confirmed redshift for a galaxy cluster discovered using the red-sequence technique. Based on nine confirmed members, SpARCS J003550-431224 has a preliminary velocity dispersion of 1050+/-230 km/s. With its proven capability for efficient cluster detection, SpARCS is a demonstration that we have entered an era of large, homogeneously-selected z > 1 cluster surveys.

  11. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  12. Distribution and Diversity of Microbial Eukaryotes in Bathypelagic Waters of the South China Sea.

    PubMed

    Xu, Dapeng; Jiao, Nianzhi; Ren, Rui; Warren, Alan

    2017-05-01

    Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75-m depth. The communities of microbial eukaryotes were clustered into shallow-, middle-, and deep-water groups according to the depth from which they were collected, indicating a depth-related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50-m deep, being most abundant near the sea floor where they contributed ca. 64-97% and 40-74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  13. Autocorrelations of stellar light and mass at z˜ 0 and ˜1: from SDSS to DEEP2

    NASA Astrophysics Data System (ADS)

    Li, Cheng; White, Simon D. M.; Chen, Yanmei; Coil, Alison L.; Davis, Marc; De Lucia, Gabriella; Guo, Qi; Jing, Y. P.; Kauffmann, Guinevere; Willmer, Christopher N. A.; Zhang, Wei

    2012-01-01

    We present measurements of projected autocorrelation functions wp(rp) for the stellar mass of galaxies and for their light in the U, B and V bands, using data from the third data release of the DEEP2 Galaxy Redshift Survey and the final data release of the Sloan Digital Sky Survey (SDSS). We investigate the clustering bias of stellar mass and light by comparing these to projected autocorrelations of dark matter estimated from the Millennium Simulations (MS) at z= 1 and 0.07, the median redshifts of our galaxy samples. All of the autocorrelation and bias functions show systematic trends with spatial scale and waveband which are impressively similar at the two redshifts. This shows that the well-established environmental dependence of stellar populations in the local Universe is already in place at z= 1. The recent MS-based galaxy formation simulation of Guo et al. reproduces the scale-dependent clustering of luminosity to an accuracy better than 30 per cent in all bands and at both redshifts, but substantially overpredicts mass autocorrelations at separations below about 2 Mpc. Further comparison of the shapes of our stellar mass bias functions with those predicted by the model suggests that both the SDSS and DEEP2 data prefer a fluctuation amplitude of σ8˜ 0.8 rather than the σ8= 0.9 assumed by the MS.

  14. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint

    PubMed Central

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT

    2016-01-01

    Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194

  15. The extended stellar substructures of four metal-poor globular clusters in the galactic bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Sohn, Young-Jong

    2015-08-01

    We investigated stellar spatial density distribution around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642 and NGC 6723) in order to find extended stellar substructures. Wide-field deep J, H, and K imaging data were taken using the WFCAM near-infrared array on United Kingdom Infrared Telescope (UKIRT). The contamination of field stars around clusters was minimised by applying a statistical weighted filtering algorithm for the stars on the color-magnitude diagram. In two-dimensional isodensity contour map, we find that all four of the globular clusters shows tidal stripping stellar features in the form of tidal tails (NGC 6266 and NGC 6723) or small density lobes/chunk (NGC 6642 and NGC 6723). The stellar substructures extend toward the Galactic centre or anticancer, and the proper motion direction of the clusters. The radial density profiles of the clusters also depart from theoretical King and Wilson models and show overdensity feature with a break in a slope of profile at the outer region of clusters. The observed results indicate that four globular clusters in the Galactic bulge have experienced strong tidal force or bulge/disk shock effect of the Galaxy. These observational results provide us further constraints to understand the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  16. Young star clusters in the interacting galaxies of Hickson Compact Group 90

    NASA Astrophysics Data System (ADS)

    Miah, J. A.; Sharples, R. M.; Cho, J.

    2015-03-01

    Deep images of Hickson Compact Group 90 (HCG 90) have been obtained using the Advanced Camera for Surveys on the Hubble Space Telescope. We report results for star clusters observed in the interacting pair of galaxies NGC 7174 and NGC 7176. We present magnitude and colour distributions for the observed cluster population and find that the majority of objects show colours similar to intermediate/old age (>1 Gyr) globular clusters. However, a significant population of blue star clusters are also observed which may have formed from the tidal interaction currently occurring between the two galaxies. We find luminosity function turnover magnitudes of m^{TO}g = 25.1 ± 0.1 and m^{TO}z = 24.3 ± 0.1 for the g and z bands, respectively, implying distances of Dg = 28.8 ± 2.6 Mpc and Dz = 34.7 ± 3.1 Mpc to these galaxies, using the globular cluster luminosity function method. Lastly, we determine a total cluster population of approximately NGC ≃ 212 ± 10 over all magnitudes and a low specific frequency of SN ˜ 0.6 ± 0.1 for this pair of interacting elliptical and spiral galaxies. The small globular cluster population is likely due to tidal interactions taking place between the two galaxies which may have stripped many progenitor clusters away and formed the diffuse light observed at the core of HCG 90.

  17. The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zel'dovich Array Observations of ACT SZE-Selected Clusters from the Equatorial Strip

    NASA Technical Reports Server (NTRS)

    Reese, Erik D.; Mroczkowski, Tony; Menanteau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep; hide

    2011-01-01

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive (10(exp 15) Msun), high-redshift (z=0.81) cluster revealed by ACT through the Sunyaev-Zel'dovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the less than = 20% level for some fraction of clusters.

  18. The Atacama Cosmology Telescope: High-Resolution Sunyaev-Zeldovich Array Observations of ACT SZE-Selected Clusters from the Equatorial Strip

    NASA Technical Reports Server (NTRS)

    Reese, Erik; Mroczkowski, Tony; Menateau, Felipe; Hilton, Matt; Sievers, Jonathan; Aguirre, Paula; Appel, John William; Baker, Andrew J.; Bond, J. Richard; Das, Sudeep; hide

    2011-01-01

    We present follow-up observations with the Sunyaev-Zel'dovich Array (SZA) of optically-confirmed galaxy clusters found in the equatorial survey region of the Atacama Cosmology Telescope (ACT): ACT-CL J0022-0036, ACT-CL J2051+0057, and ACT-CL J2337+0016. ACT-CL J0022-0036 is a newly-discovered, massive ( approximately equals 10(exp 15) Solar M), high-redshift (z = 0.81) cluster revealed by ACT through the Sunyaev-Zeldovich effect (SZE). Deep, targeted observations with the SZA allow us to probe a broader range of cluster spatial scales, better disentangle cluster decrements from radio point source emission, and derive more robust integrated SZE flux and mass estimates than we can with ACT data alone. For the two clusters we detect with the SZA we compute integrated SZE signal and derive masses from the SZA data only. ACT-CL J2337+0016, also known as Abell 2631, has archival Chandra data that allow an additional X-ray-based mass estimate. Optical richness is also used to estimate cluster masses and shows good agreement with the SZE and X-ray-based estimates. Based on the point sources detected by the SZA in these three cluster fields and an extrapolation to ACT's frequency, we estimate that point sources could be contaminating the SZE decrement at the approx < 20% level for some fraction of clusters.

  19. Properties of star clusters - I. Automatic distance and extinction estimates

    NASA Astrophysics Data System (ADS)

    Buckner, Anne S. M.; Froebrich, Dirk

    2013-12-01

    Determining star cluster distances is essential to analyse their properties and distribution in the Galaxy. In particular, it is desirable to have a reliable, purely photometric distance estimation method for large samples of newly discovered cluster candidates e.g. from the Two Micron All Sky Survey, the UK Infrared Deep Sky Survey Galactic Plane Survey and VVV. Here, we establish an automatic method to estimate distances and reddening from near-infrared photometry alone, without the use of isochrone fitting. We employ a decontamination procedure of JHK photometry to determine the density of stars foreground to clusters and a galactic model to estimate distances. We then calibrate the method using clusters with known properties. This allows us to establish distance estimates with better than 40 per cent accuracy. We apply our method to determine the extinction and distance values to 378 known open clusters and 397 cluster candidates from the list of Froebrich, Scholz & Raftery. We find that the sample is biased towards clusters of a distance of approximately 3 kpc, with typical distances between 2 and 6 kpc. Using the cluster distances and extinction values, we investigate how the average extinction per kiloparsec distance changes as a function of the Galactic longitude. We find a systematic dependence that can be approximated by AH(l) [mag kpc-1] = 0.10 + 0.001 × |l - 180°|/° for regions more than 60° from the Galactic Centre.

  20. Mass Distribution in Galaxy Cluster Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, M. T.; McNamara, B. R.; Pulido, F.

    Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and active galactic nucleus feedback, are dependent upon local dynamical timescales. However, accurate mapping of the mass distribution within individual clusters is challenging, particularly toward cluster centers where the total mass budget has substantial radially dependent contributions from the stellar ( M {sub *}), gas ( M {sub gas}), and dark matter ( M {sub DM}) components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both largemore » and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular H α emission in cool-core clusters. At large radii the entropy profiles of our clusters agree with the baseline power law of K ∝ r {sup 1.1} expected from gravity alone. At smaller radii our entropy profiles become shallower but continue with a power law of the form K ∝ r {sup 0.67} down to our resolution limit. Among this small sample of cool-core clusters we therefore find no support for the existence of a central flat “entropy floor.”.« less

  1. Pre-main sequence variables in young cluster Stock 18

    NASA Astrophysics Data System (ADS)

    Sinha, Tirthendu; Sharma, Saurabh; Pandey, Rakesh; Pandey, Anil Kumar

    2018-04-01

    We have carried out multi-epoch deep I band photometry of the open cluster Stock 18 to search for variable stars in star forming regions. In the present study, we identified 65 periodic and 217 non-periodic variable stars. The periods of most of the periodic variables are between 2 hours to 15 days and their magnitude varies between 0.05 to 0.6 mag. We have derived spectral energy distributions for 48 probable pre-main sequence variables. Their average age and mass are 2.7 ± 0.3 Myrs and 2.7 ± 0.2 Mo, respectively.

  2. The Burrell Schmidt Deep Virgo Survey: Tidal Debris, Galaxy Halos, and Diffuse Intracluster Light in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, J. Christopher; Harding, Paul; Feldmeier, John J.; Rudick, Craig; Janowiecki, Steven; Morrison, Heather; Slater, Colin; Watkins, Aaron

    2017-01-01

    We present the results of a deep imaging survey of the Virgo cluster of galaxies, concentrated around the cores of Virgo subclusters A and B. The goal of this survey was to detect and study very low surface brightness features present in Virgo, including discrete tidal features, the faint halos of luminous galaxies, and the diffuse intracluster light (ICL). Our observations span roughly 16 degrees2 in two filters, reaching a 3σ limiting depth of {μ }B = 29.5 and {μ }V = 28.5 mag arcsec-2. At these depths, our limiting systematic uncertainties are astrophysical: variations in faint background sources as well as scattered light from galactic dust. We show that this dust-scattered light is well traced by deep far-infrared imaging, making it possible to separate it from true diffuse light in Virgo. We use our imaging to trace and measure the color of the diffuse tidal streams and ICL in the Virgo core near M87, in fields adjacent to the core including the M86/M84 region, and to the south of the core around M49 and subcluster B, along with the more distant W{}\\prime cloud around NGC 4365. Overall, the bulk of the projected ICL is found in the Virgo core and within the W{}\\prime cloud; we find little evidence for an extensive ICL component in the field around M49. The bulk of the ICL we detect is fairly red in color (B - V = 0.7-0.9), indicative of old, evolved stellar populations. Based on the luminosity of the observed ICL features in the cluster, we estimate a total Virgo ICL fraction of 7%-15%. This value is somewhat smaller than that expected for massive, evolved clusters, suggesting that Virgo is still in the process of growing its extended ICL component. We also trace the shape of M87's extremely boxy outer halo out to ˜150 kpc, and show that the current tidal stripping rate from low luminosity galaxies is insufficient to have built M87's outer halo over a Hubble time. We identify a number of previously unknown low surface brightness structures around galaxies projected close to M86 and M84. The extensive diffuse light seen in the infalling W{}\\prime cloud around NGC 4365 is likely to be subsumed in the general Virgo ICL component once the group enters the cluster, illustrating the importance of group infall in generating ICL. Finally, we also identify another large and extremely low surface brightness ultradiffuse galaxy, likely in the process of being shredded by the cluster tidal field. With the survey complete, the full imaging data set is now available for public release.

  3. Spectroscopic characterisation of the stellar content of ultra diffuse galaxies

    NASA Astrophysics Data System (ADS)

    Ruiz-Lara, T.; Beasley, M. A.; Falcón-Barroso, J.; Román, J.; Pinna, F.; Brook, C.; Di Cintio, A.; Martín-Navarro, I.; Trujillo, I.; Vazdekis, A.

    2018-05-01

    Understanding the peculiar properties of Ultra Diffuse Galaxies (UDGs) via spectroscopic analysis is a challenging task requiring very deep observations and exquisite data reduction. In this work we perform one of the most complete characterisations of the stellar component of UDGs to date using deep optical spectroscopic data from OSIRIS at GTC. We measure radial and rotation velocities, star formation histories (SFH) and mean population parameters, such as ages and metallicities, for a sample of five UDG candidates in the Coma cluster. From the radial velocities, we confirm the Coma membership of these galaxies. We find that their rotation properties, if detected at all, are compatible with dwarf-like galaxies. The SFHs of the UDG are dominated by old (˜ 7 Gyr), metal-poor ([M/H] ˜ -1.1) and α-enhanced ([Mg/Fe] ˜ 0.4) populations followed by a smooth or episodic decline which halted ˜ 2 Gyr ago, possibly a sign of cluster-induced quenching. We find no obvious correlation between individual SFH shapes and any UDG morphological properties. The recovered stellar properties for UDGs are similar to those found for DDO 44, a local UDG analogue resolved into stars. We conclude that the UDGs in our sample are extended dwarfs whose properties are likely the outcome of both internal processes, such as bursty SFHs and/or high-spin haloes, as well as environmental effects within the Coma cluster.

  4. A weak lensing analysis of the PLCK G100.2-30.4 cluster

    NASA Astrophysics Data System (ADS)

    Radovich, M.; Formicola, I.; Meneghetti, M.; Bartalucci, I.; Bourdin, H.; Mazzotta, P.; Moscardini, L.; Ettori, S.; Arnaud, M.; Pratt, G. W.; Aghanim, N.; Dahle, H.; Douspis, M.; Pointecouteau, E.; Grado, A.

    2015-07-01

    We present a mass estimate of the Planck-discovered cluster PLCK G100.2-30.4, derived from a weak lensing analysis of deep Subaru griz images. We perform a careful selection of the background galaxies using the multi-band imaging data, and undertake the weak lensing analysis on the deep (1 h) r -band image. The shape measurement is based on the Kaiser-Squires-Broadhurst algorithm; we adopt the PSFex software to model the point spread function (PSF) across the field and correct for this in the shape measurement. The weak lensing analysis is validated through extensive image simulations. We compare the resulting weak lensing mass profile and total mass estimate to those obtained from our re-analysis of XMM-Newton observations, derived under the hypothesis of hydrostatic equilibrium. The total integrated mass profiles agree remarkably well, within 1σ across their common radial range. A mass M500 ~ 7 × 1014M⊙ is derived for the cluster from our weak lensing analysis. Comparing this value to that obtained from our reanalysis of XMM-Newton data, we obtain a bias factor of (1-b) = 0.8 ± 0.1. This is compatible within 1σ with the value of (1-b) obtained in Planck 2015 from the calibration of the bias factor using newly available weak lensing reconstructed masses. Based on data collected at Subaru Telescope (University of Tokyo).

  5. Classification and unsupervised clustering of LIGO data with Deep Transfer Learning

    NASA Astrophysics Data System (ADS)

    George, Daniel; Shen, Hongyu; Huerta, E. A.

    2018-05-01

    Gravitational wave detection requires a detailed understanding of the response of the LIGO and Virgo detectors to true signals in the presence of environmental and instrumental noise. Of particular interest is the study of anomalous non-Gaussian transients, such as glitches, since their occurrence rate in LIGO and Virgo data can obscure or even mimic true gravitational wave signals. Therefore, successfully identifying and excising these anomalies from gravitational wave data is of utmost importance for the detection and characterization of true signals and for the accurate computation of their significance. To facilitate this work, we present the first application of deep learning combined with transfer learning to show that knowledge from pretrained models for real-world object recognition can be transferred for classifying spectrograms of glitches. To showcase this new method, we use a data set of twenty-two classes of glitches, curated and labeled by the Gravity Spy project using data collected during LIGO's first discovery campaign. We demonstrate that our Deep Transfer Learning method enables an optimal use of very deep convolutional neural networks for glitch classification given small and unbalanced training data sets, significantly reduces the training time, and achieves state-of-the-art accuracy above 98.8%, lowering the previous error rate by over 60%. More importantly, once trained via transfer learning on the known classes, we show that our neural networks can be truncated and used as feature extractors for unsupervised clustering to automatically group together new unknown classes of glitches and anomalous signals. This novel capability is of paramount importance to identify and remove new types of glitches which will occur as the LIGO/Virgo detectors gradually attain design sensitivity.

  6. New VVV Survey Globular Cluster Candidates in the Milky Way Bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Gómez, Matías; Geisler, Douglas

    It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the Vía Láctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates bymore » their color–magnitude diagrams. We provide their coordinates as well as their near-IR color–magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color–magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A {sub Ks} < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color–magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way.« less

  7. Spectroscopic Confirmation of Two Massive Red-sequence-selected Galaxy Clusters at Z Approximately Equal to 1.2 in the Sparcs-North Cluster Survey

    NASA Technical Reports Server (NTRS)

    Muzzin, Adam; Wilson, Gillian; Yee, H.K.C.; Hoekstra, Henk; Gilbank, David; Surace, Jason; Lacy, Mark; Blindert, Kris; Majumdar, Subhabrata; Demarco, Ricardo; hide

    2008-01-01

    The Spitzer Adaptation of the Red-sequence Cluster Survey (SpARCS) is a deep z -band imaging survey covering the Spitzer SWIRE Legacy fields designed to create the first large homogeneously-selected sample of massive clusters at z > 1 using an infrared adaptation of the cluster red-sequence method. We present an overview of the northern component of the survey which has been observed with CFHT/MegaCam and covers 28.3 deg(sup 2). The southern component of the survey was observed with CTIO/MOSAICII, covers 13.6 deg(sup 2), and is summarized in a companion paper by Wilson et al. (2008). We also present spectroscopic confirmation of two rich cluster candidates at z approx. 1.2. Based on Nod-and- Shuffle spectroscopy from GMOS-N on Gemini there are 17 and 28 confirmed cluster members in SpARCS J163435+402151 and SpARCS J163852+403843 which have spectroscopic redshifts of 1.1798 and 1.1963, respectively. The clusters have velocity dispersions of 490 +/- 140 km/s and 650 +/- 160 km/s, respectively which imply masses (M(sub 200)) of (1.0 +/- 0.9) x 10(exp 14) Stellar Mass and (2.4 +/- 1.8) x 10(exp 14) Stellar Mass. Confirmation of these candidates as bonafide massive clusters demonstrates that two-filter imaging is an effective, yet observationally efficient, method for selecting clusters at z > 1.

  8. Radio Sources Toward Galaxy Clusters at 30 GHz

    NASA Technical Reports Server (NTRS)

    Coble, K.; Bonamente, M.; Carlstrom, J. E.; Dawson, K.; Hasler, N.; Holzapfel, W.; Joy, M.; LaRoque, S.; Marrone, D. P.; Reese, E. D.

    2007-01-01

    Extra-galactic radio sources are a significant contaminant in cosmic microwave background and Sunyaev-Zeldovich effect experiments. Deep interferometric observations with the BIMA and OVRO arrays are used to characterize the spatial, spectral, and flux distributions of radio sources toward massive galaxy clusters at 28.5 GHz. We compute counts of mJy source fluxes from 89 fields centered on known massive galaxy clusters and 8 non-cluster fields. We find that source counts in the inner regions of the cluster fields (within 0.5 arcmin of the cluster center) are a factor of 8.9 (+4.2 to -3.8) times higher than counts in the outer regions of the cluster fields (radius greater than 0.5 arcmin). Counts in the outer regions of the cluster fields are in turn a factor of 3.3 (+4.1 -1.8) greater than those in the noncluster fields. Counts in the non-cluster fields are consistent with extrapolations from the results of other surveys. We compute spectral indices of mJy sources in cluster fields between 1.4 and 28.5 GHz and find a mean spectral index of al[ja = 0.66 with an rms dispersion of 0.36, where flux S varies as upsilon(sup -alpha). The distribution is skewed, with a median spectral index of 0.72 and 25th and 75th percentiles of 0.51 and 0.92, respectively. This is steeper than the spectral indices of stronger field sources measured by other surveys.

  9. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Rickard, David T.

    2005-10-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA.

  10. Revealing Fundamental Physics from the Daya Bay Neutrino Experiment Using Deep Neural Networks

    DOE PAGES

    Racah, Evan; Ko, Seyoon; Sadowski, Peter; ...

    2017-02-02

    Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. Here in this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networksmore » can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.« less

  11. Bars in Field and Cluster Galaxies at Intermediate Redshifts

    NASA Astrophysics Data System (ADS)

    Barazza, F. D.; Jablonka, P.; Ediscs Collaboration

    2009-12-01

    We present the first study of large-scale bars in clusters at intermediate redshifts (z=0.4-0.8). We compare the properties of the bars and their host galaxies in the clusters with those of a field sample in the same redshift range. We use a sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. The morphological classification of the galaxies and the detection of bars are based on deep HST/ACS F814W images. The total optical bar fraction in the redshift range z=0.4-0.8, averaged over the entire sample, is 25%. This is lower than found locally, but in good agreement with studies of bars in field environments at intermediate redshifts. For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. In agreement with local studies, we find that disk-dominated galaxies have a higher bar fraction than bulge-dominated galaxies. We also find, based on a small subsample, that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher than at larger distances.

  12. Featured Image: New Detail in the Toothbrush Cluster

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-01-01

    This spectacular composite (click here for the full image) reveals the galaxy cluster 1RXS J0603.3+4214, known as the Toothbrush cluster due to the shape of its most prominent radio relic. Featured in a recent publication led by Kamlesh Rajpurohit (Thuringian State Observatory, Germany), this image contains new Very Large Array (VLA) 1.5-GHz observations (red) showing the radio emission within the cluster. This is composited with a Chandra view of the X-ray emitting gas of the cluster (blue) and an optical image of the background from Subaru data. The new deep VLA data totaling 26 hours of observations provides a detailed look at the complex structure within the Toothbrush relic, revealing enigmatic filaments and twists (see below). This new data will help us to explore the possible merger history of this cluster, which is theorized to have caused the unusual shapes we see today. For more information, check out the original article linked below.High resolution VLA 12 GHz image of the Toothbrush showing the complex, often filamentary structures. [Rajpurohit et al. 2018]CitationK. Rajpurohit et al 2018 ApJ 852 65. doi:10.3847/1538-4357/aa9f13

  13. Planck intermediate results. XXVI. Optical identification and redshifts of Planck clusters with the RTT150 telescope

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2015-09-30

    In this paper, we present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with the Russian-Turkish 1.5 m telescope (RTT150), as a part of the optical follow-up programme undertaken by the Planck collaboration. During this time period approximately 20% of all dark and grey clear time available at the telescope was devoted to observations of Planck objects. Some observations of distant clusters were also done at the 6 m Bolshoi Telescope Alt-azimutalnyi (BTA) of the Special Astrophysical Observatory of the Russian Academy of Sciences. In total, deep, direct images of more than one hundred fieldsmore » were obtained in multiple filters. We identified 47 previously unknown galaxy clusters, 41 of which are included in the Planck catalogue of SZ sources. The redshifts of 65 Planck clusters were measured spectroscopically and 14 more were measured photometrically. We discuss the details of cluster optical identifications and redshift measurements. Finally, we also present new spectroscopic redshifts for 39 Planck clusters that were not included in the Planck SZ source catalogue and are published here for the first time.« less

  14. Galaxy Interactions, Tidal Debris, and the Origin of Intracluster Light in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Gregg, Michael

    1999-07-01

    We propose to obtain deep WFPC2 and parallel STIS images of low surface brightness tidal debris that we have recently discovered in the Coma cluster; the material is being stripped from its parent galaxy and added to the general cluster background. These images will enable direct study of the brightest blue and red supergiants, globular clusters, and star forming regions which may be present, or will place strong limits on the numbers of such objects and any recent star formation. We also propose similar observations of the parent spiral, NGC4911, in the core of Coma; it is losing its ISM to the hot cluster gas and as well as the low surface brightness tidal debris. By imaging this galaxy, we will get a high resolution look at the interaction between the galaxy and interstellar medium, as well as any ram-pressure induced star formation. The tidal features in Coma appear to be adding material to the background light and cD galaxy envelopes at a significant rate; determining the nature of the added stellar population and the interactions which produce it are critical to understanding the formation and evolution of cD galaxies and clusters.

  15. The outskirts of the Coma cluster

    NASA Astrophysics Data System (ADS)

    Gavazzi, Giuseppe

    Evolved Coma-like clusters of galaxies are constituted of relaxed cores composed of ''old'' early-type galaxies, embedded in large-scale structures, mostly constituted of unevolved (late-type) systems. According to the hierarchical theory of cluster formation the central regions are being fed with unevolved, low-mass systems infalling from the surroundings that are gradually transformed into elliptical/S0 galaxies by tidal galaxy-galaxy and galaxy-cluster interactions, taking place at some boundary distance. The Coma cluster, the most studied of all local clusters, provides us with the ideal test-bed for such an evolutionary study because of the completeness of the photometric and kinematic information already at hands. The field of view of the planned GALEX observations is not big enough to include the boundary interface where most transformations processes are expected to take place, including the truncation of the current star formation. We propose to complete the outskirt of Coma with an additional corona of 11 GALEX imaging fields of 1500 sec exposure each, matching the deepness (UV_{AB}=23.5 mag) of the fields observed in guarantee time. Given the priority of the target, we also propose one optional Central pointing that includes one bright star marginally exceeding the detector brightness limit.

  16. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations.

    PubMed

    Yuan, Yuchen; Shi, Yi; Li, Changyang; Kim, Jinman; Cai, Weidong; Han, Zeguang; Feng, David Dagan

    2016-12-23

    With the developments of DNA sequencing technology, large amounts of sequencing data have become available in recent years and provide unprecedented opportunities for advanced association studies between somatic point mutations and cancer types/subtypes, which may contribute to more accurate somatic point mutation based cancer classification (SMCC). However in existing SMCC methods, issues like high data sparsity, small volume of sample size, and the application of simple linear classifiers, are major obstacles in improving the classification performance. To address the obstacles in existing SMCC studies, we propose DeepGene, an advanced deep neural network (DNN) based classifier, that consists of three steps: firstly, the clustered gene filtering (CGF) concentrates the gene data by mutation occurrence frequency, filtering out the majority of irrelevant genes; secondly, the indexed sparsity reduction (ISR) converts the gene data into indexes of its non-zero elements, thereby significantly suppressing the impact of data sparsity; finally, the data after CGF and ISR is fed into a DNN classifier, which extracts high-level features for accurate classification. Experimental results on our curated TCGA-DeepGene dataset, which is a reformulated subset of the TCGA dataset containing 12 selected types of cancer, show that CGF, ISR and DNN all contribute in improving the overall classification performance. We further compare DeepGene with three widely adopted classifiers and demonstrate that DeepGene has at least 24% performance improvement in terms of testing accuracy. Based on deep learning and somatic point mutation data, we devise DeepGene, an advanced cancer type classifier, which addresses the obstacles in existing SMCC studies. Experiments indicate that DeepGene outperforms three widely adopted existing classifiers, which is mainly attributed to its deep learning module that is able to extract the high level features between combinatorial somatic point mutations and cancer types.

  17. Evolution of colour-dependence of galaxy clustering up to z˜ 1.2 based on the data from the VVDS-Wide survey

    NASA Astrophysics Data System (ADS)

    Świetoń, Agnieszka; Pollo, Agnieszka; VVDS Team

    2014-12-01

    We discuss the dependence of galaxy clustering according to their colours up to z˜ 1.2. For that purpose we used one of the wide fields (F22) from the VIMOS-VLT Deep Survey (VVDS). For galaxies with absolute luminosities close to the characteristic Schechter luminosities M^* at a given redshift, we measured the projected two-point correlation function w_{p}(r_{p}) and we estimated the best-fit parameters for a single power-law model: ξ(r) = (r/r_0)^{-γ} , where r_0 is the correlation length and γ is the slope of correlation function. Our results show that red galaxies exhibit the strongest clustering in all epochs up to z˜ 1.2. Green valley represents the "intermediate" population and blue cloud shows the weakest clustering strength. We also compared the shape of w_p(r_p) for different galaxy populations. All three populations have different clustering properties on the small scales, similarly to the behaviour observed in the local catalogues.

  18. Faint Submillimeter Galaxies Behind Lensing Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Lauchlan Cowie, Lennox; Barger, Amy J.; Desai, Vandana; Murphy, Eric J.

    2017-01-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. Observations of massive cluster fields are the best way to explore this faint submillimeter population, thanks to gravitational lensing effects. We have been undertaking a lensing cluster survey with the SCUBA-2 camera on the James Clerk Maxwell Telescope to map nine galaxy clusters, including the northern five clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array and the Very Large Array to determine the accurate positions of our detected sources. Our observations have discovered high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies. Some of these galaxies are still undetected in deep optical and near-infrared images. These results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  19. A Massive Warm Baryonic Halo in the Coma Cluster

    NASA Technical Reports Server (NTRS)

    Bonamente, Massimiliano; Joy, Marshall K.; Lieu, Richard

    2003-01-01

    Several deep PSPC observations of the Coma Cluster reveal a very large scale halo of soft X-ray emission, substantially in excess of the well-known radiation from the hot intracluster medium. The excess emission, previously reported in the central region of the cluster using lower sensitivity Extreme Ultraviolet Explorer (EUVE) and ROSAT data, is now evident out to a radius of 2.6 Mpc, demonstrating that the soft excess radiation from clusters is a phenomenon of cosmological significance. The X-ray spectrum at these large radii cannot be modeled nonthermally but is consistent with the original scenario of thermal emission from warm gas at approx. 10(exp 6) K. The mass of the warm gas is on par with that of the hot X-ray-emitting plasma and significantly more massive if the warm gas resides in low-density filamentary structures. Thus, the data lend vital support to current theories of cosmic evolution, which predict that at low redshift approx. 30%-40% of the baryons reside in warm filaments converging at clusters of galaxies.

  20. VizieR Online Data Catalog: Spectroscopy of luminous compact blue galaxies (Crawford+, 2016)

    NASA Astrophysics Data System (ADS)

    Crawford, S. M.; Wirth, G. D.; Bershady, M. A.; Randriamampandry, S. M.

    2017-10-01

    Deep imaging data in UBRIz and two narrow bands were obtained with the Mini-Mosaic camera from the WIYN 3.5 m telescope for all five clusters between 1999 October and 2004 June. We obtained spectroscopic observations for a sample of cluster star-forming galaxies with the DEIMOS, Faber et al. 2003 on the Keck II Telescope during 2005 October and 2007 April. The narrow-band filters were specifically designed to detect [OII] λ3727 at the redshift of each cluster. All of the clusters have been the target of extensive observations with the HST, primarily using either WFPC2 or the Advanced Camera for Surveys (ACS). For all measurements, we have attempted to select data taken in a filter closest to the rest-frame B band. We have employed ACS imaging data whenever possible and substituted WFPC2 images only when required. For clusters observed in the far-infrared regime by the Spitzer Space Telescope, we extracted MIPS 24μm flux densities, S24, from images obtained through the Enhanced Imaging Products archive. (2 data files).

  1. Shock Heating of the Merging Galaxy Cluster A521

    NASA Technical Reports Server (NTRS)

    Bourdin, H.; Mazzotta, P.; Markevitch, M.; Giacintucci, S.; Brunetti, G.

    2013-01-01

    A521 is an interacting galaxy cluster located at z = 0.247, hosting a low-frequency radio halo connected to an eastern radio relic. Previous Chandra observations hinted at the presence of an X-ray brightness edge at the position of the relic, which may be a shock front. We analyze a deep observation of A521 recently performed with XMM-Newton in order to probe the cluster structure up to the outermost regions covered by the radio emission. The cluster atmosphere exhibits various brightness and temperature anisotropies. In particular, two cluster cores appear to be separated by two cold fronts. We find two shock fronts, one that was suggested by Chandra and that is propagating to the east, and another to the southwestern cluster outskirt. The two main interacting clusters appear to be separated by a shock-heated region, which exhibits a spatial correlation with the radio halo. The outer edge of the radio relic coincides spatially with a shock front, suggesting that this shock is responsible for the generation of cosmic-ray electrons in the relic. The propagation direction and Mach number of the shock front derived from the gas density jump, M = 2.4 +/- 0.2, are consistent with expectations from the radio spectral index, under the assumption of Fermi I acceleration mechanism.

  2. Mass Modeling of Frontier Fields Cluster MACS J1149.5+2223 Using Strong and Weak Lensing

    NASA Astrophysics Data System (ADS)

    Finney, Emily Quinn; Bradač, Maruša; Huang, Kuang-Han; Hoag, Austin; Morishita, Takahiro; Schrabback, Tim; Treu, Tommaso; Borello Schmidt, Kasper; Lemaux, Brian C.; Wang, Xin; Mason, Charlotte

    2018-05-01

    We present a gravitational-lensing model of MACS J1149.5+2223 using ultra-deep Hubble Frontier Fields imaging data and spectroscopic redshifts from HST grism and Very Large Telescope (VLT)/MUSE spectroscopic data. We create total mass maps using 38 multiple images (13 sources) and 608 weak-lensing galaxies, as well as 100 multiple images of 31 star-forming regions in the galaxy that hosts supernova Refsdal. We find good agreement with a range of recent models within the HST field of view. We present a map of the ratio of projected stellar mass to total mass (f ⋆) and find that the stellar mass fraction for this cluster peaks on the primary BCG. Averaging within a radius of 0.3 Mpc, we obtain a value of < {f}\\star > ={0.012}-0.003+0.004, consistent with other recent results for this ratio in cluster environments, though with a large global error (up to δf ⋆ = 0.005) primarily due to the choice of IMF. We compare values of f ⋆ and measures of star formation efficiency for this cluster to other Hubble Frontier Fields clusters studied in the literature, finding that MACS1149 has a higher stellar mass fraction than these other clusters but a star formation efficiency typical of massive clusters.

  3. Applications of Nanoparticle-Containing Plasmas for High-Order Harmonic Generation of Laser Radiation

    NASA Astrophysics Data System (ADS)

    Ganeev, Rashid A.

    The use of nanoparticles for efficient conversion of the wavelength of ultrashort laser toward the deep UV spectral range through harmonic generation is an attractive application of cluster-containing plasmas. Note that earlier observations of HHG in nanoparticles were limited by using the exotic gas clusters formed during fast cooling of atomic flow from the gas jets 1-4. One can assume the difficulties in definition of the structure of such clusters and the ratio between nanoparticles and atoms/ions in the gas flow. The characterization of gas phase cluster production was currently improved using the sophisticated techniques (e.g., a control of nanoparticle mass and spatial distribution, see the review 5). In the meantime, the plasma nanoparticle HHG has demonstrated some advantages over gas cluster HHG 6. The application of commercially available nanopowders allowed for precisely defining the sizes and structure of these clusters in the plume. The laser ablation technique made possible the predictable manipulation of plasma characteristics, which led to the creation of laser plumes containing mainly nanoparticles with known spatial structure. The latter allows the application of such plumes in nonlinear optics, X-ray emission of clusters, deposition of nanoparticles with fixed parameters on the substrates for semiconductor industry, production of nanostructured and nanocomposite films, etc.

  4. Luminosity Function of Faint Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Waters, Christopher Z.; Zepf, Stephen E.; Lauer, Tod R.; Baltz, Edward A.; Silk, Joseph

    2006-10-01

    We present the luminosity function to very faint magnitudes for the globular clusters in M87, based on a 30 orbit Hubble Space Telescope (HST) WFPC2 imaging program. The very deep images and corresponding improved false source rejection allow us to probe the mass function further beyond the turnover than has been done before. We compare our luminosity function to those that have been observed in the past, and confirm the similarity of the turnover luminosity between M87 and the Milky Way. We also find with high statistical significance that the M87 luminosity function is broader than that of the Milky Way. We discuss how determining the mass function of the cluster system to low masses can constrain theoretical models of the dynamical evolution of globular cluster systems. Our mass function is consistent with the dependence of mass loss on the initial cluster mass given by classical evaporation, and somewhat inconsistent with newer proposals that have a shallower mass dependence. In addition, the rate of mass loss is consistent with standard evaporation models, and not with the much higher rates proposed by some recent studies of very young cluster systems. We also find that the mass-size relation has very little slope, indicating that there is almost no increase in the size of a cluster with increasing mass.

  5. Learning in First-Year Biology: Approaches of Distance and On-Campus Students

    NASA Astrophysics Data System (ADS)

    Quinn, Frances Catherine

    2011-01-01

    This paper aims to extend previous research into learning of tertiary biology, by exploring the learning approaches adopted by two groups of students studying the same first-year biology topic in either on-campus or off-campus "distance" modes. The research involved 302 participants, who responded to a topic-specific version of the Study Process Questionnaire, and in-depth interviews with 16 of these students. Several quantitative analytic techniques, including cluster analysis and Rasch differential item functioning analysis, showed that the younger, on-campus cohort made less use of deep approaches, and more use of surface approaches than the older, off-campus group. At a finer scale, clusters of students within these categories demonstrated different patterns of learning approach. Students' descriptions of their learning approaches at interview provided richer complementary descriptions of the approach they took to their study in the topic, showing how deep and surface approaches were manifested in the study context. These findings are critically analysed in terms of recent literature questioning the applicability of learning approaches theory in mass education, and their implications for teaching and research in undergraduate biology.

  6. Calculating Proper Motions in the WFCAM Science Archive for the UKIRT Infrared Deep Sky Surveys

    NASA Astrophysics Data System (ADS)

    Collins, R.; Hambly, N.

    2012-09-01

    The ninth data release from the UKIRT Infrared Deep Sky Surveys (hereafter UKIDSS DR9), represents five years worth of observations by its wide-field camera (WFCAM) and will be the first to include proper motion values in its source catalogues for the shallow, wide-area surveys; the Large Area Survey (LAS), Galactic Clusters Survey (GCS) and (ultimately) Galactic Plane Survey (GPS). We, the Wide Field Astronomy Unit (WFAU) at the University of Edinburgh who prepare these regular data releases in the WFCAM Science Archive (WSA), describe in this paper how we make optimal use of the individual detection catalogues from each observation to derive high-quality astrometric fits for the positions of each detection enabling us to calculate a proper motion solution across multiple epochs and passbands when constructing a merged source catalogue. We also describe how the proper motion solutions affect the calculation of the various attributes provided in the database source catalogue tables, what measures of data quality we provide and a demonstration of the results for observations of the Pleiades cluster.

  7. The SCUBA-2 cosmology legacy survey: Ultraluminous star-forming galaxies in a z = 1.6 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smail, Ian; Swinbank, A. M.; Danielson, A. L. R.

    2014-02-10

    We analyze new SCUBA-2 submillimeter and archival SPIRE far-infrared imaging of a z = 1.62 cluster, Cl 0218.3–0510, which lies in the UKIRT Infrared Deep Sky Survey/Ultra-Deep Survey field of the SCUBA-2 Cosmology Legacy Survey. Combining these tracers of obscured star-formation activity with the extensive photometric and spectroscopic information available for this field, we identify 31 far-infrared/submillimeter-detected probable cluster members with bolometric luminosities ≳10{sup 12} L {sub ☉} and show that by virtue of their dust content and activity, these represent some of the reddest and brightest galaxies in this structure. We exploit ALMA submillimeter continuum observations, which cover onemore » of these sources, to confirm the identification of a SCUBA-2-detected ultraluminous star-forming galaxy in this structure. Integrating the total star-formation activity in the central region of the structure, we estimate that it is an order of magnitude higher (in a mass-normalized sense) than clusters at z ∼ 0.5-1. However, we also find that the most active cluster members do not reside in the densest regions of the structure, which instead host a population of passive and massive, red galaxies. We suggest that while the passive and active populations have comparable near-infrared luminosities at z = 1.6, M{sub H} ∼ –23, the subsequent stronger fading of the more active galaxies means that they will evolve into passive systems at the present day that are less luminous than the descendants of those galaxies that were already passive at z ∼ 1.6 (M{sub H} ∼ –20.5 and M{sub H} ∼ –21.5, respectively, at z ∼ 0). We conclude that the massive galaxy population in the dense cores of present-day clusters were already in place at z = 1.6 and that in Cl 0218.3–0510 we are seeing continuing infall of less extreme, but still ultraluminous, star-forming galaxies onto a pre-existing structure.« less

  8. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates.

    PubMed

    Jackson, Stephen A; Crossman, Lisa; Almeida, Eduardo L; Margassery, Lekha Menon; Kennedy, Jonathan; Dobson, Alan D W

    2018-02-20

    The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs) such as polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell) web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces . The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.

  9. HFF-DeepSpace Photometric Catalogs of the 12 Hubble Frontier Fields, Clusters, and Parallels: Photometry, Photometric Redshifts, and Stellar Masses

    NASA Astrophysics Data System (ADS)

    Shipley, Heath V.; Lange-Vagle, Daniel; Marchesini, Danilo; Brammer, Gabriel B.; Ferrarese, Laura; Stefanon, Mauro; Kado-Fong, Erin; Whitaker, Katherine E.; Oesch, Pascal A.; Feinstein, Adina D.; Labbé, Ivo; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Nedkova, Kalina; Skelton, Rosalind; van der Wel, Arjen

    2018-03-01

    We present Hubble multi-wavelength photometric catalogs, including (up to) 17 filters with the Advanced Camera for Surveys and Wide Field Camera 3 from the ultra-violet to near-infrared for the Hubble Frontier Fields and associated parallels. We have constructed homogeneous photometric catalogs for all six clusters and their parallels. To further expand these data catalogs, we have added ultra-deep K S -band imaging at 2.2 μm from the Very Large Telescope HAWK-I and Keck-I MOSFIRE instruments. We also add post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC), as well as archival IRAC 5.8 and 8.0 μm imaging when available. We introduce the public release of the multi-wavelength (0.2–8 μm) photometric catalogs, and we describe the unique steps applied for the construction of these catalogs. Particular emphasis is given to the source detection band, the contamination of light from the bright cluster galaxies (bCGs), and intra-cluster light (ICL). In addition to the photometric catalogs, we provide catalogs of photometric redshifts and stellar population properties. Furthermore, this includes all the images used in the construction of the catalogs, including the combined models of bCGs and ICL, the residual images, segmentation maps, and more. These catalogs are a robust data set of the Hubble Frontier Fields and will be an important aid in designing future surveys, as well as planning follow-up programs with current and future observatories to answer key questions remaining about first light, reionization, the assembly of galaxies, and many more topics, most notably by identifying high-redshift sources to target.

  10. An Objective Classification of Saturn Cloud Features from Cassini ISS Images

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Barbara, John M.

    2016-01-01

    A k -means clustering algorithm is applied to Cassini Imaging Science Subsystem continuum and methane band images of Saturn's northern hemisphere to objectively classify regional albedo features and aid in their dynamical interpretation. The procedure is based on a technique applied previously to visible- infrared images of Earth. It provides a new perspective on giant planet cloud morphology and its relationship to the dynamics and a meteorological context for the analysis of other types of simultaneous Saturn observations. The method identifies 6 clusters that exhibit distinct morphology, vertical structure, and preferred latitudes of occurrence. These correspond to areas dominated by deep convective cells; low contrast areas, some including thinner and thicker clouds possibly associated with baroclinic instability; regions with possible isolated thin cirrus clouds; darker areas due to thinner low level clouds or clearer skies due to downwelling, or due to absorbing particles; and fields of relatively shallow cumulus clouds. The spatial associations among these cloud types suggest that dynamically, there are three distinct types of latitude bands on Saturn: deep convectively disturbed latitudes in cyclonic shear regions poleward of the eastward jets; convectively suppressed regions near and surrounding the westward jets; and baro-clinically unstable latitudes near eastward jet cores and in the anti-cyclonic regions equatorward of them. These are roughly analogous to some of the features of Earth's tropics, subtropics, and midlatitudes, respectively. This classification may be more useful for dynamics purposes than the traditional belt-zone partitioning. Temporal variations of feature contrast and cluster occurrence suggest that the upper tropospheric haze in the northern hemisphere may have thickened by 2014. The results suggest that routine use of clustering may be a worthwhile complement to many different types of planetary atmospheric data analysis.

  11. Optical signatures of high-redshift galaxy clusters

    NASA Technical Reports Server (NTRS)

    Evrard, August E.; Charlot, Stephane

    1994-01-01

    We combine an N-body and gasdynamic simulation of structure formation with an updated population synthesis code to explore the expected optical characteristics of a high-redshift cluster of galaxies. We examine a poor (2 keV) cluster formed in a biased, cold dark matter cosmology and employ simple, but plausible, threshold criteria to convert gas into stars. At z = 2, the forming cluster appears as a linear chain of very blue (g-r approximately equals 0) galaxies, with 15 objects brighter than r = 25 within a 1 square arcmin field of view. After 2 Gyr of evolution, the cluster viewed at z = 1 displays both freshly infalling blue galaxies and red galaxies robbed of recent accretion by interaction with the hot intracluster medium. The range in G-R colors is approximately 3 mag at z = 1, with the reddest objects lying at sites of highest galaxy density. We suggest that red, high-redshift galaxies lie in the cores of forming clusters and that their existence indicates the presence of a hot intracluster medium at redshifts z approximately equals 2. The simulated cluster viewed at z = 2 has several characteristics similar to the collection of faint, blue objects identified by Dressler et al. in a deep Hubble Space Telescope observation. The similarities provide some support for the interpretation of this collection as a high-redshift cluster of galaxies.

  12. Toward An Understanding of Cluster Evolution: A Deep X-Ray Selected Cluster Catalog from ROSAT

    NASA Technical Reports Server (NTRS)

    Jones, Christine; Oliversen, Ronald (Technical Monitor)

    2002-01-01

    In the past year, we have focussed on studying individual clusters found in this sample with Chandra, as well as using Chandra to measure the luminosity-temperature relation for a sample of distant clusters identified through the ROSAT study, and finally we are continuing our study of fossil groups. For the luminosity-temperature study, we compared a sample of nearby clusters with a sample of distant clusters and, for the first time, measured a significant change in the relation as a function of redshift (Vikhlinin et al. in final preparation for submission to Cape). We also used our ROSAT analysis to select and propose for Chandra observations of individual clusters. We are now analyzing the Chandra observations of the distant cluster A520, which appears to have undergone a recent merger. Finally, we have completed the analysis of the fossil groups identified in ROM observations. In the past few months, we have derived X-ray fluxes and luminosities as well as X-ray extents for an initial sample of 89 objects. Based on the X-ray extents and the lack of bright galaxies, we have identified 16 fossil groups. We are comparing their X-ray and optical properties with those of optically rich groups. A paper is being readied for submission (Jones, Forman, and Vikhlinin in preparation).

  13. Galaxies at the Extremes: Ultradiffuse Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Mihos, Chris

    2017-08-01

    The ultradiffuse galaxies (UDGs) recently discovered in massive galaxy clusters presents both challenges and opportunities for our understanding of galaxy evolution in dense clusters. Such large, low density galaxies should be most vulnerable to gravitational destruction within the cluster environment. Thus their presence in cluster cores argues either that they must be stabilized by massive dark halos or else be short-lived objects undergoing rapid transformation, perhaps leading to the formation of ultracompact dwarf galaxies (UCDs) if their destruction leaves only a compact nucleus behind. We propose deep imaging of four Virgo Cluster UDGs to probe their local environment within Virgo via accurate tip of the red giant branch (TRGB) distances. With a distance precision of 1 Mpc, we will accurately place the objects in the Virgo core, cluster outskirts, or intervening field. When coupled with our extant kinematic data, we can determine whether they are infalling objects or instead have already passed through the cluster core. We will also compare their compact nuclei to Virgo UCDs, and study their globular cluster (GC) populations in detail. Probing three magnitudes beyond the turnover in the GC luminosity function, we will construct larger and cleaner GC samples than possible with ground-based imaging, using the total mass and radial extent of the globular cluster systems to estimate the dark halo mass and tidal radius for each UDG. The new information provided by HST about the local environment and intrinsic properties of these Virgo UDGs will be used in conjunction with simulation data to study cluster-driven evolution and transformation of low density galaxies.

  14. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellarmore » features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.« less

  15. Ultra-deep K S-band Imaging of the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Brammer, Gabriel B.; Marchesini, Danilo; Labbé, Ivo; Spitler, Lee; Lange-Vagle, Daniel; Barker, Elizbeth A.; Tanaka, Masayuki; Fontana, Adriano; Galametz, Audrey; Ferré-Mateu, Anna; Kodama, Tadayuki; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Stefanon, Mauro; Toft, Sune; van der Wel, Arjen; Vulcani, Benedetta; Whitaker, Katherine E.

    2016-09-01

    We present an overview of the “KIFF” project, which provides ultra-deep K s -band imaging of all six of the Hubble Frontier Fields clusters, Abell 2744, MACS-0416, Abell S1063, Abell 370, MACS-0717, and MACS-1149. All of these fields have recently been observed with large allocations of Directors’ Discretionary Time with the Hubble and Spitzer telescopes, covering 0.4\\lt λ \\lt 1.6 μ {{m}} and 3.6-4.5 μ {{m}}, respectively. VLT/HAWK-I integrations of the first four fields reach 5σ limiting depths of {K}s˜ 26.0 (AB, point sources) and have excellent image quality (FWHM ˜ 0.″4). The MACS-0717 and MACS-1149 fields are observable from the northern hemisphere, and shorter Keck/MOSFIRE integrations on those fields reach limiting depths of K s = 25.5 and 25.1, with a seeing FWHM of ˜ 0.″4 and 0\\buildrel{\\prime\\prime}\\over{.} 5. In all cases the K s -band mosaics cover the primary cluster and parallel HST/ACS+WFC3 fields. The total area of the K s -band coverage is 490 arcmin2. The K s -band at 2.2 μ {{m}} crucially fills the gap between the reddest HST filter (1.6 μ {{m}} ˜ H band) and the IRAC 3.6 μ {{m}} passband. While reaching the full depths of the space-based imaging is not currently feasible from the ground, the deep K s -band images provide important constraints on both the redshifts and the stellar population properties of galaxies extending well below the characteristic stellar mass across most of the age of the universe, down to and including the redshifts of the targeted galaxy clusters (z≲ 0.5). Reduced, aligned mosaics of all six survey fields are provided.

  16. A series of shocks and edges in Abell 2219

    DOE PAGES

    Canning, R. E. A.; Allen, S. W.; Applegate, D. E.; ...

    2016-09-22

    Here, we present deep, 170 ks, Chandra X-ray observations of Abell 2219 (z = 0.23), one of the hottest and most X-ray luminous clusters known, and which is experiencing a major merger event. We discover a ‘horseshoe’ of high-temperature gas surrounding the ram-pressure-stripped, bright, hot, X-ray cores. We confirm an X-ray shock front located north-west of the X-ray centroid and along the projected merger axis. We also find a second shock front to the south-east of the X-ray centroid making this only the second cluster where both the shock and reverse shock are confirmed with X-ray temperature measurements. We alsomore » present evidence for a possible sloshing cold front in the ‘remnant tail’ of one of the sub-cluster cores. The cold front and north-west shock front geometrically bound the radio halo and appear to be directly influencing the radio properties of the cluster.« less

  17. Formation of dysprosium carbide on the graphite (0001) surface

    DOE PAGES

    Lii-Rosales, Ann; Zhou, Yinghui; Wallingford, Mark; ...

    2017-07-12

    When using scanning tunneling microscopy, we characterize a surface carbide that forms such that Dy is deposited on the basal plane of graphite. In order to form carbide islands on terraces, Dy is first deposited at 650–800 K, which forms large metallic islands. Upon annealing at 1000 K, these clusters convert to carbide. Deposition directly at 1000 K is ineffective because nucleation on terraces is inhibited. Reaction is signaled by the fact that each carbide cluster is partially or totally surrounded by an etch pit. The etch pit is one carbon layer deep for most carbide clusters. Carbide clusters aremore » also identifiable by striations on their surfaces. Based on mass balance, and assuming that only the surface layer of carbon is involved in the reaction, the carbide has stoichiometry D y 2 C . This is Dy-rich compared with the most common bulk carbide Dy C 2 , which may reflect limited surface carbon transport to the carbide.« less

  18. Origin and evolution of the Perm Anomaly

    NASA Astrophysics Data System (ADS)

    Flament, N. E.; Williams, S.; Müller, D.; Gurnis, M.; Bower, D. J.

    2016-12-01

    Earth's lower mantle is characterized by two large-low-shear velocity provinces (LLSVPs, 15000 km in diameter, 500-1000 km high) located under Africa and the Pacific Ocean. In addition, a single, much smaller ( 1000 km in diameter, 500 km high) deep mantle structure named the "Perm Anomaly" was recently identified through the analysis of seismic tomography models. This discovery challenges current reconstructions of the evolution of the plate-mantle system that invoke plumes rising from the edges of the two LLSVPs, assumed spatially fixed and non-deforming in time. Here, we present mantle flow models constrained by tectonic reconstructions that reproduce the present-day structure of the lower mantle, and show a Perm-like anomaly. In the dynamic models, spanning 230 Myr, subducting slabs deform an initially uniform basal layer containing 2% of the volume of the mantle. Basal density, convective vigour, mantle viscosity, absolute plate motions, and relative plate motions are varied in a series of model cases. We use cluster analysis to classify equally-spaced points on Earth's surface into two groups with similar variations in present-day temperature between 1000-2800 km depth, for each model case. The procedure reveals a high-temperature cluster and a low-temperature cluster with respect to ambient mantle temperature below 2400 km depth. The spatial extent of the high-temperature cluster is in first-order agreement with the outlines of the LLSVPs and of the Perm Anomaly revealed by a similar cluster analysis of seven tomography models. Model success is quantified by computing the accuracy (between 0.56 and 0.76) of the temperature clusters in predicting the low-velocity cluster obtained from tomography, and qualified by the occurrence of a separate Perm-like anomaly. The anomaly formed in isolation prior to 150 Ma within a long-lived subduction network 22000 km in circumference composed of the Mongol-Okhotsk subduction along Eurasia to the west, northern Tethys subduction to the south, and east Asia subduction to the east, then migrated 2500 km westward at an average rate of 1.7 cm/yr, indicating a greater mobility of deep mantle structures than previously recognized. We infer that the mobile Perm Anomaly could be linked to the Emeishan volcanics, in contrast to the previously proposed Siberian Traps.

  19. On the assessment of the nature of open star clusters and the determination of their basic parameters with limited data

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; Baume, Gustavo; Seleznev, Anton F.; Costa, Edgardo

    2017-07-01

    Our knowledge of stellar evolution and of the structure and chemical evolution of the Galactic disk largely builds on the study of open star clusters. Because of their crucial role in these relevant topics, large homogeneous catalogues of open cluster parameters are highly desirable. Although efforts have been made to develop automatic tools to analyse large numbers of clusters, the results obtained so far vary from study to study, and sometimes are very contradictory when compared to dedicated studies of individual clusters. In this work we highlight the common causes of these discrepancies for some open clusters, and show that at present dedicated studies yield a much better assessment of the nature of star clusters, even in the absence of ideal data-sets. We make use of deep, wide-field, multi-colour photometry to discuss the nature of six strategically selected open star clusters: Trumpler 22, Lynga 6, Hogg 19, Hogg 21, Pismis 10 and Pismis 14. We have precisely derived their basic parameters by means of a combination of star counts and photometric diagrams. Trumpler 22 and Lynga 6 are included in our study because they are widely known, and thus provided a check of our data and methodology. The remaining four clusters are very poorly known, and their available parameters have been obtained using automatic tools only. Our results are in some cases in severe disagreement with those from automatic surveys.

  20. Clustering methods for the optimization of atomic cluster structure

    NASA Astrophysics Data System (ADS)

    Bagattini, Francesco; Schoen, Fabio; Tigli, Luca

    2018-04-01

    In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.

  1. VizieR Online Data Catalog: Star clusters distances and extinctions (Buckner+, 2013)

    NASA Astrophysics Data System (ADS)

    Buckner, A. S. M.; Froebrich, D.

    2014-10-01

    Determining star cluster distances is essential to analyse their properties and distribution in the Galaxy. In particular, it is desirable to have a reliable, purely photometric distance estimation method for large samples of newly discovered cluster candidates e.g. from the Two Micron All Sky Survey, the UK Infrared Deep Sky Survey Galactic Plane Survey and VVV. Here, we establish an automatic method to estimate distances and reddening from near-infrared photometry alone, without the use of isochrone fitting. We employ a decontamination procedure of JHK photometry to determine the density of stars foreground to clusters and a galactic model to estimate distances. We then calibrate the method using clusters with known properties. This allows us to establish distance estimates with better than 40 percent accuracy. We apply our method to determine the extinction and distance values to 378 known open clusters and 397 cluster candidates from the list of Froebrich, Scholz & Raftery (2007MNRAS.374..399F, Cat. J/MNRAS/374/399). We find that the sample is biased towards clusters of a distance of approximately 3kpc, with typical distances between 2 and 6kpc. Using the cluster distances and extinction values, we investigate how the average extinction per kiloparsec distance changes as a function of the Galactic longitude. We find a systematic dependence that can be approximated by AH(l)[mag/kpc]=0.10+0.001x|l-180°|/° for regions more than 60° from the Galactic Centre. (1 data file).

  2. OPTICAL COLORS OF INTRACLUSTER LIGHT IN THE VIRGO CLUSTER CORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudick, Craig S.; Mihos, J. Christopher; Harding, Paul

    2010-09-01

    We continue our deep optical imaging survey of the Virgo cluster using the CWRU Burrell Schmidt telescope by presenting B-band surface photometry of the core of the Virgo cluster in order to study the cluster's intracluster light (ICL). We find ICL features down to {mu}{sub B} {approx}29 mag arcsec{sup -2}, confirming the results of Mihos et al., who saw a vast web of low surface brightness streams, arcs, plumes, and diffuse light in the Virgo cluster core using V-band imaging. By combining these two data sets, we are able to measure the optical colors of many of the cluster's lowmore » surface brightness features. While much of our imaging area is contaminated by galactic cirrus, the cluster core near the cD galaxy, M87, is unobscured. We trace the color profile of M87 out to over 2000'', and find a blueing trend with radius, continuing out to the largest radii. Moreover, we have measured the colors of several ICL features which extend beyond M87's outermost reaches and find that they have similar colors to the M87's halo itself, B - V {approx}0.8. The common colors of these features suggest that the extended outer envelopes of cD galaxies, such as M87, may be formed from similar streams, created by tidal interactions within the cluster, that have since dissolved into a smooth background in the cluster potential.« less

  3. A Magnified View of the Epoch of Reionization with the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Livermore, Rachael C.; Finkelstein, Steven L.; Lotz, Jennifer M.

    2017-06-01

    The Hubble Frontier Fields program has obtained deep optical and near-infrared Hubble Space Telescope imaging of six galaxy clusters and associated parallel fields. The depth of the imaging (m_AB ~ 29) means we can identify faint galaxies at z >6, and those in the cluster fields also benefit from magnification due to strong gravitational lensing. Using wavelet decomposition to subtract the foreground cluster galaxies, we can reach intrinsic absolute magnitudes of M_UV ~ -12.5 at z ~ 6. Here, we present the UV luminosity functions at 6

  4. New VVV Survey Globular Cluster Candidates in the Milky Way Bulge

    NASA Astrophysics Data System (ADS)

    Minniti, Dante; Geisler, Douglas; Alonso-García, Javier; Palma, Tali; Beamín, Juan Carlos; Borissova, Jura; Catelan, Marcio; Clariá, Juan J.; Cohen, Roger E.; Contreras Ramos, Rodrigo; Dias, Bruno; Fernández-Trincado, Jose G.; Gómez, Matías; Hempel, Maren; Ivanov, Valentin D.; Kurtev, Radostin; Lucas, Phillip W.; Moni-Bidin, Christian; Pullen, Joyce; Ramírez Alegría, Sebastian; Saito, Roberto K.; Valenti, Elena

    2017-11-01

    It is likely that a number of Galactic globular clusters remain to be discovered, especially toward the Galactic bulge. High stellar density combined with high and differential interstellar reddening are the two major problems for finding globular clusters located toward the bulge. We use the deep near-IR photometry of the VISTA Variables in the Vía Láctea (VVV) Survey to search for globular clusters projected toward the Galactic bulge, and hereby report the discovery of 22 new candidate globular clusters. These objects, detected as high density regions in our maps of bulge red giants, are confirmed as globular cluster candidates by their color-magnitude diagrams. We provide their coordinates as well as their near-IR color-magnitude diagrams, from which some basic parameters are derived, such as reddenings and heliocentric distances. The color-magnitude diagrams reveal well defined red giant branches in all cases, often including a prominent red clump. The new globular cluster candidates exhibit a variety of extinctions (0.06 < A Ks < 2.77) and distances (5.3 < D < 9.5 kpc). We also classify the globular cluster candidates into 10 metal-poor and 12 metal-rich clusters, based on the comparison of their color-magnitude diagrams with those of known globular clusters also observed by the VVV Survey. Finally, we argue that the census for Galactic globular clusters still remains incomplete, and that many more candidate globular clusters (particularly the low luminosity ones) await to be found and studied in detail in the central regions of the Milky Way. Based on observations taken within the ESO programs 179.B-2002 and 298.D-5048.

  5. Analysis of Tropical Cyclone Tracks in the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Patwardhan, A.; Paliwal, M.; Mohapatra, M.

    2011-12-01

    Cyclones are regarded as one of the most dangerous meteorological phenomena of the tropical region. The probability of landfall of a tropical cyclone depends on its movement (trajectory). Analysis of trajectories of tropical cyclones could be useful for identifying potentially predictable characteristics. There is long history of analysis of tropical cyclones tracks. A common approach is using different clustering techniques to group the cyclone tracks on the basis of certain characteristics. Various clustering method have been used to study the tropical cyclones in different ocean basins like western North Pacific ocean (Elsner and Liu, 2003; Camargo et al., 2007), North Atlantic Ocean (Elsner, 2003; Gaffney et al. 2007; Nakamura et al., 2009). In this study, tropical cyclone tracks in the North Indian Ocean basin, for the period 1961-2010 have been analyzed and grouped into clusters based on their spatial characteristics. A tropical cyclone trajectory is approximated as an open curve and described by its first two moments. The resulting clusters have different centroid locations and also differently shaped variance ellipses. These track characteristics are then used in the standard clustering algorithms which allow the whole track shape, length, and location to be incorporated into the clustering methodology. The resulting clusters have different genesis locations and trajectory shapes. We have also examined characteristics such as life span, maximum sustained wind speed, landfall, seasonality, many of which are significantly different across the identified clusters. The clustering approach groups cyclones with higher maximum wind speed and longest life span in to one cluster. Another cluster includes short duration cyclonic events that are mostly deep depressions and significant for rainfall over Eastern and Central India. The clustering approach is likely to prove useful for analysis of events of significance with regard to impacts.

  6. The Cosmic Skidmark: witnessing galaxy transformation at z = 0.19

    NASA Astrophysics Data System (ADS)

    Murphy, David N. A.

    2015-02-01

    We present an early-look analysis of the ``Cosmic Skidmark''. Discovered following visual inspection of the Geach, Murphy & Bower (2011) SDSS Stripe 82 cluster catalogue generated by ORCA (an automated cluster algorithm searching for red-sequences; Murphy, Geach & Bower 2012), this z = 0.19 1.4L* galaxy appears to have been caught in the rare act of transformation while accreting onto an estimated 1013-1014 h -1 M⊙-mass galaxy group. SDSS spectroscopy reveals clear signatures of star formation whilst deep optical imaging reveals a pronounced 50 kpc cometary tail. Pending completion of our ALMA Cycle 2 and IFU observations, we show here preliminary analysis of this target.

  7. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.

    PubMed

    Han, Youngmahn; Kim, Dongsup

    2017-12-28

    Computational scanning of peptide candidates that bind to a specific major histocompatibility complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are being actively developed. Recently, machine-learning-based methods have generated successful results by training large amounts of experimental data. However, many machine learning-based methods are generally less sensitive in recognizing locally-clustered interactions, which can synergistically stabilize peptide binding. Deep convolutional neural network (DCNN) is a deep learning method inspired by visual recognition process of animal brain and it is known to be able to capture meaningful local patterns from 2D images. Once the peptide-MHC interactions can be encoded into image-like array(ILA) data, DCNN can be employed to build a predictive model for peptide-MHC binding prediction. In this study, we demonstrated that DCNN is able to not only reliably predict peptide-MHC binding, but also sensitively detect locally-clustered interactions. Nonapeptide-HLA-A and -B binding data were encoded into ILA data. A DCNN, as a pan-specific prediction model, was trained on the ILA data. The DCNN showed higher performance than other prediction tools for the latest benchmark datasets, which consist of 43 datasets for 15 HLA-A alleles and 25 datasets for 10 HLA-B alleles. In particular, the DCNN outperformed other tools for alleles belonging to the HLA-A3 supertype. The F1 scores of the DCNN were 0.86, 0.94, and 0.67 for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01 alleles, respectively, which were significantly higher than those of other tools. We found that the DCNN was able to recognize locally-clustered interactions that could synergistically stabilize peptide binding. We developed ConvMHC, a web server to provide user-friendly web interfaces for peptide-MHC class I binding predictions using the DCNN. ConvMHC web server can be accessible via http://jumong.kaist.ac.kr:8080/convmhc . We developed a novel method for peptide-HLA-I binding predictions using DCNN trained on ILA data that encode peptide binding data and demonstrated the reliable performance of the DCNN in nonapeptide binding predictions through the independent evaluation on the latest IEDB benchmark datasets. Our approaches can be applied to characterize locally-clustered patterns in molecular interactions, such as protein/DNA, protein/RNA, and drug/protein interactions.

  8. Deep eutectic solvents: similia similibus solvuntur?

    PubMed

    Zahn, Stefan

    2017-02-01

    Deep eutectic solvents, mixtures of an organic compound and a salt with a deep eutectic melting point, are promising cheap and eco-friendly alternatives to ionic liquids. Ab initio molecular dynamics simulations of reline, a mixture consisting of urea and choline chloride, reveal that not solely hydrogen bonds allow similar interactions between both constituents. The chloride anion and the oxygen atom of urea also show a similar spatial distribution close to the cationic core of choline due to a similar charge located on both atoms. As a result of multiple similar interactions, clusters migrating together cannot be observed in reline which supports the hypothesis similia similibus solvuntur. In contrast to previous suggestions, the interaction of the hydroxyl group of choline with a hydrogen bond acceptor is overall rigid. Fast hydrogen bond acceptor dynamics is facilitated by the hydrogen atoms in the trans position to the carbonyl group of urea which contributes to the low melting point of reline.

  9. Dynamic triggering of deep earthquakes within a fossil slab

    NASA Astrophysics Data System (ADS)

    Cai, Chen; Wiens, Douglas A.

    2016-09-01

    The 9 November 2009 Mw 7.3 Fiji deep earthquake is the largest event in a region west of the Tonga slab defined by scattered seismicity and velocity anomalies. The main shock rupture was compact, but the aftershocks were distributed along a linear feature at distances of up to 126 km. The aftershocks and some background seismicity define a sharp northern boundary to the zone of outboard earthquakes, extending westward toward the Vitiaz deep earthquake cluster. The northern earthquake lineament is geometrically similar to tectonic reconstructions of the relict Vitiaz subduction zone at 8-10 Ma, suggesting the earthquakes are occurring in the final portion of the slab subducted at the now inactive Vitiaz trench. A Coulomb stress change calculation suggests many of the aftershocks were dynamically triggered. We propose that fossil slabs contain material that is too warm for earthquake nucleation but may be near the critical stress susceptible to dynamic triggering.

  10. Draft genome sequence of the novel strain Pseudomonas sp. 10B238 with potential ability to produce antibiotics from deep-sea sediment.

    PubMed

    Pan, Hua-Qi; Hu, Jiang-Chun

    2015-10-01

    Pseudomonas sp. 10B238 was a putatively novel species of Pseudomonas, isolated from a deep-sea sediment of the South China Sea, which had the genetic potential to produce secondary metabolites related to nonribosomal peptides (NRPs), as well as showed moderate antimicrobial activities. Here we report a high quality draft genome of Pseudomonas sp. 10B238, which comprises 4,933,052bp with the G+C content of 60.23%. A total of 11 potential secondary metabolite biosynthetic gene clusters were predicted, including a NRP for new peptide siderophore. And many anaerobic respiratory terminal enzymes were found for life in deep-sea environments. Our results may provide insights into biosynthetic pathway for antimicrobial bioactive compounds and be helpful to understand the physiological characteristic of this species. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Objective Classification of Radar Profile Types, and Their Relationship to Lightning Occurrence

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis

    2003-01-01

    A cluster analysis technique is used to identify 16 "archetypal" vertical radar profile types from a large, globally representative sample of profiles from the TRMM Precipitation Radar. These include nine convective types (7 of these deep convective) and seven stratiform types (5 of these clearly glaciated). Radar profile classification provides an alternative to conventional deep convective storm metrics, such as 30 dBZ echo height, maximum reflectivity or VIL. As expected, the global frequency of occurrence of deep convective profile types matches satellite-observed total lightning production, including to very small scall local features. Each location's "mix" of profile types provides an objective description of the local convective spectrum, and in turn, is a first step in objectively classifying convective regimes. These classifiers are tested as inputs to a neural network which attempts to predict lightning occurrence based on radar-only storm observations, and performance is compared with networks using traditional radar metrics as inputs.

  12. A detection of wobbling brightest cluster galaxies within massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Harvey, David; Courbin, F.; Kneib, J. P.; McCarthy, Ian G.

    2017-12-01

    A striking signal of dark matter beyond the standard model is the existence of cores in the centre of galaxy clusters. Recent simulations predict that a brightest cluster galaxy (BCG) inside a cored galaxy cluster will exhibit residual wobbling due to previous major mergers, long after the relaxation of the overall cluster. This phenomenon is absent with standard cold dark matter where a cuspy density profile keeps a BCG tightly bound at the centre. We test this hypothesis using cosmological simulations and deep observations of 10 galaxy clusters acting as strong gravitational lenses. Modelling the BCG wobble as a simple harmonic oscillator, we measure the wobble amplitude, Aw, in the BAHAMAS suite of cosmological hydrodynamical simulations, finding an upper limit for the cold dark matter paradigm of Aw < 2 kpc at the 95 per cent confidence limit. We carry out the same test on the data finding a non-zero amplitude of A_w=11.82^{+7.3}_{-3.0} kpc, with the observations dis-favouring Aw = 0 at the 3σ confidence level. This detection of BCG wobbling is evidence for a dark matter core at the heart of galaxy clusters. It also shows that strong lensing models of clusters cannot assume that the BCG is exactly coincident with the large-scale halo. While our small sample of galaxy clusters already indicates a non-zero Aw, with larger surveys, e.g. Euclid, we will be able to not only confirm the effect but also to use it to determine whether or not the wobbling finds its origin in new fundamental physics or astrophysical process.

  13. Galaxy evolution in the densest environments: HST imaging

    NASA Astrophysics Data System (ADS)

    Jorgensen, Inger

    2013-10-01

    We propose to process in a consistent fashion all available HST/ACS and WFC3 imaging of seven rich clusters of galaxies at z=1.2-1.6. The clusters are part of our larger project aimed at constraining models for galaxy evolution in dense environments from observations of stellar populations in rich z=1.2-2 galaxy clusters. The main objective is to establish the star formation {SF} history and structural evolution over this epoch during which large changes in SF rates and galaxy structure are expected to take place in cluster galaxies.The observational data required to meet our main objective are deep HST imaging and high S/N spectroscopy of individual cluster members. The HST imaging already exists for the seven rich clusters at z=1.2-1.6 included in this archive proposal. However, the data have not been consistently processed to derive colors, magnitudes, sizes and morphological parameters for all potential cluster members bright enough to be suitable for spectroscopic observations with 8-m class telescopes. We propose to carry out this processing and make all derived parameters publicly available. We will use the parameters derived from the HST imaging to {1} study the structural evolution of the galaxies, {2} select clusters and galaxies for spectroscopic observations, and {3} use the photometry and spectroscopy together for a unified analysis aimed at the SF history and structural changes. The analysis will also utilize data from the Gemini/HST Cluster Galaxy Project, which covers rich clusters at z=0.2-1.0 and for which we have similar HST imaging and high S/N spectroscopy available.

  14. VizieR Online Data Catalog: Jellyfish galaxy candidates in galaxy clusters (Poggianti+, 2016)

    NASA Astrophysics Data System (ADS)

    Poggianti, B. M.; Fasano, G.; Omizzolo, A.; Gullieuszik, M.; Bettoni, D.; Moretti, A.; Paccagnella, A.; Jaffe, Y. L.; Vulcani, B.; Fritz, J.; Couch, W.; D'Onofrio, M.

    2016-10-01

    WIde-field Nearby Galaxy-cluster Survey (WINGS) is a large survey targeting 76 clusters of galaxies selected on the basis of their X-ray luminosity (Ebeling et al. 1996, Cat. J/MNRAS/281/799; Ebeling et al. 1998, Cat. J/MNRAS/301/881; Ebeling et al. 2000, Cat. J/MNRAS/318/333), covering a wide range in cluster masses (σ=500-1200+km/s, logLX=43.3-45erg/s, Fasano et al. 2006A&A...445..805F). The original WINGS data set consisted of B and V deep photometry of a 34'*34' field of view with the WFC@INT and the WFC@2.2mMPG/ESO (Varela et al. 2009, Cat. J/A+A/497/667), spectroscopic follow-ups with 2dF@AAT and WYFFOS@WHT (Cava et al. 2009, Cat. J/A+A/495/707), plus J and K imaging with WFC@UKIRT (Valentinuzzi et al. 2009, Cat. J/A+A/501/851) and some U-band imaging (Omizzolo et al. 2014, Cat. J/A+A/561/A111). This database is presented in Moretti et al. 2014A&A...564A.138M and has been employed for a number of studies (see https://sites.google.com/site/wingsomegawings/). OmegaCAM-VST observations of WINGS galaxy clusters (OMEGAWINGS) is a recent extention of this project, that quadruples the area covered (1deg2) and allows to reach up to ~2.5 cluster virial radii. OMEGAWINGS is based on two OmegaCAM@VST GTO programs for 46 WINGS clusters: a B and V campaign completed in P93, and an ongoing u-band programme. The B and V data, the data reduction and the photometric catalogs are presented in Gullieuszik et al. 2015 (Cat. J/A+A/581/A41). Spectra are obtained with AAOmega@AAT on the OmegaCAM field. So far, we have secured high quality spectra for ~30 OMEGAWINGS clusters, reaching very high spectroscopic completeness levels for galaxies brighter than V=20 from the cluster cores to their periphery (A. Moretti et al. 2016, in preparation). Galaxies are considered cluster members if they are within 3σ from the cluster redshift. The mean redshift uncertainty, computed from the differences between WINGS and OMEGAWINGS redshift values of repeated objects, is Δz=0.0002. For this paper we consider the 41 OMEGAWINGS clusters with an OmegaCAM B and/or V-band seeing {<=}1.2arcsec, listed in Table1. To complete the search within the WINGS sample, we used the old WINGS images for other 31 clusters not observed with OmegaCAM (Table1). The reference comparison field sample for WINGS and OMEGAWINGS is the Padova Millennium Galaxy and Group Catalog (PM2GC; Calvi et al. 2011, Cat. J/MNRAS/416/727), built from the Millennium Galaxy Catalogue (MGC; Liske et al. 2003, Cat. VII/240), a deep 38deg2 INT B-imaging survey with a highly complete spectroscopic follow-up (96% at B=20, Driver et al. 2005, Cat. VII/240). (3 data files).

  15. Through the Looking GLASS: A JWST Exploration of Galaxy Formation and Evolution from Cosmic Dawn to Present Day

    NASA Astrophysics Data System (ADS)

    Treu, Tommaso; Abramson, L.; Bradac, M.; Brammer, G.; Fontana, A.; Henry, A.; Hoag, A.; Huang, K.; Mason, C.; Morishita, T.; Pentericci, L.; Wang, X.

    2017-11-01

    We propose a carefully designed set of observations of the lensing cluster Abell 2744 to study intrinsically faint magnified galaxies from the epoch of reionization to redshift of 1, demonstrating and characterizing complementary spectroscopic modes with NIRSPEC and NIRISS. The observations are designed to address the questions: 1) when did reionization happen and what were the sources of reionizing photons? 2) How do baryons cycle in and out of galaxies? This dataset with deep spectroscopy on the cluster and deep multiband NIRCAM imaging in parallel will enable a wealth of investigations and will thus be of interest to a broad section of the astronomical community. The dataset will illustrate the power and challenges of: 1) combining rest frame UV and optical NIRSPEC spectroscopy for galaxies at the epoch of reionization, 2) obtaining spatially resolved emission line maps with NIRISS, 3) combining NIRISS and NIRSPEC spectroscopy. Building on our extensive experience with HST slitless spectroscopy and imaging in clusters of galaxies as part of the GLASS, WISP, SURFSUP, and ASTRODEEP projects, we will provide the following science-enabling products to the community: 1)quantitative comparison of spatially resolved (NIRISS) and spectrally resolved (NIRSPEC) spectroscopy, 2) Object based interactive exploration tools for multi-instrument datasets, 3) Interface for easy forced extractionof slitless spectra based on coordinates, 4) UV-optical spectroscopic templates of highredshift galaxies, 5) NIRCAM parallel catalogs and a list of 26 z>=9 dropouts for spectroscopic follow-up in Cycle-2.

  16. NEAR-INFRARED CIRCULAR AND LINEAR POLARIMETRY OF MONOCEROS R2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Jungmi; Tamura, Motohide; Hough, James H.

    We have conducted simultaneous JHK{sub s}-band imaging circular and linear polarimetry of the Monoceros R2 (Mon R2) cluster. We present results from deep and wide near-infrared linear polarimetry of the Mon R2 region. Prominent and extended polarized nebulosities over the Mon R2 field are revisited, and an infrared reflection nebula associated with the Mon R2 cluster and two local reflection nebulae, vdB 67 and vdB 69, is detected. We also present results from deep imaging circular polarimetry in the same region. For the first time, the observations show relatively high degrees of circular polarization (CP) in Mon R2, with asmore » much as approximately 10% in the K{sub s} band. The maximum CP extent of a ring-like nebula around the Mon R2 cluster is approximately 0.60 pc, while that of a western nebula, around vdB 67, is approximately 0.24 pc. The extended size of the CP is larger than those seen in the Orion region around IRc2, while the maximum degree of CP of ∼10% is smaller than those of ∼17% seen in the Orion region. Nonetheless, both the CP size and degree of this region are among the largest in our infrared CP survey of star-forming regions. We have also investigated the time variability of the degree of the polarization of several infrared sources and found possible variations in three sources.« less

  17. Grey matter damage in progressive multiple sclerosis versus amyotrophic lateral sclerosis: a voxel-based morphometry MRI study.

    PubMed

    Tavazzi, Eleonora; Laganà, Maria Marcella; Bergsland, Niels; Tortorella, Paola; Pinardi, Giovanna; Lunetta, Christian; Corbo, Massimo; Rovaris, Marco

    2015-03-01

    Primary progressive multiple sclerosis (PPMS) and amyotrophic lateral sclerosis (ALS) seem to share some clinical and pathological features. MRI studies revealed the presence of grey matter (GM) atrophy in both diseases, but no comparative data are available. The objective was to compare the regional patterns of GM tissue loss in PPMS and ALS with voxel-based morphometry (VBM). Eighteen PPMS patients, 20 ALS patients, and 31 healthy controls (HC) were studied with a 1.5 Tesla scanner. VBM was performed to assess volumetric GM differences with age and sex as covariates. Threshold-free cluster enhancement analysis was used to obtain significant clusters. Group comparisons were tested with family-wise error correction for multiple comparisons (p < 0.05) except for HC versus MND which was tested at a level of p < 0.001 uncorrected and a cluster threshold of 20 contiguous voxels. Compared to HC, ALS patients showed GM tissue reduction in selected frontal and temporal areas, while PPMS patients showed a widespread bilateral GM volume decrease, involving both deep and cortical regions. Compared to ALS, PPMS patients showed tissue volume reductions in both deep and cortical GM areas. This preliminary study confirms that PPMS is characterized by a more diffuse cortical and subcortical GM atrophy than ALS and that, in the latter condition, brain damage is present outside the motor system. These results suggest that PPMS and ALS may share pathological features leading to GM tissue loss.

  18. The Study of Clusters of Galaxies and Large Scale Structures

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Many research projects have been initiated and completed under support of this program. The results are summarized below. The work on the ROSAT Deep Survey has been successfully completed. A number of interesting results have been established within this joint MPE, Cal Tech, JHU, ST ScI, ESO collaboration. First, a very large fraction, 70-80 percent, of the X-ray background has been directly resolved into point sources. We have derived a new log N-log S for X-ray sources and have measured a source density of 970 sources per square degree at a limiting flux level. Care was taken in these studies to accurately model and measure the effects of sources confusion. This was possible because of our observing strategy which included both deep PSPC and HRI observations. No evidence of a population of narrow emission line galaxies has been established but some evidence for the evolution of low luminosity AGN (Seyfert galaxies) has been reported. The work on the ROSAT All Sky Survey Northern Cluster Survey has been substantially concluded but the publication of the list has been held up by the need to analyze newly re-calibrated data. This should result in publication over the next year. During the past year we have submitted a paper to the Astrophysical Journal which utilized a sample of clusters originally selected from the ROSAT All-sky survey at redshifts greater than 0.3. This sample was studied with ASCA to determine temperature and luminosity.

  19. Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization.

    PubMed

    Wang, Yanan; Ke, Xiubin; Wu, Liqin; Lu, Yahai

    2009-02-01

    Little information is available on the ecology of ammonia-oxidizing bacteria (AOB) and archaea (AOA) in flooded rice soils. Consequently, a microcosm experiment was conducted to determine the effect of nitrogen fertilizer on the composition of AOB and AOA communities in rice soil by using molecular analyses of ammonia monooxygenase gene (amoA) fragments. Experimental treatments included three levels of N (urea) fertilizer, i.e. 50, 100 and 150 mgNkg(-1) soil. Soil samples were operationally divided into four fractions: surface soil, bulk soil deep layer, rhizosphere and washed root material. NH(4)(+)-N was the dominant form of N in soil porewater and increased with N fertilization. Cloning and sequencing of amoA gene fragments showed that the AOB community in the rice soil consisted of three major groups, i.e. Nitrosomonas communis cluster, Nitrosospira cluster 3a and cluster 3b. The sequences related to Nitrosomonas were predominant. There was a clear effect of N fertilizer and soil depth on AOB community composition based on terminal restriction fragment length polymorphism fingerprinting. Nitrosomonas appeared to be more abundant in the potentially oxic or micro-oxic fractions, including surface soil, rhizosphere and washed root material, than the deep layer of anoxic bulk soil. Furthermore, Nitrosomonas increased relatively in the partially oxic fractions and that of Nitrosospira decreased with the increasing application of N fertilizer. However, AOA community composition remained unchanged according to the denaturing gradient gel electrophoresis analyses.

  20. A Legacy Archive Program Providing Optical/NIR-selected Multiwavelength Catalogs and High-level Science Products of the HST Frontier Fields

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo

    2015-10-01

    We propose to construct public multi-wavelength and value-added catalogs for the HST Frontier Fields (HFF), a multi-cycle imaging program of 6 deep fields centered on strong lensing galaxy clusters and 6 deep blank fields. Whereas the main goal of the HFF is to explore the first billion years of galaxy evolution, this dataset has a unique combination of area and depth that will propel forward our knowledge of galaxy evolution down to and including the foreground cluster redshift (z=0.3-0.5). However, such scientific exploitation requires high-quality, homogeneous, multi-wavelength (from the UV to the mid-infrared) photometric catalogs, supplemented by photometric redshifts, rest-frame colors and luminosities, stellar masses, star-formation rates, and structural parameters. We will use our expertise and existing infrastructure - created for the 3D-HST and CANDELS projects - to build such a data product for the 12 fields of the HFF, using all available imaging data (from HST, Spitzer, and ground-based facilities) as well as all available HST grism data (e.g., GLASS). A broad range of research topics will benefit from such a public database, including but not limited to the faint end of the cluster mass function, the field mass function at z>2, and the build-up of the quiescent population at z>4. In addition, our work will provide an essential basis for follow-up studies and future planning with, for example, ALMA and JWST.

  1. Clustering analysis of high-redshift luminous red galaxies in Stripe 82

    NASA Astrophysics Data System (ADS)

    Nikoloudakis, N.; Shanks, T.; Sawangwit, U.

    2013-03-01

    We present a clustering analysis of luminous red galaxies (LRGs) in Stripe 82 from the Sloan Digital Sky Survey (SDSS). We study the angular two-point autocorrelation function, w(θ), of a selected sample of over 130 000 LRG candidates via colour-cut selections in izK with the K-band coverage coming from UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS). We have used the cross-correlation technique of Newman to establish the redshift distribution of the LRGs. Cross-correlating them with SDSS quasi-stellar objects (QSOs), MegaZ-LRGs and DEEP Extragalactic Evolutionary Probe 2 (DEEP2) galaxies, implies an average redshift of the LRGs to be z ≈ 1 with space density, ng ≈ 3.20 ± 0.16 × 10-4 h3 Mpc-3. For θ ≤ 10 arcmin (corresponding to ≈10 h-1 Mpc), the LRG w(θ) significantly deviates from a conventional single power law as noted by previous clustering studies of highly biased and luminous galaxies. A double power law with a break at rb ≈ 2.4 h-1 Mpc fits the data better, with best-fitting scale length, r0, 1 = 7.63 ± 0.27 h-1 Mpc and slope γ1 = 2.01 ± 0.02 at small scales and r0, 2 = 9.92 ± 0.40 h-1 Mpc and γ2 = 1.64 ± 0.04 at large scales. Due to the flat slope at large scales, we find that a standard Λ cold dark matter (Λ CDM) linear model is accepted only at 2-3σ, with the best-fitting bias factor, b = 2.74 ± 0.07. We also fitted the halo occupation distribution (HOD) models to compare our measurements with the predictions of the dark matter clustering. The effective halo mass of Stripe 82 LRGs is estimated as Meff = 3.3 ± 0.6 × 1013 h-1 M⊙. But at large scales, the current HOD models did not help explain the power excess in the clustering signal. We then compare the w(θ) results to the results of Sawangwit et al. from three samples of photometrically selected LRGs at lower redshifts to measure clustering evolution. We find that a long-lived model may be a poorer fit than at lower redshifts, although this assumes that the Stripe 82 LRGs are luminosity-matched to the AAΩ LRGs. We find stronger evidence for evolution in the form of the z ≈ 1 LRG correlation function with the above flat two-halo slope maintaining to s ≳ 50 h- 1 Mpc. Applying the cross-correlation test of Ross et al., we find little evidence that the result is due to systematics. Otherwise, it may represent evidence for primordial non-Gaussianity in the density perturbations at early times, with flocalNL = 90 ± 30.

  2. WINGS: A WIde-field Nearby Galaxy-cluster Survey. II. Deep optical photometry of 77 nearby clusters

    NASA Astrophysics Data System (ADS)

    Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Moles, M.; Pignatelli, E.; Poggianti, B. M.; Valentinuzzi, T.

    2009-04-01

    Context: This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04 < z < 0.07) located far from the galactic plane (|b|≥ 20°). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. Aims: This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. Methods: We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. Results: We publish deep optical photometric catalogs (90% complete at V ~ 21.7, which translates to ˜ M^*_V+6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of “unknown” classification (~6%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2^m. The star/galaxy classification of the bright objects (V < 20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data with that from deep counts of galaxies and star counts from models of our Galaxy. Both sets turned out to be consistent with our data within ~5% (in the ratio galaxies/total) up to V ~ 24. Finally, we remark that the application of our special procedure to remove large halos improves the photometry of the large galaxies in our sample with respect to the use of blind automatic procedures and increases (~16%) the detection rate of objects projected onto them. Based on observations taken at the Issac Newton Telescope (2.5 m-INT) sited at Roque de los Muchachos (La Palma, Spain), and the MPG/ESO-2.2 m Telescope sited at La Silla (Chile). Appendices are only available in electronic form at http://www.aanda.org Catalog is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/497/667

  3. Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes.

    PubMed

    Dick, Gregory J; Lee, Yifan E; Tebo, Bradley M

    2006-05-01

    Microbial oxidation and precipitation of manganese at deep-sea hydrothermal vents are important oceanic biogeochemical processes, yet nothing is known about the types of microorganisms or mechanisms involved. Here we report isolation of a number of diverse spore-forming Mn(II)-oxidizing Bacillus species from Guaymas Basin, a deep-sea hydrothermal vent environment in the Gulf of California, where rapid microbially mediated Mn(II) oxidation was previously observed. mnxG multicopper oxidase genes involved in Mn(II) oxidation were amplified from all Mn(II)-oxidizing Bacillus spores isolated, suggesting that a copper-mediated mechanism of Mn(II) oxidation could be important at deep-sea hydrothermal vents. Phylogenetic analysis of 16S rRNA and mnxG genes revealed that while many of the deep-sea Mn(II)-oxidizing Bacillus species are very closely related to previously recognized isolates from coastal sediments, other organisms represent novel strains and clusters. The growth and Mn(II) oxidation properties of these Bacillus species suggest that in hydrothermal sediments they are likely present as spores that are active in oxidizing Mn(II) as it emerges from the seafloor.

  4. Structural and electronic properties of U{sub n}O{sub m} (n=1-3,m=1-3n) clusters: A theoretical study using screened hybrid density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yu; Liu, Haitao; Zhang, Ping, E-mail: zhang-ping@iapcm.ac.cn

    The structural and electronic properties of small uranium oxide clusters U{sub n}O{sub m} (n=1-3, m=1-3n) are systematically studied within the screened hybrid density functional theory. It is found that the formation of U–O–U bondings and isolated U–O bonds are energetically more stable than U–U bondings. As a result, no uranium cores are observed. Through fragmentation studies, we find that the U{sub n}O{sub m} clusters with the m/n ratio between 2 and 2.5 are very stable, hinting that UO{sub 2+x} hyperoxides are energetically stable. Electronically, we find that the O-2p states always distribute in the deep energy range, and the U-5fmore » states always distribute at the two sides of the Fermi level. The U-6d states mainly hybridize with the U-5f states in U-rich clusters, while hybridizing with O-2p states in O-rich clusters. Our work is the first one on the screened hybrid density functional theory level studying the atomic and electronic properties of the actinide oxide clusters.« less

  5. Deep and wide photometry of the two open clusters NGC 1245 and NGC 2506: CCD observation and physical properties

    NASA Astrophysics Data System (ADS)

    Lee, S. H.; Kang, Y.-W.; Ann, H. B.

    2012-09-01

    We have conducted VI CCD photometry of the two open clusters NGC 1245 and NGC 2506 using the CFH12K CCD camera. Our photometry covers a sky area of 84 × 82 and 42 × 81 arcmin2 for the two clusters, respectively, and reaches down to V ≈ 23. We derived the physical parameters using detailed theoretical isochrone fittings using χ2 minimization. The derived cluster parameters are E(B - V) = 0.24 ± 0.05 and 0.03 ± 0.04, (V - MV)0 = 12.25 ± 0.12 and 12.47 ± 0.08, age (Gyr) = 1.08 ± 0.09 and 2.31 ± 0.16, and [Fe/H] = -0.08 ± 0.06 and -0.24 ± 0.06, respectively, for NGC 1245 and NGC 2506. We present the luminosity functions of the two clusters, which reach down to MV ≈ 10, and derive mass functions with slopes of Γ = -1.29 for NGC 1245 and Γ = -1.26 for NGC 2506. The slopes are slightly shallower than that of the solar neighbourhood, implying the existence of dynamical evolution that drives the evaporation of the low-mass stars in the clusters.

  6. Mass concentrations associated with extended X-ray sources in the core of the Coma cluster

    NASA Technical Reports Server (NTRS)

    Vikhlinin, A.; Forman, W.; Jones, C.

    1994-01-01

    Using a deep (approx. 20,200 s) ROSAT Position Sensitive Proportional Counter (PSPC) image we have examined the central region of the Coma cluster. Two extended regions of enhanced X-ray emission are found, centered at the positions of the brightest elliptical galaxies in the cluster: NGC 4874 and NGC 4889. Spectral analysis of the sources reveals no evidence of any difference between the spectra of these sources and that of the surrounding cluster emission. We assume that the enhancement in the X-ray surface brightness results from gas density enhancements and also that the underlying mass concentrations lie either at the cluster center or 1 core radius out of the center (420 kpc). With these assumptions, we derive total masses of 1.2 x 10(exp 13) - 1.6 x 10(exp 13), and 0.9 x 10(exp 13) - 1.8 x 10(exp 13) Solar mass within 2 min (80 kpc) of NGC 4874 and NGC 4889, respectively, assuming a Hubble constant H(sub 0) = 50 km/s/Mpc. Corresponding mass-to-light ratios for the galaxies are 30-40 and 25-50 in solar units, increasing at larger radii and approaching the values derived for the entire cluster at distances of more than approximately 150 kpc from the galaxies.

  7. Strain-Level Diversity of Secondary Metabolism in Streptomyces albus

    PubMed Central

    Seipke, Ryan F.

    2015-01-01

    Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty. PMID:25635820

  8. A History of H I Stripping in Virgo: A Phase-space View of VIVA Galaxies

    NASA Astrophysics Data System (ADS)

    Yoon, Hyein; Chung, Aeree; Smith, Rory; Jaffé, Yara L.

    2017-04-01

    We investigate the orbital histories of Virgo galaxies at various stages of H I gas stripping. In particular, we compare the location of galaxies with different H I morphology in phase space. This method is a great tool for tracing the gas stripping histories of galaxies as they fall into the cluster. Most galaxies at the early stage of H I stripping are found in the first infall region of Virgo, while galaxies undergoing active H I stripping mostly appear to be falling in or moving out near the cluster core for the first time. Galaxies with severely stripped, yet symmetric, H I disks are found in one of two locations. Some are deep inside the cluster, but others are found in the cluster outskirts with low orbital velocities. We suggest that the latter group of galaxies belong to a “backsplash” population. These present the clearest candidates for backsplashed galaxies observationally identified to date. We further investigate the distribution of a large sample of H I-detected galaxies toward Virgo in phase space, confirming that most galaxies are stripped of their gas as they settle into the gravitational potential of the cluster. In addition, we discuss the impact of tidal interactions between galaxies and group preprocessing on the H I properties of the cluster galaxies, and link the associated star formation evolution to the stripping sequence of cluster galaxies.

  9. Applying Machine Learning to Star Cluster Classification

    NASA Astrophysics Data System (ADS)

    Fedorenko, Kristina; Grasha, Kathryn; Calzetti, Daniela; Mahadevan, Sridhar

    2016-01-01

    Catalogs describing populations of star clusters are essential in investigating a range of important issues, from star formation to galaxy evolution. Star cluster catalogs are typically created in a two-step process: in the first step, a catalog of sources is automatically produced; in the second step, each of the extracted sources is visually inspected by 3-to-5 human classifiers and assigned a category. Classification by humans is labor-intensive and time consuming, thus it creates a bottleneck, and substantially slows down progress in star cluster research.We seek to automate the process of labeling star clusters (the second step) through applying supervised machine learning techniques. This will provide a fast, objective, and reproducible classification. Our data is HST (WFC3 and ACS) images of galaxies in the distance range of 3.5-12 Mpc, with a few thousand star clusters already classified by humans as a part of the LEGUS (Legacy ExtraGalactic UV Survey) project. The classification is based on 4 labels (Class 1 - symmetric, compact cluster; Class 2 - concentrated object with some degree of asymmetry; Class 3 - multiple peak system, diffuse; and Class 4 - spurious detection). We start by looking at basic machine learning methods such as decision trees. We then proceed to evaluate performance of more advanced techniques, focusing on convolutional neural networks and other Deep Learning methods. We analyze the results, and suggest several directions for further improvement.

  10. Intracluster light at the Frontier - II. The Frontier Fields Clusters

    NASA Astrophysics Data System (ADS)

    Montes, Mireia; Trujillo, Ignacio

    2018-02-01

    Multiwavelength deep observations are a key tool to understand the origin of the diffuse light in clusters of galaxies: the intracluster light (ICL). For this reason, we take advantage of the Hubble Frontier Fields (HFF) survey to investigate the properties of the stellar populations of the ICL of its six massive intermediate redshift (0.3 < z < 0.6) clusters. We carry on this analysis down to a radial distance of ˜120 kpc from the brightest cluster galaxy. We found that the average metallicity of the ICL is [Fe/H]ICL ˜ -0.5, compatible with the value of the outskirts of the Milky Way. The mean stellar ages of the ICL are between 2 and 6 Gyr younger than the most massive galaxies of the clusters. Those results suggest that the ICL of these massive (>1015 M⊙) clusters is formed by the stripping of MW-like objects that have been accreted at z < 1, in agreement with current simulations. We do not find any significant increase in the fraction of light of the ICL with cosmic time, although the redshift range explored is narrow to derive any strong conclusion. When exploring the slope of the stellar mass density profile, we found that the ICL of the HFF clusters follows the shape of their underlying dark matter haloes, in agreement with the idea that the ICL is the result of the stripping of galaxies at recent times.

  11. Evaluating tests of virialization and substructure using galaxy clusters in the ORELSE survey

    NASA Astrophysics Data System (ADS)

    Rumbaugh, N.; Lemaux, B. C.; Tomczak, A. R.; Shen, L.; Pelliccia, D.; Lubin, L. M.; Kocevski, D. D.; Wu, P.-F.; Gal, R. R.; Mei, S.; Fassnacht, C. D.; Squires, G. K.

    2018-07-01

    We evaluated the effectiveness of different indicators of cluster virialization using 12 large-scale structures in the Observations of Redshift Evolution in Large-Scale Environments survey spanning from 0.7

  12. Neutral hydrogen gas, past and future star formation in galaxies in and around the ‘Sausage’ merging galaxy cluster

    DOE PAGES

    Stroe, Andra; Oosterloo, Tom; Rottgering, Huub J. A.; ...

    2015-07-25

    CIZA J2242.8+5301 (z = 0.188, nicknamed ‘Sausage’) is an extremely massive (M 200 ~2.0 × 10 15 M ⊙), merging cluster with shock waves towards its outskirts, which was found to host numerous emission line galaxies. We performed extremely deep Westerbork Synthesis Radio Telescope H i observations of the ‘Sausage’ cluster to investigate the effect of the merger and the shocks on the gas reservoirs fuelling present and future star formation (SF) in cluster members. By using spectral stacking, we find that the emission line galaxies in the ‘Sausage’ cluster have, on average, as much H i gas as fieldmore » galaxies (when accounting for the fact cluster galaxies are more massive than the field galaxies), contrary to previous studies. Since the cluster galaxies are more massive than the field spirals, they may have been able to retain their gas during the cluster merger. The large H i reservoirs are expected to be consumed within ~0.75–1.0 Gyr by the vigorous SF and active galactic nuclei activity and/or driven out by the outflows we observe. We find that the star formation rate (SFR) in a large fraction of H α emission line cluster galaxies correlates well with the radio broad-band emission, tracing supernova remnant emission. This suggests that the cluster galaxies, all located in post-shock regions, may have been undergoing sustained SFR for at least 100 Myr. In conclusion, this fully supports the interpretation proposed by Stroe et al. and Sobral et al. that gas-rich cluster galaxies have been triggered to form stars by the passage of the shock.« less

  13. The Next Generation Virgo Cluster Survey. XX. RedGOLD Background Galaxy Cluster Detections

    NASA Astrophysics Data System (ADS)

    Licitra, Rossella; Mei, Simona; Raichoor, Anand; Erben, Thomas; Hildebrandt, Hendrik; Muñoz, Roberto P.; Van Waerbeke, Ludovic; Côté, Patrick; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Huertas-Company, Marc; Lançon, Ariane; Parroni, Carolina; Puzia, Thomas H.

    2016-09-01

    We build a background cluster candidate catalog from the Next Generation Virgo Cluster Survey (NGVS) using our detection algorithm RedGOLD. The NGVS covers 104 deg2 of the Virgo cluster in the {u}* ,g,r,I,z-bandpasses to a depth of g ˜ 25.7 mag (5σ). Part of the survey was not covered or has shallow observations in the r band. We build two cluster catalogs: one using all bandpasses, for the fields with deep r-band observations (˜20 deg2), and the other using four bandpasses ({u}* ,g,I,z) for the entire NGVS area. Based on our previous Canada-France-Hawaii Telescope Legacy Survey W1 studies, we estimate that both of our catalogs are ˜100% (˜70%) complete and ˜80% pure, at z ≤ 0.6 (z ≲ 1), for galaxy clusters with masses of M ≳ 1014 M ⊙. We show that when using four bandpasses, though the photometric redshift accuracy is lower, RedGOLD detects massive galaxy clusters up to z ˜ 1 with completeness and purity similar to the five-band case. This is achieved when taking into account the bias in the richness estimation, which is ˜40% lower at 0.5 ≤ z < 0.6 and ˜20% higher at 0.6 < z < 0.8, with respect to the five-band case. RedGOLD recovers all the X-ray clusters in the area with mass M 500 > 1.4 × 1014 M ⊙ and 0.08 < z < 0.5. Because of our different cluster richness limits and the NGVS depth, our catalogs reach lower masses than the published redMaPPer cluster catalog over the area, and we recover ˜90%-100% of its detections.

  14. Object-Oriented Image Clustering Method Using UAS Photogrammetric Imagery

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Larson, A.; Schultz-Fellenz, E. S.; Sussman, A. J.; Swanson, E.; Coppersmith, R.

    2016-12-01

    Unmanned Aerial Systems (UAS) have been used widely as an imaging modality to obtain remotely sensed multi-band surface imagery, and are growing in popularity due to their efficiency, ease of use, and affordability. Los Alamos National Laboratory (LANL) has employed the use of UAS for geologic site characterization and change detection studies at a variety of field sites. The deployed UAS equipped with a standard visible band camera to collect imagery datasets. Based on the imagery collected, we use deep sparse algorithmic processing to detect and discriminate subtle topographic features created or impacted by subsurface activities. In this work, we develop an object-oriented remote sensing imagery clustering method for land cover classification. To improve the clustering and segmentation accuracy, instead of using conventional pixel-based clustering methods, we integrate the spatial information from neighboring regions to create super-pixels to avoid salt-and-pepper noise and subsequent over-segmentation. To further improve robustness of our clustering method, we also incorporate a custom digital elevation model (DEM) dataset generated using a structure-from-motion (SfM) algorithm together with the red, green, and blue (RGB) band data for clustering. In particular, we first employ an agglomerative clustering to create an initial segmentation map, from where every object is treated as a single (new) pixel. Based on the new pixels obtained, we generate new features to implement another level of clustering. We employ our clustering method to the RGB+DEM datasets collected at the field site. Through binary clustering and multi-object clustering tests, we verify that our method can accurately separate vegetation from non-vegetation regions, and are also able to differentiate object features on the surface.

  15. Evaluating Tests of Virialization and Substructure Using Galaxy Clusters in the ORELSE Survey

    NASA Astrophysics Data System (ADS)

    Rumbaugh, N.; Lemaux, B. C.; Tomczak, A. R.; Shen, L.; Pelliccia, D.; Lubin, L. M.; Kocevski, D. D.; Wu, P.-F.; Gal, R. R.; Mei, S.; Fassnacht, C. D.; Squires, G. K.

    2018-05-01

    We evaluated the effectiveness of different indicators of cluster virialization using 12 large-scale structures in the ORELSE survey spanning from 0.7 < z < 1.3. We located diffuse X-ray emission from 16 galaxy clusters using Chandra observations. We studied the properties of these clusters and their members, using Chandra data in conjunction with optical and near-IR imaging and spectroscopy. We measured X-ray luminosities and gas temperatures of each cluster, as well as velocity dispersions of their member galaxies. We compared these results to scaling relations derived from virialized clusters, finding significant offsets of up to 3-4σ for some clusters, which could indicate they are disturbed or still forming. We explored if other properties of the clusters correlated with these offsets by performing a set of tests of virialization and substructure on our sample, including Dressler-Schectman tests, power ratios, analyses of the velocity distributions of galaxy populations, and centroiding differences. For comparison to a wide range of studies, we used two sets of tests: ones that did and did not use spectral energy distribution fitting to obtain rest-frame colours, stellar masses, and photometric redshifts of galaxies. Our results indicated that the difference between the stellar mass or light mean-weighted center and the X-ray center, as well as the projected offset of the most-massive/brightest cluster galaxy from other cluster centroids had the strongest correlations with scaling relation offsets, implying they are the most robust indicators of cluster virialization and can be used for this purpose when X-ray data is insufficiently deep for reliable LX and TX measurements.

  16. Radiation hydrodynamics of super star cluster formation

    NASA Astrophysics Data System (ADS)

    Tsang, Benny Tsz Ho; Milos Milosavljevic

    2018-01-01

    Throughout the history of the Universe, the nuclei of super star clusters represent the most active sites for star formation. The high densities of massive stars within the clusters produce intense radiation that imparts both energy and momentum on the surrounding star-forming gas. Theoretical claims based on idealized geometries have claimed the dominant role of radiation pressure in controlling the star formation activity within the clusters. In order for cluster formation simulations to be reliable, numerical schemes have to be able to model accurately the radiation flows through the gas clumps at the cluster nuclei with high density contrasts. With a hybrid Monte Carlo radiation transport module we developed, we performed 3D radiation hydrodynamical simulations of super star cluster formation in turbulent clouds. Furthermore, our Monte Carlo radiation treatment provides a native capability to produce synthetic observations, which allows us to predict observational indicators and to inform future observations. We found that radiation pressure has definite, but minor effects on limiting the gas supply for star formation, and the final mass of the most massive cluster is about one million solar masses. The ineffective forcing was due to the density variations inside the clusters, i.e. radiation takes the paths of low densities and avoids forcing on dense clumps. Compared to a radiation-free control run, we further found that the presence of radiation amplifies the density variations. The core of the resulting cluster has a high stellar density, about the threshold required for stellar collisions and merging. The very massive star that form from the stellar merging could continue to gain mass from the surrounding gas reservoir that is gravitationally confined by the deep potential of the cluster, seeding the potential formation of a massive black hole.

  17. Cosmic variance of the galaxy cluster weak lensing signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruen, D.; Seitz, S.; Becker, M. R.

    Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M 200m ≈ 10 14…10 15h –1M ⊙, z = 0.25…0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate massmore » uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ≈20 per cent uncertainty from cosmic variance alone at M 200m ≈ 10 15h –1M ⊙ and z = 0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). Furthermore, these biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.« less

  18. Discovery of a Giant, 200,000 Light-year Long Wave Rolling Through the Perseus Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Walker, Stephen; Hlavacek-Larrondo, Julie; Gendon-Marsolais, Marie-Lou; Fabian, Andy; Intema, Huib; Sanders, Jeremy

    2018-01-01

    Deep observations of nearby galaxy clusters with Chandra have revealed concave 'bay' structures in a number of clusters (Perseus, Centaurus and Abell 1795), which have similar X-ray and radio properties. These bays have all the properties of cold fronts brought about by minor mergers causing the cluster gas to slosh around in the gravitational potential. At these cold fronts the temperature rises and density falls sharply. Unusually, in the case of the 'bays' these cold fronts are concave rather than convex. By comparing to simulations of gas sloshing, we find that the bay in the Perseus cluster bears a striking resemblance in its size, location and thermal structure, to a giant (≈50 kpc) wave resulting from Kelvin-Helmholtz instabilities. Such instabilities are commonly seen on far smaller scales in nature, from billow clouds in the Earth's atmosphere, to structures in the cloud belts of gas giant planets. Here we are witnessing this phenomenon on the largest scale ever seen, twice the size of the Milky Way galaxy. The morphology of this structure seen in Perseus can be compared to simulations to put constraints on the initial magnetic pressure throughout the overall cluster before the sloshing occurs. Such Kelvin-Helmholtz features in galaxy clusters have long been predicted by simulations, but it is only now that they have finally been observed, opening up an important new way to probe the physics of the intracluster medium, which contains the majority of the baryonic matter in clusters.

  19. Cosmic variance of the galaxy cluster weak lensing signal

    DOE PAGES

    Gruen, D.; Seitz, S.; Becker, M. R.; ...

    2015-04-13

    Intrinsic variations of the projected density profiles of clusters of galaxies at fixed mass are a source of uncertainty for cluster weak lensing. We present a semi-analytical model to account for this effect, based on a combination of variations in halo concentration, ellipticity and orientation, and the presence of correlated haloes. We calibrate the parameters of our model at the 10 per cent level to match the empirical cosmic variance of cluster profiles at M 200m ≈ 10 14…10 15h –1M ⊙, z = 0.25…0.5 in a cosmological simulation. We show that weak lensing measurements of clusters significantly underestimate massmore » uncertainties if intrinsic profile variations are ignored, and that our model can be used to provide correct mass likelihoods. Effects on the achievable accuracy of weak lensing cluster mass measurements are particularly strong for the most massive clusters and deep observations (with ≈20 per cent uncertainty from cosmic variance alone at M 200m ≈ 10 15h –1M ⊙ and z = 0.25), but significant also under typical ground-based conditions. We show that neglecting intrinsic profile variations leads to biases in the mass-observable relation constrained with weak lensing, both for intrinsic scatter and overall scale (the latter at the 15 per cent level). Furthermore, these biases are in excess of the statistical errors of upcoming surveys and can be avoided if the cosmic variance of cluster profiles is accounted for.« less

  20. Quark cluster model for deep-inelastic lepton-deuteron scattering

    NASA Astrophysics Data System (ADS)

    Yen, G.; Vary, J. P.; Harindranath, A.; Pirner, H. J.

    1990-10-01

    We evaluate the contribution of quasifree nucleon knockout and of inelastic lepton-nucleon scattering in inclusive electron-deuteron reactions at large momentum transfer. We examine the degree of quantitative agreement with deuteron wave functions from the Reid soft-core and Bonn realistic nucleon-nucleon interactions. For the range of data available there is strong sensitivity to the tensor correlations which are distinctively different in these two deuteron models. At this stage of the analyses the Reid soft-core wave function provides a reasonable description of the data while the Bonn wave function does not. We then include a six-quark cluster component whose relative contribution is based on an overlap criterion and obtain a good description of all the data with both interactions. The critical separation at which overlap occurs (formation of six-quark clusters) is taken to be 1.0 fm and the six-quark cluster probability is 4.7% for Reid and 5.4% for Bonn. As a consequence the quark cluster model with either Reid or Bonn wave function describe the SLAC inclusive electron-deuteron scattering data equally well. We then show how additional data would be decisive in resolving which model is ultimately more correct.

  1. CHEERS: Chemical enrichment of clusters of galaxies measured using a large XMM-Newton sample

    NASA Astrophysics Data System (ADS)

    de Plaa, J.; Mernier, F.; Kaastra, J.; Pinto, C.

    2017-10-01

    The Chemical Enrichment RGS Sample (CHEERS) is aimed to be a sample of the most optimal clusters of galaxies for observation with the Reflection Grating Spectrometer (RGS) aboard XMM-Newton. It consists of 5 Ms of deep cluster observations of 44 objects obtained through a very large program and archival observations. The main goal is to measure chemical abundances in the hot Intra-Cluster Medium (ICM) of clusters to provide constraints on chemical evolution models. Especially the origin and evolution of type Ia supernovae is still poorly known and X-ray observations could contribute to constrain models regarding the SNIa explosion mechanism. Due to the high quality of the data, the uncertainties on the abundances are dominated by systematic effects. By carefully treating each systematic effect, we increase the accuracy or estimate the remaining uncertainty on the measurement. The resulting abundances are then compared to supernova models. In addition, also radial abundance profiles are derived. In the talk, we present an overview of the results that the CHEERS collaboration obtained based on the CHEERS data. We focus on the abundance measurements. The other topics range from turbulence measurements through line broadening to cool gas in groups.

  2. Radial Profile of the 3.5 kev Line Out to R200 in the Perseus Cluster

    NASA Technical Reports Server (NTRS)

    Franse, Jeroen; Bulbul, Esra; Foster, Adam; Boyarsky, Alexey; Markevitch, Maxim; Bautz, Mark; Lakubovskyi, Dmytro; Loewenstein, Michael; McDonald, Michael; Miller, Eric; hide

    2016-01-01

    The recent discovery of the unidentified emission line at 3.5 keV in galaxies and clusters has attracted great interest from the community. As the origin of the line remains uncertain, we study the surface brightness distribution of the line in the Perseus cluster since that information can be used to identify its origin. We examine the flux distribution of the 3.5 keV line in the deep Suzaku observations of the Perseus cluster in detail. The 3.5 keV line is observed in three concentric annuli in the central observations, although the observations of the outskirts of the cluster did not reveal such a signal. We establish that these detections and the upper limits from the non-detections are consistent with a dark matter decay origin. However, absence of positive detection in the outskirts is also consistent with some unknown astrophysical origin of the line in the dense gas of the Perseus core, as well as with a dark matter origin with a steeper dependence on mass than the dark matter decay. We also comment on several recently published analyses of the 3.5 keV line.

  3. Multidimensional analysis of peak pain symptoms and experiences.

    PubMed

    Kinsman, R; Dirks, J F; Wunder, J; Carbaugh, R; Stieg, R

    1989-01-01

    Peak pain symptoms and experiences were explored within a group of 243 intractable pain patients seen consecutively at a pain clinic. Using a 5-point scale, patients rated the frequency with which 99 symptom adjectives occurred when their pain was at its worst. Key cluster analysis identified 11 reliable, conceptually clear symptom clusters: Four affective symptom categories, Angry Depression, Diminished Drive, Intropunitive Depression and Anxiety, describing emotional states concomitant with peak pain; two somatic symptom categories, Ecto-Pain and Endo-Pain, describing surface and deep bodily pain, respectively; and five additional symptom categories including Cognitive Dysfunction, Sleep Disturbance, Fatigue, Withdrawal and Disequilibrium. Among the affective symptom clusters, symptoms of Angry Depression were reported to occur frequently by 32% of the patients while only 11% reported the frequent occurrence of Intropunitive Depression. For the somatic symptom clusters, 25 and 52% reported the frequent occurrence of Ecto-Pain and Endo-Pain, respectively. Pain reports measured by Ecto-Pain and Endo-Pain were nearly independent of all other symptom categories. The results suggest that the experiential context of pain differs widely among intractable pain patients. The study derived a Pain Symptom Checklist to measure each symptom cluster as one way to identify coping styles among chronic pain patients.

  4. Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer Observations of the GLIMPSE9 Stellar Cluster

    NASA Astrophysics Data System (ADS)

    Messineo, Maria; Figer, Donald F.; Davies, Ben; Kudritzki, R. P.; Rich, R. Michael; MacKenty, John; Trombley, Christine

    2010-01-01

    We present Hubble Space Telescope/Near-Infrared Camera and Multi-Object Spectrometer photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H - KS = ~1 mag, indicating an interstellar extinction A _K_s = 1.6 ± 0.2 mag. The spectra of the three brightest stars show deep CO band heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2 ± 0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600 ± 400 M sun, integrated down to 1 M sun. In the vicinity of GLIMPSE9 are several H II regions and supernova remnants, all of which (including GLIMPSE9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.

  5. RADIAL PROFILE OF THE 3.5 keV LINE OUT TO R {sub 200} IN THE PERSEUS CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franse, Jeroen; Bulbul, Esra; Bautz, Mark

    2016-10-01

    The recent discovery of the unidentified emission line at 3.5 keV in galaxies and clusters has attracted great interest from the community. As the origin of the line remains uncertain, we study the surface brightness distribution of the line in the Perseus cluster since that information can be used to identify its origin. We examine the flux distribution of the 3.5 keV line in the deep Suzaku observations of the Perseus cluster in detail. The 3.5 keV line is observed in three concentric annuli in the central observations, although the observations of the outskirts of the cluster did not revealmore » such a signal. We establish that these detections and the upper limits from the non-detections are consistent with a dark matter decay origin. However, absence of positive detection in the outskirts is also consistent with some unknown astrophysical origin of the line in the dense gas of the Perseus core, as well as with a dark matter origin with a steeper dependence on mass than the dark matter decay. We also comment on several recently published analyses of the 3.5 keV line.« less

  6. Peeking Network States with Clustered Patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinoh; Sim, Alex

    2015-10-20

    Network traffic monitoring has long been a core element for effec- tive network management and security. However, it is still a chal- lenging task with a high degree of complexity for comprehensive analysis when considering multiple variables and ever-increasing traffic volumes to monitor. For example, one of the widely con- sidered approaches is to scrutinize probabilistic distributions, but it poses a scalability concern and multivariate analysis is not gen- erally supported due to the exponential increase of the complexity. In this work, we propose a novel method for network traffic moni- toring based on clustering, one of the powerful deep-learningmore » tech- niques. We show that the new approach enables us to recognize clustered results as patterns representing the network states, which can then be utilized to evaluate “similarity” of network states over time. In addition, we define a new quantitative measure for the similarity between two compared network states observed in dif- ferent time windows, as a supportive means for intuitive analysis. Finally, we demonstrate the clustering-based network monitoring with public traffic traces, and show that the proposed approach us- ing the clustering method has a great opportunity for feasible, cost- effective network monitoring.« less

  7. Production of Avaroferrin and Putrebactin by Heterologous Expression of a Deep-Sea Metagenomic DNA

    PubMed Central

    Fujita, Masaki J.; Sakai, Ryuichi

    2014-01-01

    The siderophore avaroferrin (1), an inhibitor of Vibrio swarming that was recently identified in Shewanella algae B516, was produced by heterologous expression of the biosynthetic gene cluster cloned from a deep-sea sediment metagenomic DNA, together with two analogues, bisucaberin (2) and putrebactin (3). Avaroferrin (1) is a macrocyclic heterodimer of N-hydroxy-N-succinyl cadaverine (4) and N-hydroxy-N-succinyl-putrescine (5), whereas analogues 2 and 3 are homodimers of 4 and 5, respectively. Heterologous expression of two other related genes from culturable marine bacteria resulted in production of compounds 1–3, but in quite different proportions compared with production through expression of the metagenomic DNA. PMID:25222668

  8. Using Gaia as an Astrometric Tool for Deep Ground-based Surveys

    NASA Astrophysics Data System (ADS)

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Schriefer, Michael

    2018-04-01

    Gaia DR1 positions are used to astrometrically calibrate three epochs' worth of Subaru SuprimeCam images in the fields of globular cluster NGC 2419 and the Sextans dwarf spheroidal galaxy. Distortion-correction ``maps'' are constructed from a combination of offset dithers and reference to Gaia DR1. These are used to derive absolute proper motions in the field of NGC 2419. Notably, we identify the photometrically-detected Monoceros structure in the foreground of NGC 2419 as a kinematically-cold population of stars, distinct from Galactic-field stars. This project demonstrates the feasibility of combining Gaia with deep, ground-based surveys, thus extending high-quality astrometry to magnitudes beyond the limits of Gaia.

  9. The XXL Survey: First Results and Future

    NASA Technical Reports Server (NTRS)

    Pierre, M.; Adami, C.; Birkinshaw, M.; Chiappetti, L.; Ettori, S.; Evrard, A.; Faccioli, L.; Gastaldello, F.; Giles, P.; Horellou, C.; hide

    2017-01-01

    The XXL survey currently covers two 25 deg2 patches with XMM observations of approximately 10 ks. We summarize the scientific results associated with the first release of the XXL dataset, which occurred in mid-2016.We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray(zeta less than 2) cluster, (zeta less than 4) active galactic nuclei (AGN), and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-lambda observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters, and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the zeta greater than1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.

  10. Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster.

    PubMed

    Boyarsky, A; Ruchayskiy, O; Iakubovskyi, D; Franse, J

    2014-12-19

    We report a weak line at 3.52±0.02  keV in x-ray spectra of the Andromeda galaxy and the Perseus galaxy cluster observed by the metal-oxide-silicon (MOS) and p-n (PN) CCD cameras of the XMM-Newton telescope. This line is not known as an atomic line in the spectra of galaxies or clusters. It becomes stronger towards the centers of the objects; is stronger for Perseus than for M31; is absent in the spectrum of a deep "blank sky" data set. Although for each object it is hard to exclude that the feature is due to an instrumental effect or an atomic line, it is consistent with the behavior of a dark matter decay line. Future (non-)detections of this line in multiple objects may help to reveal its nature.

  11. Two serendipitous low-mass LMC clusters discovered with HST1

    NASA Astrophysics Data System (ADS)

    Santiago, Basilio X.; Elson, Rebecca A. W.; Sigurdsson, Steinn; Gilmore, Gerard F.

    1998-04-01

    We present V and I photometry of two open clusters in the LMC down to V~26. The clusters were imaged with the Wide Field and Planetary Camera 2 (WFPC2) on board the Hubble Space Telescope (HST), as part of the Medium Deep Survey Key Project. Both are low-luminosity (M_V~-3.5), low-mass (M~10^3 Msolar) systems. The chance discovery of these two clusters in two parallel WFPC2 fields suggests a significant incompleteness in the LMC cluster census near the bar. One of the clusters is roughly elliptical and compact, with a steep light profile, a central surface brightness mu_V(0)~20.2 mag arcsec^-2, a half-light radius r_hl~0.9 pc (total visual major diameter D~3 pc) and an estimated mass M~1500 Msolar. From the colour-magnitude diagram and isochrone fits we estimate its age as tau~(2-5)x10^8 yr. Its mass function has a fitted slope of Gamma=Deltalogphi(M)/DeltalogM=-1.8+/-0.7 in the range probed (0.9<~M/Msolar<~4.5). The other cluster is more irregular and sparse, having shallower density and surface brightness profiles. We obtain Gamma=-1.2+/-0.4, and estimate its mass as M~400 Msolar. A derived upper limit for its age is tau<~5x10^8 yr. Both clusters have mass functions with slopes similar to that of R136, a massive LMC cluster, for which HST results indicate Gamma~-1.2. They also seem to be relaxed in their cores and well contained in their tidal radii.

  12. A matched filter approach for blind joint detection of galaxy clusters in X-ray and SZ surveys

    NASA Astrophysics Data System (ADS)

    Tarrío, P.; Melin, J.-B.; Arnaud, M.

    2018-06-01

    The combination of X-ray and Sunyaev-Zeldovich (SZ) observations can potentially improve the cluster detection efficiency, when compared to using only one of these probes, since both probe the same medium, the hot ionized gas of the intra-cluster medium. We present a method based on matched multifrequency filters (MMF) for detecting galaxy clusters from SZ and X-ray surveys. This method builds on a previously proposed joint X-ray-SZ extraction method and allows the blind detection of clusters, that is finding new clusters without knowing their position, size, or redshift, by searching on SZ and X-ray maps simultaneously. The proposed method is tested using data from the ROSAT all-sky survey and from the Planck survey. The evaluation is done by comparison with existing cluster catalogues in the area of the sky covered by the deep SPT survey. Thanks to the addition of the X-ray information, the joint detection method is able to achieve simultaneously better purity, better detection efficiency, and better position accuracy than its predecessor Planck MMF, which is based on SZ maps alone. For a purity of 85%, the X-ray-SZ method detects 141 confirmed clusters in the SPT region; to detect the same number of confirmed clusters with Planck MMF, we would need to decrease its purity to 70%. We provide a catalogue of 225 sources selected by the proposed method in the SPT footprint, with masses ranging between 0.7 and 14.5 ×1014 M⊙ and redshifts between 0.01 and 1.2.

  13. See Change: the Supernova Sample from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Hayden, Brian; Perlmutter, Saul; Boone, Kyle; Nordin, Jakob; Rubin, David; Lidman, Chris; Deustua, Susana E.; Fruchter, Andrew S.; Aldering, Greg Scott; Brodwin, Mark; Cunha, Carlos E.; Eisenhardt, Peter R.; Gonzalez, Anthony H.; Jee, James; Hildebrandt, Hendrik; Hoekstra, Henk; Santos, Joana; Stanford, S. Adam; Stern, Daniel; Fassbender, Rene; Richard, Johan; Rosati, Piero; Wechsler, Risa H.; Muzzin, Adam; Willis, Jon; Boehringer, Hans; Gladders, Michael; Goobar, Ariel; Amanullah, Rahman; Hook, Isobel; Huterer, Dragan; Huang, Xiaosheng; Kim, Alex G.; Kowalski, Marek; Linder, Eric; Pain, Reynald; Saunders, Clare; Suzuki, Nao; Barbary, Kyle H.; Rykoff, Eli S.; Meyers, Joshua; Spadafora, Anthony L.; Sofiatti, Caroline; Wilson, Gillian; Rozo, Eduardo; Hilton, Matt; Ruiz-Lapuente, Pilar; Luther, Kyle; Yen, Mike; Fagrelius, Parker; Dixon, Samantha; Williams, Steven

    2017-01-01

    The Supernova Cosmology Project has finished executing a large (174 orbits, cycles 22-23) Hubble Space Telescope program, which has measured ~30 type Ia Supernovae above z~1 in the highest-redshift, most massive galaxy clusters known to date. Our SN Ia sample closely matches our pre-survey predictions; this sample will improve the constraint by a factor of 3 on the Dark Energy equation of state above z~1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, See Change will triple the Dark Energy Task Force Figure of Merit. With the primary observing campaign completed, we present the preliminary supernova sample and our path forward to the supernova cosmology results. We also compare the number of SNe Ia discovered in each cluster with our pre-survey expectations based on cluster mass and SFR estimates. Our extensive HST and ground-based campaign has already produced unique results; we have confirmed several of the highest redshift cluster members known to date, confirmed the redshift of one of the most massive galaxy clusters at z~1.2 expected across the entire sky, and characterized one of the most extreme starburst environments yet known in a z~1.7 cluster. We have also discovered a lensed SN Ia at z=2.22 magnified by a factor of ~2.7, which is the highest spectroscopic redshift SN Ia currently known.

  14. The end of the White Dwarf Cooling Sequence of NGC 6752

    NASA Astrophysics Data System (ADS)

    Bedin, Luigi

    2017-08-01

    We propose to study the last HST-accessible white dwarf (WD) cooling sequence (CS) for a nearby globular cluster (GC), the chemically complex, extreme blue horizontal branch cluster NGC 6752. Over 97% of stars end their lives as WDs, and the WD CS provides constraints not only on the age, but also potentially the star formation history of a GC. The CS of WDs also lies in the least-explored region of the color-magnitude diagram of old stellar populations. Recent deep imaging with HST has successfully reached the end of the WD CS in only three classical old GCs, M4, NGC 6397 and 47 Tuc, and reveals an unexpectedly complex, and double-peaked, WD CS in the metal rich old open cluster NGC 6791. One more investigation is in progress on the massive globular Omega Centauri, where over 14 sub-populations are known to exist.While almost every cluster is known to host multiple populations, every single cluster is unique. NGC 6752 is a bridge between the relatively simple globular clusters, and Omega Cen, the most complex globular cluster known. NGC 6752 has an extended blue horizontal branch, a collapsed core and 3 chemically distinct populations. It is our last chance to add diversity to our very limited sample of WD CS, so far containing only 3 globular clusters, one old open cluster, and the complex Omega Cen system. We need to undertake this investigation while HST is still operational, as there is no foreseeable opportunity in the post-HST era to have one extra WD CS in the homogeneus optical photometric system of HST.

  15. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-up of the First Shear-selected Galaxy Cluster Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Amruta J.; Hughes, John P.; Wittman, David, E-mail: amrejd@physics.rutgers.edu, E-mail: jph@physics.rutgers.edu, E-mail: dwittman@physics.ucdavis.edu

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shearmore » peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L {sub X} − T {sub X} relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (∼48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined.« less

  16. Conceptions of Biology and Approaches to Learning of First Year Biology Students: Introducing a Technique for Tracking Changes in Learner Profiles over Time

    ERIC Educational Resources Information Center

    Quinnell, Rosanne; May, Elizabeth; Peat, Mary

    2012-01-01

    We surveyed first year students at the start and at the end of their first semester of university biology (n = 285) as to their approaches to study ("surface", "deep") and their conceptions of biology ("fragmented", "cohesive"). Hierarchical cluster analysis was used to group students who responded similarly…

  17. S-CNN: Subcategory-aware convolutional networks for object detection.

    PubMed

    Chen, Tao; Lu, Shijian; Fan, Jiayuan

    2017-09-26

    The marriage between the deep convolutional neural network (CNN) and region proposals has made breakthroughs for object detection in recent years. While the discriminative object features are learned via a deep CNN for classification, the large intra-class variation and deformation still limit the performance of the CNN based object detection. We propose a subcategory-aware CNN (S-CNN) to solve the object intra-class variation problem. In the proposed technique, the training samples are first grouped into multiple subcategories automatically through a novel instance sharing maximum margin clustering process. A multi-component Aggregated Channel Feature (ACF) detector is then trained to produce more latent training samples, where each ACF component corresponds to one clustered subcategory. The produced latent samples together with their subcategory labels are further fed into a CNN classifier to filter out false proposals for object detection. An iterative learning algorithm is designed for the joint optimization of image subcategorization, multi-component ACF detector, and subcategory-aware CNN classifier. Experiments on INRIA Person dataset, Pascal VOC 2007 dataset and MS COCO dataset show that the proposed technique clearly outperforms the state-of-the-art methods for generic object detection.

  18. The clustering and morphology of chondrocytes in normal and mildly degenerate human femoral head cartilage studied by confocal laser scanning microscopy.

    PubMed

    Karim, Asima; Amin, Anish K; Hall, Andrew C

    2018-04-01

    Chondrocytes are the major cell type present in hyaline cartilage and they play a crucial role in maintaining the mechanical resilience of the tissue through a balance of the synthesis and breakdown of extracellular matrix macromolecules. Histological assessment of cartilage suggests that articular chondrocytes in situ typically occur singly and demonstrate a rounded/elliptical morphology. However, there are suggestions that their grouping and fine shape is more complex and that these change with cartilage degeneration as occurs in osteoarthritis. In the present study we have used confocal laser scanning microscopy and fluorescently labelled in situ human chondrocytes and advanced imaging software to visualise chondrocyte clustering and detailed morphology within grade-0 (non-degenerate) and grade-1 (mildly degenerate) cartilage from human femoral heads. Graded human cartilage explants were incubated with 5-chloromethylfluorescein diacetate and propidium iodide to identify the morphology and viability, respectively, of in situ chondrocytes within superficial, mid- and deep zones. In grade-0 cartilage, the analysis of confocal microscope images showed that although the majority of chondrocytes were single and morphologically normal, clusters (i.e. three or more chondrocytes within the enclosed lacunar space) were occasionally observed in the superficial zone, and 15-25% of the cell population exhibited at least one cytoplasmic process of ~ 5 μm in length. With degeneration, cluster number increased (~ 50%) but not significantly; however, the number of cells/cluster (P < 0.001) and the percentage of cells forming clusters increased (P = 0.0013). In the superficial zone but not the mid- or deep zones, the volume of clusters and average volume of chondrocytes in clusters increased (P < 0.001 and P < 0.05, respectively). The percentage of chondrocytes with processes, the number of processes/cell and the length of processes/cell increased in the superficial zone of grade-1 cartilage (P = 0.0098, P = 0.02 and P < 0.001, respectively). Processes were categorised based on length (L0 - no cytoplasmic processes; L1 < 5 μm; 5 < L2 ≤ 10 μm; 10 < L3 ≤ 15 μm; L4 > 15 μm). With cartilage degeneration, for chondrocytes in all zones, there was a significant decrease (P = 0.015) in the percentage of chondrocytes with 'normal' morphology (i.e. L0), with no change in the percentage of cells with L1 processes; however, there were significant increases in the other categories. In grade-0 cartilage, chondrocyte clustering and morphological abnormalities occurred and with degeneration these were exacerbated, particularly in the superficial zone. Chondrocyte clustering and abnormal morphology are associated with aberrant matrix metabolism, suggesting that these early changes to chondrocyte properties may be associated with cartilage degeneration. © 2017 Anatomical Society.

  19. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists.

    PubMed

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  20. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists

    PubMed Central

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior. PMID:23653617

  1. Constraints on the Energy Content of the Universe from a Combination of Galaxy Cluster Observables

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark; Mushotzky, Richard F.

    2003-01-01

    We demonstrate that constraints on cosmological parameters from the distribution of clusters as a function of redshift (dN/dz) are complementary to accurate angular diameter distance (D(sub A)) measurements to clusters, and their combination significantly tightens constraints on the energy density content of the Universe. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Ze'dovich effect) surveys, and the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect. We combine constraints from simulated cluster number counts expected from a 12 deg(sup 2) SZ cluster survey and constraints from simulated angular diameter distance measurements based on the X-ray/SZ method assuming a statistical accuracy of 10% in the angular diameter distance determination of 100 clusters with redshifts less than 1.5. We find that Omega(sub m), can be determined within about 25%, Omega(sub lambda) within 20% and w within 16%. We show that combined dN/dz+(sub lambda) constraints can be used to constrain the different energy densities in the Universe even in the presence of a few percent redshift dependent systematic error in D(sub lambda). We also address the question of how best to select clusters of galaxies for accurate diameter distance determinations. We show that the joint dN/dz+ D(lambda) constraints on cosmological parameters for a fixed target accuracy in the energy density parameters are optimized by selecting clusters with redshift upper cut-offs in the range 0.55 approx. less than 1. Subject headings: cosmological parameters - cosmology: theory - galaxies:clusters: general

  2. Mean-cluster approach indicates cell sorting time scales are determined by collective dynamics

    NASA Astrophysics Data System (ADS)

    Beatrici, Carine P.; de Almeida, Rita M. C.; Brunnet, Leonardo G.

    2017-03-01

    Cell migration is essential to cell segregation, playing a central role in tissue formation, wound healing, and tumor evolution. Considering random mixtures of two cell types, it is still not clear which cell characteristics define clustering time scales. The mass of diffusing clusters merging with one another is expected to grow as td /d +2 when the diffusion constant scales with the inverse of the cluster mass. Cell segregation experiments deviate from that behavior. Explanations for that could arise from specific microscopic mechanisms or from collective effects, typical of active matter. Here we consider a power law connecting diffusion constant and cluster mass to propose an analytic approach to model cell segregation where we explicitly take into account finite-size corrections. The results are compared with active matter model simulations and experiments available in the literature. To investigate the role played by different mechanisms we considered different hypotheses describing cell-cell interaction: differential adhesion hypothesis and different velocities hypothesis. We find that the simulations yield normal diffusion for long time intervals. Analytic and simulation results show that (i) cluster evolution clearly tends to a scaling regime, disrupted only at finite-size limits; (ii) cluster diffusion is greatly enhanced by cell collective behavior, such that for high enough tendency to follow the neighbors, cluster diffusion may become independent of cluster size; (iii) the scaling exponent for cluster growth depends only on the mass-diffusion relation, not on the detailed local segregation mechanism. These results apply for active matter systems in general and, in particular, the mechanisms found underlying the increase in cell sorting speed certainly have deep implications in biological evolution as a selection mechanism.

  3. Defective functional connectivity between posterior hypothalamus and regions of the diencephalic-mesencephalic junction in chronic cluster headache.

    PubMed

    Ferraro, Stefania; Nigri, Anna; Bruzzone, Maria Grazia; Brivio, Luca; Proietti Cecchini, Alberto; Verri, Mattia; Chiapparini, Luisa; Leone, Massimo

    2018-01-01

    Objective We tested the hypothesis of a defective functional connectivity between the posterior hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache based on: a) clinical and neuro-endocrinological findings in cluster headache patients; b) neuroimaging findings during cluster headache attacks; c) neuroimaging findings in drug-refractory chronic cluster headache patients improved after successful deep brain stimulation. Methods Resting state functional magnetic resonance imaging, associated with a seed-based approach, was employed to investigate the functional connectivity of the posterior hypothalamus in chronic cluster headache patients (n = 17) compared to age and sex-matched healthy subjects (n = 16). Random-effect analyses were performed to study differences between patients and controls in ipsilateral and contralateral-to-the-pain posterior hypothalamus functional connectivity. Results Cluster headache patients showed an increased functional connectivity between the ipsilateral posterior hypothalamus and a number of diencephalic-mesencephalic structures, comprising ventral tegmental area, dorsal nuclei of raphe, and bilateral substantia nigra, sub-thalamic nucleus, and red nucleus ( p < 0.005 FDR-corrected vs . control group). No difference between patients and controls was found comparing the contralateral hypothalami. Conclusions The observed deranged functional connectivity between the posterior ipsilateral hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache patients mainly involves structures that are part of (i.e. ventral tegmental area, substantia nigra) or modulate (dorsal nuclei of raphe, sub-thalamic nucleus) the midbrain dopaminergic systems. The midbrain dopaminergic systems could play a role in cluster headache pathophysiology and in particular in the chronicization process. Future studies are needed to better clarify if this finding is specific to cluster headache or if it represents an unspecific response to chronic pain.

  4. High Class-Imbalance in pre-miRNA Prediction: A Novel Approach Based on deepSOM.

    PubMed

    Stegmayer, Georgina; Yones, Cristian; Kamenetzky, Laura; Milone, Diego H

    2017-01-01

    The computational prediction of novel microRNA within a full genome involves identifying sequences having the highest chance of being a miRNA precursor (pre-miRNA). These sequences are usually named candidates to miRNA. The well-known pre-miRNAs are usually only a few in comparison to the hundreds of thousands of potential candidates to miRNA that have to be analyzed, which makes this task a high class-imbalance classification problem. The classical way of approaching it has been training a binary classifier in a supervised manner, using well-known pre-miRNAs as positive class and artificially defining the negative class. However, although the selection of positive labeled examples is straightforward, it is very difficult to build a set of negative examples in order to obtain a good set of training samples for a supervised method. In this work, we propose a novel and effective way of approaching this problem using machine learning, without the definition of negative examples. The proposal is based on clustering unlabeled sequences of a genome together with well-known miRNA precursors for the organism under study, which allows for the quick identification of the best candidates to miRNA as those sequences clustered with known precursors. Furthermore, we propose a deep model to overcome the problem of having very few positive class labels. They are always maintained in the deep levels as positive class while less likely pre-miRNA sequences are filtered level after level. Our approach has been compared with other methods for pre-miRNAs prediction in several species, showing effective predictivity of novel miRNAs. Additionally, we will show that our approach has a lower training time and allows for a better graphical navegability and interpretation of the results. A web-demo interface to try deepSOM is available at http://fich.unl.edu.ar/sinc/web-demo/deepsom/.

  5. Crazy heart: kinematics of the "star pile" in Abell 545

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Richtler, T.; West, M. J.; Romanowsky, A. J.; Lloyd-Davies, E.; Schuberth, Y.

    2011-04-01

    We study the structure and internal kinematics of the "star pile" in Abell 545 - a low surface brightness structure lying in the center of the cluster. We have obtained deep long-slit spectroscopy of the star pile using VLT/FORS2 and Gemini/GMOS, which is analyzed in conjunction with deep multiband CFHT/MEGACAM imaging. As presented in a previous study the star pile has a flat luminosity profile and its color is consistent with the outer parts of elliptical galaxies. Its velocity map is irregular, with parts being seemingly associated with an embedded nucleus, and others which have significant velocity offsets to the cluster systemic velocity with no clear kinematical connection to any of the surrounding galaxies. This would make the star pile a dynamically defined stellar intra-cluster component. The complicated pattern in velocity and velocity dispersions casts doubts on the adequacy of using the whole star pile as a dynamical test for the innermost dark matter profile of the cluster. This status is fulfilled only by the nucleus and its nearest surroundings which lie at the center of the cluster velocity distribution. Based on observations taken at the European Southern Observatory, Cerro Paranal, Chile, under programme ID 080.B-0529. Also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and SECYT (Argentina); and on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre Natio nal de la Recherche Scientifique (CNRS) of France, and the University of Hawaii.

  6. Deep sequencing of small RNA repertoires in mice reveals metabolic disorders-associated hepatic miRNAs.

    PubMed

    Liang, Tingming; Liu, Chang; Ye, Zhenchao

    2013-01-01

    Obesity and associated metabolic disorders contribute importantly to the metabolic syndrome. On the other hand, microRNAs (miRNAs) are a class of small non-coding RNAs that repress target gene expression by inducing mRNA degradation and/or translation repression. Dysregulation of specific miRNAs in obesity may influence energy metabolism and cause insulin resistance, which leads to dyslipidemia, steatosis hepatis and type 2 diabetes. In the present study, we comprehensively analyzed and validated dysregulated miRNAs in ob/ob mouse liver, as well as miRNA groups based on miRNA gene cluster and gene family by using deep sequencing miRNA datasets. We found that over 13.8% of the total analyzed miRNAs were dysregulated, of which 37 miRNA species showed significantly differential expression. Further RT-qPCR analysis in some selected miRNAs validated the similar expression patterns observed in deep sequencing. Interestingly, we found that miRNA gene cluster and family always showed consistent dysregulation patterns in ob/ob mouse liver, although they had various enrichment levels. Functional enrichment analysis revealed the versatile physiological roles (over six signal pathways and five human diseases) of these miRNAs. Biological studies indicated that overexpression of miR-126 or inhibition of miR-24 in AML-12 cells attenuated free fatty acids-induced fat accumulation. Taken together, our data strongly suggest that obesity and metabolic disturbance are tightly associated with functional miRNAs. We also identified hepatic miRNA candidates serving as potential biomarkers for the diagnose of the metabolic syndrome.

  7. Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.

    2017-09-01

    Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A85

  8. The Galaxy–Halo Connection for 1.5\\lesssim z\\lesssim 5 as Revealed by the Spitzer Matching Survey of the UltraVISTA Ultra-deep Stripes

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Caputi, Karina I.; Deshmukh, Smaran; Ashby, Matthew L. N.; Fazio, Giovanni G.; Le Fèvre, Olivier; Fynbo, Johan P. U.; Ilbert, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo; Somerville, Rachel S.

    2018-01-01

    The Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) provides unparalleled depth at 3.6 and 4.5 μm over ∼0.66 deg2 of the COSMOS field, allowing precise photometric determinations of redshift and stellar mass. From this unique data set we can connect galaxy samples, selected by stellar mass, to their host dark matter halos for 1.5< z< 5.0, filling in a large hitherto unexplored region of the parameter space. To interpret the observed galaxy clustering, we use a phenomenological halo model, combined with a novel method to account for uncertainties arising from the use of photometric redshifts. We find that the satellite fraction decreases with increasing redshift and that the clustering amplitude (e.g., comoving correlation length/large-scale bias) displays monotonic trends with redshift and stellar mass. Applying ΛCDM halo mass accretion histories and cumulative abundance arguments for the evolution of stellar mass content, we propose pathways for the coevolution of dark matter and stellar mass assembly. Additionally, we are able to estimate that the halo mass at which the ratio of stellar-to-halo mass is maximized is {10}{12.5-0.08+0.10} {M}ȯ at z∼ 2.5. This peak halo mass is here inferred for the first time from stellar mass-selected clustering measurements at z≳ 2, and it implies a mild evolution of this quantity for z≲ 3, consistent with constraints from abundance-matching techniques.

  9. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake

    USGS Publications Warehouse

    Urbach, Ena; Vergin, Kevin L.; Morse, Ariel

    2001-01-01

    The bacterioplankton assemblage in Crater Lake, Oregon (U.S.A.), is different from communities found in other oxygenated lakes, as demonstrated by four small subunit ribosomal ribonucleic acid (SSU rRNA) gene clone libraries and oligonucleotide probe hybridization to RNA from lake water. Populations in the euphotic zone of this deep (589 m), oligotrophic caldera lake are dominated by two phylogenetic clusters of currently uncultivated bacteria: CL120-10, a newly identified cluster in the verrucomicrobiales, and ACK4 actinomycetes, known as a minor constituent of bacterioplankton in other lakes. Deep-water populations at 300 and 500 m are dominated by a different pair of uncultivated taxa: CL500-11, a novel cluster in the green nonsulfur bacteria, and group I marine crenarchaeota. b-Proteobacteria, dominant in most other freshwater environments, are relatively rare in Crater Lake (<=16% of nonchloroplast bacterial rRNA at all depths). Other taxa identified in Crater Lake libraries include a newly identified candidate bacterial division, ABY1, and a newly identified subcluster, CL0-1, within candidate division OP10. Probe analyses confirmed vertical stratification of several microbial groups, similar to patterns observed in open-ocean systems. Additional similarities between Crater Lake and ocean microbial populations include aphotic zone dominance of group I marine crenarchaeota and green nonsulfur bacteria. Comparison of Crater Lake to other lakes studied by rRNA methods suggests that selective factors structuring Crater Lake bacterioplankton populations may include low concentrations of available trace metals and dissolved organic matter, chemistry of infiltrating hydrothermal waters, and irradiation by high levels of ultraviolet light.

  10. A Chandra X-Ray Census of the Interacting Binaries in Old Open Clusters—Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; van den Berg, Maureen

    2017-03-01

    We present the first X-ray study of Collinder 261 (Cr 261), which at an age of 7 Gyr is one of the oldest open clusters known in the Galaxy. Our observation with the Chandra X-Ray Observatory is aimed at uncovering the close interacting binaries in Cr 261, and reaches a limiting X-ray luminosity of {L}X≈ 4× {10}29 {erg} {{{s}}}-1 (0.3-7 keV) for stars in the cluster. We detect 107 sources within the cluster half-mass radius r h , and we estimate that among the sources with {L}X≳ {10}30 {erg} {{{s}}}-1, ˜26 are associated with the cluster. We identify a mix of active binaries and candidate active binaries, candidate cataclysmic variables, and stars that have “straggled” from the main locus of Cr 261 in the color-magnitude diagram. Based on a deep optical source catalog of the field, we estimate that Cr 261 has an approximate mass of 6500 M ⊙, roughly the same as the old open cluster NGC 6791. The X-ray emissivity of Cr 261 is similar to that of other old open clusters, supporting the trend that they are more luminous in X-rays per unit mass than old populations of higher (globular clusters) and lower (the local neighborhood) stellar density. This implies that the dynamical destruction of binaries in the densest environments is not solely responsible for the observed differences in X-ray emissivity.

  11. Probing dark matter physics with galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dalal, Neal

    2016-10-01

    We propose a theoretical investigation of the effects of a class of dark matter (DM) self-interactions on the properties of galaxy clusters and their host dark matter halos. Recent work using HST has claimed the detection of a particular form of DM self-interaction, which can lead to observable displacements between satellite galaxies within clusters and the DM subhalos hosting them. This form of self-interaction is highly anisotropic, favoring forward scattering with low momentum transfer, unlike isotropically scattering self-interacting dark matter (SIDM) models. This class of models has not been simulated numerically, clouding the interpretation of the claimed offsets between galaxies and lensing peaks observed by HST. We propose to perform high resolution simulations of cosmological structure formation for this class of SIDM model, focusing on three observables accessible to existing HST observations of clusters. First, we will quantify the extent to which offsets between baryons and DM can arise in these models, as a function of the cross section. Secondly, we will also quantify the effects of this type of DM self-interaction on halo concentrations, to determine the range of cross-sections allowed by existing stringent constraints from HST. Finally we will compute the so-called splashback feature in clusters, specifically focusing on whether SIDM can resolve the current discrepancy between observed values of splashback radii in clusters compared to theoretical predictions for CDM. The proposed investigations will add value to all existing deep HST observations of galaxy clusters by allowing them to probe dark matter physics in three independent ways.

  12. The Large-scale Structure of the Universe: Probes of Cosmology and Structure Formation

    NASA Astrophysics Data System (ADS)

    Noh, Yookyung

    The usefulness of large-scale structure as a probe of cosmology and structure formation is increasing as large deep surveys in multi-wavelength bands are becoming possible. The observational analysis of large-scale structure guided by large volume numerical simulations are beginning to offer us complementary information and crosschecks of cosmological parameters estimated from the anisotropies in Cosmic Microwave Background (CMB) radiation. Understanding structure formation and evolution and even galaxy formation history is also being aided by observations of different redshift snapshots of the Universe, using various tracers of large-scale structure. This dissertation work covers aspects of large-scale structure from the baryon acoustic oscillation scale, to that of large scale filaments and galaxy clusters. First, I discuss a large- scale structure use for high precision cosmology. I investigate the reconstruction of Baryon Acoustic Oscillation (BAO) peak within the context of Lagrangian perturbation theory, testing its validity in a large suite of cosmological volume N-body simulations. Then I consider galaxy clusters and the large scale filaments surrounding them in a high resolution N-body simulation. I investigate the geometrical properties of galaxy cluster neighborhoods, focusing on the filaments connected to clusters. Using mock observations of galaxy clusters, I explore the correlations of scatter in galaxy cluster mass estimates from multi-wavelength observations and different measurement techniques. I also examine the sources of the correlated scatter by considering the intrinsic and environmental properties of clusters.

  13. A History of H i Stripping in Virgo: A Phase-space View of VIVA Galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyein; Chung, Aeree; Smith, Rory

    We investigate the orbital histories of Virgo galaxies at various stages of H i gas stripping. In particular, we compare the location of galaxies with different H i morphology in phase space. This method is a great tool for tracing the gas stripping histories of galaxies as they fall into the cluster. Most galaxies at the early stage of H i stripping are found in the first infall region of Virgo, while galaxies undergoing active H i stripping mostly appear to be falling in or moving out near the cluster core for the first time. Galaxies with severely stripped, yetmore » symmetric, H i disks are found in one of two locations. Some are deep inside the cluster, but others are found in the cluster outskirts with low orbital velocities. We suggest that the latter group of galaxies belong to a “backsplash” population. These present the clearest candidates for backsplashed galaxies observationally identified to date. We further investigate the distribution of a large sample of H i-detected galaxies toward Virgo in phase space, confirming that most galaxies are stripped of their gas as they settle into the gravitational potential of the cluster. In addition, we discuss the impact of tidal interactions between galaxies and group preprocessing on the H i properties of the cluster galaxies, and link the associated star formation evolution to the stripping sequence of cluster galaxies.« less

  14. CXB surface brightness fluctuations: A new frontier of ICM structure and outskirts studies of (un)resolved galaxy clusters?

    NASA Astrophysics Data System (ADS)

    Kolodzig, A.; Gilfanov, M.; Hutsi, G.; Sunyaev, R.

    2017-10-01

    Surface brightness fluctuations of the cosmic X-ray background (CXB) carry unique information about the intracluster-medium (ICM) structure of galaxy clusters and groups up to the virial radius, which is inaccessible by conventional observations of selected nearby resolved clusters. We present results of our CXB fluctuation analysis of the ˜5ks-deep, ˜9deg^2-large Chandra survey XBOOTES. We find that our fluctuation signal of resolved clusters is dominated by nearby, high-luminosity sources. The shape of its power spectrum suggests that for the brightest cluster we are sensitive to the ICM structure up to ˜2× R_{500};(˜2 Mpc/h). The energy spectrum of the fluctuation signal from resolved and unresolved clusters follows a typical ICM spectrum, where redshifts and temperatures are consistent with expectations. It also demonstrates that fluctuations of our unresolved CXB are dominated by unresolved clusters with an average z˜0.4 and T˜1.3keV, suggesting an average L_{0.5-2keV}˜3×10^{42} erg/s and M_{500}˜4×10^{13} M_{Sun}/h. Comparison with modeling suggests, that our fluctuation signal can be described with the one-halo-term of clusters and that it might be sensitive to the presence of substructures. Discrepancies between model and measurement could be utilized to improve our understanding of the ICM structure in a statistical manner. We briefly discuss the potential of larger surveys (e.g. Stripe82, XXL, SRG/eRosita).

  15. Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity

    PubMed Central

    Khoroshilova, Natalia; Popescu, Codrina; Münck, Eckard; Beinert, Helmut; Kiley, Patricia J.

    1997-01-01

    The transcription factor FNR (fumarate nitrate reduction) requires the presence of an iron-sulfur (Fe-S) cluster for its function as a global transcription regulator in Escherichia coli when oxygen becomes scarce. To define the oxidation state and type of Fe-S cluster present in the active form of FNR, we have studied anaerobically purified FNR with Mössbauer spectroscopy. Our data showed that this form of FNR contained a [4Fe-4S]2+ cluster (δ = 0.45 mm/s; ΔEQ = 1.22 mm/s) and that the [4Fe-4S]2+ cluster was rapidly destroyed on exposure of FNR to air. Under these conditions, the yellow–green active form of FNR turned deep red; analysis of sulfide indicated that 70% of the labile sulfide was still present, suggesting that the Fe-S cluster had been converted into a different form. Little [3Fe-4S] cluster was, however, detected by EPR. According to Mössbauer spectroscopy, the [4Fe-4S]2+ cluster was converted in about 60% yield to a [2Fe-2S]2+ cluster (δ = 0.28 mm/s; ΔEQ = 0.58 mm/s) following 17 min of exposure to air. The [2Fe-2S]2+ cluster form of FNR was much more stable to oxygen, but was unable to sustain biological activity (e.g., DNA binding). However, DNA binding and the absorption spectrum characteristic of the [4Fe-4S]2+ cluster could be largely restored from the [2Fe-2S]2+ form when Cys, Fe, DTT, and the NifS protein were added. It has yet to be determined whether the form of FNR containing the [2Fe-2S]2+ cluster has any biological significance, e.g., as an in vivo intermediate that is more rapidly converted to the active form than the apoprotein. PMID:9177174

  16. The Secrets of the Nearest Starburst Cluster. II. The Present-Day Mass Function in NGC 3603

    NASA Astrophysics Data System (ADS)

    Stolte, Andrea; Brandner, Wolfgang; Brandl, Bernhard; Zinnecker, Hans

    2006-07-01

    Based on deep Very Large Telescope Infrared Spectrometer and Array Camera JHK photometry, we have derived the present-day mass function (MF) of the central starburst cluster NGC 3603 YC (Young Cluster) in the giant H II region NGC 3603. The effects of field contamination, individual reddening, and a possible binary contribution are investigated. The MF slopes resulting from the different methods are compared and lead to a surprisingly consistent cluster MF with a slope of Γ=-0.9+/-0.15. Analyzing different radial annuli around the cluster core, no significant change in the slope of the MF is observed. However, mass segregation in the cluster is evidenced by the increasing depletion of the high-mass tail of the stellar mass distribution with increasing radius. We discuss the indications of mass segregation with respect to the changes observed in the binned and cumulative stellar MFs and argue that the cumulative function, as well as the fraction of high- to low-mass stars, provides better indicators for mass segregation than the MF slope alone. Finally, the observed MF and starburst morphology of NGC 3603 YC are discussed in the context of massive local star-forming regions such as the Galactic center Arches cluster, R136/30 Dor in the LMC, and the Orion Trapezium cluster, all providing resolved templates for extragalactic star formation. Despite the similarity in the observed MF slopes, dynamical considerations suggest that the starburst clusters do not form gravitationally bound systems over a Hubble time. Both the environment (gravitational potential of the Milky Way) and the concentration of stars in the cluster core determine the dynamical stability of a dense star cluster, such that the long-term evolution of a starburst is not exclusively determined by the stellar evolution of its members, as frequently assumed for globular cluster systems. Based on observations obtained at the ESO Very Large Telescope on Paranal, Chile, under programs 63.I-0015 and 65.I-0135.

  17. Ultra-deep GEMINI Near-infrared Observations of the Bulge Globular Cluster NGC 6624.

    NASA Astrophysics Data System (ADS)

    Saracino, S.; Dalessandro, E.; Ferraro, F. R.; Geisler, D.; Mauro, F.; Lanzoni, B.; Origlia, L.; Miocchi, P.; Cohen, R. E.; Villanova, S.; Moni Bidin, C.

    2016-11-01

    We used ultra-deep J and K s images secured with the near-infrared (NIR) GSAOI camera assisted by the multi-conjugate adaptive optics system GeMS at the GEMINI South Telescope in Chile, to obtain a (K s , J - K s ) color-magnitude diagram (CMD) for the bulge globular cluster NGC 6624. We obtained the deepest and most accurate NIR CMD from the ground for this cluster, by reaching K s ˜ 21.5, approximately 8 mag below the horizontal branch level. The entire extension of the Main Sequence (MS) is nicely sampled and at K s ˜ 20 we detected the so-called MS “knee” in a purely NIR CMD. By taking advantage of the exquisite quality of the data, we estimated the absolute age of NGC 6624 (t age = 12.0 ± 0.5 Gyr), which turns out to be in good agreement with previous studies in the literature. We also analyzed the luminosity and mass functions of MS stars down to M ˜ 0.45 M⊙, finding evidence of a significant increase of low-mass stars at increasing distances from the cluster center. This is a clear signature of mass segregation, confirming that NGC 6624 is in an advanced stage of dynamical evolution. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations gathered with ESO-VISTA telescope (program ID 179.B-2002).

  18. On the age and mass function of the globular cluster M 4: A different interpretation of recent deep HST observations

    NASA Astrophysics Data System (ADS)

    De Marchi, G.; Paresce, F.; Straniero, O.; Prada Moroni, P. G.

    2004-03-01

    Very deep images of the Galactic globular cluster M 4 (NGC 6121) through the F606W and F814W filters were taken in 2001 with the WFPC2 on board the HST. A first published analysis of this data set (Richer et al. \\cite{Richer2002}) produced the result that the age of M 4 is 12.7± 0.7 Gyr (Hansen et al. \\cite{Hansen2002}), thus setting a robust lower limit to the age of the universe. In view of the great astronomical importance of getting this number right, we have subjected the same data set to the simplest possible photometric analysis that completely avoids uncertain assumptions about the origin of the detected sources. This analysis clearly reveals both a thin main sequence, from which can be deduced the deepest statistically complete mass function yet determined for a globular cluster, and a white dwarf (WD) sequence extending all the way down to the 5 \\sigma detection limit at I ≃ 27. The WD sequence is abruptly terminated at exactly this limit as expected by detection statistics. Using our most recent theoretical WD models (Prada Moroni & Straniero \\cite{Prada2002}) to obtain the expected WD sequence for different ages in the observed bandpasses, we find that the data so far obtained do not reach the peak of the WD luminosity function, thus only allowing one to set a lower limit to the age of M 4 of ˜9 Gyr. Thus, the problem of determining the absolute age of a globular cluster and, therefore, the onset of GC formation with cosmologically significant accuracy remains completely open. Only observations several magnitudes deeper than the limit obtained so far would allow one to approach this objective. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA for NASA under contract NAS5-26555.

  19. A Definitive Optical Detection of a Supercluster at Z ~ 0.91

    NASA Astrophysics Data System (ADS)

    Lubin, Lori M.; Brunner, Robert; Metzger, Mark R.; Postman, Marc; Oke, J. B.

    2000-03-01

    We present the results from a multiband optical imaging program that has definitively confirmed the existence of a supercluster at z~0.91. Two massive clusters of galaxies, Cl 1604+4304 at z=0.897 and Cl 1604+4321 at z=0.924, were originally observed in the high-redshift cluster survey of Oke, Postman, & Lubin. They are separated by 4300 km s-1 in radial velocity and 17' on the plane of the sky. Their physical and redshift proximity suggested a promising supercluster candidate. Deep BRi imaging of the region between the two clusters indicates a large population of red galaxies. This population forms a tight, red sequence in the color-magnitude diagram at (R-i)~1.4. The characteristic color is identical to that of the spectroscopically confirmed early-type galaxies in the two member clusters. The red galaxies are spread throughout the 5 h-1 Mpc region between Cl 1604+4304 and Cl 1604+4321. Their spatial distribution delineates the entire large-scale structure with high concentrations at the cluster centers. In addition, we detect a significant overdensity of red galaxies directly between Cl 1604+4304 and Cl 1604+4321 which is the signature of a third, rich cluster associated with this system. The strong sequence of red galaxies and their spatial distribution clearly indicate that we have discovered a supercluster at z~0.91.

  20. Rapidly rotating second-generation progenitors for the 'blue hook' stars of ω Centauri.

    PubMed

    Tailo, Marco; D'Antona, Francesca; Vesperini, Enrico; Di Criscienzo, Marcella; Ventura, Paolo; Milone, Antonino P; Bellini, Andrea; Dotter, Aaron; Decressin, Thibaut; D'Ercole, Annibale; Caloi, Vittoria; Capuzzo-Dolcetta, Roberto

    2015-07-16

    Horizontal branch stars belong to an advanced stage in the evolution of the oldest stellar galactic population, occurring either as field halo stars or grouped in globular clusters. The discovery of multiple populations in clusters that were previously believed to have single populations gave rise to the currently accepted theory that the hottest horizontal branch members (the 'blue hook' stars, which had late helium-core flash ignition, followed by deep mixing) are the progeny of a helium-rich 'second generation' of stars. It is not known why such a supposedly rare event (a late flash followed by mixing) is so common that the blue hook of ω Centauri contains approximately 30 per cent of the horizontal branch stars in the cluster, or why the blue hook luminosity range in this massive cluster cannot be reproduced by models. Here we report that the presence of helium core masses up to about 0.04 solar masses larger than the core mass resulting from evolution is required to solve the luminosity range problem. We model this by taking into account the dispersion in rotation rates achieved by the progenitors, whose pre-main-sequence accretion disk suffered an early disruption in the dense environment of the cluster's central regions, where second-generation stars form. Rotation may also account for frequent late-flash-mixing events in massive globular clusters.

  1. LOFAR discovery of a double radio halo system in Abell 1758 and radio/X-ray study of the cluster pair

    NASA Astrophysics Data System (ADS)

    Botteon, A.; Shimwell, T. W.; Bonafede, A.; Dallacasa, D.; Brunetti, G.; Mandal, S.; van Weeren, R. J.; Brüggen, M.; Cassano, R.; de Gasperin, F.; Hoang, D. N.; Hoeft, M.; Röttgering, H. J. A.; Savini, F.; White, G. J.; Wilber, A.; Venturi, T.

    2018-05-01

    Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the intra-cluster medium (ICM). However, the precise physical processes that generate these steep synchrotron spectrum sources are still poorly constrained. We present a new LOFAR observation of the double galaxy cluster Abell 1758. This system is composed of A1758N, a massive cluster hosting a known giant radio halo, and A1758S, which is a less massive cluster whose diffuse radio emission is confirmed here for the first time. Our observations have revealed a radio halo and a candidate radio relic in A1758S, and a suggestion of emission along the bridge connecting the two systems which deserves confirmation. We combined the LOFAR data with archival VLA and GMRT observations to constrain the spectral properties of the diffuse emission. We also analyzed a deep archival Chandra observation and used this to provide evidence that A1758N and A1758S are in a pre-merger phase. The ICM temperature across the bridge that connects the two systems shows a jump which might indicate the presence of a transversal shock generated in the initial stage of the merger.

  2. A deeper look at the X-ray point source population of NGC 4472

    NASA Astrophysics Data System (ADS)

    Joseph, T. D.; Maccarone, T. J.; Kraft, R. P.; Sivakoff, G. R.

    2017-10-01

    In this paper we discuss the X-ray point source population of NGC 4472, an elliptical galaxy in the Virgo cluster. We used recent deep Chandra data combined with archival Chandra data to obtain a 380 ks exposure time. We find 238 X-ray point sources within 3.7 arcmin of the galaxy centre, with a completeness flux, FX, 0.5-2 keV = 6.3 × 10-16 erg s-1 cm-2. Most of these sources are expected to be low-mass X-ray binaries. We finding that, using data from a single galaxy which is both complete and has a large number of objects (˜100) below 1038 erg s-1, the X-ray luminosity function is well fitted with a single power-law model. By cross matching our X-ray data with both space based and ground based optical data for NGC 4472, we find that 80 of the 238 sources are in globular clusters. We compare the red and blue globular cluster subpopulations and find red clusters are nearly six times more likely to host an X-ray source than blue clusters. We show that there is evidence that these two subpopulations have significantly different X-ray luminosity distributions. Source catalogues for all X-ray point sources, as well as any corresponding optical data for globular cluster sources, are also presented here.

  3. Modeling Wind Wave Evolution from Deep to Shallow Water

    DTIC Science & Technology

    2011-09-30

    validation and calibration of new model developments. WORK COMPLETED Development of a Lumped Quadruplet Approximation ( LQA ) To make evaluation of the...interactions based on the WRT method. This Lumped Quadruplet Approximation ( LQA ) clusters (lumps) contributions to the integrations over the...total transfer rate. A procedure has been developed to test the implementation (of LQA and other reduced versions of the WRT) where 1) the non

  4. The Nature of Conceptual Understanding in Biomedicine: The Deep Structure of Complex Ideas and the Development of Misconceptions. Technical Report No. 440.

    ERIC Educational Resources Information Center

    Feltovich, Paul J.; And Others

    This report presents a general framework for studying the acquisition and cognitive representation of biomedical concepts and analyzing the nature and development of misconceptions. The central approach of the report is a selective and highly concentrated analysis of the true nature of clusters of complex concepts and the manner in which they are…

  5. La galaxia NGC 6876 y su sistema de cúmulos globulares

    NASA Astrophysics Data System (ADS)

    Ennis, A. I.; Bassino, L. P.; Caso, J. P.

    2017-10-01

    We present preliminary results of the deep photometric study of the elliptical galaxy NGC6876, located at the center of the Pavo group, and its globular cluster system. We use images obtained with the GMOS camera mounted on the Gemini South telescope, in the and bands, with the purpose of disentangling the evolutionary history of the galaxy on the basis of their characteristics.

  6. The CfA Einstein Observatory extended deep X-ray survey

    NASA Technical Reports Server (NTRS)

    Primini, F. A.; Murray, S. S.; Huchra, J.; Schild, R.; Burg, R.

    1991-01-01

    All IPC exposures in the Einstein Extended Deep X-ray Survey program have been reanalyzed. The current survey covers about 2.3 sq deg with a typical limiting sensitivity of about 5 x 10 to the -14th ergs/sq cm/s in the energy range from 0.8-3.5 keV. A total of 25 IPC sources are detected above a threshold of 4.5 sigma. A total of 18 are detected independently in the HRI, leading to the identification of six with stars and 11 with extragalactic objects. The remaining sources are classified as extragalactic. The population of identified extragalactic objects is dominated by QSOs, with one or two possible clusters. The basic conclusions of the original survey remain unchanged.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Racah, Evan; Ko, Seyoon; Sadowski, Peter

    Experiments in particle physics produce enormous quantities of data that must be analyzed and interpreted by teams of physicists. This analysis is often exploratory, where scientists are unable to enumerate the possible types of signal prior to performing the experiment. Thus, tools for summarizing, clustering, visualizing and classifying high-dimensional data are essential. Here in this work, we show that meaningful physical content can be revealed by transforming the raw data into a learned high-level representation using deep neural networks, with measurements taken at the Daya Bay Neutrino Experiment as a case study. We further show how convolutional deep neural networksmore » can provide an effective classification filter with greater than 97% accuracy across different classes of physics events, significantly better than other machine learning approaches.« less

  8. STAR FORMATION ACROSS THE W3 COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Román-Zúñiga, Carlos G.; Ybarra, Jason E.; Tapia, Mauricio

    We present a multi-wavelength analysis of the history of star formation in the W3 complex. Using deep, near-infrared ground-based images combined with images obtained with Spitzer and Chandra observatories, we identified and classified young embedded sources. We identified the principal clusters in the complex and determined their structure and extension. We constructed extinction-limited samples for five principal clusters and constructed K-band luminosity functions that we compare with those of artificial clusters with varying ages. This analysis provided mean ages and possible age spreads for the clusters. We found that IC 1795, the centermost cluster of the complex, still hosts amore » large fraction of young sources with circumstellar disks. This indicates that star formation was active in IC 1795 as recently as 2 Myr ago, simultaneous to the star-forming activity in the flanking embedded clusters, W3-Main and W3(OH). A comparison with carbon monoxide emission maps indicates strong velocity gradients in the gas clumps hosting W3-Main and W3(OH) and shows small receding clumps of gas at IC 1795, suggestive of rapid gas removal (faster than the T Tauri timescale) in the cluster-forming regions. We discuss one possible scenario for the progression of cluster formation in the W3 complex. We propose that early processes of gas collapse in the main structure of the complex could have defined the progression of cluster formation across the complex with relatively small age differences from one group to another. However, triggering effects could act as catalysts for enhanced efficiency of formation at a local level, in agreement with previous studies.« less

  9. X-Ray Temperatures, Luminosities, and Masses from XMM-Newton Follow-upof the First Shear-selected Galaxy Cluster Sample

    NASA Astrophysics Data System (ADS)

    Deshpande, Amruta J.; Hughes, John P.; Wittman, David

    2017-04-01

    We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shear peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L X -T X relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (˜48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. LOFAR discovery of radio emission in MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    Bonafede, A.; Brüggen, M.; Rafferty, D.; Zhuravleva, I.; Riseley, C. J.; van Weeren, R. J.; Farnes, J. S.; Vazza, F.; Savini, F.; Wilber, A.; Botteon, A.; Brunetti, G.; Cassano, R.; Ferrari, C.; de Gasperin, F.; Orrú, E.; Pizzo, R. F.; Röttgering, H. J. A.; Shimwell, T. W.

    2018-05-01

    We present results from LOFAR and GMRT observations of the galaxy cluster MACS J0717.5+3745. The cluster is undergoing a violent merger involving at least four sub-clusters, and it is known to host a radio halo. LOFAR observations reveal new sources of radio emission in the Intra-Cluster Medium: (i) a radio bridge that connects the cluster to a head-tail radio galaxy located along a filament of galaxies falling into the main cluster, (ii) a 1.9 Mpc radio arc, that is located North West of the main mass component, (iii) radio emission along the X-ray bar, that traces the gas in the X-rays South West of the cluster centre. We use deep GMRT observations at 608 MHz to constrain the spectral indices of these new radio sources, and of the emission that was already studied in the literature at higher frequency. We find that the spectrum of the radio halo and of the relic at LOFAR frequency follows the same power law as observed at higher frequencies. The radio bridge, the radio arc, and the radio bar all have steep spectra, which can be used to constrain the particle acceleration mechanisms. We argue that the radio bridge could be caused by the re-acceleration of electrons by shock waves that are injected along the filament during the cluster mass assembly. Despite the sensitivity reached by our observations, the emission from the radio halo does not trace the emission of the gas revealed by X-ray observations. We argue that this could be due to the difference in the ratio of kinetic over thermal energy of the intra-cluster gas, suggested by X-ray observations.

  11. Young Cluster Berkeley 59: Properties, Evolution, and Star Formation

    NASA Astrophysics Data System (ADS)

    Panwar, Neelam; Pandey, A. K.; Samal, Manash R.; Battinelli, Paolo; Ogura, K.; Ojha, D. K.; Chen, W. P.; Singh, H. P.

    2018-01-01

    Berkeley 59 is a nearby (∼1 kpc) young cluster associated with the Sh2-171 H II region. We present deep optical observations of the central ∼2.5 × 2.5 pc2 area of the cluster, obtained with the 3.58 m Telescopio Nazionale Galileo. The V/(V–I) color–magnitude diagram manifests a clear pre-main-sequence (PMS) population down to ∼0.2 M ⊙. Using the near-infrared and optical colors of the low-mass PMS members, we derive a global extinction of A V = 4 mag and a mean age of ∼1.8 Myr, respectively, for the cluster. We constructed the initial mass function and found that its global slopes in the mass ranges of 0.2–28 M ⊙ and 0.2–1.5 M ⊙ are ‑1.33 and ‑1.23, respectively, in good agreement with the Salpeter value in the solar neighborhood. We looked for the radial variation of the mass function and found that the slope is flatter in the inner region than in the outer region, indicating mass segregation. The dynamical status of the cluster suggests that the mass segregation is likely primordial. The age distribution of the PMS sources reveals that the younger sources appear to concentrate close to the inner region compared to the outer region of the cluster, a phenomenon possibly linked to the time evolution of star-forming clouds. Within the observed area, we derive a total mass of ∼103 M ⊙ for the cluster. Comparing the properties of Berkeley 59 with other young clusters, we suggest it resembles more closely the Trapezium cluster.

  12. Constraints on the Energy Density Content of the Universe Using Only Clusters of Galaxies

    NASA Technical Reports Server (NTRS)

    Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark

    2003-01-01

    We demonstrate that it is possible to constrain the energy content of the Universe with high accuracy using observations of clusters of galaxies only. The degeneracies in the cosmological parameters are lifted by combining constraints from different observables of galaxy clusters. We show that constraints on cosmological parameters from galaxy cluster number counts as a function of redshift and accurate angular diameter distance measurements to clusters are complementary to each other and their combination can constrain the energy density content of the Universe well. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Zeldovich effect) surveys, the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect (X-SZ method). In this letter we combine constraints from simulated cluster number counts expected from a 12 deg2 SZ cluster survey and constraints from simulated angular diameter distance measurements based on using the X-SZ method assuming an expected accuracy of 7% in the angular diameter distance determination of 70 clusters with redshifts less than 1.5. We find that R, can be determined within about 25%, A within 20%, and w within 16%. Any cluster survey can be used to select clusters for high accuracy distance measurements, but we assumed accurate angular diameter distance measurements for only 70 clusters since long observations are necessary to achieve high accuracy in distance measurements. Thus the question naturally arises: How to select clusters of galaxies for accurate diameter distance determinations? In this letter, as an example, we demonstrate that it is possible to optimize this selection changing the number of clusters observed, and the upper cut off of their redshift range. We show that constraints on cosmological parameters from combining cluster number counts and angular diameter distance measurements, as opposed to general expectations, will not improve substantially selecting clusters with redshifts higher than one. This important conclusion allow us to restrict our cluster sample to clusters closer than one, in a range where the observational time for accurate distance measurements are more manageable. Subject headings: cosmological parameters - cosmology: theory - galaxies: clusters: general - X-rays: galaxies: clusters

  13. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    PubMed

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Adaptation to the deep-sea hydrothermal vents and cold seeps: Insights from the transcriptomes of Alvinocaris longirostris in both environments

    NASA Astrophysics Data System (ADS)

    Hui, Min; Cheng, Jiao; Sha, Zhongli

    2018-05-01

    Alvinocaris longirostris Kikuchi and Ohta, 1995 is one of the few species co-distributed in deep-sea hydrothermal vent and cold seep environments. We performed the transcriptome analysis for A. longirostris and identified differentially expressed genes (DEGs) between samples from the Iheya North hydrothermal vent (HV) and a methane seep in the South China Sea (MS). From the 57,801 annotated unigenes, multi-copies of enzyme family members for eliminating toxic xenobiotics were isolated and seven putatively duplicated gene clusters of cytochrome P450s were discovered, which may contribute to adaptation to the harsh conditions. Eight single amino acid substitutions of a Rhodopsin gene with low expression in two deep-sea alvinocaridid species were positively selected when compared with shallow water shrimps, which may be the result of adaptation to the dim-light environment in deep sea. 408 DEGs were identified with 53 and 355 up-regulated in HV and MS, respectively. Various genes associated with sulfur metabolism, detoxification and mitochondria were included, revealing different mechanisms of adaptation to the two types of extreme environments. All results are expected to serve as important basis for the further study.

  15. Permeability, Fracture Clusters, and Stress State:Implications for Mine-based Studies of EcoHydrology

    NASA Astrophysics Data System (ADS)

    Earnest, E. J.; Boutt, D. F.; Murdoch, L.; Hisz, D. B.; Ebenhack, J.; Kieft, T. L.; Onstott, T. C.; Wang, H. F.

    2011-12-01

    Mine-based ecohydrology studies provide unique access to deep flow systems at multiple crustal depths. Mass and energy transfer in such deep flow systems is typically dominated by localized flow through discrete features such as fractures and faults, of which only a small percentage contribute to both local and regional flow systems. Predicting which fractures are contributing to flow and transport in these networks has proven extremely difficult. Researchers working at deeper crustal levels (Barton et al., 1995) have successfully predicted fracture network permeability using relationships between fracture aperture (i.e. transmissivity) and in-situ stress. Observations suggest that compared to porous media, fractured rocks have flow systems that operate across large spatial scales and may contain clusters that are hydraulically isolated. . This point is important as these flow systems can house fluids and microbes in isolated clusters and are minimally impacted by the presence of a mine. One example of this is the the former Homestake gold mine in the northern Black Hills, South Dakota, which is being considered as a location for an underground science laboratory. Mine workings cover several km2 in plan and extend to a depth 2.4 km. The area is dominantly Proterozoic metamorphic rocks, forming regional-scale folds with plunge axes oriented ~40o to the SSE. Prior analysis of the hydrogeology of the area indicates that permeability is strongly dependent on effective stress; an increase in permeability with decreasing depth appears to be an important factor controlling the development of a shallow ground water flow systems. In this contribution we examine a set of factors contributing to permeability distribution at the site with a specific focus on: 1) refining permeability-depth models for fractured rock to include the influence of both normal and shear fracture deformation on permeability-depth trends, 2) promote the development and testing of a stress-path fracture permeability hypothesis to examine space-time fracture permeability evolution at various depths, and 3) evaluate factors necessary to create and sustain isolated fracture clusters that could be targets for studies of ecohydrology. Preliminary field work in fractured rocks of Eastern Massachusetts suggest that the stress-path hypothesis, in which fracture permeability undergoes spatial and temporal changes due to erosion and rotatation of the in situ stress field, can be used to explain depth-dependent permeability trends, and is particularly significant for flow systems at depths significant for deep ecohydrology studies.

  16. Probing high-redshift clusters with HST/ACS gravitational weak-lensing and Chandra x-ray observations

    NASA Astrophysics Data System (ADS)

    Jee, Myungkook James

    2006-06-01

    Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become highly unstable in this redshift regime. Therefore, the relatively unbiased weak-lensing measurements of the cluster mass properties can be used to adequately calibrate the scaling relations in future high-redshift cluster investigations.

  17. Stellar Vampires Unmasked

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have found possible proofs of stellar vampirism in the globular cluster 47 Tucanae. Using ESO's Very Large Telescope, they found that some hot, bright, and apparently young stars in the cluster present less carbon and oxygen than the majority of their sisters. This indicates that these few stars likely formed by taking their material from another star. "This is the first detection of a chemical signature clearly pointing to a specific scenario to form so-called 'Blue straggler stars' in a globular cluster", said Francesco Ferraro, from the Astronomy Department of Bologna University (Italy) and lead-author of the paper presenting the results. Blue stragglers are unexpectedly young-looking stars found in stellar aggregates, such as globular clusters, which are known to be made up of old stars. These enigmatic objects are thought to be created in either direct stellar collisions or through the evolution and coalescence of a binary star system in which one star 'sucks' material off the other, rejuvenating itself. As such, they provide interesting constraints on both binary stellar evolution and star cluster dynamics. To date, the unambiguous signatures of either stellar traffic accidents or stellar vampirism have not been observed, and the formation mechanisms of Blue stragglers are still a mystery. The astronomers used ESO's Very Large Telescope to measure the abundance of chemical elements at the surface of 43 Blue straggler stars in the globular cluster 47 Tucanae [1]. They discovered that six of these Blue straggler stars contain less carbon and oxygen than the majority of these peculiar objects. Such an anomaly indicates that the material at the surface of the blue stragglers comes from the deep interiors of a parent star [2]. Such deep material can reach the surface of the blue straggler only during the mass transfer process occurring between two stars in a binary system. Numerical simulations indeed show that the coalescence of stars should not result in anomalous abundances. ESO PR Photo 37/06 ESO PR Photo 37/06 Abundances in Blue Straggler Stars In the core of a globular cluster, stars are packed extremely close to each other: more than 4000 stars are found in the innermost light-year-sized cube of 47 Tucanae. Thus, stellar collisions are thought to be very frequent and the collision channel for the formation of blue stragglers should be extremely efficient. The chemical signature detected by these observations demonstrates that also the binary mass-transfer scenario is fully active even in a high-density cluster like 47 Tuc. "Our discovery is therefore a fundamental step toward the solution of the long-standing mystery of blue straggler formation in globular clusters," said Ferraro. Measurements of so many faint stars are only possible since the advent of 8-m class telescopes equipped with multiplexing capability spectrographs. In this case, the astronomers used the FLAMES/Giraffe instrument that allows the simultaneous observation of up to 130 targets at a time, making it ideally suited for surveying individual stars in closely populated fields.

  18. Cluster headache: clinical features and therapeutic options.

    PubMed

    Gaul, Charly; Diener, Hans-Christoph; Müller, Oliver M

    2011-08-01

    Cluster headache is the most common type of trigemino-autonomic headache, affecting ca. 120 000 persons in Germany alone. The attacks of pain are in the periorbital area on one side, last 90 minutes on average, and are accompanied by trigemino-autonomic manifestations and restlessness. Most patients have episodic cluster headache; about 15% have chronic cluster headache, with greater impairment of their quality of life. The attacks often possess a circadian and seasonal rhythm. Selective literature review Oxygen inhalation and triptans are effective acute treatment for cluster attacks. First-line drugs for attack prophylaxis include verapamil and cortisone; alternatively, lithium and topiramate can be given. Short-term relief can be obtained by the subcutaneous infiltration of local anesthetics and steroids along the course of the greater occipital nerve, although most of the evidence in favor of this is not derived from randomized clinical trials. Patients whose pain is inadequately relieved by drug treatment can be offered newer, invasive treatments, such as deep brain stimulation in the hypothalamus (DBS) and bilateral occipital nerve stimulation (ONS). Pharmacotherapy for the treatment of acute attacks and for attack prophylaxis is effective in most patients. For the minority who do not gain adequate relief, newer invasive techniques are available in some referral centers. Definitive conclusions as to their value cannot yet be drawn from the available data.

  19. A population of faint low surface brightness galaxies in the Perseus cluster core

    NASA Astrophysics Data System (ADS)

    Wittmann, Carolin; Lisker, Thorsten; Ambachew Tilahun, Liyualem; Grebel, Eva K.; Conselice, Christopher J.; Penny, Samantha; Janz, Joachim; Gallagher, John S.; Kotulla, Ralf; McCormac, James

    2017-09-01

    We present the detection of 89 low surface brightness (LSB), and thus low stellar density galaxy candidates in the Perseus cluster core, of the kind named 'ultra-diffuse galaxies', with mean effective V-band surface brightnesses 24.8-27.1 mag arcsec-2, total V-band magnitudes -11.8 to -15.5 mag, and half-light radii 0.7-4.1 kpc. The candidates have been identified in a deep mosaic covering 0.3 deg2, based on wide-field imaging data obtained with the William Herschel Telescope. We find that the LSB galaxy population is depleted in the cluster centre and only very few LSB candidates have half-light radii larger than 3 kpc. This appears consistent with an estimate of their tidal radius, which does not reach beyond the stellar extent even if we assume a high dark matter content (M/L = 100). In fact, three of our candidates seem to be associated with tidal streams, which points to their current disruption. Given that published data on faint LSB candidates in the Coma cluster - with its comparable central density to Perseus - show the same dearth of large objects in the core region, we conclude that these cannot survive the strong tides in the centres of massive clusters.

  20. Turbulent heating in galaxy clusters brightest in X-rays.

    PubMed

    Zhuravleva, I; Churazov, E; Schekochihin, A A; Allen, S W; Arévalo, P; Fabian, A C; Forman, W R; Sanders, J S; Simionescu, A; Sunyaev, R; Vikhlinin, A; Werner, N

    2014-11-06

    The hot (10(7) to 10(8) kelvin), X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales much shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating for these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies, through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM remains open. Here we present a plausible solution to this question based on deep X-ray data and a new data analysis method that enable us to evaluate directly the ICM heating rate from the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius-it may therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in the atmospheres of X-ray-emitting, gas-rich systems on scales from galaxy clusters to groups and elliptical galaxies.

  1. A Deep X-ray Survey of Low-Mass PMS Stars in NGC 2264

    NASA Technical Reports Server (NTRS)

    Simon, Theodore

    2005-01-01

    Two X-ray images were obtained with the XMM-Newton spacecraft of more than 300 members of the NGC 2264 Open Cluster and its associated molecular cloud in order to investigate their magnetic activity. The X-ray fluxes extracted from those observations were used to study the dependence of stellar dynamo activity upon age and rotation for the optically revealed T Tauri stars and to place empirical constraints on theoretical models of angular momentum/dynamo evolution. The observations were also used to study the role of magnetic fields in the formation of low mass stars through the observation of very young protostars that are deeply embedded in the molecular cloud located behind the visible open cluster.

  2. The KMOS Cluster Survey - KCS: Timing the Formation of Passive Galaxies in Clusters at 1.4

    NASA Astrophysics Data System (ADS)

    Beifiori, Alessandra

    2017-07-01

    In this talk I will discuss recent progress studying the rest-frame optical properties of quiescent galaxies at this critical epoch using KMOS, the K-band Multi-Object Spectrograph on the ESO/VLT. I will highlight recent results form the KMOS Custer Survey (KCS), whose aim is to provide a census of quiescent galaxy kinematics at 1.4 ≤ z ≤ 1.8 in know overdensities. The combination of kinematic measurements from KMOS and structural parameters measured from deep HST imaging allowed us to place constraints on the formation ages of passive galaxies at 1.4

  3. Integrated HI emission in galaxy groups and clusters

    NASA Astrophysics Data System (ADS)

    Ai, Mei; Zhu, Ming; Fu, Jian

    2017-09-01

    The integrated HI emission from hierarchical structures such as groups and clusters of galaxies can be detected by FAST at intermediate redshifts. Here we propose to use FAST to study the evolution of the global HI content of clusters and groups over cosmic time by measuring their integrated HI emissions. We use the Virgo Cluster as an example to estimate the detection limit of FAST, and have estimated the integration time to detect a Virgo type cluster at different redshifts (from z = 0.1 to z = 1.5).We have also employed a semi-analytic model (SAM) to simulate the evolution of HI contents in galaxy clusters. Our simulations suggest that the HI mass of a Virgo-like cluster could be 2-3 times higher and the physical size could be more than 50% smaller when redshift increases from z = 0.3 to z = 1. Thus the integration time could be reduced significantly and gas rich clusters at intermediate redshifts can be detected by FAST in less than 2 hours of integration time. For the local Universe, we have also used SAM simulations to create mock catalogs of clusters to predict the outcomes from FAST all sky surveys. Comparing with the optically selected catalogs derived by cross matching the galaxy catalogs from the SDSS survey and the ALFALFA survey, we find that the HI mass distribution of the mock catalog with 20 s of integration time agrees well with that of observations. However, the mock catalog with 120 s of integration time predicts many more groups and clusters that contain a population of low mass HI galaxies not detected by the ALFALFA survey. A future deep HI blind sky survey with FAST would be able to test such prediction and set constraints on the numerical simulation models. The observational strategy and sample selections for future FAST observations of galaxy clusters at high redshifts are also discussed.

  4. Diffuse Optical Light in Galaxy Clusters. II. Correlations with Cluster Properties

    NASA Astrophysics Data System (ADS)

    Krick, J. E.; Bernstein, R. A.

    2007-08-01

    We have measured the flux, profile, color, and substructure in the diffuse intracluster light (ICL) in a sample of 10 galaxy clusters with a range of mass, morphology, redshift, and density. Deep, wide-field observations for this project were made in two bands at the 1 m Swope and 2.5 m du Pont telescopes at Las Campanas Observatory. Careful attention in reduction and analysis was paid to the illumination correction, background subtraction, point-spread function determination, and galaxy subtraction. ICL flux is detected in both bands in all 10 clusters ranging from 7.6×1010 to 7.0×1011 h-170 Lsolar in r and 1.4×1010 to 1.2×1011 h-170 Lsolar in the B band. These fluxes account for 6%-22% of the total cluster light within one-quarter of the virial radius in r and 4%-21% in the B band. Average ICL B-r colors range from 1.5 to 2.8 mag when k- and evolution corrected to the present epoch. In several clusters we also detect ICL in group environments near the cluster center and up to 1 h-170 Mpc distant from the cluster center. Our sample, having been selected from the Abell sample, is incomplete in that it does not include high-redshift clusters with low density, low flux, or low mass, and it does not include low-redshift clusters with high flux, high mass, or high density. This bias makes it difficult to interpret correlations between ICL flux and cluster properties. Despite this selection bias, we do find that the presence of a cD galaxy corresponds to both centrally concentrated galaxy profiles and centrally concentrated ICL profiles. This is consistent with ICL either forming from galaxy interactions at the center or forming at earlier times in groups and later combining in the center.

  5. A comprehensive study of the rich open star cluster NGC 2099 based on deep BVI CCD observations

    NASA Astrophysics Data System (ADS)

    Nilakshi,; Sagar, R.

    2002-01-01

    The CCD observations of the rich open star cluster NGC 2099 and its surrounding field region have been carried out up to a limiting magnitude of V ~ 22 mag in B, V and I passbands for the first time. A total of ~ 12 000 stars have been observed in the area of about 24arcmin x 34arcmin in the cluster region, as well as ~ 2180 stars in the ~ 12arcmin x 12arcmin area of the field region located ~ 45arcmin away from the cluster center. The cluster parameters determined by fitting the convective core overshoot isochrones in the V, (B-V) and V, (V-I) diagrams are E(B-V) = 0.30+/-0.04 mag, distance = 1360+/- 100 pc, age = 400 Myr and metallicity Z = 0.008. A well-defined cluster main sequence spread over about 8 mag in range is observed for the first time. Its intrinsic spread amounting to ~ 0.06 mag in colour is almost the same over the entire brightness and can be understood in terms of the presence of physical/optical binaries. The core and cluster radii determined from the radial stellar density profiles are 185 arcsec and 1000 arcsec respectively. Only about 22% of cluster members are present in the core region. The effects of mass segregation, most probably due to dynamical evolution, have been observed in the cluster. The mass function slope of the entire cluster is ~ -0.67+/-0.12. It becomes closer to the Salpeter value of -1.35, if flattening in the cluster mass function due to presence of both binaries and a much more extended corona is considered. Full Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/381/65

  6. The Magellanic Bridge Cluster NGC 796: Deep Optical AO Imaging Reveals the Stellar Content and Initial Mass Function of a Massive Open Cluster

    NASA Astrophysics Data System (ADS)

    Kalari, Venu M.; Carraro, Giovanni; Evans, Christopher J.; Rubio, Monica

    2018-04-01

    NGC 796 is a massive young cluster located 59 kpc from us in the diffuse intergalactic medium of the 1/5–1/10 Z⊙ Magellanic Bridge, allowing us to probe variations in star formation and stellar evolution processes as a function of metallicity in a resolved fashion, and providing a link between resolved studies of nearby solar-metallicity and unresolved distant metal-poor clusters located in high-redshift galaxies. In this paper, we present adaptive optics griHα imaging of NGC 796 (at 0.″5, which is ∼0.14 pc at the cluster distance) along with optical spectroscopy of two bright members to quantify the cluster properties. Our aim is to explore whether star formation and stellar evolution vary as a function of metallicity by comparing the properties of NGC 796 to higher-metallicity clusters. We find an age of {20}-5+12 Myr from isochronal fitting of the cluster main sequence in the color–magnitude diagram. Based on the cluster luminosity function, we derive a top-heavy stellar initial mass function (IMF) with a slope α = 1.99 ± 0.2, hinting at a metallicity and/or environmental dependence of the IMF, which may lead to a top-heavy IMF in the early universe. Study of the Hα emission-line stars reveals that classical Be stars constitute a higher fraction of the total B-type stars when compared with similar clusters at greater metallicity, providing some support to the chemically homogeneous theory of stellar evolution. Overall, NGC 796 has a total estimated mass of 990 ± 200 M⊙, and a core radius of 1.4 ± 0.3 pc, which classifies it as a massive young open cluster, unique in the diffuse interstellar medium of the Magellanic Bridge.

  7. Models of gravitational lens candidates from Space Warps CFHTLS

    NASA Astrophysics Data System (ADS)

    Küng, Rafael; Saha, Prasenjit; Ferreras, Ignacio; Baeten, Elisabeth; Coles, Jonathan; Cornen, Claude; Macmillan, Christine; Marshall, Phil; More, Anupreeta; Oswald, Lucy; Verma, Aprajita; Wilcox, Julianne K.

    2018-03-01

    We report modelling follow-up of recently discovered gravitational-lens candidates in the Canada France Hawaii Telescope Legacy Survey. Lens modelling was done by a small group of specially interested volunteers from the Space Warps citizen-science community who originally found the candidate lenses. Models are categorized according to seven diagnostics indicating (a) the image morphology and how clear or indistinct it is, (b) whether the mass map and synthetic lensed image appear to be plausible, and (c) how the lens-model mass compares with the stellar mass and the abundance-matched halo mass. The lensing masses range from ˜1011 to >1013 M⊙. Preliminary estimates of the stellar masses show a smaller spread in stellar mass (except for two lenses): a factor of a few below or above ˜1011 M⊙. Therefore, we expect the stellar-to-total mass fraction to decline sharply as lensing mass increases. The most massive system with a convincing model is J1434+522 (SW 05). The two low-mass outliers are J0206-095 (SW 19) and J2217+015 (SW 42); if these two are indeed lenses, they probe an interesting regime of very low star formation efficiency. Some improvements to the modelling software (SpaghettiLens), and discussion of strategies regarding scaling to future surveys with more and frequent discoveries, are included.

  8. The Faint End of the z = 5 Quasar Luminosity Function from the CFHTLS

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Fan, Xiaohui; Jiang, Linhua; Cai, Zheng

    2018-03-01

    We present results from a spectroscopic survey of z ∼ 5 quasars in the CFHT Legacy Survey. Using both optical color selection and a likelihood method, we select 97 candidates over an area of 105 deg2 to a limit of i AB < 23.2, and 7 candidates in the range 23.2 < i AB < 23.7 over an area of 18.5 deg2. Spectroscopic observations for 43 candidates were obtained with Gemini, MMT, and Large Binocular Telescope, of which 37 are z > 4 quasars. This sample extends measurements of the quasar luminosity function ∼1.5 mag fainter than our previous work in Sloan Digital Sky Survey Stripe 82. The resulting luminosity function is in good agreement with our previous results, and suggests that the faint end slope is not steep. We perform a detailed examination of our survey completeness, particularly the impact of the Lyα emission assumed in our quasar spectral models, and find hints that the observed Lyα emission from faint z ∼ 5 quasars is weaker than for z ∼ 3 quasars at a similar luminosity. Our results strongly disfavor a significant contribution of faint quasars to the hydrogen-ionizing background at z = 5.

  9. Deep learning for healthcare: review, opportunities and challenges.

    PubMed

    Miotto, Riccardo; Wang, Fei; Wang, Shuang; Jiang, Xiaoqian; Dudley, Joel T

    2017-05-06

    Gaining knowledge and actionable insights from complex, high-dimensional and heterogeneous biomedical data remains a key challenge in transforming health care. Various types of data have been emerging in modern biomedical research, including electronic health records, imaging, -omics, sensor data and text, which are complex, heterogeneous, poorly annotated and generally unstructured. Traditional data mining and statistical learning approaches typically need to first perform feature engineering to obtain effective and more robust features from those data, and then build prediction or clustering models on top of them. There are lots of challenges on both steps in a scenario of complicated data and lacking of sufficient domain knowledge. The latest advances in deep learning technologies provide new effective paradigms to obtain end-to-end learning models from complex data. In this article, we review the recent literature on applying deep learning technologies to advance the health care domain. Based on the analyzed work, we suggest that deep learning approaches could be the vehicle for translating big biomedical data into improved human health. However, we also note limitations and needs for improved methods development and applications, especially in terms of ease-of-understanding for domain experts and citizen scientists. We discuss such challenges and suggest developing holistic and meaningful interpretable architectures to bridge deep learning models and human interpretability. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Cloud-Based Perception and Control of Sensor Nets and Robot Swarms

    DTIC Science & Technology

    2016-04-01

    distributed stream processing framework provides the necessary API and infrastructure to develop and execute such applications in a cluster of computation...streaming DDDAS applications based on challenges they present to the backend Cloud control system. Figure 2 Parallel SLAM Application 3 1) Set of...the art deep learning- based object detectors can recognize among hundreds of object classes and this capability would be very useful for mobile

  11. A Large-Scale Super-Structure at z=0.65 in the UKIDSS Ultra-Deep Survey Field

    NASA Astrophysics Data System (ADS)

    Galametz, Audrey; Candels Clustering Working Group

    2017-07-01

    In hierarchical structure formation scenarios, galaxies accrete along high density filaments. Superclusters represent the largest density enhancements in the cosmic web with scales of 100 to 200 Mpc. As they represent the largest components of LSS, they are very powerful tools to constrain cosmological models. Since they also offer a wide range of density, from infalling group to high density cluster core, they are also the perfect laboratory to study the influence of environment on galaxy evolution. I will present a newly discovered large scale structure at z=0.65 in the UKIDSS UDS field. Although statistically predicted, the presence of such structure in UKIDSS, one of the most extensively covered and studied extragalactic field, remains a serendipity. Our follow-up confirmed more than 15 group members including at least three galaxy clusters with M200 10^14Msol . Deep spectroscopy of the quiescent core galaxies reveals that the most massive structure knots are at very different formation stage with a range of red sequence properties. Statistics allow us to map formation age across the structure denser knots and identify where quenching is most probably occurring across the LSS. Spectral diagnostics analysis also reveals an interesting population of transition galaxies we suspect are transforming from star-forming to quiescent galaxies.

  12. Deep photometry of two accreted families of globular clusters in the remote M31 halo

    NASA Astrophysics Data System (ADS)

    Mackey, Dougal

    2013-10-01

    Globular clusters {GCs} are fossil relics from which we can obtain critical insights into the merger and accretion events that underlie hierarchical galaxy assembly. As part of the major Pan-Andromeda Archaeological Survey {PAndAS} we have discovered two groups of GCs that closely trace narrow stellar debris streams in the M31 halo. These clearly represent two distinct accreted families of GCs - the only known examples apart from the few Galactic GCs arriving with the Sagittarius dwarf. We propose to obtain deep ACS imaging of 14 GCs spanning these two accreted families, allowing us to measure the constituent stellar populations, line-of-sight distance, and structural parameters of each object. We will, for the first time, quantify the typical properties of accreted GCs in the M31 halo as well as the degree of variation amongst them, and how closely they correspond to the suspected accreted GC population in the Milky Way. Combined with new radial velocity measurements for the GCs, our proposed observations will allow us to trace the 3D orbits of the two streams within the M31 halo, and thus break the main degeneracies that plague numerical models designed to probe the gravitational potential and distribution of dark mass.

  13. AMI-LA observations of the SuperCLASS supercluster

    NASA Astrophysics Data System (ADS)

    Riseley, C. J.; Grainge, K. J. B.; Perrott, Y. C.; Scaife, A. M. M.; Battye, R. A.; Beswick, R. J.; Birkinshaw, M.; Brown, M. L.; Casey, C. M.; Demetroullas, C.; Hales, C. A.; Harrison, I.; Hung, C.-L.; Jackson, N. J.; Muxlow, T.; Watson, B.; Cantwell, T. M.; Carey, S. H.; Elwood, P. J.; Hickish, J.; Jin, T. Z.; Razavi-Ghods, N.; Scott, P. F.; Titterington, D. J.

    2018-03-01

    We present a deep survey of the Super-Cluster Assisted Shear Survey (SuperCLASS) supercluster - a region of sky known to contain five Abell clusters at redshift z ˜ 0.2 - performed using the Arcminute Microkelvin Imager (AMI) Large Array (LA) at 15.5 GHz. Our survey covers an area of approximately 0.9 deg2. We achieve a nominal sensitivity of 32.0 μJy beam-1 towards the field centre, finding 80 sources above a 5σ threshold. We derive the radio colour-colour distribution for sources common to three surveys that cover the field and identify three sources with strongly curved spectra - a high-frequency-peaked source and two GHz-peaked-spectrum sources. The differential source count (i) agrees well with previous deep radio source counts, (ii) exhibits no evidence of an emerging population of star-forming galaxies, down to a limit of 0.24 mJy, and (iii) disagrees with some models of the 15 GHz source population. However, our source count is in agreement with recent work that provides an analytical correction to the source count from the Square Kilometre Array Design Study (SKADS) Simulated Sky, supporting the suggestion that this discrepancy is caused by an abundance of flat-spectrum galaxy cores as yet not included in source population models.

  14. DSAP: deep-sequencing small RNA analysis pipeline.

    PubMed

    Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus

    2010-07-01

    DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.

  15. NASA's Future X-ray Missions: From Constellation-X to Generation-X

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2006-01-01

    Among the most important topics in modern astrophysics are the formation and evolution of supermassive black holes in concert with galaxy bulges, the nature of the dark energy equation of state, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. NASA's next major X-ray observatory is Constellation-X, which is being developed to perform spatially resolved high-resolution X-ray spectroscopy. Con-X will directly measure the physical properties of material near black holes' last stable orbits and the absolute element abundances and velocities of hot gas in clusters of galaxies. The Con-X mission will be described, as well as its successor, Generation-X (anticipated to fly approx.1 decade after Con-X). After describing these missions and their driving science areas, the talk will focus on areas in which Chandra observing programs may enable science with future X-ray observatories. These areas include a possible ultra-deep Chandra imaging survey as an early Universe pathfinder, a large program to spatially resolve the hot intracluster medium of massive clusters to aid dark energy measurements, and possible deep spectroscopic observations to aid in preparatory theoretical atomic physics work needed for interpreting Con-X spectra.

  16. VizieR Online Data Catalog: Ultradiffuse galaxies found in deep HST images of HFF (Lee+, 2017)

    NASA Astrophysics Data System (ADS)

    Lee, M. G.; Kang, J.; Lee, J. H.; Jang in, S.

    2018-03-01

    Abell S1063 and Abell 2744 are located at redshift z=0.348 and z=0.308, respectively, so their HST fields cover a relatively large fraction of each cluster. They are part of the target galaxy clusters in the Hubble Frontier Fields (HFF) Program, for which deep Hubble Space Telescope (HST) images are available (Lotz+ 2017ApJ...837...97L). We used ACS/F814W(I) and WFC3/F105W(Y) images for Abell S1063 and Abell 2744 in the HFF. The effective wavelengths of the F814W and F105W filters for the redshifts of Abell S1063 and Abell 2744 (6220 and 8030Å) correspond approximately to SDSS r' and Cousins I (or SDSS i') in the rest frame, respectively. Figure 1 display color images of the HST fields for Abell S1063 and Abell 2744. In this study we adopt the cosmological parameters H0=73km/s/Mpc, ΩM=0.27, and ΩΛ=0.73. For these parameters, luminosity distance moduli of Abell S1063 and Abell 2744 are (m-M)0=41.25 (d=1775Mpc) and 40.94 (d=1540Mpc), and angular diameter distances are 978 and 901Mpc, respectively. (5 data files).

  17. Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida)

    PubMed Central

    2010-01-01

    Background Nematodes represent the most abundant benthic metazoa in one of the largest habitats on earth, the deep sea. Characterizing major patterns of biodiversity within this dominant group is a critical step towards understanding evolutionary patterns across this vast ecosystem. The present study has aimed to place deep-sea nematode species into a phylogenetic framework, investigate relationships between shallow water and deep-sea taxa, and elucidate phylogeographic patterns amongst the deep-sea fauna. Results Molecular data (18 S and 28 S rRNA) confirms a high diversity amongst deep-sea Enoplids. There is no evidence for endemic deep-sea lineages in Maximum Likelihood or Bayesian phylogenies, and Enoplids do not cluster according to depth or geographic location. Tree topologies suggest frequent interchanges between deep-sea and shallow water habitats, as well as a mixture of early radiations and more recently derived lineages amongst deep-sea taxa. This study also provides convincing evidence of cosmopolitan marine species, recovering a subset of Oncholaimid nematodes with identical gene sequences (18 S, 28 S and cox1) at trans-Atlantic sample sites. Conclusions The complex clade structures recovered within the Enoplida support a high global species richness for marine nematodes, with phylogeographic patterns suggesting the existence of closely related, globally distributed species complexes in the deep sea. True cosmopolitan species may additionally exist within this group, potentially driven by specific life history traits of Enoplids. Although this investigation aimed to intensively sample nematodes from the order Enoplida, specimens were only identified down to genus (at best) and our sampling regime focused on an infinitesimal small fraction of the deep-sea floor. Future nematode studies should incorporate an extended sample set covering a wide depth range (shelf, bathyal, and abyssal sites), utilize additional genetic loci (e.g. mtDNA) that are informative at the species level, and apply high-throughput sequencing methods to fully assay community diversity. Finally, further molecular studies are needed to determine whether phylogeographic patterns observed in Enoplids are common across other ubiquitous marine groups (e.g. Chromadorida, Monhysterida). PMID:21167065

  18. A Strong Merger Shock in Abell 665

    NASA Technical Reports Server (NTRS)

    Dasadia, S.; Sun, M.; Sarazin, C.; Morandi, A.; Markevitch, M.; Wik, D.; Feretti, L.; Giovannini, G.; Govoni, F.

    2016-01-01

    Deep (103 ks) Chandra observations of Abell 665 have revealed rich structures in this merging galaxy cluster, including a strong shock and two cold fronts. The newly discovered shock has a Mach number of M =?3.0 +/- 0.6, propagating in front of a cold disrupted cloud. This makes Abell 665 the second cluster, after the Bullet cluster, where a strong merger shock of M is approximately 3 has been detected. The shock velocity from jump conditions is consistent with (2.7 +/- 0.7) × 10(exp 3) km s(exp -1). The new data also reveal a prominent southern cold front with potentially heated gas ahead of it. Abell 665 also hosts a giant radio halo. There is a hint of diffuse radio emission extending to the shock at the north, which needs to be examined with better radio data. This new strong shock provides a great opportunity to study the reacceleration model with the X-ray and radio data combined.

  19. Unveiling the Synchrotron Cosmic Web: Pilot Study

    NASA Astrophysics Data System (ADS)

    Brown, Shea; Rudnick, Lawrence; Pfrommer, Christoph; Jones, Thomas

    2011-10-01

    The overall goal of this project is to challenge our current theoretical understanding of the relativistic particle populations in the inter-galactic medium (IGM) through deep 1.4 GHz observations of 13 massive, high-redshift clusters of galaxies. Designed to compliment/extend the GMRT radio halo survey (Venturi et al. 2007), these observations will attempt to detect the peaks of the purported synchrotron cosmic-web, and place serious limits on models of CR acceleration and magnetic field amplification during large-scale structure formation. The primary goals of this survey are: 1) Confirm the bi-modal nature of the radio halo population, which favors turbulent re-acceleration of cosmic-ray electrons (CRe) during cluster mergers as the source of the diffuse radio emission; 2) Directly test hadronic secondary models which predict the presence of cosmic-ray protons (CRp) in the cores of massive X-ray clusters; 3) Search in polarization for shock structures, a potential source of CR acceleration in the IGM.

  20. Tidal origin of NGC 1427A in the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Serra, P.; Koribalski, B.; Venhola, A.; Iodice, E.; Catinella, B.; Cortese, L.; Peletier, R.; Popping, A.; Keenan, O.; Capaccioli, M.

    2018-02-01

    We present new HI observations from the Australia Telescope Compact Array and deep optical imaging from OmegaCam on the VLT Survey Telescope of NGC 1427A, an arrow-shaped dwarf irregular galaxy located in the Fornax cluster. The data reveal a star-less HI tail that contains ˜10 per cent of the atomic gas of NGC 1427A as well as extended stellar emission that shed new light on the recent history of this galaxy. Rather than being the result of ram pressure induced star formation, as previously suggested in the literature, the disturbed optical appearance of NGC 1427A has tidal origins. The galaxy itself likely consists of two individual objects in an advanced stage of merging. The HI tail may be made of gas expelled to large radii during the same tidal interaction. It is possible that some of this gas is subject to ram pressure, which would be considered a secondary effect and implies a north-west trajectory of NGC 1427A within the Fornax cluster.

  1. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries.

    PubMed

    VanGelder, L E; Kosswattaarachchi, A M; Forrestel, P L; Cook, T R; Matson, E M

    2018-02-14

    Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 2 H 5 ), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (∼97%) with minimal overpotential losses (∼0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.

  2. Evaluation of geophysical logs, phase I, for Crossley Farms Superfund Site, Berks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Twenty-one wells were drilled at Crossley Farms Superfund Site between December 15, 1987, and May 1, 1988, to define and monitor the horizontal and vertical distribution of ground-water contamination emanating from a suspected contaminant source area (Blackhead Hill). Eight well clusters were drilled on or near the Crossley Site and three well clusters were drilled at locations hydrologically down gradient from the site. Depths of wells range from 21 to 299 feet below land surface. These wells were installed in saprolite in shallow, intermediate, and deep water-producing zones of the fractured bedrock aquifer. Borehole-geophysical and video logging were conducted between April 24, 1997, and May 8, 1997, to determine the water-producing zones, water-receiving zones, zones of vertical flow, borehole depth, and casing integrity in each well. This data and interpretation will be used to determine the location of the well intake for the existing open-hole wells, which will be retrofitted to isolate and monitor water-producing zones and prevent further cross-contamination within each open borehole, and identify wells that may need rehabilitation or replacement. Caliper and video logs were used to locate fractures, inflections on fluid-temperature and fluidresistivity logs indicated possible fluid-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance and natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, video logs, and driller?s notes, all wells will be constructed so that water-level fluctuations can be monitored and discrete water samples collected from shallow, intermediate, and deep water-bearing zones in each well. Geophysical logs were run on seven bedrock and two deep bedrock wells. Gamma logs were run on 10 bedrock wells. Twenty-two wells were inspected visually with the borehole video camera for casing integrity.

  3. The x-ray luminous galaxy cluster population at 0.9 < z ≲ 1.6 as revealed by the XMM-Newton Distant Cluster Project

    NASA Astrophysics Data System (ADS)

    Fassbender, R.; Böhringer, H.; Nastasi, A.; Šuhada, R.; Mühlegger, M.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mohr, J. J.; Pierini, D.; Pratt, G. W.; Quintana, H.; Rosati, P.; Santos, J. S.; Schwope, A. D.

    2011-12-01

    We present the largest sample to date of spectroscopically confirmed x-ray luminous high-redshift galaxy clusters comprising 22 systems in the range 0.9 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially selected as extended x-ray sources over 76.1 deg2 of non-contiguous deep archival XMM-Newton coverage, of which 49.4 deg2 are part of the core survey with a quantifiable selection function and 17.7 deg2 are classified as ‘gold’ coverage as the starting point for upcoming cosmological applications. Distant cluster candidates were followed up with moderately deep optical and near-infrared imaging in at least two bands to photometrically identify the cluster galaxy populations and obtain redshift estimates based on the colors of simple stellar population models. We test and calibrate the most promising redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least z ˜ 1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z ≳ 0.9. Photometrically identified high-z systems are spectroscopically confirmed with VLT/FORS 2 with a minimum of three concordant cluster member redshifts. We present first details of two newly identified clusters, XDCP J0338.5+0029 at z = 0.916 and XDCP J0027.2+1714 at z = 0.959, and investigate the x-ray properties of SpARCS J003550-431224 at z = 1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide x-ray properties and luminosity-based total mass estimates for the full sample of 22 high-z clusters, of which 17 are at z ⩾ 1.0 and seven populate the highest redshift bin at z > 1.3. The median system mass of the sample is M200 ≃ 2 × 1014 M⊙, while the probed mass range for the distant clusters spans approximately (0.7-7) × 1014 M⊙. The majority (>70%) of the x-ray selected clusters show rather regular x-ray morphologies, albeit in most cases with a discernible elongation along one axis. In contrast to local clusters, the z > 0.9 systems mostly do not harbor central dominant galaxies coincident with the x-ray centroid position, but rather exhibit significant brightest cluster galaxy (BCG) offsets from the x-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of Δm12 ≃ 0.3 mag. We estimate a fraction of cluster-associated NVSS 1.4 GHz radio sources of about 30%, preferentially located within 1‧ from the x-ray center. This value suggests an increase of the fraction of very luminous cluster-associated radio sources by about a factor of 2.5-5 relative to low-z systems. The galaxy populations in z ≳ 1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs of a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions. The presented XDCP high-z sample will allow first detailed studies of the cluster population during the critical cosmic epoch at lookback times of 7.3-9.5 Gyr on the aggregation and evolution of baryons in the cold and hot phases as a function of redshift and system mass. Based on observations under program IDs 079.A-0634 and 085.A-0647 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  4. Novel genomic island modifies DNA with 7-deazaguanine derivatives

    PubMed Central

    Thiaville, Jennifer J.; Kellner, Stefanie M.; Yuan, Yifeng; Hutinet, Geoffrey; Thiaville, Patrick C.; Jumpathong, Watthanachai; Mohapatra, Susovan; Brochier-Armanet, Celine; Letarov, Andrey V.; Hillebrand, Roman; Malik, Chanchal K.; Rizzo, Carmelo J.; Dedon, Peter C.; de Crécy-Lagard, Valérie

    2016-01-01

    The discovery of ∼20-kb gene clusters containing a family of paralogs of tRNA guanosine transglycosylase genes, called tgtA5, alongside 7-cyano-7-deazaguanine (preQ0) synthesis and DNA metabolism genes, led to the hypothesis that 7-deazaguanine derivatives are inserted in DNA. This was established by detecting 2’-deoxy-preQ0 and 2’-deoxy-7-amido-7-deazaguanosine in enzymatic hydrolysates of DNA extracted from the pathogenic, Gram-negative bacteria Salmonella enterica serovar Montevideo. These modifications were absent in the closely related S. enterica serovar Typhimurium LT2 and from a mutant of S. Montevideo, each lacking the gene cluster. This led us to rename the genes of the S. Montevideo cluster as dpdA-K for 7-deazapurine in DNA. Similar gene clusters were analyzed in ∼150 phylogenetically diverse bacteria, and the modifications were detected in DNA from other organisms containing these clusters, including Kineococcus radiotolerans, Comamonas testosteroni, and Sphingopyxis alaskensis. Comparative genomic analysis shows that, in Enterobacteriaceae, the cluster is a genomic island integrated at the leuX locus, and the phylogenetic analysis of the TgtA5 family is consistent with widespread horizontal gene transfer. Comparison of transformation efficiencies of modified or unmodified plasmids into isogenic S. Montevideo strains containing or lacking the cluster strongly suggests a restriction–modification role for the cluster in Enterobacteriaceae. Another preQ0 derivative, 2’-deoxy-7-formamidino-7-deazaguanosine, was found in the Escherichia coli bacteriophage 9g, as predicted from the presence of homologs of genes involved in the synthesis of the archaeosine tRNA modification. These results illustrate a deep and unexpected evolutionary connection between DNA and tRNA metabolism. PMID:26929322

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Bergh, Sidney

    It is widely believed that lenticular (S0) galaxies were initially spirals from which the gas has been removed by interactions with hot cluster gas, or by ram pressure stripping of cool gas from spirals that are orbiting within rich clusters of galaxies. However, problems with this interpretation are that (1) some lenticulars, such as NGC 3115, are isolated field galaxies rather than cluster members. (2) The distribution of flattening values of S0 galaxies in clusters, in groups, and in the field are statistically indistinguishable. This is surprising because one might have expected most of the progenitors of field S0 galaxiesmore » to have been flattened late-type galaxies, whereas lenticulars in clusters are thought to have mostly been derived from bulge-dominated early-type galaxies. (3) It should be hardest for ram pressure to strip massive luminous galaxies with deep potential wells. However, no statistically significant differences are seen between the luminosity distributions of early-type Shapley-Ames galaxies in clusters, groups, and in the field. (4) Finally both ram pressure stripping and evaporation by hot intracluster gas would be most efficient in rich clusters. However, the small number of available data in the Shapley-Ames sample appears to show no statistically significant differences between the relative frequencies of dust-poor S0{sub 1} and dust-rich S0{sub 3} galaxies in clusters, groups, and in the field. It is tentatively concluded that ram pressure stripping and heating by intracluster gas, may not be the only evolutionary channels that lead to the formation of lenticular galaxies. It is speculated that gas starvation, or gas ejection by active nuclei, may have played a major role in the formation of a significant fraction of all S0 galaxies.« less

  6. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrabback, T.; et al.

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the sourcemore » redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.« less

  7. A Deep X-ray Survey of the Globular Cluster Omega Centauri

    NASA Astrophysics Data System (ADS)

    Henleywillis, Simon; Cool, Adrienne M.; Haggard, Daryl; Heinke, Craig; Callanan, Paul; Zhao, Yue

    2018-03-01

    We identify 233 X-ray sources, of which 95 are new, in a 222 ks exposure of Omega Centauri with the Chandra X-ray Observatory's ACIS-I detector. The limiting unabsorbed flux in the core is fX(0.5-6.0 keV) ≃ 3×10-16 erg s-1 cm-2 (Lx ≃ 1×1030 erg s-1 at 5.2 kpc). We estimate that ˜60 ± 20 of these are cluster members, of which ˜30 lie within the core (rc = 155 arcsec), and another ˜30 between 1-2 core radii. We identify four new optical counterparts, for a total of 45 likely identifications. Probable cluster members include 18 cataclysmic variables (CVs) and CV candidates, one quiescent low-mass X-ray binary, four variable stars, and five stars that are either associated with ω Cen's anomalous red giant branch, or are sub-subgiants. We estimate that the cluster contains 40 ± 10 CVs with Lx > 1031 erg s-1, confirming that CVs are underabundant in ω Cen relative to the field. Intrinsic absorption is required to fit X-ray spectra of six of the nine brightest CVs, suggesting magnetic CVs, or high-inclination systems. Though no radio millisecond pulsars (MSPs) are currently known in ω Cen, more than 30 unidentified sources have luminosities and X-ray colours like those of MSPs found in other globular clusters; these could be responsible for the Fermi-detected gamma-ray emission from the cluster. Finally, we identify a CH star as the counterpart to the second-brightest X-ray source in the cluster and argue that it is a symbiotic star. This is the first such giant/white dwarf binary to be identified in a globular cluster.

  8. Detection of a pair of prominent X-ray cavities in Abell 3847

    NASA Astrophysics Data System (ADS)

    Vagshette, Nilkanth D.; Naik, Sachindra; Patil, Madhav. K.; Sonkamble, Satish S.

    2017-04-01

    We present the results obtained from a detailed analysis of a deep Chandra observation of the bright FRII radio galaxy 3C 444 in Abell 3847 cluster. A pair of huge X-ray cavities are detected along the north and south directions from the centre of 3C 444. X-ray and radio images of the cluster reveal peculiar positioning of the cavities and radio bubbles. The radio lobes and X-ray cavities are apparently not spatially coincident and exhibit offsets by ˜61 and 77 kpc from each other along the north and south directions, respectively. Radial temperature and density profiles reveal the presence of a cool core in the cluster. Imaging and spectral studies showed the removal of substantial amount of matter from the core of the cluster by the radio jets. A detailed analysis of the temperature and density profiles showed the presence of a rarely detected elliptical shock in the cluster. Detection of inflating cavities at an average distance of ˜55 kpc from the centre implies that the central engine feeds a remarkable amount of radio power (˜6.3 × 1044 erg s-1) into the intra-cluster medium over ˜108 yr, the estimated age of cavity. The cooling luminosity of the cluster was estimated to be ˜8.30 × 1043 erg s-1 , which confirms that the AGN power is sufficient to quench the cooling. Ratios of mass accretion rate to Eddington and Bondi rates were estimated to be ˜0.08 and 3.5 × 104, respectively. This indicates that the black hole in the core of the cluster accretes matter through chaotic cold accretion.

  9. Buoyant AGN Bubbles in the Quasi-isothermal Potential of NGC 1399

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Nulsen, Paul E. J.; Kraft, Ralph P.; Forman, William R.; Jones, Christine; Irwin, Jimmy A.; Randall, Scott W.; Churazov, Eugene

    2017-10-01

    The Fornax Cluster is a low-mass cool-core galaxy cluster. We present a deep Chandra study of NGC 1399, the central dominant elliptical galaxy of Fornax. The cluster center harbors two symmetric X-ray cavities coincident with a pair of radio lobes fed by two collimated jets along a north-south axis. A temperature map reveals that the active galactic nucleus (AGN) outburst has created a channel filled with cooler gas out to a radius of 10 kpc. The cavities are surrounded by cool bright rims and filaments that may have been lifted from smaller radii by the buoyant bubbles. X-ray imaging suggests a potential ghost bubble of ≳5 kpc diameter to the northwest. We find that the amount of gas lifted by AGN bubbles is comparable to that which would otherwise cool, demonstrating that AGN-driven outflow is effective in offsetting cooling in low-mass clusters. The cluster cooling timescale is > 30 times longer than the dynamical timescale, which is consistent with the lack of cold molecular gas at the cluster center. The X-ray hydrostatic mass is consistent within 10%, with the total mass derived from the optical data. The observed entropy profile rises linearly, following a steeper slope than that observed at the centers of massive clusters; gas shed by stars in NGC 1399 may be incorporated in the hot phase. However, it is far-fetched for supernova-driven outflow to produce and maintain the thermal distribution in NGC 1399, and it is in tension with the metal content in the hot gas.

  10. Young LMC clusters: the role of red supergiants and multiple stellar populations in their integrated light and CMDs

    NASA Astrophysics Data System (ADS)

    Asa'd, Randa S.; Vazdekis, Alexandre; Cerviño, Miguel; Noël, Noelia E. D.; Beasley, Michael A.; Kassab, Mahmoud

    2017-11-01

    The optical integrated spectra of three Large Magellanic Cloud young stellar clusters (NGC 1984, NGC 1994 and NGC 2011) exhibit concave continua and prominent molecular bands which deviate significantly from the predictions of single stellar population (SSP) models. In order to understand the appearance of these spectra, we create a set of young stellar population (MILES) models, which we make available to the community. We use archival International Ultraviolet Explorer integrated UV spectra to independently constrain the cluster masses and extinction, and rule out strong stochastic effects in the optical spectra. In addition, we also analyse deep colour-magnitude diagrams of the clusters to provide independent age determinations based on isochrone fitting. We explore hypotheses, including age spreads in the clusters, a top-heavy initial mass function, different SSP models and the role of red supergiant stars (RSG). We find that the strong molecular features in the optical spectra can be only reproduced by modelling an increased fraction of about ˜20 per cent by luminosity of RSG above what is predicted by canonical stellar evolution models. Given the uncertainties in stellar evolution at Myr ages, we cannot presently rule out the presence of Myr age spreads in these clusters. Our work combines different wavelengths as well as different approaches (resolved data as well as integrated spectra for the same sample) in order to reveal the complete picture. We show that each approach provides important information but in combination we can better understand the cluster stellar populations.

  11. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    DOE PAGES

    van Weeren, R. J.; Ogrean, G. A.; Jones, C.; ...

    2017-01-31

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ~0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. Here, we detect a density discontinuity north-northeast of this core, which we speculatemore » is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.« less

  12. An Intercomparison Between Radar Reflectivity and the IR Cloud Classification Technique for the TOGA-COARE Area

    NASA Technical Reports Server (NTRS)

    Carvalho, L. M. V.; Rickenbach, T.

    1999-01-01

    Satellite infrared (IR) and visible (VIS) images from the Tropical Ocean Global Atmosphere - Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) experiment are investigated through the use of Clustering Analysis. The clusters are obtained from the values of IR and VIS counts and the local variance for both channels. The clustering procedure is based on the standardized histogram of each variable obtained from 179 pairs of images. A new approach to classify high clouds using only IR and the clustering technique is proposed. This method allows the separation of the enhanced convection in two main classes: convective tops, more closely related to the most active core of the storm, and convective systems, which produce regions of merged, thick anvil clouds. The resulting classification of different portions of cloudiness is compared to the radar reflectivity field for intensive events. Convective Systems and Convective Tops are followed during their life cycle using the IR clustering method. The areal coverage of precipitation and features related to convective and stratiform rain is obtained from the radar for each stage of the evolving Mesoscale Convective Systems (MCS). In order to compare the IR clustering method with a simple threshold technique, two IR thresholds (Tir) were used to identify different portions of cloudiness, Tir=240K which roughly defines the extent of all cloudiness associated with the MCS, and Tir=220K which indicates the presence of deep convection. It is shown that the IR clustering technique can be used as a simple alternative to identify the actual portion of convective and stratiform rainfall.

  13. Cluster Sampling Bias in Government-Sponsored Evaluations: A Correlational Study of Employment and Welfare Pilots in England.

    PubMed

    Vaganay, Arnaud

    2016-01-01

    For pilot or experimental employment programme results to apply beyond their test bed, researchers must select 'clusters' (i.e. the job centres delivering the new intervention) that are reasonably representative of the whole territory. More specifically, this requirement must account for conditions that could artificially inflate the effect of a programme, such as the fluidity of the local labour market or the performance of the local job centre. Failure to achieve representativeness results in Cluster Sampling Bias (CSB). This paper makes three contributions to the literature. Theoretically, it approaches the notion of CSB as a human behaviour. It offers a comprehensive theory, whereby researchers with limited resources and conflicting priorities tend to oversample 'effect-enhancing' clusters when piloting a new intervention. Methodologically, it advocates for a 'narrow and deep' scope, as opposed to the 'wide and shallow' scope, which has prevailed so far. The PILOT-2 dataset was developed to test this idea. Empirically, it provides evidence on the prevalence of CSB. In conditions similar to the PILOT-2 case study, investigators (1) do not sample clusters with a view to maximise generalisability; (2) do not oversample 'effect-enhancing' clusters; (3) consistently oversample some clusters, including those with higher-than-average client caseloads; and (4) report their sampling decisions in an inconsistent and generally poor manner. In conclusion, although CSB is prevalent, it is still unclear whether it is intentional and meant to mislead stakeholders about the expected effect of the intervention or due to higher-level constraints or other considerations.

  14. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    van Weeren, R. J.; Ogrean, G. A.; Jones, C.; Forman, W. R.; Andrade-Santos, F.; Pearce, Connor J. J.; Bonafede, A.; Brüggen, M.; Bulbul, E.; Clarke, T. E.; Churazov, E.; David, L.; Dawson, W. A.; Donahue, M.; Goulding, A.; Kraft, R. P.; Mason, B.; Merten, J.; Mroczkowski, T.; Nulsen, P. E. J.; Rosati, P.; Roediger, E.; Randall, S. W.; Sayers, J.; Umetsu, K.; Vikhlinin, A.; Zitrin, A.

    2017-02-01

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ˜0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. We detect a density discontinuity north-northeast of this core, which we speculate is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100-300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.

  15. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weeren, R. J.; Jones, C.; Forman, W. R.

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ∼0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. We detect a density discontinuity north-northeast of this core, which we speculate ismore » associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.« less

  16. Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Weeren, R. J.; Ogrean, G. A.; Jones, C.

    To investigate the relationship between thermal and non-thermal components in merger galaxy clusters, we present deep JVLA and Chandra observations of the HST Frontier Fields cluster MACS J0717.5+3745. The Chandra image shows a complex merger event, with at least four components belonging to different merging subclusters. Northwest of the cluster, ~0.7 Mpc from the center, there is a ram-pressure-stripped core that appears to have traversed the densest parts of the cluster after entering the intracluster medium (ICM) from the direction of a galaxy filament to the southeast. Here, we detect a density discontinuity north-northeast of this core, which we speculatemore » is associated with a cold front. Our radio images reveal new details for the complex radio relic and radio halo in this cluster. In addition, we discover several new filamentary radio sources with sizes of 100–300 kpc. A few of these seem to be connected to the main radio relic, while others are either embedded within the radio halo or projected onto it. A narrow-angled-tailed (NAT) radio galaxy, a cluster member, is located at the center of the radio relic. The steep spectrum tails of this active galactic nucleus lead into the large radio relic where the radio spectrum flattens again. This morphological connection between the NAT radio galaxy and relic provides evidence for re-acceleration (revival) of fossil electrons. The presence of hot ≳20 keV ICM gas detected by Chandra near the relic location provides additional support for this re-acceleration scenario.« less

  17. Automated detectionof very low surface brightness galaxiesin the Virgo cluster

    NASA Astrophysics Data System (ADS)

    Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.

    2018-07-01

    We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 deg2 portion of the Next Generation Virgo Survey (NGVS) data to reveal 53 LSB galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5 M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.

  18. Crowded Cluster Cores. Algorithms for Deblending in Dark Energy Survey Images

    DOE PAGES

    Zhang, Yuanyuan; McKay, Timothy A.; Bertin, Emmanuel; ...

    2015-10-26

    Deep optical images are often crowded with overlapping objects. We found that this is especially true in the cores of galaxy clusters, where images of dozens of galaxies may lie atop one another. Accurate measurements of cluster properties require deblending algorithms designed to automatically extract a list of individual objects and decide what fraction of the light in each pixel comes from each object. In this article, we introduce a new software tool called the Gradient And Interpolation based (GAIN) deblender. GAIN is used as a secondary deblender to improve the separation of overlapping objects in galaxy cluster cores inmore » Dark Energy Survey images. It uses image intensity gradients and an interpolation technique originally developed to correct flawed digital images. Our paper is dedicated to describing the algorithm of the GAIN deblender and its applications, but we additionally include modest tests of the software based on real Dark Energy Survey co-add images. GAIN helps to extract an unbiased photometry measurement for blended sources and improve detection completeness, while introducing few spurious detections. When applied to processed Dark Energy Survey data, GAIN serves as a useful quick fix when a high level of deblending is desired.« less

  19. Differences in community composition of bacteria in four deep ice sheets in western China

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, Y.; Xiang, S.-R.; Shang, T.-C.; Tian, L.-De

    2010-02-01

    Microbial community patterns vary in glaciers world wide, presenting unique responses to global climatic and environmental changes. Four bacterial clone libraries were established by 16S rRNA gene amplification from four ice layers along the 42-m-long ice core MuztB drilled from the Muztag Ata Glacier. A total of 152 bacterial sequences obtained from the ice core MuztB were phylogenetically compared with the 71 previously reported sequences from three ice cores extracted from ice caps Malan, Dunde, and Puruoganri. The six functional clusters Flavisolibacter, Flexibacter (Bacteroidetes), Acinetobacter, Enterobacter (Gammaproteobacteria), Planococcus/Anoxybacillus (Firmicutes), and Propionibacter/Luteococcus (Actinobacteria) frequently occurred along the Muztag Ata Glacier profile. Sequence analysis showed that most of the sequences from the ice core clustered with those from cold environments, and the sequences from the same glacier formed a distinct cluster. Moreover, bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. In a summary, the findings provide preliminary evidence of zone distribution of microbial community, support our hypothesis of the spatial and temporal biogeography of microorganisms in glacial ice.

  20. The AGN-driven shock in NGC 4472

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Kraft, Ralph P.; Bogdan, Akos; Forman, William R.; Hlavacek-Larrondo, Julie; Jones, Christine; Nulsen, Paul; Randall, Scott W.; Roediger, Elke

    2016-04-01

    Chandra observations of most cool core clusters of galaxies have revealed large cavities where the inflation of the jet-driven radio bubbles displace the cluster gas. In a few cases, outburst shocks, likely driven by cavity inflation, are detected in the ambient gas. AGN-driven shocks may be key to balancing the radiative losses as shocks will increase the entropy of, and thereby heat, the diffuse gas. We will present initial results on deep Chandra observations of the nearby (D=17 Mpc) early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. The X-ray observations show clear cavities in the X-ray emission at the position of the radio lobes, and rings of enhanced X-ray emission just beyond the lobes. We will present results from our analysis to determine whether the lobes are inflating supersonically or are rising buoyantly. We will compare the energy and power of this AGN outburst with previous powerful radio outbursts in clusters and groups to determine whether this outburst lies on the same scaling relations or whether it represents a new category of outburst.

  1. Maternal Styles of Talking about Child Feeding across Sociodemographic Groups

    PubMed Central

    Pesch, Megan H.; Harrell, Kristina J.; Kaciroti, Niko; Rosenblum, Kate; Lumeng, Julie C.

    2011-01-01

    This study sought to identify maternal styles of talking about child feeding from a semi-structured interview and to evaluate associated maternal and child characteristics. Mothers of preschool-aged children (n = 133) of diverse race/ethnicity and socioeconomic status (SES) (45 lower SES black, 29 lower SES white, 32 lower SES Hispanic, 15 middle to upper SES white, 12 middle to upper SES Asian) participated in a semi-structured interview about feeding. Interviews were audio-taped and transcribed. Themes were identified, and individual interviews were coded within these themes: authority (high/low), confidence (confident/conflicted/unopinionated), and investment (deep/mild/removed). Demographic characteristics were collected and a subset of children had measured weights and heights. Cluster analysis was used to identify narrative styles. Participant characteristics were compared across clusters using Fisher’s exact test and analysis of variance. Six narrative styles were identified: Easy-Going, Practical No-Nonsense, Disengaged, Effortful No-Nonsense, Indulgent Worry, and Conflicted Control. Cluster membership differed significantly based on maternal demographic group (P < .001) and child weight status (P < .05). More than half (60%) of children of mothers in the Conflicted Control cluster were obese. Maternal styles of talking about feeding are associated with maternal and child characteristics. PMID:22117662

  2. Automated detection of very Low Surface Brightness galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.

    2018-04-01

    We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree2 portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.

  3. The interplay between star formation and the nuclear environment of our Galaxy: deep X-ray observations of the Galactic centre Arches and Quintuplet clusters

    NASA Astrophysics Data System (ADS)

    Wang, Q. Daniel; Dong, Hui; Lang, Cornelia

    2006-09-01

    The Galactic centre (GC) provides a unique laboratory for a detailed examination of the interplay between massive star formation and the nuclear environment of our Galaxy. Here, we present a 100-ks Chandra Advanced CCD Imaging Spectrometer (ACIS) observation of the Arches and Quintuplet star clusters. We also report on a complementary mapping of the dense molecular gas near the Arches cluster made with the Owens Valley Millimeter Array. We present a catalogue of 244 point-like X-ray sources detected in the observation. Their number-flux relation indicates an overpopulation of relatively bright X-ray sources, which are apparently associated with the clusters. The sources in the core of the Arches and Quintuplet clusters are most likely extreme colliding wind massive star binaries. The diffuse X-ray emission from the core of the Arches cluster has a spectrum showing a 6.7-keV emission line and a surface intensity profile declining steeply with radius, indicating an origin in a cluster wind. In the outer regions near the Arches cluster, the overall diffuse X-ray enhancement demonstrates a bow shock morphology and is prominent in the Fe Kα 6.4-keV line emission with an equivalent width of ~1.4 keV. Much of this enhancement may result from an ongoing collision between the cluster and the adjacent molecular cloud, which have a relative velocity >~120km-1. The older and less-compact Quintuplet cluster contains much weaker X-ray sources and diffuse emission, probably originating from low-mass stellar objects as well as a cluster wind. However, the overall population of these objects, constrained by the observed total diffuse X-ray luminosities, is substantially smaller than expected for both clusters, if they have normal Miller & Scalo initial mass functions. This deficiency of low-mass objects may be a manifestation of the unique star formation environment of the GC, where high-velocity cloud-cloud and cloud-cluster collisions are frequent.

  4. Fast, shape-directed, landmark-based deep gray matter segmentation for quantification of iron deposition

    NASA Astrophysics Data System (ADS)

    Ekin, Ahmet; Jasinschi, Radu; van der Grond, Jeroen; van Buchem, Mark A.; van Muiswinkel, Arianne

    2006-03-01

    This paper introduces image processing methods to automatically detect the 3D volume-of-interest (VOI) and 2D region-of-interest (ROI) for deep gray matter organs (thalamus, globus pallidus, putamen, and caudate nucleus) of patients with suspected iron deposition from MR dual echo images. Prior to the VOI and ROI detection, cerebrospinal fluid (CSF) region is segmented by a clustering algorithm. For the segmentation, we automatically determine the cluster centers with the mean shift algorithm that can quickly identify the modes of a distribution. After the identification of the modes, we employ the K-Harmonic means clustering algorithm to segment the volumetric MR data into CSF and non-CSF. Having the CSF mask and observing that the frontal lobe of the lateral ventricle has more consistent shape accross age and pathological abnormalities, we propose a shape-directed landmark detection algorithm to detect the VOI in a speedy manner. The proposed landmark detection algorithm utilizes a novel shape model of the front lobe of the lateral ventricle for the slices where thalamus, globus pallidus, putamen, and caudate nucleus are expected to appear. After this step, for each slice in the VOI, we use horizontal and vertical projections of the CSF map to detect the approximate locations of the relevant organs to define the ROI. We demonstrate the robustness of the proposed VOI and ROI localization algorithms to pathologies, including severe amounts of iron accumulation as well as white matter lesions, and anatomical variations. The proposed algorithms achieved very high detection accuracy, 100% in the VOI detection , over a large set of a challenging MR dataset.

  5. Deep optical survey of the stellar content of Sh2-311 region

    NASA Astrophysics Data System (ADS)

    Yadav, Ram Kesh; Pandey, A. K.; Sharma, Saurabh; Jose, J.; Ogura, K.; Kobayashi, N.; Samal, M. R.; Eswaraiah, C.; Chandola, H. C.

    2015-01-01

    The stellar content in and around Sh2-311 region have been studied using the deep optical observations as well as near-infrared (NIR) data from 2MASS. The region contains three clusters, viz. NGC 2467, Haffner 18 and Haffner 19. We have made an attempt to distinguish the stellar content of these individual regions as well as to re-determine their fundamental parameters such as distance, reddening, age, onto the basis of a new and more extended optical and infrared photometric data set. NGC 2467 and Haffner 19 are found to be located in the Perseus arm at the distances of 5.0 ± 0.4 kpc and 5.7 ± 0.4 kpc, respectively, whereas Haffner 18 is located at the distance of 11.2 ± 1.0 kpc. The clusters NGC 2467 and Haffner 19 might have formed from the same molecular cloud, whereas the cluster Haffner 18 is located in the outer galactic arm, i.e. the Norma-Cygnus arm. We identify 8 class II young stellar objects (YSOs) using the NIR (J-H)/(H-K) two colour diagram. We have estimated the age and mass of the YSOs identified in the present work and those by Snider et al. (2009) using the V/(V-I) colour-magnitude diagram. The estimated ages and mass range of the majority of the YSOs are ≲1 Myr and ∼0.4-3.5 M⊙, respectively, indicating that these sources could be T-Tauri stars or their siblings. Spatial distribution of the YSOs shows that some of the YSOs are distributed around the HII region Sh2-311, suggesting a triggered star formation at its periphery.

  6. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XIX. TOMOGRAPHY OF MILKY WAY SUBSTRUCTURES IN THE NGVS FOOTPRINT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokhorst, Deborah; Starkenburg, Else; Navarro, Julio F.

    2016-03-10

    The Next Generation Virgo Cluster Survey (NGVS) is a deep u*giz survey targeting the Virgo Cluster of galaxies at 16.5 Mpc. This survey provides high-quality photometry over an ∼100 deg{sup 2} region straddling the constellations of Virgo and Coma Berenices. This sightline through the Milky Way is noteworthy in that it intersects two of the most prominent substructures in the Galactic halo: the Virgo overdensity (VOD) and Sagittarius stellar stream (close to its bifurcation point). In this paper, we use deep u*gi imaging from the NGVS to perform tomography of the VOD and Sagittarius stream using main-sequence turnoff (MSTO) starsmore » as a halo tracer population. The VOD, whose centroid is known to lie at somewhat lower declinations (α ∼ 190°, δ ∼ −5°) than is covered by the NGVS, is nevertheless clearly detected in the NGVS footprint at distances between ∼8 and 25 kpc. By contrast, the Sagittarius stream is found to slice directly across the NGVS field at distances between 25 and 40 kpc, with a density maximum at ≃35 kpc. No evidence is found for new substructures beyond the Sagittarius stream, at least out to a distance of ∼90 kpc—the largest distance to which we can reliably trace the halo using MSTO stars. We find clear evidence for a distance gradient in the Sagittarius stream across the ∼30° of sky covered by the NGVS and its flanking fields. We compare our distance measurements along the stream with those predicted by leading stream models.« less

  7. Effect of Deep Cryogenic treatment on AISI A8 Tool steel & Development of Wear Mechanism maps using Fuzzy Clustering

    NASA Astrophysics Data System (ADS)

    Pillai, Nandakumar; Karthikeyan, R., Dr.

    2018-04-01

    Tool steels are widely classified according to their constituents and type of thermal treatments carried out to obtain its properties. Viking a special purpose tool steel coming under AISI A8 cold working steel classification is widely used for heavy duty blanking and forming operations. The optimum combination of wear resistance and toughness as well as ease of machinability in pre-treated condition makes this material accepted in heavy cutting and non cutting tool manufacture. Air or vacuum hardening is recommended as the normal treatment procedure to obtain the desired mechanical and tribological properties for steels under this category. In this study, we are incorporating a deep cryogenic phase within the conventional treatment cycle both before and after tempering. The thermal treatments at sub zero temperatures up to -195°C using cryogenic chamber with liquid nitrogen as medium was conducted. Micro structural changes in its microstructure and the corresponding improvement in the tribological and physical properties are analyzed. The cryogenic treatment leads to more conversion of retained austenite to martensite and also formation of fine secondary carbides. The microstructure is studied using the micrographs taken using optical microscopy. The wear tests are conducted on DUCOM tribometer for different combinations of speed and load under normal temperature. The wear rates and coefficient of friction obtained from these experiments are used to developed wear mechanism maps with the help of fuzzy c means clustering and probabilistic neural network models. Fuzzy C means clustering is an effective algorithm to group data of similar patterns. The wear mechanisms obtained from the computationally developed maps are then compared with the SEM photographs taken and the improvement in properties due to this additional cryogenic treatment is validated.

  8. Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea.

    PubMed

    Hu, Anyi; Jiao, Nianzhi; Zhang, Chuanlun L

    2011-10-01

    Marine Crenarchaeota represent a widespread and abundant microbial group in marine ecosystems. Here, we investigated the abundance, diversity, and distribution of planktonic Crenarchaeota in the epi-, meso-, and bathypelagic zones at three stations in the South China Sea (SCS) by analysis of crenarchaeal 16S rRNA gene, ammonia monooxygenase gene amoA involved in ammonia oxidation, and biotin carboxylase gene accA putatively involved in archaeal CO(2) fixation. Quantitative PCR analyses indicated that crenarchaeal amoA and accA gene abundances varied similarly with archaeal and crenarchaeal 16S rRNA gene abundances at all stations, except that crenarchaeal accA genes were almost absent in the epipelagic zone. Ratios of the crenarchaeal amoA gene to 16S rRNA gene abundances decreased ~2.6 times from the epi- to bathypelagic zones, whereas the ratios of crenarchaeal accA gene to marine group I crenarchaeal 16S rRNA gene or to crenarchaeal amoA gene abundances increased with depth, suggesting that the metabolism of Crenarchaeota may change from the epi- to meso- or bathypelagic zones. Denaturing gradient gel electrophoresis profiling of the 16S rRNA genes revealed depth partitioning in archaeal community structures. Clone libraries of crenarchaeal amoA and accA genes showed two clusters: the "shallow" cluster was exclusively derived from epipelagic water and the "deep" cluster was from meso- and/or bathypelagic waters, suggesting that niche partitioning may take place between the shallow and deep marine Crenarchaeota. Overall, our results show strong depth partitioning of crenarchaeal populations in the SCS and suggest a shift in their community structure and ecological function with increasing depth.

  9. Stacked Autoencoders for Outlier Detection in Over-the-Horizon Radar Signals

    PubMed Central

    Protopapadakis, Eftychios; Doulamis, Anastasios; Doulamis, Nikolaos; Dres, Dimitrios; Bimpas, Matthaios

    2017-01-01

    Detection of outliers in radar signals is a considerable challenge in maritime surveillance applications. High-Frequency Surface-Wave (HFSW) radars have attracted significant interest as potential tools for long-range target identification and outlier detection at over-the-horizon (OTH) distances. However, a number of disadvantages, such as their low spatial resolution and presence of clutter, have a negative impact on their accuracy. In this paper, we explore the applicability of deep learning techniques for detecting deviations from the norm in behavioral patterns of vessels (outliers) as they are tracked from an OTH radar. The proposed methodology exploits the nonlinear mapping capabilities of deep stacked autoencoders in combination with density-based clustering. A comparative experimental evaluation of the approach shows promising results in terms of the proposed methodology's performance. PMID:29312449

  10. The Stellar Populations of Ultra-Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Karick, Arna; Gregg, M. D.

    2006-12-01

    We have discovered an intracluster population of ultra-luminous compact stellar systems in the Fornax cluster. Originally coined "ultra-compact dwarf galaxies" (UCDs), these objects were thought to be remnant nuclei of tidally stripped dE,Ns. Subsequent searches in Fornax (2dF+VLT) have revealed many fainter UCDs; making them the most numerous galaxy type in the cluster and fueling controversy over their origin. UCDs may be the bright tail of the globular cluster (GCs) population associated with NGC1399. Alternatively they may be real intracluster GCs, resulting from hierarchical cluster formation and merging in intracluster space. Determining the stellar populations of these enigmatic objects is challenging. UCDs are unresolved from the ground but our HST/STIS+ACS imaging reveals faint halos around the brightest UCDs. Here we present deep u'g'r'i'z' images of the cluster core using the CTIO 4m Mosaic. Combined with GALEX/UV imaging and using SSP isochrones, UCDs appear to be old, red and unlike cluster dEs. In contrast, our recent IMACS and Keck/LRIS+ESI spectroscopy shows that UCDs are unlike GCs and have intermediate stellar populations with significant variations in their Mg and Hβ line strength indices. This work is supported by National Science Foundation Grant No. 0407445 and was done at the Institute of Geophysics and Planetary Physics, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  11. A CCD-based search for very low mass members of the Pleiades cluster

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Hamilton, Donald; Probst, Ronald G.

    1994-01-01

    We have obtained deep charge coupled device (CCD)V and I images of a number of fields near the center of the Pleiades open cluster. We have also obtained imaging data for Praesepe, a very similar cluster in terms of distance and richness but nearly 10 times older than the Pleiades. Because brown dwarfs are predicted to become much fainter and cooler between Pleiades and Praesepe ages, this provides a powerful differential technique for placing constraints on the brown dwarf population in open clusters. Combined with our previously reported observations, we now have data for about 0.4 sq deg in the Pleiades, corresponding roughly to 5% of the area of that cluster. We have searched the new CCD frames for additional Pleiades brown dwarf candidates. Two possible candidates are present, the faintest of which has V approximately equal to 22.5, (V-I)(sub K) approximately equal to 4.6. Because we do not have proper motion data and the colors of these objects are not redder than the reddest known field stars, it is possible that some or all of our candidates are somewhat higher mass field stars rather than Pleiades-age brown dwarfs. Even if all six of the proposed brown dwarf candidates in our 0.4 sq deg field are Pleiades members, the relatively small number found suggests that low mass stars or brown dwarfs do not contribute significantly to the total mass of the cluster.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhaoying; Liu, Bingwen; Zhao, Evan

    For the first time, the use of an argon cluster ion sputtering source has been demonstrated to perform superiorly relative to traditional oxygen and cesium ion sputtering sources for ToF-SIMS depth profiling of insulating materials. The superior performance has been attributed to effective alleviation of surface charging. A simulated nuclear waste glass, SON68, and layered hole-perovskite oxide thin films were selected as model systems due to their fundamental and practical significance. Our study shows that if the size of analysis areas is same, the highest sputter rate of argon cluster sputtering can be 2-3 times faster than the highest sputtermore » rates of oxygen or cesium sputtering. More importantly, high quality data and high sputter rates can be achieved simultaneously for argon cluster sputtering while this is not the case for cesium and oxygen sputtering. Therefore, for deep depth profiling of insulating samples, the measurement efficiency of argon cluster sputtering can be about 6-15 times better than traditional cesium and oxygen sputtering. Moreover, for a SrTiO3/SrCrO3 bi-layer thin film on a SrTiO3 substrate, the true 18O/16O isotopic distribution at the interface is better revealed when using the argon cluster sputtering source. Therefore, the implementation of an argon cluster sputtering source can significantly improve the measurement efficiency of insulating materials, and thus can expand the application of ToF-SIMS to the study of glass corrosion, perovskite oxide thin films, and many other potential systems.« less

  13. Nonrotating Convective Self-Aggregation in a Limited Area AGCM

    NASA Astrophysics Data System (ADS)

    Arnold, Nathan P.; Putman, William M.

    2018-04-01

    We present nonrotating simulations with the Goddard Earth Observing System (GEOS) atmospheric general circulation model (AGCM) in a square limited area domain over uniform sea surface temperature. As in previous studies, convection spontaneously aggregates into humid clusters, driven by a combination of radiative and moisture-convective feedbacks. The aggregation is qualitatively independent of resolution, with horizontal grid spacing from 3 to 110 km, with both explicit and parameterized deep convection. A budget for the spatial variance of column moist static energy suggests that longwave radiative and surface flux feedbacks help establish aggregation, while the shortwave feedback contributes to its maintenance. Mechanism-denial experiments confirm that aggregation does not occur without interactive longwave radiation. Ice cloud radiative effects help support the humid convecting regions but are not essential for aggregation, while liquid clouds have a negligible effect. Removing the dependence of parameterized convection on tropospheric humidity reduces the intensity of aggregation but does not prevent the formation of dry regions. In domain sizes less than (5,000 km)2, the aggregation forms a single cluster, while larger domains develop multiple clusters. Larger domains initialized with a single large cluster are unable to maintain them, suggesting an upper size limit. Surface wind speed increases with domain size, implying that maintenance of the boundary layer winds may limit cluster size. As cluster size increases, large boundary layer temperature anomalies develop to maintain the surface pressure gradient, leading to an increase in the depth of parameterized convective heating and an increase in gross moist stability.

  14. Strong-lensing analysis of A2744 with MUSE and Hubble Frontier Fields images

    NASA Astrophysics Data System (ADS)

    Mahler, G.; Richard, J.; Clément, B.; Lagattuta, D.; Schmidt, K.; Patrício, V.; Soucail, G.; Bacon, R.; Pello, R.; Bouwens, R.; Maseda, M.; Martinez, J.; Carollo, M.; Inami, H.; Leclercq, F.; Wisotzki, L.

    2018-01-01

    We present an analysis of Multi Unit Spectroscopic Explorer (MUSE) observations obtained on the massive Frontier Fields (FFs) cluster A2744. This new data set covers the entire multiply imaged region around the cluster core. The combined catalogue consists of 514 spectroscopic redshifts (with 414 new identifications). We use this redshift information to perform a strong-lensing analysis revising multiple images previously found in the deep FF images, and add three new MUSE-detected multiply imaged systems with no obvious Hubble Space Telescope counterpart. The combined strong-lensing constraints include a total of 60 systems producing 188 images altogether, out of which 29 systems and 83 images are spectroscopically confirmed, making A2744 one of the most well-constrained clusters to date. Thanks to the large amount of spectroscopic redshifts, we model the influence of substructures at larger radii, using a parametrization including two cluster-scale components in the cluster core and several group scale in the outskirts. The resulting model accurately reproduces all the spectroscopic multiple systems, reaching an rms of 0.67 arcsec in the image plane. The large number of MUSE spectroscopic redshifts gives us a robust model, which we estimate reduces the systematic uncertainty on the 2D mass distribution by up to ∼2.5 times the statistical uncertainty in the cluster core. In addition, from a combination of the parametrization and the set of constraints, we estimate the relative systematic uncertainty to be up to 9 per cent at 200 kpc.

  15. ATCA observations of the MACS-Planck Radio Halo Cluster Project. II. Radio observations of an intermediate redshift cluster sample

    NASA Astrophysics Data System (ADS)

    Martinez Aviles, G.; Johnston-Hollitt, M.; Ferrari, C.; Venturi, T.; Democles, J.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Arnaud, M.; Aghanim, N.; Brown, S.; Douspis, M.; Hurier, J.; Intema, H. T.; Langer, M.; Macario, G.; Pointecouteau, E.

    2018-04-01

    Aim. A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 < z < 0.44). Methods: In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ( 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. Results: We detect a giant radio halo in PSZ2 G284.97-23.69 (z = 0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z = 0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio haloes with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters. The reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A94

  16. Oral Microbiome of Deep and Shallow Dental Pockets In Chronic Periodontitis

    PubMed Central

    Ge, Xiuchun; Rodriguez, Rafael; Trinh, My; Gunsolley, John; Xu, Ping

    2013-01-01

    We examined the subgingival bacterial biodiversity in untreated chronic periodontitis patients by sequencing 16S rRNA genes. The primary purpose of the study was to compare the oral microbiome in deep (diseased) and shallow (healthy) sites. A secondary purpose was to evaluate the influences of smoking, race and dental caries on this relationship. A total of 88 subjects from two clinics were recruited. Paired subgingival plaque samples were taken from each subject, one from a probing site depth >5 mm (deep site) and the other from a probing site depth ≤3mm (shallow site). A universal primer set was designed to amplify the V4–V6 region for oral microbial 16S rRNA sequences. Differences in genera and species attributable to deep and shallow sites were determined by statistical analysis using a two-part model and false discovery rate. Fifty-one of 170 genera and 200 of 746 species were found significantly different in abundances between shallow and deep sites. Besides previously identified periodontal disease-associated bacterial species, additional species were found markedly changed in diseased sites. Cluster analysis revealed that the microbiome difference between deep and shallow sites was influenced by patient-level effects such as clinic location, race and smoking. The differences between clinic locations may be influenced by racial distribution, in that all of the African Americans subjects were seen at the same clinic. Our results suggested that there were influences from the microbiome for caries and periodontal disease and these influences are independent. PMID:23762384

  17. Convectively-driven cold layer and its influences on moisture in the UTLS

    NASA Astrophysics Data System (ADS)

    Kim, J.; Randel, W. J.; Birner, T.

    2016-12-01

    Characteristics of the cold anomaly in the tropical tropopause layer (TTL) that is commonly observed with deep convection are examined using CloudSat and Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) GPS radio occultation measurements. Deep convection is sampled based on the cloud top height (>17 km) from CloudSat 2B-CLDCLASS, and then temperature profiles from COSMIC are composited around the deep convection. The composite temperature shows anomalously warm troposphere (up to 14 km) and a significantly cold layer near the tropopause (at 16-18 km) in the regions of deep convection. Generally in the tropics, the cold layer has very large horizontal scale (2,000 - 6,000 km) compared to that of mesoscale convective cluster, and it lasts one or two weeks with minimum temperature anomaly of - 2K. The cold layer shows slight but clear eastward-tilted vertical structure in the deep tropics indicating a large-scale Kelvin wave response. Further analyses on circulation patterns suggest that the anomaly can be explained as a part of Gill-type response in the TTL to deep convective heating in the troposphere. Response of moisture to the cold layer is also examined in the upper troposphere and lower stratosphere using microwave limb sounder (MLS) measurements. The water vapor anomalies show coherent structures with the temperature and circulation anomalies. A clear dry anomaly is found in the cold layer and its outflow region, implying a large-scale dehydration process due to the convectively driven cold layer in the upper TTL.

  18. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Gong, Lin-feng; Pang, Ka-Lai; Luo, Zhu-Hua

    2018-01-01

    Deep-sea hydrothermal sediment is known to support remarkably diverse microbial consortia. In deep sea environments, fungal communities remain less studied despite their known taxonomic and functional diversity. High-throughput sequencing methods have augmented our capacity to assess eukaryotic diversity and their functions in microbial ecology. Here we provide the first description of the fungal community diversity found in deep sea sediments collected at the Southwest Indian Ridge (SWIR) using culture-dependent and high-throughput sequencing approaches. A total of 138 fungal isolates were cultured from seven different sediment samples using various nutrient media, and these isolates were identified to 14 fungal taxa, including 11 Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2 genera) based on internal transcribed spacers (ITS1, ITS2 and 5.8S) of rDNA. Using illumina HiSeq sequencing, a total of 757,467 fungal ITS2 tags were recovered from the samples and clustered into 723 operational taxonomic units (OTUs) belonging to 79 taxa (Ascomycota and Basidiomycota contributed to 99% of all samples) based on 97% sequence similarity. Results from both approaches suggest that there is a high fungal diversity in the deep-sea sediments collected in the SWIR and fungal communities were shown to be slightly different by location, although all were collected from adjacent sites at the SWIR. This study provides baseline data of the fungal diversity and biogeography, and a glimpse to the microbial ecology associated with the deep-sea sediments of the hydrothermal vent system of the Southwest Indian Ridge.

  19. Pole-to-pole biogeography of surface and deep marine bacterial communities

    PubMed Central

    Ghiglione, Jean-François; Galand, Pierre E.; Pommier, Thomas; Pedrós-Alió, Carlos; Maas, Elizabeth W.; Bakker, Kevin; Bertilson, Stefan; Kirchman, David L.; Lovejoy, Connie; Yager, Patricia L.; Murray, Alison E.

    2012-01-01

    The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation. PMID:23045668

  20. On the evolution of clustering of 24-μm-selected galaxies

    NASA Astrophysics Data System (ADS)

    Magliocchetti, M.; Cirasuolo, M.; McLure, R. J.; Dunlop, J. S.; Almaini, O.; Foucaud, S.; de Zotti, G.; Simpson, C.; Sekiguchi, K.

    2008-01-01

    This paper investigates the clustering properties of a complete sample of 1041 24-μm-selected sources brighter than F24μm = 400μJy in the overlapping region between the Spitzer Wide-Area Infrared Extragalactic (SWIRE) and UKIRT Infrared Deep Sky Survey (UKIDSS) Ultra Deep Survey (UDS) surveys. With the help of photometric redshift determinations we have concentrated on the two interval ranges z = [0.6-1.2] (low-z sample) and z >= 1.6 (high-z sample) as it is in these regions were we expect the mid-infrared (IR) population to be dominated by intense dust-enshrouded activity such as star formation and black hole accretion. Investigations of the angular correlation function produce an amplitude A ~ 0.010 for the high-z sample and A ~ 0.0055 for the low-z one. The corresponding correlation lengths are r0 = 15.9+2.9-3.4 and 8.5+1.5-1.8Mpc, showing that the high-z population is more strongly clustered. Comparisons with physical models for the formation and evolution of large-scale structure reveal that the high-z sources are exclusively associated with very massive (M >~ 1013Msolar) haloes, comparable to those which locally host groups-to-clusters of galaxies and are very common within such (rare) structures. Conversely, lower z galaxies are found to reside in smaller haloes (Mmin ~ 1012Msolar) and to be very rare in such systems. On the other hand, mid-IR photometry shows that the low-z and high-z samples include similar objects and probe a similar mixture of active galactic nucleus (AGN) and star-forming galaxies. While recent studies have determined a strong evolution of the 24-μm luminosity function between z ~ 2 and 0, they cannot provide information on the physical nature of such an evolution. Our clustering results instead indicate that this is due to the presence of different populations of objects inhabiting different structures, as active systems at z <~ 1.5 are found to be exclusively associated with low-mass galaxies, while very massive sources appear to have concluded their active phase before this epoch. Finally, we note that the small-scale clustering data seem to require steep (ρ ~ r-3) profiles for the distribution of galaxies within their haloes. This is suggestive of close encounters and/or mergers which could strongly favour both AGN and star formation activity.

Top