Science.gov

Sample records for cfrp composite laminates

  1. One-sided ultrasonic inspection to detect flaws in CFRP composite solid laminates

    NASA Astrophysics Data System (ADS)

    Im, Kwang-Hee; Zhang, Guilina; Hsu, David K.; Barnard, Dan; Kim, Sun-Kyu; Yang, Yong-Jun; Hwang, Woo-Chae; Yang, In-Young; Park, Je-Woong

    2011-11-01

    The importance of Carbon Fiber reinforced plastics (CFRP) has been generally recognized, and the CFRP composite laminates are widely used. When ultrasonic inspection is applied on actual aircraft components, the part geometry often lacks flat and parallel faces and the benefit of a backwall echo maybe unavailable. So, it is very necessary to detect flaws and defects in the CFRP composite solid laminates due to the flaws of CFRP composite laminates affecting the properties of the laminate. Firstly, we used miniature potted angle beam transducers (designed for generating mode-converted shear waves or Rayleigh waves in steel) on solid laminates of composites. A pair of such transducers was mounted in a holder in a nose-to-nose fashion to be used as a scanning probe on composites. Secondly, a method was utilized to determine the porosity content of a composite lay-up by processing micrograph images of the laminate. The results from the image processing method are compared with existing data. C-scan images of CFRP samples, which were based on the impacted samples were then produced by combining the pitch-catch probe with a portable manual scanner known as the Generic Scanner ("GenScan"). The signal amplitude of pitch-catch C-scan images was also correlated to the volume percent of porosity in carbon composite laminates. Finally, a simulation was performed with the numerical Wave-2000 Code for predicting the ultrasonic wave in the sample.

  2. One-sided ultrasonic inspection to detect flaws in CFRP composite solid laminates

    NASA Astrophysics Data System (ADS)

    Im, Kwang-Hee; Zhang, Guilina; Hsu, David K.; Barnard, Dan; Kim, Sun-Kyu; Yang, Yong-Jun; Hwang, Woo-Chae; Yang, In-Young; Park, Je-Woong

    2012-04-01

    The importance of Carbon Fiber reinforced plastics (CFRP) has been generally recognized, and the CFRP composite laminates are widely used. When ultrasonic inspection is applied on actual aircraft components, the part geometry often lacks flat and parallel faces and the benefit of a backwall echo maybe unavailable. So, it is very necessary to detect flaws and defects in the CFRP composite solid laminates due to the flaws of CFRP composite laminates affecting the properties of the laminate. Firstly, we used miniature potted angle beam transducers (designed for generating mode-converted shear waves or Rayleigh waves in steel) on solid laminates of composites. A pair of such transducers was mounted in a holder in a nose-to-nose fashion to be used as a scanning probe on composites. Secondly, a method was utilized to determine the porosity content of a composite lay-up by processing micrograph images of the laminate. The results from the image processing method are compared with existing data. C-scan images of CFRP samples, which were based on the impacted samples were then produced by combining the pitch-catch probe with a portable manual scanner known as the Generic Scanner ("GenScan"). The signal amplitude of pitch-catch C-scan images was also correlated to the volume percent of porosity in carbon composite laminates. Finally, a simulation was performed with the numerical Wave-2000 Code for predicting the ultrasonic wave in the sample.

  3. Effects of the shock duration on the response of CFRP composite laminates

    NASA Astrophysics Data System (ADS)

    Gay, Elise; Berthe, Laurent; Boustie, Michel; Arrigoni, Michel; Buzaud, Eric

    2014-11-01

    Shock loads induce a local tensile stress within a sample. The location and amplitude of this high strain rate stress can be monitored respectively by the duration and intensity of the shock. The process is applied to carbon fibre reinforced polymer (CFRP) composites, involved in aeronautic or defense industry. This paper describes the response of CFRP laminates of different thicknesses to a shock load normal to the fibres direction. The effects of the shock duration on the wave propagation are key issues of this work. Experiments have been performed on high power laser facilities and on a high power pulsed generator to get a wide range of pulse duration from fs to µs. Numerical simulation provides a comprehensive approach of the wave propagation and tensile stress generation within these complex materials. The main result concerns the relation between the load duration, the tensile stress and the induced delamination within 1, 4 and 8 ply composite laminates.

  4. Study on flaw detectability of NDT induction thermography technique for laminated CFRP composites

    NASA Astrophysics Data System (ADS)

    Kien Bui, Huu; Wasselynck, Guillaume; Trichet, Didier; Berthiau, Gérard

    2016-01-01

    Using a 3D finite elements simulation tool, a study on the flaw detection capacity of the non destructive testing (NDT) induction thermography (IT) technique for laminated carbon fiber reinforced polymers (CFRP) composites is presented. Delamination and fiber rupture flaw occurring at the elementary-ply scale are considered. In order to reduce the impact of measurement noise on the flaw detectability, several signal processing techniques are proposed. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek

  5. Detection of Fiber Layer-Up Lamination Order of CFRP Composite Using Thermal-Wave Radar Imaging

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Liu, Junyan; Liu, Yang; Wang, Yang; Gong, Jinlong

    2016-09-01

    In this paper, thermal-wave radar imaging (TWRI) is used as a nondestructive inspection method to evaluate carbon-fiber-reinforced-polymer (CFRP) composite. An inverse methodology that combines TWRI with numerical optimization technique is proposed to determine the fiber layer-up lamination sequences of anisotropic CFRP composite. A 7-layer CFRP laminate [0°/45°/90°/0°]_{{s}} is heated by a chirp-modulated Gaussian laser beam, and then finite element method (FEM) is employed to calculate the temperature field of CFRP laminates. The phase based on lock-in correlation between reference chirp signal and the thermal-wave signal is performed to obtain the phase image of TWRI, and the least square method is applied to reconstruct the cost function that minimizes the square of the difference between the phase of TWRI inspection and numerical calculation. A hybrid algorithm that combines the simulation annealing with Nelder-Mead simplex research method is employed to solve the reconstructed cost function and find the global optimal solution of the layer-up sequences of CFRP composite. The result shows the feasibility of estimating the fiber layer-up lamination sequences of CFRP composite with optimal discrete and constraint conditions.

  6. Feasibility on Generation Mechanism of Ultrasonic Shear Wave for the Application on Stacking Orientation Defect in CFRP Composite Laminates

    NASA Astrophysics Data System (ADS)

    Im, Kwang-Hee; Kim, Hak-Joon; Song, Sung-Jin; Hsu, David K.; Lee, Kil-Sung; Yang, In-Young; Park, Je-Woong

    2009-03-01

    Composite materials are attractive for a wide range of applications due to the advantages associated with their very large strength-to-weight and stiffness-to-weight ratios. Increasingly, high performance engineering structures are being built with critical structural components made from composite materials. It is very important to detect fiber orientation error in composite laminates because the layup of a CFRP composite laminates affects the properties of the laminate, including stiffness, strength and thermal behavior. An NDE technique for stacking orientation determination would be very beneficial because of layup orientation influence to the laminate stiffness. Usually, it is found that ultrasonic shear wave is pretty sensitive to fiber direction of CFRP composite laminates. An investigation of shear wave ultrasonic technique was carried out in order to detect stacking orientation error for quasi-isotropy composite laminates. Also, a jig is developed for generating a shear wave. A pyramid with an isosceles triangle with two 45° was made of aluminum to generate shear waves using two longitudinal transducers based on ultrasonic-polarized mechanism. Also, the signal splitter was connected to the pulser jack on the pulser/receiver and to the longitudinal transducers. An investigation of shear wave ultrasonic technique was carried out in order to generating shear wave. Therefore, it is found that the experimentally shear wave variation of specially designed jig was consistent with simulated results and shear wave ultrasonic measurement might be very useful to detect the defects in CFRP composites.

  7. Damage in woven CFRP laminates under impact loading

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Harland, A. R.; Silberschmidt, V. V.

    2012-08-01

    Carbon fibre-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution affects both in-service properties and performance of CFRP that can deteriorate with time. These failure modes need adequate means of analysis and investigation, the major approaches being experimental characterisation and numerical simulations. This research deals with a deformation behaviour and damage in composite laminates due to dynamic bending. Experimental tests are carried out to characterise the behaviour of a woven CFRP material under large-deflection dynamic bending in impact tests carried out to obtain the force-time and absorbed energy profiles for CFRP laminates. Damage in the impacted laminates is analysed using optical microscopy. Numerical simulations are performed to study the deformation behaviour and damage in CFRP for cases of large-deflection bending based on three-dimensional finite-element models implemented in the commercial code Abaqus/Explicit. Multiple layers of bilinear cohesive-zone elements are employed to model the initiation and progression of inter-ply delamination observed in the microscopy studies. The obtained results of simulations show good agreement with experimental data.

  8. Machinability of drilling T700/LT-03A carbon fiber reinforced plastic (CFRP) composite laminates using candle stick drill and multi-facet drill

    NASA Astrophysics Data System (ADS)

    Wang, Cheng-Dong; Qiu, Kun-Xian; Chen, Ming; Cai, Xiao-Jiang

    2015-03-01

    Carbon Fiber Reinforced Plastic (CFRP) composite laminates are widely used in aerospace and aircraft structural components due to their superior properties. However, they are regarded as difficult-to-cut materials because of bad surface quality and low productivity. Drilling is the most common hole making process for CFRP composite laminates and drilling induced delamination damage usually occurs severely at the exit side of drilling holes, which strongly deteriorate holes quality. In this work, the candle stick drill and multi-facet drill are employed to evaluate the machinability of drilling T700/LT-03A CFRP composite laminates in terms of thrust force, delamination, holes diameter and holes surface roughness. S/N ratio is used to characterize the thrust force while an ellipse-shaped delamination model is established to quantitatively analyze the delamination. The best combination of drilling parameters are determined by full consideration of S/N ratios of thrust force and the delamination. The results indicate that candle stick drill will induce the unexpected ellipse-shaped delamination even at its best drilling parameters of spindle speed of 10,000 rpm and feed rate of 0.004 mm/tooth. However, the multi-facet drill cutting at the relative lower feed rate of 0.004 mm/tooth and lower spindle speed of 6000 rpm can effectively prevent the delamination. Comprehensively, holes quality obtained by multi-facet drill is much more superior to those obtained by candle stick drill.

  9. Damage in woven CFRP laminates subjected to low velocity impacts

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Abdel-Wahab, A. A.; Harland, A. R.; Silberschmidt, V. V.

    2012-08-01

    Carbon fabric-reinforced polymer (CFRP) composites used in sports products can be exposed to different in-service conditions such as large dynamic bending deformations caused by impact loading. Composite materials subjected to such loads demonstrate various damage modes such as matrix cracking, delamination and, ultimately, fabric fracture. Damage evolution in these materials affects both their in-service properties and performance that can deteriorate with time. These processes need adequate means of analysis and investigation, the major approaches being experimental characterisation and non-destructive examination of internal damage in composite laminates. This research deals with a deformation behaviour and damage in woven composite laminates due to low-velocity dynamic out-of-plane bending. Experimental tests are carried out to characterise the behaviour of such laminates under large-deflection dynamic bending in un-notched specimens in Izod tests using a Resil Impactor. A series of low-velocity impact tests is carried out at various levels of impact energy to assess the energy absorbed and force-time response of CFRP laminates. X-ray micro computed tomography (micro-CT) is used to investigate material damage modes in the impacted specimens. X-ray tomographs revealed that through-thickness matrix cracking, inter-ply delamination and intra-ply delamination, such as tow debonding and fabric fracture, were the prominent damage modes.

  10. Analysis of nonlinear deformations and damage in CFRP textile laminates

    NASA Astrophysics Data System (ADS)

    Ullah, H.; Harland, A. R.; Lucas, T.; Price, D.; Silberschmidt, V. V.

    2011-07-01

    Carbon fibre-reinforced polymer (CFRP) textile composites are widely used in aerospace, automotive and construction components and structures thanks to their relatively low production costs, higher delamination and impact strength. They can also be used in various products in sports industry. These products are usually exposed to different in-service conditions such as large bending deformation and multiple impacts. Composite materials usually demonstrate multiple modes of damage and fracture due to their heterogeneity and microstructure, in contrast to more traditional homogeneous structural materials like metals and alloys. Damage evolution affects both their in-service properties and performance that can deteriorate with time. These damage modes need adequate means of analysis and investigation, the major approaches being experimental characterisation, numerical simulations and microtomography analysis. This research deals with a deformation behaviour and damage in composite laminates linked to their quasi-static bending. Experimental tests are carried out to characterise the behaviour of woven CFRP material under large-deflection bending. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus/Explicit to study the deformation behaviour and damage in woven CFRP laminates. Multiple layers of bilinear cohesive-zone elements are employed to model the onset and progression of inter-ply delamination process. X-ray Micro-Computed Tomography (MicroCT) analysis is carried out to investigate internal damage mechanisms such as cracking and delaminations. The obtained results of simulations are in agreement with experimental data and MicroCT scans.

  11. Development of a Fully Automated Guided Wave System for In-Process Cure Monitoring of CFRP Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo

    2016-01-01

    A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.

  12. Modeling of Nonlinear Mechanical Response in CFRP Angle-Ply Laminates

    NASA Astrophysics Data System (ADS)

    Ogihara, Shinji

    2014-03-01

    It is known that the failure process in angle-ply laminate involves matrix cracking and delamination and that they exhibit nonlinear stress-strain relation. There may be a significant effect of the constituent blocked ply thickness on the mechanical behavior of angle-ply laminates. These days, thin prepregs whose thickness is, for example 50 micron, are developed and commercially available. Therefore, we can design wide variety of laminates with various constituent ply thicknesses. In this study, effects of constituent ply thickness on the nonlinear mechanical behavior and the damage behavior of CFRP angle-ply laminates are investigated experimentally. Based on the experimental results, the mechanical response in CFRP angle-ply laminates is modeled by using the finite strain viscoplasticity model. We evaluated the mechanical behavior and damage behavior in CFRP angle-ply laminates with different constituent ply thickness under tensile loading experimentally. It was found that as the constituent ply thickness decreases, the strength and failure strain increases. We also observed difference in damage behavior. The preliminary results of finite strain viscoplasticity model considering the damage effect for laminated composites are shown. A qualitative agreement is obtained.

  13. Delamination detection in CFRP laminates using FOD sensor

    NASA Astrophysics Data System (ADS)

    Li, Fucai; Kageyama, Kazuro; Murayama, Hideaki; Ohsawa, Isamu

    2009-07-01

    In this paper, carbon fiber reinforced plastic (CFRP) laminates (pristine and delaminated) are addressed for the purpose of damage assessment. Recently developed Doppler effect-based fiber optic (FOD) sensor was bonded on surface of each CFRP laminate to acquire piezoceramic-disc-excited guided waves propagating in the specimen. Characteristics of the captured guided wave signals were extracted by taking advantage of two well-developed signal processing algorithms, namely, linear-phase finite impulse response filter and Hilbert transform, so as to investigate the influence of the delaminations to the guided wave propagation. When guided waves are incident on discontinuities, mode conversion may occur as a result of satisfying the boundary conditions along the discontinuities. Both the dispersive characteristics of multi-mode guided waves and features of the guided-wave-generated fundamental shear horizontal (SH0) wave were applied for damage evaluation and multiple-damage detection. The results demonstrate that the FOD sensor is effective in multiple delamination detection for CFRP laminates because of its omnidirectional property in ultrasonic detection.

  14. Aluminium/lithium alloy-CFRP hybrid laminate: Fabrication and properties

    SciTech Connect

    Freischmidt, G.; Coutts, R.S.P.; Janardhana, M.N.

    1993-12-31

    Hybrid composite laminates of aluminum and aluminum/lithium alloy sheeting with unidirectional carbon fiber/epoxy plies have been fabricated to produce sheet materials of high strength, low density and reduced fatigue crack growth rate. In an arrangement of one layer of unidirectional carbon fiber reinforced plastic (CFRP) and 2 sheets of 2090-T3 aluminum alloy was used to give a material with a density of 2.20g/cm{sup 3}. Tensile test results gave an ultimate strength of 803MPa, a modulus of 75.7GPa and a 2% offset yield strength of 497MPa. Preliminary fatigue crack growth rate determinations on single edge notch (SEN) specimens show a marked reduction compared to monolithic 2090-T3. Other hybrid laminates using 2024-T3 alloy have also been made and tested. These laminates show reduced tensile properties, however, they appear to have lower fatigue crack growth rates than when using 2090T3 in hybrid form. The fabrication of hybrid laminates included the use of unsupported adhesive film to bond the precured unidirectional carbon fiber composite plies to the aluminum sheeting. This has left a distinct interphase region between the alloy and CFRP which is thought to improve properties through an effective load transfer.

  15. Delaminations of barely visible impact damage in CFRP laminates

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Rai, Badri

    CFRP laminates were impacted by projectiles of low masses, accelerated in an air gun, to have barely visible impact damage (BVID) to simulate damage to aircraft by runway debris. The delamination damage on individual interfaces was revealed by the destructive method of thin strips. In sub-BVID and BVID specimens, the damage was confined mostly to the front 30 percent of the laminate thickness. Delamination areas in the BVID specimens were found to be considerable - the largest dimension exceeding 12 mm on several interfaces. Nucleation of delamination damage was observed in interfaces adjacent to the mid plane in BVID specimens. At higher impact energies, about 110 to 150 percent more, the delamination damage was observed on almost all the interfaces with no sign of spalling at the rear surfaces. In comparison with a lightweight projectile of aluminum (4.4 g), a higher density steel projectile ( 11.8 g) caused more delamination damage for the same impact energy and an identical geometry of projectiles.

  16. Active deformation and engineering analysis of CFRP mirror of various lay-up sequences within quasi-isotropic laminates

    NASA Astrophysics Data System (ADS)

    Zeng, Chunmei; Yu, Xia; Guo, Peiji

    2014-08-01

    A regularization stiffness coefficient method was verified further to optimize lay-up sequences of quasi-isotropic laminates for carbon fiber reinforced polymer (CFRP) composite mirrors. Firstly, the deformation due to gravity of 1G and temperature difference of 20-100°C and the modal were analyzed by finite element method (FEM). Secondly, the influence of angle error of ply stacking on quasi-isotropic of bending stiffness was evaluated. Finally, an active support system of 49 actuators in circular arrangement is designed for a 500mm CFRP mirror, and its goal is to deform the spherical CFRP mirror to a parabolic. Therefore, the response functions of the actuators were gotten, and the surface form errors and stresses were calculated and analyzed. The results show that the CFRP mirrors designed by the method have a better symmetrical bending deformation under gravity and thermal load and a higher fundamental frequency, and the larger n the better symmetry (for π/n quasi-isotropic laminates); the method reduces the sensitivity to misalignment of ply orientation for symmetric bending, and the mirror's maximum von Mises stress and maximum shear stress are less compared to those laminates not optimized in lay-up sequence.

  17. An application of a neural network to damage identification in CFRP laminates

    SciTech Connect

    Byon, O.I.; Fujikawa, Y.

    1994-12-31

    For the wider use of CFRP, the damage specially in the laminated direction such as transverse cracking, delamination or fiber-matrix debonding should be easily and economically searched and a reasonable non-destructive test method should be also fixed. This paper presents the application of the hierarchical neural network to the damage identification in the CFRP laminated beam and discusses the accuracy and the efficiency of this method. As a result, it is found that the neural network is the very useful and practical non-destructive method as the first approximation of damage identification in the CFRP laminated beam. Even the network is developed through the iterative calculation, this network is fitted for the field measuring because the damage can be identified by the simpler operations of summations and multiplications.

  18. Damage detection of CFRP laminates via self-sensing fibres and thermal-sprayed electrodes

    NASA Astrophysics Data System (ADS)

    Ogawa, M.; Huang, C.; Nakamura, T.

    2013-03-01

    Structural components made of carbon/graphite fibre-reinforced polymers (CFRP) are frequently deployed in environments where solid particle impacts can generate surface degradation and damage. Recently, several nondestructive evaluation methods have been proposed to detect any damages for composite materials. However, many of them are not suited for real-time health monitoring in large scale due to their complexity and cost. This study proposes a new monitoring system to quantify the extent of damage using carbon fibres themselves as self-sensing sensors. This approach utilises recently developed thermal spray process to deposit copper electrodes directly onto composite surfaces. These electrodes are used to measure electrical resistances along the carbon, which are processed to estimate damage state via inverse analysis. In this study, in order to determine appropriate distributions of electrodes to identify damage parameters, several simulations are carried out under different electrode spacing conditions. To improve the estimation accuracy, an error sensitivity analysis is also carried out with various data processing schemes. In addition, preliminary tests are conducted for actual CFRP laminates with thermal-sprayed electrodes to verify the concept of the proposed method. Here, electrical resistance changes are measured with an artificially introduced damage. Although further refinements are necessary, increased resistances due to the damage among electrodes are obtained.

  19. Honeycomb-laminate composite structure

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Parker, J. A. (Inventor)

    1977-01-01

    A honeycomb-laminate composite structure was comprised of: (1) a cellular core of a polyquinoxaline foam in a honeycomb structure, and (2) a layer of a noncombustible fibrous material impregnated with a polyimide resin laminated on the cellular core. A process for producing the honeycomb-laminate composite structure and articles containing the honeycomb-laminate composite structure is described.

  20. CFRP composites for optics and structures in telescope applications

    NASA Astrophysics Data System (ADS)

    Romeo, Robert C.

    1995-10-01

    The use of continuous fiber reinforced plastic, CFRP, composite materials is introduced here as a viable material for optical telescopes. The thermal characteristics of CFRPs make them attractive as dimensionally stable materials for all-composite telescope structures and mirrors. Composite mirrors have only recently shown promise as replacements for heavier and more fragile glass mirrors. The areal density of a CFRP mirror can be as much as 10 times less than that of a glass mirror. Optical test results show CFRP composite mirrors can be fabricated with an average surface roughness of less than 10 angstroms. Concept models of scope and CFRP optics with associated figure and roughness data are presented.

  1. Fracture Analysis of Competing Failure Modes of Aluminum-CFRP Joints Using Three-Layer Titanium Laminates as Transition

    NASA Astrophysics Data System (ADS)

    Woizeschke, P.; Vollertsen, F.

    2015-09-01

    The structural properties of lightweight constructions can be adapted to specific local requirements using multi-material designs. Aluminum alloys and carbon fiber-reinforced plastics (CFRP) are materials of great interest requiring suitable joining techniques in order to transfer the advantages of combining the materials to structural benefits. Thus, the research group "Schwarz-Silber" investigates novel concepts to enable frontal aluminum-CFRP joints using transition structures. In the foil concept titanium foils are used as transition elements. Specimens have been produced using three-layer titanium laminates. In tensile tests, three failure locations have been observed: (1) Al-Ti seam, (2) Ti-CFRP hybrid laminate, and (3) CFRP laminate. In this paper, the fracture mechanisms of these failure modes are investigated by analyzing metallographic micrographs and fracture surfaces as well as by correlating load-displacement curves to video imaging of tensile tests. The results show that the cracking of the CFRP layers can be traced back to an assembly error. The laminate character of the titanium part tends to reduce the Al-Ti seam strength. However, two sub-joint tests demonstrate that the Al-Ti seam can endure loads up to 9.5 kN. The ductile failure behavior of the Ti-CFRP hybrid laminates is caused by plastic deformations of the titanium laminate liners.

  2. NDE and SHM Simulation for CFRP Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Parker, F. Raymond

    2014-01-01

    Ultrasound-based nondestructive evaluation (NDE) is a common technique for damage detection in composite materials. There is a need for advanced NDE that goes beyond damage detection to damage quantification and characterization in order to enable data driven prognostics. The damage types that exist in carbon fiber-reinforced polymer (CFRP) composites include microcracking and delaminations, and can be initiated and grown via impact forces (due to ground vehicles, tool drops, bird strikes, etc), fatigue, and extreme environmental changes. X-ray microfocus computed tomography data, among other methods, have shown that these damage types often result in voids/discontinuities of a complex volumetric shape. The specific damage geometry and location within ply layers affect damage growth. Realistic threedimensional NDE and structural health monitoring (SHM) simulations can aid in the development and optimization of damage quantification and characterization techniques. This paper is an overview of ongoing work towards realistic NDE and SHM simulation tools for composites, and also discusses NASA's need for such simulation tools in aeronautics and spaceflight. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with realistic 3-dimensional damage in CFRP composites. The custom code uses elastodynamic finite integration technique and is parallelized to run efficiently on computing cluster or multicore machines.

  3. Some remarks on static, creep and fatigue flexural strength of satin woven CFRP laminates

    SciTech Connect

    Miyano, Y.; McMurry, M.K.; Muki, R.

    1995-12-31

    This paper deals with the time-temperature dependent flexural strength of a satin-woven CFRP laminate having a matrix resin with a high glass transition temperature of T{sub g} = 236/C under static, creep and fatigue loading by 3-point bending tests. Static tests were conducted at various points in a wide range of deflection rates and temperatures. The creep and fatigue tests were carried out at various constant temperatures; the fatigue test was conducted at two frequencies. The results of the experimental study are as follows. The flexural strength of the CFRP laminates for all three loading types is time-temperature dependent even near room temperature well below T{sub g}. The time and temperature superposition principle for the matrix resin also holds for the flexural strength of the CFRP laminates. The fracture modes are almost the same for the three loading types under all conditions tested. Finally, we propose a method for predicting the flexural fatigue strength for a given number of cycles to failure at an arbitrary temperature, frequency and stress ratio based on the current experimental findings and considering the relationships among the static, creep and fatigue flexural strengths.

  4. Symmetric Composite Laminate Stress Analysis

    NASA Technical Reports Server (NTRS)

    Wang, T.; Smolinski, K. F.; Gellin, S.

    1985-01-01

    It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example.

  5. Three-Dimensional Analysis of the Effect of Material Randomness on the Damage Behaviour of CFRP Laminates with Stochastic Cohesive-Zone Elements

    NASA Astrophysics Data System (ADS)

    Khokhar, Zahid R.; Ashcroft, Ian A.; Silberschmidt, Vadim V.

    2014-02-01

    Laminated carbon fibre-reinforced polymer (CFRP) composites are already well established in structural applications where high specific strength and stiffness are required. Damage in these laminates is usually localised and may involve numerous mechanisms, such as matrix cracking, laminate delamination, fibre de-bonding or fibre breakage. Microstructures in CFRPs are non-uniform and irregular, resulting in an element of randomness in the localised damage. This may in turn affect the global properties and failure parameters of components made of CFRPs. This raises the question of whether the inherent stochasticity of localised damage is of significance in terms of the global properties and design methods for such materials. This paper presents a numerical modelling based analysis of the effect of material randomness on delamination damage in CFRP materials by the implementation of a stochastic cohesive-zone model (CZM) within the framework of the finite-element (FE) method. The initiation and propagation of delamination in a unidirectional CFRP double-cantilever beam (DCB) specimen loaded under mode-I was analyzed, accounting for the inherent microstructural stochasticity exhibited by such laminates via the stochastic CZM. Various statistical realizations for a half-scatter of 50 % of fracture energy were performed, with a probability distribution based on Weibull's two-parameter probability density function. The damaged area and the crack lengths in laminates were analyzed, and the results showed higher values of those parameters for random realizations compared to the uniform case for the same levels of applied displacement. This indicates that deterministic analysis of composites using average properties may be non-conservative and a method based on probability may be more appropriate.

  6. Study on three dimensional transient thermal stress analysis for laminated composite materials

    SciTech Connect

    Matsumoto, Kin`ya; Zako, Masaru

    1995-11-01

    Transient heat conduction and thermal stress analysis of laminated composite materials are very important because they are hated during manufacturing process. Anisotropy of thermal conductivity has to be considered for heat conduction analysis of composite materials such as FRP. Assuming that heat conducts uniformly in normal direction in thin structures, laminated plates can be modeled as single layers with the equivalent heat conductivities. With this assumption, FEM three dimensional transient heat conduction and thermal stress analysis programs for laminated composite materials are developed. As numerical examples, the heat conduction and thermal stresses of laminated CFRP structure are investigated.

  7. TEA CO2 laser machining of CFRP composite

    NASA Astrophysics Data System (ADS)

    Salama, A.; Li, L.; Mativenga, P.; Whitehead, D.

    2016-05-01

    Carbon fibre-reinforced polymer (CFRP) composites have found wide applications in the aerospace, marine, sports and automotive industries owing to their lightweight and acceptable mechanical properties compared to the commonly used metallic materials. Machining of CFRP composites using lasers can be challenging due to inhomogeneity in the material properties and structures, which can lead to thermal damages during laser processing. In the previous studies, Nd:YAG, diode-pumped solid-state, CO2 (continuous wave), disc and fibre lasers were used in cutting CFRP composites and the control of damages such as the size of heat-affected zones (HAZs) remains a challenge. In this paper, a short-pulsed (8 μs) transversely excited atmospheric pressure CO2 laser was used, for the first time, to machine CFRP composites. The laser has high peak powers (up to 250 kW) and excellent absorption by both the carbon fibre and the epoxy binder. Design of experiment and statistical modelling, based on response surface methodology, was used to understand the interactions between the process parameters such as laser fluence, repetition rate and cutting speed and their effects on the cut quality characteristics including size of HAZ, machining depth and material removal rate (MRR). Based on this study, process parameter optimization was carried out to minimize the HAZ and maximize the MRR. A discussion is given on the potential applications and comparisons to other lasers in machining CFRP.

  8. Experimental and Computational Studies on Progressive Failure Analysis of Notched Cross-Ply CFRP Composite

    NASA Astrophysics Data System (ADS)

    Pham, Dinh Chi; Sun, Xiushan

    2012-09-01

    This work presents experimental and computational studies on progressive failure analysis of notched cross-ply carbon fiber reinforced polymer (CFRP) composite. The carbon/epoxy composite laminated with [90/0]s layup is tested using double-notched specimens loaded in tension. The load-displacement curve, failure load and damage patterns of all tested specimens are discussed. In addition, a numerical analysis approach based on material property degradation method (MPDM) and cohesive elements (CE) is illustrated to capture complex failure mechanisms and damage progression as observed in the tested specimens. The MPDM is used to model the in-plane failure of 90° plies and 0° plies while the cohesive elements are used to account for the delamination at the [90/0] interfaces. Different progressive failure models employing fracture mechanics, continuum mechanics and micromechanics of failure are presented based on the MPDM-CE approach. The failure analyses by these progressive models are performed and their predictions are compared with the experimental results of notched [90/0]s CFRP composite. Reasonably good agreement between experimental results and simulation results is obtained and it is shown that the MPDM-CE approach can effectively predict the progressive failure of double-notched [90/0]s composite laminate.

  9. An experimental study of permeability within an out-of-autoclave vacuum-bag-only CFRP laminate

    NASA Astrophysics Data System (ADS)

    Wallace, Landon F.

    The out-of-autoclave vacuum-bag-only (OOA-VBO) manufacturing process is a process that eliminates an autoclave when manufacturing aerospace quality carbon fiber reinforced plastics (CFRP). OOA-VBO pre-impregnated resin tow systems rely on air channel networks that guide unwanted voids out of the laminate. The air path networks can be characterized by measuring the permeability of a pre-cured laminate. Permeability results were successfully obtained for a laminate with a compaction similar to that found in a typical vacuum bagging setup. A study was done to find the relationship between compaction of the laminate and permeability. Permeability was measured as the laminate cured, using a constant temperature ramp rate. An experimental nodal analysis was performed to find the permeability at the midpoint of the in-plane direction.

  10. Time and temperature dependence on flexural fatigue behavior of unidirectional CFRP laminates using pitch-based carbon fibers

    SciTech Connect

    Miyano, Yasushi; Daichou, Noboru; Nakada, Masayuki; Mohri, Michihiro

    1996-12-31

    The flexural fatigue behavior of two kinds of unidirectional pitch-based CFRP laminates, which have different types of matrix resin, were evaluated at several levels of frequency and temperature. The fatigue behavior of both CFRPs was found to be remarkably dependent on time and temperature. The time-temperature superposition principle for the viscoelastic behavior of the matrix resin holds for the fatigue strength as well as the static strength of the CFRPs. The master curves of fatigue strength for the CFRPs can be divided into three distinct groups of curves, each corresponding to a different mode of fracture. The time and temperature dependence of the fatigue behavior of the CFRP laminates is not only controlled by the viscoelastic behavior of the matrix resin, even though the static behavior is dominated by the viscoelastic behavior of matrix resin.

  11. Numerical and experimental assessments of nonlinear bearing strength properties of CFRP laminates

    SciTech Connect

    Kisielewicz, L.T.; Ando, K.; Kenmochi, K.

    1994-12-31

    Pin connectors are commonly used in a variety of applications using a variety of materials and have attracted a great number of researches both in technological and analytical fields. While for metallic materials both the rheological and structural phenomena of such connectors are well understood and allow to proceed to design and optimization based on analytical methods, the situation is not the same for new materials such as CFRP or other composites. The paper approaches the assessment of bearing strength of such connectors both from the experimental and numerical standpoints and show the capability of the latter to predict this structural strength.

  12. Applicability Study of Composite Laminates to the Cryogenic Propellant Tanks

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Ishikawa, T.

    2002-01-01

    Extensive application of light weight composite materials is one of the major technical challenges for drastic reduction of structural weight of the planned reusable launch vehicles (RLV) and space planes. Cryogenic propellant tanks are the dominating structural components of the vehicle structure and thus the application of carbon fiber reinforced plastics (CFRP) to these components is one of the most promising but challenging technologies for achieving the aimed goal of weight reduction. Research effort has been made to scrutinize the cryogenic mechanical performance of currently available candidates of CFRP material systems suitable for use under cryogenic conditions. Seven different types of material systems of CFRP are chosen and are experimentally and analytically evaluated to discuss their applicability to the liquid propellant tanks and to provide basic information for material selections. Static tensile tests were conducted with quasi-isotropic laminates to acquire static strengths, both under cryogenic and room temperatures. The development of matrix cracks and free-edge delaminations were also experimentally investigated and were compared with the numerical calculations. Interlaminar fracture toughness at cryogenic temperature was also evaluated to investigate the damage susceptibility of the materials. The decrease in matrix crack onset stresses observed in the laminate performance experiments suggested that the propellant leakage may be a key issue when applying CFRP to the propellant tanks, as well as the durability concern. Thus the propellant leakage under matrix crack accumulation was simulated by the gas helium leakage tests. Leakage model was also developed and successfully applied to the prediction of the propellant leakage. Preliminary results of adhesive joint tests under cryogenic conditions will also be referred to.

  13. Experimental investigation of CNT effect on curved beam strength and interlaminar fracture toughness of CFRP laminates

    NASA Astrophysics Data System (ADS)

    Arca, M. A.; Coker, D.

    2014-06-01

    High mechanical properties and light weight structures of composite materials and advances in manufacturing processes have increased the use of composite materials in the aerospace and wind energy industries as a primary load carrying structures in complex shapes. However, use of composite materials in complex geometries such as L-shaped laminates creates weakness at the radius which causes delamination. Carbon nanotubes (CNTs) is preferred as a toughening materials in composite matrices due to their high mechanical properties and aspect ratios. However, effect of CNTs on curved beam strength (CBS) is not investigated in literature comprehensively. The objective of this study is to investigate the effect of CNT on Mode I and Mode II fracture toughness and CBS. L-shaped beams are fabric carbon/epoxy composite laminates manufactured by hand layup technique. Curved beam composite laminates were subjected to four point bending loading according to ASTM D6415/D6415M-06a. Double cantilever beam (DCB) tests and end notch flexure (ENF) tests were conducted to determine mode-I and mode-II fracture toughness, respectively. Preliminary results show that 3% CNT addition to the resin increased the mode-I fracture toughness by %25 and mode-II fracture toughness by %10 compared to base laminates. In contrast, no effect on curved beam strength was found.

  14. Rotary ultrasonic machining of CFRP composites: a study on power consumption.

    PubMed

    Cong, W L; Pei, Z J; Deines, T W; Srivastava, Anil; Riley, L; Treadwell, C

    2012-12-01

    Carbon fiber reinforced plastic (CFRP) composites are very difficult to machine. A large number of holes need to be drilled in CFRP for many applications. Therefore, it is important to develop cost-effective drilling processes. CFRP has been drilled by rotary ultrasonic machining (RUM) successfully. The literature has reports about the effects of input variables on output variables (including cutting force, torque, surface roughness, tool wear, and workpiece delamination) in RUM of CFRP. However, there are no reports on power consumption in RUM of CFRP. This paper reports the first study on power consumption in RUM of CFRP. It reports an experimental investigation on effects of input variables (ultrasonic power, tool rotation speed, feedrate, and type of CFRP) on power consumption of each component (including ultrasonic power supply, spindle motor, coolant pump, and air compressor) and the entire RUM system.

  15. Multiple damage assessment in composite laminates using a Doppler-effect-based fiber-optic sensor

    NASA Astrophysics Data System (ADS)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Ohsawa, Isamu

    2009-11-01

    In this paper, carbon fiber-reinforced plastic (CFRP) laminates are addressed for the purpose of multiple damage assessment. Doppler-effect-based fiber-optic (FOD) sensors were used to capture guided waves propagating in the CFRP laminates. Characteristics of the fundamental symmetric (S0) and anti-symmetric (A0) Lamb waves in captured guided-wave signals were extracted by taking advantage of linear-phase finite impulse response filter and Hilbert transform, so as to systematically investigate the influence of delaminations on guided-wave propagation. Both dispersive characteristics of multi-mode Lamb waves and features of the Lamb wave-excited fundamental shear horizontal (SH0) guided wave were applied for damage evaluation and multiple damage identification. Results demonstrate that the FOD sensor is effective in multiple damage identification for composite laminates because it is omnidirectional in ultrasonic detection.

  16. Basic mechanics of laminated composite plates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1994-01-01

    The mechanics of laminated composite materials is presented in a clear manner with only essential derivations included. The constitutive equations in all of their forms are developed and then summarized in a separate section. The effects of hygrothermal effects are included. The prediction of the engineering constants for a laminate are derived. Strength of laminated composites is not covered.

  17. Application of a novel optical fiber sensor to detection of acoustic emissions by various damages in CFRP laminates

    NASA Astrophysics Data System (ADS)

    Wu, Qi; Yu, Fengming; Okabe, Yoji; Kobayashi, Satoshi

    2015-01-01

    In this research, we applied a novel optical fiber sensor, phase-shifted fiber Bragg grating balanced sensor with high sensitivity and broad bandwidth, to acoustic emission (AE) detection in carbon fiber reinforced plastics (CFRPs). AE signals generated in the tensile testing of angle-ply and cross-ply CFRP laminates were both detected by the novel optical fiber sensor and traditional PZT sensors. The cumulative hits detected by both sensors coincided after applying simple data processing to eliminate the noise, and clearly exhibited Kaiser effect and Felicity effect. Typical AE signals detected by both sensors were discussed and were tried to relate to micro CFRP damages observed via microscope. These results demonstrate that this novel optical fiber sensor can reliably detect AE signals from various damages. It has the potential to be used in practical AE detection, as an alternative to the piezoelectric PZT sensor.

  18. Impact damage in composite laminates

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    1988-01-01

    Damage tolerance requirements have become an important consideration in the design and fabrication of composite structural components for modern aircraft. The ability of a component to contain a flaw of a given size without serious loss of its structural integrity is of prime concern. Composite laminates are particularly susceptible to damage caused by transverse impact loading. The ongoing program described is aimed at developing experimental and analytical methods that can be used to assess damage tolerance capabilities in composite structures subjected to impulsive loading. Some significant results of this work and the methodology used to obtain them are outlined.

  19. THERMAL-MECHANICAL RESPONSE OF CRACKED SATIN WEAVE CFRP COMPOSITES AT CRYOGENIC TEMPERATURES

    SciTech Connect

    Watanabe, S.; Shindo, Y.; Narita, F.; Takeda, T.

    2008-03-03

    This paper examines the thermal-mechanical response of satin weave carbon fiber reinforced polymer (CFRP) laminates with internal and/or edge cracks subjected to uniaxial tension load at cryogenic temperatures. Cracks are considered to occur in the transverse fiber bundles and extend through the entire thickness of the fiber bundles. Two-dimentional generalized plane strain finite element models are developed to study the effects of residual thermal stresses and cracks on the mechanical behavior of CFRP woven laminates. A detailed examination of the Young's modulus and stress distributions near the crack tip is carried out which provides insight into material behavior at cryogenic temperatures.

  20. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  1. Superplasticity in laminated metal composites

    SciTech Connect

    Lesuer, D.; Sherby, O.; Syn, C.

    1998-10-20

    Several studies have shown the possibility of achieving superplastic behavior in laminated metal composites consisting of alternating layers of superplastic and non-superplastic materials. Achieving high rate sensitivity in such a laminate requires the appropriate choice of component materials and component volume fraction as well as deformation under appropriate conditions of strain rate and temperature. The first investigators to study this behavior were Snyder et al. [1], who demonstrated that a non-superplastic material (interstitial free iron) could be made superplastic by lamination with a superplastic material (fine-grained ultrahigh carbon steel (UHCS)). Other laminates in which superplasticity has been observed in a non-superplastic material include UHCS/stainless steel and UHCS/aluminum bronze. In these studies, tensile tests were conducted with the tensile axis parallel to the layers. High strain rate sensitivities were observed and are associated with high tensile ductilities. However, as observed by Tsai et al. [2], obtaining high strain rate sensitivity is a necessary but not sufficient condition for high elongations. Tsai et al. studied the UHCS/brass laminate and found that, despite a strain rate sensitivity exponent of 0.5, only about 60% elongation was obtained. The low tensile ductility resulted from brittle, intergranular fracture of the brass. Once cracking started in the brass, cracks penetrated into the UHCS and premature failure resulted. Thus high elongations requires achieving high strain rate sensitivity as well as avoiding brittle fracture in the less ductile layer. In addition to tension, other deformation modes, including compression [3] and co-extrusion [4], have been studied for deformation response under conditions of high strain rate s

  2. Symmetries in laminated composite plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1976-01-01

    The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.

  3. Delamination detection in composite laminates using dispersion change based on mode conversion of Lamb waves

    NASA Astrophysics Data System (ADS)

    Okabe, Yoji; Fujibayashi, Keiji; Shimazaki, Mamoru; Soejima, Hideki; Ogisu, Toshimichi

    2010-11-01

    A new ultrasonic propagation system has been constructed using macrofiber composite (MFC) actuators and fiber Bragg grating (FBG) sensors. The MFCs and FBGs can be integrated into composite laminates because of their small size and high fracture strain. The developed system can send and receive broadband Lamb waves. In this research, this system was used to detect delamination damage in composite laminates. First, the multiple modes of Lamb waves in a carbon-fiber-reinforced plastic (CFRP) quasi-isotropic laminate were identified by transmitting and receiving the symmetric and antisymmetric modes separately. Then, the mode conversions at both tips of a delamination were investigated through an experiment and a two-dimensional finite element analysis (FEA). A new delamination detection method was proposed on the basis of the mode conversions, and experiments were carried out on laminates with an artificial delamination. When antisymmetric modes were excited, the frequency dispersion of the received A1 mode changed, depending on the delamination length owing to the mode conversion between the A1 mode and the S0 mode. This phenomenon was confirmed through the FEA and these results prove that this new method is effective in detecting a delamination in CFRP laminates.

  4. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2016-04-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  5. Comparison of experimental and analytical results for free vibration of laminated composite plates

    SciTech Connect

    Maryuama, Koichi; Narita, Yoshihiro; Ichinomiya, Osamu

    1995-11-01

    Fibrous composite materials are being increasingly employed in high performance structures, including pressured vessel and piping applications. These materials are usually used in the form of laminated flat or curved plates, and the understanding of natural frequencies and the corresponding mode shapes is essential to a reliable structural design. Although many references have been published on analytical study of laminated composite plates, a limited number of experimental studies have appeared for dealing with vibration characteristics of the plates. This paper presents both experimental and analytical results for the problems. In the experiment, the holographic interferometry is used to measure the resonant frequencies and corresponding mode shapes of six-layered CFRP (carbon fiber reinforced plastic) composite plates. The material constants of a lamina are calculated from fiber and matrix material constants by using some different composite rules. With the calculated constants, the natural frequencies of the laminated CFRP plates are theoretically determined by the Ritz method. From the comparison of two sets of the results, the effect of choosing different composite rules is discussed in the vibration study of laminated composite plates.

  6. Low-cycle and high-cycle fatigue failure process characterization of CFRP cross-ply laminates

    SciTech Connect

    Takeda, N.; Ogihara, S.; Kobayashi, A.

    1994-12-31

    Damage progress in toughened-type CFRP cross-ply laminates under tensile fatigue loading was measured by the replica technique. The damage parameters, the transverse crack density and the delamination ratio, were presented. Based on above data, simple shear-lag analysis combined with the modified Paris law model was conducted to model the damage progress. In addition, a novel power-law model was proposed, which related the cyclic strain range and the number of cycles. The loading-unloading tests were also performed to obtain the Young`s modulus reduction and the permanent strain as functions of the damage state. The shear-lag predictions of the Young`s modulus reduction and the permanent strain showed good agreement with the experimental data, when the interaction between transverse cracking and delamination were taken into account.

  7. Poly-m-aramid nanofiber mats: Production for application as structural modifiers in CFRP laminates

    NASA Astrophysics Data System (ADS)

    Mazzocchetti, Laura; D'Angelo, Emanuele; Benelli, Tiziana; Belcari, Juri; Brugo, Tommaso Maria; Zucchelli, Andrea; Giorgini, Loris

    2016-05-01

    Poly(m-phenylene isophtalamide) electrospun nanofibrous membranes were produced to be used as structural reinforcements for carbon fiber reinforced composites production. In order for the polymer to be electrospun, it needs however to be fully solubilized, so the addition of some salts is required to help disrupt the tight macromolecular packing based on intra- and inter-molecular hydrogen bonding. Such salts may also contribute to the electrospinnability of the overall solution, since the provide it with a higher conductivity, whatever the solvent might be. The salt haobwever stays in the final nanofibrous mat. The membranes containing the salt are also observed to be highly hygroscopic, with a water content up to 26%, in the presence of 20%wt LiCl in the nanofibrous mat. When those membranes were interleaved among prepregs to produce a laminates, the obtained composite displayed thermal properties comparable to those of a reference nanofiber-free composite, though the former showed also easier delamination. Hence the removal of the hygroscopic salt was performed, that lead to thinner membranes, whose water content matched that of the pristine polymer. The washing step induced a thinning of the layers and of the fibers diameters, though no fiber shrinking nor membrane macroscopic damages were observed. These preliminary encouraging results thus pave the way to a deeper study of the optimized condition for producing convenient poly(m-phenylene isophtalamide) electrospun nanofibrous membranes to be used for carbon fiber reinforced composites structural modification.

  8. Simulation of Lightning-Induced Delamination in Un-protected CFRP Laminates

    NASA Astrophysics Data System (ADS)

    Naghipour, P.; Pineda, E. J.; Arnold, S. M.

    2016-08-01

    Lightning is a major cause of damage in laminated composite aerospace structures during flight. The most significant failure mode induced by lightning is delamination, which might extend well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. Therefore, it is crucial to develop a numerical tool capable of predicting the damage zone induced from a lightning strike to minimize costly repair acreage and supplement extremely expensive lightning experiments. Herein, a detailed numerical study consisting of a multidirectional composite with user-defined, temperature-dependent, interlaminar elements subjected to a lightning strike is designed, and delamination/damage expansion is studied under specified conditions. It is observed both the size and shape of the delamination zone are strongly dependent on the assumed temperature-dependent fracture toughness; the primary parameter controlling lightning-induced delamination propagation. An accurate estimation of the fracture toughness profile is crucial in order to have a reliable prediction of the delamination zone and avoid sub-critical structural failures.

  9. Environmental effects on unsymmetric composite laminates

    SciTech Connect

    Ochoa, O.O.; Ross, G.R. )

    1991-07-01

    In order to take full advantage of the tailorability of composite materials, the response of unsymmetric composite laminates is studied in an integrated analytical/experimental program. The laminates tested include a symmetric and an unsymmetric layup constructed of the IM7/977-2 graphite epoxy material system. The test conditions simulated include both ambient and hot/wet conditions in addition to tension and torsion. A quasi-three-dimensional finite element program is used to evaluate the stress-strain response of these laminates. These responses are compared with experimental observations. 14 refs.

  10. Shear response and design of RC beams strengthened using CFRP laminates

    NASA Astrophysics Data System (ADS)

    Singh, Shamsher B.

    2013-12-01

    The present investigation addresses the shear strengthening of deficient reinforced concrete (RC) beams using carbon fiber-reinforced polymer (CFRP) sheets. The effect of the pattern and orientation of the strengthening fabric on the shear capacity of the strengthened beams were examined. Three beams with various lay-ups of strengthening fabric, 45°, 0°/90°, and 0°/90°/45° were examined, in addition to an unstrengthened control beam. Principal and shear strains were measured at different locations at the critical sections of the strengthened beams corresponding to each applied shear force. Experimental results showing the advantage of beam strengthened using the various lay-ups of CFRP sheets are discussed. It is concluded that Beam-45°, Beam-0°/90°, and Beam-0°/90°/45° show about 25%, 19%, and 40% increases in shear-load carrying capacity in comparison to the control beam, respectively. Also, there exists a critical value of shear force up to which there is no appreciable shear strain in the CFRP sheets/beam. This shear force marks the ultimate shear resistance of the control beam. However, the strengthened beams exhibited significant strength and stiffness even beyond the critical value of the shear force. A design example for shear strengthening shows that the design equations available in the literature underestimate the actual shear strength of the beams.

  11. Creep of laminated aluminum composites

    NASA Astrophysics Data System (ADS)

    Moore, W.; Davies, T. J.

    1980-08-01

    The creep behavior of a laminate system consisting of alternate layers of pure aluminum and SAP (sintered aluminum powder) sheet has been examined in the temperature range 323 to 473 K and in the stress range 35 to 68 MN m-2. It was observed that secondary creep strain in the laminates was greater than in elemental SAP; the secondary creep strain rate in laminates was lower than that in pure aluminum and the creep rate decreased with increasing fracture of SAP. A stress exponent ( n) value of ˜20 was observed for most of the laminates and was reasonably constant for 3, 5, 7, and 9 ply laminates and volume fractions V f ) in the range 0.3 < V f < 0.65. For higher volume fractions of SAP the mechanical behavior of the laminates was similar to that of SAP. The experimental activation energy for creep of 30.5 ± 5 Kcal mol-1 correlates well with that for self-diffusion in aluminum. Laminating induced appreciable ductility to the SAP.

  12. Direct Composite Laminate Veneers: Three Case Reports

    PubMed Central

    Korkut, Bora; Yanıkoğlu, Funda; Günday, Mahir

    2013-01-01

    Re-establishing a patient’s lost dental esthetic appearance is one of the most important topics for contemporary dentistry. New treatment materials and methods have been coming on the scene, day by day, in order to achieve such an aim. Most dentists prefer more conservative and aesthetic approaches, such as direct and indirect laminate veneer restorations, instead of full-ceramic crowns for anteriors where aesthetics is really important. Laminate veneers are restorations which are envisioned to correct existing abnormalities, esthetic deficiencies and discolo-rations. Laminate veneer restorations may be processed in two different ways: direct or indirect. Direct laminate veneers have no need to be prepared in the laboratory and are based on the principle of application of a composite material directly to the prepared tooth surface in the dental clinic. Indirect laminate veneers may be produced from composite materials or ceramics, which are cemented to the tooth with an adhesive resin. In this case report, direct composite laminate veneer technique used for three patients with esthetic problems related to fractures, discolorations and an old prolapsed restoration, is described and six-month follow-ups are discussed. As a conclusion, direct laminate veneer restorations may be a treatment option for patients with the esthetic problems of anterior teeth in cases similar to those reported here. PMID:23875090

  13. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  14. Processing and characterization of thick laminated composites

    SciTech Connect

    Sabo, J.; Strait, L.H.; Strauch, E.C.; Koudela, K.L.; Giannetti, W.B.

    1994-12-31

    In recent years, significant interest has arisen in the use of laminated composites in marine structures. Such structures are often considerably thicker than their aerospace counterparts in which composites have traditionally been utilized. Thick composite structures require minor modifications to the standard fabrication techniques and cure cycles developed for thin sections. Thick composite materials utilized in marine applications must be capable of delivering acceptable properties and must retain those properties following exposure to the marine environment for service lives up to 30 years. The present paper describes the processing and characterization of a thick, hybrid panel measuring 76.20 x 66.04 x 7.62 cm The 7.62 cm thickness consisted of 2.54 cm of carbon fiber reinforced thermoplastic toughened epoxy (Fiberite IM7/977-2) tape with a quasi-isotropic lay up and 5.08 cm of carbon fiber reinforced epoxy (Fiberite T300/934) fabric with a quasi-isotropic lay up. Four sub laminates were selected at various locations through the thickness of the laminates. The sub laminates consisted of 16 (tape) or 8 (fabric) plies which were separated from the adjacent plies by sheets of porous teflon. The porous teflon sheets allowed resin flow to occur during processing of the laminate and provided a simple means of separating the sub laminates following cure. After separation, all laminate sections were inspected using ultrasonic techniques. Fiber volume fraction, void content, and the full range of mechanical properties were determined for each sub laminate. These results were compared with 16 (tape) and 8 (fabric) ply quasi-isotropic panels processed separately under ideal conditions. The results of this study demonstrate that it is possible to produce high-quality, thick laminates for use in marine structures.

  15. Axial collapse characteristics of CFRP composites with stacking conditions under the hygrothermal

    NASA Astrophysics Data System (ADS)

    Yang, Yongjun; Choi, Juho; Hwang, Woochae; Son, Jaekyung; Kook, Hyun; Im, Kwanghee; Sim, Jaeki; Yang, Inyoung

    2012-04-01

    CFRP composite material has superior specific strength and rigidity compared to metallic material, and is widely adopted in the various fields. Exceptional corrosion resistance enables the acceptance in maritime structural members such as ship and oildrilling machineries. However, CFRP composite material has the weakness in hygrothermal environment and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and component material properties can be degraded. An experimental investigation was carried out to study the crash evaluations of CFRP composites to dynamic crushing by impact loading. We have made a collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen. As a result, the effect of moisture absorption and impact loads of approximately 30~50% reduction in strength are shown.

  16. Axial collapse characteristics of CFRP composites with stacking conditions under the hygrothermal

    NASA Astrophysics Data System (ADS)

    Yang, Yongjun; Choi, Juho; Hwang, Woochae; Son, Jaekyung; Kook, Hyun; Im, Kwanghee; Sim, Jaeki; Yang, Inyoung

    2011-11-01

    CFRP composite material has superior specific strength and rigidity compared to metallic material, and is widely adopted in the various fields. Exceptional corrosion resistance enables the acceptance in maritime structural members such as ship and oildrilling machineries. However, CFRP composite material has the weakness in hygrothermal environment and crash environment. Especially, moisture ingress into composite material under hygrothermal environment can change molecule arrangement and chemical properties. In addition, interface characteristics and component material properties can be degraded. An experimental investigation was carried out to study the crash evaluations of CFRP composites to dynamic crushing by impact loading. We have made a collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed specimen. As a result, the effect of moisture absorption and impact loads of approximately 30~50% reduction in strength are shown.

  17. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  18. Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass

    NASA Technical Reports Server (NTRS)

    Robinson, David; Rodini, Benjamin

    2012-01-01

    The International X-ray Observatory project seeks to make an X-ray telescope assembly with 14,000 flexible glass segments. The glass used is commercially available SCHOTT D263 glass. Thermal expansion causes the mirror to distort out of alignment. A housing material is needed that has a matching coefficient of thermal expansion (CTE) so that when temperatures change in the X-ray mirror assembly, the glass and housing pieces expand equally, thus reducing or eliminating distortion. Desirable characteristics of this material include a high stiffness/weight ratio, and low density. Some metal alloys show promise in matching the CTE of D263 glass, but their density is high compared to aluminum, and their stiffness/weight ratio is not favorable. A laminate made from carbon fiber reinforced plastic (CFRP) should provide more favorable characteristics, but there has not been any made with the CTE matching D263 Glass. It is common to create CFRP laminates of various CTEs by stacking layers of prepreg material at various angles. However, the CTE of D263 glass is 6.3 ppm/ C at 20 C, which is quite high, and actually unachievable solely with carbon fiber and resin. A composite laminate has been developed that has a coefficient of thermal expansion identical to that of SCHOTT D263 glass. The laminate is made of a combination of T300 carbon fiber, Eglass, and RS3C resin. The laminate has 50% uni-T300 plies and 50% uni-E-glass plies, with each fiber-layer type laid up in a quasi-isotropic laminate for a total of 16 plies. The fiber volume (percent of fiber compared to the resin) controls the CTE to a great extent. Tests have confirmed that a fiber volume around 48% gives a CTE of 6.3 ppm/ C. This is a fairly simple composite laminate, following well established industry procedures. The unique feature of this laminate is a somewhat unusual combination of carbon fiber with E-glass (fiberglass). The advantage is that the resulting CTE comes out to 6.3 ppm/ C at 20 C, which matches D

  19. Composite laminate free edge reinforcement concepts

    NASA Technical Reports Server (NTRS)

    Howard, W. E.; Gossard, T., Jr.; Jones, R. M.

    1985-01-01

    The presence of a free edge in a laminated composite structure can result in delamination of the composite under certain loading conditions. Linear finite element analysis predicts large or even singular interlaminar stresses near the free edge. Edge reinforcements which will reduce these interlaminar stresses, prevent or delay the onset of delaminations, and thereby increase the strength and life of the structure were studied. Finite element models are used to analyze reinforced laminates which were subsequently fabricated and loaded to failure in order to verify the analysis results.

  20. Detection of CFRP Composite Manufacturing Defects Using a Guided Wave Approach

    NASA Technical Reports Server (NTRS)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yuan, Fuh-Gwo

    2015-01-01

    NASA Langley Research Center is investigating a guided-wave based defect detection technique for as-fabricated carbon fiber reinforced polymer (CFRP) composites. This technique will be extended to perform in-process cure monitoring, defect detection and size determination, and ultimately a closed-loop process control to maximize composite part quality and consistency. The overall objective of this work is to determine the capability and limitations of the proposed defect detection technique, as well as the number and types of sensors needed to identify the size, type, and location of the predominant types of manufacturing defects associated with laminate layup and cure. This includes, porosity, gaps, overlaps, through-the-thickness fiber waviness, and in-plane fiber waviness. The present study focuses on detection of the porosity formed from variations in the matrix curing process, and on local overlaps intentionally introduced during layup of the prepreg. By terminating the cycle prematurely, three 24-ply unidirectional composite panels were manufactured such that each subsequent panel had a higher final degree of cure, and lower level of porosity. It was demonstrated that the group velocity, normal to the fiber direction, of a guided wave mode increased by 5.52 percent from the first panel to the second panel and 1.26 percent from the second panel to the third panel. Therefore, group velocity was utilized as a metric for degree of cure and porosity measurements. A fully non-contact guided wave hybrid system composed of an air-coupled transducer and a laser Doppler vibrometer (LDV) was used for the detection and size determination of an overlap By transforming the plate response from the time-space domain to the frequency-wavenumber domain, the total wavefield was then separated into the incident and backscatter waves. The overlap region was accurately imaged by using a zero-lag cross-correlation (ZLCC) imaging condition, implying the incident and backscattered

  1. Experimental micromechanical approach to failure process in CFRP cross-ply laminates

    SciTech Connect

    Takeda, N.; Ogihara, S.; Kobayashi, A.

    1994-12-31

    The microscopic failure process of three different types of cross-ply laminates, (0/90{sub n}/0) (n = 4, 8, 12), was investigated at R.T. and 80 C. Progressive damage parameters, the transverse crack density and the delamination ratio, were measured. A simple modified shear-lag analysis including the thermal residual strains was conducted to predict the transverse crack density as a function of laminate strain, considering the constraint effect, as well as the strength distribution of the transverse layer. The analysis was also extended to the system containing delamination to predict the delamination length. A prediction was also presented for the transverse crack density including the effect of the delamination growth. The prediction showed good agreement with the experimental results.

  2. Guided wave and damage detection in composite laminates using different fiber optic sensors.

    PubMed

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Shirai, Takehiro

    2009-01-01

    Guided wave detection using different fiber optic sensors and their applications in damage detection for composite laminates were systematically investigated and compared in this paper. Two types of fiber optic sensors, namely fiber Bragg gratings (FBG) and Doppler effect-based fiber optic (FOD) sensors, were addressed and guided wave detection systems were constructed for both types. Guided waves generated by a piezoelectric transducer were propagated through a quasi-isotropic carbon fiber reinforced plastic (CFRP) laminate and acquired by these fiber optic sensors. Characteristics of these fiber optic sensors in ultrasonic guided wave detection were systematically compared. Results demonstrated that both the FBG and FOD sensors can be applied in guided wave and damage detection for the CFRP laminates. The signal-to-noise ratio (SNR) of guided wave signal captured by an FOD sensor is relatively high in comparison with that of the FBG sensor because of their different physical principles in ultrasonic detection. Further, the FOD sensor is sensitive to the damage-induced fundamental shear horizontal (SH(0)) guided wave that, however, cannot be detected by using the FBG sensor, because the FOD sensor is omnidirectional in ultrasound detection and, in contrast, the FBG sensor is severely direction dependent. PMID:22412347

  3. Lamination residual stresses in fiber composites

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1975-01-01

    An experimental investigation was conducted to determine the magnitude of lamination residual stresses in angle-ply composites and to evaluate their effects on composite structural integrity. The materials investigated were boron/epoxy, boron/polyimide, graphite/low modulus epoxy, graphite/high modulus epoxy, graphite/polyimide and s-glass/epoxy. These materials were fully characterized. Static properties of laminates were also determined. Experimental techniques using embedded strain gages were developed and used to measure residual strains during curing. The extent of relaxation of lamination residual stresses was investigated. It was concluded that the degree of such relaxation is low. The behavior of angle-ply laminates subjected to thermal cycling, tensile load cycling, and combined thermal cycling with tensile load was investigated. In most cases these cycling programs did not have any measurable influence on residual strength and stiffness of the laminates. In the tensile load cycling tests, the graphite/polyimide shows the highest endurance with 10 million cycle runouts at loads up to 90 percent of the static strength.

  4. Modeling Composite Laminate Crushing for Crash Analysis

    NASA Technical Reports Server (NTRS)

    Fleming, David C.; Jones, Lisa (Technical Monitor)

    2002-01-01

    Crash modeling of composite structures remains limited in application and has not been effectively demonstrated as a predictive tool. While the global response of composite structures may be well modeled, when composite structures act as energy-absorbing members through direct laminate crushing the modeling accuracy is greatly reduced. The most efficient composite energy absorbing structures, in terms of energy absorbed per unit mass, are those that absorb energy through a complex progressive crushing response in which fiber and matrix fractures on a small scale dominate the behavior. Such failure modes simultaneously include delamination of plies, failure of the matrix to produce fiber bundles, and subsequent failure of fiber bundles either in bending or in shear. In addition, the response may include the significant action of friction, both internally (between delaminated plies or fiber bundles) or externally (between the laminate and the crushing surface). A figure shows the crushing damage observed in a fiberglass composite tube specimen, illustrating the complexity of the response. To achieve a finite element model of such complex behavior is an extremely challenging problem. A practical crushing model based on detailed modeling of the physical mechanisms of crushing behavior is not expected in the foreseeable future. The present research describes attempts to model composite crushing behavior using a novel hybrid modeling procedure. Experimental testing is done is support of the modeling efforts, and a test specimen is developed to provide data for validating laminate crushing models.

  5. A hybrid method based upon nonlinear Lamb wave response for locating a delamination in composite laminates.

    PubMed

    Yelve, Nitesh P; Mitra, Mira; Mujumdar, P M; Ramadas, C

    2016-08-01

    A new hybrid method based upon nonlinear Lamb wave response in time and frequency domains is introduced to locate a delamination in composite laminates. In Lamb wave based nonlinear method, the presence of damage is shown by the appearance of higher harmonics in the Lamb wave response. The proposed method not only uses this spectral information but also the corresponding temporal response data, for locating the delamination. Thus, the method is termed as a hybrid method. The paper includes formulation of the method and its application to locate a Barely Visible Impact Damage (BVID) induced delamination in a Carbon Fiber Reinforced Polymer (CFRP) laminate. The method gives the damage location fairly well. It is a baseline free method, as it does not need data from the pristine specimen. PMID:27115575

  6. A hybrid method based upon nonlinear Lamb wave response for locating a delamination in composite laminates.

    PubMed

    Yelve, Nitesh P; Mitra, Mira; Mujumdar, P M; Ramadas, C

    2016-08-01

    A new hybrid method based upon nonlinear Lamb wave response in time and frequency domains is introduced to locate a delamination in composite laminates. In Lamb wave based nonlinear method, the presence of damage is shown by the appearance of higher harmonics in the Lamb wave response. The proposed method not only uses this spectral information but also the corresponding temporal response data, for locating the delamination. Thus, the method is termed as a hybrid method. The paper includes formulation of the method and its application to locate a Barely Visible Impact Damage (BVID) induced delamination in a Carbon Fiber Reinforced Polymer (CFRP) laminate. The method gives the damage location fairly well. It is a baseline free method, as it does not need data from the pristine specimen.

  7. Methods for Preparing Nanoparticle-Containing Thermoplastic Composite Laminates

    NASA Technical Reports Server (NTRS)

    Gruber, Mark B. (Inventor); Jensen, Brian J. (Inventor); Cano, Roberto J. (Inventor)

    2016-01-01

    High quality thermoplastic composites and composite laminates containing nanoparticles and/or nanofibers, and methods of producing such composites and laminates are disclosed. The composites comprise a thermoplastic polymer and a plurality of nanoparticles, and may include a fibrous structural reinforcement. The composite laminates are formed from a plurality of nanoparticle-containing composite layers and may be fused to one another via an automated process.

  8. Residual stresses in polymer matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.

    1976-01-01

    Residual stresses in composites are induced during fabrication and by environmental exposure. The theory formulated can describe the shrinkage commonly observed after a thermal expansion test. Comparison between the analysis and experimental data for laminates of various material systems indicates that the residual stress-free temperature can be lower than the curing temperature, depending on the curing process. Effects of residual stresses on ply failure including the acoustic emission characteristics are discussed.

  9. Characterization of impact damage in composite laminates using guided wavefield imaging and local wavenumber domain analysis.

    PubMed

    Rogge, Matthew D; Leckey, Cara A C

    2013-09-01

    Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspections are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure and considerable setup time. Alternatively, a non-contact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure generated by permanently bonded transducers. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Based on simulation results, guidelines for application of the technique are developed. Finally, experimental wavefield data is obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage. The recorded wavefields are analyzed and wavenumber is measured to an accuracy of up to 8.5% in the region of shallow delaminations. These results show the promise of local wavenumber domain analysis to characterize the depth of delamination damage in composite laminates. The technique can find application in automated vehicle health assurance systems with potential for high detection rates and greatly reduced operator effort and setup time.

  10. Compression failure of composite laminates

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.

    1983-01-01

    This presentation attempts to characterize the compressive behavior of Hercules AS-1/3501-6 graphite-epoxy composite. The effect of varying specimen geometry on test results is examined. The transition region is determined between buckling and compressive failure. Failure modes are defined and analytical models to describe these modes are presented.

  11. Free vibrations of laminated composite elliptic plates

    NASA Technical Reports Server (NTRS)

    Andersen, C. M.; Noor, A. K.

    1976-01-01

    The free vibrations are studied of laminated anisotropic elliptic plates with clamped edges. The analytical formulation is based on a Mindlin-Reissner type plate theory with the effects of transverse shear deformation, rotary inertia, and bending-extensional coupling included. The frequencies and mode shapes are obtained by using the Rayleigh-Ritz technique in conjunction with Hamilton's principle. A computerized symbolic integration approach is used to develop analytic expressions for the stiffness and mass coefficients and is shown to be particularly useful in evaluating the derivatives of the eigenvalues with respect to certain geometric and material parameters. Numerical results are presented for the case of angle-ply composite plates with skew-symmetric lamination.

  12. Thermal stresses in thick laminated composite shells

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1993-01-01

    The paper provides an analytical formulation to investigate the thermomechanical behavior of thick composite shells subjected to a temperature distribution which varies arbitrarily in the radial direction. For illustrative purposes, shells under uniform temperature change are presented. It is found that thermal twist would occur even for symmetric laminated shells. Under uniform temperature rise, results for off-axis graphite/epoxy shells show that extensional-shear coupling can cause tensile radial stress throughout the shell and tensile hoop stress in the inner region. Laminated graphite/epoxy shells can exhibit negative effective thermal expansion coefficients in the longitudinal and transverse directions. Finally, the stacking sequence has a strong influence on the thermal stress distributions.

  13. Interlaminar interaction in paper thermoplastic laminate composites

    NASA Astrophysics Data System (ADS)

    Prambauer, M.; Paulik, C.; Burgstaller, C.

    2016-07-01

    Bio-based composites are a research topic since several decades, which aims for sustainable and durable materials. In the scope of this research, many different sources for biobased reinforcements have been investigated. Typical issues associated with the use of such are property variations due to cultivation area and climate, besides the influences of the type, pretreatment and fibre geometry. Another issue can be the availability of such natural fibres. Due to these reasons, we started using paper sheets as reinforcements in laminate composites with thermoplastic materials. In preliminary studies with polypropylene composites, we found good mechanical properties, even higher than could be expected by estimating the composite properties from the constituents by applying simple rule of mixtures type models. We suspect, besides some effect of paper compaction, interlaminar effects to be the reason for this. Therefore, the aim of this work is to investigate the effects of the interfacial interaction on the different paper laminate properties due to different matrix polymers. For this work, we used polypropylene, polyamide 6 and 12 as well as polystyrene. Composites were produced via compression moulding and samples for mechanical testing and density evaluation were cut from the moulded plates. The results from mechanical tests show, that there is a reinforcing effect, regardless of matrix polymer used. Simple rule of mixtures evaluations show, that the different matrices exhibit different degrees of interaction, based on their chemical structure. In addition, also influences due to processing were found.

  14. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites

    NASA Astrophysics Data System (ADS)

    Salama, A.; Li, L.; Mativenga, P.; Sabli, A.

    2016-02-01

    The large differences in physical and thermal properties of the carbon fibre-reinforced polymer (CFRP) composite constituents make laser machining of this material challenging. An extended heat-affected zone (HAZ) often occurs. The availability of ultrashort laser pulse sources such as picosecond lasers makes it possible to improve the laser machining quality of these materials. This paper reports an investigation on the drilling and machining of CFRP composites using a state-of-the-art 400 W picosecond laser system. Small HAZs (<25 µm) were obtained on the entry side of 6-mm-diameter hole drilled on sample of 6 mm thickness, whereas no HAZ was seen below the top surface on the cut surfaces. Multiple ring material removal strategy was used. Furthermore, the effect of laser processing parameters such as laser power, scanning speed and repetition rate on HAZ sizes and ablation depth was investigated.

  15. Critical current of laminated and non-laminated BSCCO superconducting composite tape under bending strain

    NASA Astrophysics Data System (ADS)

    Matsubayashi, H.; Mukai, Y.; Arai, T.; Shin, J. K.; Ochiai, S.; Okuda, H.; Osamura, K.; Otto, A.; Malozemoff, A.

    2009-10-01

    It has been reported that, when the (Bi,Pb) 2Sr 2Ca 2Cu 3O x (hereafter noted as BSCCO)/Ag/Ag-alloy tape is laminated with stainless steel, the tensile strain tolerance of critical current is much improved. In this study, using the non-laminated and laminated BSCCO composite tapes fabricated at American Superconductor Corporation, the influences of lamination on the critical current and its distribution under bending strain were studied. The analysis of the measured variation of average critical current with bending strain based on the damage evolution model revealed that the laminated stainless steel acts to suppress the fracture of the BSCCO filaments. The experimentally observed high critical current retention of the laminated tape up to high bending strain was accounted for by the suppression of fracture of BSCCO filaments stated above and enhancement of the compressive residual strain in the filaments. The distributions of local critical current in non-laminated and laminated composite tape were described well by the three-parameter Weibull distribution function within the bending strain lower than 1.1%. The coefficient of variation of distribution of critical current of the laminated tape was similar to that of the non-laminated one under the same strain distribution in the core.

  16. Strength of composite laminates under biaxial loads

    NASA Astrophysics Data System (ADS)

    Hinton, M. J.; Soden, P. D.; Kaddour, A. S.

    1996-05-01

    Five well known failure criteria and one simple progressive model have been used in conjunction with laminate theory, which allows for nonlinear lamina shear behaviour, to predict the initial and final failure strengths of filament wound composite tubes. The predictions have been compared with experimental leakage and fracture stresses for ±75°, ±55° and ±45° filament wound GRP tubes subjected to a wide range of biaxial stress systems including biaxial compression. In some cases the fracture strengths were a factor of 10 higher than the initial failure predictions. The simple progressive failure theory predictions gave the best agreement with the experimental results.

  17. Micromechanics of composite laminate compression failures

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1988-01-01

    The purpose of this annual progress report is to summarize the work effort and results accomplished from July 1987 through July 1988 on NASA Research Grant NAG1-659 entitled Micromechanics of Composite Laminate Compressive Failure. The report contains: (1) the objective of the proposed research, (2) the summary of accomplishments, (3) a more extensive review of compression literature, (4) the planned material (and corresponding properties) received to date, (5) the results for three possible specimen geometries, experimental procedures planned, and current status of the experiments, and (6) the work planned for the next contract year.

  18. Laminated composites modeling in ADAGIO/PRESTO.

    SciTech Connect

    Hammerand, Daniel Carl

    2004-05-01

    A linear elastic constitutive equation for modeling fiber-reinforced laminated composites via shell elements is specified. The effects of transverse shear are included using first-order shear deformation theory. The proposed model is written in a rate form for numerical evaluation in the Sandia quasi-statics code ADAGIO and explicit dynamics code PRESTO. The equation for the critical time step needed for explicit dynamics is listed assuming that a flat bilinear Mindlin shell element is used in the finite element representation. Details of the finite element implementation and usage are given. Finally, some of the verification examples that have been included in the ADAGIO regression test suite are presented.

  19. A Graphical Method Predicting the Compressive Strength of Toughened Unidirectional Composite Laminates

    NASA Astrophysics Data System (ADS)

    Jumahat, Aidah; Soutis, Constantinos; Hodzic, Alma

    2011-02-01

    The in-plane shear and compressive properties of unidirectional (UD) HTS40/977-2 carbon fibre-toughened resin (CF/TR) laminates are investigated. Scanning Electron microscopy (SEM) and optical microscopy are used to reveal the failure mechanisms developed during compression. It is found that damage initiates by fibre microbuckling (a fibre instability failure mode) which then is followed by yielding of the matrix to form a fibre kink band zone that leads to final fracture. Analytical models are briefly reviewed and a graphical method, based on the shear response of the composite system, is described in order to estimate the UD compressive strength. Predictions for the HTS40/977-2 system are compared to experimental measurements and to data of five other unidirectional carbon fibre reinforced polymer (CFRP) composites that are currently used in aerospace and other structural applications. It is shown that the estimated values are in a good agreement with the measured results.

  20. Residual stress and crack propagation in laminated composites

    SciTech Connect

    Yttergren, R.M.F.; Zeng, K.; Rowcliffe, D.J.

    1994-12-31

    Residual stress distributions in several laminated ceramic composites were measured by an indentation technique. The material included alumina-zirconia laminated composites, containing strong interfaces, and alumina-porcelain laminated composites with both weak and strong interfaces. The residual stress in these material originates from the mismatch of the thermal properties, differences in elastic properties, and different shrinkage of the laminates during sintering. An experimental technique is presented which gives a direct view of the residual stress state in the materials. Values of residual tensile stress are presented as a function of position relative to the interface in each material.

  1. The Effects of Debonding on the Low-Velocity Impact Response of Steel-CFRP Fibre Metal Laminates

    NASA Astrophysics Data System (ADS)

    Pärnänen, T.; Vänttinen, A.; Kanerva, M.; Jokinen, J.; Saarela, O.

    2016-06-01

    The effect of metal-composite debonding on low-velocity impact response, i.e. on contact force-central deflection response, deformation profiles and strains on the free surfaces was studied. We focused on type 2/1 fibre metal laminate specimens made of stainless steel and carbon fibre epoxy layers, and tested them with drop-weight impact and quasi-static indentation loadings. Local strains were measured with strain gauges and full-field strains with a 3-D digital image correlation method. In addition, finite element simulations were performed and the effects of debonding were studied by exploiting cohesive elements. Our results showed that debonding, either the initial debonding or that formed during the loading, lowers the slope of the contact force-central deflection curve during the force increase. The debonding formation during the rebound phase was shown to amplify the rebound of the impact side, i.e. to lower the ultimate post-impact deflection. The free surface strains were studied on the laminate's lower surface at the area outside the debond damage. In terms of in-plane strains, debonding formation during impact and indentation, as well as the initial debonding, lowered the peripheral strain and resulted in a positive change in the radial strain.

  2. Galvanic interaction between carbon fiber reinforced plastic (CFRP) composites and steel in chloride contaminated concretes

    SciTech Connect

    Torres-Acosta, A.A.; Sagues, A.A.; Sen, R.

    1998-12-31

    Experiments were performed to determine the possible extent of galvanic corrosion when CFRP and steel are in contact in chloride contaminated concrete. Three concrete environments (water-to-cement (w/c) ratio of 0.41) at relative humidities (RH) of {approx}60%, {approx}80% and {approx}95%, and 14 kg/m{sup 3} chloride were investigated. The CFRP composite potential reached between {minus}180 and {minus}590 mV (vsCSE) when it was in contact with steel at these environments. Results showed significant galvanic action in the 80% RH chloride contaminated concrete (nominal steel current densities as high as 0.3 {micro}A/cm{sup 2}).

  3. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2003-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  4. Permeability After Impact Testing of Composite Laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A.T.; Munafo, Paul (Technical Monitor)

    2002-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a non-linear fashion for almost all of the specimens tested.

  5. Vibration suppression of composite laminated plate with nonlinear energy sink

    NASA Astrophysics Data System (ADS)

    Zhang, Ye-Wei; Zhang, Hao; Hou, Shuai; Xu, Ke-Fan; Chen, Li-Qun

    2016-06-01

    The composite laminated plate is widely used in supersonic aircraft. So, there are many researches about the vibration suppression of composite laminated plate. In this paper, nonlinear energy sink (NES) as an effective method to suppress vibration is studied. The coupled partial differential governing equations of the composite laminated plate with the nonlinear energy sink (NES) are established by using the Hamilton principle. The fourth-order Galerkin discrete method is used to truncate the partial differential equations, which are solved by numerical integration method. Meanwhile study about the precise effectiveness of the nonlinear energy sink (NES) by discussing the different installation location of the nonlinear energy sink (NES) at the same speed. The results indicate that the nonlinear energy sink (NES) can significantly suppress the severe vibration of the composite laminated plate with speed wind loadings in to protect the composite laminated plate from excessive vibration.

  6. Hygrothermally stable laminated composites with optimal coupling

    NASA Astrophysics Data System (ADS)

    Haynes, Robert Andrew

    This work begins by establishing the necessary and sufficient conditions for hygrothermal stability of composite laminates. An investigation is performed into the range of coupling achievable from within all hygrothermally stable families. The minimum number of plies required to create an asymmetric hygrothermally stable stacking sequence is found to be five. Next, a rigorous and general approach for determining designs corresponding to optimal levels of coupling is established through the use of a constrained optimization procedure. Couplings investigated include extension-twist, bend-twist, extension-bend, shear-twist, and anticlastic. For extension-twist and bend-twist coupling, specimens from five- through ten-ply laminates are manufactured and tested to demonstrate hygrothermal stability and achievable levels of coupling. Nonlinear models and finite element analysis are developed, and predictions are verified through comparison with test results. Sensitivity analyses are performed to demonstrate the robustness of the hygrothermal stability and couplings to deviations in ply angle, typical of manufacturing tolerances. Comparisons are made with current state-of-the-art suboptimal layups, and significant increases in coupling over previously known levels are demonstrated.

  7. Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hiel, Clement; Brinson, H. F.

    1993-01-01

    Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.

  8. Effect of Impact Damage and Open Hole on Compressive Strength of Hybrid Composite Laminates

    SciTech Connect

    Hiel, C.; Brinson, H.F.

    1993-05-01

    Impact damage tolerance is a frequently listed design requirement for composites hardware. The effect of impact damage and open hole size on laminate compressive strength was studied on sandwich beam specimens which combine CFRP-GFRP hybrid skins and a syntactic foam core. Three test specimen configurations have been investigated for this study. The first two were sandwich beams which were loaded in pure bending (by four point flexure). One series had a skin damaged by impact, and the second series had a circular hole machined through one of the skins. The reduction of compressive strength with increasing damage (hole) size was compared. Additionally a third series of uniaxially loaded open hole compression coupons were tested to generate baseline data for comparison with both series of sandwich beams.

  9. Effect of laminate edge conditions on the formation of microvoids in composite laminates

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; Altan, M. C.

    2015-05-01

    Manufacturing defects such as microvoids are common in thermoset composite components and are known to negatively affect their strength. The resin pressure developed in and the resin flow out from the laminates during cure have been reported to be the primary factors influencing the final void content of a composite component. In this work, the effect of laminate edge conditions during the cure process on the formation of microvoids was experimentally investigated. This was achieved by fabricating eight-ply laminates from TenCate® BT250/7781 prepreg in a hot-press at a constant cure pressure of 170 kPa while limiting the laminate perimeter available for resin flow by 0%, 25%, 50%, 75%, and 100%. The individual plies of these five laminates were conditioned at 99% relative humidity before curing to maximize the moisture present in the lay-up before fabrication. The presence of moisture in the lay-ups was expected to promote void formation and allow the effect of restricting flow at the edges of a laminate to be better identified. The restriction of resin outflow was found to cause the average characteristic void diameter to decrease by 17% and void content to rise by 33%. This phenomenon was identified to be a result of the outflow restriction increasing the number of voids trapped within the laminate and indicates that for laminates cured at low pressures resin outflow is the dominant mechanism for void reduction.

  10. Micromechanical Modeling of Impact Damage Mechanisms in Unidirectional Composite Laminates

    NASA Astrophysics Data System (ADS)

    Meng, Qinghua; Wang, Zhenqing

    2016-05-01

    Composite laminates are susceptible to the transverse impact loads resulting in significant damage such as matrix cracking, fiber breakage and delamination. In this paper, a micromechanical model is developed to predict the impact damage of composite laminates based on microstructure and various failure models of laminates. The fiber and matrix are represented by the isotropic and elastic-plastic solid, and their impact failure behaviors are modeled based on shear damage model. The delaminaton failure is modeling by the interface element controlled by cohesive damage model. Impact damage mechanisms of laminate are analyzed by using the micromechanical model proposed. In addition, the effects of impact energy and laminated type on impact damage behavior of laminates are investigated. Due to the damage of the surrounding matrix near the impact point caused by the fiber deformation, the surface damage area of laminate is larger than the area of ​​impact projectile. The shape of the damage area is roughly rectangle or elliptical with the major axis extending parallel to the fiber direction in the surface layer of laminate. The alternating laminated type with two fiber directions is more propitious to improve the impact resistance of laminates.

  11. Non-linear behavior of fiber composite laminates

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Bagchi, D.; Rosen, B. W.

    1974-01-01

    The non-linear behavior of fiber composite laminates which results from lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.

  12. Analysis of "Kiss" Bonds Between Composite Laminates

    NASA Astrophysics Data System (ADS)

    Poveromo, Scott L.; Earthman, James C.

    2014-06-01

    One of the leading challenges to designing lightweight, cost-effective bonded structures is to detect low shear strength "kiss" bonds where no other defects such as voids and cracks exist. To develop a nondestructive testing method that is sensitive to kiss bonds, standards need to be fabricated with known strength values. In the current work, we attempt to create kiss bonds in between carbon fiber composite laminates that have been bonded with epoxy film adhesive and epoxy paste adhesive. Based on ultrasonic testing, when creating true kiss bonds using film adhesives, a complete disbond could not be avoided because of thermally induced stresses during the high-temperature cure. However, further work demonstrated that kiss bonds can be formed using room-temperature curable epoxy paste adhesives by creating an amine blush on the epoxy surface or applying a release agent on the bonding surfaces.

  13. Composite laminate tailoring with probabilistic constraints and loads

    NASA Technical Reports Server (NTRS)

    Thanedar, P. B.; Chamis, C. C.

    1990-01-01

    A reliability-based structural synthesis procedure was developed to tailor laminates to meet reliability-based (ply) strength requirements and achieve desirable laminate responses. The main thrust is to demonstrate how to integrate the optimization technique in the composite laminate tailoring process to meet reliability design requirements. The question of reliability arises in fiber composite analysis and design because of the inherent scatter that is observed in the constituent (fiber and matrix) material properties during experimentation. Symmetric and asymmetric composite laminates subject to mechanical loadings are considered as application examples. These application examples illustrate the effectiveness and ease with which reliability considerations can be integrated in the design optimization model for composite laminate tailoring.

  14. Dynamic delamination in curved composite laminates under quasi-static loading

    NASA Astrophysics Data System (ADS)

    Uyar, I.; Gozluklu, B.; Coker, D.

    2014-06-01

    In the wind energy industry, new advances in composite manufacturing technology and high demand for lightweight structures are fostering the use of composite laminates in a wide variety of shapes as primary load carrying elements. However, once a moderately thick laminate takes highly curved shape, such as an L-shape, Interlaminar Normal Stresses (ILNS) are induced together with typical Interlaminar Shear Stresses (ILSS) on the interfaces between the laminas. The development of ILNS promotes mode-I type of delamination propagation in the curved part of the L-shaped structure, which is a problem that has recently raised to the forefront in in-service new composite wind turbines. Delamination propagation in L-shaped laminates can be highly dynamic even though the loading is quasistatic. An experimental study to investigate dynamic delamination under quasi-static loading is carried out using a million fps high speed camera. Simulations of the experiments are conducted with a bilinear cohesive zone model implemented in user subroutine of the commercial FEA code ABAQUS/explicit. The experiments were conducted on a 12-layered woven L-shaped CFRP laminates subjected to shear loading perpendicular to the arm of the specimen with a free-sliding fixture to match the boundary conditions used in the FEA. A single delamination is found to initiate at the 5th interface during a single drop in the load. The delamination is then observed to propagate to the arms at intersonic speed of 2200m/s. The results obtained using cohesive zone models in the numerical simulations were found to be in good agreement with experimental results in terms of load displacement behavior and delamination history.

  15. The Displacement Perspective During Ultimate Failure of Composite Laminates

    NASA Astrophysics Data System (ADS)

    Pal, P.; Bhar, A.

    2013-04-01

    This paper deals with the studies on the state of displacement of symmetric and anti-symmetric angle-ply and cross-ply laminated composite plates during its ultimate failure, subjected to transverse static load. First-order shear deformation theory (FSDT) is employed in conjunction with the finite element approach using eight-noded quadratic isoparametric element. The free vibration analyses of isotropic and laminated composite plates are carried out to ensure the overall validity of the present finite element formulation. The mid surface of the laminate is considered as the reference plane. The principal material directions in different laminae are oriented to produce a laminated structural element capable of resisting loads in several directions. The stiffness of a composite laminate is obtained from the properties of the constituent laminae. The affected stiffness of the failed lamina is discarded completely after the failure of weakest ply. The rigidity matrix of the laminate with remaining laminae is re-established. The re-evaluation process continues until the laminate fails completely. To investigate the displacement behaviour of laminates during the ultimate failure, parametric studies are carried out for different cases by varying the stacking sequences, fiber orientations, layer thicknesses, aspect ratios and the number of layers in the laminate. The comparison of results in terms of non-dimensional natural frequencies and ply-by-ply failure analyses obtained from the present investigation are made with those available in the reported literature.

  16. Laminated sheet composites reinforced with modular filament sheet

    NASA Technical Reports Server (NTRS)

    Reece, O. Y.

    1968-01-01

    Aluminum and magnesium composite sheet laminates reinforced with low density, high strength modular filament sheets are produced by diffusion bonding and explosive bonding. Both processes are accomplished in normal atmosphere and require no special tooling or cleaning other than wire brushing the metal surfaces just prior to laminating.

  17. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  18. Damage growth in composite laminates with interleaves

    NASA Technical Reports Server (NTRS)

    Goree, James G.

    1987-01-01

    The influence of placing interleaves between fiber reinforced plies in multilayered composite laminates is investigated. The geometry of the composite is idealized as two dimensional, isotropic, linearly elastic media made of a damaged layer bonded between two half planes and separated by thin interleaves of low extensional and shear moduli. The damage in the layer is taken in the form of a symmetric crack perpendicular to the interface and may extend up to the interface. The case of an H-shaped crack in the form of a broken layer with delamination along the interface is also analyzed. The interleaves are modeled as distributed shear and tension springs. Fourier integral transform techniques are used to develop solutions in terms of singular integral equations. An asymptotic analysis of the integral equations based on Muskhelishvili's techniques reveals logarithmically singular axial stresses in the half plane at the crack tips for the broken layer. For the H shaped crack, similar singularities are found to exist in the axial stresses at the interface crack tips in the layer and the half plane. The solution of the equations is found numerically for the stresses and displacements by using the Hadamard's concept of direct differentiation of Cauchy integrals as well as Gaussian integration techniques.

  19. Fracture behavior of thick, laminated graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Morris, D. H.

    1984-01-01

    The effect of laminate thickness on the fracture behavior of laminated graphite epoxy (T300/5208) composites was studied. The predominantly experimental research program included the study of the 0/+ or - 45/90 sub ns and 0/90 sub ns laminates with thickness of 8, 32, 64, 96 and 120 plies and the 0/+ or - 45 sub ns laminate with thickness of 6, 30, 60, 90 and 120 plies. The research concentrated on the measurement of fracture toughness utilizing the center-cracked tension, compact tension and three point bend specimen configurations. The development of subcritical damage at the crack tip was studied nondestructively using enhanced X-ray radiography and destructively using the laminate deply technique. The test results showed fracture toughness to be a function of laminate thickness. The fracture toughness of the 0 + or - 45/90 sub ns and 0/90 sub ns laminates decreased with increasing thickness and asymptotically approached lower bound values of 30 ksi square root of in. (1043 MPa square root of mm and 25 ksi square root of in (869 MPa square root of mm respectively. In contrast to the other two laminates, the fracture toughness of the 0/+ or - 45 sub ns laminate increased sharply with increasing thickness but reached an upper plateau value of 40 ksi square root of in (1390 MPa square root of mm) at 30 plies. Fracture toughness was independent of crack size for both thin and thick laminates for all three laminate types except for the 0/90 sub 2s laminate which spilt extensively. The center cracked tension, three point bend and compact tension specimens gave comparable results.

  20. Support Assembly for Composite Laminate Materials During Roll Press Processing

    NASA Technical Reports Server (NTRS)

    Catella, Luke A.

    2011-01-01

    A composite laminate material is supported during the roll press processing thereof by an assembly having: first and second perforated films disposed adjacent to first and second opposing surfaces of a mixture of uncured resin and fibers defining the composite laminate material, a gas permeable encasement surrounding the mixture and the first and second films, a gas impervious envelope sealed about the gas permeable encasement, and first and second rigid plates clamped about the gas impervious envelope.

  1. The strength of laminated composite materials under repeated impact loading

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1988-01-01

    When low velocity and energy impact is exerted on a laminated composite material, in a perpendicular direction to the plane of the laminate, invisible damage may develop. It is shown analytically and experimentally that the invisible damage occurs during the first stage of contact between the impactor and the laminate and is a result of the contact stresses. However, the residual flexural strength changes only slightly, because it depends mainly on the outer layers, and these remain undamaged. Repeated impact intensifies the damage inside the laminate and causes larger bending under equivalent impact load. Finally, when the damage is most severe, even though it is still invisible, the laminate fails because of bending on the tension side. If the repeated impact is halted before final fracture occurs the residual strength and modulus would decrease by a certain amount.

  2. Matrix cracking in laminated composites under monotonic and cyclic loadings

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lee, Jong-Won

    1991-01-01

    An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.

  3. Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.

    1999-01-01

    A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.

  4. CFRP composite optical telescope assembly for the 1 m ULTRA project

    NASA Astrophysics Data System (ADS)

    Martin, Robert N.; Romeo, Robert C.

    2006-06-01

    The focus of the ULTRA Project is to develop and test Ultra-Lightweight Technology for Research applications in Astronomy. The ULTRA project is a collaborative effort involving the private firm Composite Mirror Applications, Inc (CMA) and 3 universities: University of Kansas, San Diego State University, and Dartmouth College. Funding for ULTRA is predominately from a NSF three year MRI program grant to CMA and KU with additional support from CMA, KU and SDSU. The goal of the ULTRA program is to demonstrate that a viable alternative exists to traditional glass mirror and steel telescope technology by designing, fabricating and testing a research telescope constructed from carbon fiber reinforced plastic (CFRP) materials. In particular, a 1m diameter, Cassegrain telescope optics set and optical tube assembly (OTA) are being designed and fabricated by CMA. The completed telescope will be deployed at SDSU's Mt Laguna Observatory in a refurbished structure (new dome and mount provided via KU and SDSU). We expect that a successful completion and testing of this project will lead to future use of CFRP technology in larger telescopes and segmented telescopes. This paper describes the OTA (optical tube assembly) that has been developed for the ULTRA project. The mirror technology is described in another paper in this conference. A poster describes the ULTRA project overview in more detail.

  5. Computational Modeling of Micro-Crack Induced Attenuation in CFRP Composites

    NASA Technical Reports Server (NTRS)

    Roberts, R. A.; Leckey, C. A. C.

    2012-01-01

    A computational study is performed to determine the contribution to ultrasound attenuation in carbon fiber reinforced polymer composite laminates of linear elastic scattering by matrix micro-cracking. Multiple scattering approximations are benchmarked against exact computational approaches. Results support linear scattering as the source of observed increased attenuation in the presence of micro-cracking.

  6. Testing and simulation of composite laminates under impact loading

    NASA Astrophysics Data System (ADS)

    Dang, Xinglai

    Owing to their high stiffness-to-weight and high strength-to-weight ratios, fiber-reinforced polymer-matrix composite laminates are excellent materials for high-performance structures. However, their properties in the thickness direction are very poor as they are weakly bonded by polymeric matrices through laminate interfaces. Accordingly, when a composite laminate is subjected to impact loading, high interlaminar stresses along with the low interlaminar strengths could easily result in interlaminar damage such as delamination. This thesis investigated the response of composite laminates under low-velocity impact and presented numerical techniques for impact simulation. To begin with, instrumented drop-weight impacts ranging from subperforation to perforation levels were introduced to composite laminates having various dimensions and thicknesses. Damaged composite laminates were then subjected to compression-after-impact tests for evaluations of residual properties. Experimental results revealed that perforation was an important damage milestone since impact parameters such as peak force, contact duration, maximum deflection and energy absorption, and residual properties such as compressive stiffness, strength and energy absorption all reached critical levels as perforation took place. It was also found that thickness played a more important role than in-plane dimensions in perforation process. In order to understand more about the relationship between laminate thickness and perforation resistance and to present an economical method to improve perforation resistance, thick laminated composite plates and their assembled counterparts were investigated and compared. An energy profile correlating the impact energy and absorbed energy at all energy levels for each type of composite plates investigated was established and found to be able to address the relationship between energy and damage. Experimental results concluded that increasing thickness was more efficient

  7. Axisymmetric vibrations of laminated composite conical shells with varying thickness

    SciTech Connect

    Shikanai, G.; Suzuki, K.; Kojima, M.

    1995-11-01

    An exact solution procedure is presented for solving axisymmetric free vibrations of laminated composite conical shells with varying thickness. Based on the classical lamination theory neglecting shear deformation and rotary inertia, equations of motion and boundary conditions are obtained from the stationary conditions of the Lagrangian. The equations of motion are solved exactly by using a power series expansion for symmetrically laminated, cross-ply conical shells. Numerical studies are made for conical shells having both ends clamped to show the effects of the number of laminae, stacking sequences and other parameters upon the frequencies.

  8. Vibration analysis of rotating thin laminated composite shell of revolution

    SciTech Connect

    Suzuki, K.; Shikanai, G.; Takayama, K.

    1995-11-01

    An exact solution procedure is presented for solving free vibrations of a rotating thin laminated composite shell of revolution having meridionally constant curvature. Based on the classical lamination theory, equations of motion and boundary conditions are obtained from the stationally conditions of the Lagrangian. The equations of motion are solved exactly by using a power series expansion for symmetrically laminated, cross-ply shells. Frequencies and mode shapes of the shells having both ends clamped and both ends freely supported are presented showing their variations with rotating angular velocity, number of laminae and other parameters.

  9. Interlaminar stresses in composite laminates: A perturbation analysis

    NASA Technical Reports Server (NTRS)

    Hsu, P. W.; Herakovich, C. T.

    1976-01-01

    A general method of solution for an elastic balanced symmetric composite laminate subject to a uniaxial extension was developed based upon a perturbation analysis of a limiting free body containing an interfacial plane. The solution satisfies more physical requirements and boundary conditions than previous investigations, and predicts smooth continuous interlaminar stresses with no instabilities. It determines the finite maximum intensity for the interlaminar normal stress in all laminates, provides mathematical evidences for the singular stresses in angle-ply laminates, suggests the need for the experimental determination of an important problem parameter, and introduces a viable means for solving related problems of practical interest.

  10. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Li, Ping; Wen, Yu-Mei; Zhu, Yong

    2013-07-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the ΔE effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with Hdc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz <= fr <= 33.96 kHz. In addition, with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm, the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composite design for real applications.

  11. Nonlinear analysis of laminated fibrous composites. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Renieri, G. D.; Herakovich, C. T.

    1976-01-01

    A computerized analysis of the nonlinear behavior of fibrous composite laminates including axial loading, thermal loading, temperature dependent properties, and edge effects is presented. Ramberg-Osgood approximations are used to represent lamina stress-strain behavior and percent retention curves are employed to model the variation of properties with temperature. Balanced, symmetric laminates comprised of either boron/epoxy, graphite/epoxy, or borsic-aluminum are analyzed using a quasi-three-dimensional finite element analysis. Results are presented for the interlaminar stress distributions in cross-ply, angle-ply, and more complex laminates. Nonlinear stress-strain curves for a variety of composite laminates in tension and compression are obtained and compared to other existing theories and experimental results.

  12. Damage Tolerance of Composite Laminates from an Empirical Perspective

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    2009-01-01

    Damage tolerance consists of analysis and experimentation working together. Impact damage is usually of most concern for laminated composites. Once impacted, the residual compression strength is usually of most interest. Other properties may be of more interest than compression (application dependent). A damage tolerance program is application specific (not everyone is building aircraft). The "Building Block Approach" is suggested for damage tolerance. Advantage can be taken of the excellent fatigue resistance of damaged laminates to save time and costs.

  13. Nonlinear effects on composite laminate thermal expansion

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Rosen, B. W.; Pipes, R. B.

    1979-01-01

    Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.

  14. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    NASA Astrophysics Data System (ADS)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  15. Higher order finite element analysis of thick composite laminates

    NASA Technical Reports Server (NTRS)

    Goering, J.; Kim, H. J.

    1992-01-01

    A higher order, sub-parametric, laminated, 3D solid finite element was used for the analysis of very thick laminated composite plates. The geometry of this element is defined by four nodes in the X-Y plane which define a prism of material through the thickness of the laminate. There are twenty-four degrees of freedom at each node; translations at the upper and lower surfaces of the laminate in each of the three coordinate directions, and the derivatives of these translations with respect to each coordinate. This choice of degrees of freedom leads to displacement and strain compatibility at the corners. Stacking sequence effects are accounted for by explicitly integrating the strain energy density through the thickness of the element. The laminated solid element was combined with a gap-contact element to analyze thick laminated composite lugs loaded through flexible pins. The resulting model accounts for pin bending effects that produce non-uniform bearing stresses through the thickness of the lug. A thick composite lug experimental test program was performed, and provided data that was used to validate the analytical model. Two lug geometries and three stacking sequences were tested.

  16. Electron radiation effects on Mode II interlaminar fracture toughness of GFRP and CFRP composites

    SciTech Connect

    Takeda, N.; Tohdoh, M.; Takahashi, K.

    1989-01-01

    The degradation properties of epoxy-based fiber-reinforced-plastics (FRP) composites irradiated by high-energy electrons were studied using the Mode II interlaminar fracture toughness G/sub IIc/, measured by end-notched flexure tests. The radiation-induced degradation mechanisms were investigated through G/sub IIc/ and the scanning electron micrographs of fracture surfaces. For GFRP, the significant decrease in G/sub IIc/ was found. Debonding of glass fibers and epoxy matrix (or degradation of silane coupling agents) plays an important role in degradation in addition to resin degradation. Thus, the improvement of the radiation resistance of fiber-resin interfaces as well as matrix itself is of supreme importance in order to increase the radiation resistance of GFRP. For CFRP, on the other hand, no degradation in fiber-resin interfaces was found and the slight decrease in G/sub IIc/ seems to be due to the resin degradation. 18 references, 6 figures.

  17. Structural Diagnostics of CFRP Composite Aircraft Components by Ultrasonic Guided Waves and Built-In Piezoelectric Transducers

    SciTech Connect

    Matt, Howard M.

    2006-01-01

    To monitor in-flight damage and reduce life-cycle costs associated with CFRP composite aircraft, an autonomous built-in structural health monitoring (SHM) system is preferred over conventional maintenance routines and schedules. This thesis investigates the use of ultrasonic guided waves and piezoelectric transducers for the identification and localization of damage/defects occurring within critical components of CFRP composite aircraft wings, mainly the wing skin-to-spar joints. The guided wave approach for structural diagnostics was demonstrated by the dual application of active and passive monitoring techniques. For active interrogation, the guided wave propagation problem was initially studied numerically by a semi-analytical finite element method, which accounts for viscoelastic damping, in order to identify ideal mode-frequency combinations sensitive to damage occurring within CFRP bonded joints. Active guided wave tests across three representative wing skin-to-spar joints at ambient temperature were then conducted using attached Macro Fiber Composite (MFC) transducers. Results from these experiments demonstrate the importance of intelligent feature extraction for improving the sensitivity to damage. To address the widely neglected effects of temperature on guided wave base damage identification, analytical and experimental analyses were performed to characterize the influence of temperature on guided wave signal features. In addition, statistically-robust detection of simulated damage in a CFRP bonded joint was successfully achieved under changing temperature conditions through a dimensionally-low, multivariate statistical outlier analysis. The response of piezoceramic patches and MFC transducers to ultrasonic Rayleigh and Lamb wave fields was analytically derived and experimentally validated. This theory is useful for designing sensors which possess optimal sensitivity toward a given mode-frequency combination or for predicting the frequency dependent

  18. Three dimensional inelastic finite element analysis of laminated composites

    NASA Technical Reports Server (NTRS)

    Griffin, O. H., Jr.; Kamat, M. P.

    1980-01-01

    Formulations of the inelastic response of laminated composites to thermal and mechanical loading are used as the basis for development of the computer NALCOM (Nonlinear Analysis of Laminated Composites) computer program which uses a fully three dimensional isoparametric finite element with 24 nodes and 72 degrees of freedom. An incremental solution is performed with nonlinearities introduced as pseudoloads computed for initial strains. Equilibrium iteration may be performed at every step. Elastic and elastic-plastic response of boron/epoxy and graphite/epoxy graphite/epoxy and problems of curing 0/90 sub s Gr/Ep laminates with and without circular holes are analyzed. Mechanical loading of + or - 45sub s Gr/Ep laminates is modeled and symmetry conditions which exist in angle-ply laminates are discussed. Results are compared to experiments and other analytical models when possible. All models are seen to agree reasonably well with experimetnal results for off-axis tensile coupons. The laminate analyses show the three dimensional effects which are present near holes and free corners.

  19. Vibration analysis of composite laminate plate excited by piezoelectric actuators.

    PubMed

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-03-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control.

  20. Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators

    PubMed Central

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-01-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121

  1. Crush testing, characterizing, and modeling the crashworthiness of composite laminates

    NASA Astrophysics Data System (ADS)

    Garner, David Michael, Jr.

    Research in the field of crashworthiness of composite materials is presented. A new crush test method was produced to characterize the crush behavior of composite laminates. In addition, a model of the crush behavior and a method for rank ordering the energy absorption capability of various laminates were developed. The new crush test method was used for evaluating the crush behavior of flat carbon/epoxy composite specimens at quasi-static and dynamic rates. The University of Utah crush test fixture was designed to support the flat specimen against catastrophic buckling. A gap, where the specimen is unsupported, allowed unhindered crushing of the specimen. In addition, the specimen's failure modes could be clearly observed during crush testing. Extensive crush testing was conducted wherein the crush force and displacement data were collected to calculate the energy absorption, and high speed video was captured during dynamic testing. Crush tests were also performed over a range of fixture gap heights. The basic failure modes were buckling, crack growth, and fracture. Gap height variations resulted in poorly, properly, and overly constrained specimens. In addition, guidelines for designing a composite laminate for crashworthiness were developed. Modeling of the crush behavior consisted of the delamination and fracture of a single ply or group of like plies during crushing. Delamination crack extension was modeled using the mode I energy release rate, G lc, where an elastica approach was used to obtain the strain energy. Variations in Glc were briefly explored with double cantilever beam tests wherein crack extension occurred along a multidirectional ply interface. The model correctly predicted the failure modes for most of the test cases, and offered insight into how the input parameters affect the model. The ranking method related coefficients of the laminate and sublaminate stiffness matrices, the ply locations within the laminate, and the laminate thickness. The

  2. Mechanisms of compressive failure in woven composites and stitched laminates

    NASA Technical Reports Server (NTRS)

    Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Morris, W. L.; Schroeder, S.

    1992-01-01

    Stitched laminates and angle interlock woven composites have been studied in uniaxial, in-plane, monotonic compression. Failure mechanisms have been found to depend strongly on both the reinforcement architecture and the degree of constraint imposed by the loading grips. Stitched laminates show higher compressive strength, but are brittle, possessing no load bearing capacity beyond the strain for peak load. Post-mortem inspection shows a localized shear band of buckled and broken fibers, which is evidently the product of an unstably propagating kink band. Similar shear bands are found in the woven composites if the constraint of lateral displacements is weak; but, under strong constraint, damage is not localized but distributed throughout the gauge section. While the woven composites tested are weaker than the stitched laminates, they continue to bear significant loads to compressive strains of approx. 15 percent, even when most damage is confined to a shear band.

  3. Investigating Delamination Migration in Composite Tape Laminates

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; DeCarvalho, Nelson V.

    2014-01-01

    A modification to a recently developed test specimen designed to investigate migration of a delamination between neighboring ply interfaces in tape laminates is presented. The specimen is a cross-ply laminated beam consisting of 40 plies with a polytetrafluoroethylene insert spanning part way along its length. The insert is located between a lower 0-degree ply (specimen length direction) and a stack of four 90-degree plies (specimen width direction). The modification involved a stacking sequence that promotes stable delamination growth prior to migration, and included a relocation of the insert from the specimen midplane to the interface between plies 14 and 15. Specimens were clamped at both ends onto a rigid baseplate and loaded on their upper surface via a piano hinge assembly, resulting in a predominantly flexural loading condition. Tests were conducted with the load-application point positioned at various locations along a specimen's span. This position affected the sequence of damage events during a test.

  4. Distributed dynamic load on composite laminates

    NASA Astrophysics Data System (ADS)

    Langella, A.; Lopresto, V.; Caprino, G.

    2016-05-01

    An experimental activity conducted in order to assess the impact behavior at room and low temperature of carbon fibre in vinylester resin laminates used in the shipbuilding industry, was reported. The conditions which reproduce the impact of a hull at low temperature with a solid body suspended in the water was reproduced. A test equipment was designed and realized to reproduce the real material behaviour in water to obtain a load distribution on the entire surface of the specimen. The results were obtained impacting the laminates placed between the cilyndrical steel impactor and a bag containing water. A falling weight machine, equipped with an instrumented steel impactor and a thermal chamber, was adopted for the experimental tests. The impact behaviour in hostile environments was compared to the behaviour at room temperature and the data obtained under distributed load conditions were compared with the results from concentrated loads: a completely different behaviour was observed between the two different loading conditions in terms of load-displacement curve. The effect of the impact on the laminates has been related with the delaminations, evaluated by ultrasonic scanning, and the indentation.

  5. Laminated structures and methods and compositions for producing same

    DOEpatents

    Fumei, Giancarlo J.; Karabedian, James A.

    1977-04-05

    Methods for bonding two substrates, one of which is polymeric, which comprise coating the surface of at least one substrate with an adhesive composition comprising a major component which is an adhesive for the first substrate and a minor disperse phase which is a solution of a polymer in a solvent for the polymeric substrate and contacting the coated surface of the one substrate with the surface of the other substrate, together with adhesive compositions useful for joining such substrates, laminates so formed, and articles comprised of such laminates.

  6. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  7. Damage prediction in cross-plied curved composite laminates

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Jackson, Wade C.

    1991-01-01

    Analytical and experimental work is detailed which is required to predict delamination onset and growth in a curved cross plied composite laminate subjected to static and fatigue loads. The composite used was AS4/3501/6, graphite/epoxy. Analytically, a closed form stress analysis and 2-D and 3-D finite element analyses were conducted to determine the stress distribution in an undamaged curved laminate. The finite element analysis was also used to determine values of strain energy release rate at a delamination emanating from a matrix crack in a 90 deg ply. Experimentally, transverse tensile strength and fatigue life were determined from flat 90 deg coupons. The interlaminar tensile strength and fatigue life were determined from double cantilevered beam specimens. Cross plied curved laminates were tested statically and in fatigue to give a comparison to the analytical predictions. A comparison of the fracture mechanics life prediction technique and the strength based prediction technique is given.

  8. Micromechanical modeling of laminated composites with interfaces and woven composites using the boundary element method

    SciTech Connect

    Goldberg, R.K.; Hopkins, D.A.

    1993-10-01

    The boundary element method is utilized to analyze the effects of fiber/matrix interfaces on the micromechanical behavior of laminated composites as well as the elastic behavior of woven composites. Effective composite properties are computed for laminated SiC/RBSN and SiC/Ti-15-3 composites, as well as a woven SiC/SiC composite. The properties calculated using the computerized tool BEST-CMS match the experimental results well.

  9. Micromechanical modeling of laminated composites with interfaces and woven composites using the boundary element method

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Hopkins, Dale A.

    1993-01-01

    The boundary element method is utilized to analyze the effects of fiber/matrix interfaces on the micromechanical behavior of laminated composites as well as the elastic behavior of woven composites. Effective composite properties are computed for laminated SiC/RBSN and SiC/Ti-15-3 composites, as well as a woven SiC/SiC composite. The properties calculated using the computerized tool BEST-CMS match the experimental results well.

  10. Self-sensing and self-actuating CFRP structure using partially flexible composites

    NASA Astrophysics Data System (ADS)

    Kumagai, Keisuke; Todoroki, A.; Matsuzaki, Ryosuke

    2008-03-01

    For Unmanned aerial vehicles, a morphing wing is desired to improve the maneuverability and reduce the total weight of structures. Our research group has developed a foldable composite structure for a morphing wing skin plate by using Carbon Fiber Reinforced Plastics (CFRP). The material system is called Partially Flexible Composites (PFC). In the present paper, PFC is introduced and a self-sensing system of the PFC is investigated. Since carbon fibers have electrical conductivity, damages of the PFC can be detected by monitoring electrical resistance changes of the PFC. This method is called Electrical Resistance Changes Method. An electrical resistance model of the PFC is built and a relationship of ratio of fiber fractures and electrical resistance changes is obtained. Then, to investigate the performance of the PFC, cyclic-bending tests are conducted. Damages of the PFC caused by cyclic-bending are detected by using ERCM. As a result, the PFC with more than 10mm-long flexible part has almost no damage; the stiffness of the structure remains unchanged. After that, a McKibben pneumatic artificial muscles actuator is made and it is founded that this can be applied to the PFC as an actuator. This actuator consists of a silicon rubber and a carbon fiber that are the same as the material of flexible part of the PFC. This enables us to make actuator-integrated composite structures. In the present study, the applicability of the McKibben pneumatic artificial muscles actuator is investigated.

  11. Current Distribution Characteristics of CFRP Panels

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuo

    CFRP (Carbon Fiber Reinforced Plastic) is widely used in the structures of aircrafts, automobiles, wing turbines, and rockets because of its qualities of high mechanical strength, low weight, fatigue resistance, and dimensional stability. However, these structures are often at risk of being struck by lightning. When lightning strikes such structures and lightning current flows through the CFRP, it may be structurally damaged because of the impact of the lightning strike or ignitions between layers. If there are electronic systems near the CFRP, they may break down or malfunction because of the resulting electromagnetic disturbance. In fact, the generation mechanisms of these breakdowns and malfunctions depend on the current distribution in the CFRP. Hence, it is critical to clarify the current distribution in various kinds of CFRPs. In this study, two kinds of CFRP panels—one composed of quasi-isotropic lamination layers and the other composed of 0°/90° lamination layers of unidirectional CFRP prepregs—are used to investigate the dependence of current distribution on the nature of the lamination layers. The current distribution measurements and simulations for CFRP panels are compared with those for a same-sized aluminum plate. The knowledge of these current distribution characteristics would be very useful for designing the CFRP structures of aircrafts, automobiles, wing turbines, rockets, etc. in the future.

  12. Fatigue Damage in CFRP Woven Fabric Composites through Dynamic Modulus Measurements

    SciTech Connect

    Chiaki Miyasaka; K. L. Telschow

    2004-07-01

    Advanced fiber reinforced composite materials offer substantial advantages over metallic materials for the structural applications subjected to fatigue loading. With the increasing use of these composites, it is required to understand their mechanical response to cyclic loading (1)-(4). Our major concern in this work is to macroscopically evaluate the damage development in composites during fatigue loading. For this purpose, we examine what effect the fatigue damage may have on the material properties and how they can be related mathematically to each other. In general, as the damage initiates in composite materials and grows during cyclic loading, material properties such as modulus, residual strength and strain would vary and, in many cases, they may be significantly reduced because of the progressive accumulation of cracks. Therefore, the damage can be characterized by the change in material properties, which is expected to be available for non-destructive evaluation of the fatigue damage development in composites. Here, the tension-tension fatigue tests are firstly conducted on the plain woven fabric carbon fiber composites for different loading levels. In the fatigue tests, the dynamic elastic moduli are measured on real-time, which will decrease with an increasing number of cycles due to the degradation of stiffness. Then, the damage function presenting the damage development during fatigue loading is determined from the dynamic elastic moduli thus obtained, from which the damage function is formulated in terms of a number of cycles and an applied loading level. Finally, the damage function is shown to be applied for predicting the remaining lifetime of the CFRP composites subjected to two-stress level fatigue loading.

  13. Effect of tubing material on conventional and thin FBG sensor for embedded environment impact monitoring of CFRP composites

    NASA Astrophysics Data System (ADS)

    Park, Yurim; Shrestha, Pratik; Kwon, Hyunseok; Kim, Jin-Hyuk; Kwon, Heejung; Kim, Chun-Gon

    2016-04-01

    Applications of composite materials in aerospace structures is increasing due to the outstanding properties, however, monitoring such composite structures exposed to harsh environments is still a posing issue. Low Earth orbit space structures are exposed to property degradation and damage from high-degree vacuum, ultraviolet radiation, thermal cycling, and atomic oxygen attack which are detrimental to composite materials. In this study, FBG sensors for embedding in CFRP composite plates in different thickness locations to provide health and damage monitoring of the material exposed to such environments regarding the overall health of the material with a focus on the exposed surface are explored in comparison to conventional FBG sensors.

  14. Direct oven-tempered hybrid composite-resin laminate veneers.

    PubMed

    Birnbaum, N S

    1992-01-01

    The difficulty in achieving optimal aesthetics of the single-tooth indirect laminate veneer has prompted the author to develop a direct technique for fabricating oven-tempered hybrid composite resin veneers. These restorations exhibit excellent physical properties, marginal integrity, and aesthetics.

  15. An advanced higher-order theory for laminated composite plates with general lamination angles

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Zhu, Hong; Chen, Wan-Ji

    2011-10-01

    This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations. The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces. Moreover, the number of unknown variables is independent of the number of layers. The first derivatives of transverse displacements have been taken out from the inplane displacement fields, so that the C0 shape functions are only required during its finite element implementation. Due to C0 continuity requirements, the proposed model can be conveniently extended for implementation in commercial finite element codes. To verify the proposed theory, the fournode C0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate. Numerical results show that following the proposed theory, simple C0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation, which has caused difficulty for the other global higher order theories.

  16. Multiscale modeling of damage in multidirectional composite laminates

    NASA Astrophysics Data System (ADS)

    Singh, Chandra Veer

    The problem of damage accumulation in laminated composite materials has received much attention due to their widespread application in the aerospace, automotive, civil, and sports industries. In the aerospace industry, composites are used to make light weight and efficient structural components. In the Boeing 787, for example, more than 50% of the structure is made of composite materials. Although there have been significant developments in analyzing cross-ply laminates, none of the present approaches provides reasonable predictions for multidirectional laminates in which intralaminar cracks may form in multiple orientations. Nevertheless, the prediction of damage accumulation and its effect on structural performance is a very difficult problem due to complexity of the cracking processes. This study presents a synergistic damage mechanics (SDM) methodology to analyze damage behavior in multidirectional composite laminates with intralaminar cracks in plies of multiple orientations. SDM combines the strengths of micro-damage mechanics (MDM) and continuum damage mechanics (CDM) in predicting the stiffness degradation due to these cracks. The micromechanics is performed on a representative unit cell using a three-dimensional finite element analysis to calculate the crack opening displacement accounting for the influence of the surrounding plies, the so-called constraint effect. This information is then incorporated in the CDM formulation dealing with laminates containing cracks in different ply orientations through a 'constraint parameter'. Following CDM, a separate damage mode is defined for each type of crack and the expressions for engineering moduli of the damaged laminate are then derived in terms of crack density and the constraint parameter. The SDM methodology is implemented for [0 m/+/- thetan/0 m/2]s laminates containing cracks in +/-theta plies. It is then extended to [0m /+/- thetan/90 r]s and [0m/90 r/+/- thetan] s laminates with cracks additionally in the

  17. Boundary layer thermal stresses in angle-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1979-01-01

    Boundary-layer thermal stress singularities and distributions of angle-ply composite laminates under uniform thermal loading are investigated through a system of sixth-order governing partial differential equations developed with the aid of the anisotropic elasticity field equations and Lekhnitskii's complex stress functions. Results are presented for cases of various angle-ply graphite/epoxy laminates, and it is shown that the boundary-layer thickness depends on the degree of anisotropy of each individual lamina, thermomechanical properties of each ply, and the relative thickness of adjacent layers.

  18. Impact resistance of composite laminated sandwich plates

    NASA Astrophysics Data System (ADS)

    Kim, Chun-Gon; Jun, Eui-Jin

    1992-01-01

    Investigated are the effects of face layup sequence and core density of a sandwich plate on the impact delamination area of the laminated facesheet. The sandwich plate is made of graphite/epoxy faces and Nomex honeycomb core. The size and shape of delamination due to impact at each interply location have been measured by the room temperature deply technique. The shape of the interply delamination under impact is, in general, found to be two-lobed. The shape exhibits very peculiar regularity under various experimental conditions. The quantitative measurement of delamination size has shown that the face layup with small relative orientation between adjacent plies and high density core are desirable in sandwich plates to reduce the impact delamination.

  19. Design of composite laminates for optimum frequency response

    NASA Astrophysics Data System (ADS)

    Kayikci, Rengin; Sonmez, Fazil O.

    2012-04-01

    In this study, natural frequency response of symmetrically laminated composite plates was optimized. An analytical model accounting for bending-twisting effects was used to determine the laminate natural frequency. Two different problems, fundamental frequency maximization and frequency separation maximization, were considered. Fiber orientation angles were chosen as design variables. Because of the existence of numerous local optimums, a global search algorithm, a variant of simulated annealing, was utilized to find the optimal designs. Results were obtained for different plate aspect ratios. Effects of the number of design variables and the range of values they may take on the optimal frequency were investigated. Problems in which fiber angles showed uncertainty were considered. Optimal frequency response of laminates subjected to static loads was also investigated.

  20. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  1. Tension fatigue analysis and life prediction for composite laminates

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.; Rigamonti, M.; Zanotti, C.

    1988-01-01

    A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delamination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behavior in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth.

  2. A Shear Deformable Shell Element for Laminated Composites

    NASA Technical Reports Server (NTRS)

    Chao, W. C.; Reddy, J. N.

    1984-01-01

    A three-dimensional element based on the total Lagrangian description of the motion of a layered anisotropic composite medium is developed, validated, and used to analyze layered composite shells. The element contains the following features: geometric nonlinearity, dynamic (transient) behavior, and arbitrary lamination scheme and lamina properties. Numerical results of nonlinear bending, natural vibration, and transient response are presented to illustrate the capabilities of the element.

  3. Laminated thermoplastic composite material from recycled high density polyethylene

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

  4. Contact law and impact responses of laminated composites

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yang, S. H.

    1980-01-01

    Static identation tests were performed to determine the law of contact between a steel ball and glass/epoxy and graphite/epoxy laminated composites. For both composites the power law with an index of 1.5 was found to be adequate for the loading curve. Substantial permanent deformations were noted after the unloading. A high order beam finite element was used to compute the dynamic contact force and response of the laminated composite subjected to the impact of an elastic sphere. This program can be used with either the classical Hertzian contact law or the measured contact law. A simple method is introduced for estimating the contact force and contact duration in elastic impacts.

  5. Thermoviscoelastic characterization and prediction of Kevlar/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1990-01-01

    The thermoviscoelastic characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina and the development of a numerical procedure to predict the viscoelastic response of any general laminate constructed from the same material were studied. The four orthotropic material properties, S sub 11, S sub 12, S sub 22, and S sub 66, were characterized by 20 minute static creep tests on unidirectional (0) sub 8, (10) sub 8, and (90) sub 16 lamina specimens. The Time-Temperature Superposition-Principle (TTSP) was used successfully to accelerate the characterization process. A nonlinear constitutive model was developed to describe the stress dependent viscoelastic response for each of the material properties. A numerical procedure to predict long term laminate properties from lamina properties (obtained experimentally) was developed. Numerical instabilities and time constraints associated with viscoelastic numerical techniques were discussed and solved. The numerical procedure was incorporated into a user friendly microcomputer program called Viscoelastic Composite Analysis Program (VCAP), which is available for IBM PC type computers. The program was designed for ease of use. The final phase involved testing actual laminates constructed from the characterized material, Kevlar/epoxy, at various temperatures and load level for 4 to 5 weeks. These results were compared with the VCAP program predictions to verify the testing procedure and to check the numerical procedure used in the program. The actual tests and predictions agreed for all test cases which included 1, 2, 3, and 4 fiber direction laminates.

  6. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  7. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  8. Lamb wave sensing using fiber Bragg grating sensors for delamination detection in composite laminates

    NASA Astrophysics Data System (ADS)

    Takeda, N.; Okabe, Y.; Kuwahara, J.; Kojima, S.

    2005-05-01

    The authors are constructing a damage detection system using ultrasonic waves. In this system, a piezo-ceramic actuator generates Lamb waves in a CFRP laminate. After the waves propagate in the laminate, transmitted waves are received by a fiber Bragg grating (FBG) sensor attached on the laminate using a newly developed high-speed optical wavelength interrogation system. At first, the optimal gauge length of the FBG to detect ultrasonic waves was investigated through theoretical simulations and experiments. Then, the directional sensitivity of the FBG to ultrasonic waves was evaluated experimentally. On the basis of the above results, the 1mm FBG sensors were applied to the detection of Lamb waves propagated in carbon fiber reinforced plastic (CFRP) cross-ply laminates. The piezo-actuator was put on the laminate about 50mm away from the FBG sensor glued on the laminate, and three-cycle sine waves of 300kHz were excited repeatedly. The waveforms obtained by the FBG showed that S0 and A0 modes could be detected appropriately. Then, artificial delamination was made in the laminate by removing of a Teflon sheet embedded in the 0/90 interface after the manufacturing. When the Lamb waves passed through the delamination, the amplitude decreased and a new wave mode appeared. These phenomena could be well simulated using a finite element method. Furthermore, since the amplitude and the velocity of the new mode increased with an increase in the delamination length, this system has a potential to evaluate the interlaminar delamination length quantitatively.

  9. High-rank nonlinear sequentially laminated composites and their possible tendency towards isotropic behavior

    NASA Astrophysics Data System (ADS)

    deBotton, G.; Hariton, I.

    2002-12-01

    This work is concerned with the determination of the effective behavior of sequentially laminated composites with nonlinear behavior of the constituting phases. An exact expression for the effective stress energy potential of two-dimensional and incompressible composites is introduced. This allows to determine the stress energy potential of a rank- N sequentially laminated composite with arbitrary volume fractions and lamination directions of the core laminates in terms of an N-dimensional optimization problem. Stress energy potentials for sequentially laminated composites with pure power-law behavior of the phases are determined. It is demonstrated that as the rank of the lamination becomes large the behaviors of certain families of sequentially laminated composite tend to be isotropic. Particulate composites with both, stiffer and softer inclusions are considered. The behaviors of these almost isotropic composites are, respectively, softer and stiffer than the corresponding second-order estimates recently introduced by Ponte Castañeda (1996).

  10. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  11. Geometrically nonlinear bending analysis of laminated composite plate

    NASA Astrophysics Data System (ADS)

    Dash, Padmanav; Singh, B. N.

    2010-10-01

    In this work, a transverse bending of shear deformable laminated composite plates in Green-Lagrange sense accounting for the transverse shear and large rotations are presented. Governing equations are developed in the framework of higher order shear deformation theory. All higher order terms arising from nonlinear strain-displacement relations are included in the formulation. The present plate theory satisfies zero transverse shear strains conditions at the top and bottom surfaces of the plate in von-Karman sense. A C0 isoparametric finite element is developed for the present nonlinear model. Numerical results for the laminated composite plates of orthotropic materials with different system parameters and boundary conditions are found out. The results are also compared with those available in the literature. Some new results with different parameters are also presented.

  12. Material Characterization of Flexibly Supported Shear Deformable Laminated Composite Plates

    NASA Astrophysics Data System (ADS)

    Lee, C. R.; Kam, T. Y.

    2006-03-01

    This paper presents a method for nondestructively evaluating the system parameters of elastically restrained shear deformable laminated composite plates using measured natural frequencies. The proposed method is established on the basis of a multi-start global minimization method in which an objective function measuring the differences between the predicted and measured natural frequencies is constructed and a design variables normalization technique for expediting the convergence of the search of the solution is adopted. Vibration testing of several laminated composite plates with different boundary conditions was performed. Seven natural frequencies extracted from the vibration data of each of the plates were used in the proposed method to identify the system parameters of the plate. Excellent results have been obtained for the plates.

  13. Permeability of Impacted Coated Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Findley, Benjamin

    2002-01-01

    Composite materials are being considered for use on future generations of Reusable Launch Vehicles (RLVs) for both fuel tanks and fuel feedlines. Through the use of composite materials NASA can reduce the overall weight of the vehicle dramatically. This weight savings can then be translated into an increase in the weight of payload sent into orbit, reducing the cost per pound of payload. It is estimated that by switching to composite materials for fuel tanks the weight of the tanks can be reduced by 40 percent, which translates to a total vehicle weight savings of 14 percent. In this research, carbon/epoxy composites were studied for fuel feedline applications. There are concerns about using composite materials for feedlines and fuel tanks because these materials are extremely vulnerable to impact in the form of inadvertent bumping or dropped tools both during installation and maintenance. Additionally, it has been found that some of the sample feedlines constructed have had leaks, and thus there may be a need to seal preexisting leaks in the composite prior to usage.

  14. Delamination failure in a unidirectional curved composite laminate

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.

    1992-01-01

    Delamination failure in a unidirectional curved composite laminate was investigated. The curved laminate failed unstably by delaminations developing around the curved region of the laminate at different depths through the thickness until virtually all bending stiffness was lost. Delamination was assumed to initiate at the location of the highest radial stress in the curved region. A closed form curved beam elasticity solution and a 2D finite element analysis (FEA) were conducted to determine this location. The variation in the strain energy release rate, G, with delamination growth was then determined using the FEA. A strength-based failure criteria adequately predicted the interlaminar tension failure which caused initial delamination onset. Using the G analysis the delamination was predicted to extend into the arm and leg of the laminate, predominantly in mode I. As the initial delamination grew around the curved region, the maximum radial stress in the newly formed inner sublaminate increased to a level sufficient to cause a new delamination to initiate in the sublaminate with no increase in applied load. This failure progression was observed experimentally.

  15. Delamination failure in a unidirectional curved composite laminate

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.

    1990-01-01

    Delamination failure in a unidirectional curved composite laminate was investigated. The curved laminate failed unstably by delaminations developing around the curved region of the laminate at different depths through the thickness until virtually all bending stiffness was lost. Delamination was assumed to initiate at the location of the highest radial stress in the curved region. A closed form curved beam elasticity solution and a 2-D finite element analysis (FEA) were conducted to determine this location. The variation in the strain energy release rate, G, with delamination growth was then determined using the FEA. A strength-based failure criteria adequately predicted the interlaminar tension failure which caused initial delamination onset. Using the G analysis the delamination was predicted to extend into the arm and leg of the laminate, predominantly in mode I. As the initial delamination grew arould the curved region, the maximum radial stress in the newly formed inner sublaminate increased to a level sufficient to cause a new delamination to initiate in the sublaminate with no increase in applied load. This failure progression was observed experimentally.

  16. Free Vibration Analysis of Symmetrically Laminated Composite Rectangular Plates

    NASA Astrophysics Data System (ADS)

    Lee, J. M.; Chung, J. H.; Chung, T. Y.

    1997-01-01

    Free vibration analysis of symmetrically laminated composite rectangular plates with all edges elastically restrained against rotation was carried out based on the first order anisotropic shear deformation plate theory. The iterative Kantorovich method and the Rayleigh-Ritz method with three different sets of trial functions were applied to the analysis. The numerical results were compared with each other and with experimental ones, and they showed good agreement.

  17. A life prediction model for laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1990-01-01

    A life prediction methodology for laminated continuous fiber composites subjected to fatigue loading conditions was developed. A summary is presented of research completed. A phenomenological damage evolution law was formulated for matrix cracking which is independent of stacking sequence. Mechanistic and physical support was developed for the phenomenological evolution law proposed above. The damage evolution law proposed above was implemented to a finite element computer program. And preliminary predictions were obtained for a structural component undergoing fatigue loading induced damage.

  18. Nonlinear probabilistic finite element models of laminated composite shells

    NASA Technical Reports Server (NTRS)

    Engelstad, S. P.; Reddy, J. N.

    1993-01-01

    A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.

  19. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  20. Mechanics of damping for fiber composite laminates including hygro-thermal effects

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, Christos C.

    1989-01-01

    An integrated mechanics theory was developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.

  1. An experimental investigation on the three-point bending behavior of composite laminate

    NASA Astrophysics Data System (ADS)

    A, Azzam; W, Li

    2014-08-01

    The response of composite laminate structure to three-point bending load was investigated by subjecting two types of stacking sequences of composite laminate structure by using electronic universal tester (Type: WDW-20) machine. Optical microscope was selected in order to characterize bending damage, delamination, and damage shapes in composite laminate structures. The results showed that the [0/90/-45/45]2s exhibits a brittle behavior, while other laminates exhibit a progressive failure mode consisting of fiber failure, debonding (splitting), and delamination. The [45/45/90/0]2s laminate has a highly nonlinear load- displacement curve due to compressive yielding.

  2. Mechanics of damping for fiber composite laminates including hygro-thermal effects

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Chamis, C. C.

    1989-01-01

    An integrated mechanics theory has been developed for the modeling of composite damping from the micromechanics to the laminate level. Simplified, design oriented equations based on hysteretic damping are presented for on-axis plies, off-axis plies, and laminates including the effect of temperature, moisture, and interply hysteretic damping. The temperature rise within vibrating composite laminates resulting from strain energy dissipation is also modeled, and their coupled hygro-thermo-mechanical response is predicted. The method correlates well with reported damping measurements. Application examples illustrate the effect of various ply, laminate, and hygro-thermal parameters on the overall damping performance of composite laminates.

  3. Effects of Interlayer Interfacial Stiffness on Ultrasonic Wave Propagation in Composite Laminates at Oblique Incidence

    NASA Astrophysics Data System (ADS)

    Ishii, Yosuke; Biwa, Shiro

    The transmission characteristics of ultrasonic wave impinging obliquely on composite laminates are analyzed. Incorporating the influence of thin resin-rich regions between adjacent plies by spring-type interfaces, the amplitude transmission coefficient of a unidirectional composite laminate immersed in water is calculated by the stiffness-matrix method. Using Floquet's theorem, the dispersion relation for the infinitely laminated structure is also calculated. Comparison between two results reveals that the frequency band-gaps in the dispersion relation agree well with the low-transmission frequency ranges of the finite laminated case. Comparing with the experimental transmission coefficients for an 11-ply carbon-epoxy composite laminate, the theoretical results are verified.

  4. Ballistic damage in hybrid composite laminates

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Pandya, Kedar S.; Naik, Niranjan K.; Roy, Anish; Silberschmidt, Vadim V.

    2015-07-01

    Ballistic damage of hybrid woven-fabric composites made of plain-weave E-glass- fabric/epoxy and 8H satin-weave T300 carbon-fabric/epoxy is studied using a combination of experimental tests, microstructural studies and finite-element (FE) analysis. Ballistic tests were conducted with a single-stage gas gun. Fibre damage and delamination were observed to be dominating failure modes. A ply-level FE model was developed, with a fabric-reinforced ply modelled as a homogeneous orthotropic material with capacity to sustain progressive stiffness degradation due to fibre/matrix cracking, fibre breaking and plastic deformation under shear loading. Simulated damage patterns on the front and back faces of fabric-reinforced composite plates provided an insight into their damage mechanisms under ballistic loading.

  5. Ultrasonic imaging of damages in CRFT-laminates

    NASA Astrophysics Data System (ADS)

    Hillger, Wolfgang

    High performance materials such as carbon fiber reinforced plastics (CFRP) are attractive materials for aircraft and aerospace components. Their application to primary aircraft structures requires the knowledge of damage incured after fabrication or in service. CFRP laminates are inhomogeneous and anisotropic materials, a 2 mm laminate consists of 16 layers of fibers, each with a thickness of 0.125 mm. The sequence of stacking is determined by design requirements. Therefore ultrasonic attenuation in composites is relatively high. The scattering by the fibers reduces the signal to noise ratio. The time of flight of a 2 mm thick laminate is only 1.3 microseconds, therefore a high axial resolution of the flaw detector is required. The thickness of CFRP-components may vary from 2 to 40 mm, the one-shot dynamic range of a through-transmission measurement easily reaches more than 60 dB. For these components of CFRP and other new materials a new ultrasonic inspection system has been developed. This paper describes the system and its capability of imaging damages in CRFP-laminates.

  6. Thermoviscoelastic characterization and predictions of Kevlar/epoxy composite laminates

    SciTech Connect

    Gramoll, K.C.

    1988-01-01

    This study consisted of two main parts, the thermoviscoelastic characterization of Kevlar 49/Fiberite 7714A epoxy composite lamina and the development of a numerical procedure to predict the viscoelastic response of any general laminate constructed from the same material. The four orthotropic material properties, S{sub 11}, S{sub 12}, S{sub 22}, and S{sub 66}, were characterized by 20-minute static creep tests on unidirectional ((0){sub s}, (10){sub s}, and (90){sub 16}) lamina specimens. A new numerical procedure to predict long-term laminate properties from lamina properties (obtained experimentally) was developed. Numerical instabilities and time constraints associated with viscoelastic numerical techniques were discussed and solved. The numerical procedure was incorporated into a user-friendly microcomputer program called Viscoelastic Composite Analysis Program (VCAP), which is available for IBM PC type computers. The program was designed for ease of use and includes graphics, menus, help messages, etc. The final phase of the study involved testing actual laminates constructed from the characterized material, Kevlar/epoxy, at various temperature and load levels for 4 to 5 weeks.

  7. Stability and morphing characteristics of bistable composite laminates

    NASA Astrophysics Data System (ADS)

    Tawfik, Samer A.

    The focus of the current research is to investigate the potential of using bistable unsymmetric cross-ply laminated composites as a means for achieving structures with morphed characteristics. To this end, an investigation of the design space for laminated composites exhibiting bistable behavior is undertaken and the key parameters controlling their behavior are identified. For this purpose a nonlinear Finite Element methodology using ABAQUS(TM) code is developed to predict both the cured shapes and the stability characteristics of unsymmetric cross-ply laminates. In addition, an experimental program is developed to validate the analytically predicted results through comparison with test data. A new method is proposed for attaching piezoelectric actuators to a bistable panel in order to preserve its favorable stability characteristics as well as optimizing the actuators performance. The developed nonlinear FE methodology is extended to predict the actuation requirements of bistable panels. Actuator requirements, predicted using the nonlinear FE analysis, are found to be in agreement with the test results. The current research also explores the potential for implementing bistable panels for Uninhabited Aerial Vehicle (UAV) wing configuration. To this end, a set of bistable panels is manufactured by combining symmetric and unsymmetric balanced and unbalanced stacking sequence and their stability characteristics are predicted. A preliminary analysis of the aerodynamic characteristics of the manufactured panels is carried out and the aerodynamic benefits of manufactured bistable panel are noted.

  8. Asymmetry in ferroelectric polymer laminate composites

    SciTech Connect

    Newman, B.A.; Scheinbeim, J.I.; Su, Ji

    1996-10-01

    Studies of the ferroelectric and piezoelectric properties of composite bilaminates of poly(vinylidene fluoride) and nylon 11 films have shown that the properties of the bilaminates cannot be understood solely in terms of the properties of the individual components. Further, the properties of films which are polarized with the positive voltage on the nylon 11 side are different from those having the positive voltage on the poly(vinylidene fluoride) side. This asymmetry is interpreted as resulting from a region of space charge trapped at the interface between the two layers.

  9. Analysis of delamination growth in compressively loaded composite laminates

    NASA Astrophysics Data System (ADS)

    Tratt, Matthew D.

    The present analytical and empirical study of composite structure delamination has attempted to predict the threshold stress for the initiation of delamination growth in compressively loaded composite laminates. The strain-energy release-rate distributions around circular delaminations are computed via MSC/NASTRAN analysis in conjunction with a virtual crack-opening technique. Static compression tests were conducted on specimens of graphite fiber-reinforced epoxy having circular delaminations of various sizes. Computed delamination growth threshold-stress prediction results were at substantial variance with the test data, but confirmed trends and gave qualitative insight into quasi-static delamination growth.

  10. Magnetoelectric Properties in Piezoelectric and Magnetostrictive Laminate Composites

    NASA Astrophysics Data System (ADS)

    Ryu, Jungho; Carazo, Alfredo Vázquez; Uchino, Kenji; Kim, Hyoun-Ee

    2001-08-01

    Magnetoelectric laminate composites of piezoelectric-magnetostrictive materials were investigated. The composites were prepared by stacking and bonding Pb(Zr, Ti)O3 (PZT) and Terfenol-D disks. Experimental results indicated that the magnetoelectric voltage coefficient, dE/dH, increased with decreasing thickness and increasing piezoelectric voltage constant (g31) of the PZT layer. We obtained the highest magnetoelectric voltage coefficient of 4.68 V/cm\\cdotOe at room temperature for the sample with high g33 PZT of 0.5 mm in thickness. This value is about 36 times higher than the best reported value.

  11. Analysis of shear test method for composite laminates

    NASA Technical Reports Server (NTRS)

    Bergner, H. W., Jr.; Davis, J. G., Jr.; Herakovich, C. T.

    1977-01-01

    An elastic plane stress finite element analysis of the stress distributions in four flat test specimens for in-plane shear response of composite materials subjected to mechanical or thermal loads is presented. The shear test specimens investigated include: slotted coupon, cross beam, losipescu, and rail shear. Results are presented in the form of normalized shear contour plots for all three in-plane stess components. It is shown that the cross beam, losipescu, and rail shear specimens have stress distributions which are more than adequate for determining linear shear behavior of composite materials. Laminate properties, core effects, and fixture configurations are among the factors which were found to influence the stress distributions.

  12. On the enhancement of impact damage tolerance of composite laminates

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Lance, D. G.

    1993-01-01

    This paper examines the use of a thin layer of Ultra High Molecular Weight Polyethylene (UHMWPE) on the outer surface of carbon/epoxy composite materials as a method of improving impact resistance and damage tolerance through hybridization. Flat 16-ply laminates as well as honeycomb sandwich structures with eight-ply facesheets were tested in this study. Instrumented drop-weight impact testing was used to inflict damage upon the specimens. Evaluation of damage resistance included instrumented impact data, visual examination, C-scanning and compression after impact (CAI) testing. The results show that only one lamina of UHMWPE did not improve the damage tolerance (strength retention) of the 16-ply flat laminate specimens or the honeycomb sandwich beams, however, a modest gain in impact resistance (detectable damage) was found for the honeycomb sandwich specimens that contained an outer layer of UHMWPE.

  13. Experimental determination of material constants of a hybrid composite laminate

    SciTech Connect

    Ihekweazu, S.N.; Lari, S.B.; Unanwa, C.O.

    1999-07-01

    This paper discusses the results of the experimental study that was conducted in order to determine the material properties of a hybrid composite laminate made from Fiberite material MXM-7714/120 (a fabric prepreg consisting of woven Kevlar{reg_sign} 49 reinforcement impregnated with Fiberite 250 F (121 C) curing 7714 epoxy resin) and HYE-2448AIE (a 250 F (121 C) curing epoxy resin impregnated unidirectional graphite tape). First, each of the materials that comprise the hybrid laminate was fabricated separately according to ASTM-D-3039 specification in order to determine their material properties. The materials were then hybridized and the properties were determined. Data from this experiment reveal that a new class of material that can meet desired specifications can be created through hybridization. The data also revealed that the properties of the materials bonded together as a hybrid complement the properties of the constituent members of the hybrid.

  14. Iosipescu shear properties of graphite fabric/epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Walrath, D. E.; Adams, D. F.

    1985-01-01

    The Iosipescu shear test method is used to measure the in-plane and interlaminar shear properties of four T300 graphite fabric/934 epoxy composite materials. Different weave geometries tested include an Oxford weave, a 5-harness satin weave, an 8-harness satin weave, and a plain weave with auxiliary warp yarns. Both orthogonal and quasi-isotropic layup laminates were tested. In-plane and interlaminar shear properties are obtained for laminates of all four fabric types. Overall, little difference in shear properties attributable to the fabric weave pattern is observed. The auxiliary warp material is significantly weaker and less stiff in interlaminar shear parallel to its fill direction. A conventional strain gage extensometer is modified to measure shear strains for use with the Iosipescu shear test. While preliminary results are encouraging, several design iterations failed to produce a reliable shear transducer prototype. Strain gages are still the most reliable shear strain transducers for use with this test method.

  15. Design of multiple-ply laminated composite tapered beams

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.

    1993-01-01

    A study of a special case of symmetric laminated composite cantilever beams is presented. The approach models beams that are tapered both in depth and width and investigates the effect of the ply layup angle and the ply taper on bending and interlaminar shearing stresses. For the determination of stresses and deflections, the beam stiffness matrices are expressed as linear functions of the beam length. Using classical lamination theory (CLT) the stiffness matrices are determined and assembled at strategic locations along the length of the beam. They are then inverted and necessary stiffness parameters are obtained numerically and extracted for determination of design information at each location chosen. Several ply layup configurations are investigated, and design considerations are presented based on the findings. Finally, recommendations for the design of these beams are presented, and a means for anticipating the location of highest stresses is offered.

  16. Failure analysis of composite laminates including biaxial compression

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Elliott, W. G.

    1983-01-01

    This report describes a continued effort on the development and application of the tensor polynomial failure criterion for composite laminate analysis. In particular, emphasis is given to the design, construction and testing of a cross-beam laminate configuration to obtain "pure' biaxial compression failure. The purpose of this test case was to provide to permit "closure' of the cubic form of the failure surface in the 1-2 compression-compression quadrant. This resulted in a revised set of interaction strength parameters and the construction of a failure surface which can be used with confidence for strength predictions, assuming a plane stress state exists. Furthermore, the problem of complex conjugate roots which can occur in some failure regions is addressed and an "engineering' interpretation is provided. Results are presented illustrating this behavior and the methodology for overcoming this problem is discussed.

  17. A 2D p-version LSFEF for laminated composites incorporating laminate physics

    SciTech Connect

    Nayak, H.V.; Surana, K.S.

    1998-12-31

    This paper presents a 2D p-version least squares finite element formulation for laminated composites incorporating the physics of laminated behavior. At the interface between two laminas of dissimilar materials the authors have continuity of displacements u, v, stresses {sigma}{sub yy}, {tau}{sub xy}, and strain {var_epsilon}{sub xx}, while the stress {sigma}{sub xx} and the strains {var_epsilon}{sub yy} and {gamma}{sub xy} are discontinuous. Thus, a finite element formulation, incorporating the physics of laminate behavior, would require interpolation of u, v, {var_epsilon}{sub xx}, {sigma}{sub yy}, {tau}{sub xy} instead of u, v {sigma}{sub xx}, {sigma}{sub yy} and {tau}{sub xy} which is generally the case in most LSFE formulations. In the p-version LSFEF presented here, the authors interpolate u, v (primary variables) and {var_epsilon}{sub xx}, {sigma}{sub yy}, {tau}{sub xy} (auxiliary variables) using equal order p-version C{sup 0} interpolations which would ensure interlamina continuity of these components. When the mating lamina properties are different, interlamina discontinuity of {sigma}{sub xx}, {var_epsilon}{sub yy} and {gamma}{sub xy} is automatically generated due to dissimilar material properties of the laminas. In this formulation interlamina jumps in {sigma}{sub xx}, {var_epsilon}{sub yy} and {gamma}{sub xy} do not constitute singularities, hence mesh refinements and higher p-levels are not needed in the vicinity of inter-lamina boundaries.

  18. Metal-ceramic laminate composite magnetoelectric gradiometer.

    PubMed

    Bedekar, V; Bichurin, M I; Ivanov, S N; Pukinski, Y J; Priya, S

    2010-03-01

    Gradiometer resembles in functionality a magnetic field sensor where it measures the magnetic field gradient and its sensitivity is determined by the ability to quantify differential voltage change with respect to a reference value. Magnetoelectric (ME) gradiometer designed in this study is based upon the nickel (Ni)-Pb(Zr,Ti)O(3) (PZT) composites and utilizes the ring-dot piezoelectric transformer structure working near the resonance as the basis. The samples had the ring-dot electrode pattern printed on the top surface of PZT, where ring acts as the input while dot acts as the output. There is an insulation gap between the input and output section of 1.2 mm. The generated magnetic field due to converse ME effect interacts with the external applied magnetic field producing flux gradient, which is detected through the frequency shift and output voltage change in gradiometer structure. The measurements of output voltage dependence on applied magnetic field clearly illustrate that the proposed design can provide high sensitivity and bandwidth.

  19. On Poisson's ratio for metal matrix composite laminates. [aluminum boron composites

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Shuart, M. J.

    1978-01-01

    The definition of Poisson's ratio for nonlinear behavior of metal matrix composite laminates is discussed and experimental results for tensile and compressive loading of five different boron-aluminum laminates are presented. It is shown that there may be considerable difference in the value of Poisson's ratio as defined by a total strain or an incremental strain definition. It is argued that the incremental definition is more appropriate for nonlinear material behavior. Results from a (0) laminate indicate that the incremental definition provides a precursor to failure which is not evident if the total strain definition is used.

  20. The effects of embedded internal delaminations on composite laminate compression strength; an experimental review

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1994-01-01

    Delaminations in laminated composite materials can degrade the compressive strength of these materials. Delaminations can form as a result of impact damage or processing flaws. In order to better understand the effects of these delaminations on the compressive behavior of laminated composite plates, programs have been conducted to assess the criticality of prescribed delaminations of known size, shape, and location on the compression strength of laminated composites. A review of these programs is presented along with highlights of pertinent findings from each.

  1. Numerical Modeling of Combined Matrix Cracking and Delamination in Composite Laminates Using Cohesive Elements

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Roy, Rene; Kweon, Jin-Hwe; Choi, Jin-ho

    2016-06-01

    Sub-laminate damage in the form of matrix cracking and delamination was simulated by using interface cohesive elements in the finite element (FE) software ABAQUS. Interface cohesive elements were inserted parallel to the fiber orientation in the transverse ply with equal spacing (matrix cracking) and between the interfaces (delamination). Matrix cracking initiation in the cohesive elements was based on stress traction separation laws and propagated under mixed-mode loading. We expanded the work of Shi et al. (Appl. Compos. Mater. 21, 57-70 2014) to include delamination and simulated additional [45/-45/0/90]s and [02/90n]s { n = 1,2,3} CFRP laminates and a [0/903]s GFRP laminate. Delamination damage was quantified numerically in terms of damage dissipative energy. We observed that transverse matrix cracks can propagate to the ply interface and initiate delamination. We also observed for [0/90n/0] laminates that as the number of 90° ply increases past n = 2, the crack density decreases. The predicted crack density evolution compared well with experimental results and the equivalent constraint model (ECM) theory. Empirical relationships were established between crack density and applied stress by linear curve fitting. The reduction of laminate elastic modulus due to cracking was also computed numerically and it is in accordance with reported experimental measurements.

  2. Low velocity impact analysis of composite laminated plates

    NASA Astrophysics Data System (ADS)

    Zheng, Daihua

    2007-12-01

    In the past few decades polymer composites have been utilized more in structures where high strength and light weight are major concerns, e.g., aircraft, high-speed boats and sports supplies. It is well known that they are susceptible to damage resulting from lateral impact by foreign objects, such as dropped tools, hail and debris thrown up from the runway. The impact response of the structures depends not only on the material properties but also on the dynamic behavior of the impacted structure. Although commercial software is capable of analyzing such impact processes, it often requires extensive expertise and rigorous training for design and analysis. Analytical models are useful as they allow parametric studies and provide a foundation for validating the numerical results from large-scale commercial software. Therefore, it is necessary to develop analytical or semi-analytical models to better understand the behaviors of composite structures under impact and their associated failure process. In this study, several analytical models are proposed in order to analyze the impact response of composite laminated plates. Based on Meyer's Power Law, a semi-analytical model is obtained for small mass impact response of infinite composite laminates by the method of asymptotic expansion. The original nonlinear second-order ordinary differential equation is transformed into two linear ordinary differential equations. This is achieved by neglecting high-order terms in the asymptotic expansion. As a result, the semi-analytical solution of the overall impact response can be applied to contact laws with varying coefficients. Then an analytical model accounting for permanent deformation based on an elasto-plastic contact law is proposed to obtain the closed-form solutions of the wave-controlled impact responses of composite laminates. The analytical model is also used to predict the threshold velocity for delamination onset by combining with an existing quasi

  3. Magnetoelectric laminate composite based tachometer for harsh environment applications

    SciTech Connect

    Myers, Robert; Islam, Rashed Adnan; Karmarkar, Makarand; Priya, Shashank

    2007-09-17

    This study reports the design, fabrication, and characterization of a tachometer utilizing magnetoelectric (ME) laminate composites with sandwich structure consisting of Pb(Zr,Ti)O{sub 3} (PZT) and Galfenol. High temperature characterization of Galfenol shows that it can sustain the magnetic property over 500 deg. C. The Curie temperature of PZT compositions was in the range of 325-340 deg. C. The magnitude of the ME coefficient was found to scale with the dimensionless ratio (d g/S), where d is the piezoelectric strain constant, g is the piezoelectric voltage constant, and S is the elastic compliance. The tachometer design is based on the principle that when ME composite is exposed to oscillating magnetic field, it generates voltage with the same frequency.

  4. Analysis and experiments for composite laminates with holes and subjected to 4-point bending

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Prasad, C. B.

    1990-01-01

    Analytical and experimental results are presented for composite laminates with a hole and subjected to four-point bending. A finite-plate analysis is used to predict moment and strain distributions for six-layer quasi-isotropic laminates and transverse-ply laminates. Experimental data are compared with the analytical results. Experimental and analytical strain results show good agreement for the quasi-isotropic laminates. Failure of the two types of composite laminates is described, and failure strain results are presented as a function of normalized hole diameter. The failure results suggest that the initial failure mechanism for laminates subjected to four-point bending are similar to the initial failure mechanisms for corresponding laminates subjected to uniaxial inplane loadings.

  5. Coupled mixed-field laminate theory and finite element for smart piezoelectric composite shell structures

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1996-01-01

    Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.

  6. A 3D p-version LSFEF for laminated composites incorporating laminate physics

    SciTech Connect

    Nayak, H.V.; Surana, K.S.

    1998-12-31

    This paper presents a 3D p-version least square finite element formulation (LSFEF) for laminated composites incorporating the physics of interlamina behavior. At the interlaminar boundary of two laminas consisting of dissimilar materials, the laminate physics requires continuity of u, v, w, {var_epsilon}{sub xx}, {var_epsilon}{sub yy}, {gamma}{sub xy}, {sigma}{sub zz}, {tau}{sub yz}, and {tau}{sub xz}, and discontinuity of {var_epsilon}{sub zz} {gamma}{sub yz}, {gamma}{sub xz}, {sigma}{sub xx}, {sigma}{sub yx} and {tau}{sub xy}. In traditional Galerkin finite element formulation (in which u, v, w, are interpolated) and more recent least square finite formulation (in which u, v, w, and all stresses are interpolated) interlamina discontinuities of the quantities constitute singularity thus requiring mesh refinements and high p-levels in the vicinity of each interface. In the formulation presented, 3D equations of elasticity are recast in an appropriate form involving u, v, w, {var_epsilon}{sub xx}, {var_epsilon}{sub yy}, {gamma}{sub xy}, {sigma}{sub zz} {tau}{sub yz}, and {tau}{sub xz} for which a p-version least squares finite element formulation is constructed using equal order C{sup 0} interpolation for each of the three displacements, strains and stresses ensuring interlamina continuity of these. Interlamina discontinuities of {var_epsilon}{sub zz}, {gamma}{sub yz}, {gamma}{sub xz}, {sigma}{sub xx}, {sigma}{sub yy} and {tau}{sub xy} are automatically generated due to different material properties of the mating laminas. In the formulation, precise behavior of laminate physics is incorporated in the finite element formulation, that is the displacements, strains, stresses exhibiting interlamina continuity are interpolated while discontinuous strains and stresses are generated as a consequence of dissimilar material properties of the mating laminas, hence they do not constitute singularities. Thus, when using the present formulation, mesh refinements and high p

  7. Study of delamination in fiber reinforced composite laminates

    NASA Astrophysics Data System (ADS)

    Mathews, Mary Jacob

    The primary goal of this work was to characterize the fracture toughness of laminated composite materials using a combination of experiments and analyses. This goal was achieved by several contributions that improved the state-of-the-art of numerical analysis techniques for evaluating crack propagation in composite structures. It is shown that currently available finite element techniques do not provide accurate results when nonuniform elements are used to model the structure in the vicinity of the cracks. A new method is proposed in this dissertation to more accurately predict the material toughness in such circumstances. Delamination in composites is often complicated by mixed-mode fractures. Both interlaminar tensile and shear stresses can be present at the delamination front under mixed mode conditions. Although finite element analysis is widely used to calculate energy release rates (ERR), the individual mode I and mode II ERR do not converge when the delamination is at a bimaterial interface. This problem was solved by enclosing the delamination in a homogeneous layer that removes the difficulties associated with the interface cracks. The effect of the additional resin layer is minimized by evaluating the fracture toughness at the limit as the thickness of the interface layer goes to zero. Interlaminar fracture toughness of AS4/3501-6 (carbon/epoxy) composite laminates was measured using single mode and mixed mode bending tests. The results show that the critical mode I ERR for delamination decrease monotonically with increasing mode II loading. Failure loci are developed in this dissertation using the test data and new parameters are established for different failure criteria. An acoustic emission study was performed with the toughness characterization tests. The results indicate that passive emissions can be used as a nondestructive evaluation tool to predict the onset of delamination and other fractures in composites. The final contribution of this

  8. Experimental Verification of Computational Models for Laminated Composites

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Coats, Timothy W.; Glaessgen, Edward H.

    1999-01-01

    The objective of the research reported herein is to develop a progressive damage methodology capable of predicting the residual strength of continuous fiber-reinforced, laminated, polymer matrix composites with through-penetration damage. The fracture behavior of center-notch tension panels with thin crack-like slits was studied. Since fibers are the major load-carrying constituent in polymer matrix composites, predicting the residual strength of a laminate requires a criterion for fiber fracture. The effects on fiber strain due to other damage mechanisms such as matrix cracking and delaminations must also be modeled. Therefore, the research herein examines the damage mechanisms involved in translaminate fracture and identifies the toughening mechanisms responsible for damage growth resistance in brittle epoxy matrix systems. The mechanics of matrix cracking and fiber fracture are discussed as is the mathematical framework for the progressive damage model developed by the authors. The progressive damage analysis algorithms have been implemented into a general purpose finite element code developed by NASA, the Computational Structural Mechanics Testbed (COMET). Damage growth is numerically simulated and the analytical residual strength predictions are compared to experimental results for a variety of notched panel configurations and materials systems.

  9. Ancient and Modern Laminated Composites - From the Great Pyramid of Gizeh to Y2K

    SciTech Connect

    Wadsworth, J.; Lesuer, D.R.

    2000-03-14

    Laminated metal composites have been cited in antiquity; for example, a steel laminate that may date as far back as 2750 B.C., was found in the Great Pyramid in Gizeh in 1837. A laminated shield containing bronze, tin, and gold layers, is described in detail by Homer. Well-known examples of steel laminates, such as an Adze blade, dating to 400 B.C. can be found in the literature. The Japanese sword is a laminated composite at several different levels and Merovingian blades were composed of laminated steels. Other examples are also available, including composites from China, Thailand, Indonesia, Germany, Britain, Belgium, France, and Persia. The concept of lamination to provide improved properties has also found expression in modern materials. Of particular interest is the development of laminates including high carbon and low carbon layers. These materials have unusual properties that are of engineering interest; they are similar to ancient welded Damascus steels. The manufacture of collectable knives, labeled ''welded Damascus'', has also been a focus of contemporary knifemakers. Additionally, in the Former Soviet Union, laminated composite designs have been used in engineering applications. Each of the above areas will be briefly reviewed, and some of the metallurgical principles will be described that underlie improvement in properties by lamination. Where appropriate, links are made between these property improvements and those that may have been present in ancient artifacts.

  10. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  11. Tensile and impact behavior of laminated composites based on ultrahigh carbon steel

    SciTech Connect

    Lee, S.

    1988-01-01

    The goal was to develop metal-laminated composites for high strength and high strength and high toughness and centered on three major objectives. The first one was to develop a laminated composite, based on ultrahigh carbon steel (UHCS), which can be selectively heat treated to achieve alternating hard UHCS and soft interleaf layers. The second was to maintain sharp and discrete interlayer boundaries in the UHCS laminated composite after selective heat treatment with no interdiffusion of carbon. The third was to achieve high notch-impact toughness in the selectively heat-treated laminated composite. Five laminated composites were investigated. They are UHCS/Fe-3%Si, UHCS/Hadfield manganese steel (HMS), UHCS/9%Ni-2%Si steel, UHCS/brass and UHCS/304 stainless steel (304ss). All five laminated composites were selectively heat treated to achieve the desired objective of alternating hard and soft layers. Charpy V-notch impact tests were performed on the first four laminates. Each laminate showed a lower ductile-to-brittle transition temperature (DBTT) than those obtained in the monolithic UHS and the monolithic interleaf material making up the laminate.

  12. Optimization of sensor introduction into laminated composite materials

    NASA Astrophysics Data System (ADS)

    Schaaf, Kristin; Nemat-Nasser, Sia

    2008-03-01

    This work seeks to extend the functionality of the composite material beyond that of simply load-bearing and to enable in situ sensing, without compromising the structural integrity of the host composite material. Essential to the application of smart composites is the issue of the mechanical coupling of the sensor to the host material. Here we present various methods of embedding sensors within the host composite material. In this study, quasi-static three-point bending (short beam) and fatigue three-point bending (short beam) tests are conducted in order to characterize the effects of introducing the sensors into the host composite material. The sensors that are examined include three types of polyvinylidene fluoride (PVDF) thin film sensors: silver ink with a protective coating of urethane, silver ink without a protective coating, and nickel-copper alloy without a protective coating. The methods of sensor integration include placement at the midplane between the layers of prepreg material as well as a sandwich configuration in which a PVDF thin film sensor is placed between the first and second and nineteenth and twentieth layers of prepreg. Each PVDF sensor is continuous and occupies the entire layer, lying in the plane normal to the thickness direction in laminated composites. The work described here is part of an ongoing effort to understand the structural effects of integrating microsensor networks into a host composite material.

  13. Linear versus nonlinear theories for laminated composite plates and shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    Linear and nonlinear shear-deformation theories for laminated composite plates and shells are discussed in this paper. The emphasis here is on the range of validity for each class of theories. The finite element method is used to determine the maximum stresses for a wide range of statically loaded plate and shell panels with various thickness ratios. This paper concludes that for the vast majority of composite materials and for moderately thick plates and shells, stresses normally reach the maximum allowable stress before nonlinear terms can become important. This has been demonstrated by showing that for the limiting case of shear deformation theories (in which the minimum span length (or radius) to thickness ratio is 20), the material usually fails before the maximum deflection reaches the magnitude of the thickness (where nonlinear terms start to become significant).

  14. Esthetic Rehabilitation of Anterior Teeth with Laminates Composite Veneers

    PubMed Central

    Riva, Giancarlo

    2014-01-01

    No- or minimal-preparation veneers associated with enamel preservation offer predictable results in esthetic dentistry; indirect additive anterior composite restorations represent a quick, minimally invasive, inexpensive, and repairable option for a smile enhancement treatment plan. Current laboratory techniques associated with a strict clinical protocol satisfy patients' restorative and esthetic needs. The case report presented describes minimal invasive treatment of four upper incisors with laminate nanohybrid resin composite veneers. A step-by-step protocol is proposed for diagnostic evaluation, mock-up fabrication and trial, teeth preparation and impression, and adhesive cementation. The resolution of initial esthetic issues, patient satisfaction, and nice integration of indirect restorations confirmed the success of this anterior dentition rehabilitation. PMID:25013730

  15. Damage mechanisms characterization of carbon fiber/epoxy composite laminates by both electrical resistance measurements and acoustic emission analysis

    SciTech Connect

    Ceysson, O.; Salvia, M.; Vincent, L.

    1996-04-15

    Carbon fiber reinforced plastics (CFRP) offer high specific mechanical properties (performance vs weight ratio). Since carbon fibers are electrical conductors ({rho} = 2.10{sup {minus}5} {Omega}.m), the measurement of the variations of electrical resistance appears to be a valuable technique for damage detection. In the case of CFRP samples, conductivity is not isotropic but depends on the orientation of the carbon fibers. The electrical conduction of (0{degree}) unidirectional (UD) CFRP parallel to the fibers is due to the current flow along the fibers. This can be modeled using the parallel resistance approach. In this present work, the variation of the electrical conductivity can be taken as an indicator of the evolution of various types of damage in classical longitudinal UD but also in ({+-} 45{degree}) CFRP laminates. By comparison with a more classical non-destructive technique such as Acoustic Emission, it has been shown that it is possible that the electrical resistance measurement allows one to monitor in-situ the evolution of various internal damage nucleation and growth in CFRP such as fiber fractures, intraply matrix cracks and interply delaminations.

  16. Suppression of interlaminar damage in carbon/epoxy laminates by use of interleaf layers

    SciTech Connect

    Tanimoto, Toshio . Dept. of Materials Science Ceramic Technology)

    1994-10-15

    Carbon fiber reinforced plastics (CFRP) have been widely used as a structural material. In general, fiber orientation angle of each lamina in these laminates is variously chosen in order to taylor a material which meets the particular requirement for the material properties in arbitrary direction of laminate. Quasi-isotropic lamination, in which the laminate consisted of laminae with fiber orientation of 0[degree], +45[degree], [minus]45[degree] and 90[degree] to loading axis, is most commonly employed in the actual application. However, quasi-isotropic carbon/epoxy laminates are known to develop the interlaminar stress concentrations near the free edge region. These laminates have a strong tendency to delaminate near the edges when subjected to axial in-plane loading. Such a free edge delamination under loading in the plane of the laminate is a unique problem to laminated composites. This paper summarizes the author's investigation which was performed to reduce the free edge interlaminar stresses in the laminate by incorporating interleaf films between plies and thus to improve the mechanical properties of these materials. In their previous work, the authors have shown that these laminates exhibit a high vibration damping capability. Loss factor values for these CFRP/interleaf laminates which were measured in cantilever beam tests, are 5 to 50 times as large as that for conventional CFRP. In this paper, discussion will be provided on the mechanical properties of the interleaved quasi-isotropic carbon/epoxy laminate, [0/[+-]45/90][sub s], with a special emphasis on the optimum design of interply locations to incorporate the interleaf films for the particular requirement such as static strength, elastic modulus, fatigue resistance and so on.

  17. Fatigue Life Methodology for Tapered Composite Flexbeam Laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; OBrien, T. Kevin; Rousseau, Carl Q.

    1997-01-01

    The viability of a method for determining the fatigue life of composite rotor hub flexbeam laminates using delamination fatigue characterization data and a geometric non-linear finite element (FE) analysis was studied. Combined tension and bending loading was applied to non-linear tapered flexbeam laminates with internal ply drops. These laminates, consisting of coupon specimens cut from a full-size S2/E7T1 glass-epoxy flexbeam were tested in a hydraulic load frame under combined axial-tension and transverse cyclic bending. The magnitude of the axial load remained constant and the direction of the load rotated with the specimen as the cyclic bending load was applied. The first delamination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group. Subsequently, unstable delamination occurred by complete delamination along the length of the specimen. Continued cycling resulted in multiple delaminations. A 2D finite element model of the flexbeam was developed and a geometrically non-linear analysis was performed. The global responses of the model and test specimens agreed very well in terms of the transverse displacement. The FE model was used to calculate strain energy release rates (G) for delaminations initiating at the tip of the outer ply-drop area and growing toward the thick or thin regions of the flexbeam, as was observed in the specimens. The delamination growth toward the thick region was primarily mode 2, whereas delamination growth toward the thin region was almost completely mode 1. Material characterization data from cyclic double-cantilevered beam tests was used with the peak calculated G values to generate a curve predicting fatigue failure by unstable delamination as a function of the number of loading cycles. The calculated fatigue lives compared well with the test data.

  18. Fatigue Life Methodology for Tapered Composite Flexbeam Laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.; O''Brien, T. Kevin; Rousseau, Carl Q.

    1997-01-01

    The viability of a method for determining the fatigue life of composite rotor hub flexbeam laminates using delamination fatigue characterization data and a geometric non-linear finite element (FE) analysis was studied. Combined tension and bending loading was applied to nonlinear tapered flexbeam laminates with internal ply drops. These laminates, consisting of coupon specimens cut from a full-size S2/E7T1 glass-epoxy flexbeam were tested in a hydraulic load frame under combined axial-tension and transverse cyclic bending loads. The magnitude of the axial load remained constant and the direction of the load rotated with the specimen as the cyclic bending load was applied. The first delamination damage observed in the specimens occurred at the area around the tip of the outermost ply-drop group. Subsequently, unstable delamination occurred by complete delamination along the length of the specimen. Continued cycling resulted in multiple delaminations. A 2D finite element model of the flexbeam was developed and a geometrically non-linear analysis was performed. The global responses of the model and test specimens agreed very well in terms of the transverse flexbeam tip-displacement and flapping angle. The FE model was used to calculate strain energy release rates (G) for delaminations initiating at the tip of the outer ply-drop area and growing toward the thick or thin regions of the flexbeam, as was observed in the specimens. The delamination growth toward the thick region was primarily mode 2, whereas delamination growth toward the thin region was almost completely mode 1. Material characterization data from cyclic double-cantilevered beam tests was used with the peak calculated G values to generate a curve predicting fatigue failure by unstable delamination as a function of the number of loading cycles. The calculated fatigue lives compared well with the test data.

  19. A review on the response of blast loaded laminated composite plates

    NASA Astrophysics Data System (ADS)

    Kazancı, Zafer

    2016-02-01

    This review is conducted with emphasis on the analysis performed for laminated composite plates that are subjected to blast loads. A general discussion and classification of the different laminated plate theories is also given. Various types of time-dependent external blast pulse models that are widely used in the literature are summarized. Main aim is to categorize previous laminated plate theories in a general sense and give an overview on the development, characteristics and applications of numerical methods on the response of laminated composite plates subjected to blast loads. This review article contains 142 references.

  20. A New Approach to Fibrous Composite Laminate Strength Prediction

    NASA Technical Reports Server (NTRS)

    Hart-Smith, L. J.

    1990-01-01

    A method of predicting the strength of cross-plied fibrous composite laminates is based on expressing the classical maximum-shear-stress failure criterion for ductile metals in terms of strains. Starting with such a formulation for classical isotropic materials, the derivation is extended to orthotropic materials having a longitudinal axis of symmetry, to represent the fibers in a unidirectional composite lamina. The only modification needed to represent those same fibers with properties normalized to the lamina rather than fiber is a change in axial modulus. A mirror image is added to the strain-based lamina failure criterion for fiber-dominated failures to reflect the cutoffs due to the presence of orthogonal fibers. It is found that the combined failure envelope is now identical with the well-known maximum-strain failure model in the tension-tension and compression-compression quadrants but is truncated in the shear quadrants. The successive application of this simple failure model for fibers in the 0/90 degree and +/- 45 degree orientations, in turn, is shown to be the necessary and sufficient characterization of the fiber-dominated failures of laminates made from fibers having the same tensile and compressive strengths. When one such strength is greater than the other, the failure envelope is appropriately truncated for the lesser direct strain. The shear-failure cutoffs are now based on the higher axial strain to failure since they occur at lower strains than and are usually not affected by such mechanisms as microbuckling. Premature matrix failures can also be covered by appropriately truncating the fiber failure envelope. Matrix failures are excluded from consideration for conventional fiber/polymer composites but the additional features needed for a more rigorous analysis of exotic materials are covered. The new failure envelope is compared with published biaxial test data. The theory is developed for unnotched laminates but is easily shrunk to incorporate

  1. Irradiation effects in tungsten-copper laminate composite

    DOE PAGES

    Garrison, L. M.; Katoh, Yutai; Snead, Lance L.; Byun, Thak Sang; Reiser, Jens; Rieth, Michael

    2016-09-19

    Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 1025 n/m2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039 dpa thismore » was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less

  2. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Phillips, Ronald E.

    1990-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2) sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  3. Laminate behavior for SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Rhatt, R. T.; Phillips, R. E.

    1988-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composite laminates (SiC/RBSN) have been measured. The laminates contained approx 30 volume fraction of aligned 142-micron diameter SiC fiber in a porous RBSN matrix. Three types of laminate studied were unidirectional: (1) (0) sub 8, (2) (10) sub 8, and (3) (45) sub 8, and (90) sub 8; cross plied laminates (0 sub 2/90 sub 2); and angle plied laminates: (+45 sub 2/-45 sub 2). Each laminate contained eight fiber plies. Results of the unidirectionally reinforced composites tested at various angles to the reinforcement direction indicate large anisotropy in in-plane properties. In addition, strength properties of these composites along the fiber direction were independent of specimen gage length and were unaffected by notches normal to the fiber direction. Splitting parallel to the fiber at the notch tip appears to be the dominant crack blunting mechanism responsible for notch insensitive behavior of these composites. In-plane properties of the composites can be improved by 2-D laminate construction. Mechanical property results for (0 sub 2/90 sub 2)sub s and (+45/-45 sub 2) sub s laminates showed that their matrix failure strains were similar to that for (0) sub 8 laminates, but their primary elastic moduli, matrix cracking strengths, and ultimate composite strengths were lower. The elastic properties of unidirectional, cross-ply, and angle-ply composites can be predicted from modified constitutive equations and laminate theory. Further improvements in laminate properties may be achieved by reducing the matrix porosity and by optimizing the bond strength between the SiC fiber and RBSN matrix.

  4. Cost-reduction method for delamination monitoring using electrical resistance changes of CFRP beam

    NASA Astrophysics Data System (ADS)

    Todoroki, A.; Ueda, M.

    2004-02-01

    Delamination is a significant defect of laminated composites. The present study employs an electrical resistance change method in an attempt to identify internal delaminations experimentally. The method adopts reinforcing carbon fibers as sensors. In our previous paper, an actual delamination crack in a Carbon Fiber Reinforced Plastics (CFRP) laminate was experimentally identified with artificial neural networks (ANN) or response surfaces created from a large number of experiments. The experimental results were used for learning of the ANN or regression of the response surfaces. For the actual application of the method, it is indispensable to reduce the number of experiments to suppress the total experimental cost. In the present study, therefore, FEM analyses are employed to make sets of data for learning of the ANN. First, electrical conductivity of the CFRP laminate is identified by means of the least estimation error method. After that, the results of FEM analyses are used for learning of the ANN. The method is applied to actual delamination monitoring of CFRP beams. As a result, the method successfully monitored the delamination location and size only with ten experiments.

  5. An Enriched Shell Element for Delamination Simulation in Composite Laminates

    NASA Technical Reports Server (NTRS)

    McElroy, Mark

    2015-01-01

    A formulation is presented for an enriched shell finite element capable of delamination simulation in composite laminates. The element uses an adaptive splitting approach for damage characterization that allows for straightforward low-fidelity model creation and a numerically efficient solution. The Floating Node Method is used in conjunction with the Virtual Crack Closure Technique to predict delamination growth and represent it discretely at an arbitrary ply interface. The enriched element is verified for Mode I delamination simulation using numerical benchmark data. After determining important mesh configuration guidelines for the vicinity of the delamination front in the model, a good correlation was found between the enriched shell element model results and the benchmark data set.

  6. Prediction of residual tensile strength of transversely impacted composite laminates

    NASA Technical Reports Server (NTRS)

    Lal, K. M.

    1982-01-01

    The response to low velocity impact of graphite-epoxy T300/5208 composite laminates is discussed. Steel balls of 3/8 inch, 5/8 inch, and 1 inch diameter were the projectiles. Impact energy was limited to 1.2 joules. Impacted specimens were ultrasonically C scanned to determine the impact damaged region. The threshold value of impact energy for impact damage was found to be approximately 0.3 joules. A model was developed to predict the tensile residual strength of impact damaged specimens from fracture mechanics concepts. Impacted specimens were tested in tension to provide a fracture data base. The experimental results agreed well with the predictions from fracture mechanics. In this study, the maximum impact velocity used to simulate the low velocity transverse impact from common objects like tool drops was 10 m/s.

  7. Fatigue damage mechanisms in boron-aluminium composite laminates

    NASA Technical Reports Server (NTRS)

    Dvorak, G. J.; Johnson, W. S.

    1980-01-01

    The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.

  8. Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    2008-01-01

    Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.

  9. On the strain energy of laminated composite plates

    NASA Technical Reports Server (NTRS)

    Atilgan, Ali R.; Hodges, Dewey H.

    1991-01-01

    The present effort to obtain the asymptotically correct form of the strain energy in inhomogeneous laminated composite plates proceeds from the geometrically nonlinear elastic theory-based three-dimensional strain energy by decomposing the nonlinear three-dimensional problem into a linear, through-the-thickness analysis and a nonlinear, two-dimensional analysis analyzing plate formation. Attention is given to the case in which each lamina exhibits material symmetry about its middle surface, deriving closed-form analytical expressions for the plate elastic constants and the displacement and strain distributions through the plate's thickness. Despite the simplicity of the plate strain energy's form, there are no restrictions on the magnitudes of displacement and rotation measures.

  10. The nonlinear viscoelastic response of resin matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Hiel, C.; Cardon, A. H.; Brinson, H. F.

    1984-01-01

    Possible treatments of the nonlinear viscoelastic behavior of materials are reviewed. A thermodynamic based approach, developed by Schapery, is discussed and used to interpret the nonlinear viscoelastic response of a graphite epoxy laminate, T300/934. Test data to verify the analysis for Fiberite 934 neat resin as well as transverse and shear properties of the unidirectional T300/934 composited are presented. Long time creep characteristics as a function of stress level and temperature are generated. Favorable comparisons between the traditional, graphical, and the current analytical approaches are shown. A free energy based rupture criterion is proposed as a way to estimate the life that remains in a structure at any time.

  11. Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing

    NASA Technical Reports Server (NTRS)

    Weisshaar, T. A.; Ehlers, S. M.

    1990-01-01

    The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.

  12. Interlocked fabric and laminated fabric Kevlar 49/epoxy composites

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.

    1988-01-01

    The mechanical behavior of a novel interlocked fabric reinforced Kevlar 49/epoxy composite has been measured and compared to those of a laminated Kevlar 49 fabric composite (which served as a reference material). Both composites were 5.0 mm thick, contained the same 50% in-plane fiber volume fraction and were fabricated in a similar manner using the same Dow DER 332 epoxy, Jeffamine T403-hardened resin system. The reference material (Material 1) was reinforced with seven plies of Dupont style 1033 Kevlar 49 fabric. A photomicrograph of a section polished parallel to one of the fiber directions is shown. The interlocked fabric was designed and woven for Sandia National Laboratories by Albany International Research Co., Dedham, MA. The main design criterion was to duplicate a sewn through-the-thickness fabric used in preliminary studies. The interlocked fabric composite (Material 2) contains roughly 4% by volume of through-the-thickness fiber reinforcement for the purpose of improving interlaminar strength. A photomicrograph of a section showing the warp-aligned binder yarns interlocking the six fabric plies together is shown. 2 refs., 8 figs.

  13. Fatigue delamination behavior of PEEK thermoplastic composite laminates

    NASA Technical Reports Server (NTRS)

    O'Brien, T. K.

    1986-01-01

    The delamination resistance of graphite-reinforced PEEK composites was quantified by conducting static and cyclic edge delamination tests on (35n/-35n/0n/90n)s AS4/PEEK laminates, where n = 1, 2. The experimentally determined mechanical delamination onset strains were used to calculate the critical strain-energy release rate for delamination onset as a function of fatigue cycle. The delamination onset strains decreased dramatically with fatigue cycles and then began to level off to an endurance limit at 1 million cycles. Although the static interlaminar fracture toughness of the AS4/PEEK composite is much greater than the toughness of graphite epoxy composites, the delamination fatigue threshold, calculated from the cyclic strain endurance limit at 1 million cycles, was only slightly greater than the threshold for graphite epoxy composites. The contribution of residual thermal stresses to delamination in the AS4/PEEK is substantial due to the large temperature range between the manufacture and the room temperatures.

  14. Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Rhymer, Donald W.; St.Clair, Terry L. (Technical Monitor)

    2000-01-01

    Hybrid Titanium Composite Laminates (HTCL) are a type of hybrid composite laminate with promise for high-speed aerospace applications, specifically designed for improved damage tolerance and strength at high-temperature (350 F, 177 C). However, in previous testing, HTCL demonstrated a propensity to excessive delamination at the titanium/PMC interface following titanium cracking. An advanced HTCL has been constructed with an emphasis on strengthening this interface, combining a PETI-5/IM7 PMC with Ti-15-3 foils prepared with an alkaline-perborate surface treatment. This paper discusses how the fatigue capabilities of the "advanced" HTCL compare to the first generation HTCL which was not modified for interface optimization, in both tension-tension (R = 0.1) and tension-compression (R=-0.2). The advanced HTCL under did not demonstrate a significant improvement in fatigue life, in either tension-tension or tension-compression loading. However, the advanced HTCL proved much more damage tolerant. The R = 0.1 tests revealed the advanced HTCL to increase the fatigue life following initial titanium ply damage up to 10X that of the initial HTCL at certain stress levels. The damage progression following the initial ply damage demonstrated the effect of the strengthened PMC/titanium interface. Acetate film replication of the advanced HTCL edges showed a propensity for some fibers in the adjacent PMC layers to fail at the point of titanium crack formation, suppressing delamination at the Ti/PMC interface. The inspection of failure surfaces validated these findings, revealing PMC fibers bonded to the majority of the titanium surfaces. Tension compression fatigue (R = -0.2) demonstrated the same trends in cycles between initial damage and failure, damage progression, and failure surfaces. Moreover, in possessing a higher resistance to delamination, the advanced HTCL did not exhibit buckling following initial titanium ply cracking under compression unlike the initial HTCL.

  15. Improving Impact Endangered CFRP Structures by Metal-Hybridisation

    NASA Astrophysics Data System (ADS)

    Stefaniak, D.; Kolesnikov, B.; Kappel, E.; Huhne, C.

    2012-07-01

    In CFRP primary spacecraft structures the fraction of fibres aligned in load direction is limited due to the material’s notch and impact sensitivity. As a result, stiffness and strength per unit weight of the laminate on a given direction are lower than the corresponding values for a unidirectional composite. The present investigations show that the on-axis residual strength after impact can be increased significantly by interleaving thin steel foils in the UD-laminate. Grit-blasting, as a common pre-treatment process for stainless steel surfaces, is not feasible for thin foils due to the increased risk of damaging the metallic substrate. Therefore, different pickling processes are investigated as a non-mechanical alternative pre-treatment. Thus, superior adhesion properties are achieved compared to mechanical pre-treatments.

  16. On the role of CFRP reinforcement for wood beams stiffness

    NASA Astrophysics Data System (ADS)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  17. Validation of the CQUAD4 element for vibration and shock analysis of thin laminated composite plate structure

    NASA Technical Reports Server (NTRS)

    Lesar, Douglas E.

    1992-01-01

    The performance of the NASTRAN CQUAD4 membrane and plate element in the analysis of undamped natural vibration modes of thin fiber reinforced composite plates was evaluated. The element provides natural frequency estimates that are comparable in accuracy to alternative formulations, and, in most cases, deviate by less than 10 percent from experimentally measured frequencies. The predictions lie within roughly equal accuracy bounds for the two material types treated (GFRP and CFRP), and for the ply layups considered (unidirectional, cross-ply, and angle-ply). Effective elastic lamina moduli had to be adjusted for fiber volume fraction to attain this level of frequency. The lumped mass option provides more accurate frequencies than the consistent mass option. This evaluation concerned only plates with L/t ratios on the order of 100 to 150. Since the CQUAD4 utilizes first-order corrections for transverse laminate shear stiffness, the element should provide useful frequency estimates for plate-like structures with lower L/t. For plates with L/t below 20, consideration should be given to idealizing with 3-D solid elements. Based on the observation that natural frequencies and mode shapes are predicted with acceptable engineering accuracy, it is concluded that CQUAD4 should be a useful and accurate element for transient shock and steady state vibration analysis of naval ship

  18. The in situ transverse lamina strength of composite laminates

    NASA Technical Reports Server (NTRS)

    Flaggs, D. L.

    1983-01-01

    The objective of the work reported in this presentation is to determine the in situ transverse strength of a lamina within a composite laminate. From a fracture mechanics standpoint, in situ strength may be viewed as constrained cracking that has been shown to be a function of both lamina thickness and the stiffness of adjacent plies that serve to constrain the cracking process. From an engineering point of view, however, constrained cracking can be perceived as an apparent increase in lamina strength. With the growing need to design more highly loaded composite structures, the concept of in situ strength may prove to be a viable means of increasing the design allowables of current and future composite material systems. A simplified one dimensional analytical model is presented that is used to predict the strain at onset of transverse cracking. While it is accurate only for the most constrained cases, the model is important in that the predicted failure strain is seen to be a function of a lamina's thickness d and of the extensional stiffness bE theta of the adjacent laminae that constrain crack propagation in the 90 deg laminae.

  19. Micromechanics analysis of space simulated thermal stresses in composites. I - Theory and unidirectional laminates. II - Multidirectional laminates and failure predictions

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Griffin, O. H., Jr.

    1991-01-01

    A micromechanics analysis is used to study the effects of constituent properties on thermally induced stresses in continuous fiber reinforced composites. A finite element formulation is described, and results are presented for unidirectional carbon/epoxy laminates. It is shown that significant stresses develop in composites exposed to thermal excursions typical of spacecraft operating environments and that the fiber thermoelastic properties have a minimal effect on the magnitude of these stresses. The finite element micromechanics analysis is then extended to the study of multidirectional laminates using a simple global/local formulation. Damage initiation predictions are compared with experimental data, and factors controlling the initiation of damage are identified. Ways of improving the durability of composites are discussed.

  20. Study on fabrication of smart FRP-OFBG composite laminates and their sensing properties

    NASA Astrophysics Data System (ADS)

    Wang, Yanlei; Zhou, Zhi; Ou, Jinping

    2007-01-01

    Fiber reinforced polymer (FRP) has gained much attention in civil engineering due to its high strength-to-weight and stiffness-to-weight ratios, corrosion resistance and good fatigue resistance. Optical Fiber Bragg Grating (OFBG) is now widely accepted as smart sensor due to its advantages of electric-magnetic resistance, small size, distributed sensing, durability, and so on. Combined the FRP with OFBG, new kind of smart FRP-OFBG composite laminates was developed. Fabrication method of the smart composite laminates was introduced in this paper. The study presented the basic principle of OFBG sensors. Then the strain and temperature sensing properties of the proposed smart FRP-OFBG composite laminates were experimentally studied on material test system and under hot water, respectively. The experimental results indicate the strain sensing properties of the smart FRP-OFBG composite laminates are nearly the same as that of bare OFBG, however, the temperature sensing abilities of the smart FRP-OFBG composite laminates are improved and the sensitivity coefficient is nearly 3.2 times as much as that of bare OFBG. The strain and temperature sensing precisions of the smart FRP-OFBG composite laminates are 1 μ\\Vegr and 0.03 °C, respectively. The smart FRYOFBG composite laminates are very proper for application in civil engineering.

  1. Effects of changes in composite lamina properties on laminate coefficient of thermal expansion

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Funk, Joan G.

    1992-01-01

    An analytical study of the effects of changes in composite lamina properties on the laminate coefficient of thermal expansion, CTE, has been made. Low modulus graphite/epoxy (T300/934) and high modulus graphite/epoxy (P75/934, P100/934, P120/934), graphite/aluminum (P100/Al), and graphite/glass (HMS/Gl) composite materials were considered in quasi-isotropic and near-zero CTE laminate configurations. The effects of changes in lamina properties on the laminate CTE strongly depend upon the type of composite material as well as the laminate configuration. A 10 percent change in the lamina transverse CTE resulted in changes as large as 0.22 ppm/C in the laminate CTE of a quasi-isotropic Gr/934 laminates. No significant differences were observed in the sensitivities of the laminate CTEs of the P100/934 and P120/934 composite materials due to identical changes in lamina properties. Large changes in laminate CTE can also result from measured temperature and radiation effects on lamina properties.

  2. Failure mode interaction in fiber reinforced laminated composites

    NASA Astrophysics Data System (ADS)

    Prabhakar, Pavana

    A novel computational modeling framework to predict the compressive strength of fiber reinforced polymer matrix composite (FRPC) laminates has been presented. The model development has been motivated by a set of experimental results on the compression response of two different FRPCs. The model accounts for failure mode interaction between kink-banding and interface fracture (or delamination), which are observed in the experimental results. To reduce the size of the computational model, those interfaces that are most susceptible to delamination are first determined through a free-edge stress analysis. Furthermore, 0-axis layers, which are passive in the failure process are represented through an equivalent homogenized model, but the microstructural features of the on-axis layers (zero plies) are retained in the computational model. The predictions of the model matched well with the experimental observations, and they were found to accurately account for failure mechanism interactions. Therefore, this model has the potential to replace the need to carry out large numbers of tests to obtain the compressive strength allowable for FRPC laminates, the latter allowable being an essential element in the design of lightweight FRPC aerostructures. Furthermore, the thesis presents a new computational model to predict fiber/matrix splitting failure, a failure mode that is frequently observed in in-plane tensile failure of FRPC's. By considering a single lamina, this failure mechanism was seamlessly modeled through the development of a continuum-decohesive nite element (CDFE). The CDFE was motivated by the variational multiscale cohesive method (VMCM) presented earlier by Rudraraju et al. (2010) at the University of Michigan. In the CDFE, the transition from a continuum to a non-continuum is modeled directly (physically) without resorting to enrichment of the shape functions of the element. Thus, the CDFE is a natural merger between cohesive elements and continuum elements. The

  3. Simplified sensor design for temperature-strain discrimination using fiber Bragg gratings embedded in laminated composites

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Marques, A. T.; Lopez-Higuera, J. M.; Santos, J. L.; Frazão, O.

    2013-05-01

    Several easy-to-manufacture designs based on a pair of Fiber Bragg Gratings structure embedded in Carbon Fiber Reinforced Plastic (CFRP) have been explored. These smart composites can be used for strain and temperature discrimination. A Finite Elements Analysis and Matlab software were used to study the mechanical responses and its optical behaviors. The results exhibited different sensitivity and using a matrix method it is possible to compensate the thermal drift in a real application keeping a simple manufacture process.

  4. Analysis of delamination in fiber composite laminates out-of-plane under bending

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Yuan, F. G.

    1990-01-01

    Delamination in the form of cracking or separation between plies in an advanced fiber composite laminate is a problem of major concern. Both advanced analytical methods and advanced computational analyses are conducted to: (1) develop an asymptotic solution for a composite laminate subject to out-of-plane bending; (2) construct advanced singular finite elements in conjunction with the development of nonsingular elements for this bending problem; and (3) evaluate the delamination failure mechanics parameters and the subsequent modes of fracture. A parametric study was also conducted to evaluate the influences of various lamination parameters on the delaminated composites.

  5. Development of a realistic stress analysis for fatigue analysis of notched composite laminates

    NASA Technical Reports Server (NTRS)

    Humphreys, E. A.; Rosen, B. W.

    1979-01-01

    A finite element stress analysis which consists of a membrane and interlaminar shear spring analysis was developed. This approach was utilized in order to model physically realistic failure mechanisms while maintaining a high degree of computational economy. The accuracy of the stress analysis predictions is verified through comparisons with other solutions to the composite laminate edge effect problem. The stress analysis model was incorporated into an existing fatigue analysis methodology and the entire procedure computerized. A fatigue analysis is performed upon a square laminated composite plate with a circular central hole. A complete description and users guide for the computer code FLAC (Fatigue of Laminated Composites) is included as an appendix.

  6. Mechanically programmed shape change in laminated elastomeric composites.

    PubMed

    Robertson, Jaimee M; Torbati, Amir H; Rodriguez, Erika D; Mao, Yiqi; Baker, Richard M; Qi, H Jerry; Mather, Patrick T

    2015-07-28

    Soft, anisotropic materials, such as myocardium in the heart and the extracellular matrix surrounding cells, are commonly found in nature. This anisotropy leads to specialized responses and is imperative to material functionality, yet few soft materials exhibiting similar anisotropy have been developed. Our group introduced an anisotropic shape memory elastomeric composite (A-SMEC) composed of non-woven, aligned polymer fibers embedded in an elastomeric matrix. The composite exhibited shape memory (SM) behavior with significant anisotropy in room-temperature shape fixing. Here, we exploit this anisotropy by bonding together laminates with oblique anisotropy such that tensile deformation at room temperature - mechanical programming - results in coiling. This response is a breakthrough in mechanical programming, since non-affine shape change is achieved by simply stretching the layered A-SMECs at room temperature. We will show that pitch and curvature of curled geometries depend on fiber orientations and the degree of strain programmed into the material. To validate experimental results, a model was developed that captures the viscoplastic response of A-SMECs. Theoretical results correlated well with experimental data, supporting our conclusions and ensuring attainability of predictable curling geometries. We envision these smart, soft, shape changing materials will have aerospace and medical applications.

  7. The experimental behavior of spinning pretwisted laminated composite plates

    NASA Technical Reports Server (NTRS)

    Kosmatka, John B.; Lapid, Alex J.

    1993-01-01

    The purpose of the research is to gain an understanding of the material and geometric couplings present in advanced composite turbo-propellers. Twelve pre-twisted laminated composite plates are tested. Three different ply lay-ups (2 symmetric and 1 asymmetric) and four different geometries (flat and 30x pre-twist about the mid-chord, quarter-chord, and leading edge) distinguish each plate from one another. Four rotating and non-rotating tests are employed to isolate the material and geometric couplings of an advanced turbo propeller. The first series of tests consist of non-rotating static displacement, strain, and vibrations. These tests examine the effects of ply lay-up and geometry. The second series of tests consist of rotating displacement, strain, and vibrations with various pitch and sweep settings. These tests utilize the Dynamic Spin Rig Facility at the NASA Lewis Research Center. The rig allows the spin testing of the plates in a near vacuum environment. The tests examine how the material and plate geometry interact with the pitch and sweep geometry of an advanced turbo-propeller.

  8. Nonlinear instability and reliability analysis of composite laminated beams

    NASA Astrophysics Data System (ADS)

    Fereidooni, Alireza

    The wide range of high performance engineering applications of composite laminated structures demands a proper understanding of their dynamics performance. Due to the complexity and nonlinear behaviour of such structures, developing a mathematical model to determine the dynamic instability boundaries is indispensable and challenging. The aim of this research is to investigate the dynamic behaviour of shear deformable composite laminated beams subjected to varying time conservative and nonconservative loads. The dynamic instability behaviour of non-conservative and conservative system are dissimilar. In case of conservative loading, the instability region intersects the loading axis, but in case of non-conservative loads the region will be increased with loading increases. The extended Hamilton's principle and the first order shear deformation theory are employed in this investigation to establish the integral form of the equation of motion of the beam. A five node beam model is presented to descritize the integral form of the governing equations. The model has the capability to capture the dynamic effects of the transverse shear stress, warping, and bending-twisting, bending-stretching, and stretching-twisting couplings. Also, the geometric and loading nonlinearities are included in the equation of system. The beam model incorporates, in a full form, the non-classical effects of warping on stability and dynamic response of symmetrical and unsymmetrical composite beams. In case of nonlinear elasticity, the resonance curves are bent toward the increasing exciting frequencies. The response of the stable beam is pure periodic and follow the loading frequency. When the beam is asymptotically stable the response of the beam is aperiodic and does not follow the loading frequency. In unstable state of the beam response frequency increases with time and is higher than the loading frequency, also the amplitude of the beam will increases, end to beam failure. The amplitude of

  9. Direct Restorative Treatment of Missing Maxillary Laterals with Composite Laminate Veneer: A Case Report

    PubMed Central

    Bagis, Bora; Aydoğan, Elif; Bagis, Yildirim H.

    2008-01-01

    This clinical report describes a direct composite laminate veneer restoration of the maxillary anterior teeth in one chair time to produce a better esthetic appearance in a patient with diastemata and missing laterals. PMID:19088889

  10. A simplified tensile damage analysis method for composite laminates using a quasi-three-dimensional model

    NASA Astrophysics Data System (ADS)

    Nishiwaki, Tsuyoshi; Yokoyama, Atsushi; Maekawa, Zen-Ichiro; Hamada, Hiroyuki; Maekawa, Yoshinori; Mori, Sadaki

    Measurement of the strength of laminated composites is very difficult because their failure processes imply various failure modes, which are, for example, interlaminar delamination, destruction of matrix, and an interfacial fracture between fiber and matrix. However, that strength is one of the most important characteristics in structural design using laminated composites. Hence we try a fractural progress analysis of laminated composites using a quasi-3D analysis method under a tensile load. The quasi-3D model is constructed of shell elements and beam elements which represent fiber and matrix respectively. The fractural progress analyses of the laminated composites are carried out to evaluate this proposed model. The precision is very good. Therefore, we confirm that this proposed model can simulate a transverse crack and an interlaminar delamination.

  11. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    SciTech Connect

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  12. Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.

    1997-01-01

    A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.

  13. Refined Zigzag Theory for Laminated Composite and Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; DiSciuva, Marco; Gherlone, Marco

    2009-01-01

    A refined zigzag theory is presented for laminated-composite and sandwich plates that includes the kinematics of first-order shear deformation theory as its baseline. The theory is variationally consistent and is derived from the virtual work principle. Novel piecewise-linear zigzag functions that provide a more realistic representation of the deformation states of transverse-shear-flexible plates than other similar theories are used. The formulation does not enforce full continuity of the transverse shear stresses across the plate s thickness, yet is robust. Transverse-shear correction factors are not required to yield accurate results. The theory is devoid of the shortcomings inherent in the previous zigzag theories including shear-force inconsistency and difficulties in simulating clamped boundary conditions, which have greatly limited the accuracy of these theories. This new theory requires only C(sup 0)-continuous kinematic approximations and is perfectly suited for developing computationally efficient finite elements. The theory should be useful for obtaining relatively efficient, accurate estimates of structural response needed to design high-performance load-bearing aerospace structures.

  14. Mesophase pitch-based carbon fiber for improved inflammability of CFRP

    SciTech Connect

    Nakagoshi, Akira; Tomonoh, Shigeki; Sakamoto, Yosihiro

    1995-10-01

    Carbon Fiber Reinforced Plastics (CFRP) are extensively used because of their favorable physical properties such as high strength-to-weight ratio and small thermal expansion. However, flammability of CFRP has limited their application especially in the transportation and industrial field. Exposed to flame, CFRP laminates made of PAN-based carbon fibers burst into flame in short time, while CFRP laminates made from mesophase pitch-based carbon fibers don`t burst into flame. This paper describes the experimental results of local heating test by gas burner. When the flame temperature was 1,000 C, a CFRP laminate made from PAN-based carbon fiber burned within 40 sec. Under the same condition, a CFRP laminate made from mesophase pitch-based carbon fiber didn`t burn in 10 min. The matrix resin of both laminates was 250 F curable epoxy resin. This behavior mainly depends upon the thermal conductivity of the carbon fibers. The mesophase pitch-based carbon fibers have high thermal conductivity, so they can diffuse thermal energy and lower laminate surface temperature. On the other hand, PAN-based carbon fibers have low thermal conductivity, so they can`t diffuse thermal energy enough, and the laminates made from them burn easily. Mechanical properties of CFRP during local heating test in comparison with Aluminum plate are also discussed.

  15. The influence of hole size in static strength and fatigue for CFRP composite materials

    SciTech Connect

    Yip, M.C.; Perng, T.B.

    1993-12-31

    The influence of hole size in static strength and fatigue property will be investigated. Carbon/Epoxy laminate is selected as testing materials which are widely used in aircraft industry. The arrangement of fiber orientation is [0{sup 0}/+45{sup 0}/{minus}45{sup 0}/90{sup 0}]{sub 2s}. The basic mechanical properties of smooth and notched specimens were detected. The strength of notched specimens are applied to compare with Whitney-Nuismer stress criterion. For average stress criteria, the theoretical value is in good agreement with experimental data for the parameter a{sub 0} is chosen 1.5 mm. For point stress criteria, the best choice of parameter do is 2.4 mm, but the agreement of experimental data is poorer than the average stress one. The characteristic curve of tension-tension fatigue for smooth and notched laminate were investigated. The notched specimens has a 1 mm diameter circular hole at the center, the stress ratio of fatigue test is 0.1. It is obvious that the data distribution of smooth specimens is more scatter than notched specimens. On the other hand, the reduction of modulus during fatigue process was inspected. After fatigue damage, the influence of hole size on residual strength for a quasi-isotropic laminate was investigated. It is found that residual strength of damaged specimens are higher than undamaged one in some fatigue damage range. When the maximum applied load of fatigue test is chosen 90 percent of static strength, it is seen that the influence is obviously in residual strength. The increment of strength decreases with hole size increasing. When the maximum applied load of fatigue test is chosen 80 percent of static strength, the influence is less than the previous case. The Whitney-Nuismer Average Stress Criteria is extended to predict the residual strength after fatigue. A good prediction can be shown by using the extended criteria.

  16. Development of embedded sensor models in composite laminates for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Kim, Heung S.; Ghoshal, Anindya; Chattopadhyay, Aditi; Prosser, William H.

    2003-08-01

    A new improved nonlinear transient generalized layerwise theory for modeling embedded discrete and continuous sensor(s) outputs in laminated composite plates with acoustic emission from cracks and embedded delaminations is developed. The computational modeling involves development of a finite element scheme using an improved layerwise laminate theory for a composite laminate plate with embedded discrete and continuous sensors and embedded discrete delaminations. The simulated cases studied included cantilever plates with embedded sensors and embedded delamination under low frequency vibration and square plates with discrete embedded sensors and continuous embedded sensor architecture and embedded discrete delaminations under high frequency acoustic emission. The effect on sensor outputs due to scattering of the acoustic emission due to the presence of delamination is also investigated. It is expected that this analytical model would be a useful tool for numerical simulation of composite laminated structures with embedded delaminations and embedded sensor architecture, particularly since experimental investigation could often be prohibitive to simulate different conditions.

  17. A Higher-Order Bending Theory for Laminated Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Cook, Geoffrey M.

    1997-01-01

    A higher-order bending theory is derived for laminated composite and sandwich beams. This is accomplished by assuming a special form for the axial and transverse displacement expansions. An independent expansion is also assumed for the transverse normal stress. Appropriate shear correction factors based on energy considerations are used to adjust the shear stiffness. A set of transverse normal correction factors is introduced, leading to significant improvements in the transverse normal strain and stress for laminated composite and sandwich beams. A closed-form solution to the cylindrical elasticity solutions for a wide range of beam aspect ratios and commonly used material systems. Accurate shear stresses for a wide range of laminates, including the challenging unsymmetric composite and sandwich laminates, are obtained using an original corrected integration scheme. For application of the theory to a wider range of problems, guidelines for finite element approximations are presented.

  18. Compression response of thick layer composite laminates with through-the-thickness reinforcement

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Smith, Barry T.; Maiden, Janice

    1992-01-01

    Compression and compression-after-impact (CAI) tests were conducted on seven different AS4-3501-6 (0/90) 0.64-cm thick composite laminates. Four of the seven laminates had through-the-thickness (TTT) reinforcement fibers. Two TTT reinforcement methods, stitching and integral weaving, and two reinforcement fibers, Kevlar and carbon, were used. The remaining three laminates were made without TTT reinforcements and were tested to establish a baseline for comparison with the laminates having TTT reinforcement. Six of the seven laminates consisted of nine thick layers whereas the seventh material was composed of 46 thin plies. The use of thick-layer material has the potential for reducing structural part cost because of the reduced part count (layers of material). The compression strengths of the TTT reinforced laminates were approximately one half those of the materials without TTT reinforcements. However, the CAI strengths of the TTT reinforced materials were approximately twice those of materials without TTT reinforcements. The improvement in CAI strength is due to an increase in interlaminar strength produced by the TTT reinforcement. Stitched laminates had slightly higher compression and CAI strengths than the integrally woven laminates.

  19. A novel damage index for fatigue damage detection in a laminated composites using Lamb waves

    NASA Astrophysics Data System (ADS)

    Seki, Daigo

    A well-established structural health monitoring (SHM) technique, the Lamb wave based approach, is used for fatigue damage identification in a laminated composite. A novel damage index, 'normalized correlation moment' (NCM) which is composed of the nth moment of the cross correlation of the baseline and comparison waves, was used as damage index for monitoring damage in composites and compared with the signal difference coefficient (SDC) which is one of the most commonly used damage indices. Composite specimens were fabricated by the hand layup method by followed by compression. Piezo electric disks mounted on composite specimens were used as actuators and sensors. Three point bending fatigue tests were carried out on an intact composite laminate and a delaminated composite laminate with [06/904/06] orientation. Finite element analysis was performed to test the validity of SDC and NCM for fatigue damage.

  20. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  1. TECHNICAL NOTE: Low-cost delamination monitoring of CFRP beams using electrical resistance changes with neural networks

    NASA Astrophysics Data System (ADS)

    Todoroki, Akira; Ueda, Masahito

    2006-08-01

    Delamination is a significant defect of laminated composites. The present study employs an electrical resistance change method in an attempt to identify internal delaminations experimentally. The method adopts reinforcing carbon fibers as sensors. In our previous paper, an actual delamination crack in a carbon fiber reinforced plastic (CFRP) laminate was experimentally identified with artificial neural networks (ANNs) or response surfaces created from a large number of experiments. The experimental results were used for the learning of the ANN or for regressions of the response surfaces. For the actual application of the method, it is necessary to minimize the number of experiments in order to keep the cost of the experiments to a minimum. In the present study, therefore, finite-element method (FEM) analyses are employed to make sets of data for the learning of the ANN. First, the electrical conductivity of the CFRP laminate is identified by means of the least estimation error method. After that, the results of the FEM analyses are used for the learning of the ANN. The method is applied to the actual delamination monitoring of CFRP beams. As a result, the method successfully monitored the delamination location and size using only ten experiments.

  2. Fracture behavior of unidirectional boron/aluminum composite laminates

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Jones, W. F.

    1983-01-01

    An experiment was conducted to verify the results of mathematical models which predict the stresses and displacements of fibers and the amount of damage growth in a center-notched lamina as a function of the applied remote stress and the matrix and fiber material properties. A brittle lacquer coating was used to detect the yielding in the matrix while X-ray techniques were used to determine the number of broken fibers in the laminate. The notched strengths and the amounts of damage found in the specimens agree well with those predicted by the mathematical model. It is shown that the amount of damage and the crack opening displacement does not depend strongly on the number of plies in the laminate for a given notch width. By heat-treating certain laminates to increase the yield stress of the alumina matrix, the effect of different matrix properties on the fracture behavior was investigated. The stronger matrix is shown to weaken the notched laminate by decreasing the amount of matrix damage, thereby making the laminate more notch sensitive.

  3. Implementation of Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.

  4. Design Optimization of Laminated Composite Structures Using Explicit Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Mika, Krista

    Laminated composite materials are used in aerospace, civil and mechanical structural systems due to their superior material properties compared to the constituent materials as well as in comparison to traditional materials such as metals. Laminate structures are composed of multiple orthotropic material layers bonded together to form a single performing part. As such, the layup design of the material largely influences the structural performance. Optimization techniques such as the Genetic Algorithm (GA), Differential Evolution (DE), the Method of Feasible Directions (MFD), and others can be used to determine the optimal laminate composite material layup. In this thesis, sizing, shape and topology design optimization of laminated composites is carried out. Sizing optimization, such as the layer thickness, topology optimization, such as the layer orientation and material and the number of layers present, and shape optimization of the overall composite part contribute to the design optimization process of laminates. An optimization host program written in C++ has been developed to implement the optimization methodology of both population based and numerical gradient based methods. The performance of the composite structural system is evaluated through explicit finite element analysis of shell elements carried out using LS-DYNA. Results from numerical examples demonstrate that optimization design processes can significantly improve composite part performance through implementation of optimum material layup and part shape.

  5. Deflection of cross-ply composite laminates induced by piezoelectric actuators.

    PubMed

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2010-01-01

    The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications as sensors and actuators. In this investigation, two piezoelectric actuators are symmetrically surface bonded on a cross-ply composite laminate. Electric voltages with the same amplitude and opposite sign are applied to the two symmetric piezoelectric actuators, resulting in the bending effect on the laminated plate. The bending moment is derived by using the classical laminate theory and piezoelectricity. The analytical solution of the flexural displacement of the simply supported composite plate subjected to the bending moment is solved by using the plate theory. The analytical solution is compared with the finite element solution to show the validation of present approach. The effects of the size and location of the piezoelectric actuators on the response of the composite laminate are presented through a parametric study. A simple model incorporating the classical laminate theory and plate theory is presented to predict the deformed shape of the simply supported laminate plate. PMID:22315564

  6. Effect of angle-ply orientation on compression strength of composite laminates

    SciTech Connect

    DeTeresa, S J; Hoppel, C P

    1999-03-01

    An experimental program was initiated to investigate the effect of angle-ply orientations on the compressive strength (X{sub 1C}) of 0{degree} plies in fiber reinforced composite laminates. Graphite fiber-reinforced epoxy test coupons with the generic architecture [0{sub 2}/{+-}{theta}] (where {theta} varied between 0{degree} and 90{degree}) and for the quasi-isotropic architecture were evaluated. The effective compressive strength of the 0{degree} plies varied considerably. The results were related to the Poisson's ratios of the laminates with high Poisson's ratios leading to high transverse tensile strains in the test coupons and lower than expected strengths. Specimens with the [O{sub 2}/{+-}30] architecture had both the highest Poisson's ratio and the lowest calculated ply-level compression strength for the 0{degree} plies. This work has implications in the selection of composite failure criterion for compression performance, design of test coupons for acceptance testing, and the selection of laminate architectures for optimum combinations of compressive and shear behavior. Two commonly used composite failure criteria, the maximum stress and the Tsai-Wu, predict significantly different laminate strengths depending on the Poisson's ratio of the laminate. This implies that the biaxial stress state in the laminate needs to be carefully considered before backing out unidirectional properties.

  7. Sensitivity of the coefficients of thermal expansion of selected graphite reinforced composite laminates to lamina thermoelastic properties

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Funk, J. G.

    1992-01-01

    An analytical study of the sensitivity of the laminate coefficient of thermal expansion, CTE, to changes in lamina elastic properties has been made. High modulus graphite/epoxy (P75/934, P100/934, P120/934), graphite/aluminum (P100/Al), and graphite/glass (HMS/Gl) composite materials were considered in quasi-isotropic, low thermal stress, and 'near-zero' thermal expansion laminate configurations. The effects of a positive or negative 10 percent change in lamina properties on laminate CTE is strongly dependent upon both the composite material and the laminate configuration. A 10 percent change in all of the lamina properties had very little effect on the laminate CTE of the HMS/Gl composite laminates investigated. The sensitivity and direction of change in the laminate CTE of Gr/934 depended very strongly on the fiber properties. A 10 percent change in the lamina transverse CTE resulted in changes as large as 0.216 ppm/C in the laminate CTE of a quasi-isotropic Gr/934 laminate. No significant difference was observed in the sensitivity of the laminate CTE of the P100/934 and P120/934 composite materials due to changes in lamina properties. Large changes in laminate CTE can result from measured temperature and radiation effects on lamina properties.

  8. Reinforcement of composite laminate free edges with U-shaped caps

    NASA Technical Reports Server (NTRS)

    Howard, W. E.; Gossard, T., Jr.; Jones, R. M.

    1986-01-01

    Generalized plane strain finite element analysis is used to predict reduction of interlaminar normal stresses when a U-shaped cap is bonded to the edge of a laminate. Three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge cap designs. In an experimental program, symmetric 11-layer graphite-epoxy laminates with a one-layer cap of Kevlar-epoxy cloth are shown to be 130 to 140 percent stronger than uncapped laminates under static tensile and tension-tension fatigue loading. In addition, the coefficient of variation of the static tensile failure load decreases from 24 to 8 percent when edge caps are added. The predicted failure load calculated with the finite element results is 10 percent lower than the actual failure load. For both capped and uncapped laminates, actual failure loads are much lower than those predicted using classical lamination theory stresses and a two-dimensional failure criterion. Possible applications of the free edge reinforcement concept are described, and future research is suggested.

  9. Progressive Failure Analysis of Laminated Composite Plates with Elliptical or Circular Cutout Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, A.; Vijayakumar, R.; Krishnamohana Rao, G.

    2016-09-01

    The progressive failure analysis of symmetrically laminated composite plate [0°/+45°/-45°/90°]2s with circular or elliptical cutout under uniform uniaxial compression loading is carried out using finite element method. Hashin's failure criterion is used to predict the lamina failure. A parametric study has been carried out to study the effect of elliptical / circular cutout orientation, cutout size and plate thickness on the ultimate failure load of laminated composite plate under uni-axial compression loading. It is noticed that elliptical cutout orientation has influence on the strength of the notched composite plates. It is observed that the laminate size of the elliptical/circular cutout and plate thickness has substantial influence on the ultimate failure load of notched composite plates.

  10. Elasticity solutions for a class of composite laminate problems with stress singularities

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1983-01-01

    A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.

  11. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  12. Transmission of ultrasonic waves at oblique incidence to composite laminates with spring-type interlayer interfaces.

    PubMed

    Ishii, Yosuke; Biwa, Shiro

    2015-11-01

    The transmission characteristics of ultrasonic waves at oblique incidence to composite laminates are analyzed theoretically by the stiffness matrix method. The analysis takes into account the presence of thin resin-rich regions between adjacent plies as spring-type interfaces with normal and shear stiffnesses. The amplitude transmission coefficient of longitudinal wave through a unidirectional laminate immersed in water is shown to be significantly influenced by the frequency, the interlayer interfacial stiffnesses, and the incident angle. Using Floquet's theorem, the dispersion relation of the infinitely extended laminate structure is calculated and compared to the transmission coefficient of laminates of finite thickness. This reveals that the ranges of frequency and interfacial stiffnesses where the Floquet waves lie in the band-gaps agree well with those where the transmission coefficient of the finite layered structure is relatively small, indicating that the band-gaps appear even in the laminate with a finite number of plies. The amplitude transmission coefficient for an 11-ply carbon-epoxy unidirectional composite laminate is experimentally obtained for various frequencies and incident angles. The low-transmission zones observed in the experimental results, which are due to the critical angle of the quasi-longitudinal wave and the Bragg reflection, are shown to be favorably compared with the theory. PMID:26627756

  13. Prediction of Composite Laminate Strength Properties Using a Refined Zigzag Plate Element

    NASA Technical Reports Server (NTRS)

    Barut, Atila; Madenci, Erdogan; Tessler, Alexander

    2013-01-01

    This study presents an approach that uses the refined zigzag element, RZE(exp2,2) in conjunction with progressive failure criteria to predict the ultimate strength of composite laminates based on only ply-level strength properties. The methodology involves four major steps: (1) Determination of accurate stress and strain fields under complex loading conditions using RZE(exp2,2)-based finite element analysis, (2) Determination of failure locations and failure modes using the commonly accepted Hashin's failure criteria, (3) Recursive degradation of the material stiffness, and (4) Non-linear incremental finite element analysis to obtain stress redistribution until global failure. The validity of this approach is established by considering the published test data and predictions for (1) strength of laminates under various off-axis loading, (2) strength of laminates with a hole under compression, and (3) strength of laminates with a hole under tension.

  14. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    SciTech Connect

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method is confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.

  15. A mechanics framework for a progressive failure methodology for laminated composites

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Allen, David H.; Lo, David C.

    1989-01-01

    A laminate strength and life prediction methodology has been postulated for laminated composites which accounts for the progressive development of microstructural damage to structural failure. A damage dependent constitutive model predicts the stress redistribution in an average sense that accompanies damage development in laminates. Each mode of microstructural damage is represented by a second-order tensor valued internal state variable which is a strain like quantity. The mechanics framework together with the global-local strategy for predicting laminate strength and life is presented in the paper. The kinematic effects of damage are represented by effective engineering moduli in the global analysis and the results of the global analysis provide the boundary conditions for the local ply level stress analysis. Damage evolution laws are based on experimental results.

  16. Magnetoelectric coupling of laminated composites under combined thermal and magnetic loadings

    NASA Astrophysics Data System (ADS)

    Fang, F.; Xu, Y. T.; Yang, W.

    2012-01-01

    Laminated magnetoelectric (ME) composites are suitable for applications such as magnetic field sensors, transformers, and microwave resonators. Such applications frequently involve environments where the temperature alters. The present work investigates the temperature dependent ME coupling for three kinds of laminates, namely, Terfenol-D/PZT/Terfenol-D, Ni/PZT/Ni, and Metglas/PZT/Metglas. The Terfenol-D/PZT/Terfenol-D is shown to exhibit the best temperature stability. The peak value of the ME coefficient versus temperature curve is predicted for the laminates based on the equivalent circuit model, as well as the measurements of temperature dependent magnetostriction for Terfenol-D, Ni, and Metglas. The predictions agree well with the experimental data, implying that the piezomagnetic coefficient, d11,m, of the magnetic layer plays an important role in the temperature dependent ME coupling of the laminate.

  17. Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Griffith, W. I.; Morris, D. H.

    1980-01-01

    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.

  18. Embedding piezoresistive pressure sensors to obtain online pressure profiles inside fiber composite laminates.

    PubMed

    Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter

    2015-03-27

    The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.

  19. Lightning Strike Ablation Damage Characteristic Analysis for Carbon Fiber/Epoxy Composite Laminate with Fastener

    NASA Astrophysics Data System (ADS)

    Yin, J. J.; Li, S. L.; Yao, X. L.; Chang, F.; Li, L. K.; Zhang, X. H.

    2016-08-01

    In order to analyze the lightning strike ablation damage characteristic of composite laminate with fastener, based on the energy-balance relationship in lightning strike, mathematical analysis model of ablation damage of composite laminate with fastener was constructed. According to the model, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate with fastener suffered from lightning current was established based on ABAQUS, and lightning strike ablation damage characteristic was analyzed. Analytical results reveal that lightning current could conduct through the thickness direction of the laminate due to the existence of metallic fastener, and then distribute to all layers, finally conducted in-the-plane of each layer, conductive ability of different layup orientations depend on potential distribution and in-the-plane electrical conductivity along potential gradient declining direction; different potential boundaries correspond to different potential distribution in each layer, and result in conductive ability of different layup orientations was changed, then caused different lightning strike ablation damage distribution. According to the investigation in this paper, we can recognize the lightning strike ablation damage characteristic of composite laminate with fastener qualitatively.

  20. Thermoelastic bending analysis of laminated composite plates according to various shear deformation theories

    NASA Astrophysics Data System (ADS)

    Sayyad, Atteshamuddin Shamshuddin; Shinde, Bharati Machhindra; Ghugal, Yuwaraj Marotrao

    2014-11-01

    This study presents the thermoelastic analysis of laminated composite plates subjected to sinusoidal thermal load linearly varying across the thickness. Analytical solutions for thermal displacements and stresses are investigated by using a unified plate theory which includes different functions in terms of thickness coordinate to represent the effect of shear deformation. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Governing equations of equilibrium and associated boundary conditions of the theory are obtained using the principle of virtual work. The Navier solution for simply supported laminated composite plates has been developed. Numerical results are presented to demonstrate the thermal response of the laminated composite plates.

  1. Nonlinear Viscoelastic Response of Unidirectional Polymeric Laminated Composite Plates Under Bending Loads

    NASA Astrophysics Data System (ADS)

    Falahatgar, S. R.; Salehi, Manouchehr

    2011-12-01

    Nonlinear bending analysis of polymeric laminated composite plate is examined considering material nonlinearity for viscoelastic matrix material through a Micro-macro approach. The micromechanical Simplified Unit Cell Method (SUCM) in three-dimensional closed-form solution is used for the overall behavior of the unidirectional composite in any combination of loading conditions. The elastic fibers are transversely isotropic where Schapery single integral equation in multiaxial stress state describes the matrix material by recursive-iterative formulation. The finite difference Dynamic Relaxation (DR) method is utilized to study the bending behavior of Mindlin annular sector plate including geometric nonlinearity under uniform lateral pressure with clamped and hinged edge constraints. The unsymmetrical laminated plate deflection is predicted for different thicknesses and also various pressures in different time steps and they are compared with elastic finite element results. As a main objective, the deflection results of viscoelastic laminated sector plate are obtained for various fiber volume fractions in the composite system.

  2. Analytical method for analyzing c-channel stiffener made of laminate composite

    NASA Astrophysics Data System (ADS)

    Kumton, Tattchapong

    Composite materials play the important role in the aviation industry. Conventional materials such as aluminum were replaced by composite material on the main structures. The objective of this study focuses on development of analytical method to analyze the laminated composite structure with C-channel cross-section. A lamination theory base closed-form solution was developed to analysis ply stresses on the C-channel cross-section. The developed method contains the effects of coupling due to unsymmetrical of both laminate and structural configuration levels. The present method also included the expression of the sectional properties such as centroid, axial and bending stiffnesses of cross-section. The results obtain from analytical method showed an excellent agreement with finite element results.

  3. Micromechanics-Based Progressive Failure Analysis of Composite Laminates Using Different Constituent Failure Theories

    NASA Technical Reports Server (NTRS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett A.; Arnold, Steven M.

    2008-01-01

    Predicting failure in a composite can be done with ply level mechanisms and/or micro level mechanisms. This paper uses the Generalized Method of Cells and High-Fidelity Generalized Method of Cells micromechanics theories, coupled with classical lamination theory, as implemented within NASA's Micromechanics Analysis Code with Generalized Method of Cells. The code is able to implement different failure theories on the level of both the fiber and the matrix constituents within a laminate. A comparison is made among maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu failure theories. To verify the failure theories the Worldwide Failure Exercise (WWFE) experiments have been used. The WWFE is a comprehensive study that covers a wide range of polymer matrix composite laminates. The numerical results indicate good correlation with the experimental results for most of the composite layups, but also point to the need for more accurate resin damage progression models.

  4. Acoustic radiation from a laminated composite plate reinforced by doubly periodic parallel stiffeners

    NASA Astrophysics Data System (ADS)

    Yin, X. W.; Gu, X. J.; Cui, H. F.; Shen, R. Y.

    2007-10-01

    Acoustic radiation from a point-driven, infinite fluid-loaded, laminated composite plate which is reinforced by doubly periodic parallel stiffeners is investigated theoretically. The stiffeners interact with the plate only through normal forces. Fourier transform is used for solving the responses of the plate, and the stationary phase approximate is then employed to find an expression for the far field pressure. Acoustic radiation from a stiffened uniform plate composed of multiple isotropic layers is calculated with the present stiffened, laminated composite plate theory, and with the stiffened uniform isotropic plate theory that Mace has proposed. Comparison of the numerical results reveals the validity of our work. Characteristics of the acoustic radiation from a stiffened laminated composite plate are examined through examples and some physical interpretations of significant features are also offered.

  5. Dynamic analysis of tapered laminated composite magnetorheological elastomer (MRE) sandwich plates

    NASA Astrophysics Data System (ADS)

    Babu, V. Ramesh; Vasudevan, R.

    2016-03-01

    In the present study, the dynamic performance of the sandwich plate with magneto rheological elastomer (MRE) as the core layer and tapered laminated composite plates as the face layers is investigated. Various MRE tapered laminated composite sandwich plate models are formulated by dropping-off the plies longitudinally in top and bottom composite layers to yield tapered plates as the face layers and uniform MRE layer as the core layer. The governing equations of motion of tapered composite MRE sandwich plates are derived using classical laminated plate theory and solved numerically. Further, silicon based MRE is being fabricated and tested to obtain the shear and loss moduli using MR rheometer. The efficacy of the finite element formulation is validated by carrying out experiments on the various prototypes of tapered composite silicon based MRE sandwich plates and comparing the results in terms of natural frequencies obtained at various magnetic fields with those obtained numerically and with available literature. Also, the effects of magnetic field, taper angle of the top and bottom layers, aspect ratio, ply orientations and various end conditions on the various dynamic properties of tapered laminated composite MRE sandwich plate are investigated. Further, the transverse vibration responses of three different tapered composite MRE based sandwich plates under harmonic force excitation are analyzed at various magnetic fields.

  6. Behaviour study of thick laminated composites: Experimentation and finite element analyses

    NASA Astrophysics Data System (ADS)

    Duchaine, Francois

    In today's industries, it is common practice to utilize composite materials in very large and thick structures like bridge decks, high pressure vessels, wind turbine blades and aircraft parts to mention a few. Composite materials are highly favoured due to their physical characteristics: low weight, low cost, adaptable mechanical properties, high specific strength and stiffness. The use of composite materials for large structures has however raised several concerns in the prediction of the behaviour of thick laminated composite parts. A lack of knowledge and experience in the use of composite materials during the design, sizing and manufacturing of thick composite parts can lead to catastrophic events. In this thesis, it was supposed that the elastic material properties may vary with the laminate thickness. In order to measure the influence of the thickness on nine orthotropic elastic material properties (E1, E2, E3, nu12, nu 13, nu23, G12, G13 and G23), three categories of thickness have been defined using a comparison between the classical lamination theory (CLT), different beam theories and a numerical 3D solid finite element analysis (FEA) model. The defined categories are: thin laminates for thicknesses below 6 mm (0.236"), moderately thick laminates for thicknesses up to 16 mm (0.630") and thick laminates for thicknesses above 16 mm (0.630"). For three different thicknesses (thin -- 1.5 mm, moderately thick -- 10 mm and thick -- 20 mm), the influence of the thickness on the orthotropic elastic material properties of unidirectional (UD) fibreglass/epoxy laminates has been measured. A torsion test on rectangular bar is also proposed to measure the influence of the thickness on G13 and G23. The nine elastic material properties, in function of the thickness, have been used in CLT and 3D solid FEA model in order to predict the axial Young's modulus and Poisson's ratios of cross-ply and quasi-isotropic laminates. Experimental results have also been obtained for

  7. Interlaminar stresses and fracture behavior in thickness-tapered composite laminates

    NASA Astrophysics Data System (ADS)

    He, Kan

    Design and manufacture of a variable thickness composite laminate such as a helicopter yoke involves tapering the laminate by dropping individual plies at discrete internal locations, in order to tailor the stiffness of the laminate. The ply drop in the laminate creates large interlaminar stresses and initiates delamination. Therefore, there is a necessity to investigate the fundamental failure mechanisms and controlling parameters that account for the delamination mode of failure in tapered laminates. In this thesis, a numerical and experimental study on interlaminar stresses and delamination in tapered laminates is presented, including a critical and comprehensive review on earlier works on this type of structure. Numerical analyses performed involved development of partial hybrid stress finite elements needed to enhance computational efficiency, and development of a physical concept-based modified shear-lag model that is based on the essential assumptions that both plies and resin layers are treated as carriers of tensile stress and also to act as stress-transfer media. Experimental analysis was attempted to assess the accuracy of the numerical predictions. For this purpose, tapered NCT-301 Graphite/Epoxy specimens were manufactured using a ply in-fill technique for the cured consolidation and tested under quasi-static uniaxial tension. To perform strength and delamination analyses of the tapered laminate, the laminate was modeled as a generalized plane deformation problem, where all the variables involved in the model are independent of the coordinate system. Also quasi-three dimensional partial hybrid finite elements were used to quantify the analysis. In addition to the plies, the inter-ply resin at the critical ply interface was also modeled in order to have direct and realistic interlaminar responses. Stress-based criteria that have proved to be effective in determination of critical location and load of delamination onset were utilized in this study to

  8. Finite element analysis of vibration and damping of laminated composites

    NASA Astrophysics Data System (ADS)

    Rikards, Rolands

    Simple finite elements are used to form a special laminated beam and plate superelements excluding all degrees of freedom in the nodes of the middle layer, and the finite element analysis of this structure is performed. To estimate damping of structures, modal loss factors are calculated, using two methods: the 'exact' method of complex eigenvalues and the approximate energy method. It was found that both methods give satisfactory results. However, the energy method needs less computer time than the exact method.

  9. Fatigue delamination onset prediction in tapered composite laminates

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen Bostaph; Salpekar, Satish A.; Obrien, T. Kevin

    1989-01-01

    Tapered (0 deg) laminates of S2/CE9000 and S2/SP250 glass/epoxies, and IM6/1827I graphite/epoxy were tested in cyclic tension. The specimens usually showed some initial stable delaminations in the tapered region, but these did not affect the stiffness of the specimens, and loading was continued until the specimens either delaminated unstably, or reached 10(exp 6) to 2 x 10(exp 7) million cycles with no unstable delamination. The final unstable delamination originated at the junction of the thin and tapered regions. A finite-element model was developed for the tapered laminate with and without the initial stable delaminations observed in the tests. The analysis showed that for both cases the most likely place for an opening (Mode 1) delamination to originate is at the junction of the taper and thin regions. For each material type, the models were used to calculate the strain energy release rate, G, associated with delaminations originating at that junction and growing either into the thin region or tapered region. For the materials tested, cyclic G(sub Imax) values from DCB tests were used with the maximum strain energy release rates calculated from the finite-element analysis to predict the onset of unstable delamination at the junction as a function of fatigue cycles. The predictions were compared to experimental values of maximum cyclic load as a function of cycles to unstable delamination from fatigue tests in tapered laminates. For the IM6/1827I and S2/SP250 laminates, the predictions agreed very well with the test data. Predicted values for the S2/CE9000 were conservative compared to the test data.

  10. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    NASA Technical Reports Server (NTRS)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.

    2005-01-01

    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  11. Microcracking in Composite Laminates: Simulation of Crack-Induced Ultrasound Attenuation

    NASA Technical Reports Server (NTRS)

    Leckey, C. A. C.; Rogge, M. D.; Parker, F. R.

    2012-01-01

    Microcracking in composite laminates is a known precursor to the growth of inter-ply delaminations and larger scale damage. Microcracking can lead to the attenuation of ultrasonic waves due to the crack-induced scattering. 3D elastodynamic finite integration technique (EFIT) has been implemented to explore the scattering of ultrasonic waves due to microcracks in anisotropic composite laminates. X-ray microfocus computed tomography data was directly input into the EFIT simulation for these purposes. The validated anisotropic 3D EFIT code is shown to be a useful tool for exploring the complex multiple-scattering which arises from extensive microcracking.

  12. A {3,2}-Order Bending Theory for Laminated Composite and Sandwich Beams

    NASA Technical Reports Server (NTRS)

    Cook, Geoffrey M.; Tessler, Alexander

    1998-01-01

    A higher-order bending theory is derived for laminated composite and sandwich beams thus extending the recent {1,2}-order theory to include third-order axial effect without introducing additional kinematic variables. The present theory is of order {3,2} and includes both transverse shear and transverse normal deformations. A closed-form solution to the cylindrical bending problem is derived and compared with the corresponding exact elasticity solution. The numerical comparisons are focused on the most challenging material systems and beam aspect ratios which include moderate-to-thick unsymmetric composite and sandwich laminates. Advantages and limitations of the theory are discussed.

  13. Detection of acoustic emission from composite laminates using PVF2 transducers

    NASA Technical Reports Server (NTRS)

    Stiffler, R.; Henneke, E. G., II; Herakovich, C. T.

    1983-01-01

    Polyvinylidene fluoride (PVF2), a semicrystalline polymer exhibiting piezoelectricity, is presently used as a sensing transducer in acoustic emission (AE) monitoring of several different composite laminate materials in order to obtain both quasi-static and fatigue loading results. AE signals obtained from PVF2 transducers are compared with those obtained by standard AE sensors. It is noted that PVF2 transducers may, through the application of spectral signal analysis, be able to distinguish between two distinct failure modes which have been observed in two composite laminates of the same material, but employing different lamina stacking sequences.

  14. Development and utilization of composite honeycomb and solid laminate reference standards for aircraft inspections.

    SciTech Connect

    Roach, Dennis Patrick; Rackow, Kirk A.

    2004-06-01

    The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, developed a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representing the bounding conditions of honeycomb construction on aircraft, was inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a set of minimum honeycomb NDI reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the full range of honeycomb construction scenarios found on commercial aircraft. In the solid composite laminate arena, G11 Phenolic was identified as a good generic solid laminate reference standard material. Testing determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative to carbon laminates. Furthermore, comparisons of resonance testing response curves from the G11 Phenolic NDI reference standard was very similar to the resonance response curves measured on the existing carbon and fiberglass laminates. NDI data shows that this material should work for both pulse-echo (velocity-based) and resonance (acoustic impedance-based) inspections.

  15. Short-wavelength buckling and shear failures for compression-loaded composite laminates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.

    1985-01-01

    The short-wavelength buckling (or the microbuckling) and the interlaminar and inplane shear failures of multi-directional composite laminates loaded in uniaxial compression are investigated. A laminate model is presented that idealizes each lamina. The fibers in the lamina are modeled as a plate, and the matrix in the lamina is modeled as an elastic foundation. The out-of-plane w displacement for each plate is expressed as a trigonometric series in the half-wavelength of the mode shape for laminate short-wavelength buckling. Nonlinear strain-displacement relations are used. The model is applied to symmetric laminates having linear material behavior. The laminates are loaded in uniform end shortening and are simply supported. A linear analysis is used to determine the laminate stress, strain, and mode shape when short-wavelength buckling occurs. The equations for the laminate compressive stress at short-wavelength buckling are dominated by matrix contributions.

  16. Predicting the Failure Behavior of Textile Composite Laminates by Using a Multi-Scale Correlating Approach

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Chen, Xiuhua; Wang, Hai

    2015-12-01

    This paper investigates the elastic and failure behavior of textile composite laminates by using an analytical multi-scale correlating approach. The analyses are performed under the four scale levels, i.e. the laminate scale, representative unit cell (RUC) scale, tow architecture scale and fiber/matrix scale levels. The correlation between different scales is derived based on the continuum mechanics and homogenization method from which the stress and strain fields in multiple scales can be obtained concurrently. Effective modulus and ultimate failure strengths of different textile composite (plain weave, twill weave and satin weave) laminates are predicted solely from the corresponding constituent properties, braid geometrical parameters and lay-up. The damage and failure mechanisms at the constituent level are also determined by the micromechanical failure criteria. All the predicted results compare favorably with available experimental data. Parametric studies are also performed to examine the effect of various mechanical and geometrical parameters on the resulting mechanical properties.

  17. Buckling and Delamination Growth Analysis of Composite Laminates Containing Embedded Delaminations

    NASA Astrophysics Data System (ADS)

    Hosseini-Toudeshky, H.; Hosseini, S.; Mohammadi, B.

    2010-04-01

    The objective of this work is to study the post buckling behavior of composite laminates, containing embedded delamination, under uniaxial compression loading. For this purpose, delamination initiation and propagation is modeled using the softening behavior of interface elements. The full layer-wise plate theory is also employed for approximating the displacement field of laminates and the interface elements are considered as a numerical layer between any two adjacent layers which delamination is expected to propagate. A finite element program was developed and the geometric non-linearity in the von karman sense is incorporated to the strain/displacement relations, to obtain the buckling behavior. It will be shown that, the buckling load, delamination growth process and buckling mode of the composite plates depends on the size of delamination and stacking sequence of the laminates.

  18. Simulation Based Investigation of Hidden Delamination Damage Detection in CFRP Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Parker, F. Raymond

    2013-01-01

    Guided wave (GW) based damage detection methods have shown promise in structural health monitoring (SHM) and hybrid SHM-nondestructive evaluation (NDE) techniques. Much previous GW work in the aerospace field has been primarily focused on metallic materials, with a growing focus on composite materials. The work presented in this paper demonstrates how realistic three-dimensional (3D) GW simulations can aid in the development of GW based damage characterization techniques for aerospace composites. 3D elastodynamic finite integration technique is implemented to model GW interaction with realistic delamination damage. A local wavenumber technique is applied to simulation data in order to investigate the detectability of hidden delamination damage to enable accurate characterization of damage extent.

  19. Three-dimensional hybrid-stress finite element analysis of composite laminates with cracks and cutouts

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1985-01-01

    A three-dimensional hybrid-stress finite element analysis of composite laminates containing cutouts and cracks is presented. Fully three-dimensional, hexahedral isoparametric elements of the hybrid-stress model are formulated on the basis of the Hellinger-Reissner variational principle. Traction-free edges, cutouts, and crack surfaces are modeled by imposition of exact traction boundary conditions along element surfaces. Special boundary and surface elements are constructed by introducing proper constraints on assumed stress functions. The Lagrangian multiplier technique is used to enforce ply-interface continuity conditions in hybrid bimaterial composite elements for modeling the interface region in a composite laminate. Two examples are given to illustrate the capability of the present method of approach: (1) the well-known delamination problem in an angle-ply laminate, and (2) the important problem of a composite laminate containing a circular hole. Results are presented in detail for each case. Implications of interlaminar and intralaminar crack initiation, growth and fracture in composites containing cracks and cutouts are discussed.

  20. The behavior of elastic anisotropic laminated composite flat structures subjected to deterministic and random loadings

    NASA Technical Reports Server (NTRS)

    Librescu, Liviu

    1990-01-01

    Within this research project, the following topics were studied: (1) foundation of the refined theory of flat cross-ply laminated composite flat and curved panels as well as their static and dynamic response analysis; (2) foundation of a geometrically-nonlinear shear-deformable theory of composite laminated flat panels including the effect of initial geometric imperfections and its application in the postbuckling analysis; (3) the study of the dynamic response of shear deformable elastic laminated composite panels to deterministic time-dependent external excitations as the sonic boom and explosive blast type-loadings; (4) the study of the dynamic response of shear deformable elastic laminated composite panels to random excitation as e.g. the one produced by a jet noise or by any time-dependent external excitation whose characteristics are expressed in a statistical sense; and (5) the dynamic stability of fiber-reinforced composite flat panels whose materials (due to e.g. an ambient high temperature field) exhibit a time-dependent physical behavior.

  1. Failure mechanisms of laminated carbon-carbon composites; 2: Under shear loads

    SciTech Connect

    Anand, K.; Gupta, V.; Dartford, D. . Thayer School of Engineering)

    1994-03-01

    Failure mechanisms under both interlaminar and in-plane shear loading are determined for two-dimensional carbon-carbon composites by using a direct shear set-up. This set-up is applicable for both types of shear loading as manufactured laminate thickness can be tested without the need to make long samples by gluing different pieces together. A detailed finite element analysis, which considers the microstructure of the composite shows that for woven laminates, the initial crimp angle morphology does not allow the composite to deform in a state of simple shear. In fact, normal tensile and compressive stresses of almost twice the magnitude of the peak shear stress are produced in the vicinity of the crimped bundles. Consistent with these predictions, the authors observed the shear fault following the crimp boundaries in 0[degree]/90[degree] and quasi-isotropic laminates. Therefore, experimental techniques which can secure a state of pure shear stress in aligned, unkinked, uniaxial fiber composites cannot do so in woven laminated composites.

  2. Micromechanics, Fracture Mechanics and Gas Permeability of Composite Laminates for Cryogenic Storage Systems

    NASA Technical Reports Server (NTRS)

    Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.

    2005-01-01

    A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to

  3. Effect of Electrospun Nanofibers on the Short Beam Strength of Laminated Fiberglass Composite

    NASA Astrophysics Data System (ADS)

    Shinde, Dattaji K.

    High specific modulus and strength are the most desirable properties for the material used in structural applications. Composite materials exhibit these properties and over the last decade, their usage has increased significantly, particularly in automotive, defense, and aerospace applications. The major cause of failures in composite laminates is due to delaminations. Delamination in composite laminates can occur due to fatigue, low velocity impact and other loadings modes. Conventional methods like "through-the-thickness stitching" or "Z-Pinning" have limitations for improving flexural and interlaminar properties in woven composites due to the fact that while improving interlaminar properties, the presence of stitches or Z pins affects in-plane properties. This study investigates the flexural behavior of fiberglass composites interleaved with non-woven Tetra Ethyl Orthosilicate (TEOS) electrsopsun nanofibers (ENFs). TEOS ENFs were manufactured using an electrospinning technique and then sintered. Nanoengineered beams were fabricated by interleaving TEOS ENFs between the laminated fiberglass composites to improve the flexural properties. TEOS ENFs, resin film, and failed fiberglass laminated composites with and without nanofibers were characterized using SEM Imaging and ASTM standard testing methods. A hybrid composite was made by interleaving a non-woven sheet of TEOS ENFs between the fiberglass laminates with additional epoxy resin film and fabricated using the out of autoclave vacuum bagging method. Four commonly used stacking sequences of fiberglass laminates with and without nanofibers were used to study the progressive failure and deformation mechanics under flexural loadings. The experimental study has shown significant improvements in short beam strength and strain energy absorption in the nanoengineered laminated fiberglass composites before complete failure. The modes were investigated by performing detailed fractographic examination of failed specimens

  4. A higher-order theory for geometrically nonlinear analysis of composite laminates

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.; Liu, C. F.

    1987-01-01

    A third-order shear deformation theory of laminated composite plates and shells is developed, the Navier solutions are derived, and its finite element models are developed. The theory allows parabolic description of the transverse shear stresses, and therefore the shear correction factors of the usual shear deformation theory are not required in the present theory. The theory also accounts for the von Karman nonlinear strains. Closed-form solutions of the theory for rectangular cross-ply and angle-ply plates and cross-ply shells are developed. The finite element model is based on independent approximations of the displacements and bending moments (i.e., mixed finite element model), and therefore, only C sup o -approximation is required. The finite element model is used to analyze cross-ply and angle-ply laminated plates and shells for bending and natural vibration. Many of the numerical results presented here should serve as references for future investigations. Three major conclusions resulted from the research: First, for thick laminates, shear deformation theories predict deflections, stresses and vibration frequencies significantly different from those predicted by classical theories. Second, even for thin laminates, shear deformation effects are significant in dynamic and geometrically nonlinear analyses. Third, the present third-order theory is more accurate compared to the classical and firt-order theories in predicting static and dynamic response of laminated plates and shells made of high-modulus composite materials.

  5. Effect of High Temperature on the Tensile Behavior of CFRP and Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam A.

    1999-01-01

    Concrete and other composite manufacturing processes are continuing to evolve and become more and more suited for use in non-Earth settings such as the Moon and Mars. The fact that structures built in lunar environments would experience a range of effects from temperature extremes to bombardment by micrometeorites and that all the materials for concrete production exist on the Moon means that concrete appears to be the most feasible building material. it can provide adequate shelter from the harshness of the lunar environment and at the same time be a cost effective building material. With a return to the Moon planned by NASA to occur after the turn of the century, it will be necessary to include concrete manufacturing as one of the experiments to be conducted in one of the coming missions. Concrete's many possible uses and possibilities for manufacturing make it ideal for lunar construction. The objectives of this research are summarized as follows: i) study the possibility of concrete production on the Moon or other planets, ii) study the effect of high temperature on the tensile behavior of concrete, and iii) study the effect of high temperature on the tensile behavior of carbon fiber reinforced with inorganic polymer composites. Literature review indicates that production of concrete on the Moon or other planets is feasible using the indigenous materials. Results of this study has shown that both the tensile strength and static elastic modulus of concrete decreased with a rise in temperature from 200 to 500 C. The addition of silica fume to concrete showed higher resistance to high temperatures. Carbon fiber reinforced inorganic polymer (CFRIP) composites seemed to perform well up to 300 C. However, a significant reduction in strength was observed of about 40% at 400 C and up to 80% when the specimens were exposed to 700 C.

  6. Low-speed impact damage in filament-wound CFRP composite pressure vessels

    SciTech Connect

    Matemilola, S.A.; Stronge, W.J.

    1997-11-01

    Quasi-static and impact tests were conducted on filament-wound carbon fiber composite pressure vessels to study factors that affect burst pressure. Observed damage included fiber microbuckling, matrix cracking, and delamination. Fiber microbuckling of the outer surface layer near the impact point was the main factor that reduced the burst pressure of the vessels. This type of damage was visually detectable on the surface. For similar levels of missile kinetic energy, the impact damage to filament-wound composite pressure vessels depends on size and shape of the colliding body in the contact area. Burst pressure for a damaged vessel decreases with the ratio of axial length of damaged fibers 1, to vessel wall thickness h, up to a ratio l/h = 3; beyond this length of damaged section the burst pressure was independent of length of damage. Strain measurements near the region of loading showed that damage related to fiber microbuckling is sensitive to strain rate. At locations where impact damage was predominantly due to fiber microbuckling, the failure strain was about six times the strain for microbuckling during quasi-static loading.

  7. Composite laminate free-edge reinforcement with U-shaped caps. I - Stress analysis. II - Theoretical-experimental correlation

    NASA Technical Reports Server (NTRS)

    Howard, W. E.; Gossard, Terry, Jr.; Jones, Robert M.

    1989-01-01

    The present generalized plane-strain FEM analysis for the prediction of interlaminar normal stress reduction when a U-shaped cap is bonded to the edge of a composite laminate gives attention to the highly variable transverse stresses near the free edge, cap length and thickness, and a gap under the cap due to the manufacturing process. The load-transfer mechanism between cap and laminate is found to be strain-compatibility, rather than shear lag. In the second part of this work, the three-dimensional composite material failure criteria are used in a progressive laminate failure analysis to predict failure loads of laminates with different edge-cap designs; symmetric 11-layer graphite-epoxy laminates with a one-layer cap of kevlar-epoxy are shown to carry 130-140 percent greater loading than uncapped laminates, under static tensile and tension-tension fatigue loading.

  8. Lamination residual stresses in hybrid composites, part 1

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to study lamination residual stresses for various material and loading parameters. The effects of hybridization on residual stresses and residual properties after thermal cycling under load were determined in angle-ply graphite/Kevlar/epoxy and graphite/S-glass/epoxy laminates. Residual strains in the graphite plies are not appreciably affected by the type and number of hybridizing plies. Computed residual stresses at room temperature in the S-glass plies reach values up to seventy-five percent of the transverse strength of the material. Computed residual stresses in the graphite plies exceed the static strength by approximately ten percent. In the case of Kevlar plies, computed residual stresses far exceed the static strength indicating possible early failure of these plies. Static testing of the hybrids above indicates that failure is governed by the ultimate strain of the graphite plies. In thermally cycled hybrids, in general, residual moduli were somewhat lower and residual strengths were higher than initial values.

  9. Structural properties of laminated Douglas fir/epoxy composite material

    NASA Technical Reports Server (NTRS)

    Spera, David A.; Esgar, Jack B.; Gougeon, Meade; Zuteck, Michael D.

    1990-01-01

    This publication contains a compilation of static and fatigue strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 by 24 in. in cross section and approximately 30 ft. long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications.

  10. Structural properties of laminated Douglas fir/epoxy composite material

    SciTech Connect

    Spera, D.A. . Lewis Research Center); Esgar, J.B. ); Gougeon, M.; Zuteck, M.D. )

    1990-05-01

    This publication contains a compilation of static and fatigue and strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 in. by 24 in. in cross section and approximately 30 ft long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications. 9 refs.

  11. The evolution of phase transformation in Ni/Ni3Al laminated composite under high temperature treatments

    NASA Astrophysics Data System (ADS)

    Shmorgun, V.; Gurevich, L.; Bogdanov, A.; Trunov, M.

    2016-02-01

    In this study the impact of isothermal annealing on the phase transformation rate in laminated Ni/Ni2Al3 composite was investigated. The method of nickel-aluminide coatings of the required chemical composition fabrication was proposed.

  12. Analysis of laminated, composite, circular cylindrical shells with general boundary conditions

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1974-01-01

    This report develops: (1) a refined approximate theory for the static and dynamic analyses of finite, laminated, composite, circular cylindrical shells with general boundary conditions; (2) an exact three-dimensional analysis of simply supported, laminated, composite, circular cylindrical shells, and (3) a thin-shell theory for laminated, composite, circular cylindrical shells. In the refined approximate theory the displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and transverse normal stress are included. A variational approach is followed to obtain the governing differential equations and boundary conditions. A general solution of the governing differential equations is also presented. The results obtained by using the refined approximate theory and the thin-shell theory are compared with the exact results for the case of free vibrations of simply supported, laminated, composite, circular cylindrical shells. The refined approximate theory is very accurate, even for thick shells with short nodal distances, whereas thin-shell theory is reasonably accurate only for thin shells at moderate nodal distances and wave number less than 2.

  13. Boundary-layer effects in composite laminates: Free-edge stress singularities, part 6

    NASA Technical Reports Server (NTRS)

    Wanag, S. S.; Choi, I.

    1981-01-01

    A rigorous mathematical model was obtained for the boundary-layer free-edge stress singularity in angleplied and crossplied fiber composite laminates. The solution was obtained using a method consisting of complex-variable stress function potentials and eigenfunction expansions. The required order of the boundary-layer stress singularity is determined by solving the transcendental characteristic equation obtained from the homogeneous solution of the partial differential equations. Numerical results obtained show that the boundary-layer stress singularity depends only upon material elastic constants and fiber orientation of the adjacent plies. For angleplied and crossplied laminates the order of the singularity is weak in general.

  14. Simulating Initial and Progressive Failure of Open-Hole Composite Laminates under Tension

    NASA Astrophysics Data System (ADS)

    Guo, Zhangxin; Zhu, Hao; Li, Yongcun; Han, Xiaoping; Wang, Zhihua

    2016-06-01

    A finite element (FE) model is developed for the progressive failure analysis of fiber reinforced polymer laminates. The failure criterion for fiber and matrix failure is implemented in the FE code Abaqus using user-defined material subroutine UMAT. The gradual degradation of the material properties is controlled by the individual fracture energies of fiber and matrix. The failure and damage in composite laminates containing a central hole subjected to uniaxial tension are simulated. The numerical results show that the damage model can be used to accurately predicte the progressive failure behaviour both qualitatively and quantitatively.

  15. Analysis of laminated composite plates using a higher-order shear deformation theory

    NASA Technical Reports Server (NTRS)

    Phan, N. D.; Reddy, J. N.

    1985-01-01

    A higher-order deformation theory is used to analyse laminated anisotropic composite plates for deflections, stresses, natural frequencies and buckling loads. The theory accounts for parabolic distribution of the transverse shear stresses, and requires no shear correction coefficients. A displacement finite element model of the theory is developed, and applications of the element to bending, vibration and stability of laminated plates are discussed. The present solutions are compared with those obtained using the classical plate theory and the three-dimensional elasticity theory.

  16. Conditions for Symmetries in the Buckle Patterns of Laminated-Composite Plates

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2012-01-01

    Conditions for the existence of certain symmetries to exist in the buckle patterns of symmetrically laminated composite plates are presented. The plates considered have a general planform with cutouts, variable thickness and stiffnesses, and general support and loading conditions. The symmetry analysis is based on enforcing invariance of the corresponding eigenvalue problem for a group of coordinate transformations associated with buckle patterns commonly exhibited by symmetrically laminated plates. The buckle-pattern symmetries examined include a central point of inversion symmetry, one plane of reflective symmetry, and two planes of reflective symmetry.

  17. ANISAP: A three-dimensional finite element program for laminated composites subjected to mechanical loading

    NASA Technical Reports Server (NTRS)

    Burns, S. W.; Mathison, S.; Herakovich, C. T.

    1986-01-01

    ANISAP is a 3-D finite element FORTRAN 77 computer code for linear elastic, small strain, analysis of laminated composites with arbitrary geometry including free edges and holes. Individual layers may be isotropic or transversely isotropic in material principal coordinates; individual layers may be rotated off-axis about a global z-axis. The laminate may be a hybrid. Three different isoparametric elements, variable order of gaussian integration, calculation of stresses at element boundaries, and loading by either nodal displacement of forces are included in the program capability. Post processing capability includes failure analysis using the tensor polynominal failure criterion.

  18. A continuum damage model of fatigue-induced damage in laminated composites

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Allen, David H.

    1988-01-01

    A model is presented which predicts the stress-strain behavior of continuous fiber reinforced laminated composites in the presence of microstructural damage. The model is based on the concept of continuum damage mechanics and uses internal state variables to characterize the various damage modes. The associated internal state variable growth laws are mathematical models of the loading history induced development of microstructural damage. The model is demonstrated by using it to predict the response of damaged AS-4/3502 graphite/epoxy laminate panels.

  19. Impact damage and burst of filament-wound CFRP composite pressure vessel

    SciTech Connect

    Matemilola, S.A.; Stronge, W.J.

    1996-12-31

    Quasi-static and impact tests were conducted on filament-wound carbon fiber composite pressure vessels to study factors that affect burst pressure. Observed damage include fiber microbuckling, matrix cracking, and delamination. For vessels that were not pressurized during test, both the matrix cracking and fiber breakage were restricted to the outer layer, whereas in the case of an internally pressurized vessel struck by a wedge nose shaped impactor these cracks extended into the second layer. Fiber microbuckling of the outer surface layer near the impact point was the main factor that degraded the burst pressure of the vessels. This type of damage was visually detectable on the surface. For an unpressurized vessel it appeared as a pair of cracks radiating from the periphery of contact region. On the other hand, for a pressurized vessel circumferential microbuckling developed within the contact region. The burst pressure for a damaged vessel decreased as the ratio of axial length of the buckled fibers l, to vessel thickness h, increased, up to a ratio {ell}/h {approx} 3, beyond which the burst pressure became constant. Strain measurements near the region of loading showed that fiber microbuckling occurred, the failure strain value at a strain rate of 104 s{sup {minus}1} was about six times the microbuckling strain for quasi-static loading.

  20. Wave propagation in fiber composite laminates, part 2

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to determine the wave propagation characteristics, transient strains and residual properties in unidirectional and angle-ply boron/epoxy and graphite/epoxy laminates impacted with silicone rubber projectiles at velocities up to 250 MS-1. The predominant wave is flexural, propagating at different velocities in different directions. In general, measured wave velocities were higher than theoretically predicted values. The amplitude of the in-plane wave is less than ten percent of that of the flexural wave. Peak strains and strain rates in the transverse to the (outer) fiber direction are much higher than those in the direction of the fibers. The dynamics of impact were also studied with high speed photography.

  1. Free edge strain concentrations in real composite laminates: Experimental-theoretical correlation

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Post, D.; Buczek, M. B.; Czarnek, R.

    1984-01-01

    The magnitude of the maximum shear strain at the free edge of axially loaded theta (2)/-theta(2)(s) and (+ or - theta(2) (s) composite laminates was investigated experimentally and numerically to ascertain the actual value of strain concentration in resin matrix laminates and to determine the accuracy of finite element results. Experimental results using moire interferometry show large, but finite, shear strain concentrations at the free edge of graphite-epoxy and graphite-polyimide laminates. Comparison of the experimental results with those obtained using several different finite element representations showed that a four node isoparametric finite element provided the best and most trouble free numerical results. The results indicate that the ratio of maxium shear strain at the free edge to applied axial strain varies with fiber orientation and does not exceed nine for the most critical angle which is 15 deg.

  2. A new look at numerical analyses of free-edge stresses in composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Whitcomb, J. D.; Goree, J. G.

    1980-01-01

    The edge stress problem for a + or - 45 deg graphite/epoxy laminate was examined. The reliability of the displacement formulated finite element method in analyzing the edge stress problem was investigated. Analyses of two well known elasticity problems, one involving a stress discontinuity and one a singularity, showed that the finite element analysis yields accurate stress distributions everywhere except in two elements closest to the stress discontinuity of singularity. Stress distributions for a + or - 45 deg laminate showed the same behavior near the singularity found in the well known problems with exact solutions. The displacement formulated finite element method appears to be a highly accurate technique for calculating interlaminar stress in composite laminates. The disagreement among the numerical methods was attributed to the unsymmetric stress tensor at the singularity.

  3. The Free Flexural Vibration of Symmetric Angle-Ply Triangular Composite Laminates

    NASA Astrophysics Data System (ADS)

    Liew, K. M.; Chiam, T. C.

    1994-02-01

    This paper reports an extension of previous work [1] to the study of the free flexural vibration analysis of symmetrically laminated triangular plates. The analysis is performed by using a simple and straightforward pb-2 Rayleigh-Ritz method. A governing frequency equation for the laminated triangular plates with different combinations of free, simply supported or clamped edge conditions is derived. Although only the vibration frequencies for cantilevered right-angled and isosceles triangular plates are reported, the method is readily applied to general triangular laminated plates. In the present analysis, the effects of material properties, the number of layers and different fibre stacking sequences of various composites on the vibration frequencies are investigated. Convergence tests have been carried out for selected plate examples to demonstrate the accuracy of the solutions.

  4. An approximate solution for interlaminar stresses in laminated composites: Applied mechanics program

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Herakovich, Carl T.

    1992-01-01

    An approximate solution for interlaminar stresses in finite width, laminated composites subjected to uniform extensional, and bending loads is presented. The solution is based upon the principle of minimum complementary energy and an assumed, statically admissible stress state, derived by considering local material mismatch effects and global equilibrium requirements. The stresses in each layer are approximated by polynomial functions of the thickness coordinate, multiplied by combinations of exponential functions of the in-plane coordinate, expressed in terms of fourteen unknown decay parameters. Imposing the stationary condition of the laminate complementary energy with respect to the unknown variables yields a system of fourteen non-linear algebraic equations for the parameters. Newton's method is implemented to solve this system. Once the parameters are known, the stresses can be easily determined at any point in the laminate. Results are presented for through-thickness and interlaminar stress distributions for angle-ply, cross-ply (symmetric and unsymmetric laminates), and quasi-isotropic laminates subjected to uniform extension and bending. It is shown that the solution compares well with existing finite element solutions and represents an improved approximate solution for interlaminar stresses, primarily at interfaces where global equilibrium is satisfied by the in-plane stresses, but large local mismatch in properties requires the presence of interlaminar stresses.

  5. A simple higher order shear deformation theory for mechanical behavior of laminated composite plates

    NASA Astrophysics Data System (ADS)

    Adim, Belkacem; Daouadji, Tahar Hassaine; Rabahi, Aberezak

    2016-06-01

    In the present study, the static, buckling, and free vibration of laminated composite plates is examined using a refined shear deformation theory and developed for a bending analysis of orthotropic laminated composite plates. These models take into account the parabolic distribution of transverse shear stresses and satisfy the condition of zero shear stresses on the top and bottom surfaces of the plates. The most interesting feature of this theory is that it allows for parabolic distributions of transverse shear stresses across the plate thickness and satisfies the conditions of zero shear stresses at the top and bottom surfaces of the plate without using shear correction factors. The number of independent unknowns in the present theory is four, as against five in other shear deformation theories. In the analysis, the equation of motion for simply supported thick laminated rectangular plates is obtained through the use of Hamilton's principle. The accuracy of the analysis presented is demonstrated by comparing the results with solutions derived from other higher order models and with data found in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static, the buckling, and free vibration behaviors of laminated composite plates.

  6. Three-dimensional finite element progressive failure analysis of composite laminates under axial extension

    NASA Technical Reports Server (NTRS)

    Reddy, Yeruva S.; Reddy, Junuthula N.

    1993-01-01

    A three-dimensional (3D) progressive failure algorithm is developed, where the layerwise laminate theory (LWLT) of Reddy is used for kinematic description. The finite element model based on the layerwise theory predicts both inplane and interlaminar stresses with the same accuracy as that of a conventional 3D finite element model and provides a convenient format for modeling the 3D stress fields in composite laminates. A parametric study is conducted to investigate the effect of out-of-plane material properties, 3D stiffness reduction methods, and boundary conditions on the failure loads and strains of a composite laminate under axial extension. The results indicate that different parameters have a different degree of influence on the failure loads and strains. The predictive ability of various phenomenological failure criteria is evaluated in the light of experimental results available in the literature, and the predictions of the LWLT are compared with those of the first-order shear deformation theory. It is concluded that a 3D stress analysis is necessary to predict accurately the failure behavior of composite laminates.

  7. An experimental study of rate effects on Mode I delamination of z-pinned composite laminates

    NASA Astrophysics Data System (ADS)

    Schlueter, Andrew M.

    Z-pinned laminates are designed to suppress interlaminar fracture. Much interlaminar fracture damage is due to impact, so an experiment was devised to examine loading rate effects on z-pinned composite laminates. Loading rate effects on the Mode I fracture of IM7/8552 carbon/epoxy composite laminates with and without pultruded carbon/epoxy z-pins were investigated using a Flying Wedge test method. Unpinned laminates were found to fracture in continuous stable crack propagation, with a positive correlation between critical Mode I strain energy release rate, GIc, and wedge velocity. Two different fracture regimes were found in the z-pinned laminates. From quasi-static to 40 m/s wedge velocities fracture occurred in a series of unstable crack propagations followed by complete arrest of the crack. At high velocity, 250 m/s, steady-state crack propagation was observed, where there was continuous crack propagation and the crack tip and wedge traveled at identical velocities. The possibility of a third transitional fracture regime was noted, as it appears that the 50 m/s wedge velocity resulted in a continuously propagating crack whose velocity oscillated about the wedge's constant velocity. These z-pinned laminates show that both p0, the critical peak crack closure traction exerted by the z-pins, and GIc decrease with increasing wedge velocity in the stop-and-go fracture regime which holds from quasi-static through a wedge velocity of 40 m/s. At a wedge velocity of 40 m/s, there is a maximum reduction from the quasi-static values of over 30% in p0 and over 35% in GIc. The rate effects on p 0 were also found to dominate those directly on the base laminate GIc when determining the total strain energy release rate of the z-pinned laminate. The ratio of GIc for the 2% z-pin specimens toGIc for the 0.5% z-pin specimens was found to remain relatively constant over the range of wedge velocities studied; no discernible relationship was found between wedge velocity and that ratio

  8. Non-destructive evaluation of laminated composite plates using dielectrometry sensors

    NASA Astrophysics Data System (ADS)

    Nassr, Amr A.; El-Dakhakhni, Wael W.

    2009-05-01

    The use of composite materials in marine, aerospace and automotive applications is increasing; however, several kinds of damages of composite materials may influence its durability and future applications. In this paper, a methodology was presented for damage detection of laminated composite plates using dielectrometry sensors. The presence of damage in the laminated composite plate leads to changes in its dielectric characteristics, causing variation in the measured capacitance by the sensors. An analytical model was used to analyse the influence of different sensor parameters on the output signals and to optimize sensor design. Two-dimensional finite element (FE) simulations were performed to assess the validity of the analytical results and to evaluate other sensor design-related parameters. To experimentally verify the model, the dielectric permittivity of the composite plate was measured. In addition, a glass fibre reinforced polymer (GFRP) laminated plate containing pre-fabricated slots through its thickness to simulate delamination and water intrusion defects was inspected in a laboratory setting. Excellent agreements were found between the experimental capacitance response signals and those predicated from the FE simulations. This cost-effective technique can be used for rapid damage screening, regular scheduled inspection, or as a permanent sensor network within the composite system.

  9. Characterization of Degradation Progressive in Composite Laminates Subjected to Thermal Fatigue and Moisture Diffusion by Lamb Waves

    PubMed Central

    Li, Weibin; Xu, Chunguang; Cho, Younho

    2016-01-01

    Laminate composites which are widely used in the aeronautical industry, are usually subjected to frequency variation of environmental temperature and excessive humidity in the in-service environment. The thermal fatigue and moisture absorption in composites may induce material degradation. There is a demand to investigate the coupling damages mechanism and characterize the degradation evolution of composite laminates for the particular application. In this paper, the degradation evolution in unidirectional carbon/epoxy composite laminates subjected to thermal fatigue and moisture absorption is characterized by Lamb waves. The decrease rate of Lamb wave velocity is used to track the degradation evolution in the specimens. The results show that there are two stages for the progressive degradation of composites under the coupling effect of thermal cyclic loading and moisture diffusion. The present work provides an alternative to monitoring the degradation evolution of in-service aircraft composite Laminates. PMID:26907283

  10. Characterization of Degradation Progressive in Composite Laminates Subjected to Thermal Fatigue and Moisture Diffusion by Lamb Waves.

    PubMed

    Li, Weibin; Xu, Chunguang; Cho, Younho

    2016-02-19

    Laminate composites which are widely used in the aeronautical industry, are usually subjected to frequency variation of environmental temperature and excessive humidity in the in-service environment. The thermal fatigue and moisture absorption in composites may induce material degradation. There is a demand to investigate the coupling damages mechanism and characterize the degradation evolution of composite laminates for the particular application. In this paper, the degradation evolution in unidirectional carbon/epoxy composite laminates subjected to thermal fatigue and moisture absorption is characterized by Lamb waves. The decrease rate of Lamb wave velocity is used to track the degradation evolution in the specimens. The results show that there are two stages for the progressive degradation of composites under the coupling effect of thermal cyclic loading and moisture diffusion. The present work provides an alternative to monitoring the degradation evolution of in-service aircraft composite Laminates.

  11. Characterization of Degradation Progressive in Composite Laminates Subjected to Thermal Fatigue and Moisture Diffusion by Lamb Waves.

    PubMed

    Li, Weibin; Xu, Chunguang; Cho, Younho

    2016-01-01

    Laminate composites which are widely used in the aeronautical industry, are usually subjected to frequency variation of environmental temperature and excessive humidity in the in-service environment. The thermal fatigue and moisture absorption in composites may induce material degradation. There is a demand to investigate the coupling damages mechanism and characterize the degradation evolution of composite laminates for the particular application. In this paper, the degradation evolution in unidirectional carbon/epoxy composite laminates subjected to thermal fatigue and moisture absorption is characterized by Lamb waves. The decrease rate of Lamb wave velocity is used to track the degradation evolution in the specimens. The results show that there are two stages for the progressive degradation of composites under the coupling effect of thermal cyclic loading and moisture diffusion. The present work provides an alternative to monitoring the degradation evolution of in-service aircraft composite Laminates. PMID:26907283

  12. Torque Limit for Bolted Joint for Composites. Part A; TTTC Properties of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Zhao, Yi

    2003-01-01

    The existing design code for torque limit of bolted joints for composites at Marshall Space Flight Center is MSFC-STD-486B, which was originally developed in 1960s for metallic materials. The theoretical basis for this code was a simplified mechanics analysis, which takes into account only the bolt, nut and washers, but not the structural members to be connected. The assumption was that metallic materials would not fail due to the bearing stress at the contact area between washer and the mechanical member. This is true for metallic materials; but for composite materials the results could be completely different. Unlike most metallic materials, laminated composite materials have superior mechanical properties (such as modulus and strength) in the in-plane direction, but not in the out-of-plane, or through-the-thickness (TTT) direction. During the torquing, TTT properties (particularly compressive modulus and compressive strength) play a dominant role in composite failure. Because of this concern, structural design engineers at Marshall are currently using a compromised empirical approach: using 50% of the torque value for composite members. Companies like Boeing is using a similar approach. An initial study was conducted last summer on this topic to develop theoretical model(s) that takes into consideration of composite members. Two simplified models were developed based on stress failure criterion and strain failure criterion, respective. However, these models could not be used to predict the torque limit because of the unavailability of material data, specifically, through-the-thickness compression (TTTC) modulus and strength. Therefore, the task for this summer is to experimentally determine the TTTC properties. Due to the time limitation, only one material has been tested: IM7/8552 with [0 degrees,plus or minus 45 degrees, 90 degree ] configuration. This report focuses the test results and their significance, while the experimentation will be described in a

  13. Development of Composite Honeycomb and Solid Laminate Reference Standards to Aid Aircraft Inspections

    SciTech Connect

    Dorrell, L.; Roach, D.

    1999-03-04

    The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring their continued airworthiness. The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee (CACRC), is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representing the bounding conditions of honeycomb construction on aircraft, were inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a prototype set of minimum honeycomb reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the fill range of honeycomb construction scenarios. Current tasks are aimed at optimizing the methods used to engineer realistic flaws into the specimens. In the solid composite laminate arena, we have identified what appears to be an excellent candidate, G11 Phenolic, as a generic solid laminate reference standard material. Testing to date has determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative

  14. Structural Design and Analysis of a Light-Weight Laminated Composite Heat Sink for Spaceflight PWBs

    NASA Technical Reports Server (NTRS)

    Fan, Mark S.; Niemeyer, W. Lee

    1997-01-01

    In order to reduce the overall weight in spaceborne electronic systems, a conventional metallic heat sink typically used for double-sided printed wiring boards was suggested to be replaced by light-weight and high-strength laminated composite materials. Through technology validation assurance (TVA) approach, it has been successfully demonstrated that using laminated composite heat sink can not only reduce the weight of the heat sink by nearly 50%, but also significantly lower the internal thermally-induced stresses that are largely responsible for potential delamination under cyclic temperature variations. With composite heat sink, both thermal and dynamic performance of the double-sided printed wiring board (PWB) exceeds that of its counterpart with metallic heat sink. Also included in this work is the original contribution to the understanding of creep behavior of the worst-case leadless chip carrier (LCC) surface mount solder joint. This was identified as the interconnection most susceptible to thermal fatigue damage in the PWB assembly.

  15. Damage evolution and mechanical response of cross-ply ceramic composite laminates

    SciTech Connect

    Weitsman, Y.; Yu, N.; Zhu, H.

    1995-12-31

    A mechanistic model for the damage evolution and mechanical response of cross-ply ceramic composite laminates under monotonically increasing uniaxial tension is presented. The model accounts for a variety of damage mechanisms evolving in cross-ply ceramic composite laminates, such as fiber-bridged matrix cracks in 0{degrees}-plies, transversely oriented matrix cracks in 90{degrees}-plies, and slips at 0{degrees}/90{degrees} ply interfaces as well as at the fiber/matrix interfaces. Energy criteria are developed to determine the creation and progression of matrix cracks and slip zones. The model predicts that the crack density in 0{degrees}-plies becomes higher than that within the 90{degrees}-plies as the applied load is incrementally increased, which agrees with the experimental observation. It is also shown that the model provides a reasonable prediction for the nonlinear stress-strain behavior of crossply SiC/CAS ceramic composites.

  16. Magnetic sensor for high temperature using a laminate composite of magnetostrictive material and piezoelectric material

    NASA Astrophysics Data System (ADS)

    Ueno, Toshiyuki; Higuchi, Toshiro

    2005-05-01

    A high sensitive and heat-resistive magnetic sensor using a magnetostrictive/piezoelectric laminate composite is investigated. The sensing principle is based on the magnetostrictive- and piezoelectric effect, whereby a detected yoke displacement is transduced into a voltage on the piezoelectric materials. The sensor is intended to detect the displacement of a ferromagnetic object in a high temperature environment, where conventional magnetic sensors are not useful. Such applications include sensors in engine of automobile and machinery used in material processing. The sensor features combination of a laminate composite of magnetostrictive/piezoelectric materials with high Curie temperatures and an appropriate magnetic circuit to convert mechanical displacement to sensor voltages and suppress temperature fluctuation. This paper describes the sensing principle and shows experimental results using a composite of Terfenol-D and Lithium Niobate to assure high sensitivity of 50V/mm at bias gap of 0.1mm and a temperature operating range over 200 °C.

  17. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  18. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  19. A procedure for utilization of a damage-dependent constitutive model for laminated composites

    NASA Technical Reports Server (NTRS)

    Lo, David C.; Allen, David H.; Harris, Charles E.

    1992-01-01

    Described here is the procedure for utilizing a damage constitutive model to predict progressive damage growth in laminated composites. In this model, the effects of the internal damage are represented by strain-like second order tensorial damage variables and enter the analysis through damage dependent ply level and laminate level constitutive equations. The growth of matrix cracks due to fatigue loading is predicted by an experimentally based damage evolutionary relationship. This model is incorporated into a computer code called FLAMSTR. This code is capable of predicting the constitutive response and matrix crack damage accumulation in fatigue loaded laminated composites. The structure and usage of FLAMSTR are presented along with sample input and output files to assist the code user. As an example problem, an analysis of crossply laminates subjected to two stage fatigue loading was conducted and the resulting damage accumulation and stress redistribution were examined to determine the effect of variations in fatigue load amplitude applied during the first stage of the load history. It was found that the model predicts a significant loading history effect on damage evolution.

  20. Real-time integrity monitoring of composite laminates with magnetostrictive sensory layer

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Bhattacharya, Bishakh

    2008-12-01

    Fundamental research and development in smart materials and structures have shown great potential for enhancing the functionality, serviceability and increased life span of civil and mechanical infrastructure systems. Researchers from diverse disciplines have been drawn into vigorous efforts to develop smart and intelligent structures that can monitor their own conditions, detect impending failure, control damage and adapt to changing environments. Smart structures are generally created through synthesis by combining sensing, processing and actuating elements integrated with conventional structural materials. The conventional non-destructive evaluation techniques are not very effective in monitoring the structural integrity of composite structures due to their micro-mechanical complexities. With the commercial availability of the magnetostrictive (MS) material Terfenol-D in particulate form, it is now feasible to develop particulate sensors to detect damage with minimum effect on structural integrity. In present investigation, the electromagnetic response in the MS layer at the onset of delamination in one of the weakest ply of the composite laminate has been analyzed. For the numerical analysis symmetric and asymmetric carbon epoxy laminates with one of its layers embedded with Terfenol-D particles have been taken. Terfenol-D layer experiences a change in stress due to onset of delamination causing a change in its magnetic state, which can be sensed as induced open circuit voltage in the sensing coil enclosing the laminate beam. The effect of material properties, lamination schemes and placement of MS layer on the sensing capabilities has been analyzed.

  1. Bending response of cross-ply laminated composite plates with diagonally perturbed localized interfacial degeneration.

    PubMed

    Kam, Chee Zhou; Kueh, Ahmad Beng Hong

    2013-01-01

    A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination. PMID:24319360

  2. Bending Response of Cross-Ply Laminated Composite Plates with Diagonally Perturbed Localized Interfacial Degeneration

    PubMed Central

    Kueh, Ahmad Beng Hong

    2013-01-01

    A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination. PMID:24319360

  3. Convergence of strain energy release rate components for edge-delaminated composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Crews, J. H., Jr.; Aminpour, M. A.

    1988-01-01

    Strain energy release rates for edge delaminated composite laminates were obtained using quasi 3 dimensional finite element analysis. The problem of edge delamination at the -35/90 interfaces of an 8-ply composite laminate subjected to uniform axial strain was studied. The individual components of the strain energy release rates did not show convergence as the delamination tip elements were made smaller. In contrast, the total strain energy release rate converged and remained unchanged as the delamination tip elements were made smaller and agreed with that calculated using a classical laminated plate theory. The studies of the near field solutions for a delamination at an interface between two dissimilar isotropic or orthotropic plates showed that the imaginary part of the singularity is the cause of the nonconvergent behavior of the individual components. To evaluate the accuracy of the results, an 8-ply laminate with the delamination modeled in a thin resin layer, that exists between the -35 and 90 plies, was analyzed. Because the delamination exists in a homogeneous isotropic material, the oscillatory component of the singularity vanishes.

  4. Convergence of strain energy release rate components for edge-delaminated composite laminates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Crews, J. H., Jr.; Aminpour, M. A.

    1987-01-01

    Strain energy release rates for edge delaminated composite laminates were obtained using quasi 3 dimensional finite element analysis. The problem of edge delamination at the -35/90 interfaces of an 8-ply composite laminate subjected to uniform axial strain was studied. The individual components of the strain energy release rates did not show convergence as the delamination tip elements were made smaller. In contrast, the total strain energy release rate converged and remained unchanged as the delamination tip elements were made smaller and agreed with that calculated using a classical laminated plate theory. The studies of the near field solutions for a delamination at an interface between two dissimilar isotropic or orthotropic plates showed that the imaginary part of the singularity is the cause of the nonconvergent behavior of the individual components. To evaluate the accuracy of the results, an 8-ply laminate with the delamination modeled in a thin resin layer, that exists between the -35 and 90 plies, was analyzed. Because the delamination exists in a homogeneous isotropic material, the oscillatory component of the singularity vanishes.

  5. Unsymmetric laminates

    NASA Astrophysics Data System (ADS)

    Ochoa, Ozden O.; Ross, George R.

    In order to take full advantage of the tailorability of composite materials, the response of unsymmetric composite materials must be understood. To further the understanding of these unique laminates, a finite element program is used to determine the strain energy release rates and stress distributions of unsymmetric laminates subjected to tension and torsion loads and hygroscopic gradients. The (0(4)/45(4))(T) layup is studied with (0(2)/45(2))(s) results presented for a baseline. The laminates are constructed of IM7/977-2 graphite epoxy. Preliminary experimental results are presented for comparison.

  6. Boundary layer thermal stresses in angle-ply composite laminates, part 1. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1981-01-01

    Thermal boundary-layer stresses (near free edges) and displacements were determined by a an eigenfunction expansion technique and the establishment of an appropriate particular solution. Current solutions in the region away from the singular domain (free edge) are found to be excellent agreement with existing approximate numerical results. As the edge is approached, the singular term controls the near field behavior of the boundary layer. Results are presented for cases of various angle-ply graphite/epoxy laminates with (theta/-theta/theta/theta) configurations. These results show high interlaminar (through-the-thickness) stresses. Thermal boundary-layer thicknesses of different composite systems are determined by examining the strain energy density distribution in composites. It is shown that the boundary-layer thickness depends on the degree of anisotropy of each individual lamina, thermomechanical properties of each ply, and the relative thickness of adjacent layers. The interlaminar thermal stresses are compressive with increasing temperature. The corresponding residual stresses are tensile and may enhance interply delaminations.

  7. Mechanical Response of Stitched T300 Mat/Urethane 420 IMR Composite Laminates: Property/Orientation Dependence and Damage Evolution

    SciTech Connect

    Deng, S.; Weitsman, Y.J.

    2000-03-01

    This report presents experimental and analytical results of investigations on the mechanical response of stitched T300 mat/urethane 420 IMR composite laminates with three different lay-up configurations. Tensile tests and short-term creep and recovery tests were conducted on the laminate coupons at various orientations. The X-ray photographic technique was adopted to detect the internal damage due to external loading history. The tensile data of laminates with antisymmetric and symmetric lay-ups indicated that lay- up sequences of cross-ply laminates do not have much influence on their tensile properties. However, misalignments within the stitch-bonded plies disturb the symmetry of intended quasi-isotropic laminates and thereby cause the mechanical properties to exhibit a certain amount of angular dependence. Classic lamination theory was found to be able to provide a very good prediction of tensile properties for the stitched laminates within linear range. Creep and recovery response of laminate coupons is greatly dependent on loading angles and load levels. The internal damage of laminate coupons is also directly related to loading angles and load levels as well as loading history.

  8. Micromechanics of compression failures in open hole composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1987-01-01

    The high strength-to-weight ratio of composite materials is ideally suited for aerospace applications where they already are used in commercial and military aircraft secondary structures and will soon be used for heavily loaded primary structures. One area impeding the widespread application of composites is their inherent weakness in compressive strength when compared to the tensile properties of the same material. Furthermore, these airframe designs typically contain many bolted or riveted joints, as well as electrical and hydraulic control lines. These applications produce areas of stress concentration, and thus, further complicate the compression failure problem. Open hole compression failures which represent a typical failure mode for composite materials are addressed.

  9. Characterization of E-glass/polyester woven fabric composite laminates and tubes

    SciTech Connect

    Guess, T.R.; Reedy, E.D. Jr.; Stavig, M.E.

    1995-12-01

    This report describes an experimental study that supported the LDRD program ``A General Approach for Analyzing Composite Structures``. The LDRD was a tightly coupled analytical / experimental effort to develop models for predicting post-yield progressive failure in E-glass fabric/polyester composites subjected to a variety of loading conditions. Elastic properties, fracture toughness parameters, and failure responses were measured on flat laminates, rings and tubes to support the development and validation of material and structural models. Test procedures and results are presented for laminates tested in tension, compression, flexure, short beam shear, double cantilever beam Mode I fracture toughness, and end notched flexure Mode II fracture toughness. Structural responses, including failure, of rings loaded in diametral compression and tubes tested in axial compression, are also documented.

  10. Characterization of Delaminations and Transverse Matrix Cracks in Composite Laminates Using Multiple-Angle Ultrasonic Inspection

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Appleget, Chelsea D.; Odarczenko, Michael T.

    2012-01-01

    Delaminations and transverse matrix cracks often appear concurrently in composite laminates. Normal-incidence ultrasound is excellent at detecting delaminations, but is not optimum for matrix cracks. Non-normal incidence, or polar backscattering, has been shown to optimally detect matrix cracks oriented perpendicular to the ultrasonic plane of incidence. In this work, a series of six composite laminates containing slots were loaded in tension to achieve various levels of delamination and ply cracking. Ultrasonic backscattering was measured over a range of incident polar and azimuthal angles, in order to characterize the relative degree of damage of the two types. Sweptpolar- angle measurements were taken with a curved phased array, as a step toward an array-based approach to simultaneous measurement of combined flaws.

  11. Investigation of the dynamic effects of partial sensor debonding in smart composite laminates

    NASA Astrophysics Data System (ADS)

    Khan, Asif; Kim, Heung Soo

    2016-04-01

    Dynamic characteristics of smart composite laminate with partially debonded piezoelectric sensor are investigated. Improved layerwise theory with Heaviside's unit step function is used to model the discontinuous displacement field with jumps owing to the in-plane slipping and out-of-plane opening at the debonded interface. Higher order electric potential field is employed to describe the potential variation through the thickness of piezoelectric patches. Finite element method and extended Hamilton's principle are used to derive the governing equation of motion. The governing equation is solved in time domain using Newmark time integration algorithm. The developed model is numerically implemented on a laminated composite plate with surface bonded piezoelectric actuator and partially debonded sensor. The sensing capability is evaluated in the presence of partial inner and edge debonding in the piezoelectric sensor.

  12. Fatigue behavior of carbon fiber reinforced polyetheretherketone (PEEK) laminated composites (III)

    SciTech Connect

    Ma, C.C.M.; Kuo, H.C.; Chang, M.J.; Ong, C.L.; Wu, I.C.; Sheu, M.F.

    1993-12-31

    Fatigue behavior of carbon fiber reinforced polyetheretherketone (PEEK) laminated composite [O/({+-}45){sub 4}/90]{sub S} was investigated. The [0/({+-}45){sub 4}/90]{sub S} AS-4/PEEK composite laminate under static loading and tension-tension fatigue loading tests were conducted at various levels of stress amplitude to study the effect of stress amplitude on the fatigue life. The experimental fatigue life data under different stress amplitude tests were estimated by median rank order-statistic cumulative-distribution function. Then, the fitting curves of estimated data were analyzed by utilizing the Weibull distribution function. The S-N curves for a series of cyclic loading at different survival probability were also presented and the damage behavior after fatigue loading test was also investigated by optical microscopy.

  13. Damage states in laminated composite three-point bend specimens: An experimental-analytical correlation study

    NASA Technical Reports Server (NTRS)

    Starbuck, J. Michael; Guerdal, Zafer; Pindera, Marek-Jerzy; Poe, Clarence C.

    1990-01-01

    Damage states in laminated composites were studied by considering the model problem of a laminated beam subjected to three-point bending. A combination of experimental and theoretical research techniques was used to correlate the experimental results with the analytical stress distributions. The analytical solution procedure was based on the stress formulation approach of the mathematical theory of elasticity. The solution procedure is capable of calculating the ply-level stresses and beam displacements for any laminated beam of finite length using the generalized plane deformation or plane stress state assumption. Prior to conducting the experimental phase, the results from preliminary analyses were examined. Significant effects in the ply-level stress distributions were seen depending on the fiber orientation, aspect ratio, and whether or not a grouped or interspersed stacking sequence was used. The experimental investigation was conducted to determine the different damage modes in laminated three-point bend specimens. The test matrix consisted of three-point bend specimens of 0 deg unidirectional, cross-ply, and quasi-isotropic stacking sequences. The dependence of the damage initiation loads and ultimate failure loads were studied, and their relation to damage susceptibility and damage tolerance of the mean configuration was discussed. Damage modes were identified by visual inspection of the damaged specimens using an optical microscope. The four fundamental damage mechanisms identified were delaminations, matrix cracking, fiber breakage, and crushing. The correlation study between the experimental results and the analytical results were performed for the midspan deflection, indentation, damage modes, and damage susceptibility.

  14. Photo-induced bending in a light-activated polymer laminated composite.

    PubMed

    Mu, Xiaoming; Sowan, Nancy; Tumbic, Julia A; Bowman, Christopher N; Mather, Patrick T; Qi, H Jerry

    2015-04-01

    Light activated polymers (LAPs) have attracted increasing attention since these materials change their shape and/or behavior in response to light exposure, which serves as an instant, remote and precisely controllable stimulus that enables non-contact control of the material shape and behavior through simple variation in light intensity, wavelength and spatially controlled exposure. These features distinguish LAPs from other active polymers triggered by other stimuli such as heat, electrical field or humidity. Previous examples have resulted in demonstrations in applications such as surface patterning, photo-induced shape memory behavior, and photo-origami. However, in many of these applications, an undesirable limitation has been the requirement to apply and maintain an external load during light irradiation. In this paper, a laminated structure is introduced to provide a pre-programmed stress field, which is then used for photo-induced deformation. This laminated structure is fabricated by bonding a stretched elastomer (NOA65) sheet between two LAP layers. Releasing the elastomer causes contraction and introduces a compressive stress in the LAPs, which are relaxed optically to trigger the desired deformation. A theoretical model is developed to quantitatively examine the laminated composite system, allowing exploration of the design space and optimum design of the laminate. PMID:25690905

  15. Method for alleviating thermal stress damage in laminates. [metal matrix composites

    NASA Technical Reports Server (NTRS)

    Hoffman, C. A.; Weeton, J. W.; Orth, N. W. (Inventor)

    1980-01-01

    A method is provided for alleviating the stress damage in metallic matrix composites, such as laminated sheet or foil composites. Discontinuities are positively introduced into the interface between the layers so as to reduce the thermal stress produced by unequal expansion of the materials making up the composite. Although a number of discrete elements could be used to form one of the layers and thus carry out this purpose, the discontinuities are preferably produced by simply drilling holes in the metallic matrix layer or by forming grooves in a grid pattern in this layer.

  16. Utilization of composite laminate theory in the design of synthetic soft tissues for biomedical prostheses.

    PubMed

    Gershon, B; Cohn, D; Marom, G

    1990-10-01

    There are several advantages of using composite design considerations for the preparation of biomedical soft tissues. Using a composite laminate design, a wide range for compliance results, proving that the prosthesis compliance can be altered without a concomitant variation of other properties. The trend of compliance as a function of the reinforcement angle is discussed for an angle-ply composite of low compliance constituents, as well as the implications for stress-strain behaviour. Experimental examples pertinent to prosthetic arterial design are presented.

  17. Porosity Measurement in Laminated Composites by Thermography and FEA

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.

  18. Fabrication of Thermoplastic Composite Laminates Having Film Interleaves By Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, A. B.; Tiwari, S. N.; Marchello, J. M.; Johnston, Norman J. (Technical Monitor)

    2001-01-01

    Experiments were carried out at the NASA Langley Research Center automated Fiber placement facility to determine an optimal process for the fabrication of composite materials having polymer film interleaves. A series of experiments was conducted to determine an optimal process for the composite prior to investigation of a process to fabricate laminates with polymer films. The results of the composite tests indicated that a well-consolidated, void-free laminate could be attained. Preliminary interleaf processing trials were then conducted to establish some broad guidelines for film processing. The primary finding of these initial studies was that a two-stage process was necessary in order to process these materials adequately. A screening experiment was then performed to determine the relative influence of the process variables on the quality of the film interface as determined by the wedge peel test method. Parameters that were found to be of minor influence on specimen quality were subsequently held at fixed values enabling a more rapid determination of an optimal process. Optimization studies were then performed by varying the remaining parameters at three film melt processing rates. The resulting peel data were fitted with quadratic response surfaces. Additional specimens were fabricated at levels of high peel strength as predicted by the regression models in an attempt to gage the accuracy of the predicted response and to assess the repeatability of the process. The overall results indicate that quality laminates having film interleaves can be successfully and repeatably fabricated by automated fiber placement.

  19. Extended layerwise method for laminated composite plates with multiple delaminations and transverse cracks

    NASA Astrophysics Data System (ADS)

    Li, D. H.; Zhang, X.; Sze, K. Y.; Liu, Y.

    2016-10-01

    In this paper, the extended layerwise method (XLWM), which was developed for laminated composite beams with multiple delaminations and transverse cracks (Li et al. in Int J Numer Methods Eng 101:407-434, 2015), is extended to laminated composite plates. The strong and weak discontinuous functions along the thickness direction are adopted to simulate multiple delaminations and interlaminar interfaces, respectively, whilst transverse cracks are modeled by the extended finite element method (XFEM). The interaction integral method and maximum circumferential tensile criterion are used to calculate the stress intensity factor (SIF) and crack growth angle, respectively. The XLWM for laminated composite plates can accurately predicts the displacement and stress fields near the crack tips and delamination fronts. The thickness distribution of SIF and thus the crack growth angles in different layers can be obtained. These information cannot be predicted by using other existing shell elements enriched by XFEM. Several numerical examples are studied to demonstrate the capabilities of the XLWM in static response analyses, SIF calculations and crack growth predictions.

  20. Extended layerwise method for laminated composite plates with multiple delaminations and transverse cracks

    NASA Astrophysics Data System (ADS)

    Li, D. H.; Zhang, X.; Sze, K. Y.; Liu, Y.

    2016-07-01

    In this paper, the extended layerwise method (XLWM), which was developed for laminated composite beams with multiple delaminations and transverse cracks (Li et al. in Int J Numer Methods Eng 101:407-434, 2015), is extended to laminated composite plates. The strong and weak discontinuous functions along the thickness direction are adopted to simulate multiple delaminations and interlaminar interfaces, respectively, whilst transverse cracks are modeled by the extended finite element method (XFEM). The interaction integral method and maximum circumferential tensile criterion are used to calculate the stress intensity factor (SIF) and crack growth angle, respectively. The XLWM for laminated composite plates can accurately predicts the displacement and stress fields near the crack tips and delamination fronts. The thickness distribution of SIF and thus the crack growth angles in different layers can be obtained. These information cannot be predicted by using other existing shell elements enriched by XFEM. Several numerical examples are studied to demonstrate the capabilities of the XLWM in static response analyses, SIF calculations and crack growth predictions.

  1. Delamination onset in polymeric composite laminates under thermal and mechanical loads

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.

    1991-01-01

    A fracture mechanics damage methodology to predict edge delamination is described. The methodology accounts for residual thermal stresses, cyclic thermal stresses, and cyclic mechanical stresses. The modeling is based on the classical lamination theory and a sublaminate theory. The prediction methodology determines the strain energy release rate, G, at the edge of a laminate and compares it with the fatigue and fracture toughness of the composite. To verify the methodology, isothermal static tests at 23, 125, and 175 C and tension-tension fatigue tests at 23 and 175 C were conducted on laminates. The material system used was a carbon/bismaleimide, IM7/5260. Two quasi-isotropic layups were used. Also, 24 ply unidirectional double cantilever beam specimens were tested to determine the fatigue and fracture toughness of the composite at different temperatures. Raising the temperature had the effect of increasing the value of G at the edge for these layups and also to lower the fatigue and fracture toughness of the composite. The static stress to edge delamination was not affected by temperature but the number of cycles to edge delamination decreased.

  2. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-05-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory (CLT), combined with Finite Element Methods (FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  3. Influence of the Geometric Parameters on the Mechanical Behaviour of Fabric Reinforced Composite Laminates

    NASA Astrophysics Data System (ADS)

    Axinte, Andrei; Taranu, Nicolae; Bejan, Liliana

    2016-10-01

    A polymer fabric reinforced composite is a high performance material, which combines strength of the fibres with the flexibility and ductility of the matrix. For a better drapeability, the tows of fibres are interleaved, resulting the woven fabric, used as reinforcement. The complex geometric shape of the fabric is of paramount importance in establishing the deformability of the textile reinforced composite laminates. In this paper, an approach based on Classical Lamination Theory ( CLT), combined with Finite Element Methods ( FEM), using Failure Analysis and Internal Load Redistribution, is utilised, in order to compare the behaviour of the material under specific loads. The main goal is to analyse the deformability of certain types of textile reinforced composite laminates, using carbon fibre satin as reinforcement and epoxy resin as matrix. This is accomplished by studying the variation of the in-plane strains, given the fluctuation of several geometric parameters, namely the width of the reinforcing tow, the gap between two consecutive tows, the angle of laminae in a multi-layered configuration and the tows fibre volume fraction.

  4. Investigations on Buckling Behaviour of Laminated Curved Composite Stiffened Panels

    NASA Astrophysics Data System (ADS)

    Kumar, N. Jeevan; Babu, P. Ramesh; Pandu, Ratnakar

    2014-04-01

    In Industrial applications structural efficiency is primary concern, this brings about the need of strong and lightweight materials. Due to their high specific strength, fibre reinforced polymers find wide application in these areas. Panels made of composite materials are widely used in aerospace structures, automobile, civil, marine and biomedical industries because of their good mechanical properties, impact resistance, excellent damage tolerance and also low fabrication cost. In this Paper, buckling and post-buckling analysis was performed on composite stiffened panel to obtain the critical load and modes of failures, with different parameters like ply-orientation, different composite materials, and stiffeners and by changing the number of stiffeners was derived. To analyze the post buckling behaviour of composite stiffened panels the nonlinear finite element analysis is employed and substantial investigations are undertaken using finite element (FE) model. Effect of critical parameters on buckling behaviour is studied and parametric studies were conducted with analytical tool to understand the structural behaviour in the post buckling range.

  5. Mechanical behaviour of advanced composite laminates embedded with carbon nanotubes: review

    NASA Astrophysics Data System (ADS)

    Xie, Guanyan; Zhou, Gang; Bao, Xujin

    2009-07-01

    Embedding carbon nanotubes (CNTs) in load-bearing composite laminate hosts and thereby turning them into nanolaminates is a rapidly emerging field and has tremendous potential in enhancing mechanical performance of host laminates. This state-of-the-art review intends to provide physical insight into the understanding of enhancing mechanisms of processed and controlled CNTs in nano-laminates. It focuses on four aspects: (1) physical characteristics of CNTs including CNT length, diameter and weight percentage; (2) processing and control techniques of CNTs in fabrication of nano-laminates including distribution, dispersion and orientation controls of CNTs; (3) mechanical properties along with their testing methods including tension, in-plane compression, interlaminar shear (ILS), flexure, mode I and mode II fracture toughness as well as compression-after-impact (CAI); and (4) post-mortem microscopic corroborative evidence after mechanical testing. As this review indicates, selective and uniform production of CNTs with specific dimensions and physical properties has yet to be achieved on a consistent basis. There is little control over CNT orientations in most fabrication processes of nano-laminates except for some cases associated with chemical vapour deposition (CVD). There are only two reports on the in-plane compression and there is none on in-plane shear. For reinforcement-dominated mechanical properties such as tension and flexure, there is little enhancement as reported. However, substantial enhancement in in-plane compression strength was reported. For matrix-dominated mechanical properties such as ILS strength and mode-I and mode-II fracture toughness, significant enhancement, albeit with substantially varying degrees, has been reported. In the meanwhile, the lack of consistent characterisation in those properties was also noticeable. Post-mortem microscopic corroborative evidence was very limited.

  6. A novel superposed waveform method for damage detection of composite laminates

    NASA Astrophysics Data System (ADS)

    Feng, Kan; Li, Zheng

    2016-01-01

    A novel vibration testing method using a superposed waveform method (SWM) is proposed as a fast, easy and universal vibration-based technique for damage detection in structures. This method can be carried out conveniently over arbitrary frequency bands, especially in high-frequency ranges, which are more sensitive to small damages or defects, but are less convenient to use in general testing methods compared to low-frequency ranges. Unlike most published traditional vibration-based methods used to directly obtain mode shapes or operational deflection shapes (ODSs), the SWM presented in this paper calculates vibration parameters using propagating waves in structures. A comparison of natural frequencies and mode shapes of a cantilever obtained by the traditional vibration method and SWM validates the reliability of the SWM. We used the SWM to locate impact damage in composite laminates as proof-of-concept application. A set of piezoceramic transducer patches acted as actuators on composite laminates damaged by low velocity impact; propagating wave data were acquired by a scanning laser Doppler vibrometer. A modified signal actuated the propagating wave, which was used to calculate the frequency response functions and the ODSs at each frequency using the SWM. The mode shapes of high-frequency resonance clearly showed the damaged area, and the local resonance of damage was tested using the ODS of laminate at a certain frequency to identify the damage location. The SWM proposed in this paper enables efficient and effective vibration measurements, especially at high frequencies, and can be used to detect damage in composite laminates.

  7. Damage accumulation in closed cross-section, laminated, composite structures

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1996-01-01

    The need for safe, lightweight, less expensive, and more reliable launch vehicle components is being driven by the competitiveness of the commercial launch market. The United States has lost 2/3 of the commercial lunch market to Europe. As low cost Russian and Chinese vehicles become available, the US market share could be reduced even further. This international climate is driving the Single Stage To Orbit (SSTO) program at NASA. The goal of the SSTO program is to radically reduce the cost of safe, routine transportation to and from space with a totally reusable launch vehicle designed for low-cost aircraft-like operations. Achieving this goal will require more efficient uses of materials. Composite materials can provide this program with the material and structural efficiencies needed to stay competitive in the international launch market place. In satellite systems the high specific properties, design flexibility, improved corrosion and wear resistance, increased fatigue life, and low coefficient of thermal expansion that are characteristic of composite materials can all be used to improve the overall satellite performance. Some of the satellites that may be able to take advantage of these performance characteristics are the Tethered Satellite Systems (TOSCIFER, AIRSEDS, TSS2, SEDS1, and SEDS2), AXAF, GRO, and the next generation Hubble Space Telescope. These materials can also be utilized in projects at the NASAIMSFC Space Optics Technology and System Center of Excellence. The successful implementation of composite materials requires accurate performance characterization. Materials characterization data for composite materials is typically generated using flat coupons of finite width. At the free edge of these coupons the stress state is exacerbated by the presence of stiffness and geometric discontinuities. The exacerbated stress state has been shown to dominate the damage accumulation in these materials and to have a profound affect on the material constants

  8. Modeling of resonant magneto-electric effect in a magnetostrictive and piezoelectric laminate composite structure coupled by a bonding material

    NASA Astrophysics Data System (ADS)

    Hasanyan, D.; Wang, Y.; Gao, J.; Li, M.; Shen, Y.; Li, J.; Viehland, D.

    2012-09-01

    The harmonic magneto-electro-elastic vibration of a thin laminated composite was considered. A theoretical model, including shear lag and vibration effects was developed for predicting the magneto-electric (ME) effect in a laminate composite consisting of magnetostrictive and piezoelectric layers. To avoid bending, we assumed that the composite was geometrically symmetric. For finite length symmetrically fabricated laminates, we derived the dynamic strain-stress field and ME coefficients, including shear lag and vibration effects for several boundary conditions. Parametric studies are presented to evaluate the influences of material properties and geometries on the strain distribution and the ME coefficient. Analytical expressions indicate that the shear lag and the vibration frequency strongly influence the strain distribution in the laminates and these effects strongly influence the ME coefficients.

  9. Ultrasonic tracking of ply drops in composite laminates

    NASA Astrophysics Data System (ADS)

    Smith, Robert A.; Nelson, Luke J.; Mienczakowski, Martin J.; Wilcox, Paul D.

    2016-02-01

    As the shapes of composite components become more adventurous, tracking internal locations of ply drops and detecting any tape gaps or overlaps will be crucial to assure conformance to design. The true potential of ultrasound has yet to be exploited for this objective due to the apparent complexity of the ultrasonic response and the assumption that interference between signals from plies is random, confusing and of little use. As a result, most ultrasonic inspection of composites targets defects that either attenuate or reflect ultrasound, regarding ply reflections as undesirable `noise'. The work presented here extends the ply-orientation mapping of the last two decades by introducing a systematic approach to optimizing the ultrasonic response from the plies, minimizing interference between plies and demonstrating that accurate maps of plies through ply-drop regions can be produced. The key to this method is understanding the ultrasonic analytic signal and how it interacts with plies and the resin-rich layers between them. In certain circumstances of frequency and bandwidth, the instantaneous phase locks onto the resin-rich layers and the instantaneous amplitude indicates the validity of this condition. Analytical modelling is used to explain the interaction between ultrasound and composite plies in various ply-drop scenarios, with reference to experimental results. Optimization of ultrasonic data acquisition is also discussed and demonstrated experimentally.

  10. Dispersion of guided waves in composite laminates and sandwich panels

    NASA Astrophysics Data System (ADS)

    Schaal, Christoph; Mal, Ajit

    2015-03-01

    In composite structures, damages are often invisible from the surface and can grow to reach a critical size, potentially causing catastrophic failure of the entire structure. Thus safe operation of these structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost-effective method for structural health monitoring in advanced structures. Guided waves allow for long monitoring ranges and are very sensitive to defects within their propagation path. In this work, the relevant properties of guided Lamb waves for damage detection in composite structures are investigated. An efficient numerical approach is used to determine their dispersion characteristics, and these results are compared to those from laboratory experiments. The experiments are based on a pitch-catch method, in which a pair of movable transducers is placed on one surface of the structure to induce and detect guided Lamb waves. The specific cases considered include an aluminum plate and an aluminum honeycomb sandwich panel with woven composite face sheets. In addition, a disbond of the interface between one of the face sheets and the honeycomb core of the sandwich panel is also considered, and the dispersion characteristics of the two resultant waveguides are determined. Good agreement between numerical and experimental dispersion results is found, and suggestions on the applicability of the pitch-catch system for structural health monitoring are made.

  11. Effects of cutouts on the behavior of symmetric composite laminates subjected to bending and twisting loads

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Shuart, M. J.; Bains, N. J.; Rouse, M.

    1993-01-01

    Composite structures are used for a wide variety of aerospace applications. Practical structures contain cutouts and these structures are subjected to in-plane and out-of-plane loading conditions. Structurally efficient designs for composite structures require a thorough understanding of the effects of cutouts on the response of composite plates subjected to inplane or out-of-plane loadings. Most investigations of the behavior of composite plates with cutouts have considered in-plane loadings only. Out-of-plane loadings suchas bending or twisting have received very limited attention. The response of homogeneous plates (e.g., isotropic or orthotropic plates) subjected to bending or twisting moments has been studied analytically. These analyses are for infinite plates and neglect finite-plate effects. Recently, analytical and experimental studies were conducted to determine the effects of cutouts on the response of laminated composite plates subjected to bending moments. No analytical or experimental results are currently available for the effects of cutouts on the response of composite laminates subjected to twisting moments.

  12. Crack-bridging effects in notch fatigue of SCS-6/TIMETAL 21S composite laminates

    SciTech Connect

    Larsen, J.M.; Jira, J.R.; John, R.; Ashbaugh, N.E.

    1996-12-31

    Fatigue tests of middle-hole tension specimens of SCS-6/TIMETAL 21S composite (silicon-carbide fibers reinforcing a matrix of Ti-15Mo-2.6Nb-3Al-0.2Si alloy) were performed on three laminate architectures: unidirectional, cross ply, and quasi-isotropic. Specimens were tested over a range of stress levels, and fatigue damage was documented in situ by macrophotography and direct-current electric potential drop measurements. Typically, failure evolved by the formation of a few dominant cracks at the notch that propagated into the composite matrix and, in many instances, were substantially affected by unbroken fibers bridging the cracks. Fractographic and failure mode characterization revealed key differences in the effectiveness of crack bridging in the three laminates. A shear-lag crack-bridging model was shown to correlate crack growth data in the laminates based on an empirical value of fiber/matrix interfacial shear stress. Crack-bridging stress distributions were predicted using the shear lag model and verified by comparing the predicted crack opening displacement profiles with measurements made using a laser interferometric displacement gage system. Implications of the results are discussed with respect to the potential use of these materials in practical structural applications.

  13. Delamination behavior of carbon fiber/epoxy composite laminates with short fiber reinforcement

    SciTech Connect

    Sohn, M.S.; Hu, X.Z. . Dept. of Mechanical and Materials Engineering)

    1994-06-01

    Delamination in laminated materials is one major mode of damage and failure encountered in application. Fracture mechanics is often used to characterize the interlaminar fracture behavior. The interlaminar fracture energies, G[sub I], G[sub II] and G[sub I/II] are the major concerns to characterize the interlaminar toughness of the composite laminates. Typical mode-I fracture is caused by normal tension, and typical mode-II fracture by shear in the direction of crack extension. The objective of the present study is to compare and discuss the mode-I and mode-II interlaminar fracture energies, G[sub I] and G[sub II] of carbon fiber/epoxy composite laminates with and without the reinforcement of short Kevlar fibers (5--7 mm in length) and to identify the microfracture features of the Kevlar fibers under those two delamination modes through SEM observations. Double cantilever beam (DCB) specimens and end notched flexure (ENF) specimens are used for the mode-I and -II delamination experiments.

  14. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature

    PubMed Central

    Huang, C.-Y.; Trask, R. S.; Bond, I. P.

    2010-01-01

    A study of the influence of embedded circular hollow vascules on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vascules will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vascules leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascule geometries in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vascules, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vascules ranges from 13 to 70 per cent, which correlates with vascule dimension. PMID:20150337

  15. Study of free edge effect on sub-laminar scale for thermoplastic composite laminates

    NASA Astrophysics Data System (ADS)

    Shen, Min; Lu, Huanbao; Tong, Jingwei; Su, Yishi; Li, Hongqi; Lv, Yongmin

    2008-11-01

    The interlaminar deformation on the free edge surface in thermoplastic composite AS4/PEEK laminates under bending loading are studied by means of digital image correlation method (DICM) using a white-light industrial microscopic. During the test, any artificial stochastic spray is not applied to the specimen surface. In laminar scale, the interlaminare displacements of [0/90]3s laminate are measured. In sub-laminar scale, the tested area includes a limited number of fibers; the fiber is elastic with actual diameter about 7μm, and PEEK matrix has elastic-plastic behavior. The local mesoscopic fields of interlaminar displacement near the areas of fiber-matrix interface are obtained by DICM. The distributions of in-plane elastic-plastic stresses near the interlaminar interface between different layers are indirectly obtained using the coupling the results of DICM with finite element method. Based on above DICM experiments, the influences of random fiber distribution and the PEEK matrix ductility in sub-laminar scale on the ineterlaminar mesomechanical behavior are investigated. The experimental results in the present work are important for multi-scale theory and numerical analysis of interlaminar deformation and stresses in these composite laminates.

  16. Characterization and analysis of carbon fibre-reinforced polymer composite laminates with embedded circular vasculature.

    PubMed

    Huang, C-Y; Trask, R S; Bond, I P

    2010-08-01

    A study of the influence of embedded circular hollow vascules on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vascules will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vascules leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascule geometries in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vascules, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vascules ranges from 13 to 70 per cent, which correlates with vascule dimension.

  17. Thermal and ultrasonic evaluation of porosity in composite laminates

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick H.; Winfree, William P.; Long, Edward R., Jr.; Kullerd, Susan M.; Nathan, N.; Partos, Richard D.

    1992-01-01

    The effects of porosity on damage incurred by low-velocity impact are investigated. Specimens of graphite/epoxy composite were fabricated with various volume fractions of voids. The void fraction was independently determined using optical examination and acid resin digestion methods. Thermal diffusivity and ultrasonic attenuation were measured, and these results were related to the void volume fraction. The relationship between diffusivity and fiber volume fraction was also considered. The slope of the ultrasonic attenuation coefficient was found to increase linearly with void content, and the diffusivity decreased linearly with void volume fraction, after compensation for an approximately linear dependence on the fiber volume fraction.

  18. Design-Optimization Of Cylindrical, Layered Composite Structures Using Efficient Laminate Parameterization

    NASA Astrophysics Data System (ADS)

    Monicke, A.; Katajisto, H.; Leroy, M.; Petermann, N.; Kere, P.; Perillo, M.

    2012-07-01

    For many years, layered composites have proven essential for the successful design of high-performance space structures, such as launchers or satellites. A generic cylindrical composite structure for a launcher application was optimized with respect to objectives and constraints typical for space applications. The studies included the structural stability, laminate load response and failure analyses. Several types of cylinders (with and without stiffeners) were considered and optimized using different lay-up parameterizations. Results for the best designs are presented and discussed. The simulation tools, ESAComp [1] and modeFRONTIER [2], employed in the optimization loop are elucidated and their value for the optimization process is explained.

  19. Field-incidence transmission of treated orthotropic and laminated composite panels

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1983-01-01

    In an effort to improve understanding of the phenomenon of noise transmission through the sidewalls of an aircraft fuselage, an analytical model was developed for the field incidence transmission loss of an orthotropic or laminated composite infinite panel with layers of various noise insulation treatments. The model allows for four types of treatments, impervious limp septa, orthotropic trim panels, porous blankets, and air spaces, while it also takes into account the effects of forward speed. Agreement between the model and transmission loss data for treated panels is seen to be fairly good overall. In comparison with transmission loss data for untreated composite panels, excellent agreement occurred.

  20. Fatigue damage simulation of a laminated composite plate with a central hole

    NASA Astrophysics Data System (ADS)

    Lessard, Larry B.; Liu, Bangyan

    A FEM technique is here used in conjunction with a modulus-degradation model to simulate the progression of damage in a laminated composite plate, which has a central hole and is subjected to tension-tension fatigue loading, as a function of load level and number of load cycles. Analytical models are developed to predict the residual elastic moduli changes that are due to both matrix cracking and delamination. The scheme as a whole is sufficiently general for application to numerous additional problems involving fatigue-loaded composites with stress concentrations.

  1. Magnetic-Field-Induced Stress-Birefringence in Laminate Composites of Terfenol-D and Polycarbonate

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Bin; Wu, Dong; Zhang, Ning

    2013-07-01

    The laminate composites that can show the magneto-birefringence effect are suggested and fabricated by the product of magnetostriction and stress-birefringence. Under a magnetic field no stronger than 1900 Oe, a phase difference of ~3.3π is observed for a trilayer composite Tb1-xDyxFe2-y/polycarbonate/Tb1-xDyxFe2-y with a polycarbonate layer at a size of 5 × 2.75 × 20 mm3 at room temperature, resulting in a half-wave magnetic field of no greater than 270 Oe.

  2. Meshless Analysis of Laminated Composite and Sandwich Plates Subjected to Various Types of Loads

    NASA Astrophysics Data System (ADS)

    Singh, Jeeoot; Singh, Sandeep; Shukla, K. K.

    2014-03-01

    The bending analysis of laminated composite and sandwich plates using different radial basis functions and higher-order shear deformation theory is presented. This meshfree technique is insensitive to spatial dimension and considers only a cloud of nodes (centers) for the spatial discretization of both the problem domain and the boundary. Numerical results for simply supported isotropic, symmetric cross-ply composite and sandwich plate are presented. The results are compared with other available results. It is observed that convergence of the polynomial function is faster as compared to other radial basis functions, whereas Gaussian function takes the least solution time. The effect of various types of loadings on sandwich plate is presented.

  3. Buckling and Failure of Compression-Loaded Composite Laminated Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2007-01-01

    Results from a numerical and experimental study that illustrate the effects of laminate orthotropy on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of orthotropy on the overall response of compression-loaded shells is described. In general, preliminary numerical results appear to accurately predict the buckling and failure characteristics of the shell considered herein. In particular, some of the shells exhibit stable post-local-buckling behavior accompanied by interlaminar material failures near the free edges of the cutout. In contrast another shell with a different laminate stacking sequence appears to exhibit catastrophic interlaminar material failure at the onset of local buckling near the cutout and this behavior correlates well with corresponding experimental results.

  4. A refined analysis of composite laminates. [theory of statics and dynamics

    NASA Technical Reports Server (NTRS)

    Srinivas, S.

    1973-01-01

    The purpose of this paper is to develop a sufficiently accurate analysis, which is much simpler than exact three-dimensional analysis, for statics and dynamics of composite laminates. The governing differential equations and boundary conditions are derived by following a variational approach. The displacements are assumed piecewise linear across the thickness and the effects of transverse shear deformations and rotary inertia are included. A procedure for obtaining the general solution of the above governing differential equations in the form of hyperbolic-trigonometric series is given. The accuracy of the present theory is assessed by obtaining results for free vibrations and flexure of simply supported rectangular laminates and comparing them with results from exact three-dimensional analysis.

  5. Modeling the effective elastic behavior of a transversely cracked laminated composite

    SciTech Connect

    Thomas, D.J.; Wetherhold, R.C.

    1998-01-01

    The solution for the stress state present in the vicinity of transverse matrix cracks within a composite laminate is typically obtained by assuming a regular crack spacing geometry for the problem and applying a shear-lag analysis. In order to explore the validity of this underlying assumption, the probability density function for the location of the next transverse matrix crack within a crack bounded region is examined. The regular crack spacing assumption is shown to be reasonable from an engineering point of view. Continuing with this assumption, a generalized shear-lag model for multilayer, off-axis laminates subjected to full in-plane loads is developed. This model is used to quantitatively evaluate the effective elastic properties of the damaged material. The results are applicable to materials such as ceramic matrix or polymer matrix unidirectional fiber systems where damage in the form of transverse matrix cracks arises.

  6. Probabilistic fracture investigation of symmetric angle ply laminated composite plates using displacement correlation method

    NASA Astrophysics Data System (ADS)

    Lal, Achchhe; Palekar Shailesh, P.

    2016-01-01

    The second order statistics of mixed mode stress intensity factors (MSIF) of single edge V-notched angle ply laminated composite plate subjected to uniaxial tensile load with uncertinity in the system properties using displacement correlation method (DCM) is evaluated. The random system properties such as material properties, crack opening and crack length are modelled as combined uncorrelated and correlated random system variables. A C0 finite element method (FEM) based on higher order shear deformation plate theory (HSDT) is used for basic formulation. The Taylor series based first order perturbation technique (FOPT), second order perturbation technique (SOPT) are used and direct Monte Carlo simulation (MCS) is performed to evaluate the statistics (mean and coefficient of variance) of the mixed mode SIFs. The present work signifies the accurate analysis of frature behaviour by influence of different random variables and fibre orientations on the fracture behaviour in angle ply laminates.

  7. Progressive Fracture of Laminated Fiber-Reinforced Composite Stiffened Plate Under Pressure

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascalis K.; Abdi, Frank; Chamis, Christos C.; Tsouros, Konstantinos

    2007-01-01

    S-Glass/epoxy laminated fiber-reinforced composite stiffened plate structure with laminate configuration (0/90)5 was simulated to investigate damage and fracture progression, under uniform pressure. For comparison reasons a simple plate was examined, in addition with the stiffened plate. An integrated computer code was used for the simulation. The damage initiation began with matrix failure in tension, continuous with damage and/or fracture progression as a result of additional matrix failure and fiber fracture and followed by additional interply delamination. Fracture through the thickness began when the damage accumulation was 90%. After that stage, the cracks propagate rapidly and the structures collapse. The collapse load for the simple plate is 21.57 MPa (3120 psi) and for the stiffened plate 25.24 MPa (3660 psi).

  8. Moisture-heat effects on unidirectional composite laminates fracture toughness and fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Zhang, Fusheng; Pzinz, R.; Zichy, J. H.

    1993-04-01

    The heat-moisture effect on interlaminar fracture toughness of T300/914C graphite/epoxy unidirectional composite laminates is investigated under mode I opening loading witb DCB specimen. The fracture toughness in moisture-heat conditioning increases, and the glass transition temperature decreases. SEM fractographs revealed no discernible difference in the fracture surface morphology of moisture-heat and dry conditioned specimens. No fiber bridging occurs in the testing. Delamination fatigue crack growth experiments are carried out on T300/914C graphite/epoxy unidirectional laminates. It is found that the mode I cyclic crack growth rate yields a power low relationship between da/dN and the maximum cyclic strain energy release rate. The crack growth rate of the moisture-heat conditioned specimen is lower than that of the dry conditioned. The environmental effects are explained on the basis of fractography and fracture mechanisms and fracture mechanics.

  9. A fracture mechanics analysis of impact damage in a thick composite laminate

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1985-01-01

    Graphite/epoxy filament-wound cases (FWC) for the solid rocket motors of the space shuttle are being made by NASA. The FWC cases are wound with AS4W graphite fiber impregnated with an epoxy resin and are about 1.4 inches or more thick. Graphite-epoxy composite laminates, unlike metals, can be damaged easily by low velocity impacts of objects like dropped tools. The residual tension strength of the FWC laminate, after impact, is being studied at Langley Research Center. The conditions that give minimum visual evidence of damage are being emphasized. A fracture mechanics analysis was developed to predict the residual strength, after impact, using radiographs to measure the size of the damage and an equivalent surface crack to represent the damage.

  10. Post Buckling Progressive Failure Analysis of Composite Laminated Stiffened Panels

    NASA Astrophysics Data System (ADS)

    Anyfantis, Konstantinos N.; Tsouvalis, Nicholas G.

    2012-06-01

    The present work deals with the numerical prediction of the post buckling progressive and final failure response of stiffened composite panels based on structural nonlinear finite element methods. For this purpose, a progressive failure model (PFM) is developed and applied to predict the behaviour of an experimentally tested blade-stiffened panel found in the literature. Failure initiation and propagation is calculated, owing to the accumulation of the intralaminar failure modes induced in fibre reinforced composite materials. Hashin failure criteria have been employed in order to address the fiber and matrix failure modes in compression and tension. On the other hand, the Tsai-Wu failure criterion has been utilized for addressing shear failure. Failure detection is followed with the introduction of corresponding material degradation rules depending on the individual failure mechanisms. Failure initiation and failure propagation as well as the post buckling ultimate attained load have been numerically evaluated. Final failure behaviour of the simulated stiffened panel is due to sudden global failure, as concluded from comparisons between numerical and experimental results being in good agreement.

  11. Multimode model based defect characterization in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.; Gregory, E.

    2016-02-01

    A newly-initiated research program for model-based defect characterization in CFRP composites is summarized. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing delamination and porosity. Forward predictions of measurement response are presented, as well as examples of model-based inversion of measured data for the estimation of defect parameters.

  12. Multi-objective selection and optimization of shaped materials and laminated composites

    NASA Astrophysics Data System (ADS)

    Singh, Jasveer

    Most of the current optimization techniques for the design of light-weight structures are unable to generate structural alternatives at the concept stage of design. This research tackles the challenge of developing methods for the early stage of design involving structures made up of conventional materials and composite laminates. For conventional materials, the recently introduced shape transformer approach is used. This work extends the method to deal with the case of torsional stiffness design, and generalizes it to single and multi-criteria selection of lightweight shafts subjected to a combination of bending, shear, and torsional load. The prominent feature of the work is the useful integration of shape and material to model and visualize multi-objective selection problems. The scheme is centered on concept selection in structural design, and hinges on measures that govern the shape properties of a cross-section regardless of its size. These measures, referred to as shape transformers, can classify shapes in a way similar to material classification. The procedure is demonstrated by considering torsional stiffness as a constraint. Performance charts are developed for both single and multi-criteria cases to let the reader visualize in a glance the whole range of cross-sectional shapes for each material. Each design chart is explained with a brief example. The above mentioned approach is also extended to incorporate orthotropic composite laminates. Design charts are obtained for the selection of five generic design variables: shape, size, material, layup, and number of plies. These charts also aid in comparing the performances of two commonly used laminates in bending and torsion - angle plies and cross plies. For a generic composite laminate, due to the number of variables involved, these kinds of design charts are very difficult. However, other tactics like using an analytical model for function evaluation can be used at conceptual stage of design. This is

  13. Impedance-Based Structural Health Monitoring for Composite Laminates at Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Tseng, Kevin

    2003-01-01

    One of the important ways of increasing the payload in a reusable launch vehicle (RLV) is to replace heavy metallic materials by lightweight composite laminates. Among various parts and systems of the RLV, this project focuses on tanks containing cryogenic fuel. Historically, aluminum alloys have been used as the materials to construct fuel tanks for launch vehicles. To replace aluminum alloys with composite laminates or honeycomb materials, engineers have to make sure that the composites are free of defects before, during, and after launch. In addition to robust design and manufacturing procedures, the performance of the composite structures needs to be monitored constantly.In recent years, the impedance-based health monitoring technique has shown its promise in many applications. This technique makes use of the special properties of smart piezoelectric materials to identify the change of material properties due to the nucleation and progression of damage. The piezoceramic patch serves as a sensor and an actuator simultaneously. The piezoelectric patch is bonded onto an existing structure or embedded into a new structure and electrically excited at high frequencies. The signature (impedance or admittance) is extracted as a function of the exciting frequency and is compared with the baseline signature of the healthy state. The damage is quantified using root mean square deviation (RMSD) in the impedance signatures with respect to the baseline signature. A major advantage of this technique is that the procedure is nondestructive in nature and does not perturb the properties and performance of the materials and structures. This project aims at applying the impedance-based nondestructive testing technique to the damage identification of composite laminates at cryogenic temperature.

  14. Ultrasonic and mechanical characterizations of fatigue states of graphite epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Yuce, H.; Lee, S. S.

    1982-01-01

    Eight-ply (0, + or - 45, 0)s laminates of Hercules AS/3501-6 graphite epoxy composite are fabricated using various cure pressures ranging from 0.52 to 0.86 MPa and cure temperatures ranging from 150 C to 200 C. In general, the minimum composite void volume fraction is obtained at a cure temperature of 175 C and a cure pressure of 0.86 MPa, or at 200 C and 0.86 MPa. The ultrasonic attenuation at 4 MHz was found to correlate with the composite void volume fraction. Composite specimens were tested in flexural fatigue. Beyond 10,000 fatigue cycles, the ultrasonic attenuation at 4 MHz was found to increase and the flexural stiffness was found to decrease. The ultrasonic attenuation at 4 MHz of the as-fabricated composite can be correlated with the number of fatigue cycles to failure.

  15. A New Merit Function for Evaluating the Flaw Tolerance of Composite Laminates. Part 2; Arbitrary Size Holes and Center Cracks

    NASA Technical Reports Server (NTRS)

    Martin, Mikulas M., Jr.; Sumpter, Rod

    2000-01-01

    In a previous paper, a new merit function for determining the strength performance of flawed composite laminates was presented. This previous analysis was restricted to circular hole flaws that were large enough that failure could be predicted using the laminate stress concentration factor. In this paper, the merit function is expanded to include the flaw cases of an arbitrary size circular hole or center crack. Failure prediction for these cases is determined using the point stress criterion. An example application of the merit function is included for a wide range of graphite/epoxy laminates.

  16. Analysis of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners

    NASA Astrophysics Data System (ADS)

    Modak, Partha; Hossain, M. Jamil; Ahmed, S. Reaz

    2016-07-01

    An accurate stress analysis has been carried out to investigate the suitability of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners. Three different balanced laminates composed of dissimilar ply material as well as fiber orientations are considered for a thick beam on simple supports with stiffened lateral ends. A displacement potential based elasticity approach is used to obtain the numerical solution of the corresponding elastic fields. The overall laminate stresses as well as individual ply stresses are analysed mainly in the perspective of laminate hybridization. Both the fiber material and ply angle of individual laminas are found to play dominant roles in defining the design stresses of the present composite beam.

  17. Simple Formulas and Results for Buckling-Resistance and Stiffness Design of Compression-Loaded Laminated-Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Mikulas, Martin M., Jr.

    2009-01-01

    Simple formulas for the buckling stress of homogeneous, specially orthotropic, laminated-composite cylinders are presented. The formulas are obtained by using nondimensional parameters and equations that facilitate general validation, and are validated against the exact solution for a wide range of cylinder geometries and laminate constructions. Results are presented that establish the ranges of the nondimensional parameters and coefficients used. General results, given in terms of the nondimensional parameters, are presented that encompass a wide range of geometries and laminate constructions. These general results also illustrate a wide spectrum of behavioral trends. Design-oriented results are also presented that provide a simple, clear indication of laminate composition on critical stress, critical strain, and axial stiffness. An example is provided to demonstrate the application of these results to thin-walled column designs.

  18. Design guidelines for high dimensional stability of CFRP optical bench

    NASA Astrophysics Data System (ADS)

    Desnoyers, Nichola; Boucher, Marc-André; Goyette, Philippe

    2013-09-01

    In carbon fiber reinforced plastic (CFRP) optomechanical structures, particularly when embodying reflective optics, angular stability is critical. Angular stability or warping stability is greatly affected by moisture absorption and thermal gradients. Unfortunately, it is impossible to achieve the perfect laminate and there will always be manufacturing errors in trying to reach a quasi-iso laminate. Some errors, such as those related to the angular position of each ply and the facesheet parallelism (for a bench) can be easily monitored in order to control the stability more adequately. This paper presents warping experiments and finite-element analyses (FEA) obtained from typical optomechanical sandwich structures. Experiments were done using a thermal vacuum chamber to cycle the structures from -40°C to 50°C. Moisture desorption tests were also performed for a number of specific configurations. The selected composite material for the study is the unidirectional prepreg from Tencate M55J/TC410. M55J is a high modulus fiber and TC410 is a new-generation cyanate ester designed for dimensionally stable optical benches. In the studied cases, the main contributors were found to be: the ply angular errors, laminate in-plane parallelism (between 0° ply direction of both facesheets), fiber volume fraction tolerance and joints. Final results show that some tested configurations demonstrated good warping stability. FEA and measurements are in good agreement despite the fact that some defects or fabrication errors remain unpredictable. Design guidelines to maximize the warping stability by taking into account the main dimensional stability contributors, the bench geometry and the optical mount interface are then proposed.

  19. Dynamic Response of a Stiffened Laminated Composite Plate Subjected to Blast Load

    NASA Astrophysics Data System (ADS)

    Türkmen, H. S.; Mecitoğlu, Z.

    1999-04-01

    This paper is concerned with the experimental and numerical study of stiffened laminated composite plates exposed to a normal blast shock wave. For this purpose a detonation is developed from the reaction of LPG-O2mixtures in a long circular cylindrical shock tube. The detonation wave goes through into the atmosphere from the open end of the shock tube and acts as a blast load on the stiffened laminated composite plate which is placed in front of the detonation tube. Mounting of the target plate on a steel frame is designed with the object of providing clamped boundary conditions. The air blast pressure distribution is obtained by the use of quartz crystal pressure transducers placed on the wooden model. Strains are measured at the different points on the stiffened laminated composite plate and stiffener. In the experiment and analysis two different load cases are examined. Furthermore, a finite element modelling and analysis of the blast loaded stiffened composite plate are presented and the numerical results are compared with the experimental ones. An agreement is found between the experimental and finite element results in both linear and non-linear ranges. A good prediction is performed for the peak strain in the plate. However a discrepancy is shown between the measured and predicted strains on the stiffener because of the adhesive layer between the plate and stiffener. Prediction of the response frequency that has a great importance in the dynamic phenomena correlates well with the experimental results. The effects of stiffener and loading conditions on the dynamic behavior are examined. Large deformation effects are taken into account for the second loading condition.

  20. Static and dynamic strain energy release rates in toughened thermosetting composite laminates

    NASA Technical Reports Server (NTRS)

    Cairns, Douglas S.

    1992-01-01

    In this work, the static and dynamic fracture properties of several thermosetting resin based composite laminates are presented. Two classes of materials are explored. These are homogeneous, thermosetting resins and toughened, multi-phase, thermosetting resin systems. Multi-phase resin materials have shown enhancement over homogenous materials with respect to damage resistance. The development of new dynamic tests are presented for composite laminates based on Width Tapered Double Cantilevered Beam (WTDCB) for Mode 1 fracture and the End Notched Flexure (ENF) specimen. The WTDCB sample was loaded via a low inertia, pneumatic cylinder to produce rapid cross-head displacements. A high rate, piezo-electric load cell and an accelerometer were mounted on the specimen. A digital oscilloscope was used for data acquisition. Typical static and dynamic load versus displacement plots are presented. The ENF specimen was impacted in three point bending with an instrumented impact tower. Fracture initiation and propagation energies under static and dynamic conditions were determined analytically and experimentally. The test results for Mode 1 fracture are relatively insensitive to strain rate effects for the laminates tested in this study. The test results from Mode 2 fracture indicate that the toughened systems provide superior fracture initiation and higher resistance to propagation under dynamic conditions. While the static fracture properties of the homogeneous systems may be relatively high, the apparent Mode 2 dynamic critical strain energy release rate drops significantly. The results indicate that static Mode 2 fracture testing is inadequate for determining the fracture performance of composite structures subjected to conditions such as low velocity impact. A good correlation between the basic Mode 2 dynamic fracture properties and the performance is a combined material/structural Compression After Impact (CAI) test is found. These results underscore the importance of

  1. NDT evaluation of long-term bond durability of CFRP-structural systems applied to RC highway bridges

    NASA Astrophysics Data System (ADS)

    Crawford, Kenneth C.

    2016-06-01

    The long-term durability of CFRP structural systems applied to reinforced-concrete (RC) highway bridges is a function of the system bond behavior over time. The sustained structural load performance of strengthened bridges depends on the carbon fiber-reinforced polymer (CFRP) laminates remaining 100 % bonded to concrete bridge members. Periodic testing of the CFRP-concrete bond condition is necessary to sustain load performance. The objective of this paper is to present a non-destructive testing (NDT) method designed to evaluate the bond condition and long-term durability of CFRP laminate (plate) systems applied to RC highway bridges. Using the impact-echo principle, a mobile mechanical device using light impact hammers moving along the length of a bonded CFRP plate produces unique acoustic frequencies which are a function of existing CFRP plate-concrete bond conditions. The purpose of this method is to test and locate CFRP plates de-bonded from bridge structural members to identify associated deterioration in bridge load performance. Laboratory tests of this NDT device on a CFRP plate bonded to concrete with staged voids (de-laminations) produced different frequencies for bonded and de-bonded areas of the plate. The spectra (bands) of frequencies obtained in these tests show a correlation to the CFRP-concrete bond condition and identify bonded and de-bonded areas of the plate. The results of these tests indicate that this NDT impact machine, with design improvements, can potentially provide bridge engineers a means to rapidly evaluate long lengths of CFRP laminates applied to multiple highway bridges within a national transportation infrastructure.

  2. A Numerical and Experimental Study of Damage Growth in a Composite Laminate

    NASA Technical Reports Server (NTRS)

    McElroy, Mark; Ratcliffe, James; Czabaj, Michael; Wang, John; Yuan, Fuh-Gwo

    2014-01-01

    The present study has three goals: (1) perform an experiment where a simple laminate damage process can be characterized in high detail; (2) evaluate the performance of existing commercially available laminate damage simulation tools by modeling the experiment; (3) observe and understand the underlying physics of damage in a composite honeycomb sandwich structure subjected to low-velocity impact. A quasi-static indentation experiment has been devised to provide detailed information about a simple mixed-mode damage growth process. The test specimens consist of an aluminum honeycomb core with a cross-ply laminate facesheet supported on a stiff uniform surface. When the sample is subjected to an indentation load, the honeycomb core provides support to the facesheet resulting in a gradual and stable damage growth process in the skin. This enables real time observation as a matrix crack forms, propagates through a ply, and then causes a delamination. Finite element analyses were conducted in ABAQUS/Explicit(TradeMark) 6.13 that used continuum and cohesive modeling techniques to simulate facesheet damage and a geometric and material nonlinear model to simulate core crushing. The high fidelity of the experimental data allows a detailed investigation and discussion of the accuracy of each numerical modeling approach.

  3. The Effect of Delamination on Damage Path and Failure Load Prediction for Notched Composite Laminates

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Chunchu, Prasad B.

    2007-01-01

    The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations.

  4. Response of laminated composite plates to low-speed impact by different impactors

    NASA Technical Reports Server (NTRS)

    Prasad, Chunchu; Ambur, Damodar R.; Starnes, James H.

    1994-01-01

    An analytic procedure has been developed to determine the transient response of simply supported, retangular laminated composite plates subjected to impact loads from airgun-propelled or drop-weight impactors. A first-order shear deformation theory has been included in the analysis to represent properly any local short-wavelength transient bending response. The impact force has been modeled as a locally distributed load with cosine-cosine distribution. A double Fourier series expansion and the Timoshenko small increment method have been used to determine the contact force, out-of-plane deflections, and in-plane strains and stresses at any plate location due to an impact force at any plate location. The results of experimental and analytical studies are compared for quasi-isotropic laminates. The results indicate the importance of including transverse shear deformation effects in the analysis for predicting the response of laminated plates subjected to both airgun-propelled and dropped-weight impactors. The results also indicate that plate boundary conditions influence the axial strains more significantly than the contact force for a dropped-weight impactor. The results of parametric studies identify a scaling approach based on impactor momentum that may account for the differences in the responses of plates impacted by airgun-propelled or dropped-weight impactors.

  5. Damage Model and Progressive Failure Analyses for Filament Wound Composite Laminates

    NASA Astrophysics Data System (ADS)

    Ribeiro, Marcelo Leite; Vandepitte, Dirk; Tita, Volnei

    2013-10-01

    Recent improvements in manufacturing processes and materials properties associated with excellent mechanical characteristics and low weight have made composite materials very attractive for application on civil aircraft structures. However, even new designs are still very conservative, because the composite failure phenomenon is very complex. Several failure criteria and theories have been developed to describe the damage process and how it evolves, but the solution of the problem is still open. Moreover, modern filament winding techniques have been used to produce a wide variety of structural shapes not only cylindrical parts, but also “flat” laminates. Therefore, this work presents the development of a damage model and its application to simulate the progressive failure of flat composite laminates made using a filament winding process. The damage model was implemented as a UMAT (User Material Subroutine), in ABAQUSTM Finite Element (FE) framework. Progressive failure analyses were carried out using FE simulation in order to simulate the failure of flat filament wound composite structures under different loading conditions. In addition, experimental tests were performed in order to identify parameters related to the material model, as well as to evaluate both the potential and the limitations of the model. The difference between numerical and the average experimental results in a four point bending set-up is only 1.6 % at maximum load amplitude. Another important issue is that the model parameters are not so complicated to be identified. This characteristic makes this model very attractive to be applied in an industrial environment.

  6. A review of failure models for ceramic matrix composite laminates under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  7. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  8. Phased array beamforming and imaging in composite laminates using guided waves

    NASA Astrophysics Data System (ADS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-04-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple simulated defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple simulated defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  9. Development and verification of global/local analysis techniques for laminated composites

    NASA Technical Reports Server (NTRS)

    Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.

    1991-01-01

    A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.

  10. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  11. Optimal cure cycle design for autoclave processing of thick composites laminates: A feasibility study

    NASA Technical Reports Server (NTRS)

    Hou, Jean W.

    1985-01-01

    The thermal analysis and the calculation of thermal sensitivity of a cure cycle in autoclave processing of thick composite laminates were studied. A finite element program for the thermal analysis and design derivatives calculation for temperature distribution and the degree of cure was developed and verified. It was found that the direct differentiation was the best approach for the thermal design sensitivity analysis. In addition, the approach of the direct differentiation provided time histories of design derivatives which are of great value to the cure cycle designers. The approach of direct differentiation is to be used for further study, i.e., the optimal cycle design.

  12. Development of design allowable data for Celion 6000/LARC-160, graphite/polyimide composite laminates

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.; Scanlan, P. R.; Rosen, C. D.

    1982-01-01

    A design allowables test program was conducted on Celion 6000/LARC-160 graphite polyimide composite to establish material performance over a 116 K (-250 F) to 589 K (600 F) temperature range. Tension, compression, in-plane shear and short beam shear properties were determined for uniaxial, quasi-isotropic and + or - 45 deg laminates. Effects of thermal aging and moisture saturation on mechanical properties were also evaluated. Celion 6000/LARC-160 graphite/polyimide can be considered an acceptable material system for structural applications to 589 K (600 F).

  13. LOW VELOCITY IMPACT RESPONSE OF A LAMINATED COMPOSITE TUBE WITH A METALLIC BUMPER LAYER

    SciTech Connect

    Ibekwe, S.I.; Li, G.; Pang, S.S.; and Smith, B. H.

    2006-07-01

    A thin metallic sheet was bonded to the outer surface of a laminated composite curved beam as a bumper layer. It was believed that a metallic bumper layer such as an aluminum thin sheet would be able to intercept any lateral impacting force and absorb impact energy through plastic deformation. Since aluminum is comparatively light weight, a thin sheet will not result in a significant increase in structural weight. Results showed that impact damage occurred primarily in the bumper layer, thereby resulting in a much higher residual bending strength compared to the control specimen.

  14. A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.

    2008-01-01

    A variable fidelity, multiscale, physics based finite element procedure for predicting progressive damage and failure of laminated continuous fiber reinforced composites is introduced. At every integration point in a finite element model, progressive damage is accounted for at the lamina-level using thermodynamically based Schapery Theory. Separate failure criteria are applied at either the global-scale or the microscale in two different FEM models. A micromechanics model, the Generalized Method of Cells, is used to evaluate failure criteria at the micro-level. The stress-strain behavior and observed failure mechanisms are compared with experimental results for both models.

  15. Nonlinear dynamic response of laminated composite plates subjected to pulse loading

    NASA Astrophysics Data System (ADS)

    Upadhyay, A. K.; Pandey, Ramesh; Shukla, K. K.

    2011-11-01

    An analytical solution methodology for the non-linear dynamic displacement response of laminated composite plates subjected to different types of pulse loading is presented. The mathematical formulation is based on third-order shear deformation plate theory and von-Karman non-linear kinematics. Fast-converging finite double Chebyshev series is employed for evaluating the displacement response. Houbolt time marching scheme is used for temporal discretization and quadratic extrapolation technique is used for linearization. The effects of magnitude and duration of the pulse load, boundary conditions and plate parameters on the central displacement and bending moment responses are studied.

  16. Effect of membrane stiffening in transient impact analysis of composite laminated plates

    NASA Astrophysics Data System (ADS)

    Matsuhashi, Hiroto; Graves, Michael J.; Dugundji, John; Lagace, Paul A.

    1993-04-01

    An impacted plate response model was developed for composite laminated plates, based on energy equations derived by applying geometrical nonlinearity in strain-displacement relations, and using the Lagrangian equations of motion and the Rayleigh-Ritz method in conjunction with assumed mode shapes. The resulting system of second-order nonlinear differential equations with respect to time was solved using the fourth-order Runge-Kutta numerical time integration scheme, to produce a transient response in terms of force-time and displacement-time histories at the point of impact. A comparison of the analysis with the experimental data demonstrated good correlation, especially for the primary frequency response.

  17. An analytical method for vibration of laminated composite rectangular plates having arbitrary combinations of boundary conditions

    NASA Astrophysics Data System (ADS)

    Narita, Y.

    This work presents a method of analysis for solving the free vibration of symmetrically laminated composite rectangular plates having any combination of free, simply supported and clamped edges along four sides. This approach uses a Ritz method for the energy functional, and trial functions used for deflections are introduced so as to automatically include geometric boundary conditions for a prescribed boundary. A computer code was developed to calculate natural frequencies and mode shapes for the problem, and was used to demonstrate the effectiveness and accuracy of the present approach.

  18. Finite strip analysis of anisotropic laminated composite plates using higher-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Akhras, G.; Cheung, M. S.; Li, W.

    1994-08-01

    In the present study, a finite strip method for the elastic analysis of anisotropic laminated composite plates is developed according to higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. In comparison with the finite strip method based on first-order shear deformation theory, the present method gives improved results while using approximately the same number of degrees of freedom. It also eliminates the need for shear correction factors in calculating the transverse shear stiffness.

  19. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  20. A low cost method of testing compression-after-impact strength of composite laminates

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.

    1991-01-01

    A method was devised to test the compression strength of composite laminate specimens that are much thinner and wider than other tests require. The specimen can be up to 7.62 cm (3 in) wide and as thin as 1.02 mm (.04 in). The best features of the Illinois Institute of Technology Research Institute (IITRI) fixture are combined with an antibuckling jig developed and used at the University of Dayton Research Institute to obtain a method of compression testing thin, wide test coupons on any 20 kip (or larger) loading frame. Up to 83 pct. less composite material is needed for the test coupons compared to the most commonly used compression-after-impact (CAI) tests, which calls for 48 ply thick (approx. 6.12 mm) test coupons. Another advantage of the new method is that composite coupons of the exact lay-up and thickness of production parts can be tested for CAI strength, thus yielding more meaningful results. This new method was used to compression test 8 and 16 ply laminates of T300/934 carbon/epoxy. These results were compared to those obtained using ASTM standard D 3410-87 (Celanese compression test). CAI testing was performed on IM6/3501-6, IM7/SP500 and IM7/F3900. The new test method and associated fixture work well and is a valuable asset to MSFC's damage tolerance program.

  1. Use of Brazilian disk test to determine properties of metallic-intermetallic laminate composites

    NASA Astrophysics Data System (ADS)

    Jiang, Fengchun; Kulin, Robb M.; Vecchio, Kenneth S.

    2010-01-01

    Metallic-intermetallic laminate (MIL) composites based on Ti-Al3Ti offer a unique combination of structural and ballistic/blast performance capabilities for many defense related platforms. In this study, the Brazilian splitting test was employed, under quasi-static and dynamic loading conditions, using disk specimens cut from the laminate plates in orientations perpendicular (in-plane) and parallel (through-thickness) to the layers. Tests were conducted to evaluate the overall tensile mechanical properties of the Ti-Al3Ti MIL composite, both to determine in-plane tensile properties, as well as the more challenging through-thickness tensile properties. Experimental results indicate that when loaded parallel to the layers, the tensile strength in the through-thickness orientation, determined by Brazilian splitting test, is low, which is not surprising since it is only evaluating the tensile behavior of the brittle intermetallic phase. When loaded perpendicular to the layers, the in-plane tensile strength of the Ti-Al3Ti MIL composites is high due to the contribution of the reinforcement Ti plus the intermetallic component.

  2. Simultaneous Application of Fibrous Piezoresistive Sensors for Compression and Traction Detection in Glass Laminate Composites

    PubMed Central

    Nauman, Saad; Cristian, Irina; Koncar, Vladan

    2011-01-01

    This article describes further development of a novel Non Destructive Evaluation (NDE) approach described in one of our previous papers. Here these sensors have been used for the first time as a Piecewise Continuous System (PCS), which means that they are not only capable of following the deformation pattern but can also detect distinctive fracture events. In order to characterize the simultaneous compression and traction response of these sensors, multilayer glass laminate composite samples were prepared for 3-point bending tests. The laminate sample consisted of five layers of plain woven glass fabrics placed one over another. The sensors were placed at two strategic locations during the lay-up process so as to follow traction and compression separately. The reinforcements were then impregnated in epoxy resin and later subjected to 3-point bending tests. An appropriate data treatment and recording device has also been developed and used for simultaneous data acquisition from the two sensors. The results obtained, under standard testing conditions have shown that our textile fibrous sensors can not only be used for simultaneous detection of compression and traction in composite parts for on-line structural health monitoring but their sensitivity and carefully chosen location inside the composite ensures that each fracture event is indicated in real time by the output signal of the sensor. PMID:22163707

  3. Mathematical Modeling of Three-Dimensional Delamination Processes of Laminated Composites

    NASA Astrophysics Data System (ADS)

    Gasser, Thomas C.; Holzapfel, Gerhard A.

    The mathematical modeling of 3D delamination failure of laminated composites is discussed. Strong discontinuities are considered in the kinematically framework, which provides the basis for the embedded representation of discontinuities in finite elements. Suitable expressions for a transversely isotropic traction law in form of a displacement-energy function are derived to describe the constitutive response of the interface of laminated composites. Softening phenomena of interfaces are modeled by an isotropic damage law, while the continuous bulk material is modeled as an elastic fiber-reinforced composite. The variational formulation is based on a three-field Hu-Washizu functional which is accompanied with the enhanced assumed strain method. Three different finite element formulations are delineated. A biomechanical example investigates the dissection of the middle layer of a healthy artery, and compares the numerical results of the different finite element formulations obtained from regular and distorted meshes. Soft tissue dissection occurs, for example, during balloon angioplasty, which is a mechanical procedure frequently performed to reduce the severity of atherosclerotic stenoses. Physical and numerical analyses of delamination processes are of pressing scientific and clinical need.

  4. Nonlinear magnetoelectric behavior of Terfenol-D/PZT-5A laminate composites

    NASA Astrophysics Data System (ADS)

    Wang, Yezuo; Atulasimha, Jayasimha; Prasoon, Ruchir

    2010-12-01

    In this paper, a comprehensive experimental study and modeling of the nonlinear behavior of Terfenol-D/PZT-5A magnetoelectric laminate composites is reported. Magnetostriction versus magnetic field of an individual Terfenol-D sample of dimensions length = 22 mm, width = 19 mm, thickness = 0.683 mm, and polarization versus electric field as well as strain versus electric field of an individual PZT-5A sample of dimensions length = 22 mm, width = 19 mm, thickness = 0.127 mm were characterized. These samples were bonded to form a symmetric PZT-5A/Terfenol-D/PZT-5A laminate composite to avoid bending-extension coupling. Electric response of this composite to magnetic input was comprehensively characterized to include major loop and minor loop behavior. A modeling approach that structurally couples the nonlinear magnetostrictive Terfenol-D behavior and linear PZT-5A behavior to predict the magnetoelectric response was developed and validated against experimental results. This analysis, with further refinements, could prove to be a useful tool to model and design magnetoelectric sensors.

  5. Simultaneous application of fibrous piezoresistive sensors for compression and traction detection in glass laminate composites.

    PubMed

    Nauman, Saad; Cristian, Irina; Koncar, Vladan

    2011-01-01

    This article describes further development of a novel Non Destructive Evaluation (NDE) approach described in one of our previous papers. Here these sensors have been used for the first time as a Piecewise Continuous System (PCS), which means that they are not only capable of following the deformation pattern but can also detect distinctive fracture events. In order to characterize the simultaneous compression and traction response of these sensors, multilayer glass laminate composite samples were prepared for 3-point bending tests. The laminate sample consisted of five layers of plain woven glass fabrics placed one over another. The sensors were placed at two strategic locations during the lay-up process so as to follow traction and compression separately. The reinforcements were then impregnated in epoxy resin and later subjected to 3-point bending tests. An appropriate data treatment and recording device has also been developed and used for simultaneous data acquisition from the two sensors. The results obtained, under standard testing conditions have shown that our textile fibrous sensors can not only be used for simultaneous detection of compression and traction in composite parts for on-line structural health monitoring but their sensitivity and carefully chosen location inside the composite ensures that each fracture event is indicated in real time by the output signal of the sensor. PMID:22163707

  6. Novel MRE/CFRP sandwich structures for adaptive vibration control

    NASA Astrophysics Data System (ADS)

    Kozlowska, J.; Boczkowska, A.; Czulak, A.; Przybyszewski, B.; Holeczek, K.; Stanik, R.; Gude, M.

    2016-03-01

    The aim of this work was the development of sandwich structures formed by embedding magnetorheological elastomers (MRE) between constrained layers of carbon fibre-reinforced plastic (CFRP) laminates. The MREs were obtained by mechanical stirring of a reactive mixture of substrates with carbonyl-iron particles, followed by orienting the particles into chains under an external magnetic field. Samples with particle volume fractions of 11.5% and 33% were examined. The CFRP/MRE sandwich structures were obtained by compressing MREs samples between two CFRP laminates composed. The used A.S.SET resin was in powder form and the curing process was carried out during pressing with MRE. The microstructure of the manufactured sandwich beams was inspected using SEM. Moreover, the rheological and damping properties of the examined materials with and without a magnetic field were experimentally investigated. In addition, the free vibration responses of the adaptive three-layered MR beams were studied at different fixed magnetic field levels. The free vibration tests revealed that an applied non-homogeneous magnetic field causes a shift in natural frequency values and a reduction in the vibration amplitudes of the CFRP/MRE adaptive beams. The reduction in vibration amplitude was attributed mainly to the stiffening effect of the MRE core and only a minor contribution was made by the enhanced damping capacity, which was evidenced by the variation in damping ratio values.

  7. Effects of edge grinding and sealing on mechanical properties of machine damaged laminate composites

    NASA Astrophysics Data System (ADS)

    Asmatulu, Ramazan; Yeoh, Jason; Alarifi, Ibrahim M.; Alharbi, Abdulaziz

    2016-04-01

    Fiber reinforced composites have been utilized for a number of different applications, including aircraft, wind turbine, automobile, construction, manufacturing, and many other industries. During the fabrication, machining (waterjet, diamond and band saws) and assembly of these laminate composites, various edge and hole delamination, fiber pullout and other micro and nanocracks can be formed on the composite panels. The present study mainly focuses on the edge grinding and sealing of the machine damaged fiber reinforced composites, such as fiberglass, plain weave carbon fiber and unidirectional carbon fiber. The MTS tensile test results confirmed that the composite coupons from the grinding process usually produced better and consistent mechanical properties compared to the waterjet cut samples only. In addition to these studies, different types of high strength adhesives, such as EPON 828 and Loctite were applied on the edges of the prepared composite coupons and cured under vacuum. The mechanical tests conducted on these coupons indicated that the overall mechanical properties of the composite coupons were further improved. These processes can lower the labor costs on the edge treatment of the composites and useful for different industrial applications of fiber reinforced composites.

  8. Fracture and crack growth in orthotropic laminates. Part 2: Experimental determination of internal damage growth in unidirectional boron/aluminum composite laminates

    NASA Technical Reports Server (NTRS)

    Goree, J. G.

    1982-01-01

    The fracture behavior of unidirectional boron/aluminum composite laminates is investigated in order to verify the results of mathematical models. These models predict the stresses and displacements of fibers and the amount of damage growth in a center-notched lamina as a function of the applied remote stress and the matrix and fiber material properties. The damage may take the form of longitudinal yielding and splitting in the matrix as well as stable transverse damage consisting of broken fibers and matrix yielding ahead of the notch. A brittle lacquer coating is used to detect the yielding in the matrix while X-ray techniques are used to detemine the number of broken fibers in the laminate. The notched strengths and the amounts of damage found in the experimental specimens agree well with those predicted by the mathematical model.

  9. Magnetodielectric effect and electric-induced magnetic permeability in magnetoelectric laminate composite under low inspiring signal

    NASA Astrophysics Data System (ADS)

    Zhou, Jian-Ping; Zhang, Yu-Xiang; Zhang, Guang-Bin; Liu, Peng

    2013-01-01

    A theory based on equivalent circuit was proposed to demonstrate that magnetodielectric (MDE) effect and electric-induced magnetic permeability (EIMP) exist in the magnetoelectric composite. Both MDE and EIMP are sensitive to the amplitude of inspiring signal. They were researched in a simple Pb(Zr,Ti)O3/Terfenol-D laminate composite experimentally. A large MDE coefficient over 85% was found near the resonance frequency under a low magnetic field of 40 Oe. The EIMP was also observed in the composite. They are mainly originated from the magnetoelectric coupling between the piezoelectric and magnetostrictive components. These results are significant in the device applications of modulating dielectric constant and magnetic permeability at room temperature.

  10. Micro-Macro Analysis of Viscoelastic Unidirectional Laminated Composite Plates Using DR Method

    NASA Astrophysics Data System (ADS)

    Falahatgar, Seyed Reza; Salehi, Manouchehr; Aghdam, Mohammad Mohammadi

    2010-10-01

    The Dynamic Relaxation (DR) technique together with finite difference discritization is used to study the bending behavior of Mindlin composite plate including geometric nonlinearity. The overall behavior of the unidirectional composite is obtained from a three-dimensional (3D) micromechanical model, in any combination of normal and shear loading conditions, based on the assumptions of Simplified Unit Cell Method (SUCM). The composite system consists of nonlinear viscoelastic matrix reinforced by transversely isotropic elastic fibers. A recursive formulation for the hereditary integral of the Schapery viscoelastic constitutive equation in multiaxial stress state is used to model the nonlinear viscoelastic matrix material in the material level. The creep tests data is used for verification of the predicted response of the current approach. Under uniform lateral pressure, the laminated plate deformation with clamped and hinged edged constraints is predicted for various time steps.

  11. Application of the Refined Zigzag Theory to the Modeling of Delaminations in Laminated Composites

    NASA Technical Reports Server (NTRS)

    Groh, Rainer M. J.; Weaver, Paul M.; Tessler, Alexander

    2015-01-01

    The Refined Zigzag Theory is applied to the modeling of delaminations in laminated composites. The commonly used cohesive zone approach is adapted for use within a continuum mechanics model, and then used to predict the onset and propagation of delamination in five cross-ply composite beams. The resin-rich area between individual composite plies is modeled explicitly using thin, discrete layers with isotropic material properties. A damage model is applied to these resin-rich layers to enable tracking of delamination propagation. The displacement jump across the damaged interfacial resin layer is captured using the zigzag function of the Refined Zigzag Theory. The overall model predicts the initiation of delamination to within 8% compared to experimental results and the load drop after propagation is represented accurately.

  12. Thermal expansion of laminated, woven, continuous ceramic fiber/chemical-vapor-infiltrated silicon carbide matrix composites

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Bradt, Richard C.

    1990-01-01

    Thermal expansions of three two-dimensional laminate, continuous fiber/chemical-vapor-infiltrated silicon carbide matrix composites reinforced with either FP-Alumina (alumina), Nextel (mullite), or Nicalon (Si-C-O-N) fibers are reported. Experimental thermal expansion coefficients parallel to a primary fiber orientation were comparable to values calculated by the conventional rule-of-mixtures formula, except for the alumina fiber composite. Hysteresis effects were also observed during repeated thermal cycling of that composite. Those features were attributed to reoccurring fiber/matrix separation related to the micromechanical stresses generated during temperature changes and caused by the large thermal expansion mismatch between the alumina fibers and the silicon carbide matrix.

  13. Mechanically fastened composite laminates subjected to combined bearing-bypass and shear loading

    NASA Technical Reports Server (NTRS)

    Madenci, Erdogan

    1993-01-01

    Bolts and rivets provide a means of load transfer in the construction of aircraft. However, they give rise to stress concentrations and are often the source and location of static and fatigue failures. Furthermore, fastener holes are prone to cracks during take-off and landing. These cracks present the most common origin of structural failures in aircraft. Therefore, accurate determination of the contact stresses associated with such loaded holes in mechanically fastened joints is essential to reliable strength evaluation and failure prediction. As the laminate is subjected to loading, the contact region, whose extent is not known, develops between the fastener and the hole boundary through this contact region, which consists of slip and no-slip zones due to friction. The presence of the unknown contact stress distribution over the contact region between the pin and the composite laminate, material anisotropy, friction between the pin and the laminate, pin-hole clearance, combined bearing-bypass and shear loading, and finite geometry of the laminate result in a complex non-linear problem. In the case of bearing-bypass loading in compression, this non-linear problem is further complicated by the presence of dual contact regions. Previous research concerning the analysis of mechanical joints subjected to combined bearing-bypass and shear loading is non-existent. In the case of bearing-bypass loading only, except for the study conducted by Naik and Crews (1991), others employed the concept of superposition which is not valid for this non-linear problem. Naik and Crews applied a linear finite element analysis with conditions along the pin-hole contact region specified as displacement constraint equations. The major shortcoming of this method is that the variation of the contract region as a function of the applied load should be known a priori. Also, their analysis is limited to symmetric geometry and material systems, and frictionless boundary conditions. Since the

  14. Characterization and modeling of viscoelastic composite laminates with nonisothermal physical aging

    NASA Astrophysics Data System (ADS)

    Bradshaw, Roger Dean

    Advanced fiber-reinforced composite materials are often used at temperatures that lead to time-dependent material behavior; such behavior must be understood and accounted for to ensure adequate design. This dissertation considers the time-dependence caused by physical aging, which is the evolution towards the equilibrium state in glassy solids, and its effect upon the mechanical response of a viscoelastic composite laminate. A predictive methodology is presented to determine the laminate stress-strain response to a general loading function during an arbitrary time-temperature history. This characterization assumes that the material is thermorheologically simple, that it remains linear viscoelastic, and that effective time theory can be used to incorporate the effects of physical aging. The first portion of the dissertation studies physical aging. A new method for recovering isothermal aging parameters that utilizes both load and unload test data is demonstrated; the results compare favorably to the traditional approach. The Kohlrausch compliance function, commonly used in physical aging studies, is shown to be an invalid material function at long times; a Prony series is a preferable representation. This method is then extended to characterize nonisothermal physical aging. It is demonstrated that a new parameter, called "effective aging time," adequately describes the nonisothermal aging state. A model to predict this parameter given the thermal history is presented and shown to adequately describe experimental results. Once the effective aging time is known, classical lamination theory (CLT) can be used with linear viscoelasticity to predict mechanical response. An approach is presented to calculate modulus behavior (convenient for CLT) from compliance behavior (typical result of testing). A prediction method is developed to incorporate the resulting modulus functions into CLT while maintaining the distinct aging behavior in the shear and transverse directions for

  15. Edge delamination of composite laminates subject to combined tension and torsional loading

    NASA Technical Reports Server (NTRS)

    Hooper, Steven J.

    1990-01-01

    Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.

  16. Rotary ultrasonic machining of CFRP: A comparison with grinding.

    PubMed

    Ning, F D; Cong, W L; Pei, Z J; Treadwell, C

    2016-03-01

    Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP components at final stage for aircraft assembling. There are two major types of methods for hole making of CFRP composites in industry, twist drilling and its derived multi-points machining methods, and grinding and its related methods. The first type of methods are commonly used in hole making of CFRP composites. However, in recent years, rotary ultrasonic machining (RUM), a hybrid machining process combining ultrasonic machining and grinding, has also been successfully used in drilling of CFRP composites. It has been shown that RUM is superior to twist drilling in many aspects. However, there are no reported investigations on comparisons between RUM and grinding in drilling of CFRP. In this paper, these two drilling methods are compared in five aspects, including cutting force, torque, surface roughness, hole diameter, and material removal rate.

  17. Rotary ultrasonic machining of CFRP: A comparison with grinding.

    PubMed

    Ning, F D; Cong, W L; Pei, Z J; Treadwell, C

    2016-03-01

    Carbon fiber reinforced plastic (CFRP) composites have been intensively used in various industries due to their superior properties. In aircraft and aerospace industry, a large number of holes are required to be drilled into CFRP components at final stage for aircraft assembling. There are two major types of methods for hole making of CFRP composites in industry, twist drilling and its derived multi-points machining methods, and grinding and its related methods. The first type of methods are commonly used in hole making of CFRP composites. However, in recent years, rotary ultrasonic machining (RUM), a hybrid machining process combining ultrasonic machining and grinding, has also been successfully used in drilling of CFRP composites. It has been shown that RUM is superior to twist drilling in many aspects. However, there are no reported investigations on comparisons between RUM and grinding in drilling of CFRP. In this paper, these two drilling methods are compared in five aspects, including cutting force, torque, surface roughness, hole diameter, and material removal rate. PMID:26614168

  18. Analytical Modelling of Transverse Matrix Cracking of [plus or minus Theta/90(sub n)](sub s) Composite Laminates Under Multiaxial Loading

    NASA Technical Reports Server (NTRS)

    Mayugo, J A.; Camanho, P. P.; Maimi, P.; Davila, C. G.

    2010-01-01

    An analytical model based on the analysis of a cracked unit cell of a composite laminate subjected to multiaxial loads is proposed to predict the onset and accumulation of transverse matrix cracks in the 90(sub n) plies of uniformly stressed [plus or minus Theta/90(sub n)](sub s) laminates. The model predicts the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate, and it accounts for the effect of the ply thickness on the ply strength. Several examples describing the predictions of laminate response, from damage onset up to final failure under both uniaxial and multiaxial loads, are presented.

  19. Dynamic Stability Optimization of Laminated Composite Plates under Combined Boundary Loading

    NASA Astrophysics Data System (ADS)

    Shafei, Erfan; Kabir, Mohammad Zaman

    2011-12-01

    Dynamic stability and design optimization of laminated simply supported plates under planar conservative boundary loads are investigated in current study. Examples can be found in internal connecting elements of spacecraft and aerospace structures subjected to edge axial and shear loads. Designation of such elements is function of layup configuration, plate aspect ratio, loading combinations, and layup thickness. An optimum design aims maximum stability load satisfying a predefined stable vibration frequency. The interaction between compound loading and layup angle parameter affects the order of merging vibration modes and may stabilize the dynamic response. Laminated plates are assumed to be angle-plies symmetric to mid-plane surface. Dynamic equilibrium PDE has been solved using kernel integral transformation for modal frequency values and eigenvalue-based orthogonal functions for critical stability loads. The dictating dynamic stability mode is shown to be controlled by geometric stiffness distributions of composite plates. Solution of presented design optimization problem has been done using analytical approach combined with interior penalty multiplier algorithm. The results are verified by FEA approach and stability zones of original and optimized plates are stated as final data. Presented method can help designers to stabilize the dynamic response of composite plates by selecting an optimized layup orientation and thickness for prescribed design circumstances.

  20. Anomalous Buckling Characteristics of Laminated Metal-Matrix Composite Plates with Central Square Holes

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1998-01-01

    Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.

  1. Dynamic stiffness matrix of thin-walled composite I-beam with symmetric and arbitrary laminations

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Il; Shin, Dong Ku; Park, Young-Suk

    2008-11-01

    For the spatially coupled free vibration analysis of thin-walled composite I-beam with symmetric and arbitrary laminations, the exact dynamic stiffness matrix based on the solution of the simultaneous ordinary differential equations is presented. For this, a general theory for the vibration analysis of composite beam with arbitrary lamination including the restrained warping torsion is developed by introducing Vlasov's assumption. Next, the equations of motion and force-displacement relationships are derived from the energy principle and the first order of transformed simultaneous differential equations are constructed by using the displacement state vector consisting of 14 displacement parameters. Then explicit expressions for displacement parameters are derived and the exact dynamic stiffness matrix is determined using force-displacement relationships. In addition, the finite-element (FE) procedure based on Hermitian interpolation polynomials is developed. To verify the validity and the accuracy of this study, the numerical solutions are presented and compared with analytical solutions, the results from available references and the FE analysis using the thin-walled Hermitian beam elements. Particular emphasis is given in showing the phenomenon of vibrational mode change, the effects of increase of the modulus and the bending-twisting coupling stiffness for beams with various boundary conditions.

  2. An analytical and experimental investigation of high-speed mechanisms fabricated with composite laminates

    NASA Astrophysics Data System (ADS)

    Thompson, B. S.; Sung, C. K.

    1986-12-01

    The articulating members of linkage machinery must be designed and manufactured with high stiffness-to-weight ratios in order that these machine systems operate successfully in a high-speed mode. One approach to satisfying this criterion is to exploit the high specific stiffnesses of polymeric fibrous composite laminates. In this paper, results of mechanical tests of candidate materials are presented and the material constitutive behaviour classified. A variational theorem is then derived by using the Stieltjes convolution notation which enables the equations governing the geometrically-non-linear dynamic response of linkages fabricated in linear viscoelastic composite materials to be systematically established. The formulation includes inertial terms which couple the kinematic deformations of the link material with the kinematics governing the gross motion of the linkage being analyzed. This variational principle provides the basis for a finite element formulation in which the properties of the heterogeneous, two-constituent laminates are represented by a continuum model for a homogeneous single-constituent material. The predictive capability of this model is evaluated by simulating the vibrational response of both experimental four-bar linkages and also slider-crank mechanisms fabricated with simple link geometries, prior to comparing the computer results with experimental data from these laboratory mechanisms.

  3. Extended Kantorovich method for local stresses in composite laminates upon polynomial stress functions

    NASA Astrophysics Data System (ADS)

    Huang, Bin; Wang, Ji; Du, Jianke; Guo, Yan; Ma, Tingfeng; Yi, Lijun

    2016-06-01

    The extended Kantorovich method is employed to study the local stress concentrations at the vicinity of free edges in symmetrically layered composite laminates subjected to uniaxial tensile load upon polynomial stress functions. The stress fields are initially assumed by means of the Lekhnitskii stress functions under the plane strain state. Applying the principle of complementary virtual work, the coupled ordinary differential equations are obtained in which the solutions can be obtained by solving a generalized eigenvalue problem. Then an iterative procedure is established to achieve convergent stress distributions. It should be noted that the stress function based extended Kantorovich method can satisfy both the traction-free and free edge stress boundary conditions during the iterative processes. The stress components near the free edges and in the interior regions are calculated and compared with those obtained results by finite element method (FEM). The convergent stresses have good agreements with those results obtained by three dimensional (3D) FEM. For generality, various layup configurations are considered for the numerical analysis. The results show that the proposed polynomial stress function based extended Kantorovich method is accurate and efficient in predicting the local stresses in composite laminates and computationally much more efficient than the 3D FEM.

  4. Permeability Testing of Impacted Composite Laminates for Use on Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Munafo, Paul (Technical Monitor)

    2001-01-01

    Since composite laminates are beginning to be identified for use in reusable launch vehicle propulsion systems, an understanding of their permeance is needed. A foreign object impact event can cause a localized area of permeability (leakage) in a polymer matrix composite, and it is the aim of this study to assess a method of quantifying permeability-after-impact results. A simple test apparatus is presented, and variables that could affect the measured values of permeability-after-impact were assessed. Once it was determined that valid numbers were being measured, a fiber/resin system was impacted at various impact levels and the resulting permeability measured, first with a leak check solution (qualitative) then using the new apparatus (quantitative). The results showed that as the impact level increased, so did the measured leakage. As the pressure to the specimen was increased, the leak rate was seen to increase in a nonlinear fashion for almost all the specimens tested.

  5. A literature review on computational models for laminated composite and sandwich panels

    NASA Astrophysics Data System (ADS)

    Kreja, Ireneusz

    2011-03-01

    The present paper is devoted to a state-of-the-art review on the computational treatment of laminated composite and sandwich panels. Over two hundred texts have been included in the survey with the focus put on theoretical models for multilayered plates and shells, and FEM implementation of various computational concepts. As a result of the review, one could notice a lack of a single numerical model capable for a universal representation of all layered composite and sandwich panels. Usually, with the increase of the range of rotations considered in the particular model, one can observe the decrease of the degree of complexity of the through-the-thickness representation of deformation profiles.

  6. Analysis of metal-matrix composite structures. I - Micromechanics constitutive theory. II - Laminate analyses

    NASA Technical Reports Server (NTRS)

    Arenburg, R. T.; Reddy, J. N.

    1991-01-01

    The micromechanical constitutive theory is used to examine the nonlinear behavior of continuous-fiber-reinforced metal-matrix composite structures. Effective lamina constitutive relations based on the Abouli micromechanics theory are presented. The inelastic matrix behavior is modeled by the unified viscoplasticity theory of Bodner and Partom. The laminate constitutive relations are incorporated into a first-order deformation plate theory. The resulting boundary value problem is solved by utilizing the finite element method. Attention is also given to computational aspects of the numerical solution, including the temporal integration of the inelastic strains and the spatial integration of bending moments. Numerical results the nonlinear response of metal matrix composites subjected to extensional and bending loads are presented.

  7. The Behavior of Translucent Composite Laminates under Highly Energetic Laser Irradiations

    NASA Astrophysics Data System (ADS)

    Allheily, Vadim; Merlat, Lionel; Lacroix, Fabrice; Eichhorn, Alfred; L'Hostis, Gildas

    With the emergence of composite materials in the last decades, the interaction between light and diffusive materials has become a challenging topic in many key manufacturing areas (laser welding, laser surface treatment, engraving, etc.). In this paper, the behavior of laminated glass fiber-reinforced plastic composites (GFRP) under 1.07 μm-wavelength irradiations is investigated. Optical parameters are first assessed to build up a basic analytical interaction model involving internal refraction and reflection. The scattering effect due to the presence of oriented glass fibers is also a topic of interest. A thermodynamic analysis is then carried out from the induced volume heat source until the degradation temperature of the material is reached out. The study finally results in a one-dimensional model describing the optical and thermo-dynamical behavior of GFRP under high-power laser irradiations up to ignition of the chemical degradation phenomena.

  8. Damage threshold study of sonic IR imaging on carbon-fiber reinforced laminated composite materials

    NASA Astrophysics Data System (ADS)

    Han, Xiaoyan; He, Qi; Zhang, Ding; Ashbaugh, Mike; Favro, Lawrence D.; Newaz, Golam; Thomas, Robert L.

    2013-01-01

    Sonic Infrared Imaging, as a young NDE technology, has drawn a lot of attentions due to it's fast, wide-area evaluation capability, and due to its broad applications in different materials such as metal/metal alloy, composites and detection of various types of defects: surface, subsurface, cracks, delaminations/disbonds. Sonic IR Imaging combines pulsed ultrasound excitation and infrared imaging to detect defects in materials. The sound pulse causes rubbing due to non-unison motion between faces of defects, and infrared sensors image the temperature map over the target to identify defects. However, concerns have also been brought up about possible damages which might occur at the contact spots between the ultrasound transducer from the external excitation source and the target materials. In this paper, we present our results from a series of systematically designed experiments on carbon-fiber reinforced laminated composite panels to address the concerns.

  9. Development of a Higher Order Laminate Theory for Modeling Composites with Induced Strain Actuators

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1996-01-01

    A refined higher order plate theory is developed to investigate the actuation mechanism of piezoelectric materials surface bonded or embedded in composite laminates. The current analysis uses a displacement field which accurately accounts for transverse shear stresses. Some higher order terms are identified by using the conditions that shear stresses vanish at all free surfaces. Therefore, all boundary conditions for displacements and stresses are satisfied in the present theory. The analysis is implemented using the finite element method which provides a convenient means to construct a numerical solution due to the discrete nature of the actuators. The higher order theory is computationally less expensive than a full three dimensional analysis. The theory is also shown to agree well with published experimental results. Numerical examples are presented for composite plates with thicknesses ranging from thin to very thick.

  10. Damage prognosis of adhesively-bonded joints in laminated composite structural components of unmanned aerial vehicles

    SciTech Connect

    Farrar, Charles R; Gobbato, Maurizio; Conte, Joel; Kosmatke, John; Oliver, Joseph A

    2009-01-01

    The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current state of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.

  11. Ballistic impact damage and penetration mechanics of fiber-reinforced composite laminates

    NASA Astrophysics Data System (ADS)

    Patts, Henry Michael

    2000-10-01

    Experimental and theoretical studies were performed to characterize and model the processes of damage evolution and resulting penetration failure of graphite fiber-reinforced epoxy resin composite laminates ("structural grade") under ballistic impact. In contrast to the local yielding demonstrated by ductile isotropic materials, the penetration failure of fiber-reinforced composites produced extensive fragmentation of material with multiple modes of damage propagation such as "delamination," "interfiber matrix splitting," "transverse fiber cuts," and "through-the-thickness plugging." Due to the formation of damage zones in three-dimensional scale, the increase in target thickness raised the amount of kinetic energy absorption for full penetration in a "non-linear" fashion in fiber composites unlike the linear correlation for isotropic material such as polycarbonate and aluminum. Interfiber matrix splitting and delamination were found to be the first sign of structural deterioration occurring far below V50 and precede transverse cutting of fibers and plugging. The development of interfiber splitting into delamination of composites is explained by relying on the contact mechanics of a spherical indentor. Matrix splits on adjacent plies formed one pair of geometrical "wedges" at the ply interface, resulting in a delamination zone connected through an "isthmus." Contained in this free ply region, stress concentration readily led to transverse cutting (approximately at 85 percent of the V50) of plies when longitudinal stress of the reinforcing fibers reaches a critical level for fracture. The observed distribution of the damage leading to transverse fiber cuts was modeled by idealizing a circular target panel of staircase laminate into three zones with different values of bending stiffness due to the progression of damage. In "three-zone" model, the energy absorbed by the panel were represented in three forms of potential energy; surface free energy due to delamination

  12. Microstructural Evolution and Fracture Behavior of Friction-Stir-Welded Al-Cu Laminated Composites

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, Mohsen; Kokabi, A. H.

    2014-01-01

    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook formation in the retreating side determine the fracture behavior of the joint. In samples welded from the Al side, a defect is formed in the advancing side of the weld, which is attributed to insufficient material flow. It is concluded that the contact surface of the laminate (Al or Cu) with the shoulder of the FSW tool influences the material flow and microstructure of welds.

  13. An improved plate theory of order (1,2) for thick composite laminates

    NASA Technical Reports Server (NTRS)

    Tessler, A.

    1992-01-01

    A new (1,2)-order theory is proposed for the linear elasto-static analysis of laminated composite plates. The basic assumptions are those concerning the distribution through the laminate thickness of the displacements, transverse shear strains and the transverse normal stress, with these quantities regarded as some weighted averages of their exact elasticity theory representations. The displacement expansions are linear for the inplane components and quadratic for the transverse component, whereas the transverse shear strains and transverse normal stress are respectively quadratic and cubic through the thickness. The main distinguishing feature of the theory is that all strain and stress components are expressed in terms of the assumed displacements prior to the application of a variational principle. This is accomplished by an a priori least-square compatibility requirement for the transverse strains and by requiring exact stress boundary conditions at the top and bottom plate surfaces. Equations of equilibrium and associated Poisson boundary conditions are derived from the virtual work principle. It is shown that the theory is particularly suited for finite element discretization as it requires simple C(sup 0)- and C(sup -1)-continuous displacement interpolation fields. Analytic solutions for the problem of cylindrical bending are derived and compared with the exact elasticity solutions and those of our earlier (1,2)-order theory based on the assumed displacements and transverse strains.

  14. Finite Element Modeling of Laminated Composite Plates with Locally Delaminated Interface Subjected to Impact Loading

    PubMed Central

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668

  15. Flutter and thermal buckling control for composite laminated panels in supersonic flow

    NASA Astrophysics Data System (ADS)

    Li, Feng-Ming; Song, Zhi-Guang

    2013-10-01

    Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.

  16. Interface Cohesive Elements to Model Matrix Crack Evolution in Composite Laminates

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Pinna, C.; Soutis, C.

    2014-02-01

    In this paper, the transverse matrix (resin) cracking developed in multidirectional composite laminates loaded in tension was numerically investigated by a finite element (FE) model implemented in the commercially available software Abaqus/Explicit 6.10. A theoretical solution using the equivalent constraint model (ECM) of the damaged laminate developed by Soutis et al. was employed to describe matrix cracking evolution and compared to the proposed numerical approach. In the numerical model, interface cohesive elements were inserted between neighbouring finite elements that run parallel to fibre orientation in each lamina to simulate matrix cracking with the assumption of equally spaced cracks (based on experimental measurements and observations). The stress based traction-separation law was introduced to simulate initiation of matrix cracking and propagation under mixed-mode loading. The numerically predicted crack density was found to depend on the mesh size of the model and the material fracture parameters defined for the cohesive elements. Numerical predictions of matrix crack density as a function of applied stress are in a good agreement to experimentally measured and theoretically (ECM) obtained values, but some further refinement will be required in near future work.

  17. Frequency response of laminated composite plates and shells with matrix cracks type of damage mode

    NASA Astrophysics Data System (ADS)

    Emam, Aly A.

    The present study has been designed to tackle a new set of problems for structural composites, as these materials are finding new applications in civil engineering field. An attempt has been made to study the frequency response of laminated polymer composite plates and shallow shells containing matrix cracks type of damage with arbitrary support conditions and free vibratory motions. The shell governing equations are derived using a simplified shallow shell theory based on a first order shear deformation field. The continuum damage mechanics approach has been used to model the matrix cracks in a damaged region within the plates and shallow shells. In such approach, the damage is accounted for in the laminate constitutive equations by using a set of second order tensor internal state variables which are strain-like quantities. The simplified damage model was then used to study the changes in frequency response of laminated composite plates and shallow cylindrical shells. The Ritz method and a finite element method have been proposed and developed as approximate solution procedures to quantify the change in the free vibration frequencies due to matrix cracks type of damage under both material as well as geometrical variables such as size, shape and extent of damage, degree of curvature, ratio of orthotropy, thickness ratio as well as support conditions. The analysis of various plates and shells with a centrally located damaged-zone depicts a typical trend of reduction in the vibration frequencies. This reduction is more pronounced for higher frequency modes and it shows greater sensitivity toward the size of the damaged region and density of cracks. The results also show that the changes in the frequency, especially for the fundamental mode, appear to be less sensitive to the shell boundary conditions as well as small values of curvature. The investigation of various undamaged plates and shallow shells demonstrates the importance of a first-order shear deformation

  18. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    NASA Astrophysics Data System (ADS)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  19. Analysis of time-dependent deformation of a CFRP mirror under hot and humid conditions

    NASA Astrophysics Data System (ADS)

    Arao, Yoshihiko; Koyanagi, Jun; Utsunomiya, Shin; Takeda, Shin-Ichi; Kawada, Hiroyuki

    2009-05-01

    The long-term micro-dimensional stability of a carbon fiber reinforced plastic (CFRP) mirror was investigated in terms of creep deformation, moisture swelling and self-shrinkage. A 4-point bending creep test was carried out using specimens made from pitch-based high-modulus CFRP laminates to obtain a creep constant based on linear viscoelasticity, and we then investigated the weight change and geometrical change during a moisture absorption test using a CFRP specimen. The anisotropic diffusivities and coefficients of moisture expansion (CMEs) in CFRP laminates were obtained by fitting analytical data into the experimental data. Finally, the shrinkage behavior caused by physical aging of the polymeric material was examined using a fiber Bragg grating (FBG) sensor embedded in the neat resin specimen. Applying these results, we analyzed the geometrical changes in a CFRP mirror that resulted from time-dependent deformation by the mirror’s weight, moisture absorption and physical aging, respectively. We discuss which factor is dominant in the deformation of CFRP mirrors under various conditions.

  20. Development of Reduction Technique of Thermal Stress Induced in Steel Plate Bonded by CFRP Plates

    NASA Astrophysics Data System (ADS)

    Ishikawa, Toshiyuki; Hattori, Atsushi; Kawano, Hirotaka; Nagao, Takashi; Kobayashi, Akira

    In CFRP bonded onto steel plate, thermal stress is induced in steel plate by temperature change, due to difference in coefficients of thermal expansion between steel and CFRP. In this study, reduction technique of the thermal stress in steel plate, which is additional bonding of aluminum alloy plates, is proposed. Namely, the coefficient of thermal expansion of composite plate consisted of CFRP and aluminum plates is designed as that of steel. In this research, to verify the effectiveness of developed method, heat tests of CFRP and aluminum plates bonded onto steel plate were carried out. As a result of the tests, infinitesimal thermal stresses in steel plate with CFRP and aluminum plates were measured while large thermal stresses were measured in conventional CFRP bonded onto steel plate. Additionally, to confirm the test results, numerical analysis was also carried out.

  1. A Micromechanics-Based Damage Model for [+/- Theta/90n]s Composite Laminates

    NASA Technical Reports Server (NTRS)

    Mayugo, Joan-Andreu; Camanho, Pedro P.; Maimi, Pere; Davila, Carlos G.

    2006-01-01

    A new damage model based on a micromechanical analysis of cracked [+/- Theta/90n]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.

  2. Analysis of local delaminations and their influence on composite laminate behavior

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1984-01-01

    An equation was derived for the strain energy release rate, G, associated with local delamination growth from a matrix ply crack. The critical GC for edge delamination onset in 25/902s graphite epoxy laminates was measured and used in this equation to predict local delamination onset strains in 25/90ns, n = 4, 6, 8 laminates. A simple technique for predicting strain concentrations in the primary load bearing plies near local delaminations was developed. These strain concentrations were responsible for reduced laminate nominal failure strains in laminates containing local delaminations. The influence of edge delamination and matrix crack tip delamination on laminate stiffness and strength was compared.

  3. Preliminary investigation of crack arrest in composite laminates containing buffer strips

    NASA Technical Reports Server (NTRS)

    Goree, J. G.

    1978-01-01

    The mechanical properties of some hybrid buffer strip laminates and the crack arrest potential of laminates containing buffer strips were determined. The hybrid laminates consisted of graphite with either S-glass, E-glass, or Kevlar. Unnotched tensile coupons and center-cracked fracture coupons were tested. Elastic properties, complete stress/strain curves, and critical stress intensity values are given. The measured elastic properties compare well with those calculated by classical lamination theory for laminates with linear stress/strain behavior. The glass hybrids had more delamination and higher fracture toughness than the all-graphite or the Kevlar hybrid.

  4. Infrared thermography for CFRP inspection: computational model and experimental results

    NASA Astrophysics Data System (ADS)

    Fernandes, Henrique C.; Zhang, Hai; Morioka, Karen; Ibarra-Castanedo, Clemente; López, Fernando; Maldague, Xavier P. V.; Tarpani, José R.

    2016-05-01

    Infrared Thermography (IRT) is a well-known Non-destructive Testing (NDT) technique. In the last decades, it has been widely applied in several fields including inspection of composite materials (CM), specially the fiber-reinforced polymer matrix ones. Consequently, it is important to develop and improve efficient NDT techniques to inspect and assess the quality of CM parts in order to warranty airworthiness and, at the same time, reduce costs of airline companies. In this paper, active IRT is used to inspect carbon fiber-reinforced polymer (CFRP) at laminate with artificial inserts (built-in sample) placed on different layers prior to the manufacture. Two optical active IRT are used. The first is pulsed thermography (PT) which is the most widely utilized IRT technique. The second is a line-scan thermography (LST) technique: a dynamic technique, which can be employed for the inspection of materials by heating a component, line-by-line, while acquiring a series of thermograms with an infrared camera. It is especially suitable for inspection of large parts as well as complex shaped parts. A computational model developed using COMSOL Multiphysics® was used in order to simulate the inspections. Sequences obtained from PT and LST were processed using principal component thermography (PCT) for comparison. Results showed that it is possible to detect insertions of different sizes at different depths using both PT and LST IRT techniques.

  5. Development of a CFRP Engine Thrust Frame for the Next Generation Launchers

    NASA Astrophysics Data System (ADS)

    Fatemi, Javad; van der Bas, Finn; Cruijssen, Henk

    2012-07-01

    This paper addresses the activities related to the development of technologies for a composite Engine Thrust Frame (ETF) for the next generation launchers. In particular, the design and analyses of a full Carbon Fibre Reinforced Plastic (CFRP) engine thrust frame are presented in more detail. The ETF concept is composed of three main parts, i.e. an aluminium top-ring which connects the ETF to the upper-stage tank, a CFRP cone, and a CFRP cone-cap which connects the Vinci engine to the ETF. The main challenging requirements for development of a CFRP ETF are recalled. The ETF concept and its mechanical performances are assessed.

  6. Utilization of the Generalized Method of Cells to Analyze the Deformation Response of Laminated Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2012-01-01

    In order to practically utilize ceramic matrix composites in aircraft engine components, robust analysis tools are required that can simulate the material response in a computationally efficient manner. The MAC/GMC software developed at NASA Glenn Research Center, based on the Generalized Method of Cells micromechanics method, has the potential to meet this need. Utilizing MAC/GMC, the effective stiffness properties, proportional limit stress and ultimate strength can be predicted based on the properties and response of the individual constituents. In this paper, the effective stiffness and strength properties for a representative laminated ceramic matrix composite with a large diameter fiber are predicted for a variety of fiber orientation angles and laminate orientations. As part of the analytical study, methods to determine the in-situ stiffness and strength properties of the constituents required to appropriately simulate the effective composite response are developed. The stiffness properties of the representative composite have been adequately predicted for all of the fiber orientations and laminate configurations examined in this study. The proportional limit stresses and strains and ultimate stresses and strains were predicted with varying levels of accuracy, depending on the laminate orientation. However, for the cases where the predictions did not have the desired level of accuracy, the specific issues related to the micromechanics theory were identified which could lead to difficulties that were encountered that could be addressed in future work.

  7. Numerical simulating and experimental study on the woven carbon fiber-reinforced composite laminates under low-velocity impact

    NASA Astrophysics Data System (ADS)

    Liu, Hanyang; Tang, Zhanwen; Pan, Lingying; Zhao, Weidong; Sun, Baogang; Jiang, Wenge

    2016-05-01

    Impact damage has been identified as a critical form of the defects that constantly threatened the reliability of composite structures, such as those used in the aerospace structures and systems. Low energy impacts can introduce barely visible damage and cause the degradation of structural stiffness, furthermore, the flaws caused by low-velocity impact are so dangerous that they can give rise to the further extended delaminations. In order to improve the reliability and load carrying capacity of composite laminates under low-velocity impact, in this paper, the numerical simulatings and experimental studies on the woven fiber-reinforced composite laminates under low-velocity impact with impact energy 16.7J were discussed. The low velocity impact experiment was carried out through drop-weight system as the reason of inertia effect. A numerical progressive damage model was provided, in which the damages of fiber, matrix and interlamina were considered by VUMT subroutine in ABAQUS, to determine the damage modes. The Hashin failure criteria were improved to cover the failure modes of fiber failure in the directions of warp/weft and delaminations. The results of Finite Element Analysis (FEA) were compared with the experimental results of nondestructive examination including the results of ultrasonic C-scan, cross-section stereomicroscope and contact force - time history curves. It is found that the response of laminates under low-velocity impact could be divided into stages with different damage. Before the max-deformation of the laminates occurring, the matrix cracking, fiber breakage and delaminations were simulated during the impactor dropping. During the releasing and rebounding period, matrix cracking and delaminations areas kept increasing in the laminates because of the stress releasing of laminates. Finally, the simulating results showed the good agreements with the results of experiment.

  8. Failure of Laminated Composites at Thickness Discontinuities: An Experimental and Analytical Study

    NASA Technical Reports Server (NTRS)

    Lee, Sangwook; Knauss, Wolfgang

    1998-01-01

    Failure initiation of laminated composites at a thickness discontinuity is studied experimentally with the aid of an optical microscope under combined loading of tension, transverse shear and bending, making use of three- and four-point bending arrangements. Because transverse shear produced relatively small effects in failure initiation results are presented as tension-bending interactions. Two loading frames for three- and four-point bending were designed to apply moment and tension simultaneously to produce failure by generating a ply crack; this initiation was evaluated by finite element analysis using ABAQUS. For cross-plies bounding the interface at the base of the step it is found that a maximum strain criterion applied to the continuing (long) ply describes the failure initiation. Ultimate failure resulted at loads on the order of 25 to 35% higher than those at failure initiation.

  9. Response of laminated composite flat panels to sonic boom and explosive blast loadings

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Nosier, A.

    1990-01-01

    This paper deals with a theoretical analysis of the dynamic response of shear deformable symmetrically laminated rectangular composite flat panels exposed to sonic boom and explosive blast loadings. The pertinent governing equations incorporating transverse shear deformation, transverse normal stress, as well as the higher-order effects are solved by using the integral-transform technique. The obtained results are compared with their counterparts obtained within the framework of the first-order transverse shear deformation and the classical plate theories and some conclusions concerning their range of applicability are outlined. The paper also contains a detailed analysis of the influence played by the various parameters characterizing the considered pressure pulses as well as the material and geometry of the plate.

  10. Evaluation of interlaminar shear strength of a unidirectional carbon/epoxy laminated composite under impact loading

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Nakai, K.

    2006-08-01

    The interlaminar shear strength (ILSS) of a unidirectional carbon/epoxy (T700/2521) laminated composite under impact loading is determined using the conventional split Hopkinson pressure bar. Double-notch shear (DNS) specimens with lateral constraint from a supporting jig are used in the static and impact interlaminar compressive shear tests. Short-beam shear specimens are also used under static 3-point bending. Numerical stress analyses are performed to determine the shear stress and normal stress distributions on the expected failure plane in the DNS specimen using the MSC/NASTRAN package. The effect of deformation rate on the ILSS and failure mode is investigated. It is observed that the ILSS is independent of the deformation rate up to nearly 1.5m/s (dotγ ≈ 780/s). The validity of the test results is confirmed by microscopic examinations of both static and impact failure surfaces for the DNS specimens.

  11. Finite Element Analysis of Interlaminar Stresses for Composite Laminates Stitched Around a Circular Hole

    NASA Astrophysics Data System (ADS)

    Guo, Zhangxin; Han, Xiaoping; Zhu, Xiping

    2012-06-01

    An approach is proposed to numerically study the composite laminates stitched around a circular hole. The local structure of stitching region is simplified and the finite element analysis (FEA) is carried out. With this approach, the interlaminar stresses are calculated, and the effects of stitching parameters such as edge distance, stitching needle span and row spacing of yarn are discussed on the interlaminar stresses. The effect of the reinforcement can be enhanced by properly reducing the edge distance or needle span when stitching at the hole edge. Compared with unstitching, there is an evident decrease for interlaminar stresses at the hole after stitching enforcement. The distribution of the interlaminar stresses around the hole is related with layers.

  12. Nonlinear dynamic behavior of simply supported laminated composite plates subjected to blast load

    NASA Astrophysics Data System (ADS)

    Kazancı, Zafer; Mecitoğlu, Zahit

    2008-11-01

    This paper deals with the analysis and discussion of nonlinear dynamic response of a laminated composite plate subjected to blast load. Dynamic equations of the plate are derived by the use of the virtual work principle. The geometric nonlinearity effects are taken into account with the von Kármán large deflection theory of thin plates. Approximate solutions for a simply supported plate are assumed for the space domain. The single term approximation functions are selected by considering the nonlinear static deformations of plate, which is obtained using finite element method. The Galerkin Method is used to obtain the nonlinear differential equations in the time domain. The finite difference method is applied to solve the system of coupled nonlinear equations. The results of approximate-numerical analysis are obtained and compared with the literature and finite element results. Good agreement is found for the character and frequencies of vibrations.

  13. A procedure for the evaluation of damping effects in composite laminated structures

    NASA Astrophysics Data System (ADS)

    Vescovini, Riccardo; Bisagni, Chiara

    2015-10-01

    The paper presents an approach based on experimental tests and numerical simulations for taking into account damping effects during the design and the analysis of composite structures. The experiments are conducted using the Dynamic Mechanical Analysis (DMA) and unidirectional coupons are tested to characterize the damping properties of the plies. Starting from these results, first order shear deformation theory is applied to determine the damping properties of the laminate, which are then used in the context of a numerical procedure based on finite element analyses and strain energy method. The results are presented for an aircraft stiffened panel, illustrating the evaluation of the specific damping capacities of the structure, and performing direct transient analyses to investigate the effect of damping on the panel response to pulse loadings.

  14. Modeling of delamination damage evolution in laminated composites subjected to low velocity impact

    NASA Technical Reports Server (NTRS)

    Lo, David C.; Allen, David H.

    1994-01-01

    This study examines the delamination evolution, under quasi-static conditions, of laminated polymeric composites with mechanically nonlinear resin rich interfaces. The constitutive behavior of the interface is represented by two models developed by Needleman and Tvegaard. These models assumed that the interfacial tractions, a function of only the interfacial displacement, will behave similarly to the interatomic forces generated during the interatomic seperation. The interface material's parameters control the load at which the delamination growth initiates and the final delamination size. A wide range of damage accumulation responses have been obtained by varying the model parameters. These results show that Tvergaard's model has been found to be better suited of the two models in predicting damage evolution for the configurations examined.

  15. An experimental study of compression failure of fibrous laminated composites in the presence of stress gradients

    NASA Technical Reports Server (NTRS)

    Waas, A. M.; Knauss, W. G.; Babcock, C. D., Jr.

    1990-01-01

    Mechanisms of failure in laminates in the presence of a stress raiser were experimentally studied. The damage initiation and propagation throughout the entire load history were examined via real-time holographic interferometry and photomicrography of the hole surface. Multilayered composite flat plates made of T300/BP907 and IM7/8551-7 were tested. It is shown that the failure is initiated as a localized instability in the 0-deg plies at the hole surface approximately at right angles to the loading direction. A series of events is described which culminates in the complete loss of flexural stiffness of each of the delaminated portions, leading to catastrophic failure of the plate.

  16. Magneto-thermo-elastokinetics of Geometrically Nonlinear Laminated Composite Plates. Part 1: Foundation of the Theory

    NASA Technical Reports Server (NTRS)

    Hasanyan, Davresh; Librescu, Liviu; Qin, Zhanming; Ambur, Damodar R.

    2006-01-01

    A fully coupled magneto-thermo-elastokinetic model of laminated composite, finitely electroconductive plates incorporating geometrical nonlinearities and subjected to a combination of magnetic and thermal fields, as well as carrying an electrical current is developed, In this context. the first-order transversely shearable plate theory in conjunction with von-Karman geometrically nonlinear strain concept is adopted. Related to the distribution of electric and magnetic field disturbances within the plate, the assumptions proposed by Ambartsumyan and his collaborators are adopted. Based on the electromagnetic equations (i.e. the ones by Faraday, Ampere, Ohm, Maxwell and Lorentz), the modified Fourier's law of heat conduction and on the elastokinetic field equations, the 3-D coupled problem is reduced to an equivalent 2- D one. The theory developed herein provides a foundation for the investigation, both analytical and numerical, of the interacting effects among the magnetic, thermal and elastic fields in multi-layered thin plates made of anisotropic materials.

  17. Reduction of Free Edge Peeling Stress of Laminated Composites Using Active Piezoelectric Layers

    PubMed Central

    Huang, Bin; Kim, Heung Soo

    2014-01-01

    An analytical approach is proposed in the reduction of free edge peeling stresses of laminated composites using active piezoelectric layers. The approach is the extended Kantorovich method which is an iterative method. Multiterms of trial function are employed and governing equations are derived by taking the principle of complementary virtual work. The solutions are obtained by solving a generalized eigenvalue problem. By this approach, the stresses automatically satisfy not only the traction-free boundary conditions, but also the free edge boundary conditions. Through the iteration processes, the free edge stresses converge very quickly. It is found that the peeling stresses generated by mechanical loadings are significantly reduced by applying a proper electric field to the piezoelectric actuators. PMID:25025088

  18. Influence of Impactor Mass on the Damage Characteristics and Failure Strength of Laminated Composite Plates

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Kemmerly, Heather L.

    1998-01-01

    The results of an experimental study of the effect of impactor mass on the low-speed impact response of laminated flat composite plates is presented. Dropped weight impact response, damage characteristics, and residual strengths of quasi-isotropic flat plates are presented for a range of energy levels by systematically varying the mass of the impactor. Measured contact forces and damage areas are also presented. The results indicate that the contact force and damage area are nonlinear functions of the impactor mass and vary considerably over the entire range of energy levels considered. The different damage levels induced in a plate specimen when impacted at a given energy level with impactors of different masses significantly influence its compressive residual strength. The results provide clear and consistent trends in contact force, damage area, and compression-after-impact strength when the data are expressed as a function of the impactor momentum.

  19. Buckling and Postbuckling Behavior of Laminated Composite Plates With a Cutout

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    1996-01-01

    This paper addresses the effects of a cutout on the buckling and postbuckling behavior of rectangular plates made of advanced composite materials. An overview of past research is presented, and several key findings and behavioral characteristics are discussed. These findings include the effects of cutout size, shape, eccentricity, and orientation; plate aspect and slenderness ratios; loading and boundary conditions; and plate orthotropy and anisotropy. Some overall important findings of these studies are that plates that have a cutout can buckle at loads higher than the buckling loads for corresponding plates without a cutout and can exhibit substantial postbuckling load-carrying capability. In addition, laminate construction, coupled with cutout geometry, offers a viable means for tailoring structural response.

  20. Design of multifunctional structure with embedded electronic circuitry using composite laminate optimization techniques

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven; Crossley, William

    2008-10-01

    This research investigates the optimization of a multifunctional structure with embedded electronic circuitry, following traditional composite laminate optimization methods. A heavily 'de-featured' finite element model provides thermal and mechanical analyses of the structure. The model places point heat sources at the surface component locations, and the optimization problem enforces strain constraints at these locations. A simple problem seeks the least-mass I-beam whose shear web contains a simple circuit, subject to strength and strain constraints. A second problem finds the lowest mass unmanned aerial vehicle (UAV) wing box configuration containing embedded circuitry subject to strength, deflection and strain constraints under two load cases. Sequential unconstrained minimization techniques and sequential quadratic programming perform the optimization; combinatorial methods are computationally impractical. Despite the model de-featuring and the use of calculus-based methods, the problem requires significant computational effort. The surface-component strain constraints result in structures with more mass than those without surface components.

  1. Matrix Dominated Failure of Fiber-Reinforced Composite Laminates Under Static and Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Schaefer, Joseph Daniel

    Hierarchical material systems provide the unique opportunity to connect material knowledge to solving specific design challenges. Representing the quickest growing class of hierarchical materials in use, fiber-reinforced polymer composites (FRPCs) offer superior strength and stiffness-to-weight ratios, damage tolerance, and decreasing production costs compared to metals and alloys. However, the implementation of FRPCs has historically been fraught with inadequate knowledge of the material failure behavior due to incomplete verification of recent computational constitutive models and improper (or non-existent) experimental validation, which has severely slowed creation and development. Noted by the recent Materials Genome Initiative and the Worldwide Failure Exercise, current state of the art qualification programs endure a 20 year gap between material conceptualization and implementation due to the lack of effective partnership between computational coding (simulation) and experimental characterization. Qualification processes are primarily experiment driven; the anisotropic nature of composites predisposes matrix-dominant properties to be sensitive to strain rate, which necessitates extensive testing. To decrease the qualification time, a framework that practically combines theoretical prediction of material failure with limited experimental validation is required. In this work, the Northwestern Failure Theory (NU Theory) for composite lamina is presented as the theoretical basis from which the failure of unidirectional and multidirectional composite laminates is investigated. From an initial experimental characterization of basic lamina properties, the NU Theory is employed to predict the matrix-dependent failure of composites under any state of biaxial stress from quasi-static to 1000 s-1 strain rates. It was found that the number of experiments required to characterize the strain-rate-dependent failure of a new composite material was reduced by an order of

  2. Identification of Impact Damage in Composite Laminates through Integrated Pulsed Phase Thermography and Embedded Thermal Sensors

    NASA Astrophysics Data System (ADS)

    Pawar, Sachin Sampatrao

    This dissertation develops a methodology to identify impact damage in aerospace composite laminates using integrated pulsed phase thermography and fiber Bragg grating (FBG) sensors. Initially, a two-dimensional woven, carbon fiber epoxy laminate is used to calibrate the defect depth with blind frequency for the particular material system using pulsed phase thermography (PPT). The calibration specimen contains simulated defects in the form of polymer foam inclusions. The calibrated depth vs. blind frequency relation is then applied to specimens with barely visible impact damage due to low velocity impacts. The results demonstrate that the use of the polymer insert simulated defects, in contrast to drilled holes or inserts with higher thermal contrast, provides thermal phase shifts similar to that observed in the impacted specimens. Despite the differences between the simulated and impact damage (e.g. the irregular boundaries and thin nature of the delaminations), the minimum depth of delamination from the impacted surface and the extent of damage on the rear surface of the specimen calculated from the PPT images are shown to correspond well with those of visual observations. The next group of laminated composite specimens are fabricated with embedded FBG sensors to test the ability of the combined inspection method using pulsed phase thermography and FBG sensors to identify impact damage severity. Initially three sets of specimens containing a single FBG sensor at the mid-plane, along with data from previous studies, are used to optimize the distance of low velocity impact damage from the FBG sensor and also to optimize the FBG interrogator data acquisition rate. The results from these specimens show a wide scatter in the FBG sensor temperature measurements during cooling. Also, due to its low conductivity, specimen took long time to cool, increasing the inspection time. Therefore for the final specimen the FBG sensor data acquisition is performed in the heating

  3. A micrographic study of bending failure in five thermoplastic/carbon fiber composite laminates

    NASA Technical Reports Server (NTRS)

    Yurgartis, S. W.; Sternstein, S. S.

    1987-01-01

    The local deformation and failure sequences of five thermoplastic matrix composites were microscopically observed while bending the samples in a small fixture attached to a microscope stage. The themoplastics are polycarbonate, polysulfone, polyphenylsulfide, polyethersulfone, and polyetheretherketone. Comparison was made to an epoxy matrix composite, 5208/T-300. Laminates tested are (0/90) sub 2S, with outer ply fibers parallel to the beam axis. Four point bending was used at a typical span-to-thickness ratio of 39:1. It was found that all of the thermoplastic composites failed by abrupt longitudinal compression buckling of the outer ply. Very little precursory damage was observed. Micrographs reveal typical fiber kinking associated with longitudinal compression failure. Curved fracture surfaces on the fibers suggest they failed in bending rather than direct compression. Delamination was suppressed in the thermoplastic composites, and the delamination that did occur was found to be the result of compression buckling, rather than visa-versa. Microbuckling also caused other subsequent damage such as ply splitting, transverse ply shear failure, fiber tensile failure, and transverse ply cracking.

  4. Fibre Break Failure Processes in Unidirectional Composites. Part 3: Unidirectional Plies Included in Laminates

    NASA Astrophysics Data System (ADS)

    Thionnet, A.; Chou, H. Y.; Bunsell, A.

    2015-04-01

    The purpose of these three papers is not to just revisit the modelling of unidirectional composites. It is to provide a robust framework based on physical processes that can be used to optimise the design and long term reliability of internally pressurised filament wound structures. The results given in paper Parts 1 and 2 concerning the behaviour of unidirectional composites, such as carbon fibre reinforced epoxy resin, are, here, extended to the behaviour of cross-plied composites consisting of unidirectional plies orientated at different angles with respect to the loading direction. In these laminates the plies orientated parallel to the loading direction (at 0∘) control the ultimate failure of the composite. This paper shows that the development of fibre breaks in analogous to that seen in the studies described in Part 1 and 2. Clustering of fibre breaks, shown by the development of 32-plets, preceedes failure just before specimen loaded monotonically break but develop in a more stable manner when subjected to steady high level loads. The effect of separating the 0∘ plies into thinner layers impedes the development of fibre breaks clusters and increases ultimate lifetimes.

  5. Strong and electrically conductive graphene-based composite fibers and laminates

    SciTech Connect

    Vlassiouk, Ivan V.; Polyzos, Georgios; Cooper, Ryan C.; Ivanov, Ilia N.; Keum, Jong Kahk; Paulauskas, Felix L.; Datskos, Panos G.; Smirnov, Sergei

    2015-04-28

    In this study, graphene is an ideal candidate for lightweight, high-strength composite materials given its superior mechanical properties (specific strength of 130 GPa and stiffness of 1 TPa). To date, easily scalable graphene-like materials in a form of separated flakes (exfoliated graphene, graphene oxide, and reduced graphene oxide) have been investigated as candidates for large-scale applications such as material reinforcement. These graphene-like materials do not fully exhibit all the capabilities of graphene in composite materials. In this study, we show that macro (2 inch × 2 inch) graphene laminates and fibers can be produced using large continuous sheets of single-layer graphene grown by chemical vapor deposition. The resulting composite structures have potential to outperform the current state-of-the-art composite materials in both mechanical properties and electrical conductivities (>8 S/cm with only 0.13% volumetric graphene loading and 5 × 103 S/cm for pure graphene fibers) with estimated graphene contributions of >10 GPa in strength and 1 TPa in stiffness.

  6. Strong and electrically conductive graphene-based composite fibers and laminates

    DOE PAGES

    Vlassiouk, Ivan V.; Polyzos, Georgios; Cooper, Ryan C.; Ivanov, Ilia N.; Keum, Jong Kahk; Paulauskas, Felix L.; Datskos, Panos G.; Smirnov, Sergei

    2015-04-28

    In this study, graphene is an ideal candidate for lightweight, high-strength composite materials given its superior mechanical properties (specific strength of 130 GPa and stiffness of 1 TPa). To date, easily scalable graphene-like materials in a form of separated flakes (exfoliated graphene, graphene oxide, and reduced graphene oxide) have been investigated as candidates for large-scale applications such as material reinforcement. These graphene-like materials do not fully exhibit all the capabilities of graphene in composite materials. In this study, we show that macro (2 inch × 2 inch) graphene laminates and fibers can be produced using large continuous sheets of single-layermore » graphene grown by chemical vapor deposition. The resulting composite structures have potential to outperform the current state-of-the-art composite materials in both mechanical properties and electrical conductivities (>8 S/cm with only 0.13% volumetric graphene loading and 5 × 103 S/cm for pure graphene fibers) with estimated graphene contributions of >10 GPa in strength and 1 TPa in stiffness.« less

  7. Stress Analysis of Laminated Composite Cylinders Under Non-Axisymmetric Loading

    SciTech Connect

    Starbuck, J.M.

    1999-10-26

    The use of thick-walled composite cylinders in structural applications has seen tremendous growth over the last decade. Applications include pressure vessels, flywheels, drive shafts, spoolable tubing, and production risers. In these applications, the geometry of a composite cylinder is axisymmetric but in many cases the applied loads are non-axisymmetric and more rigorous analytical tools are required for an accurate stress analysis. A closed-form solution is presented for determining the layer-by-layer stresses, strains, and displacements and first-ply failure in laminated composite cylinders subjected to non-axisymmetric loads. The applied loads include internal and external pressure, axial force, torque, axial bending moment, uniform temperature change, rotational velocity, and interference fits. The formulation is based on the theory of anisotropic elasticity and a state of generalized plane deformation along the axis of the composite cylinder. Parametric design trade studies can be easily and quickly computed using this closed-form solution. A computer program that was developed for performing the numerical calculations is described and results from specific case studies are presented.

  8. A micrographic study of bending failure in five thermoplastic-carbon fibre composite laminates

    NASA Technical Reports Server (NTRS)

    Yurgartis, S. W.; Sternstein, S. S.

    1988-01-01

    The local deformation and failure sequences of five thermoplastic matrix composites were microscopically observed while bending the samples in a small fixture attached to a microscope stage. The thermoplastics are polycarbonate, polysulfane, polyphenylsulfide, polyethersulfane, and polyetheretherketone. Comparison was made to an epoxy matrix composite, 5208/T-300. Laminates tested are (0/90) sub 2S, with outer ply fibers parallel to the beam axis. Four point bending was used at a typical span-to-thickness ratio of 39:1. It was found that all of the thermoplastic composites failed by abrupt longitudinal compression buckling of the outer ply. Very little precursory damage was observed. Micrographs reveal typical fiber kinking associated with longitudinal compression failure. Curved fracture surfaces on the fibers suggest they failed in bending rather than direct compression. Delamination was suppressed in the thermoplastic composites, and the delamination that did occur was found to be the result of compression buckling, rather than vice-versa. Microbuckling also caused other subsequent damage such as ply splitting, transverse ply shear failure, fiber tensile failure, and transverse ply cracking.

  9. Numerical Investigation of the Ballistic Performance of Metal-Intermetallic Laminate Composites

    NASA Astrophysics Data System (ADS)

    Cao, Yang; Zhu, Shifan; Guo, Chunhuan; Vecchio, Kenneth S.; Jiang, Fengchun

    2015-08-01

    Metal-intermetallic laminate composites (MIL) based on the Ti-aluminide system are a new class of lightweight structural materials that can be used as either appliqué or structural armor. The explicit 2D finite element code LS-DYNA was employed to investigate the ballistic performance and failure mechanism of MIL composite plate subjected to impact loading. For comparison's sake, the penetration simulation was also conducted for a monolithic intermetallic Al3Ti sample under the same conditions. Damage tolerant abilities of the two targets were evaluated based on the analysis of the projectile tail velocity, crack density and absorbed material energy. The simulation results indicated that when cracks initiated in the Al3Ti matrix propagated to the interface between the matrix and reinforcement, their directions changed due to the bridging effect of the reinforcement Ti, which enabled the MIL composite to consume more energy as a result of the increase of the crack path lengths created by the crack deflection and bifurcation. Additionally, some other energy-absorbing mechanisms, such as deflection of cracks, plastic deformation of the ductile Ti also play important roles in enhancing the energy-absorbing capacity of the MIL composites.

  10. Crack Growth Mechanisms under Anti-Plane Shear in Composite Laminates

    NASA Astrophysics Data System (ADS)

    Horner, Allison Lynne

    The research conducted for this dissertation focuses on determining the mechanisms associated with crack growth in polymer matrix composite laminates subjected to anti-plane shear (mode III) loading. For mode III split-beam test methods were proposed, and initial evaluations were conducted. A single test method was selected for further evaluation. Using this test method, it was determined that the apparent mode III delamination toughness, GIIIc , depended on geometry, which indicated a true material property was not being measured. Transverse sectioning and optical microscopy revealed an array of transverse matrix cracks, or echelon cracks, oriented at approximately 45° and intersecting the plane of the delamination. Subsequent investigations found the echelon array formed prior to the onset of planar delamination advance and that growth of the planar delamination is always coupled to echelon array formation in these specimens. The evolution of the fracture surfaces formed by the echelon array and planar delamination were studied, and it was found that the development was similar to crack growth in homogenous materials subjected to mode III or mixed mode I-III loading, although the composite laminate architecture constrained the fracture surface development differently than homogenous materials. It was also found that, for split-beam specimens such as those used herein, applying an anti-plane shear load results in twisting of the specimen's uncracked region which gives rise to a mixed-mode I-III load condition. This twisting has been related to the apparent mode III toughness as well as the orientation of the transverse matrix cracks. A finite element model was then developed to study the mechanisms of initial echelon array formation. From this, it is shown that an echelon array will develop, but will become self-limiting prior to the onset of planar delamination growth.

  11. A Mixed-Mode (I-II) Fracture Criterion for AS4/8552 Carbon/Epoxy Composite Laminate

    NASA Astrophysics Data System (ADS)

    Karnati, Sidharth Reddy

    A majority of aerospace structures are subjected to bending and stretching loads that introduce peel and shear stresses between the plies of a composite laminate. These two stress components cause a combination of mode I and II fracture modes in the matrix layer of the composite laminate. The most common failure mode in laminated composites is delamination that affects the structural integrity of composite structures. Damage tolerant designs of structures require two types of materials data: mixed-mode (I-II) delamination fracture toughness that predicts failure and delamination growth rate that predicts the life of the structural component. This research focuses determining mixed-mode (I-II) fracture toughness under a combination of mode I and mode II stress states and then a fracture criterion for AS4/8552 composite laminate, which is widely used in general aviation. The AS4/8552 prepreg was supplied by Hexcel Corporation and autoclave fabricated into a 20-ply unidirectional laminate with an artificial delamination by a Fluorinated Ethylene Propylene (FEP) film at the mid-plane. Standard split beam specimens were prepared and tested in double cantilever beam (DCB) and end notched flexure modes to determine mode I (GIC) and II (GIIC) fracture toughnesses, respectively. The DCB specimens were also tested in a modified mixed-mode bending apparatus at GIIm /GT ratios of 0.18, 0.37, 0.57 and 0.78, where GT is total and GIIm is the mode II component of energy release rates. The measured fracture toughness, GC, was found to follow the locus a power law equation. The equation was validated for the present and literature experimental data.

  12. Influence of laminate sequence and fabric type on the inherent acoustic nonlinearity in carbon fiber reinforced composites.

    PubMed

    Chakrapani, Sunil Kishore; Barnard, Daniel J; Dayal, Vinay

    2016-05-01

    This paper presents the study of influence of laminate sequence and fabric type on the baseline acoustic nonlinearity of fiber-reinforced composites. Nonlinear elastic wave techniques are increasingly becoming popular in detecting damage in composite materials. It was earlier observed by the authors that the non-classical nonlinear response of fiber-reinforced composite is influenced by the fiber orientation [Chakrapani, Barnard, and Dayal, J. Acoust. Soc. Am. 137(2), 617-624 (2015)]. The current study expands this effort to investigate the effect of laminate sequence and fabric type on the non-classical nonlinear response. Two hypotheses were developed using the previous results, and the theory of interlaminar stresses to investigate the influence of laminate sequence and fabric type. Each hypothesis was tested by capturing the nonlinear response by performing nonlinear resonance spectroscopy and measuring frequency shifts, loss factors, and higher harmonics. It was observed that the laminate sequence can either increase or decrease the nonlinear response based on the stacking sequence. Similarly, tests were performed to compare unidirectional fabric and woven fabric and it was observed that woven fabric exhibited a lower nonlinear response compared to the unidirectional fabric. Conjectures based on the matrix properties and interlaminar stresses were used in an attempt to explain the observed nonlinear responses for different configurations.

  13. Evaluation of progressive damage of nano-modified composite laminates under repeated impacts

    NASA Astrophysics Data System (ADS)

    Koricho, Ermias G.; Karpenko, Oleksii; Khomenko, Anton; Haq, Mahmoodul; Cloud, Gary L.; Udpa, Lalita

    2016-04-01

    However, studies on the effect of nano-reinforcements in repeated impact scenarios are relatively limited. This work investigates the effect of resin nanoclay modification on the impact resistance of glass-fiber reinforced polymer (GFRP) composites subjected to repeated impacts. Three impact energy levels were used in experiments with a minimum of four specimens per case for statistical significance. Each sample was subjected to 40 repeated impacts or was tested up to perforation, whichever happened first. The impact response was evaluated in terms of evolution of the peak force, bending stiffness, visual damage inspection and optical transmission scanning (OTS) at critical stages as a function of number of impacts. Also, the damage degree (DD) was calculated to monitor the evolution of damage in the laminates. As expected, the impact response of the GFRP composites varied based on the presence of nano-clay and the applied impact energy. The modification of the resin with nano-clay introduced novel phenomena that changed the damage progression mechanism under repetitive impacts, which was verified by visual observation and optical transmission scanning. A better understanding of these phenomena (e.g. crack-bridging, tortuosity) and their contributions to enhancements in the impact behavior and modifications of the types of damage propagation can lead to better design of novel structural composites.

  14. Damage Detection and Impact Testing on Laminated and Sandwich Composite Panels

    NASA Technical Reports Server (NTRS)

    Hughes, Derke R.; Craft, William J.; Schulz, Mark J.; Naser, Ahmad S.; Martin, William N.

    1998-01-01

    This research investigates health monitoring of sandwich shell composites to determine if the Transmittance Functions (TF) are effective in determining the present of damage. The health monitoring test was conducted on the sandwich plates before and after low velocity impacts using the health monitoring technique given in TFs are a NDE (Nondestructive Evaluation) technique that utilizes the ratios of cross-spectrums to auto-spectrums between two response points on the sandwich composites. The test for transmittance was conducted on the same density foam core throughout the experiment. The test specimens were 17.8 cm by 25.4 cm in dimension. The external sheets (face sheets) were created from graphite/epoxy laminate with dimension of 1.58 mm thick. The polymethacrylide (Rohacell) foam core was 12.7 mm thick. These samples experienced a transformation in the TF that was considered the low velocity impact damage. The low velocity damage was observed in the TFs for the sandwich composites.

  15. Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates

    NASA Astrophysics Data System (ADS)

    Idiart, Martín I.

    A new approach is proposed for estimating the macroscopic behavior of two-phase nonlinear composites with random, particulate microstructures. The central idea is to model composites by sequentially laminated constructions of infinite rank whose macroscopic behavior can be determined exactly. The resulting estimates incorporate microstructural information up to the two-point correlation functions, and require the solution to a Hamilton-Jacobi equation with the inclusion concentration and the macroscopic fields playing the role of 'time' and 'spatial' variables, respectively. Because they are realizable, by construction, these estimates are guaranteed to be convex, to satisfy all pertinent bounds, to exhibit no duality gap, and to be exact to second order in the heterogeneity contrast. Sample results are provided for two- and three-dimensional power-law composites, and are compared with other homogenization estimates, as well as with numerical simulations available from the literature. The estimates are found to give physically sensible predictions for all the cases considered, even for extreme values of the nonlinearity and heterogeneity contrast. Interestingly, in the case of isotropic porous materials under hydrostatic loadings, the estimates agree exactly with standard Gurson-type models for viscoplastic porous media.

  16. Comprehensively simulating the mixed-mode progressive delamination in composite laminates

    NASA Astrophysics Data System (ADS)

    Gao, Zhenyuan

    Delamination, or interlaminar debonding, is a commonly observed failure mechanism in composite laminates. It is of great significance to comprehensively simulate the mixed-mode progressive delamination in composite structures because by doing this, people can save a lot of effort in evaluating the safe load which a composite structure can endure. The objective of this thesis is to develop a numerical approach to simulating double-cantilever beam (DCB) and mixed-mode bending (MMB) tests and also of specifying/validating various cohesive models. A finite element framework, which consists of properly selecting time integration scheme (explicit dynamic), viscosity, load rate and mass scaling, is developed to yield converged and accurate results. Two illustrative cohesive laws (linear and power-law) are programmed with a user- defined material subroutine for ABAQUS/Explicit, VUMAT, and implemented into the finite element framework. Parameters defined in cohesive laws are studied to evaluate their effects on the predicted load-displacement curves. The finite element model, together with the predetermined model parameters, is found to be capable of producing converged and accurate results. The finite element framework, embedded with the illustrative cohesive laws, is found to be capable of handling various interfacial models. The present approach is concluded to be useful in simulating delamination with more sophisticated material models. Together with the method for determining model parameters, it can be used by computer codes other than ABAQUS.

  17. Experimental verification of a progressive damage model for composite laminates based on continuum damage mechanics. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Coats, Timothy William

    1994-01-01

    Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.

  18. Layer-wise dynamic stiffness solution for free vibration analysis of laminated composite plates

    NASA Astrophysics Data System (ADS)

    Boscolo, M.; Banerjee, J. R.

    2014-01-01

    The dynamic stiffness method has been developed by using a sophisticated layer-wise theory which complies with the Cz0 requirements and delivers high accuracy for the analysis of laminated composite plates. The method is versatile as it derives the dynamic stiffness matrix for plates with any number of layers in a novel way without the need to re-derive and re-solve the equations of motion when the number of layers has changed. This novel procedure to manipulate and solve the equations of motion has been referred to as the L matrix method in this paper. The Carrera unified formulation (CUF) is employed to derive the equations of motion through the use of a first-order layer-wise assumption for a plate with a single layer first. The method is then generalised and extended to multiple layers. Essentially by writing the equations of motion of one single layer in the L matrix form, the system of equations of motion of a laminated plate with any number of layers is generated in an efficient and automatic way. A significant feature of the subsequent work is to devise a method to solve the system of differential equations automatically in closed analytical form and then obtain the ensuing dynamic stiffness matrix of the laminated plate. The developed dynamic stiffness element has been validated wherever possible by analytical solutions (based on Navier's solution for plates simply supported at all edges) for the same displacement formulation. Furthermore, the dynamic stiffness theory is assessed by 3D analytical solutions (scantly available in the literature) and also by the finite element method using NASTRAN. The results have been obtained in an exact sense for the first time and hence they can be used as benchmark solutions for assessing approximate methods. This new development of the dynamic stiffness method will allow free vibration and response analysis of geometrically complex structures with such a level of computational efficiency and accuracy that could not be

  19. Influence of Compression and Shear on the Strength of Composite Laminates With Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH) based on Cosserat couple stress theory. Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. Compression strengths of lamina without z-pins agreed well with a closed form expression derived by Budiansky and Fleck. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  20. Influence of Compression and Shear on the Strength of Composite Laminates with Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH) based on Cosserat couple stress theory. Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. Compression strengths of lamina without z-pins agreed well with a closed form expression derived by Budiansky and Fleck. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quaiisotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  1. Influence of Compression and Shear on the Strength of Composite Laminates with Z-Pinned Reinforcement

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Krueger, Ronald

    2005-01-01

    The influence of compression and shear loads on the strength of composite laminates with z-pins is evaluated parametrically using a 2D Finite Element Code (FLASH). Meshes were generated for three unique combinations of z-pin diameter and density. A laminated plate theory analysis was performed on several layups to determine the bi-axial stresses in the zero degree plies. These stresses, in turn, were used to determine the magnitude of the relative load steps prescribed in the FLASH analyses. Results indicated that increasing pin density was more detrimental to in-plane compression strength than increasing pin diameter. FLASH results for lamina with z-pins were consistent with the closed form results, and FLASH results without z-pins, if the initial fiber waviness due to z-pin insertion was added to the fiber waviness in the material to yield a total misalignment. Addition of 10% shear to the compression loading significantly reduced the lamina strength compared to pure compression loading. Addition of 50% shear to the compression indicated shear yielding rather than kink band formation as the likely failure mode. Two different stiffener reinforced skin configurations with z-pins, one quasi-isotropic and one orthotropic, were also analyzed. Six unique loading cases ranging from pure compression to compression plus 50% shear were analyzed assuming material fiber waviness misalignment angles of 0, 1, and 2 degrees. Compression strength decreased with increased shear loading for both configurations, with the quasi-isotropic configuration yielding lower strengths than the orthotropic configuration.

  2. Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.

    1985-01-01

    The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.

  3. Damage monitoring of CFRP retrofit using optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Joshi, Kunal; Breaux Frketic, Jolie; Olawale, David; Dickens, Tarik

    2015-04-01

    With nearly 25% of bridge infrastructure deemed deficient, repair of concrete structures is a critical need. FRP materials as thin laminates or fabrics are appearing to be an ideal alternative to traditional repair technology, because of their high strength to weight ratios and stiffness to weight ratios. In addition, FRP materials offer significant potential for lightweight, high strength, cost-effective and durable retrofit. One drawback of using CFRP retrofitting is its brittle-type failure; caused by its nearly linear elastic nature of the stress-strain behavior. This causes a strength reduction of the retrofitted member, thus the health of the retrofit applied on the structure becomes equally important to sustain the serviceability of the structure. This paper provides a system to monitor damage on the CFRP retrofits through optical fiber sensors which are woven into the structure to provide damage sensing. Precracked reinforced concrete beams were retrofitted using CFRP laminates with the most commonly used FRP application technique. The beams were tested under constant stress to allow the retrofitting to fail while evaluating the performance of the sensing system. Debonding failure modes at a stress of 9 MPa were successfully detected by TL optical fiber sensors in addition to detection during flexural failure. Real-time failure detection of FRP strengthened beams was successfully achieved and the retrofit damage-monitoring scheme aims at providing a tool to reduce the response time and decision making involved in maintenance of deficient structures.

  4. Near-tip dual-length scale mechanics of mode-I cracking in laminate brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Islam, S.; Charalambides, P. G.

    1992-01-01

    This paper presents the preliminary results of an on-going study of the near-tip mechanics of mode-I cracking in brittle matrix composite laminates. A finite element model is developed within the context of two competing characteristic lengths present in the composite: the microstructural length (the thickness of the layers) and a macro-length (crack-length, uncracked ligament size, etc.). For various values of the parameters which describe the ratio of these lengths and the constituent properties, the stresses ahead of a crack perpendicular to the laminates are compared with those predicted by assuming the composite is homogeneous orthotropic. The results can be used to determine the conditions for which homogenization can provide a sufficiently accurate description of the stresses in the vicinity of the crack-tip.

  5. Scale effects in the response and failure of fiber reinforced composite laminates loaded in tension and in flexure

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Morton, John

    1992-01-01

    The feasibility of using scale model testing for predicting the full-scale behavior of flat composite coupons loaded in tension and beam-columns loaded in flexure is examined. Classical laws of similitude are applied to fabricate and test replica model specimens to identify scaling effects in the load response, strength, and mode of failure. Experiments were performed on graphite-epoxy composite specimens having different laminate stacking sequences and a range of scaled sizes. From the experiments it was deduced that the elastic response of scaled composite specimens was independent of size. However, a significant scale effect in strength was observed. In addition, a transition in failure mode was observed among scaled specimens of certain laminate stacking sequences. A Weibull statistical model and a fracture mechanics based model were applied to predict the strength scale effect since standard failure criteria cannot account for the influence of absolute specimen size on strength.

  6. Remote Strain Sensing of CFRP Using Microwave Frequency Domain Reflectometry

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    NASA's Advanced Composites Project is investigating technologies that increase automated remote inspection of aircraft composite structures. Therefore, microwave Frequency Domain Reflectometry (FDR) is being investigated as a method of enabling rapid remote measurement of strain occurring at the first ply of a composite fiber reinforced polymer (CFRP) structure using Radio Frequency (RF) Electro-Magnetic (EM) radiation. While microwave reflectometry has been used to detect disbonds in CFRP structures, its use in detecting strain has been limited. This work will present data demonstrating the measurement of the reactance changes due to loading conditions that are indicative of strain in a CFRP structure. In addition, the basic EM signature will be presented along with an analysis of temperature and humidity effects.

  7. On the Through-the-Width Multiple Delamination, and Buckling and Postbuckling Behaviors of Symmetric and Unsymmetric Composite Laminates

    NASA Astrophysics Data System (ADS)

    Liu, P. F.; Zheng, J. Y.

    2013-12-01

    Multiple delamination causes severe degradation of the stiffness and strength of composites. Interactions between multiple delamination, and buckling and postbuckling under compressive loads add the complexity of mechanical properties of composites. In this paper, the buckling, postbuckling and through-the-width multiple delamination of symmetric and unsymmetric composite laminates are studied using 3D FEA, and the virtual crack closure technique with two delamination failure criteria: B-K law and power law is used to predict the delamination growth and to calculate the mixed-mode energy release rate. The compressive load-strain curves, load-central deflection curves and multiple delamination process for eight composite specimens with different initial delamination sizes and their distributions as well as two angle-ply configurations 04//(± θ)6//04 ( θ = 0° and 45°, and "//" denotes the delaminated interface) are comparatively studied. From numerical results, the unsymmetry decreases the local buckling load and initial delamination load, but does not affect the global buckling load compared with the symmetric laminates. Besides, the unsymmetry affects the unstable delamination and buckling behaviors of composite laminates largely when the initial multiple delamination sizes are relatively small.

  8. Experimental observations and finite element analysis of the initiation of fiber microbuckling in notched composite laminates

    NASA Technical Reports Server (NTRS)

    Guynn, E. Gail; Bradley, Walter L.

    1989-01-01

    An understanding was developed of the factors that determine the semi-circular edge-notched compressive strength and the associated failure mode(s) were identified of thermoplastic composite laminates with multidirectional stacking sequences. The experimental observations and the detailed literature review suggest at least four factors that affected the determination of the strain levels at which fiber microbuckling initiates and thus, partially control the composite's compression strength. The dependent variables studied are the compressive strength of a reduced gage section compression specimen and the compression strength of a compression specimen with two semi-circular edge notches (no opposite free edges) centered along the gage section. In this research, specimens containing two semi-circular edge notches (no opposite free edges) were loaded in compression at a relatively slow rate to provide more stable development of fiber microbuckling damage. The results indicate that the local constraints (free surfaces, supporting ply orientation, and resin-rich regions) significantly affect the strain level for the initiation of in-plane fiber microbuckling. Preliminary results at an elevated temperature, 77 C, showed the shear stress yield strength of the resin was reduced and consequently, the resistance to fiber microbuckling was also reduced. The finite element analysis of the perfectly straight fiber problem indicates that the free surface effect causes a 10 percent reduction in the critical buckling strain. However, the experimentally measured reduction for fibers with an initial fiber curvature, was 35 percent.

  9. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror

    SciTech Connect

    Le Bas, P. -Y.; Remillieux, M. C.; Pieczonka, L.; Ten Cate, J. A.; Anderson, B. E.; Ulrich, T. J.

    2015-11-03

    We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowing localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. As a result, this capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.

  10. Flexible transparent metal/polymer composite materials based on optical resonant laminate structures.

    PubMed

    Narayanan, Sudarshan; Choi, Jihoon; Porter, Lisa; Bockstaller, Michael R

    2013-05-22

    Suitable design of periodic metal/polymer composite materials is shown to facilitate resonant tunneling of light at absorbing wavelengths and to provide a means to significantly reduce optical absorption losses in polymer-based metallodielectric composite structures. The conditions for resonant tunneling are established based on the concept of "photonic band edge alignment" in 1D-periodic systems. For the particular case of a four-layer gold/polystyrene laminate structure, it is shown that the matching of the lower band edge of the 1D-periodic structure with the plasma frequency of the metal component facilitates the increase of optical transmission by about 500% as compared to monolithic film structures of equal total thickness. The effect of sheet thickness on the optical properties of thin metal films is determined and shown to be an important prerequisite for the reliable prediction of resonant metallodielectric structures. The resonant 1D-periodic metal/polymer heterostructures are shown to retain the flexural stability of the polymer matrix and thus could find application as flexible transparent conductors in areas such as "plastic electronics".

  11. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror

    DOE PAGES

    Le Bas, P. -Y.; Remillieux, M. C.; Pieczonka, L.; Ten Cate, J. A.; Anderson, B. E.; Ulrich, T. J.

    2015-11-03

    We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowingmore » localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. As a result, this capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.« less

  12. Damage imaging in a laminated composite plate using an air-coupled time reversal mirror

    NASA Astrophysics Data System (ADS)

    Le Bas, P.-Y.; Remillieux, M. C.; Pieczonka, L.; Ten Cate, J. A.; Anderson, B. E.; Ulrich, T. J.

    2015-11-01

    We demonstrate the possibility of selectively imaging the features of a barely visible impact damage in a laminated composite plate by using an air-coupled time reversal mirror. The mirror consists of a number of piezoelectric transducers affixed to wedges of power law profiles, which act as unconventional matching layers. The transducers are enclosed in a hollow reverberant cavity with an opening to allow progressive emission of the ultrasonic wave field towards the composite plate. The principle of time reversal is used to focus elastic waves at each point of a scanning grid spanning the surface of the plate, thus allowing localized inspection at each of these points. The proposed device and signal processing removes the need to be in direct contact with the plate and reveals the same features as vibrothermography and more features than a C-scan. More importantly, this device can decouple the features of the defect according to their orientation, by selectively focusing vector components of motion into the object, through air. For instance, a delamination can be imaged in one experiment using out-of-plane focusing, whereas a crack can be imaged in a separate experiment using in-plane focusing. This capability, inherited from the principle of time reversal, cannot be found in conventional air-coupled transducers.

  13. Impact Analysis of Embedded Delamination Location in Hybrid Curved Laminated Composite Stiffened Panel

    NASA Astrophysics Data System (ADS)

    Naini, Jeevan Kumar; P, Ramesh Babu

    2016-08-01

    Modern, aero structures are predominantly of curved construction characterized by a skin and stiffeners. The latest generation of large passenger aircraft also uses mostly composite material in their primary structure and there is trend towards the utilization of bonding of subcomponents. The presence of delamination is a major problem in composite laminated panels and so, it is of great concern to both the academic and aeronautical industrial worlds Indeed delamination can strongly affect the material strength and, sometimes, can cause their breaking up in service. A Pre-damaged configuration is loaded to study the delamination location and mode for delamination initiation and propagation. A parametric study is conducted to investigate the effect of the location of the delamination propagation when delamination is embedded inbetween plies of the skin-stiffener interface, with the cases i) delamination located at front and inbetween plies of the skin-stiffener interface ii) delamination located in middle and inbetween plies of the skin-stiffener interface iii) delamination located at the end and inbetween plies of the skin- stiffener interface. Further the influence of the location of the delamination on load carrying capacity of the panel is investigated. The effect of location of debonds on crack growth and collapse behavior is analyzed using analysis tool. An analysis tool is applied that includes an approach for predicting interlaminar damage initiation and interlaminar damage growth as well as in-plane damage mechanisms to predict the design of defect free panel.

  14. A comparative evaluation of in-plane shear test methods for laminated graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Morton, John; Ho, Henjen

    1992-01-01

    The objectives were to evaluate popular shear test methods for various forms of graphite-epoxy composite materials and to determine the shear response of graphite-epoxy composites with various forms of fiber architecture. Numerical and full-field experimental stress analyses were performed on four shear test configurations for unidirectional and bidirectional graphite-epoxy laminates to assess the uniformity and purity of the shear stress (strain) fields produced in the specimen test section and to determine the material in-plane shear modulus and shear response. The test methods were the 10 deg off-axis, the +/- 45 deg tension, the Iosipescu V-notch, and a compact U-notch specimen. Specimens were prepared from AS4/3501-6 graphite-epoxy panels, instrumented with conventional strain gage rosettes and with a cross-line moire grating, and loaded in a convenient testing machine. The shear responses obtained for each test method and the two methods of specimen instrumentation were compared. In a second phase of the program the shear responses obtained from Iosipescu V-notch beam specimens were determined for woven fabric geometries of different weave and fiber architectures. Again the responses of specimens obtained from strain gage rosettes and moire interferometry were compared. Additional experiments were performed on a bidirectional cruciform specimen which was also instrumented with strain gages and a moire grating.

  15. Fatigue degradation in compressively loaded composite laminates. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Ramkumar, R. L.

    1981-01-01

    The effect of imbedded delaminations on the compression fatigue behavior of quasi-isotropic, T300/5208, graphite/epoxy laminates was investigated. Teflon imbedments were introduced during panel layup to create delaminations. Static and constant amplitude (R=10, omega = 10 Hz) fatigue tests were conducted. S-N data and half life residual strength data were obtained. During static compression loading, the maximum deflection of the buckled delaminated region was recorded. Under compression fatigue, growth of the imbedded delamination was identified as the predominant failure mode in most of the test cases. Specimens that exhibited others failures had a single low stiffness ply above the Teflon imbedment. Delamination growth during fatigue was monitored using DIB enhanced radiography. In specimens with buried delaminations, the dye penetrant (DIB) was introduced into the delaminated region through a minute laser drilled hole, using a hypodermic needle. A low kV, microfocus, X-ray unit was mounted near the test equipment to efficiently record the cyclic growth of buried delaminations on Polaroid film.

  16. Structural health monitoring of composite laminates using piezoelectric and fiber optics sensors

    NASA Astrophysics Data System (ADS)

    Roman, Catalin

    This research proposes a new approach to structural health monitoring (SHM) for composite laminates using piezoelectric wafer active sensors (PWAS) and fiber optic bragg grating sensors (FBG). One major focus of this research was directed towards extending the theory of laminates to composite beams by combining the global matrix method (GMM) with the stiffness transfer matrix method (STMM). The STMM approach, developed by Rokhlin et al (2002), is unconditionally stable and is more computationally efficient than the transfer matrix method (TMM). Starting from theory, we developed different configurations for composite beams and validated the results from the developed analytical method against experimental data. STMM was then developed for pristine composite beam and delaminated composite beam. We studied the influence of the bonded PWAS by looking at their mode frequencies and amplitudes via experiments and simulations with different sensor positions on pristine and damaged beams, with different delamination sizes and depths. We also extended the TMM and the electro-mechanical (E/M) impedance method for applications to the convergence of TMM of beam vibrations. The focus was on the high-accuracy predictive modeling of the interaction between PWAS and structural waves and vibration using a methodology as in Cuc (2010). We expanded the frequency resonances of a uniform beam from the range of 1-30 kHz previously studied by Cuc (2010) to a higher frequency range of 10-100 kHz and performed the reliability and accuracy analysis (error rates) of all available theoretical models (modal expansion, TMM, and FEM) given experimental data for the uniform beam specimen. Another focus of this research was to explore the use of FBG for fiber composites applications. We performed tests that vary the load on the free end in order to understand the behavior of composite materials under tensile forces and to extend results to ring sensor applications. The last part this research

  17. Characteristics of thermally-induced transverse cracks in graphite epoxy composite laminates

    NASA Technical Reports Server (NTRS)

    Adams, D. S.; Bowles, D. E.; Herakovich, C. T.

    1983-01-01

    The characteristics of thermally induced transverse cracks in T300/5208 graphite-epoxy cross-ply and quasi-isotropic laminates were investigated both experimentally and analytically. The formation of transverse cracks and the subsequent crack spacing present during cool down to -250 F (116K) and thermal cycling between 250 and -250 F (116 and 394K) was investigated. The state of stress in the vicinity of a transverse crack and the influence of transverse cracking on the laminate coefficient of thermal expansion (CTE) was predicted using a generalized plane strain finite element analysis and a modified shear lag analysis. A majority of the cross-ply laminates experienced transverse cracking during the initial cool down to -250 F whereas the quasi-isotropic laminates remained uncracked. The in situ transverse strength of the 90 degree layers was more than 1.9 times greater than the transverse strength of the unidirectional 90 degree material for all laminates investigated.

  18. The Artificial Bee Colony algorithm in layer optimization for the maximum fundamental frequency of symmetrical laminated composite plates

    NASA Astrophysics Data System (ADS)

    Kemal Apalak, M.; Karaboga, Dervis; Akay, Bahriye

    2014-03-01

    In this study the layer optimization was carried out for maximizing the lowest (first) fundamental frequency of symmetrical laminated composite plates subjected to any combination of the three classical boundary conditions, and the applicability of the Artificial Bee Colony (ABC) algorithm to the layer optimization was investigated. The finite element method was used for calculating the first natural frequencies of the laminated composite plates with various stacking sequences. The ABC algorithm maximizes the first natural frequency of the laminated composite plate defined as an objective function. The optimal stacking sequences were determined for two layer numbers, twenty boundary conditions and two plate length/width ratios. The outer layers of the composite plate had a stiffness increasing effect, and as the number of clamped plate edges was increased both he stiffness and natural frequency of the plate increased. The optimal stacking sequences were in good agreement with those determined by the Ritz-based layerwise optimization method (Narita 2003: J. Sound Vibration 263 (5), 1005-1016) as well as by the genetic algorithm method combined with the finite element method.

  19. Innovative design of composite structures: Axisymmetric deformations of unsymmetrically laminated cylinders loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Paraska, P. J.

    1990-01-01

    The study focuses on the axisymmetric deformation response of unsymmetrically laminate cylinders loaded in axial compression by known loads. A geometrically nonlinear analysis is used. Though buckling is not studied, the deformations can be considered to be the prebuckling response. Attention is directed at three 16 layer laminates: a (90 sub 8/0 sub 8) sub T; a (0 sub 8/90 sub 8) sub T and a (0/90) sub 4s. The symmetric laminate is used as a basis for comparison, while the two unsymmetric laminates were chosen because they have equal but opposite bending-stretching effects. Particular attention is given to the influence of the thermally-induced preloading deformations that accompany the cool-down of any unsymmetric laminate from the consolidation temperature. Simple support and clamped boundary conditions are considered. It is concluded that: (1) The radial deformations of an unsymmetric laminate are significantly larger than the radial deformations of a symmetric laminate, although for both symmetric and unsymmetric laminates the large deformations are confined to a boundary layer near the ends of the cylinder; (2) For this nonlinear problem the length of the boundary layer is a function of the applied load; (3) The sign of the radial deformations near the supported end of the cylinder depends strongly on the sense (sign) of the laminate asymmetry; (4) For unsymmetric laminates, ignoring the thermally-induced preloading deformations that accompany cool-down results in load-induced deformations that are under predicted; and (5) The support conditions strongly influence the response but the influence of the sense of asymmetry and the influence of the thermally-induced preloading deformations are independent of the support conditions.

  20. Evaluation of the Edge Crack Torsion (ECT) Test for Mode 3 Interlaminar Fracture Toughness of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; Lee, Edward W.; OBrien, T. Kevin; Lee, Shaw Ming

    1996-01-01

    An analytical and experimental investigation was carried out on G40-800/R6376 graphite epoxy laminates to evaluate the Edge Crack Torsion (ECT) test as a candidate for a standard Mode 3 interlaminar fracture toughness test for laminated composites. The ECT test consists of a (90/(+/- 45)(sub 3)/(+/- 45)(sub 3)/90))(sub s) laminate with a delamination introduced by a non-adhesive film at the mid-plane along one edge and loaded in a special fixture to create torsion along the length of the laminate. Dye penetrate enhanced X-radiograph of failed specimens revealed that the delamination initiated at the middle of the specimen length and propagated in a self similar manner along the laminate mid-plane. A three-dimensional finite element analysis was performed that indicated that a pure Mode 3 delamination exists at the middle of specimen length away from both ends. At the ends near the loading point a small Mode 2 component exists. However, the magnitude of this Mode 2 strain energy release rate at the loading point is small compared to the magnitude of Mode 3 component in the mid-section of the specimen. Hence, the ECT test yielded the desired Mode 3 delamination. The Mode 3 fracture toughness was obtained from a compliance calibration method and was in good agreement with the finite element results. Mode 2 End-Notched Flexure (ENF) tests and Mode 1 Double Cantilever Beam (DCB) tests were also performed for the same composite material. The Mode 1 fracture toughness was much smaller than both the Mode 2 and Mode 3 fracture toughness. The Mode 2 fracture toughness was found to be 75% of the Mode 3 fracture toughness.