Science.gov

Sample records for cftr iodide efflux

  1. Pseudomonas or LPS exposure alters CFTR iodide efflux in 2WT2 epithelial cells with time and dose dependence.

    PubMed

    Haenisch, Michael D; Ciche, Todd A; Luckie, Douglas B

    2010-04-16

    The most common heritable genetic disease in the United States, cystic fibrosis (CF), is caused by mutations in the CF transmembrane conductance regulator (CFTR), a chloride channel that interacts with and regulates a number of other proteins. The bacteria Pseudomonas aeruginosa infects 80% of patients causing decreased pulmonary function and life expectancy. It is not known how malfunction of the chloride channel allows for preferential colonization of patients by a single pathogen. The hypothesis that CFTR interacts with toll-like receptor 4 (TLR4) to phagocytize bacteria was tested. A competitive antagonist of TLR4, MKLPS, was studied for its effect in gentamicin-protection-based bacterial invasion assays. Pre-incubation (15 min 50 microg/mL) with MKLPS did not alter the rate of phagocytosis of P. aeruginosa by cultured epithelia. However, further studies with GFP-transfected P. aeruginosa revealed prominent antibiotic resistant microcolonies were formed. If CFTR is involved in phagocytosis of the bacteria, then internalization was predicted to decrease in iodide efflux. Surprisingly, cultured epithelia exposed to P. aeruginosa for 15 min showed increased cAMP-activated iodide efflux through CFTR. In addition, 15-min exposure to bacterial cell wall component, LPS, purified from P. aeruginosa also increased CFTR iodide efflux in a dose-dependent manner (50, 100 and 200 microg/mL LPS had 25%, 37% and 47% increase). In a reversal of this phenomenon, shorter 5-min exposure to 100 microg/mL LPS resulted in a 25% decrease in forskolin-activated CFTR channel activity compared to controls. This data is consistent with a model in which CFTR is removed from the plasma membrane during phagocytosis of P. aeruginosa followed by recruitment of channels to the membrane to replace those removed during phagocytosis. More studies are needed to confirm this model, but this is the first report of a bacterial product causing a biphasic time-dependent and a dose-dependent alteration

  2. Thyroid iodide efflux: a team effort?

    PubMed

    Fong, Peying

    2011-12-15

    The thyroid hormones thyroxine (T(4)) and triiodothyronine (T(3)) play key roles in regulating development, growth and metabolism in pre- and postnatal life. Iodide (I(-)) is an essential component of the thyroid hormones and is accumulated avidly by the thyroid gland. The rarity of elemental iodine and I(-) in the environment challenges the thyroid to orchestrate a remarkable series of transport processes that ultimately ensure sufficient levels for hormone synthesis. In addition to actively extracting circulating I(-), thyroid follicular epithelial cells must also translocate I(-) into a central intrafollicular compartment, where thyroglobulin is iodinated to form the protein precursor to T(4) and T(3). In the last decade, several bodies of evidence render questionable the notion that I(-) exits thyrocytes solely via the Cl(-)/I(-) exchanger Pendrin (SLC26A4), therefore necessitating reconsideration of several other candidate I(-) conduits: the Cl(-)/H(+) antiporter, CLC-5, the cystic fibrosis transmembrane conductance regulator (CFTR) and the sodium monocarboxylic acid transporter (SMCT1).

  3. CFTR potentiators partially restore channel function to A561E-CFTR, a cystic fibrosis mutant with a similar mechanism of dysfunction as F508del-CFTR

    PubMed Central

    Wang, Yiting; Liu, Jia; Loizidou, Avgi; Bugeja, Luc A; Warner, Ross; Hawley, Bethan R; Cai, Zhiwei; Toye, Ashley M; Sheppard, David N; Li, Hongyu

    2014-01-01

    Background and Purpose Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel causes the genetic disease cystic fibrosis (CF). Towards the development of transformational drug therapies for CF, we investigated the channel function and action of CFTR potentiators on A561E, a CF mutation found frequently in Portugal. Like the most common CF mutation F508del, A561E causes a temperature-sensitive folding defect that prevents CFTR delivery to the cell membrane and is associated with severe disease. Experimental Approach Using baby hamster kidney cells expressing recombinant CFTR, we investigated CFTR expression by cell surface biotinylation, and function and pharmacology with the iodide efflux and patch-clamp techniques. Key Results Low temperature incubation delivered a small proportion of A561E-CFTR protein to the cell surface. Like F508del-CFTR, low temperature-rescued A561E-CFTR exhibited a severe gating defect characterized by brief channel openings separated by prolonged channel closures. A561E-CFTR also exhibited thermoinstability, losing function more quickly than F508del-CFTR in cell-free membrane patches and intact cells. Using the iodide efflux assay, CFTR potentiators, including genistein and the clinically approved small-molecule ivacaftor, partially restored function to A561E-CFTR. Interestingly, ivacaftor restored wild-type levels of channel activity (as measured by open probability) to single A561E- and F508del-CFTR Cl− channels. However, it accentuated the thermoinstability of both mutants in cell-free membrane patches. Conclusions and Implications Like F508del-CFTR, A561E-CFTR perturbs protein processing, thermostability and channel gating. CFTR potentiators partially restore channel function to low temperature-rescued A561E-CFTR. Transformational drug therapy for A561E-CFTR is likely to require CFTR correctors, CFTR potentiators and special attention to thermostability. PMID:24902474

  4. The effect of NO-donors on chloride efflux, intracellular Ca(2+) concentration and mRNA expression of CFTR and ENaC in cystic fibrosis airway epithelial cells.

    PubMed

    Oliynyk, Igor; Hussain, Rashida; Amin, Ahmad; Johannesson, Marie; Roomans, Godfried M

    2013-06-01

    Since previous studies showed that the endogenous bronchodilator, S-nitrosglutathione (GSNO), caused a marked increase in CFTR-mediated chloride (Cl(-)) efflux and improved the trafficking of CFTR to the plasma membrane, and that also the nitric oxide (NO)-donor GEA3162 had a similar, but smaller, effect on Cl(-) efflux, it was investigated whether the NO-donor properties of GSNO were relevant for its effect on Cl(-) efflux from airway epithelial cells. Hence, the effect of a number of other NO-donors, sodium nitroprusside (SNP), S-nitroso-N-acetyl-DL-penicillamine (SNAP), diethylenetriamine/nitric oxide adduct (DETA-NO), and diethylenetriamine/nitric oxide adduct (DEA-NONOate) on Cl(-) efflux from CFBE (∆F508/∆F508-CFTR) airway epithelial cells was tested. Cl(-) efflux was determined using the fluorescent N-(ethoxycarbonylmethyl)-6-methoxyquinoliniu bromide (MQAE)-technique. Possible changes in the intracellular Ca(2+) concentration were tested by the fluorescent fluo-4 method in a confocal microscope system. Like previously with GSNO, after 4 h incubation with the NO-donor, an increased Cl(-) efflux was found (in the order SNAP>DETA-NO>SNP). The effect of DEA-NONOate on Cl(-) efflux was not significant, and the compound may have (unspecific) deleterious effects on the cells. Again, as with GSNO, after a short (5 min) incubation, SNP had no significant effect on Cl(-) efflux. None of the NO-donors that had a significant effect on Cl(-) efflux caused significant changes in the intracellular Ca(2+) concentration. After 4 h preincubation, SNP caused a significant increase in the mRNA expression of CFTR. SNAP and DEA-NONOate decreased the mRNA expression of all ENaC subunits significantly. DETA-NO caused a significant decrease only in α-ENaC expression. After a short preincubation, none of the NO-donors had a significant effect, neither on the expression of CFTR, nor on that of the ENaC subunits in the presence and absence of L-cysteine. It can be concluded that

  5. A Soluble Sulfogalactosyl Ceramide Mimic Promotes ΔF508 CFTR Escape from Endoplasmic Reticulum Associated Degradation

    PubMed Central

    Park, Hyun-Joo; Mylvaganum, Murugesapillai; McPherson, Anne; Fewell, Sheara W.; Brodsky, Jeffrey L.; Lingwood, Clifford A.

    2015-01-01

    SUMMARY AdaSGC binds Hsc70s to inhibit ATPase activity. Using single-turnover assays, adaSGC, a soluble SGC mimic, preferentially inhibited Hsp40-activated Hsc70 ATP hydrolysis (Ki ~ 10 μM) to reduce C-terminal Hsc70-peptide binding and, potentially, chaperone function. ERAD of misfolded ΔF508 CFTR requires Hsc70-Hsp40 chaperones. In transfected baby hamster kidney (BHK) cells, adaSGC increased ΔF508CFTR ERAD escape, and after low-temperature glycerol rescue, maturation, and iodide efflux. Inhibition of SGC biosynthesis reduced ΔF508CFTR but not wtCFTR expression, whereas depletion of other glycosphingolipids had no affect. WtCFTR transfected BHK cells showed increased SGC synthesis compared with ΔF508CFTR/mock-transfected cells. Partial rescue of ΔF508CFTR by low-temperature glycerol increased SGC synthesis. AdaSGC also increased cellular endogenous SGC levels. SGC in the lung, liver, and kidney was severely depleted in ΔF508CFTR compared with wtCFTR mice, suggesting a role for CFTR in SGC biosynthesis. PMID:19389632

  6. The human CFTR protein expressed in CHO cells activates aquaporin-3 in a cAMP-dependent pathway: study by digital holographic microscopy.

    PubMed

    Jourdain, Pascal; Becq, Frédéric; Lengacher, Sylvain; Boinot, Clément; Magistretti, Pierre J; Marquet, Pierre

    2014-02-01

    The transmembrane water movements during cellular processes and their relationship to ionic channel activity remain largely unknown. As an example, in epithelial cells it was proposed that the movement of water could be directly linked to cystic fibrosis transmembrane conductance regulator (CFTR) protein activity through a cAMP-stimulated aqueous pore, or be dependent on aquaporin. Here, we used digital holographic microscopy (DHM) an interferometric technique to quantify in situ the transmembrane water fluxes during the activity of the epithelial chloride channel, CFTR, measured by patch-clamp and iodide efflux techniques. We showed that the water transport measured by DHM is fully inhibited by the selective CFTR blocker CFTRinh172 and is absent in cells lacking CFTR. Of note, in cells expressing the mutated version of CFTR (F508del-CFTR), which mimics the most common genetic alteration encountered in cystic fibrosis, we also show that the water movement is profoundly altered but restored by pharmacological manipulation of F508del-CFTR-defective trafficking. Importantly, whereas activation of this endogenous water channel required a cAMP-dependent stimulation of CFTR, activation of CFTR or F508del-CFTR by two cAMP-independent CFTR activators, genistein and MPB91, failed to trigger water movements. Finally, using a specific small-interfering RNA against the endogenous aquaporin AQP3, the water transport accompanying CFTR activity decreased. We conclude that water fluxes accompanying CFTR activity are linked to AQP3 but not to a cAMP-stimulated aqueous pore in the CFTR protein.

  7. Optimization of a Yellow fluorescent protein-based iodide influx high-throughput screening assay for cystic fibrosis transmembrane conductance regulator (CFTR) modulators.

    PubMed

    Sui, Jinliang; Cotard, Shakira; Andersen, Jennifer; Zhu, Ping; Staunton, Jane; Lee, Margaret; Lin, Stephen

    2010-12-01

    Cystic fibrosis is an inherited, life-threatening disease associated with mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most common mutation, F508del CFTR, is found in 90% of CF patients. The loss of a single amino acid (phenylalanine at position 508) results in malformed CFTR with defective trafficking to the plasma membrane and impaired channel function. A functional assay with cells expressing F508del CFTR has been previously described by others using genetically engineered halide-sensitive yellow fluorescent protein to screen for CFTR modulators. We adapted this yellow fluorescent protein assay to 384-well plate format with a high-throughput screening plate reader, and optimized the assay in terms of data quality, resolution, and throughput, with target-specific protocols. The optimized assay was validated with reference compounds from cystic fibrosis foundation therapeutics. On the basis of the Z-factor range (≥0.5) and the potential productivity, this assay is well suited for high-throughput screening. It was successfully used to screen for active single agent and synergistic combinations of single agent modulators of F508del CFTR from a library collection of current active pharmaceutical ingredients (supported by Cystic Fibrosis Foundation Therapeutics).

  8. CFTR pharmacology.

    PubMed

    Zegarra-Moran, Olga; Galietta, Luis J V

    2017-01-01

    CFTR protein is an ion channel regulated by cAMP-dependent phosphorylation and expressed in many types of epithelial cells. CFTR-mediated chloride and bicarbonate secretion play an important role in the respiratory and gastrointestinal systems. Pharmacological modulators of CFTR represent promising drugs for a variety of diseases. In particular, correctors and potentiators may restore the activity of CFTR in cystic fibrosis patients. Potentiators are also potentially useful to improve mucociliary clearance in patients with chronic obstructive pulmonary disease. On the other hand, CFTR inhibitors may be useful to block fluid and electrolyte loss in secretory diarrhea and slow down the progression of polycystic kidney disease.

  9. Increased efficacy of VX-809 in different cellular systems results from an early stabilization effect of F508del-CFTR.

    PubMed

    Farinha, Carlos M; Sousa, Marisa; Canato, Sara; Schmidt, André; Uliyakina, Inna; Amaral, Margarida D

    2015-08-01

    Cystic fibrosis (CF), the most common recessive autosomal disease among Caucasians, is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, F508del, leads to CFTR impaired plasma membrane trafficking. Therapies modulating CFTR basic defect are emerging, such as VX-809, a corrector of F508del-CFTR traffic which just succeeded in a Phase III clinical trial. We recently showed that VX-809 is additive to two other correctors (VRT-325 and compound 4a). Here, we aimed to determine whether the differential rescuing by these compounds results from cell-specific factors or rather from distinct effects at the early biogenesis and/or processing. The rescuing efficiencies of the above three correctors were first compared in different cellular models (primary respiratory cells, cystic fibrosis bronchial epithelial and baby hamster kidney [BHK] cell lines) by functional approaches: micro-Ussing chamber and iodide efflux. Next, biochemical methods (metabolic labeling, pulse-chase and immunoprecipitation) were used to determine their impact on CFTR biogenesis / processing. Functional analyses revealed that VX-809 has the greatest rescuing efficacy and that the relative efficiencies of the three compounds are essentially maintained in all three cellular models tested. Nevertheless, biochemical data show that VX-809 significantly stabilizes F508del-CFTR immature form, an effect that is not observed for C3 nor C4. VX-809 and C3 also significantly increase accumulation of immature CFTR. Our data suggest that VX-809 increases the stability of F508del-CFTR immature form at an early phase of its biogenesis, thus explaining its increased efficacy when inducing its rescue.

  10. Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells

    SciTech Connect

    Okajima, F.; Sho, K.; Kondo, Y.

    1988-08-01

    Exposure of FRTL-5 thyroid cells to ATP (1 microM to 1 mM) resulted in the stimulation of I- efflux in association with the induction of inositol trisphosphate production and intracellular Ca2+ mobilization. Nonhydrolyzable ATP derivatives, ADP and GTP, were also as effective in magnitude as ATP, whereas neither AMP nor adenosine exerted significant effect on I- efflux, suggesting a P2-purinergic receptor-mediated activation of I- efflux. Treatment of the cells with the islet-activating protein (IAP) pertussis toxin, which ADP-ribosylated a 41,000 mol wt membrane protein, effectively suppressed the phosphoinositide response to ATP in addition to ATP-dependent I- efflux at agonist concentrations below 10 microM. In contrast, the I- efflux stimulated by TSH, A23187, or phorbol myristate acetate was insusceptible to IAP. The IAP substrate, probably GTP-binding protein, is hence proposed to mediate the activation of P2-purinergic receptor-linked phospholipase-C in FRTL-5 cells. However, the responses to ATP, its nonhydrolyzable derivatives, or ADP at the higher agonist concentrations, especially above 100 microM, were only partially inhibited by IAP, even though the IAP substrate was totally ADP ribosylated by the toxin. The responses to GTP in the whole concentration range tested were not influenced by IAP treatment. Thus, signals arising from the P2-receptor might be transduced to phospholipase-C by two different pathways, i.e. IAP-sensitive and insensitive ones, and result in the stimulation of I- efflux.

  11. Bronchorelaxation of the human bronchi by CFTR activators.

    PubMed

    Norez, Caroline; Jayle, Christophe; Becq, Frédéric; Vandebrouck, Clarisse

    2014-02-01

    The airway functions are profoundly affected in many diseases including asthma, COPD and cystic fibrosis (CF). CF the most common lethal autosomal recessive genetic disease is caused by mutations of the CFTR (Cystic Fibrosis transmembrane Conductance Regulator) gene, which normally encodes a multifunctional and integral membrane cAMP regulated and ATP gated Cl(-) channel expressed in airway epithelial cells. Using human lung tissues obtained from patients undergoing surgery for lung cancer, we demonstrated that CFTR participates in bronchorelaxation. Using human bronchial smooth muscle cells (HBSMC), we applied iodide influx assay to analyze the CFTR-dependent ionic transport and immunofluorescence technique to localize CFTR proteins. Moreover, the relaxation was studied in isolated human bronchial segments after pre-contraction with carbachol to determine the implication of CFTR in bronchodilation. We found in HBSMC that the pharmacology and regulation of CFTR is similar to that of its epithelial counterpart both for activation (using forskolin/genistein or a benzo[c]quinolizinium derivative) and for inhibition (CFTR(inh)-172 and GPinh5a). With human bronchial rings, we observed that whatever the compound used including salbutamol, the activation of muscular CFTR leads to a bronchodilation after constriction with carbachol. Altogether, these observations revealed that CFTR in the human airways is expressed in bronchial smooth muscle cells and can be pharmacologically manipulated leading to the hypothesis that this ionic channel could contribute to bronchodilation in human.

  12. Potassium Iodide

    MedlinePlus

    ... gland.Potassium iodide can protect you from the effects of radioactive iodine that may be released during ... increase the risk that you may experience side effects.The dose of potassium iodide you should take ...

  13. Activation of CFTR trafficking and gating by vasoactive intestinal peptide in human bronchial epithelial cells.

    PubMed

    Qu, Fei; Liu, Hui-Jun; Xiang, Yang; Tan, Yu-Rong; Liu, Chi; Zhu, Xiao-Lin; Qin, Xiao-Qun

    2011-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an apical membrane chloride channel critical to the regulation of fluid, chloride, and bicarbonate transport in epithelia and other cell types. The most common cause of cystic fibrosis (CF) is the abnormal trafficking of CFTR mutants. Therefore, understanding the cellular machineries that transit CFTR from the endoplasmic reticulum to the cell surface is important. Vasoactive intestinal polypeptide (VIP) plays an important role in CFTR-dependent chloride transport. The present study was designed to observe the affection of VIP on the trafficking of CFTR, and channel gating in human bronchial epithelium cells (HBEC). Confocal microscopy revealed CFTR immunofluorescence extending from the apical membrane deeply into the cell cytoplasm. After VIP treatment, apical extension of CFTR immunofluorescence into the cell was reduced and the peak intensity of CFTR fluorescence shifted towards the apical membrane. Western blot showed VIP increased cell surface and total CFTR. Compared with the augmented level of total CFTR, the surface CFTR increased more markedly. Immunoprecipitation founded that the mature form of CFTR had a marked increase in HBEC treated with VIP. VIP led to a threefold increase in Cl(-) efflux in HBEC. Glibenclamide-sensitive and DIDS-insensitive CFTR Cl(-) currents were consistently observed after stimulation with VIP (10(-8) mol/L). The augmentation of CFTR Cl(-) currents enhanced by VIP (10(-8) mol/L) was reversed, at least in part, by the protein kinase A (PKA) inhibitor, H-89 and the protein kinase C (PKC) inhibitor, H-7, suggesting PKA and PKC participate in the VIP-promoted CFTR Cl(-) currents.

  14. Identification of natural coumarin compounds that rescue defective DeltaF508-CFTR chloride channel gating.

    PubMed

    Xu, Li-Na; Na, Wan-Li; Liu, Xin; Hou, Shu-Guang; Lin, Sen; Yang, Hong; Ma, Tong-Hui

    2008-08-01

    1. Deletion of phenylalanine at position 508 (DeltaF508) of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is the most common mutation causing cystic fibrosis (CF). Effective pharmacological therapy of CF caused by the DeltaF508-CFTR mutation requires the rescue of both intracellular processing and channel gating defects. 2. We identified a class of natural coumarin compounds that can correct the defective DeltaF508-CFTR chloride channel gating by screening a collection of 386 single natural compounds from Chinese medicinal herbs. Screening was performed with an iodide influx assay in Fischer rat thyroid epithelial cells coexpressing DeltaF508-CFTR and an iodide-sensitive fluorescent indicator (YFP-H148Q/I152L). 3. Dose-dependent potentiation of defective DeltaF508-CFTR chloride channel gating by five coumarin compounds was demonstrated by the fluorescent iodide influx assay and confirmed by an Ussing chamber short-circuit current assay. Activation was fully abolished by the specific CFTR inhibitor CFTR(inh)-172. Two potent compounds, namely imperatorin and osthole, have activation K(d) values of approximately 10 micromol/L, as determined by the short-circuit current assay. The active coumarin compounds do not elevate intracellular cAMP levels. Activation of DeltaF508-CFTR by the coumarin compounds requires cAMP agonist, suggesting direct interaction with the mutant CFTR molecule. Kinetics analysis indicated rapid activation of DeltaF508-CFTR by the coumarin compounds, with half-maximal activation of < 5 min. The activating effect was fully reversed for all five active compounds 45 min after washout. 4. In conclusion, the natural coumarin DeltaF508-CFTR activators may represent a new class of natural lead compounds for the development of pharmacological therapies for CF caused by the DeltaF508 mutation.

  15. Dehydrocostuslactone, a sesquiterpene lactone activates wild-type and ΔF508 mutant CFTR chloride channel.

    PubMed

    Wang, Xue; Zhang, Yao-Fang; Yu, Bo; Yang, Shuang; Luan, Jian; Liu, Xin; Yang, Hong

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) represents the main cAMP-activated Cl⁻ channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. The aim of this study was to identify natural compounds that are able to stimulate wild-type (wt) and ΔF508 mutant CFTR channel activities in CFTR-expressing Fischer rat thyroid (FRT) cells. We found that dehydrocostuslactone [DHC, (3aS, 6aR, 9aR, 9bS)-decahydro-3,6,9-tris (methylene) azuleno [4,5-b] furan-2(3H)-one)] dose dependently potentiates both wt and ΔF508 mutant CFTR-mediated iodide influx in cell-based fluorescent assays and CFTR-mediated Cl⁻ currents in short-circuit current studies, and the activations could be reversed by the CFTR inhibitor CFTRinh-172. Maximal CFTR-mediated apical Cl⁻ current secretion in CFTR-expressing FRT cells was stimulated by 100 μM DHC. Determination of intracellular cAMP content showed that DHC modestly but significantly increased cAMP level in FRT cells, but cAMP elevation effects contributed little to DHC-stimulated iodide influx. DHC also stimulated CFTR-mediated apical Cl⁻ current secretion in FRT cells expressing ΔF508-CFTR. Subsequent studies demonstrated that activation of CFTR by DHC is forskolin dependent. DHC represents a new class of CFTR potentiators that may have therapeutic potential in CFTR-related diseases.

  16. CFTR Gating I

    PubMed Central

    Bompadre, Silvia G.; Ai, Tomohiko; Cho, Jeong Han; Wang, Xiaohui; Sohma, Yoshiro; Li, Min; Hwang, Tzyh-Chang

    2005-01-01

    The CFTR chloride channel is activated by phosphorylation of serine residues in the regulatory (R) domain and then gated by ATP binding and hydrolysis at the nucleotide binding domains (NBDs). Studies of the ATP-dependent gating process in excised inside-out patches are very often hampered by channel rundown partly caused by membrane-associated phosphatases. Since the severed ΔR-CFTR, whose R domain is completely removed, can bypass the phosphorylation-dependent regulation, this mutant channel might be a useful tool to explore the gating mechanisms of CFTR. To this end, we investigated the regulation and gating of the ΔR-CFTR expressed in Chinese hamster ovary cells. In the cell-attached mode, basal ΔR-CFTR currents were always obtained in the absence of cAMP agonists. Application of cAMP agonists or PMA, a PKC activator, failed to affect the activity, indicating that the activity of ΔR-CFTR channels is indeed phosphorylation independent. Consistent with this conclusion, in excised inside-out patches, application of the catalytic subunit of PKA did not affect ATP-induced currents. Similarities of ATP-dependent gating between wild type and ΔR-CFTR make this phosphorylation-independent mutant a useful system to explore more extensively the gating mechanisms of CFTR. Using the ΔR-CFTR construct, we studied the inhibitory effect of ADP on CFTR gating. The Ki for ADP increases as the [ATP] is increased, suggesting a competitive mechanism of inhibition. Single channel kinetic analysis reveals a new closed state in the presence of ADP, consistent with a kinetic mechanism by which ADP binds at the same site as ATP for channel opening. Moreover, we found that the open time of the channel is shortened by as much as 54% in the presence of ADP. This unexpected result suggests another ADP binding site that modulates channel closing. PMID:15767295

  17. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    PubMed Central

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  18. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    PubMed

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine.

  19. Murine and human CFTR exhibit different sensitivities to CFTR potentiators

    PubMed Central

    Cui, Guiying

    2015-01-01

    Development of therapeutic molecules with clinical efficacy as modulators of defective CFTR includes efforts to identify potentiators that can overcome or repair the gating defect in mutant CFTR channels. This has taken a great leap forward with the identification of the potentiator VX-770, now available to patients as “Kalydeco.” Other small molecules with different chemical structure also are capable of potentiating the activity of either wild-type or mutant CFTR, suggesting that there are features of the protein that may be targeted to achieve stimulation of channel activity by structurally diverse compounds. However, neither the mechanisms by which these compounds potentiate mutant CFTR nor the site(s) where these compounds bind have been identified. This knowledge gap partly reflects the lack of appropriate experimental models to provide clues toward the identification of binding sites. Here, we have compared the channel behavior and response to novel and known potentiators of human CFTR (hCFTR) and murine (mCFTR) expressed in Xenopus oocytes. Both hCFTR and mCFTR were blocked by GlyH-101 from the extracellular side, but mCFTR activity was increased with GlyH-101 applied directly to the cytoplasmic side. Similarly, glibenclamide only exhibited a blocking effect on hCFTR but both blocked and potentiated mCFTR in excised membrane patches and in intact oocytes. The clinically used CFTR potentiator VX-770 transiently increased hCFTR by ∼13% but potentiated mCFTR significantly more strongly. Our results suggest that mCFTR pharmacological sensitivities differ from hCFTR, which will provide a useful tool for identifying the binding sites and mechanism for these potentiators. PMID:26209275

  20. Murine and human CFTR exhibit different sensitivities to CFTR potentiators.

    PubMed

    Cui, Guiying; McCarty, Nael A

    2015-10-01

    Development of therapeutic molecules with clinical efficacy as modulators of defective CFTR includes efforts to identify potentiators that can overcome or repair the gating defect in mutant CFTR channels. This has taken a great leap forward with the identification of the potentiator VX-770, now available to patients as "Kalydeco." Other small molecules with different chemical structure also are capable of potentiating the activity of either wild-type or mutant CFTR, suggesting that there are features of the protein that may be targeted to achieve stimulation of channel activity by structurally diverse compounds. However, neither the mechanisms by which these compounds potentiate mutant CFTR nor the site(s) where these compounds bind have been identified. This knowledge gap partly reflects the lack of appropriate experimental models to provide clues toward the identification of binding sites. Here, we have compared the channel behavior and response to novel and known potentiators of human CFTR (hCFTR) and murine (mCFTR) expressed in Xenopus oocytes. Both hCFTR and mCFTR were blocked by GlyH-101 from the extracellular side, but mCFTR activity was increased with GlyH-101 applied directly to the cytoplasmic side. Similarly, glibenclamide only exhibited a blocking effect on hCFTR but both blocked and potentiated mCFTR in excised membrane patches and in intact oocytes. The clinically used CFTR potentiator VX-770 transiently increased hCFTR by ∼13% but potentiated mCFTR significantly more strongly. Our results suggest that mCFTR pharmacological sensitivities differ from hCFTR, which will provide a useful tool for identifying the binding sites and mechanism for these potentiators.

  1. Methyl iodide

    Integrated Risk Information System (IRIS)

    Methyl iodide ; CASRN 74 - 88 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effe

  2. Investigating CFTR and KCa3.1 Protein/Protein Interactions

    PubMed Central

    Trinh, Nguyen Thu Ngan; Luo, Yishan; Wiseman, Paul W.; Hanrahan, John W.; Brochiero, Emmanuelle; Sauvé, Rémy

    2016-01-01

    In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400) interact with the NBD2 segment (G1237-Y1420) and C- region of CFTR (residues T1387-L1480), respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1) that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2) that KCa3.1 and CFTR form a dynamic complex, the formation of which depends on

  3. Investigating CFTR and KCa3.1 Protein/Protein Interactions.

    PubMed

    Klein, Hélène; Abu-Arish, Asmahan; Trinh, Nguyen Thu Ngan; Luo, Yishan; Wiseman, Paul W; Hanrahan, John W; Brochiero, Emmanuelle; Sauvé, Rémy

    2016-01-01

    In epithelia, Cl- channels play a prominent role in fluid and electrolyte transport. Of particular importance is the cAMP-dependent cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) with mutations of the CFTR encoding gene causing cystic fibrosis. The bulk transepithelial transport of Cl- ions and electrolytes needs however to be coupled to an increase in K+ conductance in order to recycle K+ and maintain an electrical driving force for anion exit across the apical membrane. In several epithelia, this K+ efflux is ensured by K+ channels, including KCa3.1, which is expressed at both the apical and basolateral membranes. We show here for the first time that CFTR and KCa3.1 can physically interact. We first performed a two-hybrid screen to identify which KCa3.1 cytosolic domains might mediate an interaction with CFTR. Our results showed that both the N-terminal fragment M1-M40 of KCa3.1 and part of the KCa3.1 calmodulin binding domain (residues L345-A400) interact with the NBD2 segment (G1237-Y1420) and C- region of CFTR (residues T1387-L1480), respectively. An association of CFTR and F508del-CFTR with KCa3.1 was further confirmed in co-immunoprecipitation experiments demonstrating the formation of immunoprecipitable CFTR/KCa3.1 complexes in CFBE cells. Co-expression of KCa3.1 and CFTR in HEK cells did not impact CFTR expression at the cell surface, and KCa3.1 trafficking appeared independent of CFTR stimulation. Finally, evidence is presented through cross-correlation spectroscopy measurements that KCa3.1 and CFTR colocalize at the plasma membrane and that KCa3.1 channels tend to aggregate consequent to an enhanced interaction with CFTR channels at the plasma membrane following an increase in intracellular Ca2+ concentration. Altogether, these results suggest 1) that the physical interaction KCa3.1/CFTR can occur early during the biogenesis of both proteins and 2) that KCa3.1 and CFTR form a dynamic complex, the formation of which depends on

  4. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells.

    PubMed

    Varelogianni, Georgia; Hussain, Rashida; Strid, Hilja; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

    2013-11-01

    Ambroxol, a mucokinetic anti-inflammatory drug, has been used for treatment of cystic fibrosis (CF). The respiratory epithelium is covered by the airway surface liquid (ASL), the thickness and composition of which is determined by Cl(-) efflux via the cystic fibrosis transmembrane conductance regulator (CFTR) and Na(+) influx via the epithelial Na(+) channel (ENaC). In cells expressing wt-CFTR, ambroxol increased the Cl(-) conductance, but not the bicarbonate conductance of the CFTR channels. We investigated whether treatment with ambroxol enhances chloride transport and/or CFTR and ENaC expression in CF airway epithelial cells (CFBE) cells. CFBE cells were treated with 100 µM ambroxol for 2, 4 or 8 h. mRNA expression for CFTR and ENaC subunits was analysed by real-time polymerase chain reaction (RT-PCR); protein expression was measured by Western blot. The effect of ambroxol on Cl(-) transport was measured by Cl(-) efflux measurements with a fluorescent chloride probe. Ambroxol significantly stimulated Cl(-) efflux from CFBE cells (a sixfold increase after 8 h treatment), and enhanced the expression of the mRNA of CFTR and α-ENaC, and of the CFTR protein. No significant difference was observed in β-ENaC after exposure to ambroxol, whereas mRNA expression of γ-ENaC was reduced. No significant effects of ambroxol on the ENaC subunits were observed by Western blot. Ambroxol did not significantly affect the intracellular Ca(2+) concentration. Upregulation of CFTR and enhanced Cl(-) efflux after ambroxol treatment should promote transepithelial ion and water transport, which may improve hydration of the mucus, and therefore be beneficial to CF-patients.

  5. Spatiotemporal Coupling of cAMP Transporter to CFTR Chloride Channel Function in the Gut Epithelia

    PubMed Central

    Li, Chunying; Krishnamurthy, Partha C.; Penmatsa, Himabindu; Marrs, Kevin L.; Wang, Xue Qing; Zaccolo, Manuela; Jalink, Kees; Li, Min; Nelson, Deborah J.; Schuetz, John D.; Naren, Anjaparavanda P.

    2007-01-01

    SUMMARY Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, is functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. MRP4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea. PMID:18045536

  6. Spatiotemporal coupling of cAMP transporter to CFTR chloride channel function in the gut epithelia.

    PubMed

    Li, Chunying; Krishnamurthy, Partha C; Penmatsa, Himabindu; Marrs, Kevin L; Wang, Xue Qing; Zaccolo, Manuela; Jalink, Kees; Li, Min; Nelson, Deborah J; Schuetz, John D; Naren, Anjaparavanda P

    2007-11-30

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel localized at apical cell membranes and exists in macromolecular complexes with a variety of signaling and transporter molecules. Here, we report that the multidrug resistance protein 4 (MRP4), a cAMP transporter, functionally and physically associates with CFTR. Adenosine-stimulated CFTR-mediated chloride currents are potentiated by MRP4 inhibition, and this potentiation is directly coupled to attenuated cAMP efflux through the apical cAMP transporter. CFTR single-channel recordings and FRET-based intracellular cAMP dynamics suggest that a compartmentalized coupling of cAMP transporter and CFTR occurs via the PDZ scaffolding protein, PDZK1, forming a macromolecular complex at apical surfaces of gut epithelia. Disrupting this complex abrogates the functional coupling of cAMP transporter activity to CFTR function. Mrp4 knockout mice are more prone to CFTR-mediated secretory diarrhea. Our findings have important implications for disorders such as inflammatory bowel disease and secretory diarrhea.

  7. Dual activation of CFTR and CLCN2 by lubiprostone in murine nasal epithelia.

    PubMed

    Schiffhauer, Eric S; Vij, Neeraj; Kovbasnjuk, Olga; Kang, Po Wei; Walker, Doug; Lee, Seakwoo; Zeitlin, Pamela L

    2013-03-01

    Multiple sodium and chloride channels on the apical surface of nasal epithelial cells contribute to periciliary fluid homeostasis, a function that is disrupted in patients with cystic fibrosis (CF). Among these channels is the chloride channel CLCN2, which has been studied as a potential alternative chloride efflux pathway in the absence of CFTR. The object of the present study was to use the nasal potential difference test (NPD) to quantify CLCN2 function in an epithelial-directed TetOn CLCN2 transgenic mouse model (TGN-K18rtTA-hCLCN2) by using the putative CLCN2 pharmacological agonist lubiprostone and peptide inhibitor GaTx2. Lubiprostone significantly increased chloride transport in the CLCN2-overexpressing mice following activation of the transgene by doxycycline. This response to lubiprostone was significantly inhibited by GaTx2 after CLCN2 activation in TGN-CLCN2 mice. Cftr(-/-) and Clc2(-/-) mice showed hyperpolarization indicative of chloride efflux in response to lubiprostone, which was fully inhibited by GaTx2 and CFTR inhibitor 172 + GlyH-101, respectively. Our study reveals lubiprostone as a pharmacological activator of both CFTR and CLCN2. Overexpression and activation of CLCN2 leads to improved mouse NPD readings, suggesting it is available as an alternative pathway for epithelial chloride secretion in murine airways. The utilization of CLCN2 as an alternative chloride efflux channel could provide clinical benefit to patients with CF, especially if the pharmacological activator is administered as an aerosol.

  8. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator

    PubMed Central

    Schwiebert, Erik M.; Morales, Marcelo M.; Devidas, Sreenivas; Egan, Marie E.; Guggino, William B.

    1998-01-01

    CFTR is a cyclic AMP (cAMP)-activated chloride (Cl−) channel and a regulator of outwardly rectifying Cl− channels (ORCCs) in airway epithelia. CFTR regulates ORCCs by facilitating the release of ATP out of cells. Once released from cells, ATP stimulates ORCCs by means of a purinergic receptor. To define the domains of CFTR important for Cl− channel function and/or ORCC regulator function, mutant CFTRs with N- and C-terminal truncations and selected individual amino acid substitutions were created and studied by transfection into a line of human airway epithelial cells from a cystic fibrosis patient (IB3–1) or by injection of in vitro transcribed complementary RNAs (cRNAs) into Xenopus oocytes. Two-electrode voltage clamp recordings, 36Cl− efflux assays, and whole cell patch-clamp recordings were used to assay for the Cl− channel function of CFTR and for its ability to regulate ORCCs. The data showed that the first transmembrane domain (TMD-1) of CFTR, especially predicted α-helices 5 and 6, forms an essential part of the Cl− channel pore, whereas the first nucleotide-binding and regulatory domains (NBD1/R domain) are essential for its ability to regulate ORCCs. Finally, the data show that the ability of CFTR to function as a Cl− channel and a conductance regulator are not mutually exclusive; one function could be eliminated while the other was preserved. PMID:9482946

  9. The gating of the CFTR channel.

    PubMed

    Moran, Oscar

    2017-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed in the apical membrane of epithelia. Mutations in the CFTR gene are the cause of cystsic fibrosis. CFTR is the only ABC-protein that constitutes an ion channel pore forming subunit. CFTR gating is regulated in complex manner as phosphorylation is mandatory for channel activity and gating is directly regulated by binding of ATP to specific intracellular sites on the CFTR protein. This review covers our current understanding on the gating mechanism in CFTR and illustrates the relevance of alteration of these mechanisms in the onset of cystic fibrosis.

  10. Attenuation of Phosphorylation-dependent Activation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Disease-causing Mutations at the Transmission Interface*

    PubMed Central

    Chin, Stephanie; Yang, Donghe; Miles, Andrew J.; Eckford, Paul D. W.; Molinski, Steven; Wallace, B. A.; Bear, Christine E.

    2017-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a multidomain membrane protein that functions as a phosphorylation-regulated anion channel. The interface between its two cytosolic nucleotide binding domains and coupling helices conferred by intracellular loops extending from the channel pore domains has been referred to as a transmission interface and is thought to be critical for the regulated channel activity of CFTR. Phosphorylation of the regulatory domain of CFTR by protein kinase A (PKA) is required for its channel activity. However, it was unclear if phosphorylation modifies the transmission interface. Here, we studied purified full-length CFTR protein using spectroscopic techniques to determine the consequences of PKA-mediated phosphorylation. Synchrotron radiation circular dichroism spectroscopy confirmed that purified full-length wild-type CFTR is folded and structurally responsive to phosphorylation. Intrinsic tryptophan fluorescence studies of CFTR showed that phosphorylation reduced iodide-mediated quenching, consistent with an effect of phosphorylation in burying tryptophans at the transmission interface. Importantly, the rate of phosphorylation-dependent channel activation was compromised by the introduction of disease-causing mutations in either of the two coupling helices predicted to interact with nucleotide binding domain 1 at the interface. Together, these results suggest that phosphorylation modifies the interface between the catalytic and pore domains of CFTR and that this modification facilitates CFTR channel activation. PMID:28003367

  11. Attenuation of Phosphorylation-dependent Activation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Disease-causing Mutations at the Transmission Interface.

    PubMed

    Chin, Stephanie; Yang, Donghe; Miles, Andrew J; Eckford, Paul D W; Molinski, Steven; Wallace, B A; Bear, Christine E

    2017-02-03

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a multidomain membrane protein that functions as a phosphorylation-regulated anion channel. The interface between its two cytosolic nucleotide binding domains and coupling helices conferred by intracellular loops extending from the channel pore domains has been referred to as a transmission interface and is thought to be critical for the regulated channel activity of CFTR. Phosphorylation of the regulatory domain of CFTR by protein kinase A (PKA) is required for its channel activity. However, it was unclear if phosphorylation modifies the transmission interface. Here, we studied purified full-length CFTR protein using spectroscopic techniques to determine the consequences of PKA-mediated phosphorylation. Synchrotron radiation circular dichroism spectroscopy confirmed that purified full-length wild-type CFTR is folded and structurally responsive to phosphorylation. Intrinsic tryptophan fluorescence studies of CFTR showed that phosphorylation reduced iodide-mediated quenching, consistent with an effect of phosphorylation in burying tryptophans at the transmission interface. Importantly, the rate of phosphorylation-dependent channel activation was compromised by the introduction of disease-causing mutations in either of the two coupling helices predicted to interact with nucleotide binding domain 1 at the interface. Together, these results suggest that phosphorylation modifies the interface between the catalytic and pore domains of CFTR and that this modification facilitates CFTR channel activation.

  12. Ouabain Regulates CFTR-Mediated Anion Secretion and Na,K-ATPase Transport in ADPKD Cells

    PubMed Central

    Jansson, Kyle; Venugopal, Jessica; Sánchez, Gladis; Magenheimer, Brenda S.; Reif, Gail A.; Wallace, Darren P.; Calvet, James P.

    2015-01-01

    Cyst enlargement in autosomal dominant polycystic kidney disease (ADPKD) requires the transepithelial secretion of fluid into the cyst lumen. We previously showed that physiological amounts of ouabain enhance cAMP-dependent fluid secretion and cyst growth of human ADPKD cyst epithelial cells in culture and formation of cyst-like dilations in metanephric kidneys from Pkd1 mutant mice. Here, we investigated the mechanisms by which ouabain promotes cAMP-dependent fluid secretion and cystogenesis. Ouabain (3 nM) enhanced cAMP-induced cyst-like dilations in embryonic kidneys from Pkd1m1Bei mice, but had no effect on metanephroi from Pkd1m1Bei mice that lack expression of the cystic fibrosis transmembrane conductance regulator (CFTR). Similarly, ouabain stimulation of cAMP-induced fluid secretion and in vitro cyst growth of ADPKD cells were abrogated by CFTR inhibition, showing that CFTR is required for ouabain effects on ADPKD fluid secretion. Moreover, ouabain directly enhanced the cAMP-dependent Cl− efflux mediated by CFTR in ADPKD monolayers. Ouabain increased the trafficking of CFTR to the plasma membrane and upregulated the expression of the CFTR activator PDZK1. Finally, ouabain decreased plasma membrane expression and activity of the Na,K-ATPase in ADPKD cells. Altogether, these results show that ouabain enhances net fluid secretion and cyst formation by activating apical anion secretion via CFTR and decreasing basolateral Na+ transport via Na,K-ATPase. These results provide new information on the mechanisms by which ouabain affects ADPKD cells and further highlight the importance of ouabain as a non-genomic stimulator of cystogenesis in ADPKD. PMID:26289599

  13. CFTR targeting during activation of human neutrophils.

    PubMed

    Ng, Hang Pong; Valentine, Vincent G; Wang, Guoshun

    2016-12-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, plays critical roles in phagocytic host defense. However, how activated neutrophils regulate CFTR channel distribution subcellularly is not well defined. To investigate, we tested multiple Abs against different CFTR domains, to examine CFTR expression in human peripheral blood neutrophils by flow cytometry. The data confirmed that resting neutrophils had pronounced CFTR expression. Activation of neutrophils with soluble or particulate agonists did not significantly increase CFTR expression level, but induced CFTR redistribution to cell surface. Such CFTR mobilization correlated with cell-surface recruitment of formyl-peptide receptor during secretory vesicle exocytosis. Intriguingly, neutrophils from patients with ΔF508-CF, despite expression of the mutant CFTR, showed little cell-surface mobilization upon stimulation. Although normal neutrophils effectively targeted CFTR to their phagosomes, ΔF508-CF neutrophils had impairment in that process, resulting in deficient hypochlorous acid production. Taken together, activated neutrophils regulate CFTR distribution by targeting this chloride channel to the subcellular sites of activation, and ΔF508-CF neutrophils fail to achieve such targeting, thus undermining their host defense function.

  14. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  15. CFTR activity and mitochondrial function☆

    PubMed Central

    Valdivieso, Angel Gabriel; Santa-Coloma, Tomás A.

    2013-01-01

    Cystic Fibrosis (CF) is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy. PMID:24024153

  16. Localizing a gate in CFTR.

    PubMed

    Gao, Xiaolong; Hwang, Tzyh-Chang

    2015-02-24

    Experimental and computational studies have painted a picture of the chloride permeation pathway in cystic fibrosis transmembrane conductance regulator (CFTR) as a short narrow tunnel flanked by wider inner and outer vestibules. Although these studies also identified a number of transmembrane segments (TMs) as pore-lining, the exact location of CFTR's gate(s) remains unknown. Here, using a channel-permeant probe, [Au(CN)2](-), we provide evidence that CFTR bears a gate that coincides with the predicted narrow section of the pore defined as residues 338-341 in TM6. Specifically, cysteines introduced cytoplasmic to the narrow region (i.e., positions 344 in TM6 and 1148 in TM12) can be modified by intracellular [Au(CN)2](-) in both open and closed states, corroborating the conclusion that the internal vestibule does not harbor a gate. However, cysteines engineered to positions external to the presumed narrow region (e.g., 334, 335, and 337 in TM6) are all nonreactive toward cytoplasmic [Au(CN)2](-) in the absence of ATP, whereas they can be better accessed by extracellular [Au(CN)2](-) when the open probability is markedly reduced by introducing a second mutation, G1349D. As [Au(CN)2](-) and chloride ions share the same permeation pathway, these results imply a gate is situated between amino acid residues 337 and 344 along TM6, encompassing the very segment that may also serve as the selectivity filter for CFTR. The unique position of a gate in the middle of the ion translocation pathway diverges from those seen in ATP-binding cassette (ABC) transporters and thus distinguishes CFTR from other members of the ABC transporter family.

  17. UMD-CFTR: a database dedicated to CF and CFTR-related disorders.

    PubMed

    Bareil, Corinne; Thèze, Corinne; Béroud, Christophe; Hamroun, Dalil; Guittard, Caroline; René, Céline; Paulet, Damien; Georges, Marie des; Claustres, Mireille

    2010-09-01

    With the increasing knowledge of cystic fibrosis (CF) and CFTR-related diseases (CFTR-RD), the number of sequence variations in the CFTR gene is constantly raising. CF and particularly CFTR-RD provide a particular challenge because of many unclassified variants and identical genotypes associated with different phenotypes. Using the Universal Mutation Database (UMD) software we have constructed UMD-CFTR (freely available at the URL: http://www.umd.be/CFTR/), the first comprehensive relational CFTR database that allows an in-depth analysis and annotation of all variations identified in individuals whose CFTR genes have been analyzed extensively. The system has been tested on the molecular data from 757 patients (540 CF and 217 CBAVD) including disease-causing, unclassified, and nonpathogenic alterations (301 different sequence variations) representing 3,973 entries. Tools are provided to assess the pathogenicity of mutations. UMD-CFTR also offers a number of query tools and graphical views providing instant access to the list of mutations, their frequencies, positions and predicted consequences, or correlations between genotypes, haplotypes, and phenotypes. UMD-CFTR offers a way to compile not only disease-causing genotypes but also haplotypes. It will help the CFTR scientific and medical communities to improve sequence variation interpretation, evaluate the putative influence of haplotypes on mutations, and correlate molecular data with phenotypes.

  18. Localizing a gate in CFTR

    PubMed Central

    Gao, Xiaolong; Hwang, Tzyh-Chang

    2015-01-01

    Experimental and computational studies have painted a picture of the chloride permeation pathway in cystic fibrosis transmembrane conductance regulator (CFTR) as a short narrow tunnel flanked by wider inner and outer vestibules. Although these studies also identified a number of transmembrane segments (TMs) as pore-lining, the exact location of CFTR’s gate(s) remains unknown. Here, using a channel-permeant probe, [Au(CN)2]−, we provide evidence that CFTR bears a gate that coincides with the predicted narrow section of the pore defined as residues 338–341 in TM6. Specifically, cysteines introduced cytoplasmic to the narrow region (i.e., positions 344 in TM6 and 1148 in TM12) can be modified by intracellular [Au(CN)2]− in both open and closed states, corroborating the conclusion that the internal vestibule does not harbor a gate. However, cysteines engineered to positions external to the presumed narrow region (e.g., 334, 335, and 337 in TM6) are all nonreactive toward cytoplasmic [Au(CN)2]− in the absence of ATP, whereas they can be better accessed by extracellular [Au(CN)2]− when the open probability is markedly reduced by introducing a second mutation, G1349D. As [Au(CN)2]− and chloride ions share the same permeation pathway, these results imply a gate is situated between amino acid residues 337 and 344 along TM6, encompassing the very segment that may also serve as the selectivity filter for CFTR. The unique position of a gate in the middle of the ion translocation pathway diverges from those seen in ATP-binding cassette (ABC) transporters and thus distinguishes CFTR from other members of the ABC transporter family. PMID:25675504

  19. Regulated trafficking of the CFTR chloride channel.

    PubMed

    Kleizen, B; Braakman, I; de Jonge, H R

    2000-08-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Whereas a key role of cAMP-dependent phosphorylation in CFTR-channel gating has been firmly established, more recent studies have provided clear evidence for the existence of a second level of cAMP regulation, i.e. the exocytotic recruitment of CFFR to the plasma membrane and its endocytotic retrieval. Regulated trafficking of the CFTR Cl- channel has sofar been demonstrated only in a subset of CFTR-expressing cell types. However, with the introduction of more sensitive methods to measure CFTR cycling and submembrane localization, it might turn out to be a more general phenomenon that could contribute importantly to both the regulation of CFTR-mediated chloride transport itself and to the regulation of other transporters and CFTR-modulated cellular functions. This review aims to summarize the present state of knowledge regarding polarized and regulated CFTR trafficking and endosomal recycling in epithelial cells, to discuss present gaps in our understanding of these processes at the cellular and molecular level, and to consider its possible implications for cystic fibrosis.

  20. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)

    PubMed Central

    Corradi, Valentina; Vergani, Paola; Tieleman, D. Peter

    2015-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of “rational” approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287–288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287–288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel. PMID:26229102

  1. Specific stabilization of CFTR by phosphatidylserine.

    PubMed

    Hildebrandt, Ellen; Khazanov, Netaly; Kappes, John C; Dai, Qun; Senderowitz, Hanoch; Urbatsch, Ina L

    2017-02-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, ABCC7) is a plasma membrane chloride ion channel in the ABC transporter superfamily. CFTR is a key target for cystic fibrosis drug development, and its structural elucidation would advance those efforts. However, the limited in vivo and in vitro stability of the protein, particularly its nucleotide binding domains, has made structural studies challenging. Here we demonstrate that phosphatidylserine uniquely stimulates and thermally stabilizes the ATP hydrolysis function of purified human CFTR. Among several lipids tested, the greatest stabilization was observed with brain phosphatidylserine, which shifted the Tm for ATPase activity from 22.7±0.8°C to 35.0±0.2°C in wild-type CFTR, and from 26.6±0.7°C to 42.1±0.2°C in a more stable mutant CFTR having deleted regulatory insertion and S492P/A534P/I539T mutations. When ATPase activity was measured at 37°C in the presence of brain phosphatidylserine, Vmax for wild-type CFTR was 240±60nmol/min/mg, a rate higher than previously reported and consistent with rates for other purified ABC transporters. The significant thermal stabilization of CFTR by phosphatidylserine may be advantageous in future structural and biophysical studies of CFTR.

  2. Dual activation of CFTR and CLCN2 by lubiprostone in murine nasal epithelia

    PubMed Central

    Schiffhauer, Eric S.; Vij, Neeraj; Kovbasnjuk, Olga; Kang, Po Wei; Walker, Doug; Lee, Seakwoo

    2013-01-01

    Multiple sodium and chloride channels on the apical surface of nasal epithelial cells contribute to periciliary fluid homeostasis, a function that is disrupted in patients with cystic fibrosis (CF). Among these channels is the chloride channel CLCN2, which has been studied as a potential alternative chloride efflux pathway in the absence of CFTR. The object of the present study was to use the nasal potential difference test (NPD) to quantify CLCN2 function in an epithelial-directed TetOn CLCN2 transgenic mouse model (TGN-K18rtTA-hCLCN2) by using the putative CLCN2 pharmacological agonist lubiprostone and peptide inhibitor GaTx2. Lubiprostone significantly increased chloride transport in the CLCN2-overexpressing mice following activation of the transgene by doxycycline. This response to lubiprostone was significantly inhibited by GaTx2 after CLCN2 activation in TGN-CLCN2 mice. Cftr−/− and Clc2−/− mice showed hyperpolarization indicative of chloride efflux in response to lubiprostone, which was fully inhibited by GaTx2 and CFTR inhibitor 172 + GlyH-101, respectively. Our study reveals lubiprostone as a pharmacological activator of both CFTR and CLCN2. Overexpression and activation of CLCN2 leads to improved mouse NPD readings, suggesting it is available as an alternative pathway for epithelial chloride secretion in murine airways. The utilization of CLCN2 as an alternative chloride efflux channel could provide clinical benefit to patients with CF, especially if the pharmacological activator is administered as an aerosol. PMID:23316067

  3. Exploiting species differences to understand the CFTR Cl- channel.

    PubMed

    Bose, Samuel J; Scott-Ward, Toby S; Cai, Zhiwei; Sheppard, David N

    2015-10-01

    The anion channel cystic fibrosis transmembrane conductance regulator (CFTR) is a unique ATP-binding cassette (ABC) transporter. CFTR plays a pivotal role in transepithelial ion transport as its dysfunction in the genetic disease cystic fibrosis (CF) dramatically demonstrates. Phylogenetic analysis suggests that CFTR first appeared in aquatic vertebrates fulfilling important roles in osmosensing and organ development. Here, we review selectively, knowledge of CFTR structure, function and pharmacology, gleaned from cross-species comparative studies of recombinant CFTR proteins, including CFTR chimeras. The data argue that subtle changes in CFTR structure can affect strongly channel function and the action of CF mutations.

  4. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS Reg. No. 7681-65-4) is a pure white crystalline powder. It is prepared by the reaction of copper sulfate with potassium iodide...

  5. Epigenetic regulation of CFTR in salivary gland.

    PubMed

    Shin, Yong-Hwan; Lee, Sang-Woo; Kim, Minkyoung; Choi, Se-Young; Cong, Xin; Yu, Guang-Yan; Park, Kyungpyo

    2016-12-02

    Cystic fibrosis transmembrane conductance regulator (CFTR) plays a key role in exocrine secretion, including salivary glands. However, its functional expression in salivary glands has not been rigorously studied. In this study, we investigated the expression pattern and regulatory mechanism of CFTR in salivary glands using immunohistochemistry, western blot analysis, Ussing chamber study, methylation-specific PCR, and bisulfite sequencing. Using an organ culture technique, we found that CFTR expression was first detected on the 15th day at the embryonic stage (E15) and was observed in ducts but not in acini. CFTR expression was confirmed in HSG and SIMS cell lines, which both originated from ducts, but not in the SMG C-6 cell line, which originated from acinar cells. Treatment of SMG C-6 cells with 5-aza-2'-deoxycytidine (5-Aza-CdR) restored the expression level of CFTR mRNA in a time-dependent manner. Restoration of CFTR was further confirmed by a functional study. In the Ussing chamber study, 10 μM Cact-A1, a CFTR activator, did not evoke any currents in SMG C-6 cells. In contrast, in SMG C-6 cells pretreated with 5-Aza-CdR, Cact-A1 evoked a robust increase of currents, which were inhibited by the CFTR inhibitor CFTRinh-172. Furthermore, forskolin mimicked the currents activated by Cact-A1. In our epigenetic study, SMG C-6 cells showed highly methylated CG pairs in the CFTR CpG island and most of the methylated CG pairs were demethylated by 5-Aza-CdR. Our results suggest that epigenetic regulation is involved in the development of salivary glands by silencing the CFTR gene in a tissue-specific manner.

  6. The hypertonic environment differentially regulates wild-type CFTR and TNR-CFTR chloride channels.

    PubMed

    Lassance-Soares, Roberta M; Cheng, Jie; Krasnov, Kristina; Cebotaru, Liudmila; Cutting, Garry R; Souza-Menezes, Jackson; Morales, Marcelo M; Guggino, William B

    2010-01-01

    This study tested the hypotheses that the hypertonic environment of the renal medulla regulates the expression of cystic fibrosis transmembrane conductance regulator protein (CFTR) and its natural splice variant, TNR-CFTR. To accomplish this, Madin-Darby canine kidney (MDCK) stable cell lines expressing TNR-CFTR or CFTR were used. The cells were treated with hypertonic medium made with either NaCl or urea or sucrose (480 mOsm/kg or 560 mOsm/kg) to mimic the tonicity of the renal medulla environment. Western blot data showed that CFTR and TNR-CFTR total cell protein is increased by hypertonic medium, but using the surface biotinylation technique, only CFTR was found to be increased in cell plasma membrane. Confocal microscopy showed TNR-CFTR localization primarily at the endoplasmic reticulum and plasma membrane. In conclusion, CFTR and TNR-CFTR have different patterns of distribution in MDCK cells and they are modulated by a hypertonic environment, suggesting their physiological importance in renal medulla.

  7. A truncated CFTR protein rescues endogenous DeltaF508-CFTR and corrects chloride transport in mice.

    PubMed

    Cormet-Boyaka, Estelle; Hong, Jeong S; Berdiev, Bakhram K; Fortenberry, James A; Rennolds, Jessica; Clancy, J P; Benos, Dale J; Boyaka, Prosper N; Sorscher, Eric J

    2009-11-01

    Cystic fibrosis (CF) is most frequently associated with deletion of phenylalanine at position 508 (DeltaF508) in the CF transmembrane conductance regulator (CFTR) protein. The DeltaF508-CFTR mutant protein exhibits a folding defect that affects its processing and impairs chloride-channel function. This study aimed to determine whether CFTR fragments approximately half the size of wild-type CFTR and complementary to the portion of CFTR bearing the mutation can specifically rescue the processing of endogenous DeltaF508-CFTR in vivo. cDNA encoding CFTR fragments were delivered to human airway epithelial cells and mice harboring endogenous DeltaF508-CFTR. Delivery of small CFTR fragments, which do not act as chloride channels by themselves, rescue DeltaF508-CFTR. Therefore, we can speculate that the presence of the CFTR fragment, which does not harbor a mutation, might facilitate intermolecular interactions. The rescue of CFTR was evident by the restoration of chloride transport in human CFBE41o- bronchial epithelial cells expressing DeltaF508-CFTR in vitro. More important, nasal administration of an adenovirus expressing a complementary CFTR fragment restored some degree of CFTR activity in the nasal airways of DeltaF508 homozygous mice in vivo. These findings identify complementary protein fragments as a viable in vivo approach for correcting disease-causing misfolding of plasma membrane proteins.

  8. [Treatment of Cystic Fibrosis with CFTR Modulators].

    PubMed

    Tümmler, B

    2016-05-01

    Personalized medicine promises that medical decisions, practices and products are tailored to the individual patient. Cystic fibrosis, an inherited disorder of chloride and bicarbonate transport in exocrine glands, is the first successful example of customized drug development for mutation-specific therapy. There are two classes of CFTR modulators: potentiators that increase the activity of CFTR at the cell surface, and correctors that either promote the read-through of nonsense mutations or facilitate the translation, folding, maturation and trafficking of mutant CFTR to the cell surface. The potentiator ivacaftor and the corrector lumacaftor are approved in Germany for the treatment of people with cystic fibrosis who carry a gating mutation such as p.Gly551Asp or who are homozygous for the most common mutation p.Phe508del, respectively. This report provides an overview of the basic defect in cystic fibrosis, the population genetics of CFTR mutations in Germany and the bioassays to assess CFTR function in humans together with the major achievements of preclinical research and clinical trials to bring CFTR modulators to the clinic. Some practical information on the use of ivacaftor and lumacaftor in daily practice and an update on pitfalls, challenges and novel strategies of bench-to-bedside development of CFTR modulators are also provided.

  9. Compartmentalized accumulation of cAMP near complexes of multidrug resistance protein 4 (MRP4) and cystic fibrosis transmembrane conductance regulator (CFTR) contributes to drug-induced diarrhea.

    PubMed

    Moon, Changsuk; Zhang, Weiqiang; Ren, Aixia; Arora, Kavisha; Sinha, Chandrima; Yarlagadda, Sunitha; Woodrooffe, Koryse; Schuetz, John D; Valasani, Koteswara Rao; de Jonge, Hugo R; Shanmukhappa, Shiva Kumar; Shata, Mohamed Tarek M; Buddington, Randal K; Parthasarathi, Kaushik; Naren, Anjaparavanda P

    2015-05-01

    Diarrhea is one of the most common adverse side effects observed in ∼7% of individuals consuming Food and Drug Administration (FDA)-approved drugs. The mechanism of how these drugs alter fluid secretion in the gut and induce diarrhea is not clearly understood. Several drugs are either substrates or inhibitors of multidrug resistance protein 4 (MRP4), such as the anti-colon cancer drug irinotecan and an anti-retroviral used to treat HIV infection, 3'-azido-3'-deoxythymidine (AZT). These drugs activate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated fluid secretion by inhibiting MRP4-mediated cAMP efflux. Binding of drugs to MRP4 augments the formation of MRP4-CFTR-containing macromolecular complexes that is mediated via scaffolding protein PDZK1. Importantly, HIV patients on AZT treatment demonstrate augmented MRP4-CFTR complex formation in the colon, which defines a novel paradigm of drug-induced diarrhea.

  10. The effect of N-acetylcysteine on chloride efflux from airway epithelial cells.

    PubMed

    Varelogianni, Georgia; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

    2010-01-27

    Defective chloride transport in epithelial cells increases mucus viscosity and leads to recurrent infections with high oxidative stress in patients with CF (cystic fibrosis). NAC (N-acetylcysteine) is a well known mucolytic and antioxidant drug, and an indirect precursor of glutathione. Since GSNO (S-nitrosoglutathione) previously has been shown to be able to promote Cl- efflux from CF airway epithelial cells, it was investigated whether NAC also could stimulate Cl- efflux from CF and non-CF epithelial cells and through which mechanisms. CFBE (CF bronchial epithelial cells) and normal bronchial epithelial cells (16HBE) were treated with 1 mM, 5 mM, 10 mM or 15 mM NAC for 4 h at 37 degrees C. The effect of NAC on Cl- transport was measured by Cl- efflux measurements and by X-ray microanalysis. Cl- efflux from CFBE cells was stimulated by NAC in a dose-dependent manner, with 10 mM NAC causing a significant increase in Cl- efflux with nearly 80% in CFBE cells. The intracellular Cl- concentration in CFBE cells was significantly decreased up to 60% after 4 h treatment with 10 mM NAC. Moreover immunocytochemistry and Western blot experiments revealed expression of CFTR channel on CFBE cells after treatment with 10 mM NAC. The stimulation of Cl- efflux by NAC in CF airway epithelial cells may improve hydration of the mucus and thereby be beneficial for CF patients.

  11. Molecular modelling and molecular dynamics of CFTR.

    PubMed

    Callebaut, Isabelle; Hoffmann, Brice; Lehn, Pierre; Mornon, Jean-Paul

    2017-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.

  12. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction

    PubMed Central

    Tabeling, Christoph; Yu, Hanpo; Wang, Liming; Ranke, Hannes; Goldenberg, Neil M.; Zabini, Diana; Noe, Elena; Krauszman, Adrienn; Gutbier, Birgitt; Yin, Jun; Schaefer, Michael; Arenz, Christoph; Hocke, Andreas C.; Suttorp, Norbert; Proia, Richard L.; Witzenrath, Martin; Kuebler, Wolfgang M.

    2015-01-01

    Hypoxic pulmonary vasoconstriction (HPV) optimizes pulmonary ventilation-perfusion matching in regional hypoxia, but promotes pulmonary hypertension in global hypoxia. Ventilation-perfusion mismatch is a major cause of hypoxemia in cystic fibrosis. We hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) may be critical in HPV, potentially by modulating the response to sphingolipids as mediators of HPV. HPV and ventilation-perfusion mismatch were analyzed in isolated mouse lungs or in vivo. Ca2+ mobilization and transient receptor potential canonical 6 (TRPC6) translocation were studied in human pulmonary (PASMCs) or coronary (CASMCs) artery smooth muscle cells. CFTR inhibition or deficiency diminished HPV and aggravated ventilation-perfusion mismatch. In PASMCs, hypoxia caused CFTR to interact with TRPC6, whereas CFTR inhibition attenuated hypoxia-induced TRPC6 translocation to caveolae and Ca2+ mobilization. Ca2+ mobilization by sphingosine-1-phosphate (S1P) was also attenuated by CFTR inhibition in PASMCs, but amplified in CASMCs. Inhibition of neutral sphingomyelinase (nSMase) blocked HPV, whereas exogenous nSMase caused TRPC6 translocation and vasoconstriction that were blocked by CFTR inhibition. nSMase- and hypoxia-induced vasoconstriction, yet not TRPC6 translocation, were blocked by inhibition or deficiency of sphingosine kinase 1 (SphK1) or antagonism of S1P receptors 2 and 4 (S1P2/4). S1P and nSMase had synergistic effects on pulmonary vasoconstriction that involved TRPC6, phospholipase C, and rho kinase. Our findings demonstrate a central role of CFTR and sphingolipids in HPV. Upon hypoxia, nSMase triggers TRPC6 translocation, which requires its interaction with CFTR. Concomitant SphK1-dependent formation of S1P and activation of S1P2/4 result in phospholipase C-mediated TRPC6 and rho kinase activation, which conjointly trigger vasoconstriction. PMID:25829545

  13. Functional architecture of the CFTR chloride channel.

    PubMed

    Linsdell, Paul

    2014-02-01

    Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl(-) channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl(-) movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl(-) channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.

  14. Regulatory insertion removal restores maturation, stability and function of ΔF508 CFTR

    PubMed Central

    Aleksandrov, Andrei A.; Kota, Pradeep; Aleksandrov, Luba A.; He, Lihua; Jensen, Tim; Cui, Liying; Gentzsch, Martina; Dokholyan, Nikolay V.; Riordan, John R.

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) epithelial anion channel is a large multi-domain membrane protein which matures inefficiently during biosynthesis. Its assembly is further perturbed by the deletion of F508 from the first nucleotide binding domain (NBD1) responsible for most cystic fibrosis. The mutant polypeptide is recognized by cellular quality control systems and is proteolyzed. CFTR NBD1 contains a 32 residue segment termed the regulatory insertion (RI) not present in other ABC transporters. We report here that RI deletion enabled ΔF508 CFTR to mature and traffic to the cell surface where it mediated regulated anion efflux and exhibited robust single chloride channel activity. Long term pulse-chase experiments showed that the mature ΔRI/ΔF508 had a T1/2 of ~14h in cells, similar to the wild-type. RI deletion restored ATP occlusion by NBD1 of ΔF508 CFTR and had a strong thermo-stabilizing influence on the channel with gating up to at least 40°C. None of these effects of RI removal were achieved by deletion of only portions of RI. Discrete molecular dynamics simulations of NBD1 indicated that RI might indirectly influence the interaction of NBD1 with the rest of the protein by attenuating the coupling of the F508 containing loop with the F1-like ATP-binding core subdomain so that RI removal overcame the perturbations caused by F508 deletion. Restriction of RI to a particular conformational state may ameliorate the impact of the disease-causing mutation. PMID:20561529

  15. Involvement of the cystic fibrosis transmembrane conductance regulator in the acidosis-induced efflux of ATP from rat skeletal muscle.

    PubMed

    Tu, Jie; Le, Gengyun; Ballard, Heather J

    2010-11-15

    The present study was performed to investigate the effect of acidosis on the efflux of ATP from skeletal muscle. Infusion of lactic acid to the perfused hindlimb muscles of anaesthetised rats produced dose-dependent decreases in pH and increases in the interstitial ATP of extensor digitorum longus (EDL) muscle: 10 mM lactic acid reduced the venous pH from 7.22 ± 0.04 to 6.97 ± 0.02 and increased interstitial ATP from 38 ± 8 to 67 ± 11 nM. The increase in interstitial ATP was well-correlated with the decrease in pH (r(2) = 0.93; P < 0.05). Blockade of cellular uptake of lactic acid using α-cyano-hydroxycinnamic acid abolished the lactic acid-induced ATP release, whilst infusion of sodium lactate failed to depress pH or increase interstitial ATP, suggesting that intracellular pH depression, rather than lactate, stimulated the ATP efflux. Incubation of cultured skeletal myoblasts with 10 mM lactic acid significantly increased the accumulation of ATP in the bathing medium from 0.46 ± 0.06 to 0.76 ± 0.08 μM, confirming the skeletal muscle cells as the source of the released ATP. Acidosis-induced ATP efflux from the perfused muscle was abolished by CFTR(inh)-172, a specific inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR), or glibenclamide, an inhibitor of both K(ATP) channels and CFTR, but it was not affected by atractyloside, an inhibitor of the mitochondrial ATP transporter. Silencing of the CFTR gene using an siRNA abolished the acidosis-induced increase in ATP release from cultured myoblasts. CFTR expression on skeletal muscle cells was confirmed using immunostaining in the intact muscle and Western blotting in the cultured cells. These data suggest that depression of the intracellular pH of skeletal muscle cells stimulates ATP efflux, and that CFTR plays an important role in the release mechanism.

  16. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.

    PubMed

    Wei, Shipeng; Roessler, Bryan C; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L; Kirk, Kevin L

    2014-07-18

    ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.

  17. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for ivacaftor therapy in the context of CFTR genotype.

    PubMed

    Clancy, J P; Johnson, S G; Yee, S W; McDonagh, E M; Caudle, K E; Klein, T E; Cannavo, M; Giacomini, K M

    2014-06-01

    Cystic fibrosis (CF) is a life-shortening disease arising as a consequence of mutations within the CFTR gene. Novel therapeutics for CF are emerging that target CF transmembrane conductance regulator protein (CFTR) defects resulting from specific CFTR variants. Ivacaftor is a drug that potentiates CFTR gating function and is specifically indicated for CF patients with a particular CFTR variant, G551D-CFTR (rs75527207). Here, we provide therapeutic recommendations for ivacaftor based on preemptive CFTR genotype results.

  18. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS Reg. No. 7681-65-4) is a pure white crystalline powder. It is prepared by the reaction of copper...

  19. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS Reg. No. 7681-65-4) is a pure white crystalline powder. It is prepared by the reaction of copper...

  20. Frequently Asked Questions on Potassium Iodide (KI)

    MedlinePlus

    ... needs to take potassium iodide (KI) after a nuclear radiation release? What potassium iodide (KI) products are currently ... needs to take potassium iodide (KI) after a nuclear radiation release? The FDA guidance prioritizes groups based on ...

  1. Hydrogen iodide decomposition

    DOEpatents

    O'Keefe, Dennis R.; Norman, John H.

    1983-01-01

    Liquid hydrogen iodide is decomposed to form hydrogen and iodine in the presence of water using a soluble catalyst. Decomposition is carried out at a temperature between about 350.degree. K. and about 525.degree. K. and at a corresponding pressure between about 25 and about 300 atmospheres in the presence of an aqueous solution which acts as a carrier for the homogeneous catalyst. Various halides of the platinum group metals, particularly Pd, Rh and Pt, are used, particularly the chlorides and iodides which exhibit good solubility. After separation of the H.sub.2, the stream from the decomposer is countercurrently extracted with nearly dry HI to remove I.sub.2. The wet phase contains most of the catalyst and is recycled directly to the decomposition step. The catalyst in the remaining almost dry HI-I.sub.2 phase is then extracted into a wet phase which is also recycled. The catalyst-free HI-I.sub.2 phase is finally distilled to separate the HI and I.sub.2. The HI is recycled to the reactor; the I.sub.2 is returned to a reactor operating in accordance with the Bunsen equation to create more HI.

  2. Partial Restoration of CFTR Function in cftr-Null Mice following Targeted Cell Replacement Therapy.

    PubMed

    Duchesneau, Pascal; Besla, Rickvinder; Derouet, Mathieu F; Guo, Li; Karoubi, Golnaz; Silberberg, Amanda; Wong, Amy P; Waddell, Thomas K

    2017-03-01

    Cystic fibrosis (CF) is a fatal recessive genetic disorder caused by a mutation in the gene encoding CF transmembrane conductance regulator (CFTR) protein. Alteration in CFTR leads to thick airway mucus and bacterial infection. Cell therapy has been proposed for CFTR restoration, but efficacy has been limited by low engraftment levels. In our previous studies, we have shown that using a pre-conditioning regimen in combination with optimization of cell number and time of delivery, we could obtain greater bone marrow cell (BMC) retention in the lung. Here, we found that optimized delivery of wild-type (WT) BMC contributed to apical CFTR expression in airway epithelium and restoration of select ceramide species and fatty acids in CFTR(-/-) mice. Importantly, WT BMC delivery delayed Pseudomonas aeruginosa lung infection and increased survival of CFTR(-/-) recipients. Only WT BMCs had a beneficial effect beyond 6 months, suggesting a dual mechanism of BMC benefit: a non-specific effect early after cell delivery, possibly due to the recruitment of macrophages and neutrophils, and a late beneficial effect dependent on long-term CFTR expression. Taken together, our results suggest that BMC can improve overall lung function and may have potential therapeutic benefit for the treatment of CF.

  3. Islet-intrinsic effects of CFTR mutation.

    PubMed

    Koivula, Fiona N Manderson; McClenaghan, Neville H; Harper, Alan G S; Kelly, Catriona

    2016-07-01

    Cystic fibrosis-related diabetes (CFRD) is the most significant extra-pulmonary comorbidity in cystic fibrosis (CF) patients, and accelerates lung decline. In addition to the traditional view that CFRD is a consequence of fibrotic destruction of the pancreas as a whole, emerging evidence may implicate a role for cystic fibrosis transmembrane-conductance regulator (CFTR) in the regulation of insulin secretion from the pancreatic islet. Impaired first-phase insulin responses and glucose homeostasis have also been reported in CF patients. CFTR expression in both human and mouse beta cells has been confirmed, and recent studies have shown differences in endocrine pancreatic morphology from birth in CF. Recent experimental evidence suggests that functional CFTR channels are required for insulin exocytosis and the regulation of membrane potential in the pancreatic beta cell, which may account for the impairments in insulin secretion observed in many CF patients. These novel insights suggest that the pathogenesis of CFRD is more complicated than originally thought, with implications for diabetes treatment and screening in the CF population. This review summarises recent emerging evidence in support of a primary role for endocrine pancreatic dysfunction in the development of CFRD. Summary • CF is an autosomal recessive disorder caused by mutations in the CFTR gene • The vast majority of morbidity and mortality in CF results from lung disease. However CFRD is the largest extra-pulmonary co-morbidity and rapidly accelerates lung decline • Recent experimental evidence shows that functional CFTR channels are required for normal patterns of first phase insulin secretion from the pancreatic beta cell • Current clinical recommendations suggest that insulin is more effective than oral glucose-lowering drugs for the treatment of CFRD. However, the emergence of CFTR corrector and potentiator drugs may offer a personalised approach to treating diabetes in the CF population.

  4. Modulation of CFTR gating by permeant ions

    PubMed Central

    Yeh, Han-I; Yeh, Jiunn-Tyng

    2015-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is unique among ion channels in that after its phosphorylation by protein kinase A (PKA), its ATP-dependent gating violates microscopic reversibility caused by the intimate involvement of ATP hydrolysis in controlling channel closure. Recent studies suggest a gating model featuring an energetic coupling between opening and closing of the gate in CFTR’s transmembrane domains and association and dissociation of its two nucleotide-binding domains (NBDs). We found that permeant ions such as nitrate can increase the open probability (Po) of wild-type (WT) CFTR by increasing the opening rate and decreasing the closing rate. Nearly identical effects were seen with a construct in which activity does not require phosphorylation of the regulatory domain, indicating that nitrate primarily affects ATP-dependent gating steps rather than PKA-dependent phosphorylation. Surprisingly, the effects of nitrate on CFTR gating are remarkably similar to those of VX-770 (N-(2,4-Di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide), a potent CFTR potentiator used in clinics. These include effects on single-channel kinetics of WT CFTR, deceleration of the nonhydrolytic closing rate, and potentiation of the Po of the disease-associated mutant G551D. In addition, both VX-770 and nitrate increased the activity of a CFTR construct lacking NBD2 (ΔNBD2), indicating that these gating effects are independent of NBD dimerization. Nonetheless, whereas VX-770 is equally effective when applied from either side of the membrane, nitrate potentiates gating mainly from the cytoplasmic side, implicating a common mechanism for gating modulation mediated through two separate sites of action. PMID:25512598

  5. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  6. Capturing the Direct Binding of CFTR Correctors to CFTR by Using Click Chemistry.

    PubMed

    Sinha, Chandrima; Zhang, Weiqiang; Moon, Chang Suk; Actis, Marcelo; Yarlagadda, Sunitha; Arora, Kavisha; Woodroofe, Koryse; Clancy, John P; Lin, Songbai; Ziady, Assem G; Frizzell, Raymond; Fujii, Naoaki; Naren, Anjaparavanda P

    2015-09-21

    Cystic fibrosis (CF) is a lethal genetic disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel. F508del is the most prevalent mutation of the CFTR gene and encodes a protein defective in folding and processing. VX-809 has been reported to facilitate the folding and trafficking of F508del-CFTR and augment its channel function. The mechanism of action of VX-809 has been poorly understood. In this study, we sought to answer a fundamental question underlying the mechanism of VX-809: does it bind CFTR directly in order to exert its action? We synthesized two VX-809 derivatives, ALK-809 and SUL-809, that possess an alkyne group and retain the rescue capacity of VX-809. By using Cu(I) -catalyzed click chemistry, we provide evidence that the VX-809 derivatives bind CFTR directly in vitro and in cells. Our findings will contribute to the elucidation of the mechanism of action of CFTR correctors and the design of more potent therapeutics to combat CF.

  7. CFTR protein repair therapy in cystic fibrosis.

    PubMed

    Quintana-Gallego, Esther; Delgado-Pecellín, Isabel; Calero Acuña, Carmen

    2014-04-01

    Cystic fibrosis is a single gene, autosomal recessive disorder, in which more than 1,900 mutations grouped into 6 classes have been described. It is an example a disease that could be well placed to benefit from personalised medicine. There are currently 2 very different approaches that aim to correct the basic defect: gene therapy, aimed at correcting the genetic alteration, and therapy aimed at correcting the defect in the CFTR protein. The latter is beginning to show promising results, with several molecules under development. Ataluren (PTC124) is a molecule designed to make the ribosomes become less sensitive to the premature stop codons responsible for class i mutations. Lumacaftor (VX-809) is a CFTR corrector directed at class ii mutations, among which Phe508del is the most frequent, with encouraging results. Ivacaftor (VX-770) is a potentiator, the only one marketed to date, which has shown good efficacy for the class iii mutation Gly551Asp in children over the age of 6 and adults. These drugs, or a combination of them, are currently undergoing various clinical trials for other less common genetic mutations. In the last 5 years, CFTR has been designated as a therapeutic target. Ivacaftor is the first drug to treat the basic defect in cystic fibrosis, but only provides a response in a small number of patients. New drugs capable of restoring the CFTR protein damaged by the most common mutations are required.

  8. Individualized medicine using intestinal responses to CFTR potentiators and correctors.

    PubMed

    Beekman, Jeffrey M

    2016-10-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) modulators that target the mutant CFTR protein are being introduced for treatment of cystic fibrosis. Stratification of subjects based on their CFTR genotype has been proven essential to demonstrate clinical efficacy of these novel treatments. Despite this stratification, considerable heterogeneity between subjects receiving CFTR modulators is still observed which remains largely uncharacterized. The CFTR genotype, and additional genetic and environmental factors that impact either tissue-specific CFTR protein characteristics or the pharmacokinetic properties of treatments will likely determine the individual response to therapy. The development of intestinal biomarkers for CFTR modulators may help to better quantitate individual responses to treatment, with potential to optimize treatments for subjects with limited responses, and the selection of responsive subjects that currently do not receive treatments. Here, recent advances concerning the use of intestinal biomarkers for CFTR modulator treatments are reviewed, with a focus on biomarkers of CFTR function in ex vivo rectal biopsies and in vitro cultured primary intestinal organoids. Their potential value is considered in the context of the current unmet needs for better treatments for the majority of subjects with CF, and individual biomarkers that enable the prediction of long term therapeutic responses to CFTR modulators. Pediatr Pulmonol. 2016;51:S23-S34. © 2016 Wiley Periodicals, Inc.

  9. N-Alpha-Acetyltransferases and Regulation of CFTR Expression.

    PubMed

    Vetter, Ali J; Karamyshev, Andrey L; Patrick, Anna E; Hudson, Henry; Thomas, Philip J

    2016-01-01

    The majority of cystic fibrosis (CF)-causing mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) lead to the misfolding, mistrafficking, and degradation of the mutant protein. Inhibition of degradation does not effectively increase the amount of trafficking competent CFTR, but typically leads to increased ER retention of misfolded forms. Thus, the initial off pathway steps occur early in the processing of the protein. To identify proteins that interact with these early forms of CFTR, in vitro crosslink experiments identified cotranslational partners of the nascent chain of the severe misfolded mutant, G85E CFTR. The mutant preferentially interacts with a subunit of an N-alpha-acetyltransferase A. Based on recent reports that acetylation of the N-termini of some N-end rule substrates control their ubiquitination and subsequent degradation, a potential role for this modification in regulation of CFTR expression was assessed. Knockdown experiments identified two complexes, which affect G85E CFTR proteins levels, NatA and NatB. Effects of the knockdowns on mRNA levels, translation rates, and degradation rates established that the two complexes regulate G85E CFTR through two separate mechanisms. NatA acts indirectly by regulating transcription levels and NatB acts through a previously identified, but incompletely understood posttranslational mechanism. This regulation did not effect trafficking of G85E CFTR, which remains retained in the ER, nor did it alter the degradation rate of CFTR. A mutation predicted to inhibit N-terminal acetylation of CFTR, Q2P, was without effect, suggesting neither system acts directly on CFTR. These results contradict the prediction that N-terminal acetylation of CFTR determines its fitness as a proteasome substrate, but rather NatB plays a role in the conformational maturation of CFTR in the ER through actions on an unidentified protein.

  10. Iodide transport and breast cancer.

    PubMed

    Poole, Vikki L; McCabe, Christopher J

    2015-10-01

    Breast cancer is the second most common cancer worldwide and the leading cause of cancer death in women, with incidence rates that continue to rise. The heterogeneity of the disease makes breast cancer exceptionally difficult to treat, particularly for those patients with triple-negative disease. To address the therapeutic complexity of these tumours, new strategies for diagnosis and treatment are urgently required. The ability of lactating and malignant breast cells to uptake and transport iodide has led to the hypothesis that radioiodide therapy could be a potentially viable treatment for many breast cancer patients. Understanding how iodide is transported, and the factors regulating the expression and function of the proteins responsible for iodide transport, is critical for translating this hypothesis into reality. This review covers the three known iodide transporters - the sodium iodide symporter, pendrin and the sodium-coupled monocarboxylate transporter - and their role in iodide transport in breast cells, along with efforts to manipulate them to increase the potential for radioiodide therapy as a treatment for breast cancer.

  11. Association of CFTR gene mutation with bronchial asthma

    PubMed Central

    Maurya, Nutan; Awasthi, Shally; Dixit, Pratibha

    2012-01-01

    Mutation on both the copies of cystic fibrosis transmembrane conductance regulator (CFTR) gene results in cystic fibrosis (CF), which is a recessively transmitted genetic disorder. It is hypothesized that individuals heterozygous for CFTR gene mutation may develop obstructive pulmonary diseases like asthma. There is great heterogeneity in the phenotypic presentation and severity of CF lung disease. This could be due to genetic or environmental factors. Several modifier genes have been identified which may directly or indirectly interact with CFTR pathway and affect the severity of disease. This review article discusses the information related to the association of CFTR gene mutation with asthma. Association between CFTR gene mutation and asthma is still unclear. Report ranges from studies showing positive or protective association to those showing no association. Therefore, studies with sufficiently large sample size and detailed phenotype are required to define the potential contribution of CFTR in the pathogenesis of asthma. PMID:22664493

  12. Interaction between CFTR and prestin (SLC26A5).

    PubMed

    Homma, Kazuaki; Miller, Katharine K; Anderson, Charles T; Sengupta, Soma; Du, Guo-Guang; Aguiñaga, Salvador; Cheatham, Maryann; Dallos, Peter; Zheng, Jing

    2010-06-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel that is present in a variety of epithelial cell types, and usually expressed in the luminal membrane. In contrast, prestin (SLC26A5) is a voltage-dependent motor protein, which is present in the basolateral membrane of cochlear outer hair cells (OHCs), and plays an important role in the frequency selectivity and sensitivity of mammalian hearing. By using in situ hybridization and immunofluorescence, we found that both mRNA and protein of CFTR are present in OHCs, and that CFTR localizes in both the apical and the lateral membranes. CFTR was not detected in the lateral membrane of inner hair cells (IHCs) or in that of OHCs derived from prestin-knockout mice, i.e., in instances where prestin is not expressed. These results suggest that prestin may interact physically with CFTR in the lateral membrane of OHCs. Immunoprecipitation experiments confirmed a prestin-CFTR interaction. Because chloride is important for prestin function and for the efferent-mediated inhibition of cochlear output, the prestin-directed localization of CFTR to the lateral membrane of OHCs has a potential physiological significance. Aside from its role as a chloride channel, CFTR is known as a regulator of multiple protein functions, including those of the solute carrier family 26 (SLC26). Because prestin is in the SLC26 family, several members of which interact with CFTR, we explored the potential modulatory relationship associated with a direct, physical interaction between prestin and CFTR. Electrophysiological experiments demonstrated that cAMP-activated CFTR is capable of enhancing voltage-dependent charge displacement, a signature of OHC motility, whereas prestin does not affect the chloride conductance of CFTR.

  13. Introduction to Section IV: Biophysical Methods to Approach CFTR Structure

    PubMed Central

    Mendoza, Juan L.; Schmidt, André; Thomas, Philip J.

    2012-01-01

    Inefficient folding of CFTR into a functional three-dimensional structure is the basic pathophysiologic mechanism leading to most cases of cystic fibrosis. Knowledge of the structure of CFTR and placement of these mutations into a structural context would provide information key for developing targeted therapeutic approaches for cystic fibrosis. As a large polytopic membrane protein containing disordered regions, intact CFTR has been refractory to efforts to solve a high-resolution structure using X-ray crystallography. The following chapters summarize current efforts to circumvent these obstacles by utilizing NMR, electron microscopy, and computational methodologies and by development of experimental models of the relevant domains of CFTR. PMID:21594794

  14. In vivo readout of CFTR function: ratiometric measurement of CFTR-dependent secretion by individual, identifiable human sweat glands.

    PubMed

    Wine, Jeffrey J; Char, Jessica E; Chen, Jonathan; Cho, Hyung-Ju; Dunn, Colleen; Frisbee, Eric; Joo, Nam Soo; Milla, Carlos; Modlin, Sara E; Park, Il-Ho; Thomas, Ewart A C; Tran, Kim V; Verma, Rohan; Wolfe, Marlene H

    2013-01-01

    To assess CFTR function in vivo, we developed a bioassay that monitors and compares CFTR-dependent and CFTR-independent sweat secretion in parallel for multiple (~50) individual, identified glands in each subject. Sweating was stimulated by intradermally injected agonists and quantified by optically measuring spherical sweat bubbles in an oil-layer that contained dispersed, water soluble dye particles that partitioned into the sweat bubbles, making them highly visible. CFTR-independent secretion (M-sweat) was stimulated with methacholine, which binds to muscarinic receptors and elevates cytosolic calcium. CFTR-dependent secretion (C-sweat) was stimulated with a β-adrenergic cocktail that elevates cytosolic cAMP while blocking muscarinic receptors. A C-sweat/M-sweat ratio was determined on a gland-by-gland basis to compensate for differences unrelated to CFTR function, such as gland size. The average ratio provides an approximately linear readout of CFTR function: the heterozygote ratio is ~0.5 the control ratio and for CF subjects the ratio is zero. During assay development, we measured C/M ratios in 6 healthy controls, 4 CF heterozygotes, 18 CF subjects and 4 subjects with 'CFTR-related' conditions. The assay discriminated all groups clearly. It also revealed consistent differences in the C/M ratio among subjects within groups. We hypothesize that these differences reflect, at least in part, levels of CFTR expression, which are known to vary widely. When C-sweat rates become very low the C/M ratio also tended to decrease; we hypothesize that this nonlinearity reflects ductal fluid absorption. We also discovered that M-sweating potentiates the subsequent C-sweat response. We then used potentiation as a surrogate for drugs that can increase CFTR-dependent secretion. This bioassay provides an additional method for assessing CFTR function in vivo, and is well suited for within-subject tests of systemic, CFTR-directed therapeutics.

  15. G551D-CFTR needs more bound actin than wild-type CFTR to maintain its presence in plasma membranes.

    PubMed

    Trouvé, Pascal; Kerbiriou, Mathieu; Teng, Ling; Benz, Nathalie; Taiya, Mehdi; Le Hir, Sophie; Férec, Claude

    2015-08-01

    Cystic Fibrosis is due to mutations in the CFTR gene. The missense mutation G551D (approx. 5% of cases) encodes a CFTR chloride channel with normal cell surface expression but with an altered chloride channel activity, leading to a severe phenotype. Our aim was to identify specific interacting proteins of G551D-CFTR which could explain the channel defect. Wild-type CFTR (Wt-CFTR) was co-immunoprecipitated from stably transfected HeLa cells and resolved by 2D gel electrophoresis. Among the detected spots, one was expressed at a high level. Mass Spectrometry revealed that it corresponded to actin which is known to be involved in the CFTR's channel function. To assess whether actin could be involved in the altered G551D-CFTR function, its basal expression was studied. Because actin expression was the same in wt- and in G551D-CFTR expressing cells, its interaction with both wt- and G551D-CFTR was studied by co-immunoprecipitation, and we found that a higher amount of actin was bound onto G551D-CFTR than onto Wt-CFTR. The role of actin upon wt- and G551D-CFTR function was further studied by patch-clamp experiments after cytochalasin D treatment of the cells. We found a decrease of the very weak currents in G551D-CFTR expressing cells. Because a higher amount of actin is bound onto G551D-CFTR than onto Wt-CFTR, it is likely to be not involved in the mutated CFTR's defect. Nevertheless, because actin is necessary to maintain the very weak global currents observed in G551D-CFTR expressing HeLa cells, we conclude that more actin is necessary to maintain G551D-CFTR in the plasma membrane than for Wt-CFTR.

  16. IODIDE DEFICIENCY, THYROID HORMONES, AND NEURODEVELOPMENT

    EPA Science Inventory

    ABSTRACT BODY: Iodide is an essential nutrient for thyroid hormone synthesis. Severe iodide insufficiency during early development is associated with cognitive deficits. Environmental contaminants can perturb the thyroid axis and this perturbation may be more acute under conditio...

  17. Rescue of functional DeltaF508-CFTR channels by co-expression with truncated CFTR constructs in COS-1 cells.

    PubMed

    Owsianik, Grzegorz; Cao, Lishuang; Nilius, Bernd

    2003-11-06

    The most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR), DeltaF508-CFTR, is misprocessed and subsequently degraded in the endoplasmic reticulum. Using the patch-clamp technique, we showed that co-expressions of DeltaF508-CFTR with the N-terminal CFTR truncates containing bi-arginine (RXR) retention/retrieval motifs result in a functional rescue of the DeltaF508-CFTR mutant channel in COS-1 cells. This DeltaF508-CFTR rescue process was strongly impaired when truncated CFTR constructs possessed either the DeltaF508 mutation or arginine-to-lysine mutations in RXRs. In conclusions, our data demonstrated that expression of truncated CFTR constructs could be a novel promising approach to improve maturation of DeltaF508-CFTR channels.

  18. The ΔF508-CFTR mutation inhibits wild-type CFTR processing and function when co-expressed in human airway epithelia and in mouse nasal mucosa

    PubMed Central

    2012-01-01

    Background Rescue or correction of CFTR function in native epithelia is the ultimate goal of CF therapeutics development. Wild-type (WT) CFTR introduction and replacement is also of particular interest. Such therapies may be complicated by possible CFTR self-assembly into an oligomer or multimer. Results Surprisingly, functional CFTR assays in native airway epithelia showed that the most common CFTR mutant, ΔF508-CFTR (ΔF-CFTR), inhibits WT-CFTR when both forms are co-expressed. To examine more mechanistically, both forms of CFTR were transfected transiently in varying amounts into IB3-1 CF human airway epithelial cells and HEK-293 human embryonic kidney cells null for endogenous CFTR protein expression. Increasing amounts of ΔF-CFTR inhibited WT-CFTR protein processing and function in CF human airway epithelial cells but not in heterologous HEK-293 cells. Stably expressed ΔF-CFTR in clones of the non-CF human airway epithelial cell line, CALU-3, also showed reduction in cAMP-stimulated anion secretion and in WT-CFTR processing. An ultimate test of this dominant negative-like effect of ΔF-CFTR on WT-CFTR was the parallel study of two different CF mouse models: the ΔF-CFTR mouse and the bitransgenic CFTR mouse corrected in the gut but null in the lung and airways. WT/ΔF heterozygotes had an intermediate phenotype with regard to CFTR agonist responses in in vivo nasal potential difference (NPD) recordings and in Ussing chamber recordings of short-circuit current (ISC) in vitro on primary tracheal epithelial cells isolated from the same mice. In contrast, CFTR bitransgenic +/− heterozygotes had no difference in their responses versus +/+ wild-type mice. Conclusions Taken altogether, these data suggest that ΔF-CFTR and WT-CFTR co-assemble into an oligomeric macromolecular complex in native epithelia and share protein processing machinery and regulation at the level of the endoplasmic reticulum (ER). As a consequence, ΔF-CFTR slows WT-CFTR protein processing

  19. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  20. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  1. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  2. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  3. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium iodide. 184.1634 Section 184.1634 Food... GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium... reacting hydriodic acid (HI) with potassium bicarbonate (KHCO3). (b) The ingredient meets...

  4. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  5. 21 CFR 184.1634 - Potassium iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  6. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  7. Molecular mechanisms controlling CFTR gene expression in the airway

    PubMed Central

    Zhang, Zhaolin; Ott, Christopher J; Lewandowska, Marzena A; Leir, Shih-Hsing; Harris, Ann

    2012-01-01

    Abstract The low levels of CFTR gene expression and paucity of CFTR protein in human airway epithelial cells are not easily reconciled with the pivotal role of the lung in cystic fibrosis pathology. Previous data suggested that the regulatory mechanisms controlling CFTR gene expression might be different in airway epithelium in comparison to intestinal epithelium where CFTR mRNA and protein is much more abundant. Here we examine chromatin structure and modification across the CFTR locus in primary human tracheal (HTE) and bronchial (NHBE) epithelial cells and airway cell lines including 16HBE14o- and Calu3. We identify regions of open chromatin that appear selective for primary airway epithelial cells and show that several of these are enriched for a histone modification (H3K4me1) that is characteristic of enhancers. Consistent with these observations, three of these sites encompass elements that have cooperative enhancer function in reporter gene assays in 16HBE14o- cells. Finally, we use chromosome conformation capture (3C) to examine the three-dimensional structure of nearly 800 kb of chromosome 7 encompassing CFTR and observe long-range interactions between the CFTR promoter and regions far outside the locus in cell types that express high levels of CFTR. PMID:21895967

  8. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs.

    PubMed

    Stoltz, David A; Rokhlina, Tatiana; Ernst, Sarah E; Pezzulo, Alejandro A; Ostedgaard, Lynda S; Karp, Philip H; Samuel, Melissa S; Reznikov, Leah R; Rector, Michael V; Gansemer, Nicholas D; Bouzek, Drake C; Abou Alaiwa, Mahmoud H; Hoegger, Mark J; Ludwig, Paula S; Taft, Peter J; Wallen, Tanner J; Wohlford-Lenane, Christine; McMenimen, James D; Chen, Jeng-Haur; Bogan, Katrina L; Adam, Ryan J; Hornick, Emma E; Nelson, George A; Hoffman, Eric A; Chang, Eugene H; Zabner, Joseph; McCray, Paul B; Prather, Randall S; Meyerholz, David K; Welsh, Michael J

    2013-06-01

    Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid-binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR-/-;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies.

  9. Organelle Redox of CF and CFTR-Corrected Airway Epithelia

    PubMed Central

    Schwarzer, Christian; Illek, Beate; Suh, Jung H.; Remington, S. James; Fischer, Horst; Machen, Terry E.

    2014-01-01

    In cystic fibrosis reduced CFTR function may alter redox properties of airway epithelial cells. Redox-sensitive GFP (roGFP1) and imaging microscopy were used to measure redox potentials of cytosol, ER, mitochondria and cell surface of cystic fibrosis nasal epithelial cells and CFTR-corrected cells. We also measured glutathione and cysteine thiol redox states in cell lysates and apical fluids to provide coverage over a range of redox potentials and environments that might be affected by CFTR. As measured with roGFP1, redox potentials at the cell surface (~ -207 ±8 mV) and in the ER (~ -217 ±1 mV) and rates of regulation of the apical fluid and ER lumen following DTT treatment were similar for CF and CFTR-corrected cells. CF and CFTR-corrected cells had similar redox potentials in mitochondria (-344 ±9 mV) and cytosol (-322 ±7 mV). Oxidation of carboxy-dichlorodihydrofluoresceindiacetate and of apical Amplex Red occurred at equal rates in CF and CFTR-corrected cells. Glutathione and cysteine redox couples in cell lysates and apical fluid were equal in CF and CFTR-corrected cells. These quantitative estimates of organelle redox potentials combined with apical and cell measurements using small molecule couples confirmed there were no differences in redox properties of CF and CFTR-corrected cells. PMID:17603939

  10. Potentiators exert distinct effects on human, murine, and Xenopus CFTR.

    PubMed

    Cui, Guiying; Khazanov, Netaly; Stauffer, Brandon B; Infield, Daniel T; Imhoff, Barry R; Senderowitz, Hanoch; McCarty, Nael A

    2016-08-01

    VX-770 (Ivacaftor) has been approved for clinical usage in cystic fibrosis patients with several CFTR mutations. Yet the binding site(s) on CFTR for this compound and other small molecule potentiators are unknown. We hypothesize that insight into this question could be gained by comparing the effect of potentiators on CFTR channels from different origins, e.g., human, mouse, and Xenopus (frog). In the present study, we combined this comparative molecular pharmacology approach with that of computer-aided drug discovery to identify and characterize new potentiators of CFTR and to explore possible mechanism of action. Our results demonstrate that 1) VX-770, NPPB, GlyH-101, P1, P2, and P3 all exhibited ortholog-specific behavior in that they potentiated hCFTR, mCFTR, and xCFTR with different efficacies; 2) P1, P2, and P3 potentiated hCFTR in excised macropatches in a manner dependent on the degree of PKA-mediated stimulation; 3) P1 and P2 did not have additive effects, suggesting that these compounds might share binding sites. Also 4) using a pharmacophore modeling approach, we identified three new potentiators (IOWH-032, OSSK-2, and OSSK-3) that have structures similar to GlyH-101 and that also exhibit ortholog-specific potentiation of CFTR. These could potentially serve as lead compounds for development of new drugs for the treatment of cystic fibrosis. The ortholog-specific behavior of these compounds suggest that a comparative pharmacology approach, using cross-ortholog chimeras, may be useful for identification of binding sites on human CFTR.

  11. Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate.

    PubMed

    Li, Man-Song; Holstead, Ryan G; Wang, Wuyang; Linsdell, Paul

    2011-01-01

    The CFTR contributes to Cl⁻ and HCO₃⁻ transport across epithelial cell apical membranes. The extracellular face of CFTR is exposed to varying concentrations of Cl⁻ and HCO₃⁻ in epithelial tissues, and there is evidence that CFTR is sensitive to changes in extracellular anion concentrations. Here we present functional evidence that extracellular Cl⁻ and HCO₃⁻ regulate anion conduction in open CFTR channels. Using cell-attached and inside-out patch-clamp recordings from constitutively active mutant E1371Q-CFTR channels, we show that voltage-dependent inhibition of CFTR currents in intact cells is significantly stronger when the extracellular solution contains HCO₃⁻ than when it contains Cl⁻. This difference appears to reflect differences in the ability of extracellular HCO₃⁻ and Cl⁻ to interact with and repel intracellular blocking anions from the pore. Strong block by endogenous cytosolic anions leading to reduced CFTR channel currents in intact cells occurs at physiologically relevant HCO₃⁻ concentrations and membrane potentials and can result in up to ∼50% inhibition of current amplitude. We propose that channel block by cytosolic anions is a previously unrecognized, physiologically relevant mechanism of channel regulation that confers on CFTR channels sensitivity to different anions in the extracellular fluid. We further suggest that this anion sensitivity represents a feedback mechanism by which CFTR-dependent anion secretion could be regulated by the composition of the secretions themselves. Implications for the mechanism and regulation of CFTR-dependent secretion in epithelial tissues are discussed.

  12. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line

    PubMed Central

    Kogai, Takahiko; Schultz, James J.; Johnson, Laura S.; Huang, Min; Brent, Gregory A.

    2000-01-01

    The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to ≈9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the induction of iodide uptake was mediated by retinoic acid receptor. Treatment with tRA markedly stimulated NIS mRNA and immunoreactive protein (≈68 kDa). tRA stimulated NIS gene transcription ≈4-fold, as shown by nuclear run-on assay. No induction of iodide uptake was observed with RA treatment of an ER-negative human breast cancer cell line, MDA-MB 231, or a normal human breast cell line, MCF-12A. The iodide efflux rate of tRA-treated MCF-7 cells was slow (t1/2 = 24 min), compared with that in FRTL-5 thyroid cells (t1/2 = 3.9 min), favoring iodide retention in MCF-7 cells. An in vitro clonogenic assay demonstrated selective cytotoxicity with 131I after tRA stimulation of MCF-7 cells. tRA up-regulates NIS gene expression and iodide uptake in an ER-positive breast cancer cell line. Stimulation of radioiodide uptake after systemic retinoid treatment may be useful for diagnosis and treatment of some differentiated breast cancers. PMID:10890895

  13. A convenient iodination method for alcohols using cesium iodide/methanesulfonic acid and its comparison using cesium iodide/p-toluenesulfonic acid or cesium iodide/aluminium chloride.

    PubMed

    Khan, Khalid Mohammed; Zia-Ullah; Perveen, Shahnaz; Hayat, Safdar; Ali, Muhammad; Voelter, Wolfgang

    2008-01-01

    In situ generation of hydrogen iodide from cesium iodide/methanesulfonic acid was found to be an attractive reagent combination for the conversion of alkyl, allyl, and benzyl alcohols to their corresponding iodides under mild conditions. The method is compared with that using cesium iodide/p-toluenesulfonic acid or cesium iodide/aluminium chloride.

  14. Auger recombination in sodium iodide

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  15. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs

    PubMed Central

    Stoltz, David A.; Rokhlina, Tatiana; Ernst, Sarah E.; Pezzulo, Alejandro A.; Ostedgaard, Lynda S.; Karp, Philip H.; Samuel, Melissa S.; Reznikov, Leah R.; Rector, Michael V.; Gansemer, Nicholas D.; Bouzek, Drake C.; Alaiwa, Mahmoud H. Abou; Hoegger, Mark J.; Ludwig, Paula S.; Taft, Peter J.; Wallen, Tanner J.; Wohlford-Lenane, Christine; McMenimen, James D.; Chen, Jeng-Haur; Bogan, Katrina L.; Adam, Ryan J.; Hornick, Emma E.; Nelson, George A.; Hoffman, Eric A.; Chang, Eugene H.; Zabner, Joseph; McCray, Paul B.; Prather, Randall S.; Meyerholz, David K.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis (CF) pigs develop disease with features remarkably similar to those in people with CF, including exocrine pancreatic destruction, focal biliary cirrhosis, micro-gallbladder, vas deferens loss, airway disease, and meconium ileus. Whereas meconium ileus occurs in 15% of babies with CF, the penetrance is 100% in newborn CF pigs. We hypothesized that transgenic expression of porcine CF transmembrane conductance regulator (pCFTR) cDNA under control of the intestinal fatty acid–binding protein (iFABP) promoter would alleviate the meconium ileus. We produced 5 CFTR–/–;TgFABP>pCFTR lines. In 3 lines, intestinal expression of CFTR at least partially restored CFTR-mediated anion transport and improved the intestinal phenotype. In contrast, these pigs still had pancreatic destruction, liver disease, and reduced weight gain, and within weeks of birth, they developed sinus and lung disease, the severity of which varied over time. These data indicate that expressing CFTR in intestine without pancreatic or hepatic correction is sufficient to rescue meconium ileus. Comparing CFTR expression in different lines revealed that approximately 20% of wild-type CFTR mRNA largely prevented meconium ileus. This model may be of value for understanding CF pathophysiology and testing new preventions and therapies. PMID:23676501

  16. Phosphatase inhibitors activate normal and defective CFTR chloride channels.

    PubMed Central

    Becq, F; Jensen, T J; Chang, X B; Savoia, A; Rommens, J M; Tsui, L C; Buchwald, M; Riordan, J R; Hanrahan, J W

    1994-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is regulated by phosphorylation and dephosphorylation at multiple sites. Although activation by protein kinases has been studied in some detail, the dephosphorylation step has received little attention. This report examines the mechanisms responsible for the dephosphorylation and spontaneous deactivation ("rundown") of CFTR chloride channels excised from transfected Chinese hamster ovary (CHO) and human airway epithelial cells. We report that the alkaline phosphatase inhibitors bromotetramisole, 3-isobutyl-1-methylxanthine, theophylline, and vanadate slow the rundown of CFTR channel activity in excised membrane patches and reduce dephosphorylation of CFTR protein in isolated membranes. It was also found that in unstimulated cells, CFTR channels can be activated by exposure to phosphatase inhibitors alone. Most importantly, exposure of mammalian cells to phosphatase inhibitors alone activates CFTR channels that have disease-causing mutations, provided the mutant channels are present in the plasma membrane (R117H, G551D, and delta F508 after cooling). These results suggest that CFTR dephosphorylation is dynamic and that membrane-associated phosphatase activity may be a potential therapeutic target for the treatment of cystic fibrosis. Images PMID:7522329

  17. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species.

  18. Lack of conventional ATPase properties in CFTR chloride channel gating.

    PubMed

    Schultz, B D; Bridges, R J; Frizzell, R A

    1996-05-01

    CFTR shares structural homology with the ABC transporter superfamily of proteins which hydrolyze ATP to effect the transport of compounds across cell membranes. Some superfamily members are characterized as P-type ATPases because ATP-dependent transport is sensitive to the presence of vanadate. It has been widely postulated that CFTR hydrolyzes ATP to gate its chloride channel. However, direct evidence of CFTR hydrolytic activity in channel gating is lacking and existing circumstantial evidence is contradictory. Therefore, we evaluated CFTR chloride channel activity under conditions known to inhibit the activity of ATPases; i.e., in the absence of divalent cations and in the presence of a variety of ATPase inhibitors. Removal of the cytosolic cofactor, Mg2+, reduced both the opening and closing rates of CFTR suggesting that Mg2+ plays a modulatory role in channel gating. However, channels continued to both open and close showing that Mg2+ is not an absolute requirement for channel activity. The nonselective P-type ATPase inhibitor, vanadate, did not alter the gating of CFTR when used at concentrations which completely inhibit the activity of other ABC transporters (1 mM). Higher concentrations of vanadate (10 mM) blocked the closing of CFTR, but did not affect the opening of the channel. As expected, more selective P-type (Sch28080, ouabain), V-type (bafilomycin A1, SCN-) and F-type (oligomycin) ATPase inhibitors did not affect either the opening or closing of CFTR. Thus, CFTR does not share a pharmacological inhibition profile with other ATPases and channel gating occurs in the apparent absence of hydrolysis, although with altered kinetics. Vanadate inhibition of channel closure might suggest that a hydrolytic step is involved although the requirement for a high concentration raises the possibility of previously uncharacterized effects of this compound. Most conservatively, the requirement for high concentrations of vanadate demonstrates that the binding site for

  19. Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ΔF508-CFTR and G551D-CFTR.

    PubMed

    Huguet, F; Calvez, M L; Benz, N; Le Hir, S; Mignen, O; Buscaglia, P; Horgen, F D; Férec, C; Kerbiriou, M; Trouvé, P

    2016-09-01

    Cystic fibrosis (CF), one of the most common fatal hereditary disorders, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The CFTR gene product is a multidomain adenosine triphosphate-binding cassette (ABC) protein that functions as a chloride (Cl(-)) channel that is regulated by intracellular magnesium [Mg(2+)]i. The most common mutations in CFTR are a deletion of a phenylalanine residue at position 508 (ΔF508-CFTR, 70-80 % of CF phenotypes) and a Gly551Asp substitution (G551D-CFTR, 4-5 % of alleles), which lead to decreased or almost abolished Cl(-) channel function, respectively. Magnesium ions have to be finely regulated within cells for optimal expression and function of CFTR. Therefore, the melastatin-like transient receptor potential cation channel, subfamily M, member 7 (TRPM7), which is responsible for Mg(2+) entry, was studies and [Mg(2+)]i measured in cells stably expressing wildtype CFTR, and two mutant proteins (ΔF508-CFTR and G551D-CFTR). This study shows for the first time that [Mg(2+)]i is decreased in cells expressing ΔF508-CFTR and G551D-CFTR mutated proteins. It was also observed that the expression of the TRPM7 protein is increased; however, membrane localization was altered for both ΔF508del-CFTR and G551D-CFTR. Furthermore, both the function and regulation of the TRPM7 channel regarding Mg(2+) is decreased in the cells expressing the mutated CFTR. Ca(2+) influx via TRPM7 were also modified in cells expressing a mutated CFTR. Therefore, there appears to be a direct involvement of TRPM7 in CF physiopathology. Finally, we propose that the TRPM7 activator Naltriben is a new potentiator for G551D-CFTR as the function of this mutant increases upon activation of TRPM7 by Naltriben.

  20. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  1. Worldwide Genetic Analysis of the CFTR Region

    PubMed Central

    Mateu, Eva; Calafell, Francesc; Lao, Oscar; Bonné-Tamir, Batsheva; Kidd, Judith R.; Pakstis, Andrew; Kidd, Kenneth K.; Bertranpetit, Jaume

    2001-01-01

    Mutations at the cystic fibrosis transmembrane conductance regulator gene (CFTR) cause cystic fibrosis, the most prevalent severe genetic disorder in individuals of European descent. We have analyzed normal allele and haplotype variation at four short tandem repeat polymorphisms (STRPs) and two single-nucleotide polymorphisms (SNPs) in CFTR in 18 worldwide population samples, comprising a total of 1,944 chromosomes. The rooted phylogeny of the SNP haplotypes was established by typing ape samples. STRP variation within SNP haplotype backgrounds was highest in most ancestral haplotypes—although, when STRP allele sizes were taken into account, differences among haplotypes became smaller. Haplotype background determines STRP diversity to a greater extent than populations do, which indicates that haplotype backgrounds are older than populations. Heterogeneity among STRPs can be understood as the outcome of differences in mutation rate and pattern. STRP sites had higher heterozygosities in Africans, although, when whole haplotypes were considered, no significant differences remained. Linkage disequilibrium (LD) shows a complex pattern not easily related to physical distance. The analysis of the fraction of possible different haplotypes not found may circumvent some of the methodological difficulties of LD measure. LD analysis showed a positive correlation with locus polymorphism, which could partly explain the unusual pattern of similar LD between Africans and non-Africans. The low values found in non-Africans may imply that the size of the modern human population that emerged “Out of Africa” may be larger than what previous LD studies suggested. PMID:11104661

  2. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry

    PubMed Central

    Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe; Butler, Alison; Luther, George W.; Kroneck, Peter M. H.; Meyer-Klaucke, Wolfram; Feiters, Martin C.

    2008-01-01

    Brown algae of the Laminariales (kelps) are the strongest accumulators of iodine among living organisms. They represent a major pump in the global biogeochemical cycle of iodine and, in particular, the major source of iodocarbons in the coastal atmosphere. Nevertheless, the chemical state and biological significance of accumulated iodine have remained unknown to this date. Using x-ray absorption spectroscopy, we show that the accumulated form is iodide, which readily scavenges a variety of reactive oxygen species (ROS). We propose here that its biological role is that of an inorganic antioxidant, the first to be described in a living system. Upon oxidative stress, iodide is effluxed. On the thallus surface and in the apoplast, iodide detoxifies both aqueous oxidants and ozone, the latter resulting in the release of high levels of molecular iodine and the consequent formation of hygroscopic iodine oxides leading to particles, which are precursors to cloud condensation nuclei. In a complementary set of experiments using a heterologous system, iodide was found to effectively scavenge ROS in human blood cells. PMID:18458346

  3. [Rare, severe hypersensitivity reaction to potassium iodide].

    PubMed

    Korsholm, Anne Sofie; Ebbehøj, Eva; Richelsen, Bjørn

    2014-07-07

    The literature reports a large variety of adverse reactions to potassium iodide. A severe hypersensitivity reaction to potassium iodide in a 51-year-old woman with Graves' thyrotoxicosis is described. Following administration the patient developed sialadenitis, conjunctivitis, stomatitis and acneiform iododerma that responded dramatically to withdrawal of the potassium iodide and administration with corticosteroids. Awareness of these adverse reactions may prevent prolonged hospitalization and unnecessary tests and treatments.

  4. Diphenyleneiodonium, an inhibitor of NOXes and DUOXes, is also an iodide-specific transporter.

    PubMed

    Massart, C; Giusti, N; Beauwens, R; Dumont, J E; Miot, F; Sande, J Van

    2013-01-01

    NADPH oxidases (NOXes) and dual oxidases (DUOXes) generate O2 (.-) and H2O2. Diphenyleneiodonium (DPI) inhibits the activity of these enzymes and is often used as a specific inhibitor. It is shown here that DPI, at concentrations similar to those which inhibit the generation of O2 derivatives, activated the efflux of radioiodide but not of its analog (99m)TcO4 (-) nor of the K(+) cation mimic (86)Rb(+) in thyroid cells, in the PCCl3 rat thyroid cell line and in COS cell lines expressing the iodide transporter NIS. Effects obtained with DPI, especially in thyroid cells, should therefore be interpreted with caution.

  5. Impact of heterozygote CFTR Mutations in COPD patients with Chronic Bronchitis

    PubMed Central

    2014-01-01

    Background Cigarette smoking causes Chronic Obstructive Pulmonary Disease (COPD), the 3rd leading cause of death in the U.S. CFTR ion transport dysfunction has been implicated in COPD pathogenesis, and is associated with chronic bronchitis. However, susceptibility to smoke induced lung injury is variable and the underlying genetic contributors remain unclear. We hypothesized that presence of CFTR mutation heterozygosity may alter susceptibility to cigarette smoke induced CFTR dysfunction. Consequently, COPD patients with chronic bronchitis may have a higher rate of CFTR mutations compared to the general population. Methods Primary human bronchial epithelial cells derived from F508del CFTR heterozygotes and mice with (CFTR+/-) and without (CFTR+/+) CFTR heterozygosity were exposed to whole cigarette smoke (WCS); CFTR-dependent ion transport was assessed by Ussing chamber electrophysiology and nasal potential difference measurements, respectively. Caucasians with COPD and chronic bronchitis, age 40 to 80 with FEV1/FVC < 0.70 and FEV1 < 60% predicted, were selected for genetic analysis from participants in the NIH COPD Clinical Research Network’s Azithromycin for Prevention of Exacerbations of COPD in comparison to 32,900 Caucasian women who underwent prenatal genetic testing. Genetic analysis involved an allele-specific genotyping of 89 CFTR mutations. Results Exposure to WCS caused a pronounced reduction in CFTR activity in both CFTR (+/+) cells and F508del CFTR (+/-) cells; however, neither the degree of decrement (44.7% wild-type vs. 53.5% F508del heterozygous, P = NS) nor the residual CFTR activity were altered by CFTR heterozygosity. Similarly, WCS caused a marked reduction in CFTR activity measured by NPD in both wild type and CFTR heterozygous mice, but the severity of decrement (91.1% wild type vs. 47.7% CF heterozygous, P = NS) and the residual activity were not significantly affected by CFTR genetic status. Five of 127 (3.9%) COPD patients

  6. Regulatory Crosstalk by Protein Kinases on CFTR Trafficking and Activity

    PubMed Central

    Farinha, Carlos M.; Swiatecka-Urban, Agnieszka; Brautigan, David L.; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e., channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease. PMID:26835446

  7. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    NASA Astrophysics Data System (ADS)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  8. The durability of iodide sodalite

    NASA Astrophysics Data System (ADS)

    Maddrell, Ewan; Gandy, Amy; Stennett, Martin

    2014-06-01

    An iodide sodalite wasteform has been prepared by Hot Isostatic Pressing of powder produced by hydrothermal synthesis. The wasteform was free of leachable secondary phases which can mask leaching mechanisms. Leaching is by congruent dissolution and leach rates decrease as Si and Al accumulate in the leachate. Differential normalised leach rates are 0.005-0.01 g m-2 d-1 during the 7-14 day period. This indicates that sodalite dissolution in natural groundwater, already saturated in these elements, will be very low.

  9. Corrector VX-809 stabilizes the first transmembrane domain of CFTR.

    PubMed

    Loo, Tip W; Bartlett, M Claire; Clarke, David M

    2013-09-01

    Processing mutations that inhibit folding and trafficking of CFTR are the main cause of cystic fibrosis (CF). A potential CF therapy would be to repair CFTR processing mutants. It has been demonstrated that processing mutants of P-glycoprotein (P-gp), CFTR's sister protein, can be efficiently repaired by a drug-rescue mechanism. Many arginine suppressors that mimic drug-rescue have been identified in the P-gp transmembrane (TM) domains (TMDs) that rescue by forming hydrogen bonds with residues in adjacent helices to promote packing of the TM segments. To test if CFTR mutants could be repaired by a drug-rescue mechanism, we used truncation mutants to test if corrector VX-809 interacted with the TMDs. VX-809 was selected for study because it is specific for CFTR, it is the most effective corrector identified to date, but it has limited clinical benefit. Identification of the VX-809 target domain will help to develop correctors with improved clinical benefits. It was found that VX-809 rescued truncation mutants lacking the NBD2 and R domains. When the remaining domains (TMD1, NBD1, TMD2) were expressed as separate polypeptides, VX-809 only increased the stability of TMD1. We then performed arginine mutagenesis on TM6 in TMD1. Although the results showed that TM6 had distinct lipid and aqueous faces, CFTR was different from P-gp as no arginine promoted maturation of CFTR processing mutants. The results suggest that TMD1 contains a VX-809 binding site, but its mechanism differed from P-gp drug-rescue. We also report that V510D acts as a universal suppressor to rescue CFTR processing mutants.

  10. Calcium Efflux from Barnacle Muscle Fibers

    PubMed Central

    Russell, J. M.; Blaustein, M. P.

    1974-01-01

    Calcium-45 was injected into single giant barnacle muscle fibers, and the rate of efflux was measured under a variety of conditions. The rate constant (k) for 45Ca efflux into standard seawater averaged 17 x 10–4 min–1 which corresponds to an efflux of about 1–2 pmol/cm2·s. Removal of external Ca (Cao) reduced the efflux by 50%. In most fibers about 40% of the 45Ca efflux into Ca-free seawater was dependent on external Na (Nao); treatment with 3.5 mM caffeine increased the magnitude of the Nao-dependent efflux. In a few fibers removal of Nao, in the absence of Cao, either had no effect or increased k; caffeine (2–3.5 mM) unmasked an Nao-dependent efflux in these fibers. The Nao-dependent Ca efflux had a Q10 of about 3.7. The data are consistent with the idea that a large fraction of the Ca efflux may be carrier-mediated, and may involve both Ca-Ca and Na-Ca counterflow. The relation between the Nao-dependent Ca efflux and the external Na concentration is sigmoid, and suggests that two, or more likely three, external Na+ ions may activate the efflux of one Ca+2. With a three-for-one Na-Ca exchange, the Na electrochemical gradient may be able to supply sufficient energy to maintain the Ca gradient in these fibers. Other, more complex models are not excluded, however, and may be required to explain some puzzling features of the Ca efflux such as the variable Nao-dependence. PMID:4812633

  11. [CFTR and ENaC functions in cystic fibrosis].

    PubMed

    Palma, Alejandra G; Kotsias, Basilio A; Marino, Gabriela I

    2014-01-01

    Cystic fibrosis is caused by dysfunction or lack of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that has a key role in maintaining ion and water homoeostasis in different tissues. CFTR is a cyclic AMP-activated Cl- channel found in the apical and basal plasma membrane of airway, intestinal, and exocrine epithelial cells. One of CFTR's primary roles in the lungs is to maintain homoeostasis of the airway surface liquid layer through its function as a chloride channel and its regulation of the epithelial sodium channel ENaC. More than 1900 CFTR mutations have been identified in the cftr gene. The disease is characterized by viscous secretions of the exocrine glands in multiple organs and elevated levels of sweat sodium chloride. In cystic fibrosis, salt and fluid absorption is prevented by the loss of CFTR and ENaC is not appropriately regulated, resulting in increased fluid and sodium resorption from the airways and formation of a contracted viscous surface liquid layer. In the sweat glands both Na+ and Cl- ions are retained in the lumen, causing significant loss of electrolytes during sweating. Thus, elevated sweat NaCl concentration is the basis of the classic pilocarpine-induced sweat test as a diagnostic feature of the disease. Here we discuss the ion movement of Cl- and Na+ ions in two tissues, sweat glands and in the air surface as well as the role of ENaC in the pathogenesis of cystic fibrosis.

  12. Cigarette smoke and CFTR: implications in the pathogenesis of COPD

    PubMed Central

    Rowe, Steven M.; Raju, S. Vamsee; Bebok, Zsuzsa; Matalon, Sadis; Collawn, James F.

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) is a progressive respiratory disorder consisting of chronic bronchitis and/or emphysema. COPD patients suffer from chronic infections and display exaggerated inflammatory responses and a progressive decline in respiratory function. The respiratory symptoms of COPD are similar to those seen in cystic fibrosis (CF), although the molecular basis of the two disorders differs. CF is a genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding a chloride and bicarbonate channel (CFTR), leading to CFTR dysfunction. The majority of COPD cases result from chronic oxidative insults such as cigarette smoke. Interestingly, environmental stresses including cigarette smoke, hypoxia, and chronic inflammation have also been implicated in reduced CFTR function, and this suggests a common mechanism that may contribute to both the CF and COPD. Therefore, improving CFTR function may offer an excellent opportunity for the development of a common treatment for CF and COPD. In this article, we review what is known about the CF respiratory phenotype and discuss how diminished CFTR expression-associated ion transport defects may contribute to some of the pathological changes seen in COPD. PMID:23934925

  13. A functional CFTR assay using primary cystic fibrosis intestinal organoids.

    PubMed

    Dekkers, Johanna F; Wiegerinck, Caroline L; de Jonge, Hugo R; Bronsveld, Inez; Janssens, Hettie M; de Winter-de Groot, Karin M; Brandsma, Arianne M; de Jong, Nienke W M; Bijvelds, Marcel J C; Scholte, Bob J; Nieuwenhuis, Edward E S; van den Brink, Stieneke; Clevers, Hans; van der Ent, Cornelis K; Middendorp, Sabine; Beekman, Jeffrey M

    2013-07-01

    We recently established conditions allowing for long-term expansion of epithelial organoids from intestine, recapitulating essential features of the in vivo tissue architecture. Here we apply this technology to study primary intestinal organoids of people suffering from cystic fibrosis, a disease caused by mutations in CFTR, encoding cystic fibrosis transmembrane conductance regulator. Forskolin induces rapid swelling of organoids derived from healthy controls or wild-type mice, but this effect is strongly reduced in organoids of subjects with cystic fibrosis or in mice carrying the Cftr F508del mutation and is absent in Cftr-deficient organoids. This pattern is phenocopied by CFTR-specific inhibitors. Forskolin-induced swelling of in vitro-expanded human control and cystic fibrosis organoids corresponds quantitatively with forskolin-induced anion currents in freshly excised ex vivo rectal biopsies. Function of the CFTR F508del mutant protein is restored by incubation at low temperature, as well as by CFTR-restoring compounds. This relatively simple and robust assay will facilitate diagnosis, functional studies, drug development and personalized medicine approaches in cystic fibrosis.

  14. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis.

    PubMed

    Dekkers, Johanna F; Berkers, Gitte; Kruisselbrink, Evelien; Vonk, Annelotte; de Jonge, Hugo R; Janssens, Hettie M; Bronsveld, Inez; van de Graaf, Eduard A; Nieuwenhuis, Edward E S; Houwen, Roderick H J; Vleggaar, Frank P; Escher, Johanna C; de Rijke, Yolanda B; Majoor, Christof J; Heijerman, Harry G M; de Winter-de Groot, Karin M; Clevers, Hans; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-06-22

    Identifying subjects with cystic fibrosis (CF) who may benefit from cystic fibrosis transmembrane conductance regulator (CFTR)-modulating drugs is time-consuming, costly, and especially challenging for individuals with rare uncharacterized CFTR mutations. We studied CFTR function and responses to two drugs-the prototypical CFTR potentiator VX-770 (ivacaftor/KALYDECO) and the CFTR corrector VX-809 (lumacaftor)-in organoid cultures derived from the rectal epithelia of subjects with CF, who expressed a broad range of CFTR mutations. We observed that CFTR residual function and responses to drug therapy depended on both the CFTR mutation and the genetic background of the subjects. In vitro drug responses in rectal organoids positively correlated with published outcome data from clinical trials with VX-809 and VX-770, allowing us to predict from preclinical data the potential for CF patients carrying rare CFTR mutations to respond to drug therapy. We demonstrated proof of principle by selecting two subjects expressing an uncharacterized rare CFTR genotype (G1249R/F508del) who showed clinical responses to treatment with ivacaftor and one subject (F508del/R347P) who showed a limited response to drug therapy both in vitro and in vivo. These data suggest that in vitro measurements of CFTR function in patient-derived rectal organoids may be useful for identifying subjects who would benefit from CFTR-correcting treatment, independent of their CFTR mutation.

  15. Factors affecting the retention of methyl iodide by iodide-impregnated carbon

    SciTech Connect

    Hyder, M.L.; Malstrom, R.A.

    1990-12-31

    Iodide-impregnated activated carbon that had been in use for up to 30 months was studied to characterize those factors that affect its interaction with and retention of methyl iodide. Humidity and competing organic sorbents were observed to decrease the residence time of the methyl iodide on the carbon bed. Additionally, changes in the effective surface area and the loss of iodide from the surface are both important in determining the effectiveness of the carbon for retaining radioactive iodine from methyl iodide. A simple model incorporating both factors gave a fairly good fit to the experimental data.

  16. Factors affecting the retention of methyl iodide by iodide-impregnated carbon

    SciTech Connect

    Hyder, M.L.; Malstrom, R.A.

    1990-01-01

    Iodide-impregnated activated carbon that had been in use for up to 30 months was studied to characterize those factors that affect its interaction with and retention of methyl iodide. Humidity and competing organic sorbents were observed to decrease the residence time of the methyl iodide on the carbon bed. Additionally, changes in the effective surface area and the loss of iodide from the surface are both important in determining the effectiveness of the carbon for retaining radioactive iodine from methyl iodide. A simple model incorporating both factors gave a fairly good fit to the experimental data.

  17. Proton-dependent multidrug efflux systems.

    PubMed Central

    Paulsen, I T; Brown, M H; Skurray, R A

    1996-01-01

    Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also

  18. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.

    PubMed

    Wang, Yiting; Wrennall, Joe A; Cai, Zhiwei; Li, Hongyu; Sheppard, David N

    2014-07-01

    Defective epithelial ion transport is the hallmark of the life-limiting genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the ATP-binding cassette transporter that functions as a ligand-gated anion channel. Since the identification of the CFTR gene, almost 2000 disease-causing mutations associated with a spectrum of clinical phenotypes have been reported, but the majority remain poorly characterised. Studies of a small number of mutations including the most common, F508del-CFTR, have identified six general mechanisms of CFTR dysfunction. Here, we review selectively progress to understand how CF mutations disrupt CFTR processing, stability and function. We explore CFTR structure and function to explain the molecular mechanisms of CFTR dysfunction and highlight new knowledge of disease pathophysiology emerging from large animal models of CF. Understanding CFTR dysfunction is crucial to the development of transformational therapies for CF patients.

  19. Mercury and zinc differentially inhibit shark and human CFTR orthologues: involvement of shark cysteine 102.

    PubMed

    Weber, Gerhard J; Mehr, Ali Poyan; Sirota, Jeffrey C; Aller, Stephen G; Decker, Sarah E; Dawson, David C; Forrest, John N

    2006-03-01

    The apical membrane is an important site of mercury toxicity in shark rectal gland tubular cells. We compared the effects of mercury and other thiol-reacting agents on shark CFTR (sCFTR) and human CFTR (hCFTR) chloride channels using two-electrode voltage clamping of cRNA microinjected Xenopus laevis oocytes. Chloride conductance was stimulated by perfusing with 10 microM forskolin (FOR) and 1 mM IBMX, and then thio-reactive species were added. In oocytes expressing sCFTR, FOR + IBMX mean stimulated Cl(-) conductance was inhibited 69% by 1 microM mercuric chloride and 78% by 5 microM mercuric chloride (IC(50) of 0.8 microM). Despite comparable stimulation of conductance, hCFTR was insensitive to 1 microM HgCl(2) and maximum inhibition was 15% at the highest concentration used (5 microM). Subsequent exposure to glutathione (GSH) did not reverse the inhibition of sCFTR by mercury, but dithiothreitol (DTT) completely reversed this inhibition. Zinc (50-200 microM) also reversibly inhibited sCFTR (40-75%) but did not significantly inhibit hCFTR. Similar inhibition of sCFTR but not hCFTR was observed with an organic mercurial, p-chloromercuriphenylsulfonic acid (pCMBS). The first membrane spanning domain (MSD1) of sCFTR contains two unique cysteines, C102 and C303. A chimeric construct replacing MSD1 of hCFTR with the corresponding sequence of sCFTR was highly sensitive to mercury. Site-specific mutations introducing the first but not the second shark unique cysteine in hCFTR MSD1 resulted in full sensitivity to mercury. These experiments demonstrate a profound difference in the sensitivity of shark vs. human CFTR to inhibition by three thiol-reactive substances, an effect that involves C102 in the shark orthologue.

  20. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  1. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  2. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  3. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  4. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  5. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  6. Predissociation dynamics of lithium iodide

    SciTech Connect

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M.; Bogomolov, A. S.; Baklanov, A. V.; Reich, D. M.; Skomorowski, W.; Koch, C. P.

    2015-01-28

    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  7. Large area mercuric iodide photodetectors

    SciTech Connect

    Iwanczyk, J.S.; Dabrowski, A.J.; Markakis, J.M.; Ortale, C.; Schnepple, W.F.

    1984-02-01

    Results of an investigation of large area mercuric iodide (HgI/sub 2/) photodetectors are reported. Different entrance contacts were studied, including semitransparent metallic films and conductive liquids. Theoretical calculations of electronic noise of these photodetectors were compared with experimental results. HgI/sub 2/ photodetectors with active area up to 4 cm/sup 2/ were matched with NaI(Tl) and CsI(Tl) scintillation crystals and were evaluated as gamma-radiation spectrometers. Energy resolution of 9.3% for gamma radiation of 511 keV with a CsI(Tl) scintillator and energy resolution of 9.0% for gamma radiation of 622 keV with a NaI(Tl) scintillator have been obtained.

  8. Therapeutic benefit observed with the CFTR potentiator, ivacaftor, in a CF patient homozygous for the W1282X CFTR nonsense mutation.

    PubMed

    Mutyam, Venkateshwar; Libby, Emily Falk; Peng, Ning; Hadjiliadis, Denis; Bonk, Michael; Solomon, George M; Rowe, Steven M

    2017-01-01

    Premature termination codons (PTCs) in cystic fibrosis transmembrane conductance regulator (CFTR) gene result in nonfunctional CFTR protein and are the proximate cause of ~11% of CF causing alleles. Aminoglycosides and other novel agents are known to induce translational readthrough of PTCs, a potential therapeutic approach. Among PTCs, W1282X CFTR is unique, as it is a C-terminal CFTR mutation that can exhibit partial activity, even in the truncated state. The potentiator ivacaftor (VX-770) is approved for treating CF patients with G551D and other gating mutations. Based on previous studies demonstrating the beneficial effect of ivacaftor for PTC mutations following readthrough in vitro, we hypothesized that ivacaftor may enhance CFTR activity in CF patients expressing W1282X CFTR, and could be further enhanced by readthrough. Ivacaftor significantly increased CFTR activity in W1282X-expressing cells compared to R1162X CFTR cells, and was further enhanced by readthrough with the aminoglycoside G418. Primary nasal epithelial cells from a W1282X homozygous patient showed improved CFTR function in the presence of ivacaftor. Upon ivacaftor administration to the same patient, there was significant improvement in pulmonary exacerbation frequency, BMI, and insulin requirement, whereas FEV1 remained stable over 3years. These studies suggest that ivacaftor may have moderate clinical benefit in patients with preserved expression of the W1282X CFTR mutation by stimulating residual activity of the truncated protein, suggesting the need for further studies including the addition of efficacious readthrough agents.

  9. Rattlesnake Phospholipase A2 Increases CFTR-Chloride Channel Current and Corrects ∆F508CFTR Dysfunction: Impact in Cystic Fibrosis.

    PubMed

    Faure, Grazyna; Bakouh, Naziha; Lourdel, Stéphane; Odolczyk, Norbert; Premchandar, Aiswarya; Servel, Nathalie; Hatton, Aurélie; Ostrowski, Maciej K; Xu, Haijin; Saul, Frederick A; Moquereau, Christelle; Bitam, Sara; Pranke, Iwona; Planelles, Gabrielle; Teulon, Jacques; Herrmann, Harald; Roldan, Ariel; Zielenkiewicz, Piotr; Dadlez, Michal; Lukacs, Gergely L; Sermet-Gaudelus, Isabelle; Ollero, Mario; Corringer, Pierre-Jean; Edelman, Aleksander

    2016-07-17

    Deletion of Phe508 in the nucleotide binding domain (∆F508-NBD1) of the cystic fibrosis transmembrane regulator (CFTR; a cyclic AMP-regulated chloride channel) is the most frequent mutation associated with cystic fibrosis. This mutation affects the maturation and gating of CFTR protein. The search for new high-affinity ligands of CFTR acting as dual modulators (correctors/activators) presents a major challenge in the pharmacology of cystic fibrosis. Snake venoms are a rich source of natural multifunctional proteins, potential binders of ion channels. In this study, we identified the CB subunit of crotoxin from Crotalus durissus terrificus as a new ligand and allosteric modulator of CFTR. We showed that CB interacts with NBD1 of both wild type and ∆F508CFTR and increases their chloride channel currents. The potentiating effect of CB on CFTR activity was demonstrated using electrophysiological techniques in Xenopus laevis oocytes, in CFTR-HeLa cells, and ex vivo in mouse colon tissue. The correcting effect of CB was shown by functional rescue of CFTR activity after 24-h ΔF508CFTR treatments with CB. Moreover, the presence of fully glycosylated CFTR was observed. Molecular docking allowed us to propose a model of the complex involving of the ABCβ and F1-like ATP-binding subdomains of ΔF508-NBD1. Hydrogen-deuterium exchange analysis confirmed stabilization in these regions, also showing allosteric stabilization in two other distal regions. Surface plasmon resonance competition studies showed that CB disrupts the ∆F508CFTR-cytokeratin 8 complex, allowing for the escape of ∆F508CFTR from degradation. Therefore CB, as a dual modulator of ΔF508CFTR, constitutes a template for the development of new anti-CF agents.

  10. Steviol Reduces MDCK Cyst Formation and Growth by Inhibiting CFTR Channel Activity and Promoting Proteasome-Mediated CFTR Degradation

    PubMed Central

    Yuajit, Chaowalit; Homvisasevongsa, Sureeporn; Chatsudthipong, Lisa; Soodvilai, Sunhapas; Muanprasat, Chatchai; Chatsudthipong, Varanuj

    2013-01-01

    Cyst enlargement in polycystic kidney disease (PKD) involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK) cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM) reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h) with steviol (100 microM) also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h) with steviol (100 microM) markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease. PMID:23536832

  11. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation.

    PubMed

    De Stefano, Daniela; Villella, Valeria R; Esposito, Speranza; Tosco, Antonella; Sepe, Angela; De Gregorio, Fabiola; Salvadori, Laura; Grassia, Rosa; Leone, Carlo A; De Rosa, Giuseppe; Maiuri, Maria C; Pettoello-Mantovani, Massimo; Guido, Stefano; Bossi, Anna; Zolin, Anna; Venerando, Andrea; Pinna, Lorenzo A; Mehta, Anil; Bona, Gianni; Kroemer, Guido; Maiuri, Luigi; Raia, Valeria

    2014-01-01

    Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in Cftr(F508del) homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the F508del-CFTR mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from F508del homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both in vivo, in mice, and in vitro, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 F508del-CFTR homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells in vivo, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of TNF/TNF-alpha (tumor necrosis factor) and CXCL8 (chemokine [C-X-C motif] ligand 8) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the F508del-CFTR mutation.

  12. CFTR and Ca2+ Signaling in Cystic Fibrosis

    PubMed Central

    Antigny, Fabrice; Norez, Caroline; Becq, Frédéric; Vandebrouck, Clarisse

    2011-01-01

    Among the diverse physiological functions exerted by calcium signaling in living cells, its role in the regulation of protein biogenesis and trafficking remains incompletely understood. In cystic fibrosis (CF) disease the most common CF transmembrane conductance regulator (CFTR) mutation, F508del-CFTR generates a misprocessed protein that is abnormally retained in the endoplasmic reticulum (ER) compartment, rapidly degraded by the ubiquitin/proteasome pathway and hence absent at the plasma membrane of CF epithelial cells. Recent studies have demonstrated that intracellular calcium signals consequent to activation of apical G-protein-coupled receptors by different agonists are increased in CF airway epithelia. Moreover, the regulation of various intracellular calcium storage compartments, such as ER is also abnormal in CF cells. Although the molecular mechanism at the origin of this increase remains puzzling in epithelial cells, the F508del-CFTR mutation is proposed to be the onset of abnormal Ca2+ influx linking the calcium signaling to CFTR pathobiology. This article reviews the relationships between CFTR and calcium signaling in the context of the genetic disease CF. PMID:22046162

  13. Nasal Potential Difference in Cystic Fibrosis considering Severe CFTR Mutations

    PubMed Central

    Ng, Ronny Tah Yen; Marson, Fernando Augusto de Lima; Ribeiro, Jose Dirceu; Ribeiro, Antonio Fernando; Bertuzzo, Carmen Silvia; Ribeiro, Maria Angela Gonçalves de Oliveira; Severino, Silvana Dalge; Sakano, Eulalia

    2015-01-01

    The gold standard for diagnosing cystic fibrosis (CF) is a sweat chloride value above 60 mEq/L. However, this historical and important tool has limitations; other techniques should be studied, including the nasal potential difference (NPD) test. CFTR gene sequencing can identify CFTR mutations, but this method is time-consuming and too expensive to be used in all CF centers. The present study compared CF patients with two classes I-III CFTR mutations (10 patients) (G1), CF patients with classes IV-VI CFTR mutations (five patients) (G2), and 21 healthy subjects (G3). The CF patients and healthy subjects also underwent the NPD test. A statistical analysis was performed using the Mann-Whitney, Kruskal-Wallis, χ2, and Fisher's exact tests, α = 0.05. No differences were observed between the CF patients and healthy controls for the PDMax, Δamiloride, and Δchloride + free + amiloride markers from the NPD test. For the finger value, a difference between G2 and G3 was described. The Wilschanski index values were different between G1 and G3. In conclusion, our data showed that NPD is useful for CF diagnosis when classes I-III CFTR mutations are screened. However, if classes IV-VI are considered, the NPD test showed an overlap in values with healthy subjects. PMID:25667564

  14. CFTR Modulators: Shedding Light on Precision Medicine for Cystic Fibrosis

    PubMed Central

    Lopes-Pacheco, Miquéias

    2016-01-01

    Cystic fibrosis (CF) is the most common life-threatening monogenic disease afflicting Caucasian people. It affects the respiratory, gastrointestinal, glandular and reproductive systems. The major cause of morbidity and mortality in CF is the respiratory disorder caused by a vicious cycle of obstruction of the airways, inflammation and infection that leads to epithelial damage, tissue remodeling and end-stage lung disease. Over the past decades, life expectancy of CF patients has increased due to early diagnosis and improved treatments; however, these patients still present limited quality of life. Many attempts have been made to rescue CF transmembrane conductance regulator (CFTR) expression, function and stability, thereby overcoming the molecular basis of CF. Gene and protein variances caused by CFTR mutants lead to different CF phenotypes, which then require different treatments to quell the patients’ debilitating symptoms. In order to seek better approaches to treat CF patients and maximize therapeutic effects, CFTR mutants have been stratified into six groups (although several of these mutations present pleiotropic defects). The research with CFTR modulators (read-through agents, correctors, potentiators, stabilizers and amplifiers) has achieved remarkable progress, and these drugs are translating into pharmaceuticals and personalized treatments for CF patients. This review summarizes the main molecular and clinical features of CF, emphasizes the latest clinical trials using CFTR modulators, sheds light on the molecular mechanisms underlying these new and emerging treatments, and discusses the major breakthroughs and challenges to treating all CF patients. PMID:27656143

  15. Drug-induced secretory diarrhea: A role for CFTR.

    PubMed

    Moon, Changsuk; Zhang, Weiqiang; Sundaram, Nambirajan; Yarlagadda, Sunitha; Reddy, Vadde Sudhakar; Arora, Kavisha; Helmrath, Michael A; Naren, Anjaparavanda P

    2015-12-01

    Many medications induce diarrhea as a side effect, which can be a major obstacle to therapeutic efficacy and also a life-threatening condition. Secretory diarrhea can be caused by excessive fluid secretion in the intestine under pathological conditions. The cAMP/cGMP-regulated cystic fibrosis transmembrane conductance regulator (CFTR) is the primary chloride channel at the apical membrane of intestinal epithelial cells and plays a major role in intestinal fluid secretion and homeostasis. CFTR forms macromolecular complexes at discreet microdomains at the plasma membrane, and its chloride channel function is regulated spatiotemporally through protein-protein interactions and cAMP/cGMP-mediated signaling. Drugs that perturb CFTR-containing macromolecular complexes in the intestinal epithelium and upregulate intracellular cAMP and/or cGMP levels can hyperactivate the CFTR channel, causing excessive fluid secretion and secretory diarrhea. Inhibition of CFTR chloride-channel activity may represent a novel approach to the management of drug-induced secretory diarrhea.

  16. Augmentation of CFTR maturation by S-nitrosoglutathione reductase

    PubMed Central

    Sawczak, Victoria; Zaidi, Atiya; Butler, Maya; Bennett, Deric; Getsy, Paulina; Zeinomar, Maryam; Greenberg, Zivi; Forbes, Michael; Rehman, Shagufta; Jyothikumar, Vinod; DeRonde, Kim; Sattar, Abdus; Smith, Laura; Corey, Deborah; Straub, Adam; Sun, Fei; Palmer, Lisa; Periasamy, Ammasi; Randell, Scott; Kelley, Thomas J.; Lewis, Stephen J.

    2015-01-01

    S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o−) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o− cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions. PMID:26637637

  17. Lithium iodide cardiac pacemakers: initial clinical experience.

    PubMed Central

    Burr, L. H.

    1976-01-01

    A new long-life cardiac pacemaker pulse generator powered by a lithium iodide fuel cell was introduced in Canada in 1973. The compact, hermetically sealed unit is easily implanted and reliable, has excellent patient acceptance and has an anticipated battery life of almost 14 years. Among 105 patients who received a lithium iodide pacemaker, complications occurred in 18. The lithium iodide pacemaker represents a significant advance in pacemaker generator technology and is recommended for long-term cardiac pacing; the manufacturer guarantees the pulse generator for 6 years. Images FIG. 1 PMID:974965

  18. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.

    1986-01-01

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.

  19. Iodide Protects Heart Tissue from Reperfusion Injury

    PubMed Central

    Iwata, Akiko; Morrison, Michael L.; Roth, Mark B.

    2014-01-01

    Iodine is an elemental nutrient that is essential for mammals. Here we provide evidence for an acute therapeutic role for iodine in ischemia reperfusion injury. Infusion of the reduced form, iodide, but not the oxidized form iodate, reduces heart damage by as much as 75% when delivered intravenously following temporary loss of blood flow but prior to reperfusion of the heart in a mouse model of acute myocardial infarction. Normal thyroid function may be required because loss of thyroid activity abrogates the iodide benefit. Given the high degree of protection and the high degree of safety, iodide should be explored further as a therapy for reperfusion injury. PMID:25379708

  20. CFTR is a tumor suppressor gene in murine and human intestinal cancer

    PubMed Central

    Than, BLN; Linnekamp, JF; Starr, TK; Largaespada, DA; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O’Sullivan, MG; Medema, JP; Fijneman, RJA; Meijer, GA; Van den Broek, E; Hodges, CA; Scott, PM; Vermeulen, L; Cormier, RT

    2016-01-01

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid–base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated ApcMin mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc+/+ mice aged to ~ 1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc+/+ Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  1. CFTR is a tumor suppressor gene in murine and human intestinal cancer.

    PubMed

    Than, B L N; Linnekamp, J F; Starr, T K; Largaespada, D A; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O'Sullivan, M G; Medema, J P; Fijneman, R J A; Meijer, G A; Van den Broek, E; Hodges, C A; Scott, P M; Vermeulen, L; Cormier, R T

    2016-08-11

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid-base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated Apc(Min) mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc(+/+) mice aged to ~1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc(+/+) Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  2. New pulmonary therapies directed at targets other than CFTR.

    PubMed

    Donaldson, Scott H; Galietta, Luis

    2013-06-01

    Our current understanding of the pathogenesis of cystic fibrosis (CF) lung disease stresses the importance of the physical and chemical properties of the airway surface liquid (ASL). In particular, the loss of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel function in CF reduces the volume and fluidity of the ASL, thus impairing mucociliary clearance and innate antimicrobial mechanisms. Besides direct approaches to restoring mutant CFTR function, alternative therapeutic strategies may also be considered to correct the basic defect of impaired salt and water transport. Such alternative strategies are focused on the restoration of mucociliary transport by (1) reducing sodium and fluid absorption by inhibiting the ENaC channel; (2) activating alternative chloride channels; and (3) increasing airway surface hydration with osmotic agents. Therapeutic approaches directed at targets other than CFTR are attractive because they are potentially useful to all patients irrespective of their genotype. Clinical trials are underway to test the efficacy of these approaches.

  3. New Pulmonary Therapies Directed at Targets Other than CFTR

    PubMed Central

    Donaldson, Scott H.; Galietta, Luis

    2013-01-01

    Our current understanding of the pathogenesis of cystic fibrosis (CF) lung disease stresses the importance of the physical and chemical properties of the airway surface liquid (ASL). In particular, the loss of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel function in CF reduces the volume and fluidity of the ASL, thus impairing mucociliary clearance and innate antimicrobial mechanisms. Besides direct approaches to restoring mutant CFTR function, alternative therapeutic strategies may also be considered to correct the basic defect of impaired salt and water transport. Such alternative strategies are focused on the restoration of mucociliary transport by (1) reducing sodium and fluid absorption by inhibiting the ENaC channel; (2) activating alternative chloride channels; and (3) increasing airway surface hydration with osmotic agents. Therapeutic approaches directed at targets other than CFTR are attractive because they are potentially useful to all patients irrespective of their genotype. Clinical trials are underway to test the efficacy of these approaches. PMID:23732851

  4. CFTR is a potential marker for nasopharyngeal carcinoma prognosis and metastasis

    PubMed Central

    Tu, Ziwei; Chen, Qu; Zhang, Jie Ting; Jiang, Xiaohua; Xia, Yunfei; Chan, Hsiao Chang

    2016-01-01

    While there is an increasing interest in the correlation of cystic fibrosis transmembrane conductance regulator (CFTR) and cancer incidence, the role of CFTR in nasopharyngeal carcinoma (NPC) development remains unknown. In this study, we aimed to explore the prognostic value of CFTR in NPC patients. The expression of CFTR was determined in NPC cell lines and tissues. Statistical analysis was utilized to evaluate the correlation between CFTR expression levels and clinicopathological characteristics and prognosis in 225 cases of NPC patients. The results showed that CFTR was down-regulated in NPC tissues and cell lines. Low expression of CFTR was correlated with advanced stage (p = 0.026), distant metastasis (p < 0.001) and poor prognosis (p < 0.01). Multivariate analysis identified CFTR as an independent prognostic factor (p = 0.003). Additionally, wound healing and transwell assays revealed that overexpression of CFTR inhibited NPC cell migration and invasion, whereas knockdown of CFTR promoted cell migration and invasion. Thus, the current study indicates that CFTR, as demonstrated to play an important role in tumor migration and invasion, may be used as a potential prognostic indicator in NPC. PMID:27769067

  5. CFTR is a potential marker for nasopharyngeal carcinoma prognosis and metastasis.

    PubMed

    Tu, Ziwei; Chen, Qu; Zhang, Jie Ting; Jiang, Xiaohua; Xia, Yunfei; Chan, Hsiao Chang

    2016-11-22

    While there is an increasing interest in the correlation of cystic fibrosis transmembrane conductance regulator (CFTR) and cancer incidence, the role of CFTR in nasopharyngeal carcinoma (NPC) development remains unknown. In this study, we aimed to explore the prognostic value of CFTR in NPC patients. The expression of CFTR was determined in NPC cell lines and tissues. Statistical analysis was utilized to evaluate the correlation between CFTR expression levels and clinicopathological characteristics and prognosis in 225 cases of NPC patients. The results showed that CFTR was down-regulated in NPC tissues and cell lines. Low expression of CFTR was correlated with advanced stage (p = 0.026), distant metastasis (p < 0.001) and poor prognosis (p < 0.01). Multivariate analysis identified CFTR as an independent prognostic factor (p = 0.003). Additionally, wound healing and transwell assays revealed that overexpression of CFTR inhibited NPC cell migration and invasion, whereas knockdown of CFTR promoted cell migration and invasion. Thus, the current study indicates that CFTR, as demonstrated to play an important role in tumor migration and invasion, may be used as a potential prognostic indicator in NPC.

  6. CFTR: A new horizon in the pathomechanism and treatment of pancreatitis

    PubMed Central

    Hegyi, Péter; Wilschanski, Michael; Muallem, Shmuel; Lukacs, Gergely; Sahin-Tóth, Miklós; Uc, Aliye; Gray, Michael A.; Rakonczay, Zoltán; Maléth, József

    2017-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that conducts chloride and bicarbonate ions across epithelial cell membranes. Mutations in the CFTR gene diminish the ion channel function and lead to impaired epithelial fluid transport in multiple organs such as the lung and the pancreas resulting in cystic fibrosis. Heterozygous carriers of CFTR mutations do not develop cystic fibrosis but exhibit increased risk for pancreatitis and associated pancreatic damage characterized by elevated mucus levels, fibrosis and cyst formation. Importantly, recent studies demonstrated that pancreatitis causing insults, such as alcohol, smoking or bile acids strongly inhibit CFTR function. Furthermore, human studies showed reduced levels of CFTR expression and function in all forms of pancreatitis. These findings indicate that impairment of CFTR is critical in the development of pancreatitis; therefore, correcting CFTR function could be the first specific therapy in pancreatitis. In this review, we summarize recent advances in the field and discuss new possibilities for the treatment of pancreatitis. PMID:26856995

  7. A rapid membrane potential assay to monitor CFTR function and inhibition.

    PubMed

    Maitra, Rangan; Sivashanmugam, Perumal; Warner, Keith

    2013-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is an important regulator of ion transport and fluid secretion in humans. Mutations to CFTR cause cystic fibrosis, which is a common recessive genetic disorder in Caucasians. Involvement of CFTR has been noted in other important diseases, such as secretory diarrhea and polycystic kidney disease. The assays to monitor CFTR function that have been described to date either are complicated or require specialized instrumentation and training for execution. In this report, we describe a rapid FlexStation-based membrane potential assay to monitor CFTR function. In this assay, agonist-mediated activation of CFTR results in membrane depolarization that can be monitored using a fluorescent membrane potential probe. Availability of a simple mix-and-read assay to monitor the function of this important protein might accelerate the discovery of CFTR ligands to study a variety of conditions.

  8. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis.

    PubMed

    Hegyi, Péter; Wilschanski, Michael; Muallem, Shmuel; Lukacs, Gergely L; Sahin-Tóth, Miklós; Uc, Aliye; Gray, Michael A; Rakonczay, Zoltán; Maléth, József

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that conducts chloride and bicarbonate ions across epithelial cell membranes. Mutations in the CFTR gene diminish the ion channel function and lead to impaired epithelial fluid transport in multiple organs such as the lung and the pancreas resulting in cystic fibrosis. Heterozygous carriers of CFTR mutations do not develop cystic fibrosis but exhibit increased risk for pancreatitis and associated pancreatic damage characterized by elevated mucus levels, fibrosis, and cyst formation. Importantly, recent studies demonstrated that pancreatitis causing insults, such as alcohol, smoking, or bile acids, strongly inhibit CFTR function. Furthermore, human studies showed reduced levels of CFTR expression and function in all forms of pancreatitis. These findings indicate that impairment of CFTR is critical in the development of pancreatitis; therefore, correcting CFTR function could be the first specific therapy in pancreatitis. In this review, we summarize recent advances in the field and discuss new possibilities for the treatment of pancreatitis.

  9. CFTR, Mucins, and Mucus Obstruction in Cystic Fibrosis

    PubMed Central

    Kreda, Silvia M.; Davis, C. William; Rose, Mary Callaghan

    2012-01-01

    Mucus pathology in cystic fibrosis (CF) has been known for as long as the disease has been recognized and is sometimes called mucoviscidosis. The disease is marked by mucus hyperproduction and plugging in many organs, which are usually most fatal in the airways of CF patients, once the problem of meconium ileus at birth is resolved. After the CF gene, CFTR, was cloned and its protein product identified as a cAMP-regulated Cl− channel, causal mechanisms underlying the strong mucus phenotype of the disease became obscure. Here we focus on mucin genes and polymeric mucin glycoproteins, examining their regulation and potential relationships to a dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR). Detailed examination of CFTR expression in organs and different cell types indicates that changes in CFTR expression do not always correlate with the severity of CF disease or mucus accumulation. Thus, the mucus hyperproduction that typifies CF does not appear to be a direct cause of a defective CFTR but, rather, to be a downstream consequence. In organs like the lung, up-regulation of mucin gene expression by inflammation results from chronic infection; however, in other instances and organs, the inflammation may have a non-infectious origin. The mucus plugging phenotype of the β-subunit of the epithelial Na+ channel (βENaC)-overexpressing mouse is proving to be an archetypal example of this kind of inflammation, with a dehydrated airway surface/concentrated mucus gel apparently providing the inflammatory stimulus. Data indicate that the luminal HCO3 − deficiency recently described for CF epithelia may also provide such a stimulus, perhaps by causing a mal-maturation of mucins as they are released onto luminal surfaces. In any event, the path between CFTR dysfunction and mucus hyperproduction has proven tortuous, and its unraveling continues to offer its own twists and turns, along with fascinating glimpses into biology. PMID:22951447

  10. CFTR mediated chloride secretion in the avian renal proximal tubule.

    PubMed

    Laverty, Gary; Anttila, Ashley; Carty, Jenava; Reddy, Varudhini; Yum, Jamie; Arnason, Sighvatur S

    2012-01-01

    In primary cell cultures of the avian (Gallus gallus) renal proximal tubule parathyroid hormone and cAMP activation generate a Cl(-)-dependent short circuit current (I(SC)) response, consistent with net transepithelial Cl(-) secretion. In this study we investigated the expression and physiological function of the Na-K-2Cl (NKCC) transporter and CFTR chloride channel, both associated with Cl(-) secretion in a variety of tissues, in these proximal tubule cells. Using both RT-PCR and immunoblotting approaches, we showed that NKCC and CFTR are expressed, both in proximal tubule primary cultures and in a proximal tubule fraction of non-cultured (native tissue) fragments. We also used electrophysiological methods to assess the functional contribution of NKCC and CFTR to forskolin-activated I(SC) responses in filter grown cultured monolayers. Bumetanide (10 μM), a specific blocker of NKCC, inhibited forskolin activated I(SC) by about 40%, suggesting that basolateral uptake of Cl(-) is partially mediated by NKCC transport. In monolayers permeabilized on the basolateral side with nystatin, forskolin activated an apical Cl(-) conductance, manifested as bidirectional diffusion currents in the presence of oppositely directed Cl(-) gradients. Under these conditions the apical conductance appeared to show some bias towards apical-to-basolateral Cl(-) current. Two selective CFTR blockers, CFTR Inhibitor 172 and GlyH-101 (both at 20 μM) inhibited the forskolin activated diffusion currents by 38-68%, with GlyH-101 having a greater effect. These data support the conclusion that avian renal proximal tubules utilize an apical CFTR Cl(-) channel to mediate cAMP-activated Cl(-) secretion.

  11. Palladium-Catalyzed Fluorosulfonylvinylation of Organic Iodides.

    PubMed

    Zha, Gao-Feng; Zheng, Qinheng; Leng, Jing; Wu, Peng; Qin, Hua-Li; Sharpless, K Barry

    2017-03-29

    A palladium-catalyzed fluorosulfonylvinylation reaction of organic iodides is described. Catalytic Pd(OAc)2 with a stoichiometric amount of silver(I) trifluoroacetate enables the coupling process between either an (hetero)aryl or alkenyl iodide with ethenesulfonyl fluoride (ESF). The method is demonstrated in the successful syntheses of eighty-eight otherwise difficult to access compounds, in up to 99 % yields, including the unprecedented 2-heteroarylethenesulfonyl fluorides and 1,3-dienylsulfonyl fluorides.

  12. Iodide transport: implications for health and disease

    PubMed Central

    2014-01-01

    Disorders of the thyroid gland are among the most common conditions diagnosed and managed by pediatric endocrinologists. Thyroid hormone synthesis depends on normal iodide transport and knowledge of its regulation is fundamental to understand the etiology and management of congenital and acquired thyroid conditions such as hypothyroidism and hyperthyroidism. The ability of the thyroid to concentrate iodine is also widely used as a tool for the diagnosis of thyroid diseases and in the management and follow up of the most common type of endocrine cancers: papillary and follicular thyroid cancer. More recently, the regulation of iodide transport has also been the center of attention to improve the management of poorly differentiated thyroid cancer. Iodine deficiency disorders (goiter, impaired mental development) due to insufficient nutritional intake remain a universal public health problem. Thyroid function can also be influenced by medications that contain iodide or interfere with iodide metabolism such as iodinated contrast agents, povidone, lithium and amiodarone. In addition, some environmental pollutants such as perchlorate, thiocyanate and nitrates may affect iodide transport. Furthermore, nuclear accidents increase the risk of developing thyroid cancer and the therapy used to prevent exposure to these isotopes relies on the ability of the thyroid to concentrate iodine. The array of disorders involving iodide transport affect individuals during the whole life span and, if undiagnosed or improperly managed, they can have a profound impact on growth, metabolism, cognitive development and quality of life. PMID:25009573

  13. Recovery of anhydrous hydrogen iodide

    DOEpatents

    O'Keefe, Dennis R.; McCorkle, Jr., Kenneth H.; de Graaf, Johannes D.

    1982-01-01

    Relatively dry hydrogen iodide can be recovered from a mixture of HI, I.sub.2 and H.sub.2 O. After the composition of the mixture is adjusted so that the amounts of H.sub.2 O and I.sub.2 do not exceed certain maximum limits, subjection of the mixture to superatmospheric pressure in an amount equal to about the vapor pressure of HI at the temperature in question causes distinct liquid phases to appear. One of the liquid phases contains HI and not more than about 1 weight percent water. Often the adjustment in the composition will include the step of vaporization, and the distinct layers appear following the increase in pressure of the vapor mixture. Adjustment in the composition may also include the addition of an extraction agent, such as H.sub.3 PO.sub.4, and even though the adjusted composition mixture contains a significant amount of such an agent, the creation of the distinct liquid phases is not adversely affected.

  14. Potential sites of CFTR activation by tyrosine kinases

    PubMed Central

    Billet, Arnaud; Jia, Yanlin; Jensen, Timothy J.; Hou, Yue-Xian; Chang, Xiu-Bao; Riordan, John R.; Hanrahan, John W.

    2016-01-01

    ABSTRACT The CFTR chloride channel is tightly regulated by phosphorylation at multiple serine residues. Recently it has been proposed that its activity is also regulated by tyrosine kinases, however the tyrosine phosphorylation sites remain to be identified. In this study we examined 2 candidate tyrosine residues near the boundary between the first nucleotide binding domain and the R domain, a region which is important for channel function but devoid of PKA consensus sequences. Mutating tyrosines at positions 625 and 627 dramatically reduced responses to Src or Pyk2 without altering the activation by PKA, suggesting they may contribute to CFTR regulation. PMID:26645934

  15. Functional characteristics of L1156F-CFTR associated with alcoholic chronic pancreatitis in Japanese.

    PubMed

    Kondo, Shiho; Fujiki, Kotoyo; Ko, Shigeru B H; Yamamoto, Akiko; Nakakuki, Miyuki; Ito, Yasutomo; Shcheynikov, Nikolay; Kitagawa, Motoji; Naruse, Satoru; Ishiguro, Hiroshi

    2015-08-15

    Although cystic fibrosis is rare in Japanese, measurement of sweat Cl(-) has suggested mild dysfunction of cystic fibrosis transmembrane conductance regulator (CFTR) in some patients with chronic pancreatitis. In the present study, we have investigated the association of CFTR variants and chronic pancreatitis in Japanese and the functional characteristics of a Japanese- and pancreatitis-specific CFTR variant, L1156F. Seventy patients with alcoholic chronic pancreatitis, 18 patients with idiopathic chronic pancreatitis, and 180 normal subjects participated. All exons and their boundaries and promoter region of the CFTR gene were sequenced. Human embryonic kidney-293 cells were transfected with three CFTR variants (M470V, L1156F, and M470V+L1156F), and the protein expression was examined. Xenopus laevis oocytes were injected with the CFTR variants, and bicarbonate (HCO3 (-)) transport activity was examined. CFPAC-1 cells were transfected with the CFTR variants and Cl(-)/HCO3 (-) exchange activity was examined. Six variants (E217G, I556V, M470V, L1156F, Q1352H, and R1453W) were identified in the coding region of the CFTR gene. Cystic fibrosis-causing mutations were not found. The allele frequencies of L1156F and Q1352H in alcoholic chronic pancreatitis (5.0 and 7.9%) were significantly (P < 0.01) higher than those in normal subjects (0.6 and 1.9%). L1156F was linked with a worldwide CFTR variant, M470V. Combination of M470V and L1156F significantly reduced CFTR expression to ∼60%, impaired CFTR-mediated HCO3 (-)/Cl(-) transport activity to 50-60%, and impaired CFTR-coupled Cl(-)/HCO3 (-) exchange activity to 20-30%. The data suggest that the Japanese-specific CFTR variant L1156F causes mild dysfunction of CFTR and increases the risk of alcoholic chronic pancreatitis in Japanese.

  16. Sodium-iodide symporter mediates iodide secretion in rat gastric mucosa in vitro.

    PubMed

    Josefsson, Malin; Evilevitch, Lena; Weström, Björn; Grunditz, Torsten; Ekblad, Eva

    2006-03-01

    In vivo studies on rats have demonstrated that considerable amounts of iodide are transported from the bloodstream into the gastric lumen. The mechanisms for and functional significance of this transport are poorly understood. Active (driven by Na(+)/K(+)-ATPase) iodide transport into thyroid follicular cells is mediated by the sodium-iodide symporter (NIS), which is also abundantly expressed in gastric mucosa. We aimed to further investigate the iodide transport in gastric mucosa and the possible role of NIS in this transport process. Iodide transport in rat gastric mucosa was studied in vitro in an Ussing chamber system using (125)I as a marker. The system allows measurements in both directions over a mucosal specimen. A considerable transport of iodide (from the serosal to the mucosal side) was established across the gastric mucosa, whereas in the opposite direction (mucosa to serosa), iodide transport was negligible. Sodium perchlorate (NaClO(4)), a competitive inhibitor of NIS, and ouabain, an inhibitor of the Na(+)/K(+)-ATPase, both attenuated gastric iodide transport from the serosal to the mucosal side. To investigate a possible neuroendocrine regulation of the iodide transport identified to occur from the serosal to the mucosal side of the stomach, thyroid-stimulating hormone (TSH), thyrotropin-releasing hormone (TRH), vasoactive intestinal peptide (VIP), histamine, or nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) was added. None of these substances influenced the iodide transport. We conclude that iodide is actively transported into the gastric lumen and that this transport is at least partly mediated by NIS. Additional investigations are needed to understand the regulation and significance of this transport.

  17. Plasma etching of cesium iodide

    NASA Astrophysics Data System (ADS)

    Yang, X.; Hopwood, J.; Tipnis, S.; Nagarkar, V.; Gaysinskiy, V.

    2002-01-01

    Thick films of cesium iodide (CsI) are often used to convert x-ray images into visible light. Spreading of the visible light within CsI, however, reduces the resolution of the resulting image. Anisotropic etching of the CsI film into an array of micropixels can improve the image resolution by confining light within each pixel. The etching process uses a high-density inductively coupled plasma to pattern CsI samples held by a heated, rf-biased chuck. Fluorine-containing gases such as CF4 are found to enhance the etch rate by an order of magnitude compared to Ar+ sputtering alone. Without inert-gas ion bombardment, however, the CF4 etch becomes self-limited within a few microns of depth due to the blanket deposition of a passivation layer. Using CF4+Ar continuously removes this layer from the lateral surfaces, but the formation of a thick passivation layer on the unbombarded sidewalls of etched features is observed by scanning electron microscopy. At a substrate temperature of 220 °C, the minimum ion-bombardment energy for etching is Ei~50 eV, and the rate depends on Ei1/2 above 65 eV. In dilute mixtures of CF4 and Ar, the etch rate is proportional to the gas-phase density of atomic fluorine. Above 50% CF4, however, the rate decreases, indicating the onset of net surface polymer deposition. These observations suggest that anisotropy is obtained through the ion-enhanced inhibitor etching mechanism. Etching exhibits an Arrhenius-type behavior in which the etch rate increases from ~40 nm/min at 40 °C to 380 nm/min at 330 °C. The temperature dependence corresponds to an activation energy of 0.13+/-0.01 eV. This activation energy is consistent with the electronic sputtering mechanism for alkali halides.

  18. MTOR downregulates iodide uptake in thyrocytes.

    PubMed

    de Souza, Elaine Cristina Lima; Padrón, Alvaro Souto; Braga, William Miranda Oliveira; de Andrade, Bruno Moulin; Vaisman, Mário; Nasciutti, Luiz Eurico; Ferreira, Andrea Claudia Freitas; de Carvalho, Denise Pires

    2010-07-01

    Phosphoinositide-3-kinase (PI3K) inhibition increases functional sodium iodide symporter (NIS) expression in both FRTL-5 rat thyroid cell line and papillary thyroid cancer lineages. In several cell types, the stimulation of PI3K results in downstream activation of the mechanistic target of rapamycin (MTOR), a serine-threonine protein kinase that is a critical regulator of cellular metabolism, growth, and proliferation. MTOR activation is involved in the regulation of thyrocyte proliferation by TSH. Here, we show that MTOR inhibition by rapamycin increases iodide uptake in TSH-stimulated PCCL3 thyroid cell line, although the effect of rapamycin was less pronounced than PI3K inhibition. Thus, NIS inhibitory pathways stimulated by PI3K might also involve the activation of proteins other than MTOR. Insulin downregulates iodide uptake and NIS protein expression even in the presence of TSH, and both effects are counterbalanced by MTOR inhibition. NIS protein expression levels were correlated with iodide uptake ability, except in cells treated with TSH in the absence of insulin, in which rapamycin significantly increased iodide uptake, while NIS protein levels remained unchanged. Rapamycin avoids the activation of both p70 S6 and AKT kinases by TSH, suggesting the involvement of MTORC1 and MTORC2 in TSH effect. A synthetic analog of rapamycin (everolimus), which is clinically used as an anticancer agent, was able to increase rat thyroid iodide uptake in vivo. In conclusion, we show that MTOR kinase participates in the control of thyroid iodide uptake, demonstrating that MTOR not only regulates cell survival, but also normal thyroid cell function both in vitro and in vivo.

  19. Lumacaftor alone and combined with ivacaftor: preclinical and clinical trial experience of F508del CFTR correction.

    PubMed

    Brewington, John J; McPhail, Gary L; Clancy, John P

    2016-01-01

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR), leading to significant morbidity and mortality. CFTR is a chloride and bicarbonate channel at the epithelial cell membrane. The most common CFTR mutation is F508del, resulting in minimal CFTR at the plasma membrane. Current disease management is supportive, whereas an ultimate goal is to develop therapies to restore CFTR activity. We summarize experience with lumacaftor, a small molecule that increases F508del-CFTR levels at the plasma membrane. Lumacaftor in combination with ivacaftor, a modulator of CFTR gating defects, improves clinical outcome measures in patients homozygous for the F508del mutation. Lumacaftor represents a significant advancement in the treatment of biochemical abnormalities in CF. Further development of CFTR modulators will improve upon current therapies, although it remains unclear whether this approach will provide therapies for all CFTR mutations.

  20. Anion conductance selectivity mechanism of the CFTR chloride channel.

    PubMed

    Linsdell, Paul

    2016-04-01

    All ion channels are able to discriminate between substrate ions to some extent, a process that involves specific interactions between permeant anions and the so-called selectivity filter within the channel pore. In the cystic fibrosis transmembrane conductance regulator (CFTR) anion-selective channel, both anion relative permeability and anion relative conductance are dependent on anion free energy of hydration--anions that are relatively easily dehydrated tend to show both high permeability and low conductance. In the present work, patch clamp recording was used to investigate the relative conductance of different anions in CFTR, and the effect of mutations within the channel pore. In constitutively-active E1371Q-CFTR channels, the anion conductance sequence was Cl(-) > NO3(-) > Br(-) > formate > SCN(-) > I(-). A mutation that disrupts anion binding in the inner vestibule of the pore (K95Q) disrupted anion conductance selectivity, such that anions with different permeabilities showed almost indistinguishable conductances. Conversely, a mutation at the putative narrowest pore region that is known to disrupt anion permeability selectivity (F337A) had minimal effects on anion relative conductance. Ion competition experiments confirmed that relatively tight binding of permeant anions resulted in relatively low conductance. These results suggest that the relative affinity of ion binding in the inner vestibule of the pore controls the relative conductance of different permeant anions in CFTR, and that the pore has two physically distinct anion selectivity filters that act in series to control anion conductance selectivity and anion permeability selectivity respectively.

  1. Stimulation effect of wide type CFTR chloride channel by the naturally occurring flavonoid tangeretin.

    PubMed

    Jiang, Yu; Yu, Bo; Wang, Xue; Sui, Yujie; Zhang, Yaofang; Yang, Shuang; Yang, Hong; Ma, Tonghui

    2014-12-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in the apical membrane of serous epithelial cells. Both deficiency and overactivation of CFTR may cause fluid and salt secretion related diseases. In the present study, we identified tangeretin from Pericarpium Citri Reticulatae Viride as a CFTR activator using high-throughput screening based on FRT cell-based fluorescence assay. The activation effect of tangeretin on CFTR chloride channel and the possible underlying mechanisms were investigated. Fluorescence quenching tests showed that tangeretin dose- and time-dependently activated CFTR chloride channel, the activity had rapid and reversible characteristics and the activation effect could be completely reversed by the CFTR specific blocker CFTRinh-172. Primary mechanism studies indicated that the activation effect of tangeretin on CFTR chloride channel was FSK dependent as well as had additional effect with FSK and IBMX suggesting that tangeretin activates CFTR by direct interacting with the protein. Ex-vivo tests revealed that tangeretin could accelerate the speed of the submucosal gland fluid secretion. Short-circuit current measurement demonstrated that tangeretin activated rat colonic mucosa chloride current. Thus, CFTR Cl(-) channel is a molecular target of natural compound tangeretin. Tangeretin may have potential use for the treatment of CFTR-related diseases like cystic fibrosis, bronchiectasis and habitual constipation.

  2. Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR

    PubMed Central

    Thelin, William R.; Chen, Yun; Gentzsch, Martina; Kreda, Silvia M.; Sallee, Jennifer L.; Scarlett, Cameron O.; Borchers, Christoph H.; Jacobson, Ken; Stutts, M. Jackson; Milgram, Sharon L.

    2007-01-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation. PMID:17235394

  3. Optimal correction of distinct CFTR folding mutants in rectal cystic fibrosis organoids.

    PubMed

    Dekkers, Johanna F; Gogorza Gondra, Ricardo A; Kruisselbrink, Evelien; Vonk, Annelotte M; Janssens, Hettie M; de Winter-de Groot, Karin M; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-08-01

    Small-molecule therapies that restore defects in cystic fibrosis transmembrane conductance regulator (CFTR) gating (potentiators) or trafficking (correctors) are being developed for cystic fibrosis (CF) in a mutation-specific fashion. Options for pharmacological correction of CFTR-p.Phe508del (F508del) are being extensively studied but correction of other trafficking mutants that may also benefit from corrector treatment remains largely unknown.We studied correction of the folding mutants CFTR-p.Phe508del, -p.Ala455Glu (A455E) and -p.Asn1303Lys (N1303K) by VX-809 and 18 other correctors (C1-C18) using a functional CFTR assay in human intestinal CF organoids.Function of both CFTR-p.Phe508del and -p.Ala455Glu was enhanced by a variety of correctors but no residual or corrector-induced activity was associated with CFTR-p.Asn1303Lys. Importantly, VX-809-induced correction was most dominant for CFTR-p.Phe508del, while correction of CFTR-p.Ala455Glu was highest by a subgroup of compounds called bithiazoles (C4, C13, C14 and C17) and C5.These data support the development of mutation-specific correctors for optimal treatment of different CFTR trafficking mutants, and identify C5 and bithiazoles as the most promising compounds for correction of CFTR-p.Ala455Glu.

  4. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR).

    PubMed

    Zwick, Matthias; Esposito, Cinzia; Hellstern, Manuel; Seelig, Anna

    2016-07-08

    The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood. Here, we show that the two processes can be measured in a label-free and non-invasive manner in real time in live cells, stably transfected with CFTR. This study reveals three key findings. (i) The major contribution (≥90%) to the total CFTR-related ATP hydrolysis rate is due to phosphorylation by PKA and the minor contribution (≤10%) to CFTR-ATPase activity. (ii) The mutant CFTR-E1371S that is still conductive, but defective in ATP hydrolysis, is not phosphorylated, suggesting that phosphorylation requires a functional nucleotide binding domain and occurs in the post-hydrolysis transition state. (iii) CFTR-ATPase activity is inversely related to CFTR anion flux. The present data are consistent with a model in which CFTR is in a closed conformation with two ATPs bound. The open conformation is induced by ATP hydrolysis and corresponds to the post-hydrolysis transition state that is stabilized by phosphorylation and binding of chloride channel potentiators.

  5. Conformational changes opening and closing the CFTR chloride channel: insights from cysteine scanning mutagenesis.

    PubMed

    El Hiani, Yassine; Linsdell, Paul

    2014-12-01

    Cystic fibrosis, the most common lethal genetic disease affecting young people in North America, is caused by failure of the chloride ion channel known as CFTR (cystic fibrosis transmembrane conductance regulator). CFTR belongs to the large family of ATP-binding cassette (ABC) membrane transporters. In CFTR, ATP-driven events at the nucleotide-binding domains (NBDs) open and close a gate that controls chloride permeation. However, the conformational changes concomitant with opening and closing of the CFTR gate are unknown. Diverse techniques including substituted cysteine accessibility method, disulfide cross-linking, and patch-clamp recording have been used to explore CFTR channel structure. Here, we consider the architecture of both the open and the closed CFTR channel. We review how CFTR channel structure changes between the closed and the open channel conformations and portray the relative function of both cytoplasmic and vestigial gates during the gating cycle. Understanding how the CFTR channel gates chloride permeation is central for understanding how CFTR defects lead to CF. Such knowledge opens the door for novel ways to maximize CFTR channel activity in a CF setting.

  6. ΔF508 CFTR interactome remodeling promotes rescue of Cystic Fibrosis

    PubMed Central

    Pankow, Sandra; Bamberger, Casimir; Calzolari, Diego; Martínez-Bartolomé, Salvador; Lavallée-Adam, Mathieu; Balch, William E.; Yates, John R.

    2015-01-01

    Summary Deletion of phenylalanine 508 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is the major cause of Cystic Fibrosis (CF), one of the most common inherited childhood diseases. The mutated CFTR anion channel is not fully glycosylated and shows minimal activity in bronchial epithelial cells of CF patients. Low temperature or inhibition of histone deacetylases (HDACi) can partially rescue ΔF508 CFTR cellular processing defects and function. A favorable change of ΔF508 CFTR protein-protein interactions was proposed as mechanism of rescue, however CFTR interactome dynamics during temperature-shift and HDACi rescue are unknown. Here, we report the first comprehensive analysis of the wt and ΔF508 CFTR interactome and its dynamics during temperature shift and HDACi. By using a novel deep proteomic analysis method (CoPIT), we identified 638 individual high-confidence CFTR interactors and discovered a mutation-specific interactome, which is extensively remodeled upon rescue. Detailed analysis of the interactome remodeling identified key novel interactors, whose loss promoted enhanced CFTR channel function in primary CF epithelia or which were critical for normal CFTR biogenesis. Our results demonstrate that global remodeling of ΔF508 CFTR interactions is crucial for rescue, and provide comprehensive insight into the molecular disease mechanisms of CF caused by deletion of F508. PMID:26618866

  7. Critical modifier role of membrane-CFTR dependent ceramide signaling in lung injury and emphysema

    PubMed Central

    Bodas, Manish; Min, Taehong; Mazur, Steven; Vij, Neeraj

    2010-01-01

    Ceramide accumulation mediates the pathogenesis of chronic obstructive lung diseases. Although, an association between lack of CFTR and ceramide accumulation has been described, it is unclear how membrane-CFTR may modulate ceramide signaling in lung injury and emphysema. The Cftr+/+- and Cftr−/−- mice and cells were used to evaluate the CFTR-dependent ceramide signaling in lung injury. Lung tissue from control and COPD patients was used to verify the role of CFTR-dependent ceramide signaling in pathogenesis of chronic emphysema. Our data reveals a novel finding that CFTR expression inversely correlates with severity of emphysema and ceramide-accumulation in COPD subjects compared to controls. We found that chemical inhibition of de novo- ceramide-synthesis controls Pa-LPS induced lung injury in Cftr+/+-mice, while its efficacy was significantly lower in Cftr−/−-mice indicating that membrane-CFTR is required for controlling lipid-raft ceramide levels. Inhibition of membrane-ceramide release showed enhanced protective effect in controlling Pa-LPS induced lung injury in Cftr−/−- mice as compared to the Cftr+/+, confirming our observation that CFTR regulates lipid-raft ceramide- levels and signaling. Our results indicate that inhibition of de novo- ceramide-synthesis may be effective in disease states with low-CFTR expression like emphysema and chronic lung injury but not in complete absence of lipid-raft CFTR as in ΔF508-CF. In contrast, inhibiting membrane ceramide release has the potential of a more effective drug candidate for ΔF508-CF but may not be effectual in treating lung injury and emphysema. Our data demonstrates the critical role of membrane-localized CFTR in regulating ceramide-accumulation and inflammatory-signaling in lung injury and emphysema. PMID:21135173

  8. Is CFTR-delF508 Really Absent from the Apical Membrane of the Airway Epithelium?

    PubMed Central

    Borthwick, Lee A.; Botha, Phil; Verdon, Bernard; Brodlie, Malcolm J.; Gardner, Aaron; Bourn, David; Johnson, Gail E.

    2011-01-01

    Background Understanding where mutant CFTR is localised in airway epithelia is essential in guiding the best therapeutic approach to correct the dysfunction of the CFTR protein. The widely held paradigm is that CF patients harbouring the commonest mutation, CFTR-delF508, trap CFTR within the endoplasmic reticulum and target it for degradation. However there are conflicting reports concerning expression and localisation of CFTR-delF508 in lung tissue. To attempt to resolve this fundamental issue we developed a novel approach to measure CFTR-delF508 in the lower airways of patients who have undergone lung transplantation for advanced CF. By sampling CF and non-CF epithelium simultaneously from the same individual, confounding factors of different airway microenvironments which may have influenced previous observations can be overcome. Methods Epithelia sampled by bronchial brushing above (CF) and below (non-CF) the bronchial anastomosis were stained for CFTR and the localisation and level of expression assessed (n = 12). Results There was no significant difference in the proportion of tall columnar cells showing CFTR immunostaining as a discrete band at the apical membrane in cells harbouring the CFTR-delF508 mutation compared to non-CF cells (p = 0.21, n = 12). However, the amount of CFTR expressed at the apical surface was reduced by ∼50% in CF cells compared to non-CF cells (p = 0.04, n = 5). Conclusions Our novel observation challenges the prevailing paradigm that CFTR is essentially absent from the apical membrane of respiratory cells harbouring the CFTR-delF508 mutation. Moreover, it raises the possibility that the new generation of CFTR potentiators may offer a realistic therapeutic option for CF patients. PMID:21826241

  9. CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein.

    PubMed

    Palma, Alejandra G; Galizia, Luciano; Kotsias, Basilio A; Marino, Gabriela I

    2016-05-01

    Shroom is a family of related proteins linked to the actin cytoskeleton. xShroom1 is constitutively expressed in Xenopus laevis oocytes, and it is required for the expression of the epithelial sodium channel (ENaC). As there is a close relationship between ENaC and the cystic fibrosis transmembrane regulator (CFTR), we examined the action of xShroom1 on CFTR expression and activity. Biotinylation was used to measure CFTR surface expression, and currents were registered with voltage clamp when stimulated with forskolin and 3-isobutyl-1-methylxanthine. Oocytes were coinjected with CFTR complementary RNAs (cRNAs) and xShroom1 sense or antisense oligonucleotides. We observed an increment in CFTR currents and CFTR surface expression in oocytes coinjected with CFTR and xShroom1 antisense oligonucleotides. MG-132, a proteasome inhibitor, did not prevent the increment in currents when xShroom1 was suppressed by antisense oligonucleotides. In addition, we inhibited the delivery of newly synthesized proteins to the plasma membrane with BFA and we found that the half-life of plasma membrane CFTR was prolonged when coinjected with the xShroom1 antisense oligonucleotides. Chloroquine, an inhibitor of the late endosome/lysosome, did not significantly increase CFTR currents when xShroom1 expression was inhibited. The higher expression of CFTR when xShroom1 is suppressed is in concordance with the functional studies suggesting that the suppression of the xShroom1 protein resulted in an increment in CFTR currents by promoting the increase of the half-life of CFTR in the plasma membrane. The role of xShroom1 in regulating CFTR expression could be relevant in the understanding of the channel malfunction in several diseases.

  10. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners.

    PubMed

    Li, Chunying; Naren, Anjaparavanda P

    2010-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated chloride channel located primarily at the apical or luminal surfaces of epithelial cells in the airway, intestine, pancreas, kidney, sweat gland, as well as male reproductive tract, where it plays a crucial role in transepithelial fluid homeostasis. CFTR dysfunction can be detrimental and may result in life-threatening disorders. CFTR hypofunctioning because of genetic defects leads to cystic fibrosis, the most common lethal genetic disease in Caucasians, whereas CFTR hyperfunctioning resulting from various infections evokes secretory diarrhea, the leading cause of mortality in early childhood. Therefore, maintaining a dynamic balance between CFTR up-regulating processes and CFTR down-regulating processes is essential for maintaining fluid and body homeostasis. Accumulating evidence suggests that protein-protein interactions play a critical role in the fine-tuned regulation of CFTR function. A growing number of proteins have been reported to interact directly or indirectly with CFTR chloride channel, suggesting that CFTR might be coupled spatially and temporally to a wide variety of interacting partners including ion channels, receptors, transporters, scaffolding proteins, enzyme molecules, signaling molecules, and effectors. Most interactions occur primarily between the opposing terminal tails (amino or carboxyl) of CFTR protein and its binding partners, either directly or mediated through various PDZ scaffolding proteins. These dynamic interactions impact the channel function, as well as localization and processing of CFTR protein within cells. This article reviews the most recent progress and findings about the interactions between CFTR and its binding partners through PDZ scaffolding proteins, as well as the spatiotemporal regulation of CFTR-containing macromolecular signaling complexes in the apical compartments of polarized cells lining the secretory epithelia.

  11. CFTR expression and organ damage in cystic fibrosis

    SciTech Connect

    Tizzano, E.; Chitayat, D.; Buchwald, M.

    1994-09-01

    To assist our understanding of the origin of organ damage caused by cystic fibrosis (CF) disease, we have analyzed the pattern of expression of the CF gene (CFTR). mRNA in situ hybridization analysis was carried out in human fetal, newborn, infant and adult tissues and the abundance of the mRNA was correlated with the known pathology at the various stages of human development. Analysis of the pattern of expression indicates a constitutive level of mRNA in gastrointestinal tissues starting during early development and maintained throughout life. Prenatal respiratory tissues show qualitative and quantitative major differences in comparison to postnatal lung samples. Male reproductive tissues show high levels of expression in the head of the epididymis compared with the rest of the male ducts. Female reproductive tissues show a variable pattern of expression at different stages during fetal development and during puberty probably due to changes in hormonal levels. Gastrointestinal and male reproductive tissues have a consistent pathology at birth, whereas no lung abnormalities have been described in newborns affected by CF. Our results show that there is no exact correlations between organ damage present at birth and the degree of CFTR expression. To explain these observations, we hypothesize that the pathogenesis of organ damage in CF depend on at least three factors: the rate of CFTR-mediated fluid secretion, differences in genotype and environmental factors, such as the amount of macromolecules in the lumen of the ducts. This last element predicts that damage will occur in tissues with high protein loads and low flow rates (e.g. pancreas, epididymis), where the absence of CFTR function leads to obstruction and pathology. Organs that express CFTR but with no significant damage (e.g. prenatal lung, female reproductive tissues), will have a low protein load and a high flow rates.

  12. Calumenin contributes to ER-Ca(2+) homeostasis in bronchial epithelial cells expressing WT and F508del mutated CFTR and to F508del-CFTR retention.

    PubMed

    Philippe, Réginald; Antigny, Fabrice; Buscaglia, Paul; Norez, Caroline; Huguet, Florentin; Castelbou, Cyril; Trouvé, Pascal; Becq, Frédéric; Frieden, Maud; Férec, Claude; Mignen, Olivier

    2017-02-04

    Cystic Fibrosis (CF) is the most frequent fatal genetic disease in Caucasian populations. Mutations in the chloride channel CF Transmembrane Conductance Regulator (CFTR) gene are responsible for functional defects of the protein and multiple associated dysregulations. The most common mutation in patients with CF, F508del-CFTR, causes defective CFTR protein folding. Thus minimal levels of the receptor are expressed at the cell surface as the mutated CFTR is retained in the endoplasmic reticulum (ER) where it correlates with defective calcium (Ca(2+)) homeostasis. In this study, we discovered that the Ca(2+) binding protein Calumenin (CALU) is a key regulator in the maintenance of ER-Ca(2+) calcium homeostasis in both wild type and F508del-CFTR expressing cells. Calumenin modulates SERCA pump activity without drastically affecting ER-Ca(2+) concentration. In addition, reducing Calumenin expression in CF cells results in a partial restoration of CFTR activity, highlighting a potential function of Calumenin in CFTR maturation. These findings demonstrate a pivotal role for Calumenin in CF cells, providing insights into how modulation of Calumenin expression or activity may be used as a potential therapeutic tool to correct defects in F508del-CFTR.

  13. Barium iodide single-crystal scintillator detectors

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Hull, Giulia; Niedermayr, Thomas R.; Drobshoff, Alexander; Payne, Stephen A.; Roy, Utpal N.; Cui, Yunlong; Bhattacharaya, Ajanta; Harrison, Melissa; Guo, Mingsheng; Groza, Michael; Burger, Arnold

    2007-09-01

    We find that the high-Z crystal Barium Iodide is readily growable by the Bridgman growth technique and is less prone to crack compared to Lanthanum Halides. We have grown Barium Iodide crystals: undoped, doped with Ce 3+, and doped with Eu 2+. Radioluminescence spectra and time-resolved decay were measured. BaI II(Eu) exhibits luminescence from both Eu 2+ at 420 nm (~450 ns decay), and a broad band at 550 nm (~3 μs decay) that we assign to a trapped exciton. The 550 nm luminescence decreases relative to the Eu 2+ luminescence when the Barium Iodide is zone refined prior to crystal growth. We also describe the performance of BaI II(Eu) crystals in experimental scintillator detectors.

  14. Pathways of Arsenic Uptake and Efflux

    PubMed Central

    Yang, Hung-Chi; Fu, Hsueh-Liang; Lin, Yung-Feng; Rosen, Barry P.

    2015-01-01

    Arsenic is the most prevalent environmental toxic substance and ranks first on the U.S. Environmental Protection Agency’s Superfund List. Arsenic is a carcinogen and a causative agent of numerous human diseases. Paradoxically arsenic is used as a chemotherapeutic agent for treatment of acute promyelocytic leukemia. Inorganic arsenic has two biological important oxidation states: As(V) (arsenate) and As(III) (arsenite). Arsenic uptake is adventitious because the arsenate and arsenite are chemically similar to required nutrients. Arsenate resembles phosphate and is a competitive inhibitor of many phosphate-utilizing enzymes. Arsenate is taken up by phosphate transport systems. In contrast, at physiological pH, the form of arsenite is As(OH)3, which resembles organic molecules such as glycerol. Consequently, arsenite is taken into cells by aquaglyceroporin channels. Arsenic efflux systems are found in nearly every organism and evolved to rid cells of this toxic metalloid. These efflux systems include members of the multidrug resistance protein family and the bacterial exchangers Acr3 and ArsB. ArsB can also be a subunit of the ArsAB As(III)-translocating ATPase, an ATP-driven efflux pump. The ArsD metallochaperone binds cytosolic As(III) and transfers it to the ArsA subunit of the efflux pump. Knowledge of the pathways and transporters for arsenic uptake and efflux is essential for understanding its toxicity and carcinogenicity and for rational design of cancer chemotherapeutic drugs. PMID:23046656

  15. Energy resolution enhancement of mercuric iodide detectors

    NASA Technical Reports Server (NTRS)

    Finger, M.; Prince, T. A.; Padgett, L.; Prickett, B.; Schnepple, W.

    1984-01-01

    A pulse processing technique has been developed which improves the gamma-ray energy resolution of mercuric iodide detectors. The technique employs a fast (100 ns) and a slow (6.4 microsec) pulse height analysis to correct for signal variations due to variations in charge trapping. The capabilities of the technique for energy resolution enhancement are discussed as well as the utility of the technique for examining the trapping characteristics of individual detectors. An energy resolution of 2.6 percent FWHM at 662 keV was achieved with an acceptance efficiency of 100 percent from a mercuric iodide detector which gives 8.3 percent FWHM using standard techniques.

  16. Cystic fibrosis transmembrane conductance regulator (CFTR) potentiator VX-770 (ivacaftor) opens the defective channel gate of mutant CFTR in a phosphorylation-dependent but ATP-independent manner.

    PubMed

    Eckford, Paul D W; Li, Canhui; Ramjeesingh, Mohabir; Bear, Christine E

    2012-10-26

    The cystic fibrosis transmembrane conductance regulator (CFTR) acts as a channel on the apical membrane of epithelia. Disease-causing mutations in the cystic fibrosis gene can lead to CFTR protein misfolding as in the case of the F508del mutation and/or channel dysfunction. Recently, a small molecule, VX-770 (ivacaftor), has shown efficacy in restoring lung function in patients bearing the G551D mutation, and this has been linked to repair of its channel gating defect. However, these studies did not reveal the mechanism of action of VX-770 in detail. Normally, CFTR channel activity is regulated by phosphorylation, ATP binding, and hydrolysis. Hence, it has been hypothesized that VX-770 modifies one or more of these metabolic events. In this study, we examined VX-770 activity using a reconstitution system for purified CFTR protein, a system that enables control of known regulatory factors. We studied the consequences of VX-770 interaction with CFTR incorporated in planar lipid bilayers and in proteoliposomes, using a novel flux-based assay. We found that purified and phosphorylated CFTR was potentiated in the presence of Mg-ATP, suggesting that VX-770 bound directly to the CFTR protein, rather than associated kinases or phosphatases. Interestingly, we also found that VX-770 enhanced the channel activity of purified and mutant CFTR in the nominal absence of Mg-ATP. These findings suggest that VX-770 can cause CFTR channel opening through a nonconventional ATP-independent mechanism. This work sets the stage for future studies of the structural properties that mediate CFTR gating using VX-770 as a probe.

  17. A bioassay using intestinal organoids to measure CFTR modulators in human plasma.

    PubMed

    Dekkers, R; Vijftigschild, L A W; Vonk, A M; Kruisselbrink, E; de Winter-de Groot, K M; Janssens, H M; van der Ent, C K; Beekman, J M

    2015-03-01

    Treatment efficacies of drugs depend on patient-specific pharmacokinetic and pharmacodynamic properties. Here, we developed an assay to measure functional levels of the CFTR potentiator VX-770 in human plasma and observed that VX-770 in plasma from different donors induced variable CFTR function in intestinal organoids. This assay can help to understand variability in treatment response to CFTR potentiators by functionally modeling individual pharmacokinetics.

  18. Top consumer abundance influences lake methane efflux.

    PubMed

    Devlin, Shawn P; Saarenheimo, Jatta; Syväranta, Jari; Jones, Roger I

    2015-11-04

    Lakes are important habitats for biogeochemical cycling of carbon. The organization and structure of aquatic communities influences the biogeochemical interactions between lakes and the atmosphere. Understanding how trophic structure regulates ecosystem functions and influences greenhouse gas efflux from lakes is critical to understanding global carbon cycling and climate change. With a whole-lake experiment in which a previously fishless lake was divided into two treatment basins where fish abundance was manipulated, we show how a trophic cascade from fish to microbes affects methane efflux to the atmosphere. Here, fish exert high grazing pressure and remove nearly all zooplankton. This reduction in zooplankton density increases the abundance of methanotrophic bacteria, which in turn reduce CH4 efflux rates by roughly 10 times. Given that globally there are millions of lakes emitting methane, an important greenhouse gas, our findings that aquatic trophic interactions significantly influence the biogeochemical cycle of methane has important implications.

  19. Osteoblast CFTR inactivation reduces differentiation and osteoprotegerin expression in a mouse model of cystic fibrosis-related bone disease.

    PubMed

    Stalvey, Michael S; Clines, Katrina L; Havasi, Viktoria; McKibbin, Christopher R; Dunn, Lauren K; Chung, W Joon; Clines, Gregory A

    2013-01-01

    Low bone mass and increased fracture risk are recognized complications of cystic fibrosis (CF). CF-related bone disease (CFBD) is characterized by uncoupled bone turnover--impaired osteoblastic bone formation and enhanced osteoclastic bone resorption. Intestinal malabsorption, vitamin D deficiency and inflammatory cytokines contribute to CFBD. However, epidemiological investigations and animal models also support a direct causal link between inactivation of skeletal cystic fibrosis transmembrane regulator (CFTR), the gene that when mutated causes CF, and CFBD. The objective of this study was to examine the direct actions of CFTR on bone. Expression analyses revealed that CFTR mRNA and protein were expressed in murine osteoblasts, but not in osteoclasts. Functional studies were then performed to investigate the direct actions of CFTR on osteoblasts using a CFTR knockout (Cftr-/-) mouse model. In the murine calvarial organ culture assay, Cftr-/- calvariae displayed significantly less bone formation and osteoblast numbers than calvariae harvested from wildtype (Cftr+/+) littermates. CFTR inactivation also reduced alkaline phosphatase expression in cultured murine calvarial osteoblasts. Although CFTR was not expressed in murine osteoclasts, significantly more osteoclasts formed in Cftr-/- compared to Cftr+/+ bone marrow cultures. Indirect regulation of osteoclastogenesis by the osteoblast through RANK/RANKL/OPG signaling was next examined. Although no difference in receptor activator of NF-κB ligand (Rankl) mRNA was detected, significantly less osteoprotegerin (Opg) was expressed in Cftr-/- compared to Cftr+/+ osteoblasts. Together, the Rankl:Opg ratio was significantly higher in Cftr-/- murine calvarial osteoblasts contributing to a higher osteoclastogenesis potential. The combined findings of reduced osteoblast differentiation and lower Opg expression suggested a possible defect in canonical Wnt signaling. In fact, Wnt3a and PTH-stimulated canonical Wnt signaling

  20. Sildenafil acts as potentiator and corrector of CFTR but might be not suitable for the treatment of CF lung disease.

    PubMed

    Leier, Geraldine; Bangel-Ruland, Nadine; Sobczak, Katja; Knieper, Yvonne; Weber, Wolf-Michael

    2012-01-01

    The phosphodiesterase-5 inhibitor sildenafil is an established and approved drug to treat symptoms of a variety of human diseases. In the context of cystic fibrosis (CF), a genetic disease caused by a defective CFTR gene (e.g. ΔF508-CFTR), it was assumed that sildenafil could be a promising substance to correct impaired protein expression. This study focuses on the molecular mechanisms of sildenafil on CFTR recovery. We used ΔF508-CFTR/wt-CFTR expressing Xenopus laevis oocytes and human bronchial epithelial cell lines (CFBE41o(-)/16HBE14o(-)) to investigate the pathways of sildenafil action. Cells were treated with sildenafil and cAMP-mediated current (I(m)), conductance (G(m)), and capacitance (C(m)) were determined. Sildenafil increased I(m), G(m), and C(m) of wt-CFTR and functionally restored ΔF508-CFTR in oocytes. These effects were also seen in CFBE41o(-) and 16HBE14o(-) cells. Transepithelial measurements revealed that sildenafil mediated increase (wt-CFTR) and restoration (ΔF508-CFTR) of channel activity. cGMP pathway blocker inhibited the activity increase but not CFTR/ΔF508-CFTR exocytosis. From these data we conclude that sildenafil mediates potentiation of CFTR activity by a cGMP-dependent and initiates cGMP-independent functional insertion of CFTR/ΔF508-CFTR molecules into the apical membranes. Thus, sildenafil is a corrector and potentiator of CFTR/ΔF508-CFTR. Yet, the necessary high doses of the drug for CFTR recovery demonstrate that sildenafil might not be suited as a therapeutic drug for CF lung disease.

  1. Determination of CFTR densities in erythrocyte plasma membranes using recognition imaging

    NASA Astrophysics Data System (ADS)

    Ebner, Andreas; Nikova, Dessy; Lange, Tobias; Häberle, Johannes; Falk, Sabine; Dübbers, Angelika; Bruns, Reimer; Hinterdorfer, Peter; Oberleithner, Hans; Schillers, Hermann

    2008-09-01

    CFTR (cystic fibrosis transmembrane conductance regulator) is a cAMP-regulated chloride (Cl-) channel that plays an important role in salt and fluid movement across epithelia. Cystic fibrosis (CF), the most common genetic disease among Caucasians, is caused by mutations in the gene encoding CFTR. The most predominant mutation, F508del, disturbs CFTR protein trafficking, resulting in a reduced number of CFTR in the plasma membrane. Recent studies indicate that CFTR is not only found in epithelia but also in human erythrocytes. Although considerable attempts have been made to quantify CFTR in cells, conclusions on numbers of CFTR molecules localized in the plasma membrane have been drawn indirectly. AFM has the power to provide the needed information, since both sub-molecular spatial resolution and direct protein recognition via antibody-antigen interaction can be observed. We performed a quantification study of the CFTR copies in erythrocyte membranes at the single molecule level, and compared the difference between healthy donors and CF patients. We detected that the number of CFTR molecules is reduced by 70% in erythrocytes of cystic fibrosis patients.

  2. Advancing clinical development pathways for new CFTR modulators in cystic fibrosis.

    PubMed

    Mayer-Hamblett, Nicole; Boyle, Michael; VanDevanter, Donald

    2016-05-01

    Cystic fibrosis (CF) is a life-shortening genetic disease affecting approximately 70,000 individuals worldwide. Until recently, drug development efforts have emphasised therapies treating downstream signs and symptoms resulting from the underlying CF biological defect: reduced function of the CF transmembrane conductance regulator (CFTR) protein. The current CF drug development landscape has expanded to include therapies that enhance CFTR function by either restoring wild-type CFTR protein expression or increasing (modulating) the function of mutant CFTR proteins in cells. To date, two systemic small-molecule CFTR modulators have been evaluated in pivotal clinical trials in individuals with CF and specific mutant CFTR genotypes that have led to regulatory review and/or approval. Advances in the discovery of CFTR modulators as a promising new class of therapies have been impressive, yet work remains to develop highly effective, disease-modifying modulators for individuals of all CF genotypes. The objectives of this review are to outline the challenges and opportunities in drug development created by systemic genotype-specific CFTR modulators, highlight the advantages of sweat chloride as an established biomarker of CFTR activity to streamline early-phase development and summarise options for later phase clinical trial designs that respond to the adoption of approved genotype-specific modulators into standard of care. An optimal development framework will be needed to move the most promising therapies efficiently through the drug development pipeline and ultimately deliver efficacious and safe therapies to all individuals with CF.

  3. Synergy of cAMP and calcium signaling pathways in CFTR regulation.

    PubMed

    Bozoky, Zoltan; Ahmadi, Saumel; Milman, Tal; Kim, Tae Hun; Du, Kai; Di Paola, Michelle; Pasyk, Stan; Pekhletski, Roman; Keller, Jacob P; Bear, Christine E; Forman-Kay, Julie D

    2017-02-27

    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport.

  4. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis

    PubMed Central

    Sun, Xingshen; Sui, Hongshu; Fisher, John T.; Yan, Ziying; Liu, Xiaoming; Cho, Hyung-Ju; Joo, Nam Soo; Zhang, Yulong; Zhou, Weihong; Yi, Yaling; Kinyon, Joann M.; Lei-Butters, Diana C.; Griffin, Michelle A.; Naumann, Paul; Luo, Meihui; Ascher, Jill; Wang, Kai; Frana, Timothy; Wine, Jeffrey J.; Meyerholz, David K.; Engelhardt, John F.

    2010-01-01

    Cystic fibrosis (CF) is a recessive disease that affects multiple organs. It is caused by mutations in CFTR. Animal modeling of this disease has been challenging, with species- and strain-specific differences in organ biology and CFTR function influencing the emergence of disease pathology. Here, we report the phenotype of a CFTR-knockout ferret model of CF. Neonatal CFTR-knockout ferrets demonstrated many of the characteristics of human CF disease, including defective airway chloride transport and submucosal gland fluid secretion; variably penetrant meconium ileus (MI); pancreatic, liver, and vas deferens disease; and a predisposition to lung infection in the early postnatal period. Severe malabsorption by the gastrointestinal (GI) tract was the primary cause of death in CFTR-knockout kits that escaped MI. Elevated liver function tests in CFTR-knockout kits were corrected by oral administration of ursodeoxycholic acid, and the addition of an oral proton-pump inhibitor improved weight gain and survival. To overcome the limitations imposed by the severe intestinal phenotype, we cloned 4 gut-corrected transgenic CFTR-knockout kits that expressed ferret CFTR specifically in the intestine. One clone passed feces normally and demonstrated no detectable ferret CFTR expression in the lung or liver. The animals described in this study are likely to be useful tools for dissecting CF disease pathogenesis and developing treatments. PMID:20739752

  5. Advancing clinical development pathways for new CFTR modulators in cystic fibrosis

    PubMed Central

    Mayer-Hamblett, Nicole; Boyle, Michael; VanDevanter, Donald

    2016-01-01

    Cystic fibrosis (CF) is a life-shortening genetic disease affecting approximately 70 000 individuals worldwide. Until recently, drug development efforts have emphasised therapies treating downstream signs and symptoms resulting from the underlying CF biological defect: reduced function of the CF transmembrane conductance regulator (CFTR) protein. The current CF drug development landscape has expanded to include therapies that enhance CFTR function by either restoring wild-type CFTR protein expression or increasing (modulating) the function of mutant CFTR proteins in cells. To date, two systemic small-molecule CFTR modulators have been evaluated in pivotal clinical trials in individuals with CF and specific mutant CFTR genotypes that have led to regulatory review and/or approval. Advances in the discovery of CFTR modulators as a promising new class of therapies have been impressive, yet work remains to develop highly effective, disease-modifying modulators for individuals of all CF genotypes. The objectives of this review are to outline the challenges and opportunities in drug development created by systemic genotype-specific CFTR modulators, highlight the advantages of sweat chloride as an established biomarker of CFTR activity to streamline early-phase development and summarise options for later phase clinical trial designs that respond to the adoption of approved genotype-specific modulators into standard of care. An optimal development framework will be needed to move the most promising therapies efficiently through the drug development pipeline and ultimately deliver efficacious and safe therapies to all individuals with CF. PMID:26903594

  6. Arsenic inhibits SGK1 activation of CFTR Cl- channels in the gill of killifish, Fundulus heteroclitus.

    PubMed

    Shaw, Joseph R; Bomberger, Jennifer M; VanderHeide, John; LaCasse, Taylor; Stanton, Sara; Coutermarsh, Bonita; Barnaby, Roxanna; Stanton, Bruce A

    2010-06-10

    Seawater acclimation in killifish, Fundulus heteroclitus, is mediated in part by a rapid (1h) translocation of CFTR Cl(-) channels from an intracellular pool to the plasma membrane in gill and increased CFTR-mediated Cl(-) secretion. This effect is mediated by serum and glucocorticoid-inducible kinase 1 (SGK1), which is stimulated by plasma hypertonicity rather than cortisol. Since arsenic exposure prevents acclimation to seawater by decreasing CFTR protein levels we tested the hypothesis that arsenic (as sodium arsenite) blocks acclimation to seawater by down regulating SGK1 expression. Freshwater adapted killifish were exposed to arsenic (48h) and transferred to seawater containing arsenic, and SGK and CFTR expression were measured. Arsenic reduced the seawater induced increase in SGK1 mRNA and protein abundance, and reduced both the total amount of CFTR and the amount of CFTR in the plasma membrane. The decrease in membrane CFTR reduced Cl(-) secretion. Arsenic also increased the amount of ubiquitinated CFTR and its degradation by the lysosome. Thus, we propose a model whereby arsenic reduces the ability of killifish to acclimate to seawater by blocking the seawater induced increase in SGK1, which results in increased ubiquitination and degradation of CFTR.

  7. Synergy of cAMP and calcium signaling pathways in CFTR regulation

    PubMed Central

    Bozoky, Zoltan; Ahmadi, Saumel; Milman, Tal; Kim, Tae Hun; Du, Kai; Di Paola, Michelle; Pasyk, Stan; Pekhletski, Roman; Keller, Jacob P.; Bear, Christine E.; Forman-Kay, Julie D.

    2017-01-01

    Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport. PMID:28242698

  8. Duplicated CFTR isoforms in eels diverged in regulatory structures and osmoregulatory functions.

    PubMed

    Wong, Marty Kwok-Shing; Pipil, Supriya; Kato, Akira; Takei, Yoshio

    2016-09-01

    Two cystic fibrosis transmembrane conductance regulator (CFTR) isoforms, CFTRa and CFTRb, were cloned in Japanese eel and their structures and functions were studied in different osmoregulatory tissues in freshwater (FW) and seawater (SW) eels. Molecular phylogenetic results suggested that the CFTR duplication in eels occurred independently of the duplication event in salmonid. CFTRa was expressed in the intestine and kidney and downregulated in both tissues in SW eels, while CFTRb was specifically expressed in the gill and greatly upregulated in SW eels. Structurally, the CFTR isoforms are similar in most functional domains except the regulatory R domain, where the R domain of CFTRa is similar to that of human CFTR but the R domain of CFTRb is unique in having high intrinsic negative charges and fewer phosphorylation sites, suggesting divergence of isoforms in terms of gating properties and hormonal regulation. Immunohistochemical results showed that CFTR was localized on the apical regions of SW ionocytes, suggesting a Cl(-) secretory role as in other teleosts. In intestine and kidney, however, immunoreactive CFTR was mostly found in the cytosolic vesicles in FW eels, indicating that Cl(-) channel activity could be low at basal conditions, but could be rapidly increased by membrane insertion of the stored channels. Guanylin (GN), a known hormone that increases CFTR activity in mammalian intestine, failed to redistribute CFTR and to affect its expression in eel intestine. The results suggested that GN-independent CFTR regulation is present in eel intestine and kidney.

  9. β2-Adrenergic receptor agonists activate CFTR in intestinal organoids and subjects with cystic fibrosis.

    PubMed

    Vijftigschild, Lodewijk A W; Berkers, Gitte; Dekkers, Johanna F; Zomer-van Ommen, Domenique D; Matthes, Elizabeth; Kruisselbrink, Evelien; Vonk, Annelotte; Hensen, Chantal E; Heida-Michel, Sabine; Geerdink, Margot; Janssens, Hettie M; van de Graaf, Eduard A; Bronsveld, Inez; de Winter-de Groot, Karin M; Majoor, Christof J; Heijerman, Harry G M; de Jonge, Hugo R; Hanrahan, John W; van der Ent, Cornelis K; Beekman, Jeffrey M

    2016-09-01

    We hypothesized that people with cystic fibrosis (CF) who express CFTR (cystic fibrosis transmembrane conductance regulator) gene mutations associated with residual function may benefit from G-protein coupled receptor (GPCR)-targeting drugs that can activate and enhance CFTR function.We used intestinal organoids to screen a GPCR-modulating compound library and identified β2-adrenergic receptor agonists as the most potent inducers of CFTR function.β2-Agonist-induced organoid swelling correlated with the CFTR genotype, and could be induced in homozygous CFTR-F508del organoids and highly differentiated primary CF airway epithelial cells after rescue of CFTR trafficking by small molecules. The in vivo response to treatment with an oral or inhaled β2-agonist (salbutamol) in CF patients with residual CFTR function was evaluated in a pilot study. 10 subjects with a R117H or A455E mutation were included and showed changes in the nasal potential difference measurement after treatment with oral salbutamol, including a significant improvement of the baseline potential difference of the nasal mucosa (+6.35 mV, p<0.05), suggesting that this treatment might be effective in vivo Furthermore, plasma that was collected after oral salbutamol treatment induced CFTR activation when administered ex vivo to organoids.This proof-of-concept study suggests that organoids can be used to identify drugs that activate CFTR function in vivo and to select route of administration.

  10. SNaPshot Assay for the Detection of the Most Common CFTR Mutations in Infertile Men

    PubMed Central

    Mircevska, Marija; Plaseski, Toso; Filipovski, Vanja; Plaseska-Karanfilska, Dijana

    2014-01-01

    Congenital bilateral absence of vas deferens (CBAVD) is the most common CFTR-related disorder (CFTR-RD) that explains about 1–2% of the male infertility cases. Controversial data have been published regarding the involvement of CFTR mutations in infertile men with non-obstructive azoospermia and oligozoospermia. Here, we describe single base extension (SNaPshot) assay for detection of 11 common CFTR mutations: F508del, G542X, N1303K, 621+1G->T, G551D, R553X, R1162X, W1282X, R117H, 2184insA and 1717-1G->A and IVS8polyT variants. The assay was validated on 50 previously genotyped samples and was used to screen a total of 369 infertile men with different impairment of spermatogenesis and 136 fertile controls. Our results show that double heterozygosity of cystic fibrosis (CF) and CFTR-related disorder (CFTR-RD) mutations are found in a high percentage (22.7%) of infertile men with obstructive azoospermia, but not in other studied groups of infertile men. The SNaPshot assay described here is an inexpensive, fast and robust method for primary screening of the most common CFTR mutations both in patients with classical CF and CFTR-RD. It can contribute to better understanding of the role of CFTR mutations in impaired spermatogenesis, ultimately leading to improved management of infertile men. PMID:25386751

  11. Simplest Formula of Copper Iodide: A Stoichiometry Experiment.

    ERIC Educational Resources Information Center

    MacDonald, D. J.

    1983-01-01

    Describes an experiment presented to students as a problem in determining the stoichiometry of "copper iodide" to decide whether it is cuprous iodide or cupric iodide. The experiment illustrates stoichiometry principles, providing experiences with laboratory techniques and numerical computation. Detailed outline (written for student use) is…

  12. Barium iodide and strontium iodide crystals andd scintillators implementing the same

    SciTech Connect

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold

    2013-11-12

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  13. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  14. 21 CFR 582.5634 - Potassium iodide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  15. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  16. 21 CFR 184.1265 - Cuprous iodide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the following specific limitations: Category of food Maximum treatment level in food Functional use... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR...

  17. Iodide effects in transition metal catalyzed reactions.

    PubMed

    Maitlis, Peter M; Haynes, Anthony; James, Brian R; Catellani, Marta; Chiusoli, Gian Paolo

    2004-11-07

    The unique properties of I(-) allow it to be involved in several different ways in reactions catalyzed by the late transition metals: in the oxidative addition, the migration, and the coupling/reductive elimination steps, as well as in substrate activation. Most steps are accelerated by I(-)(for example through an increased nucleophilicity of the metal center), but some are retarded, because a coordination site is blocked. The "soft" iodide ligand binds more strongly to soft metals (low oxidation state, electron rich, and polarizable) such as the later and heavier transition metals, than do the other halides, or N- and O-centered ligands. Hence in a catalytic cycle that includes the metal in a formally low oxidation state there will be less tendency for the metal to precipitate (and be removed from the cycle) in the presence of I(-) than most other ligands. Iodide is a good nucleophile and is also easily and reversibly oxidized to I(2). In addition, I(-) can play key roles in purely organic reactions that occur as part of a catalytic cycle. Thus to understand the function of iodide requires careful analysis, since two or sometimes more effects occur in different steps of one single cycle. Each of these topics is illustrated with examples of the influence of iodide from homogeneous catalytic reactions in the literature: methanol carbonylation to acetic acid and related reactions; CO hydrogenation; imine hydrogenation; and C-C and C-N coupling reactions. General features are summarised in the Conclusions.

  18. Methyl Iodide Fumigation of Bacillus anthracis Spores.

    PubMed

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R

    2015-09-01

    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures.

  19. Scintillator handbook with emphasis on cesium iodide

    NASA Technical Reports Server (NTRS)

    Tidd, J. L.; Dabbs, J. R.; Levine, N.

    1973-01-01

    This report provides a background of reasonable depth and reference material on scintillators in general. Particular attention is paid to the cesium iodide scintillators as used in the High Energy Astronomy Observatory (HEAO) experiments. It is intended especially for use by persons such as laboratory test personnel who need to obtain a working knowledge of these materials and their characteristics in a short time.

  20. Potassium iodide capsule treatment of feline sporotrichosis.

    PubMed

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P

    2012-06-01

    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  1. Isolation of iodide-oxidizing bacteria from iodide-rich natural gas brines and seawaters.

    PubMed

    Amachi, Seigo; Muramatsu, Yasuyuki; Akiyama, Yukako; Miyazaki, Kazumi; Yoshiki, Sayaka; Hanada, Satoshi; Kamagata, Yoichi; Ban-nai, Tadaaki; Shinoyama, Hirofumi; Fujii, Takaaki

    2005-05-01

    Iodide-oxidizing bacteria (IOB), which oxidize iodide (I-) to molecular iodine (I2), were isolated from iodide-rich (63 microM to 1.2 mM) natural gas brine waters collected from several locations. Agar media containing iodide and starch were prepared, and brine waters were spread directly on the media. The IOB, which appeared as purple colonies, were obtained from 28 of the 44 brine waters. The population sizes of IOB in the brines were 10(2) to 10(5) colony-forming units (CFU) mL(-1). However, IOB were not detected in natural seawaters and terrestrial soils (fewer than 10 CFU mL(-1) and 10(2) CFU g wet weight of soils(-1), respectively). Interestingly, after the enrichment with 1 mM iodide, IOB were found in 6 of the 8 seawaters with population sizes of 10(3) to 10(5) CFU mL(-1). 16S rDNA sequencing and phylogenetic analyses showed that the IOB strains are divided into two groups within the alpha-subclass of the Proteobacteria. One of the groups was phylogenetically most closely related to Roseovarius tolerans with sequence similarities between 94% and 98%. The other group was most closely related to Rhodothalassium salexigens, although the sequence similarities were relatively low (89% to 91%). The iodide-oxidizing reaction by IOB was mediated by an extracellular enzyme protein that requires oxygen. Radiotracer experiments showed that IOB produce not only I2 but also volatile organic iodine, which were identified as diiodomethane (CH2I2) and chloroiodomethane (CH2ClI). These results indicate that at least two types of IOB are distributed in the environment, and that they are preferentially isolated in environments in which iodide levels are very high. It is possible that IOB oxidize iodide in the natural environment, and they could significantly contribute to the biogeochemical cycling of iodine.

  2. Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis.

    PubMed

    Gupta, Shashank; Cohen, Keira A; Winglee, Kathryn; Maiga, Mamoudou; Diarra, Bassirou; Bishai, William R

    2014-01-01

    Drug efflux is an important resistance mechanism in Mycobacterium tuberculosis. We found that verapamil, an efflux inhibitor, profoundly decreases the MIC of bedaquiline and clofazimine to M. tuberculosis by 8- to 16-fold. This exquisite susceptibility was noted among drug-susceptible and drug-resistant clinical isolates. Thus, efflux inhibition is an important sensitizer of bedaquiline and clofazimine, and efflux may emerge as a resistance mechanism to these drugs.

  3. CO2 Efflux from Cleared Mangrove Peat

    PubMed Central

    Lovelock, Catherine E.; Ruess, Roger W.; Feller, Ilka C.

    2011-01-01

    Background CO2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. Methodology/Principal Findings We measured CO2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO2 efflux. CO2 efflux from soils declines from time of clearing from ∼10 600 tonnes km−2 year−1 in the first year to 3000 tonnes km2 year−1 after 20 years since clearing. Disturbing peat leads to short term increases in CO2 efflux (27 umol m−2 s−1), but this had returned to baseline levels within 2 days. Conclusions/Significance Deforesting mangroves that grow on peat soils results in CO2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks. PMID:21738628

  4. Effluxing ABC Transporters in Human Corneal Epithelium

    PubMed Central

    Vellonen, Kati-Sisko; Mannermaa, Eliisa; Turner, Helen; Häkli, Marika; Wolosin, J. Mario; Tervo, Timo; Honkakoski, Paavo; Urtti, Arto

    2010-01-01

    ATP-binding cassette (ABC) transporters are able to efflux their substrate drugs from the cells. We compared expression of efflux proteins in normal human corneal epithelial tissue, primary human corneal epithelial cells (HCEpiC), and corneal epithelial cell culture model (HCE model) based on human immortal cell line. Expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 1–6 (MRP1–6) and breast cancer resistance protein (BCRP) was studied using quantitative RT-PCR, Western blot, and immunohistochemistry. Only MRP1, MRP5, and BCRP were expressed in the freshly excised human corneal epithelial tissue. Expression of MRP1 and MRP5 was localized predominantly in the basal cells of the central cornea and limbus. Functional efflux activity was shown in the cell models, but they showed over-expression of most efflux transporters compared to that of normal corneal epithelium. In conclusion, MRP1, MRP5, and BCRP are expressed in the corneal epithelium, but MDR1, MRP2, MRP3, MRP4, and MRP6 are not significantly expressed. HCE cell model and commercially available primary cells deviate from this expression profile. PMID:19623615

  5. Modified host cells with efflux pumps

    DOEpatents

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila

    2016-08-30

    The present invention provides for a modified host cell comprising a heterologous expression of an efflux pump capable of transporting an organic molecule out of the host cell wherein the organic molecule at a sufficiently high concentration reduces the growth rate of or is lethal to the host cell.

  6. An overview of bacterial efflux pumps and computational approaches to study efflux pump inhibitors.

    PubMed

    Jamshidi, Shirin; Sutton, J Mark; Rahman, Khondaker M

    2016-01-01

    Micro-organisms express a wide range of transmembrane pumps known as multidrug efflux pumps that improve the micro-organism's ability to survive in severe environments and contribute to resistance against antibiotic and antimicrobial agents. There is significant interest in developing efflux inhibitors as an adjunct to treatment with current and next generation of antibiotics. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. We summarize some structural and functional data that could provide insights into the inhibition of transport mechanisms of these intricate molecular nanomachines with a focus on the advances in computational approaches.

  7. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle.

    PubMed

    Jih, Kang-Yang; Hwang, Tzyh-Chang

    2013-03-12

    Vx-770 (Ivacaftor), a Food and Drug Administration (FDA)-approved drug for clinical application to patients with cystic fibrosis (CF), shifts the paradigm from conventional symptomatic treatments to therapeutics directly tackling the root of the disease: functional defects of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel caused by pathogenic mutations. The underlying mechanism for the action of Vx-770 remains elusive partly because this compound not only increases the activity of wild-type (WT) channels whose gating is primarily controlled by ATP binding/hydrolysis, but also improves the function of G551D-CFTR, a disease-associated mutation that abolishes CFTR's responsiveness to ATP. Here we provide a unified theory to account for this dual effect of Vx-770. We found that Vx-770 enhances spontaneous, ATP-independent activity of WT-CFTR to a similar magnitude as its effects on G551D channels, a result essentially explaining Vx-770's effect on G551D-CFTR. Furthermore, Vx-770 increases the open time of WT-CFTR in an [ATP]-dependent manner. This distinct kinetic effect is accountable with a newly proposed CFTR gating model depicting an [ATP]-dependent "reentry" mechanism that allows CFTR shuffling among different open states by undergoing multiple rounds of ATP hydrolysis. We further examined the effect of Vx-770 on R352C-CFTR, a unique mutant that allows direct observation of hydrolysis-triggered gating events. Our data corroborate that Vx-770 increases the open time of WT-CFTR by stabilizing a posthydrolytic open state and thereby fosters decoupling between the gating cycle and ATP hydrolysis cycle. The current study also suggests that this unique mechanism of drug action can be further exploited to develop strategies that enhance the function of CFTR.

  8. Biophysical Characterisation of Calumenin as a Charged F508del-CFTR Folding Modulator

    PubMed Central

    Tripathi, Rashmi; Benz, Nathalie; Culleton, Bridget; Trouvé, Pascal; Férec, Claude

    2014-01-01

    The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood. Recently, calumenin, a secretory protein, belonging to the CREC family of low affinity calcium binding proteins has been identified as a putative CFTR chaperone whose biophysical properties and functions remain uncharacterized. We compared hydropathy, instability, charge, unfoldability, disorder and aggregation propensity of calumenin and other CREC family members with CFTR associated chaperones and calcium binding proteins, wild-type and mutant CFTR proteins and intrinsically disordered proteins (IDPs). We observed that calumenin, along with other CREC proteins, was significantly more charged and less folded compared to CFTR associated chaperones. Moreover like IDPs, calumenin and other CREC proteins were found to be less hydrophobic and aggregation prone. Phylogenetic analysis revealed a close link between calumenin and other CREC proteins indicating how evolution might have shaped their similar biophysical properties. Experimentally, calumenin was observed to significantly reduce F508del-CFTR aggregation in a manner similar to AavLEA1, a well-characterized IDP. Fluorescence microscopy based imaging analysis also revealed altered trafficking of calumenin in bronchial cells expressing F508del-CFTR, indicating its direct role in the pathophysiology of CF. In conclusion, calumenin is characterized as a charged protein exhibiting close similarity with IDPs and is

  9. Critical role of CFTR-dependent lipid rafts in cigarette smoke-induced lung epithelial injury.

    PubMed

    Bodas, Manish; Min, Taehong; Vij, Neeraj

    2011-06-01

    Apoptosis of lung epithelial and endothelial cells by exposure to cigarette smoke (CS) severely damages the lung tissue, leading to the pathogenesis of emphysema, but the underlying mechanisms are poorly understood. We have recently established a direct correlation between decreased lipid raft CFTR expression and emphysema progression through increased ceramide accumulation. In the present work, we investigated the role of membrane CFTR in regulating apoptosis and autophagy responses to CS exposure. We report a constitutive and CS-induced increase in the number of TUNEL-positive apoptotic cells in Cftr(-/-) murine lungs compared with Cftr(+/+) murine lungs that also correlated with a concurrent increase in the expression of ceramide, NF-κB, CD95/Fas, lipid raft proteins, and zonula occludens (ZO)-1/2 (P < 0.001). We also verified that stable wild-type CFTR expression in CFBE41o(-) cells controls constitutively elevated caspase-3/7 activity (-1.6-fold, P < 0.001). Our data suggest that membrane CFTR regulates ceramide-enriched lipid raft signaling platforms required for the induction of Fas-mediated apoptotic signaling. In addition, lack of membrane CFTR also modulates autophagy, as demonstrated by the significant increase in constitutive (P < 0.001) and CSE-induced (P < 0.005) perinuclear accumulation of green fluorescent protein-microtubule-associated protein 1 light chain-3 (LC3) in the absence of membrane CFTR (CFBE41o(-) cells). The significant constitutive and CS-induced increase (P < 0.05) in p62 and LC3β expression in CFTR-deficient cells and mice corroborates these findings and suggest a defective autophagy response in the absence of membrane CFTR. Our data demonstrate the critical role of membrane-localized CFTR in regulating apoptotic and autophagic responses in CS-induced lung injury that may be involved in the pathogenesis of severe emphysema.

  10. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators

    PubMed Central

    Wang, Wei; Hong, Jeong S.; Rab, Andras; Sorscher, Eric J.; Kirk, Kevin L.

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3–5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  11. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators.

    PubMed

    Wang, Wei; Hong, Jeong S; Rab, Andras; Sorscher, Eric J; Kirk, Kevin L

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3-5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein.

  12. Simple image-based no-wash method for quantitative detection of surface expressed CFTR.

    PubMed

    Larsen, Mads Breum; Hu, Jennifer; Frizzell, Raymond A; Watkins, Simon C

    2016-03-01

    Cystic fibrosis (CF) is the most common lethal genetic disease among Caucasians. It is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, which encodes an apical membrane anion channel that is required for regulating the volume and composition of epithelial secretions. The most common CFTR mutation, present on at least one allele in >90% of CF patients, deletes phenylalanine at position 508 (F508del), which causes the protein to misfold. Endoplasmic reticulum (ER) quality control elicits the degradation of mutant CFTR, compromising its trafficking to the epithelial cell apical membrane. The absence of functional CFTR leads to depletion of airway surface liquid, impaired clearance of mucus and bacteria from the lung, and predisposes to recurrent infections. Ultimately, respiratory failure results from inflammation and bronchiectasis. Although high throughput screening has identified small molecules that can restore the anion transport function of F508del CFTR, they correct less than 15% of WT CFTR activity, yielding insufficient clinical benefit. To date, most primary CF drug discovery assays have employed measurements of CFTR's anion transport function, a method that depends on the recruitment of a functional CFTR to the cell surface, involves multiple wash steps, and relies on a signal that saturates rapidly. Screening efforts have also included assays for detection of extracellularly HA-tagged or HRP-tagged CFTR, which require multiple washing steps. We have recently developed tools and cell lines that report the correction of mutant CFTR trafficking by currently available small molecules, and have extended this assay to the 96-well format. This new and simple no-wash assay of F508del CFTR at the cell surface may permit the discovery of more efficacious drugs, and hopefully thereby prevent the catastrophic effects of this disease. In addition, the modular design of this platform should make it useful for other diseases where loss

  13. Genotypic and phenotypic detection of efflux pump in Rhodococcus equi

    PubMed Central

    Gressler, Letícia Trevisan; de Vargas, Agueda Castagna; da Costa, Mateus Matiuzzi; Pötter, Luciana; da Silveira, Bibiana Petri; Sangioni, Luis Antônio; de Avila Botton, Sônia

    2014-01-01

    The req_39680 gene, associated to a putative efflux system, was detected in 60% (54/90) of R. equi isolates by PCR. The phenotypic expression of efflux mechanism was verified in 20% of the isolates using ethidium bromide. For the first time, the expression of efflux mechanism was demonstrated in R. equi. PMID:25242956

  14. Atomic force microscopy of lead iodide crystal surfaces

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-03-01

    Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.

  15. CFTR gene mutations in isolated chronic obstructive pulmonary disease

    SciTech Connect

    Pignatti, P.F.; Bombien, C.; Marigo, C.

    1994-09-01

    In order to identify a possible hereditary predisposition to the development of chronic obstructive pulmonary disease (COPD), we have looked for the presence of cystic fibrosis transmembrane regulator (CFTR) gene DNA sequence modifications in 28 unrelated patients with no signs of cystic fibrosis. The known mutations in Italian CF patients, as well as the most frequent worldwide CF mutations, were investigated. In addition, a denaturing gradient gel electrophoresis analysis of about half of the coding sequence of the gene in 56 chromosomes from the patients and in 102 chromosomes from control individuals affected by other pulmonary diseases and from normal controls was performed. Nine different CFTR gene mutations and polymorphisms were found in seven patients, a highly significant increase over controls. Two of the patients were compound heterozygotes. Two frequent CF mutations were detected: deletion F508 and R117H; two rare CF mutations: R1066C and 3667ins4; and five CF sequence variants: R75Q (which was also described as a disease-causing mutation in male sterility cases due to the absence of the vasa deferentia), G576A, 2736 A{r_arrow}G, L997F, and 3271+18C{r_arrow}T. Seven (78%) of the mutations are localized in transmembrane domains. Six (86%) of the patients with defined mutations and polymorphisms had bronchiectasis. These results indicate that CFTR gene mutations and sequence alterations may be involved in the etiopathogenesis of some cases of COPD.

  16. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR): CLOSED AND OPEN STATE CHANNEL MODELS.

    PubMed

    Corradi, Valentina; Vergani, Paola; Tieleman, D Peter

    2015-09-18

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette (ABC) transporter superfamily. CFTR controls the flow of anions through the apical membrane of epithelia. Dysfunctional CFTR causes the common lethal genetic disease cystic fibrosis. Transitions between open and closed states of CFTR are regulated by ATP binding and hydrolysis on the cytosolic nucleotide binding domains, which are coupled with the transmembrane (TM) domains forming the pathway for anion permeation. Lack of structural data hampers a global understanding of CFTR and thus the development of "rational" approaches directly targeting defective CFTR. In this work, we explored possible conformational states of the CFTR gating cycle by means of homology modeling. As templates, we used structures of homologous ABC transporters, namely TM(287-288), ABC-B10, McjD, and Sav1866. In the light of published experimental results, structural analysis of the transmembrane cavity suggests that the TM(287-288)-based CFTR model could correspond to a commonly occupied closed state, whereas the McjD-based model could represent an open state. The models capture the important role played by Phe-337 as a filter/gating residue and provide structural information on the conformational transition from closed to open channel.

  17. CFTR and defective endocytosis: new insights in the renal phenotype of cystic fibrosis.

    PubMed

    Jouret, François; Devuyst, Olivier

    2009-04-01

    Inactivation of the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR) causes cystic fibrosis (CF). Although CFTR is expressed in the kidney, no overwhelming renal phenotype is associated with CF. Recent studies have shown that the level of CFTR mRNA in mouse kidney approaches that found in lung. CFTR is particularly abundant in the apical area of proximal tubule cells, where it co-distributes with the Cl(-)/H(+) exchanger ClC-5 and Rab5a in endosomes. The biological relevance of CFTR in proximal tubule endocytosis has been tested in CF mouse models and CF patients. Mice lacking CFTR show a defective receptor-mediated endocytosis, as evidenced by impaired uptake of (125)I-beta(2)-microglobulin, a decreased expression of the cubilin receptor in the kidney, and a significant excretion of cubilin and its low-molecular-weight ligands into the urine. Low-molecular-weight proteinuria (and particularly transferrinuria) is similarly detected in CF patients in comparison with normal controls or patients with chronic lung inflammation. These studies suggest that the functional loss of CFTR impairs the handling of low-molecular-weight proteins by the kidney, supporting a role of CFTR in receptor-mediated endocytosis in proximal tubule cells. The selective proteinuria should be integrated in the pathophysiology of multi-systemic complications increasingly observed in CF patients.

  18. Defective CFTR-dependent CREB activation results in impaired spermatogenesis and azoospermia.

    PubMed

    Xu, Wen Ming; Chen, Jing; Chen, Hui; Diao, Rui Ying; Fok, Kin Lam; Dong, Jian Da; Sun, Ting Ting; Chen, Wen Ying; Yu, Mei Kuen; Zhang, Xiao Hu; Tsang, Lai Ling; Lau, Ann; Shi, Qi Xian; Shi, Qing Hua; Huang, Ping Bo; Chan, Hsiao Chang

    2011-01-01

    Cystic fibrosis (CF) is the most common life-limiting recessive genetic disease among Caucasians caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) with over 95% male patients infertile. However, whether CFTR mutations could affect spermatogenesis and result in azoospermia remains an open question. Here we report compromised spermatogenesis, with significantly reduced testicular weight and sperm count, and decreased cAMP-responsive element binding protein (CREB) expression in the testes of CFTR knockout mice. The involvement of CFTR in HCO(3) (-) transport and the expression of the HCO(3) (-) sensor, soluble adenylyl cyclase (sAC), are demonstrated for the first time in the primary culture of rat Sertoli cells. Inhibition of CFTR or depletion of HCO(3) (-) could reduce FSH-stimulated, sAC-dependent cAMP production and phosphorylation of CREB, the key transcription factor in spermatogenesis. Decreased CFTR and CREB expression are also observed in human testes with azoospermia. The present study reveals a previously undefined role of CFTR and sAC in regulating the cAMP-CREB signaling pathway in Sertoli cells, defect of which may result in impaired spermatogenesis and azoospermia. Altered CFTR-sAC-cAMP-CREB functional loop may also underline the pathogenesis of various CF-related diseases.

  19. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.

    PubMed

    Farinha, Carlos M; Canato, Sara

    2017-01-01

    CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.

  20. The intact CFTR protein mediates ATPase rather than adenylate kinase activity.

    PubMed

    Ramjeesingh, Mohabir; Ugwu, Francisca; Stratford, Fiona L L; Huan, Ling-Jun; Li, Canhui; Bear, Christine E

    2008-06-01

    The two NBDs (nucleotide-binding domains) of ABC (ATP-binding-cassette) proteins function in a complex to mediate ATPase activity and this activity has been linked to their regulated transport activity. A similar model has been proposed for CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel defective in cystic fibrosis, wherein ATP binding and hydrolysis regulate the channel gate. Recently, it was shown that the individual NBDs isolated from CFTR primarily mediate adenylate kinase activity, raising the possibility that this activity may also contribute to gating of the CFTR channel. However, this present study shows that whereas the isolated NBDs exhibit adenylate kinase activity, the full-length purified and reconstituted CFTR protein functions as an ATPase, arguing that the enzymatic activity of the NBDs is dependent on their molecular context and appropriate domain-domain assembly. As expected, the disease-causing mutant bearing a mutation in the ABC signature motif, CFTR-G551D, exhibited a markedly reduced ATPase activity. Furthermore, mutation of the putative catalytic base in CFTR caused a reduction in ATPase activity, with the CFTR-E1371Q mutant supporting a low level of residual activity. Neither of these mutants exhibited detectable adenylate kinase activity. Together, these findings support the concept that the molecular mechanism of action of CFTR is dependent on ATP binding and hydrolysis, and that the structure of prokaryotic ABC ATPases provide a useful template for understanding their mechanism of action.

  1. Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells.

    PubMed

    Rennolds, Jessica; Butler, Susie; Maloney, Kevin; Boyaka, Prosper N; Davis, Ian C; Knoell, Daren L; Parinandi, Narasimham L; Cormet-Boyaka, Estelle

    2010-07-01

    Cadmium is a toxic heavy metal ranked seventh on the Priority List of Hazardous Substances. As a byproduct of smelters, cadmium is a prevalent environmental contaminant. It is also a major component of cigarette smoke, and its inhalation is associated with decreased pulmonary function, lung cancer, and chronic obstructive pulmonary disease. Ion channels, including the cystic fibrosis transmembrane conductance regulator (CFTR), play a central role in maintaining fluid homeostasis and lung functions. CFTR is mostly expressed in epithelial cells, and little is known about the effect of cadmium exposure on lung epithelial cell function. We show that exposure to cadmium decreases the expression of the CFTR protein and subsequent chloride transport in human airway epithelial cells in vitro. Impairment of CFTR protein expression was also observed in vivo in the lung of mice after intranasal instillation of cadmium. We established that the inhibitory effect of cadmium was not a nonspecific effect of heavy metals, as nickel had no effect on CFTR protein levels. Finally, we show that selected antioxidants, including alpha-tocopherol (vitamin E), but not N-acetylcysteine, can prevent the cadmium-induced suppression of CFTR. In summary, we have identified cadmium as a regulator of the CFTR chloride channel present in lung epithelial cells. Future strategies to prevent the deleterious effect of cadmium on epithelial cells and lung functions may benefit from the finding that alpha-tocopherol protects CFTR expression and function.

  2. CFTR chloride channel is a molecular target of the natural cancer preventive agent resveratrol.

    PubMed

    Yang, Shuang; Yu, B O; Sui, Yujie; Zhang, Yaofang; Wang, Xue; Hou, Shuguang; Ma, Tonghui; Yang, Hong

    2013-09-01

    The naturally occurring polyphenol compound resveratrol (RES) has been receiving wide attention because of its variety of health benefits and favourable biological activities. Previous studies have shown that RES could induce intestinal chloride secretion in mouse jejunum and stimulate cAMP-dependent Cl- secretion in T84, primary cultured murine nasal septal and human sinonasal epithelial cells, but the precise molecular target is not clear. We therefore tested the hypothesis that RES may stimulate the activity of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Using cell-based fluorescent assays, transepithelial short-circuit current measurements and excised inside-out patch-clamp analysis; we found that RES dose-dependently potentiate CFTR Cl- channel activities, which was reversed by CFTR inhibitors CFTR(inh)-172 and GlyH101. Transepithelial Cl- secretion by CFTR-expressing FRT cells was stimulated by RES with half maximal concentration -80 microM. Intracellular cAMP content was not elevated by RES in FRT cells. Excised inside-out patch-clamp analysis indicated that RES significantly increased the chloride currents of CFTR. In ex vivo studies, RES stimulated the transmucosal chloride current of rat colon by short-circuit current assay. These data suggested that CFTR is a molecular target of RES. Our findings add a new molecular target to RES, and RES may represent a novel class of therapeutic lead compounds in treating CFTR-related diseases including CF and habitual constipation.

  3. Differentiation between human ClC-2 and CFTR Cl- channels with pharmacological agents.

    PubMed

    Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti P; Malinowska, Danuta H

    2014-09-01

    It has been difficult to separate/identify the roles of ClC-2 and CFTR in Cl(-) transport studies. Using pharmacological agents, we aimed to differentiate functionally between ClC-2 and CFTR Cl(-) channel currents. Effects of CFTR inhibitor 172 (CFTRinh172), N-(4-methylphenylsulfonyl)-N'-(4-trifluoromethylphenyl)urea (DASU-02), and methadone were examined by whole cell patch clamp on Cl(-) currents in recombinant human ClC-2/human embryonic kidney 293 (ClC-2/HEK293) cells stably transformed with Epstein-Barr nuclear antigen 1 (hClC-2/293EBNA) and human CFTR/HEK293 (hCFTR/HEK293) cells and by short-circuit current (Isc) measurements in T84 cells. Lubiprostone and forskolin-IBMX were used as activators. CFTRinh172 inhibited forskolin-IBMX-stimulated recombinant human CFTR (hCFTR) and lubiprostone-stimulated recombinant human ClC-2 (hClC-2) Cl(-) currents in a concentration-dependent manner equipotently. DASU-02 inhibited forskolin-IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, but not lubiprostone-stimulated Cl(-) currents in hClC-2/293EBNA cells. In T84 cells with basolateral nystatin or 1-ethyl-2-benzimidazolinone (1-EBIO), lubiprostone-stimulated and forskolin-IBMX-cyclosporin A (FICA)-stimulated Isc components were observed. CFTRinh172 inhibited major portions of both components. DASU-02 had no effect on lubiprostone-stimulated Isc but partially inhibited FICA-stimulated Isc. T84 cells in which ClC-2 or CFTR was knocked down using siRNAs were constructed. T84 ClC-2 knockdown cells did not respond to lubiprostone but did respond to forskolin-IBMX in a methadone-insensitive, DASU-02-sensitive manner, indicating CFTR function. T84 CFTR knockdown cells responded separately to lubiprostone and forskolin-IBMX in a methadone-sensitive and DASU-02-insensitive manner, indicating ClC-2 function. Low lubiprostone concentrations activated ClC-2, but not CFTR, and both channels were activated by forskolin-IBMX but have different inhibitor sensitivities. Methadone, but

  4. Thallium bromide iodide crystal acoustic anisotropy examination.

    PubMed

    Mantsevich, S N

    2017-03-01

    Thallium bromide iodide crystal also known as KRS-5 is the well known material used in far infrared radiation applications for optical windows and lenses fabrication. The main advantage of this material is the transparency in wide band of wavelengths from 0.53 to 50μm. Despite such advantages as transparency and large acousto-optic figure of merit values, KRS-5 is rarely used in acousto-optics. Nevertheless this material seems to be promising for far infrared acousto-optic applications. The acoustic and acousto-optic properties of KRS-5 needed for the full use in optoelectronics are not well understood to date. In this paper the detailed examination of thallium bromide iodide crystal acoustic properties is presented.

  5. The secret life of CFTR as a calcium-activated chloride channel

    PubMed Central

    Billet, Arnaud; Hanrahan, John W

    2013-01-01

    cAMP-stimulated anion conductance is defective in cystic fibrosis (CF). The regulatory domain of CFTR, the anion channel protein encoded by the CF gene, possesses an unusually high density of consensus sequences for phosphorylation by protein kinase A (14 in a stretch of <200 amino acids). Thus it is not surprising that CFTR is viewed primarily as a cAMP-stimulated anion channel, and most studies have focused on this mode of activation. However, there is growing evidence that CFTR also responds to Ca2+-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues. G protein-coupled receptors that signal through Gαq can stimulate CFTR channels by activating Ca2+-dependent adenylyl cyclase and tyrosine kinases, and also by inhibiting protein phosphatase type 2A. Here we review evidence for these novel mechanisms of CFTR activation and discuss how they may help explain previous observations. PMID:23959675

  6. The secret life of CFTR as a calcium-activated chloride channel.

    PubMed

    Billet, Arnaud; Hanrahan, John W

    2013-11-01

    cAMP-stimulated anion conductance is defective in cystic fibrosis (CF). The regulatory domain of CFTR, the anion channel protein encoded by the CF gene, possesses an unusually high density of consensus sequences for phosphorylation by protein kinase A (14 in a stretch of <200 amino acids). Thus it is not surprising that CFTR is viewed primarily as a cAMP-stimulated anion channel, and most studies have focused on this mode of activation. However, there is growing evidence that CFTR also responds to Ca(2+)-mobilizing secretagogues and contributes substantially to cholinergic and purinergic responses in native tissues. G protein-coupled receptors that signal through Gαq can stimulate CFTR channels by activating Ca(2+)-dependent adenylyl cyclase and tyrosine kinases, and also by inhibiting protein phosphatase type 2A. Here we review evidence for these novel mechanisms of CFTR activation and discuss how they may help explain previous observations.

  7. How to Measure Export via Bacterial Multidrug Resistance Efflux Pumps

    PubMed Central

    Blair, Jessica M. A.

    2016-01-01

    ABSTRACT Bacterial multidrug resistance (MDR) efflux pumps are an important mechanism of antibiotic resistance and are required for many pathogens to cause infection. They are also being harnessed to improve microbial biotechnological processes, including biofuel production. Therefore, scientists of many specialties must be able to accurately measure efflux activity. However, myriad methodologies have been described and the most appropriate method is not always clear. Within the scientific literature, many methods are misused or data arising are misinterpreted. The methods for measuring efflux activity can be split into two groups, (i) those that directly measure efflux and (ii) those that measure the intracellular accumulation of a substrate, which is then used to infer efflux activity. Here, we review the methods for measuring efflux and explore the most recent advances in this field, including single-cell or cell-free technologies and mass spectrometry, that are being used to provide more detailed information about efflux pump activity. PMID:27381291

  8. [About the history chemistry and potassium iodide].

    PubMed

    Fournier, Josette

    2008-07-01

    Louis Melsen was born at Louvain, he spent four years in Paris, working in Dumas's laboratory. Four letters from Melsens to Chevreul, since 1951 to 1880, are commented on. Two letters relate to Van Helmont and common interest of the two scientists in history of sciences. The others recall Melsens's proposal that potassium iodide can cure and prevent lead and mercury poisoning, and Chevreul's researches about colours seeing.

  9. Mercuric iodide X-ray camera

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  10. Composition and properties of thallium mercury iodide

    SciTech Connect

    Kennedy, J.H.; Schaupp, C.; Yang, Yuan; Zhang, Zhengming ); Novinson, T.; Hoffard, T. )

    1990-10-01

    Conflicting reports exist in the literature concerning the composition of thallium mercury iodide. Solid state synthesis with HgI{sub 2} and TlI has been reported to give Tl{sub 4}HgI{sub 6} while synthesis from solution has been reported to give Tl{sub 2}HgI{sub 4}. In this report the authors show that the orange compound precipitating from solution is actually a 1:1 mole ratio mixture of Tl{sub 4}HgI{sub 6} and HgI{sub 2}. Pure Tl{sub 4}HgI{sub 6}, which is yellow, can be produced by heating the mixture at 100{degree}C for several days to volatilize HgI{sub 2} or more simply, by adding Tl(I) to a solution containing 2:1 KI:K{sub 2}HgI{sub 4} to provide the additional iodide ions needed for Tl{sub 4}HgI{sub 6}. Tl{sub 4}HgI{sub 6}, unlike Ag{sub 2}HgI{sub 4} and Cu{sub 2}HgI{sub 4}, has no sharp thermochromic changes and has no measurable ionic conductivity. This provides another example of the significant role the metal ion plans in determining structure and properties of metal mercury iodide compounds.

  11. Formulation and optimization of potassium iodide tablets

    PubMed Central

    Al-Achi, Antoine; Patel, Binit

    2014-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light. PMID:25685048

  12. Formulation and optimization of potassium iodide tablets.

    PubMed

    Al-Achi, Antoine; Patel, Binit

    2015-01-01

    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light.

  13. General anesthetic octanol and related compounds activate wild-type and delF508 cystic fibrosis chloride channels.

    PubMed

    Marcet, Brice; Becq, Frédéric; Norez, Caroline; Delmas, Patrick; Verrier, Bernard

    2004-03-01

    1. Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel is defective during cystic fibrosis (CF). Activators of the CFTR Cl(-) channel may be useful for therapy of CF. Here, we demonstrate that a range of general anesthetics like normal-alkanols (n-alkanols) and related compounds can stimulate the Cl(-) channel activity of wild-type CFTR and delF508-CFTR mutant. 2. The effects of n-alkanols like octanol on CFTR activity were measured by iodide ((125)I) efflux and patch-clamp techniques on three distinct cellular models: (1). CFTR-expressing Chinese hamster ovary cells, (2). human airway Calu-3 epithelial cells and (3). human airway JME/CF15 epithelial cells which express the delF508-CFTR mutant. 3. Our data show for the first time that n-alkanols activate both wild-type CFTR and delF508-CFTR mutant. Octanol stimulated (125)I efflux in a dose-dependent manner in CFTR-expressing cells (wild-type and delF508) but not in cell lines lacking CFTR. (125)I efflux and Cl(-) currents induced by octanol were blocked by glibenclamide but insensitive to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid, as expected for a CFTR Cl(-) current. 4. CFTR activation by octanol was neither due to cell-to-cell uncoupling properties of octanol nor to an intracellular cAMP increase. CFTR activation by octanol requires phosphorylation by protein kinase-A (PKA) since it was prevented by H-89, a PKA inhibitor. 5. n-Alkanols chain length was an important determinant for channel activation, with rank order of potencies: 1-heptanol<1-octanol<2-octanol<1-decanol. Our findings may be of valuable interest for developing novel therapeutic strategies for CF.

  14. Critical role of CFTR-dependent lipid rafts in cigarette smoke-induced lung epithelial injury

    PubMed Central

    Bodas, Manish; Min, Taehong

    2011-01-01

    Apoptosis of lung epithelial and endothelial cells by exposure to cigarette smoke (CS) severely damages the lung tissue, leading to the pathogenesis of emphysema, but the underlying mechanisms are poorly understood. We have recently established a direct correlation between decreased lipid raft CFTR expression and emphysema progression through increased ceramide accumulation. In the present work, we investigated the role of membrane CFTR in regulating apoptosis and autophagy responses to CS exposure. We report a constitutive and CS-induced increase in the number of TUNEL-positive apoptotic cells in Cftr−/− murine lungs compared with Cftr+/+ murine lungs that also correlated with a concurrent increase in the expression of ceramide, NF-κB, CD95/Fas, lipid raft proteins, and zonula occludens (ZO)-1/2 (P < 0.001). We also verified that stable wild-type CFTR expression in CFBE41o− cells controls constitutively elevated caspase-3/7 activity (−1.6-fold, P < 0.001). Our data suggest that membrane CFTR regulates ceramide-enriched lipid raft signaling platforms required for the induction of Fas-mediated apoptotic signaling. In addition, lack of membrane CFTR also modulates autophagy, as demonstrated by the significant increase in constitutive (P < 0.001) and CSE-induced (P < 0.005) perinuclear accumulation of green fluorescent protein-microtubule-associated protein 1 light chain-3 (LC3) in the absence of membrane CFTR (CFBE41o− cells). The significant constitutive and CS-induced increase (P < 0.05) in p62 and LC3β expression in CFTR-deficient cells and mice corroborates these findings and suggest a defective autophagy response in the absence of membrane CFTR. Our data demonstrate the critical role of membrane-localized CFTR in regulating apoptotic and autophagic responses in CS-induced lung injury that may be involved in the pathogenesis of severe emphysema. PMID:21378025

  15. [Post-translational ligation and function of dual-vector transferred split CFTR gene].

    PubMed

    Zhu, Fu-Xiang; Liu, Ze-Long; Qu, Hui-Ge; Chi, Xiao-Yan

    2010-01-01

    The mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to an autosomal recessive genetic disorder cystic fibrosis (CF). The gene therapy for CF using adeno-associated virus (AAV) vectors delivering CFTR gene is restricted by the contents limitation of AAV vectors. In this study the split CFTR genes severed at its regulatory domain were delivered by a dual-vector system with an intein-mediated protein trans-splicing as a technique to investigate the post-translational ligation of CFTR half proteins and its function as a chloride ion channel. A pair of eukaryotic expression vectors was constructed by breaking the human CFTR cDNA before Ser712 codon and fusing with Ssp DnaB intein coding sequences. After co-transfection into baby hamster kidney (BHK) cells followed by transient expression, patch clamps were carried out to record the chloride current of whole-cell and the activity of a single channel, and the ligation of two halves of CFTR was observed by Western blotting. The results showed that the intein-fused half genes co-transfected cells displayed a high whole cell chloride current and activity of a single channel indicating the functional recovery of chloride channel, and an intact CFTR protein band was figured out by CFTR-specific antibodies indicating that intein can efficiently ligate the separately expressed half CFTR proteins. The data demonstrated that protein splicing strategy could be used as a strategy in delivering CFTR gene by two vectors, encouraging our ongoing research program on dual AAV vector system based gene transfer in gene therapy for cystic fibrosis.

  16. Lower Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Promotes the Proliferation and Migration of Endometrial Carcinoma

    PubMed Central

    Xia, Xian; Wang, Jie; Liu, Yuan; Yue, Ming

    2017-01-01

    Background The incidence and death rates of endometrial cancer are alarmingly increasing. The diagnosis and treatment of endometrial cancer is crucial to decreasing mortality. Cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the adenosine triphosphate (ATP)-binding cassette transporter family and plays an essential role in anion regulation and tissue homeostasis of various epithelia. This study explored the expression of CFTR in endometrial carcinoma and the role of CFTR in proliferation and migration of endometrial carcinoma cells. Material/Methods Immunohistochemistry and real-time (RT)-PCR were used to test the expression of CFTR in normal endometrium and endometrial carcinoma. CFTR inhibitor was used to restrain the expression of CFTR on the endometrial carcinoma, the effects on the proliferation and migration of endometrial carcinoma cells were also studied. RT-PCR was performed to test the expression of mir-125b after restraining CFTR. Proliferation and migration capability of endometrial carcinoma cells were detected after transfection of endometrial carcinoma cells with mir-125b mimic. Results Compared with cells from normal endometrium, the expression of CFTR was significantly upregulated in endometrial carcinoma cells. After adding CFTR(inh)172, the capability for proliferation and transfer of endometrial carcinoma cells was strengthened, the expression of mir-125b was reduced, and after transfection with mir-125b mimics entering the endometrial carcinoma cells, the ability of the proliferation and transfer of endometrial carcinoma cells was also reduced. Conclusions The high expression of CFTR in the endometrial carcinoma cells played a pivotal role in restraining the proliferation and transfer of endometrial carcinoma cells. PMID:28225751

  17. Potentiator ivacaftor abrogates pharmacological correction of ΔF508 CFTR in cystic fibrosis.

    PubMed

    Cholon, Deborah M; Quinney, Nancy L; Fulcher, M Leslie; Esther, Charles R; Das, Jhuma; Dokholyan, Nikolay V; Randell, Scott H; Boucher, Richard C; Gentzsch, Martina

    2014-07-23

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR). Newly developed "correctors" such as lumacaftor (VX-809) that improve CFTR maturation and trafficking and "potentiators" such as ivacaftor (VX-770) that enhance channel activity may provide important advances in CF therapy. Although VX-770 has demonstrated substantial clinical efficacy in the small subset of patients with a mutation (G551D) that affects only channel activity, a single compound is not sufficient to treat patients with the more common CFTR mutation, ΔF508. Thus, patients with ΔF508 will likely require treatment with both correctors and potentiators to achieve clinical benefit. However, whereas the effectiveness of acute treatment with this drug combination has been demonstrated in vitro, the impact of chronic therapy has not been established. In studies of human primary airway epithelial cells, we found that both acute and chronic treatment with VX-770 improved CFTR function in cells with the G551D mutation, consistent with clinical studies. In contrast, chronic VX-770 administration caused a dose-dependent reversal of VX-809-mediated CFTR correction in ΔF508 homozygous cultures. This result reflected the destabilization of corrected ΔF508 CFTR by VX-770, markedly increasing its turnover rate. Chronic VX-770 treatment also reduced mature wild-type CFTR levels and function. These findings demonstrate that chronic treatment with CFTR potentiators and correctors may have unexpected effects that cannot be predicted from short-term studies. Combining these drugs to maximize rescue of ΔF508 CFTR may require changes in dosing and/or development of new potentiator compounds that do not interfere with CFTR stability.

  18. Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics.

    PubMed

    Strug, Lisa J; Gonska, Tanja; He, Gengming; Keenan, Katherine; Ip, Wan; Boëlle, Pierre-Yves; Lin, Fan; Panjwani, Naim; Gong, Jiafen; Li, Weili; Soave, David; Xiao, Bowei; Tullis, Elizabeth; Rabin, Harvey; Parkins, Michael D; Price, April; Zuberbuhler, Peter C; Corvol, Harriet; Ratjen, Felix; Sun, Lei; Bear, Christine E; Rommens, Johanna M

    2016-08-29

    Cystic fibrosis is realizing the promise of personalized medicine. Recent advances in drug development that target the causal CFTR directly result in lung function improvement, but variability in response is demanding better prediction of outcomes to improve management decisions. The genetic modifier SLC26A9 contributes to disease severity in the CF pancreas and intestine at birth and here we assess its relationship with disease severity and therapeutic response in the airways. SLC26A9 association with lung disease was assessed in individuals from the Canadian and French CF Gene Modifier consortia with CFTR-gating mutations and in those homozygous for the common Phe508del mutation. Variability in response to a CFTR-directed therapy attributed to SLC26A9 genotype was assessed in Canadian patients with gating mutations. A primary airway model system determined if SLC26A9 shows modification of Phe508del CFTR function upon treatment with a CFTR corrector.In those with gating mutations that retain cell surface-localized CFTR we show that SLC26A9 modifies lung function while this is not the case in individuals homozygous for Phe508del where cell surface expression is lacking. Treatment response to ivacaftor, which aims to improve CFTR-channel opening probability in patients with gating mutations, shows substantial variability in response, 28% of which can be explained by rs7512462 in SLC26A9 (P = 0.0006). When homozygous Phe508del primary bronchial cells are treated to restore surface CFTR, SLC26A9 likewise modifies treatment response (P = 0.02). Our findings indicate that SLC26A9 airway modification requires CFTR at the cell surface, and that a common variant in SLC26A9 may predict response to CFTR-directed therapeutics.

  19. Rab4GTPase modulates CFTR function by impairing channel expression at plasma membrane

    SciTech Connect

    Saxena, Sunil K. . E-mail: ssaxena@stevens.edu; Kaur, Simarna; George, Constantine

    2006-03-03

    Cystic fibrosis (CF), an autosomal recessive disorder, is caused by the disruption of biosynthesis or the function of a membrane cAMP-activated chloride channel, CFTR. CFTR regulatory mechanisms include recruitment of channel proteins to the cell surface from intracellular pools and by protein-protein interactions. Rab proteins are small GTPases involved in regulated trafficking controlling vesicle docking and fusion. Rab4 controls recycling events from endosome to the plasma membrane, fusion, and degradation. The colorectal cell line HT-29 natively expresses CFTR and responds to cAMP stimulation with an increase in CFTR-mediated currents. Rab4 over-expression in HT-29 cells inhibits both basal and cAMP-stimulated CFTR-mediated currents. GTPase-deficient Rab4Q67L and GDP locked Rab4S22N both inhibit channel activity, which appears characteristically different. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. The pull-down and immunoprecipitation experiments suggest that Rab4 physically interacts with CFTR through protein-protein interaction. Biotinylation with cell impermeant NHS-Sulfo-SS-Biotin implies that Rab4 impairs CFTR expression at cell surface. The enhanced cytosolic CFTR indicates that Rab4 expression restrains CFTR appearance at the cell membrane. The study suggests that Rab4 regulates the channel through multiple mechanisms that include protein-protein interaction, GTP/GDP exchange, and channel protein trafficking. We propose that Rab4 is a dynamic molecule with a significant role in CFTR function.

  20. CFTR-regulated MAPK/NF-κB signaling in pulmonary inflammation in thermal inhalation injury

    PubMed Central

    Dong, Zhi Wei; Chen, Jing; Ruan, Ye Chun; Zhou, Tao; Chen, Yu; Chen, YaJie; Tsang, Lai Ling; Chan, Hsiao Chang; Peng, Yi Zhi

    2015-01-01

    The mechanism underlying pulmonary inflammation in thermal inhalation injury remains elusive. Cystic fibrosis, also hallmarked with pulmonary inflammation, is caused by mutations in CFTR, the expression of which is temperature-sensitive. We investigated whether CFTR is involved in heat-induced pulmonary inflammation. We applied heat-treatment in 16HBE14o- cells with CFTR knockdown or overexpression and heat-inhalation in rats in vivo. Heat-treatment caused significant reduction in CFTR and, reciprocally, increase in COX-2 at early stages both in vitro and in vivo. Activation of ERK/JNK, NF-κB and COX-2/PGE2 were detected in heat-treated cells, which were mimicked by knockdown, and reversed by overexpression of CFTR or VX-809, a reported CFTR mutation corrector. JNK/ERK inhibition reversed heat-/CFTR-knockdown-induced NF-κB activation, whereas NF-κB inhibitor showed no effect on JNK/ERK. IL-8 was augmented by heat-treatment or CFTR-knockdown, which was abolished by inhibition of NF-κB, JNK/ERK or COX-2. Moreover, in vitro or in vivo treatment with curcumin, a natural phenolic compound, significantly enhanced CFTR expression and reversed the heat-induced increases in COX-2/PGE2/IL-8, neutrophil infiltration and tissue damage in the airway. These results have revealed a CFTR-regulated MAPK/NF-κB pathway leading to COX-2/PGE2/IL-8 activation in thermal inhalation injury, and demonstrated therapeutic potential of curcumin for alleviating heat-induced pulmonary inflammation. PMID:26515683

  1. An unexpected effect of TNF-α on F508del-CFTR maturation and function.

    PubMed

    Bitam, Sara; Pranke, Iwona; Hollenhorst, Monika; Servel, Nathalie; Moquereau, Christelle; Tondelier, Danielle; Hatton, Aurélie; Urbach, Valérie; Sermet-Gaudelus, Isabelle; Hinzpeter, Alexandre; Edelman, Aleksander

    2015-01-01

    Cystic fibrosis (CF) is a multifactorial disease caused by mutations in the cystic fibrosis transmembrane conductance regulator gene ( CFTR), which encodes a cAMP-dependent Cl (-) channel. The most frequent mutation, F508del, leads to the synthesis of a prematurely degraded, otherwise partially functional protein. CFTR is expressed in many epithelia, with major consequences in the airways of patients with CF, characterized by both fluid transport abnormalities and persistent inflammatory responses. The relationship between the acute phase of inflammation and the expression of wild type (WT) CFTR or F508del-CFTR is poorly understood. The aim of the present study was to investigate this effect. The results show that 10 min exposure to TNF-alpha (0.5-50ng/ml) of F508del-CFTR-transfected HeLa cells and human bronchial cells expressing F508del-CFTR in primary culture (HBE) leads to the maturation of F508del-CFTR and induces CFTR chloride currents. The enhanced CFTR expression and function upon TNFα is sustained, in HBE cells, for at least 24 h. The underlying mechanism of action involves a protein kinase C (PKC) signaling pathway, and occurs through insertion of vesicles containing F508del-CFTR to the plasma membrane, with TNFα behaving as a corrector molecule. In conclusion, a novel and unexpected action of TNFα has been discovered and points to the importance of systematic studies on the roles of inflammatory mediators in the maturation of abnormally folded proteins in general and in the context of CF in particular.

  2. Lower Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Promotes the Proliferation and Migration of Endometrial Carcinoma.

    PubMed

    Xia, Xian; Wang, Jie; Liu, Yuan; Yue, Ming

    2017-02-22

    BACKGROUND The incidence and death rates of endometrial cancer are alarmingly increasing. The diagnosis and treatment of endometrial cancer is crucial to decreasing mortality. Cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the adenosine triphosphate (ATP)-binding cassette transporter family and plays an essential role in anion regulation and tissue homeostasis of various epithelia. This study explored the expression of CFTR in endometrial carcinoma and the role of CFTR in proliferation and migration of endometrial carcinoma cells. MATERIAL AND METHODS Immunohistochemistry and real-time (RT)-PCR were used to test the expression of CFTR in normal endometrium and endometrial carcinoma. CFTR inhibitor was used to restrain the expression of CFTR on the endometrial carcinoma, the effects on the proliferation and migration of endometrial carcinoma cells were also studied. RT-PCR was performed to test the expression of mir-125b after restraining CFTR. Proliferation and migration capability of endometrial carcinoma cells were detected after transfection of endometrial carcinoma cells with mir-125b mimic. RESULTS Compared with cells from normal endometrium, the expression of CFTR was significantly upregulated in endometrial carcinoma cells. After adding CFTR(inh)172, the capability for proliferation and transfer of endometrial carcinoma cells was strengthened, the expression of mir-125b was reduced, and after transfection with mir-125b mimics entering the endometrial carcinoma cells, the ability of the proliferation and transfer of endometrial carcinoma cells was also reduced. CONCLUSIONS The high expression of CFTR in the endometrial carcinoma cells played a pivotal role in restraining the proliferation and transfer of endometrial carcinoma cells.

  3. Manipulating proteostasis to repair the F508del-CFTR defect in cystic fibrosis.

    PubMed

    Esposito, Speranza; Tosco, Antonella; Villella, Valeria R; Raia, Valeria; Kroemer, Guido; Maiuri, Luigi

    2016-12-01

    Cystic fibrosis (CF) is a lethal monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that entails the (diagnostic) increase in sweat electrolyte concentrations, progressive lung disease with chronic inflammation and recurrent bacterial infections, pancreatic insufficiency, and male infertility. Therapies aimed at restoring the CFTR defect have emerged. Thus, a small molecule which facilitates chloride channel opening, the potentiator Ivacaftor, has been approved for the treatment of CF patients bearing a particular class of rare CFTR mutations. However, small molecules that directly target the most common misfolded CFTR mutant, F508del, and improve its intracellular trafficking in vitro, have been less effective than expected when tested in CF patients, even in combination with Ivacaftor. Thus, new strategies are required to circumvent the F508del-CFTR defect. Airway and intestinal epithelial cells from CF patients bearing the F508del-CFTR mutation exhibit an impressive derangement of cellular proteostasis, with oxidative stress, overactivation of the tissue transglutaminase (TG2), and disabled autophagy. Proteostasis regulators such as cysteamine can rescue and stabilize a functional F508del-CFTR protein through suppressing TG2 activation and restoring autophagy in vivo in F508del-CFTR homozygous mice, in vitro in CF patient-derived cell lines, ex vivo in freshly collected primary patient's nasal cells, as well as in a pilot clinical trial involving homozygous F508del-CFTR patients. Here, we discuss how the therapeutic normalization of defective proteostasis can be harnessed for the treatment of CF patients with the F508del-CFTR mutation.

  4. Potent and selective mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K; Johansson, Jan

    2015-03-24

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  5. Targeting the Intracellular Environment in Cystic Fibrosis: Restoring Autophagy as a Novel Strategy to Circumvent the CFTR Defect

    PubMed Central

    Villella, Valeria Rachela; Esposito, Speranza; Bruscia, Emanuela M.; Maiuri, Maria Chiara; Raia, Valeria; Kroemer, Guido; Maiuri, Luigi

    2013-01-01

    Cystic fibrosis (CF) patients harboring the most common deletion mutation of the CF transmembrane conductance regulator (CFTR), F508del, are poor responders to potentiators of CFTR channel activity which can be used to treat a small subset of CF patients who genetically carry plasma membrane (PM)-resident CFTR mutants. The misfolded F508del-CFTR protein is unstable in the PM even if rescued by pharmacological agents that prevent its intracellular retention and degradation. CF is a conformational disease in which defective CFTR induces an impressive derangement of general proteostasis resulting from disabled autophagy. In this review, we discuss how rescuing Beclin 1 (BECN1), a major player of autophagosome formation, either by means of direct gene transfer or indirectly by administration of proteostasis regulators, could stabilize F508del-CFTR at the PM. We focus on the relationship between the improvement of peripheral proteostasis and CFTR PM stability in F508del-CFTR homozygous bronchial epithelia or mouse lungs. Moreover, this article reviews recent pre-clinical evidence indicating that targeting the intracellular environment surrounding the misfolded mutant CFTR instead of protein itself could constitute an attractive therapeutic option to sensitize patients carrying the F508del-CFTR mutation to the beneficial action of CFTR potentiators on lung inflammation. PMID:23346057

  6. Metformin treatment of diabetes mellitus increases the risk for pancreatitis in patients bearing the CFTR-mutation S573C.

    PubMed

    Kongsuphol, Patthara; Cassidy, Diane; Romeiras, Francisco; Schreiber, Rainer; Mehta, Anil; Kunzelmann, Karl

    2010-01-01

    Metformin use in diabetes can cause acidosis and might be linked to pancreatitis. Here, we mechanistically focus on this relationship via a point mutation in the cystic fibrosis transmembrane conductance regulator (CFTR; ABCC7). CFTR is an ATP-hydrolyzing, cAMP/PKA-activated anion channel regulating pancreatic bicarbonate/chloride secretion across duct-facing apical membranes in epithelia. CFTR has two nucleotide binding domains (NBD1/2) which clamp two ATP molecules across their opposed, inverted interfacial surfaces which generates anion-conductance after ATP hydrolysis. Notably, CFTR mutations not causal for classical cystic fibrosis segregate with unexplained pancreatitis and one of these lies in NBD1 near its ATP-clamp (S573C; close to the Walker B aspartate D572). We recently showed that after raising [cAMP], wt-CFTR chloride-conductance, when expressed in Xenopus oocytes, remains elevated despite the presence of metformin. Yet here, we find that S573C-CFTR manifests a metformin-inhibitable whole cell chloride-conductance after cAMP elevation. In the absence of metformin, cAMP-activated S573C-CFTR also displays a reduced anion-conductance relative to wt-CFTR. Furthermore, intra-oocyte acidification inhibited wt-CFTR and abolished S573C-CFTR conductance. We conclude that defective S573C-CFTR remains both poorly conducting and inhibited by metformin and intracellular acidosis. This might explain the propensity to pancreatitis with this rare CF mutation.

  7. Anchored PDE4 regulates chloride conductance in wild-type and ΔF508-CFTR human airway epithelia.

    PubMed

    Blanchard, Elise; Zlock, Lorna; Lao, Anna; Mika, Delphine; Namkung, Wan; Xie, Moses; Scheitrum, Colleen; Gruenert, Dieter C; Verkman, Alan S; Finkbeiner, Walter E; Conti, Marco; Richter, Wito

    2014-02-01

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that impair its expression and/or chloride channel function. Here, we provide evidence that type 4 cyclic nucleotide phosphodiesterases (PDE4s) are critical regulators of the cAMP/PKA-dependent activation of CFTR in primary human bronchial epithelial cells. In non-CF cells, PDE4 inhibition increased CFTR activity under basal conditions (ΔISC 7.1 μA/cm(2)) and after isoproterenol stimulation (increased ΔISC from 13.9 to 21.0 μA/cm(2)) and slowed the return of stimulated CFTR activity to basal levels by >3-fold. In cells homozygous for ΔF508-CFTR, the most common mutation found in CF, PDE4 inhibition alone produced minimal channel activation. However, PDE4 inhibition strongly amplified the effects of CFTR correctors, drugs that increase expression and membrane localization of CFTR, and/or CFTR potentiators, drugs that increase channel gating, to reach ∼ 25% of the chloride conductance observed in non-CF cells. Biochemical studies indicate that PDE4s are anchored to CFTR and mediate a local regulation of channel function. Taken together, our results implicate PDE4 as an important determinant of CFTR activity in airway epithelia, and support the use of PDE4 inhibitors to potentiate the therapeutic benefits of CFTR correctors and potentiators.

  8. CO₂ efflux from shrimp ponds in Indonesia.

    PubMed

    Sidik, Frida; Lovelock, Catherine E

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere.

  9. Efflux-Mediated Drug Resistance in Bacteria: an Update

    PubMed Central

    Li, Xian-Zhi; Nikaido, Hiroshi

    2010-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past five years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria. PMID:19678712

  10. Identification of a multidrug efflux pump in Mycobacterium smegmatis.

    PubMed

    Bansal, Ankita; Mallik, Dhriti; Kar, Debasish; Ghosh, Anindya S

    2016-07-01

    Cell wall impermeability and active efflux of drugs are among the primary reasons for drug resistance in mycobacteria. Efflux pumps are tripartite membrane localized transport proteins that expel drug molecules outside the cells. Several of such efflux pumps are annotated in mycobacteria, but few have been characterized, like MSMEG_2991, a putative efflux pump permease of Mycobacterium smegmatis To substantiate this, we overexpressed MSMEG_2991 protein in Escherichia coli 2443. Expression of MSMEG_2991 elevated the resistance towards structurally unrelated groups of antibiotics. An active antibiotic efflux pump nature of MSMEG_2991 was revealed by assessing the acquisition of ciprofloxacin in the absence and presence of the efflux pump inhibitor, carbonyl cyanide m-chlorophenyl hydrazone, indicating the involvement of proton-motive force (pmf) during the efflux activity. MSMEG_2991 expression elevated biofilm formation in E. coli by 4-fold, keeping parity to some of the earlier reported efflux pumps. In silico analysis suggested the presence of 12 transmembrane helices in MSMEG_2991 resembling EmrD efflux pump of E. coli Based on in vivo and in silico analyses, MSMEG_2991 may be designated as a pmf-mediated multidrug efflux pump protein that expels diverse groups of antibiotics and might as well be involved in the biofilm enhancement.

  11. Copper-Catalyzed Carboxylation of Aryl Iodides with Carbon Dioxide

    PubMed Central

    Tran-Vu, Hung; Daugulis, Olafs

    2013-01-01

    A method for carboxylation of aryl iodides with carbon dioxide has been developed. The reaction employs low loadings of copper iodide/TMEDA or DMEDA catalyst, 1 atm of CO2, DMSO or DMA solvent, and proceeds at 25–70 °C. Good functional group tolerance is observed, with ester, bromide, chloride, fluoride, ether, hydroxy, amino, and ketone functionalities tolerated. Additionally, hindered aryl iodides such as iodomesitylene can also be carboxylated PMID:24288654

  12. Creation and characterization of an airway epithelial cell line for stable expression of CFTR variants

    PubMed Central

    Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.

    2016-01-01

    Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805

  13. HNF1alpha is involved in tissue-specific regulation of CFTR gene expression.

    PubMed Central

    Mouchel, Nathalie; Henstra, Sytse A; McCarthy, Victoria A; Williams, Sarah H; Phylactides, Marios; Harris, Ann

    2004-01-01

    The CFTR (cystic fibrosis transmembrane conductance regulator) gene shows a complex pattern of expression with tissue-specific and temporal regulation. However, the genetic elements and transcription factors that control CFTR expression are largely unidentified. The CFTR promoter does not confer tissue specificity on gene expression, suggesting that there are regulatory elements outside the upstream region. Analysis of potential regulatory elements defined as DNase 1-hypersensitive sites within introns of the gene revealed multiple predicted binding sites for the HNF1alpha (hepatocyte nuclear factor 1alpha) transcription factor. HNF1alpha, which is expressed in many of the same epithelial cell types as CFTR and shows similar differentiation-dependent changes in gene expression, bound to these sites in vitro. Overexpression of heterologous HNF1alpha augmented CFTR transcription in vivo. In contrast, antisense inhibition of HNF1 alpha transcription decreased the CFTR mRNA levels. Hnf1 alpha knockout mice showed lower levels of CFTR mRNA in their small intestine in comparison with wild-type mice. This is the first report of a transcription factor, which confers tissue specificity on the expression of this important disease-associated gene. PMID:14656222

  14. The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.

    PubMed

    Mehta, Anil

    2007-11-01

    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.

  15. Unravelling druggable signalling networks that control F508del-CFTR proteostasis

    PubMed Central

    Hegde, Ramanath Narayana; Parashuraman, Seetharaman; Capuani, Fabrizio; Carissimo, Annamaria; Carrella, Diego; Belcastro, Vincenzo; Subramanian, Advait; Bounti, Laura; Persico, Maria; Carlile, Graeme; Galietta, Luis; Thomas, David Y; Di Bernardo, Diego; Luini, Alberto

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in CF transmembrane conductance regulator (CFTR). The most frequent mutation (F508del-CFTR) results in altered proteostasis, that is, in the misfolding and intracellular degradation of the protein. The F508del-CFTR proteostasis machinery and its homeostatic regulation are well studied, while the question whether ‘classical’ signalling pathways and phosphorylation cascades might control proteostasis remains barely explored. Here, we have unravelled signalling cascades acting selectively on the F508del-CFTR folding-trafficking defects by analysing the mechanisms of action of F508del-CFTR proteostasis regulator drugs through an approach based on transcriptional profiling followed by deconvolution of their gene signatures. Targeting multiple components of these signalling pathways resulted in potent and specific correction of F508del-CFTR proteostasis and in synergy with pharmacochaperones. These results provide new insights into the physiology of cellular proteostasis and a rational basis for developing effective pharmacological correctors of the F508del-CFTR defect. DOI: http://dx.doi.org/10.7554/eLife.10365.001 PMID:26701908

  16. Analysis of long-range interactions in primary human cells identifies cooperative CFTR regulatory elements

    PubMed Central

    Moisan, Stéphanie; Berlivet, Soizik; Ka, Chandran; Gac, Gérald Le; Dostie, Josée; Férec, Claude

    2016-01-01

    A mechanism by which control DNA elements regulate transcription over large linear genomic distances is by achieving close physical proximity with genes, and looping of the intervening chromatin paths. Alterations of such regulatory ‘chromatin looping’ systems are likely to play a critical role in human genetic disease at large. Here, we studied the spatial organization of a ≈790 kb locus encompassing the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Dysregulation of CFTR is responsible for cystic fibrosis, which is the most common lethal genetic disorder in Caucasian populations. CFTR is a relatively large gene of 189 kb with a rather complex tissue-specific and temporal expression profile. We used chromatin conformation at the CFTR locus to identify new DNA sequences that regulate its transcription. By comparing 5C chromatin interaction maps of the CFTR locus in expressing and non-expressing human primary cells, we identified several new contact points between the CFTR promoter and its surroundings, in addition to regions featuring previously described regulatory elements. We demonstrate that two of these novel interacting regions cooperatively increase CFTR expression, and suggest that the new enhancer elements located on either side of the gene are brought together through chromatin looping via CTCF. PMID:26615198

  17. Analysis of long-range interactions in primary human cells identifies cooperative CFTR regulatory elements.

    PubMed

    Moisan, Stéphanie; Berlivet, Soizik; Ka, Chandran; Le Gac, Gérald; Dostie, Josée; Férec, Claude

    2016-04-07

    A mechanism by which control DNA elements regulate transcription over large linear genomic distances is by achieving close physical proximity with genes, and looping of the intervening chromatin paths. Alterations of such regulatory 'chromatin looping' systems are likely to play a critical role in human genetic disease at large. Here, we studied the spatial organization of a ≈790 kb locus encompassing the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Dysregulation of CFTR is responsible for cystic fibrosis, which is the most common lethal genetic disorder in Caucasian populations. CFTR is a relatively large gene of 189 kb with a rather complex tissue-specific and temporal expression profile. We used chromatin conformation at the CFTR locus to identify new DNA sequences that regulate its transcription. By comparing 5C chromatin interaction maps of the CFTR locus in expressing and non-expressing human primary cells, we identified several new contact points between the CFTR promoter and its surroundings, in addition to regions featuring previously described regulatory elements. We demonstrate that two of these novel interacting regions cooperatively increase CFTR expression, and suggest that the new enhancer elements located on either side of the gene are brought together through chromatin looping via CTCF.

  18. Unravelling druggable signalling networks that control F508del-CFTR proteostasis.

    PubMed

    Hegde, Ramanath Narayana; Parashuraman, Seetharaman; Iorio, Francesco; Ciciriello, Fabiana; Capuani, Fabrizio; Carissimo, Annamaria; Carrella, Diego; Belcastro, Vincenzo; Subramanian, Advait; Bounti, Laura; Persico, Maria; Carlile, Graeme; Galietta, Luis; Thomas, David Y; Di Bernardo, Diego; Luini, Alberto

    2015-12-23

    Cystic fibrosis (CF) is caused by mutations in CF transmembrane conductance regulator (CFTR). The most frequent mutation (F508del-CFTR) results in altered proteostasis, that is, in the misfolding and intracellular degradation of the protein. The F508del-CFTR proteostasis machinery and its homeostatic regulation are well studied, while the question whether 'classical' signalling pathways and phosphorylation cascades might control proteostasis remains barely explored. Here, we have unravelled signalling cascades acting selectively on the F508del-CFTR folding-trafficking defects by analysing the mechanisms of action of F508del-CFTR proteostasis regulator drugs through an approach based on transcriptional profiling followed by deconvolution of their gene signatures. Targeting multiple components of these signalling pathways resulted in potent and specific correction of F508del-CFTR proteostasis and in synergy with pharmacochaperones. These results provide new insights into the physiology of cellular proteostasis and a rational basis for developing effective pharmacological correctors of the F508del-CFTR defect.

  19. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function.

    PubMed

    Atlante, Anna; Favia, Maria; Bobba, Antonella; Guerra, Lorenzo; Casavola, Valeria; Reshkin, Stephan Joel

    2016-06-01

    Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4'-trimethylangelicin, which act as "correctors" for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy.

  20. Iodide transport and its regulation in the thyroid gland

    SciTech Connect

    Price, D.J.

    1987-01-01

    This study was undertaken to examine the autoregulatory mechanism of iodide induced suppression of subsequently determined iodide transport activity in the thyroid gland. Two model systems were developed to identify the putative, transport-related, iodine-containing, inhibitory factor responsible for autoregulation. The first system was a maternal and fetal rabbit thyroid tissue slice preparation in which iodide pretreatment inhibited the maternal /sup 125/I-T/M ratio by 30% and had no significant effect on fetal iodide transport. In the second system, the role of protein synthesis in the autoregulatory phenomenon was studied. Cat thyroid slices pretreated with0.1 mM cycloheximide for 60 min prior to preexposure to excess iodide demonstrated a significant reduction in the degree of iodide included autoregulation. In both of these systems iodide induced suppression of cAMP accumulation remained intact. These findings suggest (1) fetal rabbit thyroid lacks the autoregulatory mechanism of iodide transport and (2) protein synthesis is involved in the mechanism of thyroid autoregulation of iodide transport.

  1. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases.

    PubMed

    Luo, J; Pato, M D; Riordan, J R; Hanrahan, J W

    1998-05-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity declines rapidly when excised from transfected Chinese hamster ovary (CHO) or human airway cells because of membrane-associated phosphatase activity. In the present study, we found that CFTR channels usually remained active in patches excised from baby hamster kidney (BHK) cells overexpressing CFTR. Those patches with stable channel activity were used to investigate the regulation of CFTR by exogenous protein phosphatases (PP). Adding PP2A, PP2C, or alkaline phosphatase to excised patches reduced CFTR channel activity by > 90% but did not abolish it completely. PP2B caused weak deactivation, whereas PP1 had no detectable effect on open probability (Po). Interestingly, the time course of deactivation by PP2C was identical to that of the spontaneous rundown observed in some patches after excision. PP2C and PP2A had distinct effects on channel gating Po declined during exposure to exogenous PP2C (and during spontaneous rundown, when it was observed) without any change in mean burst duration. By contrast, deactivation by exogenous PP2A was associated with a dramatic shortening of burst duration similar to that reported previously in patches from cardiac cells during deactivation of CFTR by endogenous phosphatases. Rundown of CFTR-mediated current across intact T84 epithelial cell monolayers was insensitive to toxic levels of the PP2A inhibitor calyculin A. These results demonstrate that exogenous PP2C is a potent regulator of CFTR activity, that its effects on single-channel gating are distinct from those of PP2A but similar to those of endogenous phosphatases in CHO, BHK, and T84 epithelial cells, and that multiple protein phosphatases may be required for complete deactivation of CFTR channels.

  2. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    PubMed

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-07

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function.

  3. Pulmonary neuroendocrine cells, airway innervation, and smooth muscle are altered in Cftr null mice.

    PubMed

    Pan, Jie; Luk, Catherine; Kent, Geraldine; Cutz, Ernest; Yeger, Herman

    2006-09-01

    The amine- and peptide-producing pulmonary neuroendocrine cells (PNEC) are widely distributed within the airway mucosa of mammalian lung as solitary cells and innervated clusters, neuroepithelial bodies (NEB), which function as airway O2 sensors. These cells express Cftr and hence could play a role in the pathophysiology of cystic fibrosis (CF) lung disease. We performed confocal microscopy and morphometric analysis on lung sections from Cftr-/- (null), Cftr+/+, and Cftr+/- (control) mice at developmental stages E20, P5, P9, and P30 to determine the distribution, frequency, and innervation of PNEC/NEB, innervation and cell mass of airway smooth muscle, and neuromuscular junctions using synaptic vesicle protein 2, smooth muscle actin, and synaptophysin markers, respectively. The mean number of PNEC/NEB in Cftr-/- mice was significantly reduced compared with control mice at E20, whereas comparable or increased numbers were observed postnatally. NEB cells in Cftr null mice showed a significant reduction in intracorpuscular nerve endings compared with control mice, which is consistent with an intrinsic abnormality of the PNEC system. The airways of Cftr-/- mice showed reduced density (approximately 20-30%) of smooth muscle innervation, decreased mean airway smooth muscle mass (approximately 35%), and reduced density (approximately 20%) of nerve endings compared with control mice. We conclude that the airways of Cftr-/- mice exhibit heretofore unappreciated structural alterations affecting cellular and neural components of the PNEC system and airway smooth muscle and its innervation resulting in blunted O2 sensing and reduced airway tonus. Cftr could play a role in the development of the PNEC system, lung innervation, and airway smooth muscle.

  4. Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4)).

    PubMed

    Norimatsu, Yohei; Moran, Aurelia R; MacDonald, Kelvin D

    2012-09-28

    The goal of this study was to determine the mechanism of lubiprostone activation of epithelial chloride transport. Lubiprostone is a bicyclic fatty acid approved for the treatment of constipation [1]. There is uncertainty, however, as to how lubiprostone increases epithelial chloride transport. Direct stimulation of ClC-2 and CFTR chloride channels as well as stimulation of these channels via the EP(4) receptor has been described [2-5]. To better define this mechanism, two-electrode voltage clamp was used to assay Xenopus oocytes expressing ClC-2, with or without co-expression of the EP(4) receptor or β adrenergic receptor (βAR), for changes in conductance elicited by lubiprostone. Oocytes co-expressing CFTR and either βAR or the EP(4) receptor were also studied. In oocytes co-expressing ClC-2 and βAR conductance was stimulated by hyperpolarization and acidic pH (pH = 6), but there was no response to the β adrenergic agonist, isoproterenol. Oocytes expressing ClC-2 only or co-expressing ClC-2 and EP(4) did not respond to the presence of 0.1, 1, or 10 μM lubiprostone in the superperfusate. Oocytes co-expressing CFTR and βAR did not respond to hyperpolarization, acidic pH, or 1 μM lubiprostone. However, conductance was elevated by isoproterenol and inhibited by CFTR(inh)172. Co-expression of CFTR and EP(4) resulted in lubiprostone-stimulated conductance, which was also sensitive to CFTR(inh)172. The EC(50) for lubiprostone mediated CFTR activation was ~10 nM. These results demonstrate no direct action of lubiprostone on either ClC-2 or CFTR channels expressed in oocytes. However, the results confirm that CFTR can be activated by lubiprostone via the EP(4) receptor in oocytes.

  5. Targeting efflux pumps to overcome antifungal drug resistance.

    PubMed

    Holmes, Ann R; Cardno, Tony S; Strouse, J Jacob; Ivnitski-Steele, Irena; Keniya, Mikhail V; Lackovic, Kurt; Monk, Brian C; Sklar, Larry A; Cannon, Richard D

    2016-08-01

    Resistance to antifungal drugs is an increasingly significant clinical problem. The most common antifungal resistance encountered is efflux pump-mediated resistance of Candida species to azole drugs. One approach to overcome this resistance is to inhibit the pumps and chemosensitize resistant strains to azole drugs. Drug discovery targeting fungal efflux pumps could thus result in the development of azole-enhancing combination therapy. Heterologous expression of fungal efflux pumps in Saccharomyces cerevisiae provides a versatile system for screening for pump inhibitors. Fungal efflux pumps transport a range of xenobiotics including fluorescent compounds. This enables the use of fluorescence-based detection, as well as growth inhibition assays, in screens to discover compounds targeting efflux-mediated antifungal drug resistance. A variety of medium- and high-throughput screens have been used to identify a number of chemical entities that inhibit fungal efflux pumps.

  6. Cysteine String Protein Promotes Proteasomal Degradation of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Increasing Its Interaction with the C Terminus of Hsp70-interacting Protein and Promoting CFTR Ubiquitylation*S⃞

    PubMed Central

    Schmidt, Béla Z.; Watts, Rebecca J.; Aridor, Meir; Frizzell, Raymond A.

    2009-01-01

    Cysteine string protein (Csp) is a J-domain-containing protein whose overexpression blocks the exit of cystic fibrosis transmembrane conductance regulator (CFTR) from the endoplasmic reticulum (ER). Another method of blocking ER exit, the overexpression of Sar1-GTP, however, yielded twice as much immature CFTR compared with Csp overexpression. This finding suggested that Csp not only inhibits CFTR ER exit but also facilitates the degradation of immature CFTR. This was confirmed by treatment with a proteasome inhibitor, which returned the level of immature CFTR to that found in cells expressing Sar1-GTP only. CspH43Q, which does not interact with Hsc70/Hsp70 efficiently, did not promote CFTR degradation, suggesting that the pro-degradative effect of Csp requires Hsc70/Hsp70 binding/activation. In agreement with this, Csp overexpression increased the amount of Hsc70/Hsp70 co-immunoprecipitated with CFTR, whereas overexpression of CspH43Q did not. The Hsc70/Hsp70 binding partner C terminus of Hsp70-interacting protein (CHIP) can target CFTR for proteasome-mediated degradation. Csp overexpression also increased the amount of CHIP co-immunoprecipitated with CFTR. In addition, CHIP interacted directly with Csp, which was confirmed by in vitro binding experiments. Csp overexpression also increased CFTR ubiquitylation and reduced the half-life of immature CFTR. These findings indicate that Csp not only regulates the exit of CFTR from the ER, but that this action is accompanied by Hsc70/Hsp70 and CHIP-mediated CFTR degradation. PMID:19098309

  7. Europium-doped barium bromide iodide

    SciTech Connect

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  8. The addition of iodine to tetramethylammonium iodide

    USGS Publications Warehouse

    Foote, H.W.; Fleischer, M.

    1953-01-01

    The system tetramethylammonium iodide-iodine-toluene has been studied by the solubility method at 6 and at 25??. The compounds (CH3)4NI3, (CH3)4NI5 and (CH3)4NI11 were found to be stable phases at both temperatures. In addition, the compound (CH3)4NI10 was found at 6?? and the compound (CH3)4NI9 at 25??. The dissociation pressures of the compounds at these temperatures were calculated from the solubility data.

  9. Optimizing nasal potential difference analysis for CFTR modulator development: assessment of ivacaftor in CF subjects with the G551D-CFTR mutation.

    PubMed

    Rowe, Steven M; Liu, Bo; Hill, Aubrey; Hathorne, Heather; Cohen, Morty; Beamer, John R; Accurso, Frank J; Dong, Qunming; Ordoñez, Claudia L; Stone, Anne J; Olson, Eric R; Clancy, John P

    2013-01-01

    Nasal potential difference (NPD) is used as a biomarker of the cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial sodium channel (ENaC) activity. We evaluated methods to detect changes in chloride and sodium transport by NPD based on a secondary analysis of a Phase II CFTR-modulator study. Thirty-nine subjects with CF who also had the G551D-CFTR mutation were randomized to receive ivacaftor (Kalydeco™; also known as VX-770) in four doses or placebo twice daily for at least 14 days. All data were analyzed by a single investigator who was blinded to treatment assignment. We compared three analysis methods to determine the best approach to quantify changes in chloride and sodium transport: (1) the average of both nostrils; (2) the most-polarized nostril at each visit; and (3) the most-polarized nostril at screening carried forward. Parameters of ion transport included the PD change with zero chloride plus isoproterenol (CFTR activity), the basal PD, Ringer's PD, and change in PD with amiloride (measurements of ENaC activity), and the delta NPD (measuring CFTR and ENaC activity). The average and most-polarized nostril at each visit were most sensitive to changes in chloride and sodium transport, whereas the most-polarized nostril at screening carried forward was less discriminatory. Based on our findings, NPD studies should assess both nostrils rather than a single nostril. We also found that changes in CFTR activity were more readily detected than changes in ENaC activity, and that rigorous standardization was associated with relatively good within-subject reproducibility in placebo-treated subjects (± 2.8 mV). Therefore, we have confirmed an assay of reasonable reproducibility for detecting chloride-transport improvements in response to CFTR modulation.

  10. Taming the Reactivity of Glycosyl Iodides To Achieve Stereoselective Glycosidation.

    PubMed

    Gervay-Hague, Jacquelyn

    2016-01-19

    Although glycosyl iodides have been known for more than 100 years, it was not until the 21st century that their full potential began to be harnessed for complex glycoconjugate synthesis. Mechanistic studies in the late 1990s probed glycosyl iodide formation by NMR spectroscopy and revealed important reactivity features embedded in protecting-group stereoelectronics. Differentially protected sugars having an anomeric acetate were reacted with trimethylsilyl iodide (TMSI) to generate the glycosyl iodides. In the absence of C-2 participation, generation of the glycosyl iodide proceeded by inversion of the starting anomeric acetate stereochemistry. Once formed, the glycosyl iodide readily underwent in situ anomerization, and in the presence of excess iodide, equilibrium concentrations of α- and β-iodides were established. Reactivity profiles depended upon the identity of the sugar and the protecting groups adorning it. Consistent with the modern idea of disarmed versus armed sugars, ester protecting groups diminished the reactivity of glycosyl iodides and ether protecting groups enhanced the reactivity. Thus, acetylated sugars were slower to form the iodide and anomerize than their benzylated analogues, and these disarmed glycosyl iodides could be isolated and purified, whereas armed ether-protected iodides could only be generated and reacted in situ. All other things being equal, the β-iodide was orders of magnitude more reactive than the thermodynamically more stable α-iodide, consistent with the idea of in situ anomerization introduced by Lemieux in the mid-20th century. Glycosyl iodides are far more reactive than the corresponding bromides, and with the increased reactivity comes increased stereocontrol, particularly when forming α-linked linear and branched oligosaccharides. Reactions with per-O-silylated glycosyl iodides are especially useful for the synthesis of α-linked glycoconjugates. Silyl ether protecting groups make the glycosyl iodide so reactive

  11. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere.

    PubMed

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong

    2016-02-02

    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.

  12. The "Goldilocks Effect" in Cystic Fibrosis: identification of a lung phenotype in the cftr knockout and heterozygous mouse

    PubMed Central

    Craig Cohen, J; Lundblad, Lennart KA; Bates, Jason HT; Levitzky, Michael; Larson, Janet E

    2004-01-01

    Background Cystic Fibrosis is a pleiotropic disease in humans with primary morbidity and mortality associated with a lung disease phenotype. However, knockout in the mouse of cftr, the gene whose mutant alleles are responsible for cystic fibrosis, has previously failed to produce a readily, quantifiable lung phenotype. Results Using measurements of pulmonary mechanics, a definitive lung phenotype was demonstrated in the cftr-/- mouse. Lungs showed decreased compliance and increased airway resistance in young animals as compared to cftr+/+ littermates. These changes were noted in animals less than 60 days old, prior to any long term inflammatory effects that might occur, and are consistent with structural differences in the cftr-/- lungs. Surprisingly, the cftr+/- animals exhibited a lung phenotype distinct from either the homozygous normal or knockout genotypes. The heterozygous mice showed increased lung compliance and decreased airway resistance when compared to either homozygous phenotype, suggesting a heterozygous advantage that might explain the high frequency of this mutation in certain populations. Conclusions In the mouse the gene dosage of cftr results in distinct differences in pulmonary mechanics of the adult. Distinct phenotypes were demonstrated in each genotype, cftr-/-, cftr +/-, and cftr+/+. These results are consistent with a developmental role for CFTR in the lung. PMID:15279681

  13. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    PubMed

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-06-09

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.

  14. Potentiator synergy in rectal organoids carrying S1251N, G551D, or F508del CFTR mutations.

    PubMed

    Dekkers, Johanna F; Van Mourik, Peter; Vonk, Annelotte M; Kruisselbrink, Evelien; Berkers, Gitte; de Winter-de Groot, Karin M; Janssens, Hettie M; Bronsveld, Inez; van der Ent, Cornelis K; de Jonge, Hugo R; Beekman, Jeffrey M

    2016-09-01

    The potentiator VX-770 (ivacaftor/KALYDECO™) targets defective gating of CFTR and has been approved for treatment of cystic fibrosis (CF) subjects carrying G551D, S1251N or one of 8 other mutations. Still, the current potentiator treatment does not normalize CFTR-dependent biomarkers, indicating the need for development of more effective potentiator strategies. We have recently pioneered a functional CFTR assay in primary rectal organoids and used this model to characterize interactions between VX-770, genistein and curcumin, the latter 2 being natural food components with established CFTR potentiation capacities. Results indicated that all possible combinations of VX-770, genistein and curcumin synergistically repaired CFTR-dependent forskolin-induced swelling of organoids with CFTR-S1251N or CFTR-G551D, even under suboptimal CFTR activation and compounds concentrations, conditions that may predominate in vivo. Genistein and curcumin also enhanced forskolin-induced swelling of F508del homozygous organoids that were treated with VX-770 and the prototypical CFTR corrector VX-809. These results indicate that VX-770, genistein and curcumin in double or triple combinations can synergize in restoring CFTR-dependent fluid secretion in primary CF cells and support the use of multiple potentiators for treatment of CF.

  15. Natural and Synthetic Polymers as Inhibitors of Drug Efflux Pumps

    PubMed Central

    2007-01-01

    Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed. PMID:17896100

  16. RND efflux pump and its interrelationship with quorum sensing system.

    PubMed

    Zhibin, Liang; Yumei, Chen; Yufan, Chen; Yingying, Cheng; Lianhui, Zhang

    2016-10-20

    Antibiotic resistance has become a serious concern in treatment of bacterial infections. Overexpression of efflux pump is one of the important mechanisms in antibiotic resistance. In Gram negative bacteria, RND (Resistance-nodulation-cell division) superfamily efflux pump plays a vital important role in antibiotics resistance. Recent research progress unveils an intriguing interrelationship between RND efflux pump and the bacterial quorum sensing system, whose regulation is dependent on small signal molecules. This article reviews the latest findings on the structure and transport mechanism of RND efflux pump, as well as the general features and regulatory mechanisms of quorum sensing, with a special focus on the role and mechanism of quorum sensing system in regulation of RND efflux pump, and the influence of efflux pump on quorum sensing signal transportation. Further investigation of the interrelationship between RND efflux pumps and the bacterial quorum sensing systems is critical for elucidation of the regulatory mechanisms that govern the expression of the RND efflux pumps genes, and may also provide useful clues to overcome the efflux pump mediated antibiotic resistance.

  17. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications.

    PubMed

    Jang, Soojin

    2016-01-01

    Antibiotic resistance is rapidly spreading among bacteria such as Staphylococcus aureus, an opportunistic bacterial pathogen that causes a variety of diseases in humans. For the last two decades, bacterial multidrug efflux pumps have drawn attention due to their potential association with clinical multidrug resistance. Numerous researchers have demonstrated efflux-mediated resistance in vitro and in vivo and found novel multidrug transporters using advanced genomic information about bacteria. This article aims to provide a concise summary of multidrug efflux pumps and their important clinical implications, focusing on recent findings concerning S. aureus efflux pumps.

  18. Gastrointestinal Pathology in Juvenile and Adult CFTR-Knockout Ferrets

    PubMed Central

    Sun, Xingshen; Olivier, Alicia K.; Yi, Yaling; Pope, Christopher E.; Hayden, Hillary S.; Liang, Bo; Sui, Hongshu; Zhou, Weihong; Hager, Kyle R.; Zhang, Yulong; Liu, Xiaoming; Yan, Ziying; Fisher, John T.; Keiser, Nicholas W.; Song, Yi; Tyler, Scott R.; Goeken, J. Adam; Kinyon, Joann M.; Radey, Matthew C.; Fligg, Danielle; Wang, Xiaoyan; Xie, Weiliang; Lynch, Thomas J.; Kaminsky, Paul M.; Brittnacher, Mitchell J.; Miller, Samuel I.; Parekh, Kalpaj; Meyerholz, David K.; Hoffman, Lucas R.; Frana, Timothy; Stewart, Zoe A.; Engelhardt, John F.

    2015-01-01

    Cystic fibrosis (CF) is a multiorgan disease caused by loss of a functional cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel in many epithelia of the body. Here we report the pathology observed in the gastrointestinal organs of juvenile to adult CFTR-knockout ferrets. CF gastrointestinal manifestations included gastric ulceration, intestinal bacterial overgrowth with villous atrophy, and rectal prolapse. Metagenomic phylogenetic analysis of fecal microbiota by deep sequencing revealed considerable genotype-independent microbial diversity between animals, with the majority of taxa overlapping between CF and non-CF pairs. CF hepatic manifestations were variable, but included steatosis, necrosis, biliary hyperplasia, and biliary fibrosis. Gallbladder cystic mucosal hyperplasia was commonly found in 67% of CF animals. The majority of CF animals (85%) had pancreatic abnormalities, including extensive fibrosis, loss of exocrine pancreas, and islet disorganization. Interestingly, 2 of 13 CF animals retained predominantly normal pancreatic histology (84% to 94%) at time of death. Fecal elastase-1 levels from these CF animals were similar to non-CF controls, whereas all other CF animals evaluated were pancreatic insufficient (<2 μg elastase-1 per gram of feces). These findings suggest that genetic factors likely influence the extent of exocrine pancreas disease in CF ferrets and have implications for the etiology of pancreatic sufficiency in CF patients. In summary, these studies demonstrate that the CF ferret model develops gastrointestinal pathology similar to CF patients. PMID:24637292

  19. Mucous granule exocytosis and CFTR expression in gallbladder epithelium.

    PubMed

    Kuver, R; Klinkspoor, J H; Osborne, W R; Lee, S P

    2000-02-01

    A mechanistic model of mucous granule exocytosis by columnar epithelial cells must take into account the unique physical-chemical properties of mucin glycoproteins and the resultant mucus gel. In particular, any model must explain the intracellular packaging and the kinetics of release of these large, heavily charged species. We studied mucous granule exocytosis in gallbladder epithelium, a model system for mucus secretion by columnar epithelial cells. Mucous granules released mucus by merocrine exocytosis in mouse gallbladder epithelium when examined by transmission electron microscopy. Spherules of secreted mucus larger than intracellular granules were noted on scanning electron microscopy. Electron probe microanalysis demonstrated increased calcium concentrations within mucous granules. Immunofluorescence microscopic studies revealed intracellular colocalization of mucins and the cystic fibrosis transmembrane conductance regulator (CFTR). Confocal laser immunofluorescence microscopy confirmed colocalization. These observations suggest that calcium in mucous secretory granules provides cationic shielding to keep mucus tightly packed. The data also suggests CFTR chloride channels are present in granule membranes. These observations support a model in which influx of chloride ions into the granule disrupts cationic shielding, leading to rapid swelling, exocytosis and hydration of mucus. Such a model explains the physical-chemical mechanisms involved in mucous granule exocytosis.

  20. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-09-01

    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  1. Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines

    PubMed Central

    Seo, Yohan; Kumar, Satish; Lee, Ho K.; Jeon, Dong-Kyu; Jo, Sungwoo; Sharma, Pawan K.; Namkung, Wan

    2016-01-01

    The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis. PMID:26863533

  2. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies.

    PubMed

    Shah, Viral S; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H; Parker, Connor P; Ostedgaard, Lynda S; Welsh, Michael J

    2016-05-10

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10-50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl(-) secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3 (-) secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3 (-) at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR(+/-) or CFTR(+/∆F508)) expressed CFTR and secreted HCO3 (-) at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3 (-) secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl(-) secretion, the amount of CFTR is rate-limiting for HCO3 (-) secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers.

  3. Potentiation of ΔF508- and G551D-CFTR-Mediated Cl- Current by Novel Hydroxypyrazolines.

    PubMed

    Park, Jinhong; Khloya, Poonam; Seo, Yohan; Kumar, Satish; Lee, Ho K; Jeon, Dong-Kyu; Jo, Sungwoo; Sharma, Pawan K; Namkung, Wan

    2016-01-01

    The most common mutation of CFTR, affecting approximately 90% of CF patients, is a deletion of phenylalanine at position 508 (F508del, ΔF508). Misfolding of ΔF508-CFTR impairs both its trafficking to the plasma membrane and its chloride channel activity. To identify small molecules that can restore channel activity of ΔF508-CFTR, we synthesized and evaluated eighteen novel hydroxypyrazoline analogues as CFTR potentiators. To elucidate potentiation activities of hydroxypyrazolines for ΔF508-CFTR, CFTR activity was measured using a halide-sensitive YFP assay, Ussing chamber assay and patch-clamp technique. Compounds 7p, 7q and 7r exhibited excellent potentiation with EC50 value <10 μM. Among the compounds, 7q (a novel CFTR potentiator, CP7q) showed the highest potentiation activity with EC50 values of 0.88 ± 0.11 and 4.45 ± 0.31 μM for wild-type and ΔF508-CFTR, respectively. In addition, CP7q significantly potentiated chloride conductance of G551D-CFTR, a CFTR gating mutant; its maximal potentiation activity was 1.9 fold higher than the well-known CFTR potentiator genistein. Combination treatment with CP7q and VX-809, a corrector of ΔF508-CFTR, significantly enhanced functional rescue of ΔF508-CFTR compared with VX-809 alone. CP7q did not alter the cytosolic cAMP level and showed no cytotoxicity at the concentration showing maximum efficacy. The hydroxypyrazolines may be potential development candidates for drug therapy of cystic fibrosis.

  4. Molecular and functional analysis of the large 5' promoter region of CFTR gene revealed pathogenic mutations in CF and CFTR-related disorders.

    PubMed

    Giordano, Sonia; Amato, Felice; Elce, Ausilia; Monti, Maria; Iannone, Carla; Pucci, Pietro; Seia, Manuela; Angioni, Adriano; Zarrilli, Federica; Castaldo, Giuseppe; Tomaiuolo, Rossella

    2013-05-01

    Patients with cystic fibrosis (CF) manifest a multisystemic disease due to mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR); despite extensive testing of coding regions, a proportion of CF alleles remains unidentified. We studied 118 patients with CF and CFTR-related disorders, most with one or both unknown mutations after the scanning of CFTR coding regions, and a non-CF control group (n = 75) by sequencing the 6000-bp region at the 5' of the CFTR gene. We identified 23 mutations, of which 9 were novel. We expressed such mutations in vitro using four cell systems to explore their functional effect, relating the data to the clinical expression of each patient. Some mutations reduced expression of the gene reporter firefly luciferase in various cell lines and may act as disease-causing mutations. Other mutations caused an increase in luciferase expression in some cell lines. One mutation had a different effect in different cells. For other mutations, the expression assay excluded a functional role. Gene variants in the large 5' region may cause altered regulation of CFTR gene expression, acting as disease-causing mutations or modifiers of its clinical phenotype. Studies of in vitro expression in different cell systems may help reveal the effect of such mutations.

  5. ArsP: a methylarsenite efflux permease

    PubMed Central

    Chen, Jian; Madegowda, Mahendra; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2015-01-01

    Trivalent organoarsenic compounds are far more toxic than either pentavalent organoarsenicals or inorganic arsenite. Many microbes methylate inorganic arsenite (As(III)) to more toxic and carcinogenic methylarsenite (MAs(III)). Additionally, monosodium methylarsenate (MSMA or MAs(V)) has been used widely as an herbicide and is reduced by microbial communities to MAs(III). Roxarsone (3-nitro-4-hydroxybenzenearsonic acid) is a pentavalent aromatic arsenical that is used as antimicrobial growth promoter for poultry and swine, and its active form is the trivalent species Rox(III). A bacterial permease, ArsP, from Campylobacter jejuni, was recently shown to confer resistance to roxarsone. In this study C. jejuni arsP was expressed in Escherichia coli and shown to confer resistance to MAs(III) and Rox(III) but not to inorganic As(III) or pentavalent organoarsenicals. Cells of E. coli expressing arsP did not accumulate trivalent organoarsenicals. Everted membrane vesicles from those cells accumulated MAs(III)>Rox(III) with energy supplied by NADH oxidation, reflecting efflux from cells. The vesicles did not transport As(III), MAs(V) or pentavalent roxarsone. Mutation or modification of the two conserved cysteine residues resulted in loss of transport activity, suggesting that they play a role in ArsP function. Thus ArsP is the first identified efflux system specific for trivalent organoarsenicals. PMID:26234817

  6. Tripartite assembly of RND multidrug efflux pumps

    NASA Astrophysics Data System (ADS)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K. R.; Picard, Martin; Broutin, Isabelle; Pos, Klaas M.; Lambert, Olivier

    2016-02-01

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  7. CFTR-deficient pigs display peripheral nervous system defects at birth

    PubMed Central

    Reznikov, Leah R.; Dong, Qian; Chen, Jeng-Haur; Moninger, Thomas O.; Park, Jung Min; Zhang, Yuzhou; Hildebrand, Michael S.; Smith, Richard J. H.; Randak, Christoph O.; Stoltz, David A.; Welsh, Michael J.

    2013-01-01

    Peripheral nervous system abnormalities, including neuropathy, have been reported in people with cystic fibrosis. These abnormalities have largely been attributed to secondary manifestations of the disease. We tested the hypothesis that disruption of the cystic fibrosis transmembrane conductance regulator (CFTR) gene directly influences nervous system function by studying newborn CFTR−/− pigs. We discovered CFTR expression and activity in Schwann cells, and loss of CFTR caused ultrastructural myelin sheath abnormalities similar to those in known neuropathies. Consistent with neuropathic changes, we found increased transcripts for myelin protein zero, a gene that, when mutated, can cause axonal and/or demyelinating neuropathy. In addition, axon density was reduced and conduction velocities of the trigeminal and sciatic nerves were decreased. Moreover, in vivo auditory brainstem evoked potentials revealed delayed conduction of the vestibulocochlear nerve. Our data suggest that loss of CFTR directly alters Schwann cell function and that some nervous system defects in people with cystic fibrosis are likely primary. PMID:23382208

  8. RNA INTERFERENCE AGAINST CFTR AFFECTS HL60-DERIVED NEUTROPHIL MICROBICIDAL FUNCTION

    PubMed Central

    Bonvillain, Ryan W.; Painter, Richard G.; Adams, Daniel E.; Viswanathan, Anand; Lanson, Nicholas A.; Wang, Guoshun

    2010-01-01

    Biosynthesis of hypochlorous acid (HOCl), a potent anti-microbial oxidant, in phagosomes is one of the chief mechanisms employed by polymorphonuclear neutrophils (PMNs) to combat infections. This reaction, catalyzed by myeloperoxidase, requires chloride anion (Cl−) as a substrate. Thus, Cl− availability is a rate-limiting factor that affects neutrophil microbicidal function. Our previous research demonstrated that defective CFTR, a cAMP-activated chloride channel, present in cystic fibrosis (CF) patients leads to deficient chloride transport to neutrophil phagosomes and impaired bacterial killing (Painter et al., 2008 & 2010). To confirm this finding, here we used RNA interference against this chloride channel to abate CFTR expression in the neutrophil-like cells derived from HL60 cells, a promyelocytic leukemia cell line, with DMSO. The resultant CFTR deficiency in the phagocytes compromised their bactericidal capability, thereby recapitulating the phenotype seen in CF patient cells. The results provide further evidence suggesting that CFTR plays an important role in phagocytic host defense. PMID:20870018

  9. Inhibiting an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa Protects CFTR.

    PubMed

    Bahl, Christopher D; Hvorecny, Kelli L; Bomberger, Jennifer M; Stanton, Bruce A; Hammock, Bruce D; Morisseau, Christophe; Madden, Dean R

    2015-08-17

    Opportunistic pathogens exploit diverse strategies to sabotage host defenses. Pseudomonas aeruginosa secretes the CFTR inhibitory factor Cif and thus triggers loss of CFTR, an ion channel required for airway mucociliary defense. However, the mechanism of action of Cif has remained unclear. It catalyzes epoxide hydrolysis, but there is no known role for natural epoxides in CFTR regulation. It was demonstrated that the hydrolase activity of Cif is strictly required for its effects on CFTR. A small-molecule inhibitor that protects this key component of the mucociliary defense system was also uncovered. These results provide a basis for targeting the distinctive virulence chemistry of Cif and suggest an unanticipated role of physiological epoxides in intracellular protein trafficking.

  10. Side chain and backbone contributions of Phe508 to CFTR folding

    SciTech Connect

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa; Thomas, Philip J.

    2010-12-07

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near position 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.

  11. Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients

    PubMed Central

    2010-01-01

    Background Lung infection by various organisms is a characteristic feature of cystic fibrosis (CF). CFTR genotype effects acquisition of Pseudomonas aeruginosa (Pa), however the effect on acquisition of other infectious organisms that frequently precede Pa is relatively unknown. Understanding the role of CFTR in the acquisition of organisms first detected in patients may help guide symptomatic and molecular-based treatment for CF. Methods Lung infection, defined as a single positive respiratory tract culture, was assessed for 13 organisms in 1,381 individuals with CF. Subjects were divided by predicted CFTR function: 'Residual': carrying at least one partial function CFTR mutation (class IV or V) and 'Minimal' those who do not carry a partial function mutation. Kaplan-Meier estimates were created to assess CFTR effect on age of acquisition for each organism. Cox proportional hazard models were performed to control for possible cofactors. A separate Cox regression was used to determine whether defining infection with Pa, mucoid Pa or Aspergillus (Asp) using alternative criteria affected the results. The influence of severity of lung disease at the time of acquisition was evaluated using stratified Cox regression methods by lung disease categories. Results Subjects with 'Minimal' CFTR function had a higher hazard than patients with 'Residual' function for acquisition of 9 of 13 organisms studied (HR ranging from 1.7 to 3.78 based on the organism studied). Subjects with minimal CFTR function acquired infection at a younger age than those with residual function for 12 of 13 organisms (p-values ranging: < 0.001 to 0.017). Minimal CFTR function also associated with younger age of infection when 3 alternative definitions of infection with Pa, mucoid Pa or Asp were employed. Risk of infection is correlated with CFTR function for 8 of 9 organisms in patients with good lung function (>90%ile) but only 1 of 9 organisms in those with poorer lung function (<50%ile). Conclusions

  12. ATP secretion in the male reproductive tract: essential role of CFTR

    PubMed Central

    Ruan, Ye Chun; Shum, Winnie W C; Belleannée, Clémence; Da Silva, Nicolas; Breton, Sylvie

    2012-01-01

    Extracellular ATP is essential for the function of the epididymis and spermatozoa, but ATP release in the epididymis remains uncharacterized. We investigated here whether epithelial cells release ATP into the lumen of the epididymis, and we examined the role of the cystic fibrosis transmembrane conductance regulator (CFTR), a Cl− and HCO3− conducting ion channel known to be associated with male fertility, in this process. Immunofluorescence labelling of mouse cauda epididymidis showed expression of CFTR in principal cells but not in other epithelial cells. CFTR mRNA was not detectable in clear cells isolated by fluorescence-activated cell sorting (FACS) from B1-EGFP mice, which express enhanced green fluorescent protein (EGFP) exclusively in these cells in the epididymis. ATP release was detected from the mouse epididymal principal cell line (DC2) and increased by adrenaline and forskolin. Inhibition of CFTR with CFTRinh172 and transfection with CFTR-specific siRNAs in DC2 cells reduced basal and forskolin-activated ATP release. CFTR-dependent ATP release was also observed in primary cultures of mouse epididymal epithelial cells. In addition, steady-state ATP release was detected in vivo in mice, by measuring ATP concentration in a solution perfused through the lumen of the cauda epididymidis tubule and collected by cannulation of the vas deferens. Luminal CFTRinh172 reduced the ATP concentration detected in the perfusate. This study shows that CFTR is involved in the regulation of ATP release from principal cells in the cauda epididymidis. Given that mutations in CFTR are a leading cause of male infertility, we propose that defective ATP signalling in the epididymis might contribute to dysfunction of the male reproductive tract associated with these mutations. PMID:22711960

  13. CFTR impairment upregulates c-Src activity through IL-1β autocrine signaling.

    PubMed

    Massip-Copiz, María Macarena; Clauzure, Mariángeles; Valdivieso, Ángel Gabriel; Santa-Coloma, Tomás Antonio

    2017-02-15

    Cystic Fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Previously, we found several genes showing a differential expression in CFDE cells (epithelial cells derived from a CF patient). One corresponded to c-Src; its expression and activity was found increased in CFDE cells, acting as a signaling molecule between the CFTR activity and MUC1 overexpression. Here we report that bronchial IB3-1 cells (CF cells) also showed increased c-Src activity compared to 'CFTR-corrected' S9 cells. In addition, three different Caco-2 cell lines, each stably transfected with a different CFTR-specific shRNAs, displayed increased c-Src activity. The IL-1β receptor antagonist IL1RN reduced the c-Src activity of Caco-2/pRS26 cells (expressing a CFTR-specific shRNA). In addition, increased mitochondrial and cellular ROS levels were detected in Caco-2/pRS26 cells. ROS levels were partially reduced by incubation with PP2 (c-Src inhibitor) or IL1RN, and further reduced by using the NOX1/4 inhibitor GKT137831. Thus, IL-1β→c-Src and IL-1β→NOX signaling pathways appear to be responsible for the production of cellular and mitochondrial ROS in CFTR-KD cells. In conclusion, IL-1β constitutes a new step in the CFTR signaling pathway, located upstream of c-Src, which is stimulated in cells with impaired CFTR activity.

  14. Relating the disease mutation spectrum to the evolution of the cystic fibrosis transmembrane conductance regulator (CFTR).

    PubMed

    Rishishwar, Lavanya; Varghese, Neha; Tyagi, Eishita; Harvey, Stephen C; Jordan, I King; McCarty, Nael A

    2012-01-01

    Cystic fibrosis (CF) is the most common genetic disease among Caucasians, and accordingly the cystic fibrosis transmembrane conductance regulator (CFTR) protein has perhaps the best characterized disease mutation spectrum with more than 1,500 causative mutations having been identified. In this study, we took advantage of that wealth of mutational information in an effort to relate site-specific evolutionary parameters with the propensity and severity of CFTR disease-causing mutations. To do this, we devised a scoring scheme for known CFTR disease-causing mutations based on the Grantham amino acid chemical difference matrix. CFTR site-specific evolutionary constraint values were then computed for seven different evolutionary metrics across a range of increasing evolutionary depths. The CFTR mutational scores and the various site-specific evolutionary constraint values were compared in order to evaluate which evolutionary measures best reflect the disease-causing mutation spectrum. Site-specific evolutionary constraint values from the widely used comparative method PolyPhen2 show the best correlation with the CFTR mutation score spectrum, whereas more straightforward conservation based measures (ConSurf and ScoreCons) show the greatest ability to predict individual CFTR disease-causing mutations. While far greater than could be expected by chance alone, the fraction of the variability in mutation scores explained by the PolyPhen2 metric (3.6%), along with the best set of paired sensitivity (58%) and specificity (60%) values for the prediction of disease-causing residues, were marginal. These data indicate that evolutionary constraint levels are informative but far from determinant with respect to disease-causing mutations in CFTR. Nevertheless, this work shows that, when combined with additional lines of evidence, information on site-specific evolutionary conservation can and should be used to guide site-directed mutagenesis experiments by more narrowly defining the

  15. Aggregates of mutant CFTR fragments in airway epithelial cells of CF lungs: new pathologic observations.

    PubMed

    Du, Kai; Karp, Philip H; Ackerley, Cameron; Zabner, Joseph; Keshavjee, Shaf; Cutz, Ernest; Yeger, Herman

    2015-03-01

    Cystic fibrosis (CF) is caused by a mutation in the CF transmembrane conductance regulator (CFTR) gene resulting in a loss of Cl(-) channel function, disrupting ion and fluid homeostasis, leading to severe lung disease with airway obstruction due to mucus plugging and inflammation. The most common CFTR mutation, F508del, occurs in 90% of patients causing the mutant CFTR protein to misfold and trigger an endoplasmic reticulum based recycling response. Despite extensive research into the pathobiology of CF lung disease, little attention has been paid to the cellular changes accounting for the pathogenesis of CF lung disease. Here we report a novel finding of intracellular retention and accumulation of a cleaved fragment of F508del CFTR in concert with autophagic like phagolysosomes in the airway epithelium of patients with F508del CFTR. Aggregates consisting of poly-ubiquitinylated fragments of only the N-terminal domain of F508del CFTR but not the full-length molecule accumulate to appreciable levels. Importantly, these undegraded intracytoplasmic aggregates representing the NT-NBD1 domain of F508del CFTR were found in ciliated, in basal, and in pulmonary neuroendocrine cells. Aggregates were found in both native lung tissues and ex-vivo primary cultures of bronchial epithelial cells from CF donors, but not in normal control lungs. Our findings present a new, heretofore, unrecognized innate CF gene related cell defect and a potential contributing factor to the pathogenesis of CF lung disease. Mutant CFTR intracytoplasmic aggregates could be analogous to the accumulation of misfolded proteins in other degenerative disorders and in pulmonary "conformational protein-associated" diseases. Consequently, potential alterations to the functional integrity of airway epithelium and regenerative capacity may represent a critical new element in the pathogenesis of CF lung disease.

  16. Validation of a semiconductor next-generation sequencing assay for the clinical genetic screening of CFTR.

    PubMed

    Trujillano, Daniel; Weiss, Maximilian E R; Köster, Julia; Papachristos, Efstathios B; Werber, Martin; Kandaswamy, Krishna Kumar; Marais, Anett; Eichler, Sabrina; Creed, Jenny; Baysal, Erol; Jaber, Iqbal Yousuf; Mehaney, Dina Ahmed; Farra, Chantal; Rolfs, Arndt

    2015-09-01

    Genetic testing for cystic fibrosis and CFTR-related disorders mostly relies on laborious molecular tools that use Sanger sequencing to scan for mutations in the CFTR gene. We have explored a more efficient genetic screening strategy based on next-generation sequencing (NGS) of the CFTR gene. We validated this approach in a cohort of 177 patients with previously known CFTR mutations and polymorphisms. Genomic DNA was amplified using the Ion AmpliSeq™ CFTR panel. The DNA libraries were pooled, barcoded, and sequenced using an Ion Torrent PGM sequencer. The combination of different robust bioinformatics tools allowed us to detect previously known pathogenic mutations and polymorphisms in the 177 samples, without detecting spurious pathogenic calls. In summary, the assay achieves a sensitivity of 94.45% (95% CI: 92% to 96.9%), with a specificity of detecting nonvariant sites from the CFTR reference sequence of 100% (95% CI: 100% to 100%), a positive predictive value of 100% (95% CI: 100% to 100%), and a negative predictive value of 99.99% (95% CI: 99.99% to 100%). In addition, we describe the observed allelic frequencies of 94 unique definitely and likely pathogenic, uncertain, and neutral CFTR variants, some of them not previously annotated in the public databases. Strikingly, a seven exon spanning deletion as well as several more technically challenging variants such as pathogenic poly-thymidine-guanine and poly-thymidine (poly-TG-T) tracts were also detected. Targeted NGS is ready to substitute classical molecular methods to perform genetic testing on the CFTR gene.

  17. Sodium efflux in plant roots: what do we really know?

    PubMed

    Britto, D T; Kronzucker, H J

    2015-08-15

    The efflux of sodium (Na(+)) ions across the plasma membrane of plant root cells into the external medium is surprisingly poorly understood. Nevertheless, Na(+) efflux is widely regarded as a major mechanism by which plants restrain the rise of Na(+) concentrations in the cytosolic compartments of root cells and, thus, achieve a degree of tolerance to saline environments. In this review, several key ideas and bodies of evidence concerning root Na(+) efflux are summarized with a critical eye. Findings from decades past are brought to bear on current thinking, and pivotal studies are discussed, both "purely physiological", and also with regard to the SOS1 protein, the only major Na(+) efflux transporter that has, to date, been genetically characterized. We find that the current model of rapid transmembrane sodium cycling (RTSC), across the plasma membrane of root cells, is not adequately supported by evidence from the majority of efflux studies. An alternative hypothesis cannot be ruled out, that most Na(+) tracer efflux from the root in the salinity range does not proceed across the plasma membrane, but through the apoplast. Support for this idea comes from studies showing that Na(+) efflux, when measured with tracers, is rarely affected by the presence of inhibitors or the ionic composition in saline rooting media. We conclude that the actual efflux of Na(+) across the plasma membrane of root cells may be much more modest than what is often reported in studies using tracers, and may predominantly occur in the root tips, where SOS1 expression has been localized.

  18. Quantitation of normal CFTR mRNA in CF patients with splice-site mutations

    SciTech Connect

    Zhou, Z.; Olsen, J.C.; Silverman, L.M.

    1994-09-01

    Previously we identified two mutations in introns of the CFTR gene associated with partially active splice sites and unusual clinical phenotypes. One mutation in intron 19 (3849+10 kb C to T) is common in CF patients with normal sweat chloride values; an 84 bp sequence from intron 19, which contains a stop codon, is inserted between exon 19 and exon 20 in most nasal CFTR transcripts. The other mutation in intron 14B (2789+5 G to A) is associated with elevated sweat chloride levels, but mild pulmonary disease; exon 14B (38 bp) is spliced out of most nasal CFTR transcipts. The remaining CFTR cDNA sequences, other than the 84 bp insertion of exon 14B deletion, are identical to the published sequence. To correlate genotype and phenotype, we used quantitative RT-PCR to determine the levels of normally-spliced CFTR mRNA in nasal epithelia from these patients. CFTR cDNA was amplified (25 cycles) by using primers specific for normally-spliced species, {gamma}-actin cDNA was amplified as a standard.

  19. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.

    PubMed

    Ehrhardt, Annette; Chung, W Joon; Pyle, Louise C; Wang, Wei; Nowotarski, Krzysztof; Mulvihill, Cory M; Ramjeesingh, Mohabir; Hong, Jeong; Velu, Sadanandan E; Lewis, Hal A; Atwell, Shane; Aller, Steve; Bear, Christine E; Lukacs, Gergely L; Kirk, Kevin L; Sorscher, Eric J

    2016-01-22

    In this study, we present data indicating a robust and specific domain interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) first cytosolic loop (CL1) and nucleotide binding domain 1 (NBD1) that allows ion transport to proceed in a regulated fashion. We used co-precipitation and ELISA to establish the molecular contact and showed that binding kinetics were not altered by the common clinical mutation F508del. Both intrinsic ATPase activity and CFTR channel gating were inhibited severely by CL1 peptide, suggesting that NBD1/CL1 binding is a crucial requirement for ATP hydrolysis and channel function. In addition to cystic fibrosis, CFTR dysregulation has been implicated in the pathogenesis of prevalent diseases such as chronic obstructive pulmonary disease, acquired rhinosinusitis, pancreatitis, and lethal secretory diarrhea (e.g. cholera). On the basis of clinical relevance of the CFTR as a therapeutic target, a cell-free drug screen was established to identify modulators of NBD1/CL1 channel activity independent of F508del CFTR and pharmacologic rescue. Our findings support a targetable mechanism of CFTR regulation in which conformational changes in the NBDs cause reorientation of transmembrane domains via interactions with CL1 and result in channel gating.

  20. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome.

    PubMed

    Chen, Hui; Guo, Jing Hui; Zhang, Xiao Hu; Chan, Hsiao Chang

    2015-05-01

    Polycystic ovarian syndrome (PCOS) is one of the most frequent causes of female infertility, featured by abnormal hormone profile, chronic oligo/anovulation, and presence of multiple cystic follicles in the ovary. However, the mechanism underlying the abnormal folliculogenesis remains obscure. We have previously demonstrated that CFTR, a cAMP-dependent Cl(-) and HCO3 (-) conducting anion channel, is expressed in the granulosa cells and its expression is downregulated in PCOS rat models and human patients. In this study, we aimed to investigate the possible involvement of downregulation of CFTR in the impaired follicle development in PCOS using two rat PCOS models and primary culture of granulosa cells. Our results indicated that the downregulation of CFTR in the cystic follicles was accompanied by reduced expression of proliferating cell nuclear antigen (PCNA), in rat PCOS models. In addition, knockdown or inhibition of CFTR in granulosa cell culture resulted in reduced cell viability and downregulation of PCNA. We further demonstrated that CFTR regulated both basal and FSH-stimulated granulosa cell proliferation through the HCO3 (-)/sAC/PKA pathway leading to ERK phosphorylation and its downstream target cyclin D2 (Ccnd2) upregulation. Reduced ERK phosphorylation and CCND2 were found in ovaries of rat PCOS model compared with the control. This study suggests that CFTR is required for normal follicle development and that its downregulation in PCOS may inhibit granulosa cell proliferation, resulting in abnormal follicle development in PCOS.

  1. Essential Role of CFTR in PKA-Dependent Phosphorylation, Alkalinization, and Hyperpolarization During Human Sperm Capacitation.

    PubMed

    Puga Molina, Lis C; Pinto, Nicolás A; Torres Rodríguez, Paulina; Romarowski, Ana; Vicens Sanchez, Alberto; Visconti, Pablo E; Darszon, Alberto; Treviño, Claudia L; Buffone, Mariano G

    2017-06-01

    Mammalian sperm require to spend a limited period of time in the female reproductive tract to become competent to fertilize in a process called capacitation. It is well established that HCO3(-) is essential for capacitation because it activates the atypical soluble adenylate cyclase ADCY10 leading to cAMP production, and promotes alkalinization of cytoplasm, and membrane hyperpolarization. However, how HCO3(-) is transported into the sperm is not well understood. There is evidence that CFTR activity is involved in the human sperm capacitation but how this channel is integrated in the complex signaling cascades associated with this process remains largely unknown. In the present work, we have analyzed the extent to which CFTR regulates different events in human sperm capacitation. We observed that inhibition of CFTR affects HCO3(-) -entrance dependent events resulting in lower PKA activity. CFTR inhibition also affected cAMP/PKA-downstream events such as the increase in tyrosine phosphorylation, hyperactivated motility, and acrosome reaction. In addition, we demonstrated for the first time, that CFTR and PKA activity are essential for the regulation of intracellular pH, and membrane potential in human sperm. Addition of permeable cAMP partially recovered all the PKA-dependent events altered in the presence of inh-172 which is consistent with a role of CFTR upstream of PKA activation. J. Cell. Physiol. 232: 1404-1414, 2017. © 2016 Wiley Periodicals, Inc.

  2. Functional Rescue of F508del-CFTR Using Small Molecule Correctors

    PubMed Central

    Molinski, Steven; Eckford, Paul D. W.; Pasyk, Stan; Ahmadi, Saumel; Chin, Stephanie; Bear, Christine E.

    2012-01-01

    High-throughput screens for small molecules that are effective in “correcting” the functional expression of F508del-CFTR have yielded several promising hits. Two such compounds are currently in clinical trial. Despite this success, it is clear that further advances will be required in order to restore 50% or greater of wild-type CFTR function to the airways of patients harboring the F508del-CFTR protein. Progress will be enhanced by our better understanding of the molecular and cellular defects caused by the F508del mutation, present in 90% of CF patients. The goal of this chapter is to review the current understanding of defects caused by F508del in the CFTR protein and in CFTR-mediated interactions important for its biosynthesis, trafficking, channel function, and stability at the cell surface. Finally, we will discuss the gaps in our knowledge regarding the mechanism of action of existing correctors, the unmet need to discover compounds which restore proper CFTR structure and function in CF affected tissues and new strategies for therapy development. PMID:23055971

  3. Refining the continuum of CFTR-associated disorders in the era of newborn screening

    PubMed Central

    Levy, H.; Nugent, M.; Schneck, K.; Stachiw-Hietpas, D.; Laxova, A.; Lakser, O.; Rock, M.; Dahmer, M.K.; Biller, J.; Nasr, S.Z.; Baker, M.; McColley, S.A.; Simpson, P.; Farrell, P.M.

    2017-01-01

    Clinical heterogeneity in cystic fibrosis (CF) often causes diagnostic uncertainty in infants without symptoms and in older patients with milder phenotypes. We performed a cross-sectional evaluation of a comprehensive set of clinical and laboratory descriptors in a physician-defined cohort (N = 376; Children’s Hospital of Wisconsin and the American Family Children’s Hospital CF centers in Milwaukee and Madison, WI, USA) to determine the robustness of categorizing CF (N = 300), cystic fibrosis transmembrane conductance regulator (CFTR)-related disorder (N = 19), and CFTR-related (CRMS) metabolic syndrome (N = 57) according to current consensus guidelines. Outcome measures included patient demographics, clinical measures, sweat chloride levels, CFTR genotype, age at diagnosis, airway microbiology, pancreatic function, infection, and nutritional status. The CF cohort had a significantly higher median sweat chloride level (105 mmol/l) than CFTR-related disorder patients (43 mmol/l) and CFTR-related metabolic syndrome patients (35 mmol/l; p ≤ 0.001). Patient groups significantly differed in pancreatic sufficiency, immunoreactive trypsinogen levels, sweat chloride values, genotype, and positive Pseudomonas aeruginosa cultures (p ≤ 0.001). An automated classification algorithm using recursive partitioning demonstrated concordance between physician diagnoses and consensus guidelines. Our analysis suggests that integrating clinical information with sweat chloride levels, CFTR genotype, and pancreatic sufficiency provides a context for continued longitudinal monitoring of patients for personalized and effective treatment. PMID:26671754

  4. Functional Reconstitution and Channel Activity Measurements of Purified Wildtype and Mutant CFTR Protein

    PubMed Central

    Eckford, Paul D. W.; Li, Canhui; Bear, Christine E.

    2015-01-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates. PMID:25867140

  5. Loss of cftr function leads to pancreatic destruction in larval zebrafish.

    PubMed

    Navis, Adam; Bagnat, Michel

    2015-03-15

    The development and function of many internal organs requires precisely regulated fluid secretion. A key regulator of vertebrate fluid secretion is an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Loss of CFTR function leads to defects in fluid transport and cystic fibrosis (CF), a complex disease characterized by a loss of fluid secretion and mucus buildup in many organs including the lungs, liver, and pancreas. Several animal models including mouse, ferret and pig have been generated to investigate the pathophysiology of CF. However, these models have limited accessibility to early processes in the development of CF and are not amenable for forward genetic or chemical screens. Here, we show that Cftr is expressed and localized to the apical membrane of the zebrafish pancreatic duct and that loss of cftr function leads to destruction of the exocrine pancreas and a cystic fibrosis phenotype that mirrors human disease. Our analyses reveal that the cftr mutant pancreas initially develops normally, then rapidly loses pancreatic tissue during larval life, reflecting pancreatic disease in CF. Altogether, we demonstrate that the cftr mutant zebrafish is a powerful new model for pancreatitis and pancreatic destruction in CF. This accessible model will allow more detailed investigation into the mechanisms that drive CF of the pancreas and facilitate development of new therapies to treat the disease.

  6. Loss of cftr function leads to pancreatic destruction in larval zebrafish

    PubMed Central

    Navis, Adam; Bagnat, Michel

    2016-01-01

    The development and function of many internal organs requires precisely regulated fluid secretion. A key regulator of vertebrate fluid secretion is an anion channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Loss of CFTR function leads to defects in fluid transport and cystic fibrosis (CF), a complex disease characterized by a loss of fluid secretion and mucus buildup in many organs including the lungs, liver, and pancreas. Several animal models including mouse, ferret and pig have been generated to investigate the pathophysiology of CF. However, these models have limited accessibility to early processes in the development of CF and are not amenable for forward genetic or chemical screens. Here, we show that Cftr is expressed and localized to the apical membrane of the zebrafish pancreatic duct and that loss of cftr function leads to destruction of the exocrine pancreas and a cystic fibrosis phenotype that mirrors human disease. Our analyses reveal that the cftr mutant pancreas initially develops normally, then rapidly loses pancreatic tissue during larval life, reflecting pancreatic disease in CF. Altogether, we demonstrate that the cftr mutant zebrafish is a powerful new model for pancreatitis and pancreatic destruction in CF. This accessible model will allow more detailed investigation into the mechanisms that drive CF of the pancreas and facilitate development of new therapies to treat the disease. PMID:25592226

  7. Facilitating Structure-Function Studies of CFTR Modulator Sites with Efficiencies in Mutagenesis and Functional Screening.

    PubMed

    Molinski, Steven V; Ahmadi, Saumel; Hung, Maurita; Bear, Christine E

    2015-12-01

    There are nearly 2000 mutations in the CFTR gene associated with cystic fibrosis disease, and to date, the only approved drug, Kalydeco, has been effective in rescuing the functional expression of a small subset of these mutant proteins with defects in channel activation. However, there is currently an urgent need to assess other mutations for possible rescue by Kalydeco, and further, definition of the binding site of such modulators on CFTR would enhance our understanding of the mechanism of action of such therapeutics. Here, we describe a simple and rapid one-step PCR-based site-directed mutagenesis method to generate mutations in the CFTR gene. This method was used to generate CFTR mutants bearing deletions (p.Gln2_Trp846del, p.Ser700_Asp835del, p.Ile1234_Arg1239del) and truncation with polyhistidine tag insertion (p.Glu1172-3Gly-6-His*), which either recapitulate a disease phenotype or render tools for modulator binding site identification, with subsequent evaluation of drug responses using a high-throughput (384-well) membrane potential-sensitive fluorescence assay of CFTR channel activity within a 1 wk time frame. This proof-of-concept study shows that these methods enable rapid and quantitative comparison of multiple CFTR mutants to emerging drugs, facilitating future large-scale efforts to stratify mutants according to their "theratype" or most promising targeted therapy.

  8. Refining the continuum of CFTR-associated disorders in the era of newborn screening.

    PubMed

    Levy, H; Nugent, M; Schneck, K; Stachiw-Hietpas, D; Laxova, A; Lakser, O; Rock, M; Dahmer, M K; Biller, J; Nasr, S Z; Baker, M; McColley, S A; Simpson, P; Farrell, P M

    2016-05-01

    Clinical heterogeneity in cystic fibrosis (CF) often causes diagnostic uncertainty in infants without symptoms and in older patients with milder phenotypes. We performed a cross-sectional evaluation of a comprehensive set of clinical and laboratory descriptors in a physician-defined cohort (N = 376; Children's Hospital of Wisconsin and the American Family Children's Hospital CF centers in Milwaukee and Madison, WI, USA) to determine the robustness of categorizing CF (N = 300), cystic fibrosis transmembrane conductance regulator (CFTR)-related disorder (N = 19), and CFTR-related (CRMS) metabolic syndrome (N = 57) according to current consensus guidelines. Outcome measures included patient demographics, clinical measures, sweat chloride levels, CFTR genotype, age at diagnosis, airway microbiology, pancreatic function, infection, and nutritional status. The CF cohort had a significantly higher median sweat chloride level (105 mmol/l) than CFTR-related disorder patients (43 mmol/l) and CFTR-related metabolic syndrome patients (35 mmol/l; p ≤ 0.001). Patient groups significantly differed in pancreatic sufficiency, immunoreactive trypsinogen levels, sweat chloride values, genotype, and positive Pseudomonas aeruginosa cultures (p ≤ 0.001). An automated classification algorithm using recursive partitioning demonstrated concordance between physician diagnoses and consensus guidelines. Our analysis suggests that integrating clinical information with sweat chloride levels, CFTR genotype, and pancreatic sufficiency provides a context for continued longitudinal monitoring of patients for personalized and effective treatment.

  9. Conservation of CFTR codon frequency through primates suggests synonymous mutations could have a functional effect.

    PubMed

    Pizzo, Lucilla; Iriarte, Andrés; Alvarez-Valin, Fernando; Marín, Mónica

    2015-05-01

    Cystic fibrosis is an inherited chronic disease that affects the lungs and digestive system, with a prevalence of about 1:3000 people. Cystic fibrosis is caused by mutations in CFTR gene, which lead to a defective function of the chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). Up-to-date, more than 1900 mutations have been reported in CFTR. However for an important proportion of them, their functional effects and the relation to disease are still not understood. Many of these mutations are silent (or synonymous), namely they do not alter the encoded amino acid. These synonymous mutations have been considered as neutral to protein function. However, more recent evidence in bacterial and human proteins has put this concept under revision. With the aim of understanding possible functional effects of synonymous mutations in CFTR, we analyzed human and primates CFTR codon usage and divergence patterns. We report the presence of regions enriched in rare and frequent codons. This spatial pattern of codon preferences is conserved in primates, but this cannot be explained by sequence conservation alone. In sum, the results presented herein suggest a functional implication of these regions of the gene that may be maintained by purifying selection acting to preserve a particular codon usage pattern along the sequence. Overall these results support the idea that several synonymous mutations in CFTR may have functional importance, and could be involved in the disease.

  10. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop*

    PubMed Central

    Ehrhardt, Annette; Chung, W. Joon; Pyle, Louise C.; Wang, Wei; Nowotarski, Krzysztof; Mulvihill, Cory M.; Ramjeesingh, Mohabir; Hong, Jeong; Velu, Sadanandan E.; Lewis, Hal A.; Atwell, Shane; Aller, Steve; Bear, Christine E.; Lukacs, Gergely L.; Kirk, Kevin L.; Sorscher, Eric J.

    2016-01-01

    In this study, we present data indicating a robust and specific domain interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) first cytosolic loop (CL1) and nucleotide binding domain 1 (NBD1) that allows ion transport to proceed in a regulated fashion. We used co-precipitation and ELISA to establish the molecular contact and showed that binding kinetics were not altered by the common clinical mutation F508del. Both intrinsic ATPase activity and CFTR channel gating were inhibited severely by CL1 peptide, suggesting that NBD1/CL1 binding is a crucial requirement for ATP hydrolysis and channel function. In addition to cystic fibrosis, CFTR dysregulation has been implicated in the pathogenesis of prevalent diseases such as chronic obstructive pulmonary disease, acquired rhinosinusitis, pancreatitis, and lethal secretory diarrhea (e.g. cholera). On the basis of clinical relevance of the CFTR as a therapeutic target, a cell-free drug screen was established to identify modulators of NBD1/CL1 channel activity independent of F508del CFTR and pharmacologic rescue. Our findings support a targetable mechanism of CFTR regulation in which conformational changes in the NBDs cause reorientation of transmembrane domains via interactions with CL1 and result in channel gating. PMID:26627831

  11. Acute inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel by thyroid hormones involves multiple mechanisms.

    PubMed

    Cai, Zhiwei; Li, Hongyu; Chen, Jeng-Haur; Sheppard, David N

    2013-10-15

    The chemical structures of the thyroid hormones triiodothyronine (T3) and thyroxine (T4) resemble those of small-molecules that inhibit the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We therefore tested the acute effects of T3, T4 and reverse T3 (rT3) on recombinant wild-type human CFTR using the patch-clamp technique. When added directly to the intracellular solution bathing excised membrane patches, T3, T4, and rT3 (all tested at 50 μM) inhibited CFTR in several ways: they strongly reduced CFTR open probability by impeding channel opening; they moderately decreased single-channel current amplitude, and they promoted transitions to subconductance states. To investigate the mechanism of CFTR inhibition, we studied T3. T3 (50 μM) had multiple effects on CFTR gating kinetics, suggestive of both allosteric inhibition and open-channel blockade. Channel inhibition by T3 was weakly voltage dependent and stronger than the allosteric inhibitor genistein, but weaker than the open-channel blocker glibenclamide. Raising the intracellular ATP concentration abrogated T3 inhibition of CFTR gating, but not the reduction in single-channel current amplitude nor the transitions to subconductance states. The decrease in single-channel current amplitude was relieved by membrane depolarization, but not the transitions to subconductance states. We conclude that T3 has complex effects on CFTR consistent with both allosteric inhibition and open-channel blockade. Our results suggest that there are multiple allosteric mechanisms of CFTR inhibition, including interference with ATP-dependent channel gating and obstruction of conformational changes that gate the CFTR pore. CFTR inhibition by thyroid hormones has implications for the development of innovative small-molecule CFTR inhibitors.

  12. Efflux systems in bacteria and their metabolic engineering applications.

    PubMed

    Jones, Christopher M; Hernández Lozada, Néstor J; Pfleger, Brian F

    2015-11-01

    The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.

  13. Silver iodide sodalite for 129I immobilisation

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Gregg, D. J.; Grant, C.; Stopic, A.; Maddrell, E. R.

    2016-11-01

    Silver iodide sodalite was initially synthesised as a fine-grained major phase in a nominally stoichiometric composition following hot isostatic pressing at 850 °C with 100 MPa and its composition, Ag4Al3Si3O12I, was approximately verified by scanning electron microscopy. An alternative preparative method yielded a more dense and stoichiometric AgI sodalite on sintering and HIPing. As found for AgI, the I is released from AgI sodalite much more readily in reducing water than in ordinary water. Thus in normal PCT-B tests, the I release was <0.3 g/L in water, but it was ∼70 g/L under highly reducing conditions. This is an important point with regard to can material if HIPing is used for consolidation.

  14. Barium iodide and strontium iodide crystals and scintillators implementing the same

    DOEpatents

    Payne, Stephen A.; Cherepy, Nerine J.; Hull, Giulia E.; Drobshoff, Alexander D.; Burger, Arnold

    2016-11-29

    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV, where the strontium iodide material is characterized by a volume not less than 1 cm.sup.3. In another embodiment, a scintillator optic includes europium-doped strontium iodide providing at least 50,000 photons per MeV, where the europium in the crystal is primarily Eu.sup.2+, and the europium is present in an amount greater than about 1.6%. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, where a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 and 1.0, the scintillator optic is a crystal that provides at least 50,000 scintillation photons per MeV and energy resolution of less than about 5% at 662 keV, and the crystal has a volume of 1 cm.sup.3 or more; the scintillator optic contains more than about 2% europium.

  15. The Mitochondrial Complex I Activity Is Reduced in Cells with Impaired Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Function

    PubMed Central

    Valdivieso, Angel G.; Clauzure, Mariángeles; Marín, María C.; Taminelli, Guillermo L.; Massip Copiz, María M.; Sánchez, Francisco; Schulman, Gustavo; Teiber, María L.; Santa-Coloma, Tomás A.

    2012-01-01

    Cystic fibrosis (CF) is a frequent and lethal autosomal recessive disease. It results from different possible mutations in the CFTR gene, which encodes the CFTR chloride channel. We have previously studied the differential expression of genes in CF and CF corrected cell lines, and found a reduced expression of MTND4 in CF cells. MTND4 is a mitochondrial gene encoding the MTND4 subunit of the mitochondrial Complex I (mCx-I). Since this subunit is essential for the assembly and activity of mCx-I, we have now studied whether the activity of this complex was also affected in CF cells. By using Blue Native-PAGE, the in-gel activity (IGA) of the mCx-I was found reduced in CFDE and IB3-1 cells (CF cell lines) compared with CFDE/6RepCFTR and S9 cells, respectively (CFDE and IB3-1 cells ectopically expressing wild-type CFTR). Moreover, colon carcinoma T84 and Caco-2 cells, which express wt-CFTR, either treated with CFTR inhibitors (glibenclamide, CFTR(inh)-172 or GlyH101) or transfected with a CFTR-specific shRNAi, showed a significant reduction on the IGA of mCx-I. The reduction of the mCx-I activity caused by CFTR inhibition under physiological or pathological conditions may have a profound impact on mitochondrial functions of CF and non-CF cells. PMID:23185247

  16. Calpain inhibition promotes the rescue of F(508)del-CFTR in PBMC from cystic fibrosis patients.

    PubMed

    Averna, Monica; Pedrazzi, Marco; Minicucci, Laura; De Tullio, Roberta; Cresta, Federico; Salamino, Franca; Pontremoli, Sandro; Melloni, Edon

    2013-01-01

    A basal calpain activity promotes the limited proteolysis of wild type (WT) cystic fibrosis conductance regulator (CFTR), inducing the internalization of the split channel. This process contributes to the regulation in the level of the active CFTR at the plasma membranes. In peripheral blood mononuclear cells (PBMC) from 16 healthy donors, the inhibition of calpain activity induces a 3-fold increase in the amount of active WT CFTR at the plasma membranes. Instead, in PBMC from cystic fibrosis (CF) patients, calpain activity is expressed at aberrant levels causing the massive removal of F(508)del-CFTR from the cell surface. In these patients, the inhibition of such abnormal proteolysis rescues physiological amounts of active mutated CFTR in 90% of the patients (25 over 28). The recovery of functional F(508)del-CFTR at the physiological location, in cells treated with a synthetic calpain inhibitor, indicates that F(508)del-CFTR folding, maturation, and trafficking operate in CF-PBMC at significant rate. Thus, an increase in the basal calpain activity seems primarily involved in the CFTR defect observed in various CF cells. Furthermore, in CF-PBMC the recovery of the scaffolding protein Na(+)/H(+) exchanger regulatory factor 1 (NHERF-1), occurring following inhibition of the aberrant calpain activity, can contribute to rescue CFTR-functional clusters.

  17. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    PubMed

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  18. HDL Cholesterol Efflux Predicts Graft Failure in Renal Transplant Recipients

    PubMed Central

    Annema, Wijtske; Dikkers, Arne; Freark de Boer, Jan; Dullaart, Robin P. F.; Sanders, Jan-Stephan F.; Bakker, Stephan J. L.

    2016-01-01

    High-density lipoprotein (HDL) particles are involved in the protection against cardiovascular disease by promoting cholesterol efflux, in which accumulated cholesterol is removed from macrophage foam cells. We investigated whether HDL cholesterol efflux capacity is associated with cardiovascular mortality, all-cause mortality, and graft failure in a cohort of renal transplant recipients (n=495, median follow-up 7.0 years). Cholesterol efflux capacity at baseline was quantified using incubation of human macrophage foam cells with apolipoprotein B–depleted plasma. Baseline efflux capacity was not different in deceased patients and survivors (P=0.60 or P=0.50 for cardiovascular or all-cause mortality, respectively), whereas recipients developing graft failure had lower efflux capacity than those with functioning grafts (P<0.001). Kaplan–Meier analysis demonstrated a lower risk for graft failure (P=0.004) but not cardiovascular (P=0.30) or all-cause mortality (P=0.31) with increasing gender-stratified tertiles of efflux capacity. Cox regression analyses adjusted for age and gender showed that efflux capacity was not associated with cardiovascular mortality (hazard ratio [HR], 0.89; 95% confidence interval [95% CI], 0.67 to 1.19; P=0.43). Furthermore, the association between efflux capacity and all-cause mortality (HR, .79; 95% CI, 0.63 to 0.98; P=0.031) disappeared after further adjustment for potential confounders. However, efflux capacity at baseline significantly predicted graft failure (HR, 0.43; 95% CI, 0.29 to 0.64; P<0.001) independent of apolipoprotein A-I, HDL cholesterol, or creatinine clearance. In conclusion, this prospective study shows that cholesterol efflux capacity from macrophage foam cells is not associated with cardiovascular or all-cause mortality but is a strong predictor of graft failure independent of plasma HDL cholesterol levels in renal transplant recipients. PMID:26319244

  19. Acute Submandibular Swelling Complicating Arteriography With Iodide Contrast

    PubMed Central

    Zhang, Guilian; Li, Yaqi; Zhang, Ru; Guo, Yingying; Ma, Zhulin; Wang, Huqing; Zhang, Lei; Li, Tingting

    2015-01-01

    Abstract Iodide mumps is an uncommon condition induced by iodide-containing contrast. We present the first reported case of iodide mumps in mainland China, which occurred after carotid artery intervention. The patient, a 65-year-old Chinese male, had a history of dizziness, hypertension, diabetes, and right arm weakness. He had no history of allergies and had never previously received iodide-containing contrast. The patient's kidney function and other laboratory findings were normal. He underwent stenting of the left internal carotid artery (LICA) opening and received approximately 250 mL of a nonionic contrast agent (ioversol). Approximately 5 hours after angioplasty, bilateral local swellings were noted near the mandible; the masses were moderately firm and nontender. Iodide mumps was diagnosed in the patient. Intravenous dexamethasone (10 mg) was administered. The submandibular glands had shrunk by 11 hours after angioplasty, and they gradually became softer. The mandibular salivary glands had completely recovered by 5 days after surgery. Iodide mumps represents a rare late reaction to iodine-containing contrast media. This condition can occur in any patient receiving any iodinated contrast agent and may recur upon repeated exposure, but self-resolution can be expected within 2 weeks. All clinicians who use contrast media or iodide should be aware of this condition. PMID:26287428

  20. The distribution of iodide at the sea surface.

    PubMed

    Chance, Rosie; Baker, Alex R; Carpenter, Lucy; Jickells, Tim D

    2014-08-01

    Recent studies have highlighted the impact of sea surface iodide concentrations on the deposition of ozone to the sea surface and the sea to air flux of reactive iodine. The use of models to predict this flux demands accurate, spatially distributed sea surface iodide concentrations, but to date, the observational data required to support this is sparse and mostly arises from independent studies conducted on small geographical and temporal scales. We have compiled the available measurements of sea surface iodide to produce a data set spanning latitudes from 69°S to 66°N, which reveals a coherent, large scale distribution pattern, with highest concentrations observed in tropical waters. Relationships between iodide concentration and more readily available parameters (chlorophyll, nitrate, sea surface temperature, salinity, mixed layer depth) are evaluated as tools to predict iodide concentration. Of the variables tested, sea surface temperature is the strongest predictor of iodide concentration. Nitrate was also strongly inversely associated with iodide concentration, but chlorophyll-a was not.

  1. Flavonoid Rutin Increases Thyroid Iodide Uptake in Rats

    PubMed Central

    Lima Gonçalves, Carlos Frederico; de Souza dos Santos, Maria Carolina; Ginabreda, Maria Gloria; Soares Fortunato, Rodrigo; Pires de Carvalho, Denise; Freitas Ferreira, Andrea Claudia

    2013-01-01

    Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function. PMID:24023911

  2. Flavonoid rutin increases thyroid iodide uptake in rats.

    PubMed

    Gonçalves, Carlos Frederico Lima; Lima Gonçalves, Carlos Frederico; Santos, Maria Carolina de Souza dos; de Souza dos Santos, Maria Carolina; Ginabreda, Maria Gloria; Fortunato, Rodrigo Soares; Soares Fortunato, Rodrigo; Carvalho, Denise Pires de; Pires de Carvalho, Denise; Freitas Ferreira, Andrea Claudia

    2013-01-01

    Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function.

  3. Improved clinical and radiographic outcomes after treatment with ivacaftor in a young adult with cystic fibrosis with the P67L CFTR mutation.

    PubMed

    Yousef, Shatha; Solomon, George M; Brody, Alan; Rowe, Steven M; Colin, Andrew A

    2015-03-01

    The underlying cause of cystic fibrosis (CF) is the loss of epithelial chloride and bicarbonate transport due to mutations in the CF transmembrane conductance regulator (CFTR) gene encoding the CFTR protein. Ivacaftor is a gene-specific CFTR potentiator that augments in vivo chloride transport in CFTR mutations affecting channel gating. Originally approved for the G511D CFTR mutation, ivacaftor is now approved for eight additional alleles exhibiting gating defects and has also been tested in R117H, a CFTR mutation with residual function that exhibits abnormal gating. P67L is a class 4 conductance (nongating) mutation exhibiting residual CFTR function. We report marked clinical improvement, normalization of spirometry, and dramatic reduction in radiographic structural airway changes after > 1 year of treatment with ivacaftor in a young adult with the compound heterozygous genotype P67L/F508del CFTR. The case suggests that ivacaftor may have a potential benefit for patients with CF with nongating mutations.

  4. Impact of the F508del mutation on ovine CFTR, a Cl− channel with enhanced conductance and ATP-dependent gating

    PubMed Central

    Cai, Zhiwei; Palmai-Pallag, Timea; Khuituan, Pissared; Mutolo, Michael J; Boinot, Clément; Liu, Beihui; Scott-Ward, Toby S; Callebaut, Isabelle; Harris, Ann; Sheppard, David N

    2015-01-01

    Cross-species comparative studies are a powerful approach to understanding the epithelial Cl− channel cystic fibrosis transmembrane conductance regulator (CFTR), which is defective in the genetic disease cystic fibrosis (CF). Here, we investigate the single-channel behaviour of ovine CFTR and the impact of the most common CF mutation, F508del-CFTR, using excised inside-out membrane patches from transiently transfected CHO cells. Like human CFTR, ovine CFTR formed a weakly inwardly rectifying Cl− channel regulated by PKA-dependent phosphorylation, inhibited by the open-channel blocker glibenclamide. However, for three reasons, ovine CFTR was noticeably more active than human CFTR. First, single-channel conductance was increased. Second, open probability was augmented because the frequency and duration of channel openings were increased. Third, with enhanced affinity and efficacy, ATP more strongly stimulated ovine CFTR channel gating. Consistent with these data, the CFTR modulator phloxine B failed to potentiate ovine CFTR Cl− currents. Similar to its impact on human CFTR, the F508del mutation caused a temperature-sensitive folding defect, which disrupted ovine CFTR protein processing and reduced membrane stability. However, the F508del mutation had reduced impact on ovine CFTR channel gating in contrast to its marked effects on human CFTR. We conclude that ovine CFTR forms a regulated Cl− channel with enhanced conductance and ATP-dependent channel gating. This phylogenetic analysis of CFTR structure and function demonstrates that subtle changes in structure have pronounced effects on channel function and the consequences of the CF mutation F508del. Key points Malfunction of the cystic fibrosis transmembrane conductance regulator (CFTR), a gated pathway for chloride movement, causes the common life-shortening genetic disease cystic fibrosis (CF). Towards the development of a sheep model of CF, we have investigated the function of sheep CFTR. We found that

  5. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    PubMed Central

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics. PMID:27681908

  6. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.

    PubMed

    Sun, Jingjing; Deng, Ziqing; Yan, Aixin

    2014-10-17

    Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention.

  7. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    PubMed

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-02-16

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  8. The Effect on Sodium/Iodide Symporter and Pendrin in Thyroid Colloid Retention Developed by Excess Iodide Intake.

    PubMed

    Chen, Xiao-Yi; Lin, Chu-Hui; Yang, Li-Hua; Li, Wang-Gen; Zhang, Jin-Wei; Zheng, Wen-Wei; Wang, Xiang; Qian, Jiang; Huang, Jia-Luan; Lei, Yi-Xiong

    2016-07-01

    It is well known that excess iodide can lead to thyroid colloid retention, a classic characteristic of iodide-induced goiter. However, the mechanism has not been fully unrevealed. Iodide plays an important role in thyroid function at multiple steps of thyroid colloid synthesis and transport among which sodium/iodide symporter (NIS) and pendrin are essential. In our study, we fed female BALB/c mice with different concentrations of high-iodine water including group A (control group, 0 μg/L), group B (1500 μg/L), group C (3000 μg/L), group D (6000 μg/L), and group E (12,000 μg/L). After 7 months of feeding, we found that excess iodide could lead to different degrees of thyroid colloid retention. Besides, NIS and pendrin expression were downregulated in the highest dose group. The thyroid iodide intake function detected by urine iodine assay and thyroidal (125)I experiments showed that the urine level of iodine increased, while the iodine intake rate decreased when the concentration of iodide used in feeding water increased (all p < 0.05 vs. control group). In addition, transmission electron microscopy (TEM) indicated a reduction in the number of intracellular mitochondria of thyroid cells. Based on these findings, we concluded that the occurrence of thyroid colloid retention exacerbated by excess iodide was associated with the suppression of NIS and pendrin expression, providing an additional insight of the potential mechanism of action of excess iodide on thyroid gland.

  9. Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP.

    PubMed Central

    Lukacs, G L; Mohamed, A; Kartner, N; Chang, X B; Riordan, J R; Grinstein, S

    1994-01-01

    Metabolic labeling experiments followed by immunoprecipitation were performed to investigate the kinetics, location and inhibitor sensitivity of degradation of both wild-type (wt) and mutant (delta F508) cystic fibrosis conductance transmembrane regulator (CFTR). At the earliest stages of the biosynthetic process, both wt and delta F508 CFTR were found to be susceptible to degradation by endogenous proteases. Virtually all delta F508 CFTR and 45-80% of wt CFTR were rapidly degraded with a similar half-life (t1/2 approximately 0.5 h). The remaining wt CFTR attained a protease-resistant configuration regardless of whether traffic between the endoplasmic reticulum (ER) and Golgi was operational. Metabolic energy is required for the conformational transition, but not to maintain the stability of the protease-resistant wt CFTR. Intracellular degradation of delta F508 CFTR and of incompletely folded wt CFTR occurs in a non-lysosomal, pre-Golgi compartment, as indicated by the sensitivity of proteolysis to different inhibitors and temperature. Accordingly, products of the degradation of delta F508 CFTR could be detected by immunoblotting in isolated ER, but not in the Golgi. Together, these results suggest a dynamic equilibrium between two forms of wt CFTR in the ER: an incompletely folded, protease-sensitive form which is partially converted by an ATP-dependent process to a more mature form that is protease-resistant and capable of leaving the ER. The inability delta F508 CFTR to undergo such a transition renders it susceptible to complete and rapid degradation in a pre-Golgi compartment. Images PMID:7529176

  10. Defective CFTR- β-catenin interaction promotes NF-κB nuclear translocation and intestinal inflammation in cystic fibrosis.

    PubMed

    Liu, Kaisheng; Zhang, Xiaohu; Zhang, Jie Ting; Tsang, Lai Ling; Jiang, Xiaohua; Chan, Hsiao Chang

    2016-09-27

    While inflammation with aberrant activation of NF-κB pathway is a hallmark of cystic fibrosis (CF), the molecular mechanisms underlying the link between CFTR defect and activation of NF-κB-mediated pro-inflammatory response remain elusive. Here, we investigated the link between CFTR defect and NF-κB activation in ΔF508cftr-/- mouse intestine and human intestinal epithelial cell lines. Our results show that the NF-κB/COX-2/PGE2 pathway is activated whereas the β-catenin pathway is suppressed in CF mouse intestine and CFTR-knockdown cells. Activation of β-catenin pathway by GSK3 inhibitors suppresses CFTR mutation/knockdown-induced NF-κB/COX-2/PGE2 pathway in ΔF508 mouse intestine and CFTR-knockdown cells. In contrast, suppression of β-catenin signaling induces the nuclear translocation of NF-κB. In addition, CFTR co-localizes and interacts with β-catenin while CFTR mutation disrupts the interaction between NF-κB and β-catenin in mouse intestine. Treatment with proteasome inhibitor MG132 completely reverses the reduced expression of β-catenin in Caco-2 cells. Collectively, these results indicate that CFTR stabilizes β-catenin and prevents its degradation, defect of which results in the activation of NF-κB-mediated inflammatory cascade. The present study has demonstrated a previously unsuspected interaction between CFTR and β-catenin that regulates NF-κB nuclear translocation in mouse intestine. Therefore, our study provides novel insights into the physiological function of CFTR and pathogenesis of CF-related diseases in addition to the NF-κB-mediated intestinal inflammation seen in CF.

  11. Screening of mutations in the CFTR gene in 1195 couples entering assisted reproduction technique programs.

    PubMed

    Stuppia, Liborio; Antonucci, Ivana; Binni, Francesco; Brandi, Alessandra; Grifone, Nicoletta; Colosimo, Alessia; De Santo, Mariella; Gatta, Valentina; Gelli, Gianfranco; Guida, Valentina; Majore, Silvia; Calabrese, Giuseppe; Palka, Chiara; Ravani, Anna; Rinaldi, Rosanna; Tiboni, Gian Mario; Ballone, Enzo; Venturoli, Anna; Ferlini, Alessandra; Torrente, Isabella; Grammatico, Paola; Calzolari, Elisa; Dallapiccola, Bruno

    2005-08-01

    Genetic testing of the cystic fibrosis transmembrane conductance (CFTR) gene is currently performed in couples undergoing assisted reproduction techniques (ART), because of the high prevalence of healthy carriers in the population and the pathogenic relationship with congenital bilateral absence of vas deferens (CBAVD). However, discordant data have been reported concerning the usefulness of this genetic test in couples with no family history of cystic fibrosis (CF). In this study, we report the results of CFTR molecular screening in 1195 couples entering ART. Genetic testing was initially carried out in a single partner of each couple. CFTR mutations were detected in 55 subjects (4.6%), a percentage that overlaps with the one reported in the general population. However, significantly higher frequencies of were found in CBAVD individuals (37.5%) and in males with nonobstructive azoospermia (6.6%). The 5T allele was found in 78 patients (6.5%). This figure was again significantly different in males with nonobstructive-azoospermia (9.9%) and in those with CBAVD (100%). All together, 139 subjects (11.6%) had either a CFTR mutation or the 5T allele. Subsequent molecular analysis of their partners disclosed a CFTR mutation or 5T allele in nine cases (6.5%). However, none of these couples had CFTR alterations in both members, a CFTR mutation being invariably present in one partner and the 5T allele in the other. In order to improve genetic counselling of these couples, the TG-M470V-5T association was analyzed, and a statistically significant relationship between 12TG-V470 and CBAVD was detected.

  12. CFTR-Mediated Cl− Transport in the Acinar and Duct Cells of Rabbit Lacrimal Gland

    PubMed Central

    Lu, Michael; Ding, Chuanqing

    2013-01-01

    Purpose We investigated the role that the cystic fibrosis transmembrane conductance regulator (CFTR) may play in Cl− transport in the acinar and ductal epithelial cells of rabbit lacrimal gland (LG). Methods Primary cultured LG acinar cells were processed for whole-cell patch-clamp electrophysiological recording of Cl− currents by using perfusion media with high and low [Cl−], 10 μM forskolin and 100 μM 3-isobutyl-1-methylxanthine (IBMX), the non-specific Cl− channel blocker 4,4′-disothiocyanostilbene-2, 2′ sulphonic acid (DIDS; 100 μM) and CFTRinh-172 (10 μM), a specific blocker for CFTR. Ex vivo live cell imaging of [Cl−] changes in duct cells was performed on freshly dissected LG duct with a multiphoton confocal laser scanning microscope using a Cl− sensitive fluorescence dye, N-[ethoxycarbonylmethyl]-6-methoxy-quinolinium bromide. Results Whole-cell patch-clamp studies demonstrated the presence of Cl− current in isolated acinar cells and revealed that this Cl− current was mediated by CFTR channel. Live cell imaging also showed the presence of CFTR-mediated Cl− transport across the plasma membrane of duct cells. Conclusions Our previous data showed the presence of CFTR in all acinar and duct cells within the rabbit LG, with expression most prominent in the apical membranes of duct cells. The present study demonstrates that CFTR is actively involved in Cl− transport in both acinar cells and epithelial cells from duct segments, suggesting that CFTR may play a significant role in LG secretion. PMID:22578307

  13. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs.

    PubMed

    Dittrich, Nikolaus P; Kummer, Wolfgang; Clauss, Wolfgang G; Fronius, Martin

    2015-11-01

    Fluid homeostasis mediated by the airway epithelium is required for proper lung function, and the CFTR (cystic fibrosis transmembrane conductance regulator) Cl(-) channel is crucial for these processes. Luminal acetylcholine (ACh) acts as an auto-/paracrine mediator to activate Cl(-) channels in airway epithelia and evidence exists showing that nicotinic ACh receptors activate CFTR in murine airway epithelia. The present study investigated whether or not luminal ACh regulates CFTR activity in airway epithelia of pigs, an emerging model for investigations of human airway disease and cystic fibrosis (CF) in particular. Transepithelial ion currents of freshly dissected pig tracheal preparations were measured with Ussing chambers. Application of luminal ACh (100 μM) induced an increase of the short-circuit current (I(SC)). The ACh effect was mimicked by muscarine and pilocarpine (100 μM each) and was sensitive to muscarinic receptor antagonists (atropine, 4-DAMP, pirenzepine). No changes of the I(SC) were observed by nicotine (100 μM) and ACh responses were not affected by nicotine or mecamylamine (25 μM). Luminal application of IBMX (I, 100 μM) and forskolin (F, 10 μM), increase the I(SC) and the I/F-induced current were decreased by the CFTR inhibitor GlyH-101 (GlyH, 50 μM) indicating increased CFTR activity by I/F. In contrast, GlyH did not affect the ACh-induced current, indicating that the ACh response does not involve the activation of the CFTR. Results from this study suggest that luminal ACh does not regulate the activity of the CFTR in tracheal epithelia of pigs which opposes observation from studies using mice airway epithelium.

  14. Adverse Effects of Pseudomonas aeruginosa on CFTR Chloride Secretion and the Host Immune Response.

    PubMed

    Stanton, Bruce A

    2017-01-25

    In the healthy lung the opportunistic pathogen, P. aeruginosa, is rapidly eliminated by mucociliary clearance, a process that is dependent on the activity of the CFTR anion channel that, in concert with a number of other transport proteins, regulates the volume and composition of the periciliary surface liquid. This fluid layer is essential to enable cilia to clear pathogens from the lungs. However, in cystic fibrosis (CF), mutations in the CFTR gene reduce Cl- and HCO3- secretion, thereby decreasing periciliary surface liquid volume and mucociliary clearance of bacteria. In CF this leads to persistent infection with the opportunistic pathogen, P. aeruginosa, which is the cause of reduced lung function and death in ~95% of CF patients. Others and we have conducted studies to elucidate the effects of P. aeruginosa on wild type and Phe508del-CFTR Cl- secretion as well as on the host immune response. These studies have demonstrated that Cif (CFTR Inhibitory Factor), a virulence factor secreted by P. aeruginosa, is associated with reduced lung function in CF, induces the ubiquitination and degradation of wt-CFTR as well as TAP1, which plays a key role in viral and bacterial antigen presentation, and inhibits the generation of host proresolving lipids. Cif also enhances the degradation of Phe508del-CFTR that has been rescued by ORKAMBI, a drug approved for CF patients homozygous for the PheF508del-CFTR mutation, thereby reducing drug efficacy. This review is based on the Hans Ussing Distinguished Lecture at the 2016 Experimental Biology Meeting given by the author.

  15. [Post-translational ligation of split CFTR severed before TMD2 and its chloride channel function].

    PubMed

    Zhu, Fuxiang; Gong, Xiandi; Liu, Zelong; Yang, Shude; Qu, Huige; Chi, Xiaoyan

    2010-12-01

    Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) gene leads to cystic fibrosis, an autosomal recessive genetic disorder affecting a number of organs including the lung airways, pancreas and sweat glands. In order to investigate the post-translational ligation of CFTR with reconstructed functional chloride ion channel and the split Ssp DnaB intein-mediated protein trans-splicing was explored to co-deliver CFTR gene into eukaryotic cells with two vectors. The human CFTR cDNA was split after Glu838 codon before the second transmembrane dome (TMD2) into two halves of N- and C-parts and fused with the coding sequences of split Ssp DnaB intein. Pair of eukaryotic expression vectors pEGFP-NInt and pEYFP-IntC were constructed by inserting them into the vectors pEGFP-N1 and pEYFP-N1 respectively. The transient expression was carried out for observing the ligation of CFTR by Western blotting and recording the chloride current by patch clamps when cotransfection of the pair of vectors into baby hamster kidney (BHK) cells. The results showed that an obvious protein band proven to be ligated intact CFTR can be seen and a higher chloride current and activity of chloride channel were recorded after cotransfection. These data demonstrated that split Ssp DnaB intein could be used as a strategy in delivering CFTR gene by two vectors providing evidence for application of dual adeno-associated virus (AAV) vectors to overcome the limitation of packaging size in cystic fibrosis gene therapy.

  16. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    PubMed Central

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630

  17. Laboratory measurements of parameters affecting wet deposition of methyl iodide

    SciTech Connect

    Maeck, W.J.; Honkus, R.J.; Keller, J.H.; Voilleque, P.G.

    1984-09-01

    The transfer of gaseous methyl iodide (CH/sub 3/I) to raindrops and the initial retention by vegetation of CH/sub 3/I in raindrops have been studied in a laboratory experimental program. The measured air-to-drop transfer parameters and initial retention factors both affect the wet deposition of methyl iodide onto vegetation. No large effects on the air-to-drop transfer due to methyl iodide concentration, temperature, acidity, or rain type were observed. Differences between laboratory measurements and theoretical values of the mass transfer coefficient were found. Pasture grass, lettuce, and alfalfa were used to study the initial retention of methyl iodide by vegetation. Only a small fraction of the incident CH/sub 3/I in raindrops was held by any of the three vegetation types.

  18. The Strain-Potential Effect of Silver Iodide.

    DTIC Science & Technology

    SILVER COMPOUNDS, SEEBECK EFFECT ), IODIDES, IMPURITIES, CONCENTRATION(CHEMISTRY), IONS, IONIZATION, IONIZATION POTENTIALS, ELECTRODES, ELECTROLYTES, INTERFACES, MOBILE, DISLOCATIONS, DEFORMATION, CRYSTAL DEFECTS, ELECTRICAL CONDUCTIVITY, SENSITIVITY, STRAIN GAGES, STRAIN(MECHANICS).

  19. A little CFTR goes a long way: CFTR-dependent sweat secretion from G551D and R117H-5T cystic fibrosis subjects taking ivacaftor.

    PubMed

    Char, Jessica E; Wolfe, Marlene H; Cho, Hyung-Ju; Park, Il-Ho; Jeong, Jin Hyeok; Frisbee, Eric; Dunn, Colleen; Davies, Zoe; Milla, Carlos; Moss, Richard B; Thomas, Ewart A C; Wine, Jeffrey J

    2014-01-01

    To determine if oral dosing with the CFTR-potentiator ivacaftor (VX-770, Kalydeco) improves CFTR-dependent sweating in CF subjects carrying G551D or R117H-5T mutations, we optically measured sweat secretion from 32-143 individually identified glands in each of 8 CF subjects; 6 F508del/G551D, one G551D/R117H-5T, and one I507del/R117H-5T. Two subjects were tested only (-) ivacaftor, 3 only (+) ivacaftor and 3 (+/-) ivacaftor (1-5 tests per condition). The total number of gland measurements was 852 (-) ivacaftor and 906 (+) ivacaftor. A healthy control was tested 4 times (51 glands). For each gland we measured both CFTR-independent (M-sweat) and CFTR-dependent (C-sweat); C-sweat was stimulated with a β-adrenergic cocktail that elevated [cAMP]i while blocking muscarinic receptors. Absent ivacaftor, almost all CF glands produced M-sweat on all tests, but only 1/593 glands produced C-sweat (10 tests, 5 subjects). By contrast, 6/6 subjects (113/342 glands) produced C-sweat in the (+) ivacaftor condition, but with large inter-subject differences; 3-74% of glands responded with C/M sweat ratios 0.04%-2.57% of the average WT ratio of 0.265. Sweat volume losses cause proportionally larger underestimates of CFTR function at lower sweat rates. The losses were reduced by measuring C/M ratios in 12 glands from each subject that had the highest M-sweat rates. Remaining losses were estimated from single channel data and used to correct the C/M ratios, giving estimates of CFTR function (+) ivacaftor  = 1.6%-7.7% of the WT average. These estimates are in accord with single channel data and transcript analysis, and suggest that significant clinical benefit can be produced by low levels of CFTR function.

  20. A Little CFTR Goes a Long Way: CFTR-Dependent Sweat Secretion from G551D and R117H-5T Cystic Fibrosis Subjects Taking Ivacaftor

    PubMed Central

    Char, Jessica E.; Wolfe, Marlene H.; Cho, Hyung-ju; Park, Il-Ho; Jeong, Jin Hyeok; Frisbee, Eric; Dunn, Colleen; Davies, Zoe; Milla, Carlos; Moss, Richard B.; Thomas, Ewart A. C.; Wine, Jeffrey J.

    2014-01-01

    To determine if oral dosing with the CFTR-potentiator ivacaftor (VX-770, Kalydeco) improves CFTR-dependent sweating in CF subjects carrying G551D or R117H-5T mutations, we optically measured sweat secretion from 32–143 individually identified glands in each of 8 CF subjects; 6 F508del/G551D, one G551D/R117H-5T, and one I507del/R117H-5T. Two subjects were tested only (−) ivacaftor, 3 only (+) ivacaftor and 3 (+/−) ivacaftor (1–5 tests per condition). The total number of gland measurements was 852 (−) ivacaftor and 906 (+) ivacaftor. A healthy control was tested 4 times (51 glands). For each gland we measured both CFTR-independent (M-sweat) and CFTR-dependent (C-sweat); C-sweat was stimulated with a β-adrenergic cocktail that elevated [cAMP]i while blocking muscarinic receptors. Absent ivacaftor, almost all CF glands produced M-sweat on all tests, but only 1/593 glands produced C-sweat (10 tests, 5 subjects). By contrast, 6/6 subjects (113/342 glands) produced C-sweat in the (+) ivacaftor condition, but with large inter-subject differences; 3–74% of glands responded with C/M sweat ratios 0.04%–2.57% of the average WT ratio of 0.265. Sweat volume losses cause proportionally larger underestimates of CFTR function at lower sweat rates. The losses were reduced by measuring C/M ratios in 12 glands from each subject that had the highest M-sweat rates. Remaining losses were estimated from single channel data and used to correct the C/M ratios, giving estimates of CFTR function (+) ivacaftor  = 1.6%–7.7% of the WT average. These estimates are in accord with single channel data and transcript analysis, and suggest that significant clinical benefit can be produced by low levels of CFTR function. PMID:24520399

  1. Synthesis and properties of N,N-dialkyl-P-phenylphosphonamidous iodides

    SciTech Connect

    Kovaleva, T.V.; Feshchenko, N.G.

    1987-01-20

    N,N-Dialkyl-P-phenylphosphonamidous iodides are formed in the reactions of phenylphosphonus diiodide with silylated secondary amines. N,N-Dialkyl-P-phenylphosphonamidous iodides react with electrophilic reagents (methyl iodide, benzenesulfonyl azide, and phenyl azide) by the usual schemes with the formation of alkylation and oxidative-imination products. Iodine catalyzes the disproportionation of morpholinophenylphosphinous iodide into dimorphomorpholinophenylphosphinous iodide with iodine are iododimorpholinophenylphosphonium triiodide and phenylphosphonous diiodide.

  2. Chloride, bromide and iodide scintillators with europium

    DOEpatents

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  3. Mercuric iodide photodetectors for scintillation spectroscopy

    SciTech Connect

    Markakis, J.; Dabrowski, A.; Iwanczyk, J.; Ortale, C.; Schnepple, W.

    1985-02-01

    We have measured the responses to /sup 137/Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-..mu..mthick mercuric iodide (HgI/sub 2/) photodetector, and a 1-cmdiam by 1-cm-thick CaWO/sub 4/ scintillator coupled to a 1.3-cm-diam by 600-..mu..m-thick HgI/sub 2/ photodetector. Best spectral resolution to /sup 137/Cs was 7.8% FWHM for the NaI(Tl)-HgI/sub 2/ and 12.5% FWHM for the CaWO/sub 4/-HgI/sub 2/ detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI/sub 2/ detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal.

  4. Mercuric iodide photodetectors for scintillation spectroscopy

    SciTech Connect

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1984-01-01

    We have measured the responses to /sup 137/Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-..mu..m-thick mercuric iodide (HgI/sub 2/) photodetector, and a 1-cm-diam by 1-cm-thick CaWO/sub 4/ scintillator coupled to a 1.3-cm-diam by 600-..mu..m-thick HgI/sub 2/ photodetector. Best spectral resolution to /sup 137/Cs was 7.8% FWHM for the NaI(Tl)-HgI/sub 2/ and 12.5% FWHM for the CaWO/sub 4/-HgI/sub 2/ detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI/sub 2/ detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal.

  5. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor

    PubMed Central

    Watson, Michael J.; Lee, Shernita L.; Marklew, Abigail J.; Gilmore, Rodney C.; Gentzsch, Martina; Sassano, Maria F.; Gray, Michael A.; Tarran, Robert

    2016-01-01

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR’s function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR’s PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs. PMID:27278076

  6. Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells.

    PubMed

    Favia, Maria; Mancini, Maria T; Bezzerri, Valentino; Guerra, Lorenzo; Laselva, Onofrio; Abbattiscianni, Anna C; Debellis, Lucantonio; Reshkin, Stephan J; Gambari, Roberto; Cabrini, Giulio; Casavola, Valeria

    2014-07-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) carrying the F508del mutation is retained in endoplasmic reticulum and fails to traffic to the cell surface where it functions as a protein kinase A (PKA)-activated chloride channel. Pharmacological correctors that rescue the trafficking of F508del CFTR may overcome this defect; however, the rescued F508del CFTR still displays reduced chloride permeability. Therefore, a combined administration of correctors and potentiators of the gating defect is ideal. We recently found that 4,6,4'-trimethylangelicin (TMA), besides inhibiting the expression of the IL-8 gene in airway cells in which the inflammatory response was challenged with Pseudomonas aeruginosa, also potentiates the cAMP/PKA-dependent activation of wild-type CFTR or F508del CFTR that has been restored to the plasma membrane. Here, we demonstrate that long preincubation with nanomolar concentrations of TMA is able to effectively rescue both F508del CFTR-dependent chloride secretion and F508del CFTR cell surface expression in both primary or secondary airway cell monolayers homozygous for F508del mutation. The correction effect of TMA seems to be selective for CFTR and persisted for 24 h after washout. Altogether, the results suggest that TMA, besides its anti-inflammatory and potentiator activities, also displays corrector properties.

  7. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR.

    PubMed Central

    Rubenstein, R C; Egan, M E; Zeitlin, P L

    1997-01-01

    The most common cystic fibrosis transmembrane conductance regulator mutation, delta F508-CFTR, is a partially functional chloride channel that is retained in the endoplasmic reticulum and degraded. We hypothesize that a known transcriptional regulator, sodium 4-phenylbutyrate (4PBA), will enable a greater fraction of delta F508-CFTR to escape degradation and appear at the cell surface. Primary cultures of nasal polyp epithelia from CF patients (delta F508 homozygous or heterozygous), or the CF bronchial epithelial cell line IB3-1 (delta F508/W1282X) were exposed to 4PBA for up to 7 d in culture. 4PBA treatment at concentrations of 0.1 and 2 mM resulted in the restoration of forskolin-activated chloride secretion. Protein kinase A-activated, linear, 10 pS chloride channels appeared at the plasma membrane of IB3-1 cells at the tested concentration of 2.5 mM. Treatment of IB3-1 cells with 0.1-1 mM 4PBA and primary nasal epithelia with 5 mM 4PBA also resulted in the appearance of higher molecular mass forms of CFTR consistent with addition and modification of oligosaccharides in the Golgi apparatus, as detected by immunoblotting of whole cell lysates with anti-CFTR antisera. Immunocytochemistry in CF epithelial cells treated with 4PBA was consistent with increasing amounts of delta F508-CFTR. These data indicate that 4PBA is a promising pharmacologic agent for inducing correction of the CF phenotype in CF patients carrying the delta F508 mutation. PMID:9366560

  8. Potassium Iodide ("KI"): Instructions to Make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form)

    MedlinePlus

    ... make Potassium Iodide Solution for Use During a Nuclear Emergency (Liquid Form) Share Tweet Linkedin Pin it ... Preparation and Dosing Instructions for Use During a Nuclear Emergency To Make KI Solution (Liquid Form), using ...

  9. CFTR Gene Mutations and Asthma in Indian Children: A Case-Control Study.

    PubMed

    Dixit, Pratibha; Awasthi, Shally; Maurya, Nutan; Agarwal, Sarita; Srinivasan, M

    2015-01-01

    Cystic Fibrosis Trans membrane conductance regulator (CFTR) gene is an asthma susceptibility gene. In the present study we investigated the possible association of CFTR gene mutations in Indian asthmatic children as compared to controls. The study included 250 asthmatics and 250 age and sex matched controls. Case to control ratio for sample size was 1:1. Genotyping was performed for 24 CFTR gene mutations by ARMS-PCR and PCR-RFLP method. Among 24 CFTR gene mutations, heterozygous allele of R553X mutation was found in 4 (1.6 %) asthmatic cases and 2 (0.8 %) controls. Value of FVC and FEV1/FVC ratio were significantly lower in heterozygous individuals (p value <0.05). No significant difference was observed in the genotype and allele frequency of R553X mutation (OR = 1.339, 95 % CI = 0.755-2.374, p value = 0.685). Furthermore, all wild type homozygous alleles were observed in remaining 23 CFTR gene mutations. Our data concludes that R553X mutation was not significantly associated in Indian asthmatic children.

  10. CFTR gene transfer with AAV improves early cystic fibrosis pig phenotypes

    PubMed Central

    Steines, Benjamin; Dickey, David D.; Bergen, Jamie; Excoffon, Katherine J.D.A.; Weinstein, John R.; Li, Xiaopeng; Yan, Ziying; Abou Alaiwa, Mahmoud H.; Shah, Viral S.; Bouzek, Drake C.; Powers, Linda S.; Gansemer, Nicholas D.; Ostedgaard, Lynda S.; Engelhardt, John F.; Stoltz, David A.; Welsh, Michael J.; Sinn, Patrick L.; Schaffer, David V.

    2016-01-01

    The physiological components that contribute to cystic fibrosis (CF) lung disease are steadily being elucidated. Gene therapy could potentially correct these defects. CFTR-null pigs provide a relevant model to test gene therapy vectors. Using an in vivo selection strategy that amplifies successful capsids by replicating their genomes with helper adenovirus coinfection, we selected an adeno-associated virus (AAV) with tropism for pig airway epithelia. The evolved capsid, termed AAV2H22, is based on AAV2 with 5 point mutations that result in a 240-fold increased infection efficiency. In contrast to AAV2, AAV2H22 binds specifically to pig airway epithelia and is less reliant on heparan sulfate for transduction. We administer AAV2H22-CFTR expressing the CF transmembrane conductance regulator (CFTR) cDNA to the airways of CF pigs. The transduced airways expressed CFTR on ciliated and nonciliated cells, induced anion transport, and improved the airway surface liquid pH and bacterial killing. Most gene therapy studies to date focus solely on Cl– transport as the primary metric of phenotypic correction. Here, we describe a gene therapy experiment where we not only correct defective anion transport, but also restore bacterial killing in CFTR-null pig airways. PMID:27699238

  11. Self-Reactive CFTR T Cells in Humans: Implications for Gene Therapy

    PubMed Central

    Calcedo, Roberto; Griesenbach, Uta; Dorgan, Daniel J.; Soussi, Samia; Boyd, A. Christopher; Davies, Jane C.; Higgins, Tracy E.; Hyde, Stephen C.; Gill, Deborah R.; Innes, J. Alastair; Porteous, David J.; Alton, Eric W.; Wilson, James M.

    2013-01-01

    Abstract Cystic fibrosis (CF) is one of the most common autosomal recessive lethal disorders affecting white populations of northern European ancestry. To date there is no cure for CF. Life-long treatments for CF are being developed and include gene therapy and the use of small-molecule drugs designed to target specific cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations. Irrespective of the type of molecular therapy for CF, which may include gene replacement, exon skipping, nonsense suppression, or molecular correctors, because all of these modulate gene expression there is an inherent risk of activation of T cells against the wild-type version of CFTR. Here we report the validation of the human interferon-γ enzyme-linked immunospot assay and its application for the analysis of CFTR-specific T cell responses in patients with CF and in non-CF subjects. We found non-CF subjects with low levels of self-reactive CFTR-specific T cells in the United States and several patients with CF with low to high levels of self-reactive CFTR-specific T cells in both the United States and the United Kingdom. PMID:23790242

  12. Ivacaftor treatment in patients with cystic fibrosis and the G551D-CFTR mutation.

    PubMed

    Sermet-Gaudelus, Isabelle

    2013-03-01

    Cystic fibrosis (CF) is an autosomal recessive lethal disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that encodes for CFTR, an epithelial cell-surface expressed protein responsible for the transport of chloride (Cl(-)). Gating mutations associated with defective conductance can be modulated by CFTR potentiators. Ivacaftor is a CFTR potentiator approved for the treatment of CF patients >6 yrs of age with at least one copy of the G551D-CFTR mutation. Herein, the clinical trial development programme for ivacaftor will be reviewed, including two pivotal studies in adolescents/adults and in children. These studies report sustained improvements in lung function and sweat chloride concentrations, and a reduction in pulmonary exacerbations over a 48-week treatment period. In the era of personalised medicine, ivacaftor offers an effective and well-tolerated treatment for the clinical management of CF patients with the G551D mutation. A long-term, open-label study will report the effects of ivacaftor over a further 48 weeks.

  13. Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization

    PubMed Central

    Mihályi, Csaba; Töröcsik, Beáta; Csanády, László

    2016-01-01

    In CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) opens the pore, and dimer disruption following ATP hydrolysis closes it. Spontaneous openings without ATP are rare in wild-type CFTR, but in certain CF mutants constitute the only gating mechanism, stimulated by ivacaftor, a clinically approved CFTR potentiator. The molecular motions underlying spontaneous gating are unclear. Here we correlate energetic coupling between residues across the dimer interface with spontaneous pore opening/closure in single CFTR channels. We show that spontaneous openings are also strictly coupled to NBD dimerization, which may therefore occur even without ATP. Coordinated NBD/pore movements are therefore intrinsic to CFTR: ATP alters the stability, but not the fundamental structural architecture, of open- and closed-pore conformations. This explains correlated effects of phosphorylation, mutations, and drugs on ATP-driven and spontaneous activity, providing insights for understanding CF mutation and drug mechanisms. DOI: http://dx.doi.org/10.7554/eLife.18164.001 PMID:27328319

  14. Nanomolar CFTR inhibition by pore-occluding divalent polyethylene glycol-malonic acid hydrazides.

    PubMed

    Sonawane, N D; Zhao, Dan; Zegarra-Moran, Olga; Galietta, Luis J V; Verkman, A S

    2008-07-21

    Inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel have potential application as antisecretory therapy in cholera. We synthesized mono- and divalent CFTR inhibitors consisting of a malonic acid hydrazide (MalH) coupled via a disulfonic stilbene linker to polyethylene glycols (PEGs; 0.2-100 kDa). IC50 values for CFTR inhibition were 10-15 microM for the monovalent MalH-PEGs, but substantially lower for divalent MalH-PEG-MalH compounds, decreasing from 1.5 to 0.3 microM with increasing PEG size and showing positive cooperativity. Whole-cell patch-clamp showed voltage-dependent CFTR block with inward rectification. Outside-out patch-clamp showed shortened single-channel openings, indicating CFTR pore block from the extracellular side. Luminally added MalH-PEG-MalH blocked by >90% cholera toxin-induced fluid secretion in mouse intestinal loops (IC50 approximately 10 pmol/loop), and greatly reduced mortality in a suckling mouse cholera model. These conjugates may provide safe, inexpensive antisecretory therapy.

  15. Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells

    PubMed Central

    Pu, Yingying; Zhao, Zhilun; Li, Yingxing; Zou, Jin; Ma, Qi; Zhao, Yanna; Ke, Yuehua; Zhu, Yun; Chen, Huiyi; Baker, Matthew A.B.; Ge, Hao; Sun, Yujie; Xie, Xiaoliang Sunney; Bai, Fan

    2016-01-01

    Summary Natural variations in gene expression provide a mechanism for multiple phenotypes to arise in an isogenic bacterial population. In particular, a sub-group termed persisters show high tolerance to antibiotics. Previously, their formation has been attributed to cell dormancy. Here we demonstrate that bacterial persisters, under β-lactam antibiotic treatment, show less cytoplasmic drug accumulation as a result of enhanced efflux activity. Consistently, a number of multi-drug efflux genes, particularly the central component TolC, show higher expression in persisters. Time-lapse imaging and mutagenesis studies further establish a positive correlation between tolC expression and bacterial persistence. The key role of efflux systems, among multiple biological pathways involved in persister formation, indicates that persisters implement a positive defense against antibiotics prior to a passive defense via dormancy. Finally, efflux inhibitors and antibiotics together effectively attenuate persister formation, suggesting a combination strategy to target drug tolerance. PMID:27105118

  16. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia.

    PubMed

    Xie, Changyan; Cao, Xu; Chen, Xibing; Wang, Dong; Zhang, Wei Kevin; Sun, Ying; Hu, Wenbao; Zhou, Zijing; Wang, Yan; Huang, Pingbo

    2016-04-01

    Mutations of cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial ligand-gated anion channel, are associated with the lethal genetic disease cystic fibrosis. The CFTR G551D mutation impairs ATP hydrolysis and thereby makes CFTR refractory to cAMP stimulation. Both wild-type (WT) and G551D CFTR have been implicated in regulatory volume decrease (RVD), but the underlying mechanism remains incompletely understood. Here, we show that the channel activity of both WT and G551D CFTR is directly stimulated by mechanical perturbation induced by cell swelling at the single-channel, cellular, and tissue levels. Hypotonicity activated CFTR single channels in cell-attached membrane patches and WT-CFTR-mediated short-circuit current (Isc) in Calu-3 cells, and this was independent of Ca(2+)and cAMP/PKA signaling. Genetic suppression and ablation but not G551D mutation of CFTR suppressed the hypotonicity- and stretch-inducedIscin Calu-3 cells and mouse duodena. Moreover, ablation but not G551D mutation of the CFTR gene inhibited the RVD of crypts isolated from mouse intestine; more importantly, CFTR-specific blockers markedly suppressed RVD in both WT- and G551D CFTR mice, demonstrating for the first time that the channel activity of both WT and G551D CFTR is required for epithelial RVD. Our findings uncover a previously unrecognized mechanism underlying CFTR involvement in epithelial RVD and suggest that the mechanosensitivity of G551D CFTR might underlie the mild phenotypes resulting from this mutation.-Xie, C., Cao, X., Chen, X, Wang, D., Zhang, W. K., Sun, Y., Hu, W., Zhou, Z., Wang, Y., Huang, P. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia.

  17. Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition.

    PubMed

    Kelly, Mairead; Trudel, Stephanie; Brouillard, Franck; Bouillaud, Frederick; Colas, Julien; Nguyen-Khoa, Thao; Ollero, Mario; Edelman, Aleksander; Fritsch, Janine

    2010-04-01

    Two highly potent and selective cystic fibrosis (CF) transmembrane regulator (CFTR) inhibitors have been identified by high-throughput screening: the thiazolidinone CFTR(inh)-172 [3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]- 2-thioxo-4-thiazolidinone] and the glycine hydrazide GlyH-101 [N-(2-naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide]. Inhibition of the CFTR chloride channel by these compounds has been suggested to be of pharmacological interest in the treatment of secretory diarrheas and polycystic kidney disease. In addition, functional inhibition of CFTR by CFTR(inh)-172 has been proposed to be sufficient to mimic the CF inflammatory profile. In the present study, we investigated the effects of the two compounds on reactive oxygen species (ROS) production and mitochondrial membrane potential in several cell lines: the CFTR-deficient human lung epithelial IB3-1 (expressing the heterozygous F508del/W1282X mutation), the isogenic CFTR-corrected C38, and HeLa and A549 as non-CFTR-expressing controls. Both inhibitors were able to induce a rapid increase in ROS levels and depolarize mitochondria in the four cell types, suggesting that these effects are independent of CFTR inhibition. In HeLa cells, these events were associated with a decrease in the rate of oxygen consumption, with GlyH-101 demonstrating a higher potency than CFTR(inh)-172. The impact of CFTR inhibitors on inflammatory parameters was also tested in HeLa cells. CFTR(inh)-172, but not GlyH-101, induced nuclear translocation of nuclear factor-kappaB (NF-kappaB). CFTR(inh)-172 slightly decreased interleukin-8 secretion, whereas GlyH-101 induced a slight increase. These results support the conclusion that CFTR inhibitors may exert nonspecific effects regarding ROS production, mitochondrial failure, and activation of the NF-kappaB signaling pathway, independently of CFTR inhibition.

  18. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance.

    PubMed

    Blair, Jessica M A; Richmond, Grace E; Piddock, Laura J V

    2014-01-01

    Gram-negative bacteria express a plethora of efflux pumps that are capable of transporting structurally varied molecules, including antibiotics, out of the bacterial cell. This efflux lowers the intracellular antibiotic concentration, allowing bacteria to survive at higher antibiotic concentrations. Overexpression of some efflux pumps can cause clinically relevant levels of antibiotic resistance in Gram-negative pathogens. This review discusses the role of efflux in resistance of clinical isolates of Gram-negative bacteria, the regulatory mechanisms that control efflux pump expression, the recent advances in our understanding of efflux pump structure and how inhibition of efflux is a promising future strategy for tackling multidrug resistance in Gram-negative pathogens.

  19. Engineering and design properties of thallium-doped sodium iodide and selected properties of sodium-doped cesium iodide

    NASA Technical Reports Server (NTRS)

    Forrest, K.; Haehner, C.; Heslin, T.; Magida, M.; Uber, J.; Freiman, S.; Hicho, G.; Polvani, R.

    1984-01-01

    Mechanical and thermal properties, not available in the literature but necessary to structural design, using thallium doped sodium iodide and sodium doped cesium iodide were determined to be coefficient of linear thermal expansion, thermal conductivity, thermal shock resistance, heat capacity, elastic constants, ultimate strengths, creep, hardness, susceptibility to subcritical crack growth, and ingot variation of strength. These properties were measured for single and polycrystalline materials at room temperature.

  20. Experimental investigation of charged liquid jet efflux from a capillary

    NASA Astrophysics Data System (ADS)

    Zhakin, A. I.; Belov, P. A.; Kuz'ko, A. E.

    2013-03-01

    The shapes and electrical characteristics of charged liquid (water, ethanol, glycerol, castor oil) jets emitted from a metal capillary have been experimentally studied depending on the applied high voltage. A map of efflux regimes in the flow velocity-applied voltage coordinates is constructed for water. The effects of medium viscosity, surface tension, and charge relaxation time on the laws of jet efflux are analyzed.

  1. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl– concentration

    PubMed Central

    König, Jens; Schreiber, Rainer; Voelcker, Thilo; Mall, Marcus; Kunzelmann, Karl

    2001-01-01

    Activation of the CFTR Cl– channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis transmembrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibition of ENaC is augmented at higher CFTR Cl– currents. Similar to CFTR, ClC-0 Cl– currents also inhibit ENaC, as well as high extracellular Na+ and Cl– in partially permeabilized oocytes. Thus, inhibition of ENaC is not specific to CFTR and seems to be mediated by Cl–. PMID:11606421

  2. Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders – updated European recommendations

    PubMed Central

    Dequeker, Els; Stuhrmann, Manfred; Morris, Michael A; Casals, Teresa; Castellani, Carlo; Claustres, Mireille; Cuppens, Harry; des Georges, Marie; Ferec, Claude; Macek, Milan; Pignatti, Pier-Franco; Scheffer, Hans; Schwartz, Marianne; Witt, Michal; Schwarz, Martin; Girodon, Emmanuelle

    2009-01-01

    The increasing number of laboratories offering molecular genetic analysis of the CFTR gene and the growing use of commercial kits strengthen the need for an update of previous best practice guidelines (published in 2000). The importance of organizing regional or national laboratory networks, to provide both primary and comprehensive CFTR mutation screening, is stressed. Current guidelines focus on strategies for dealing with increasingly complex situations of CFTR testing. Diagnostic flow charts now include testing in CFTR-related disorders and in fetal bowel anomalies. Emphasis is also placed on the need to consider ethnic or geographic origins of patients and individuals, on basic principles of risk calculation and on the importance of providing accurate laboratory reports. Finally, classification of CFTR mutations is reviewed, with regard to their relevance to pathogenicity and to genetic counselling. PMID:18685558

  3. First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding

    SciTech Connect

    Taulan, M. Lopez, E.; Guittard, C.; Rene, C.; Baux, D.; Altieri, J.P.; DesGeorges, M.; Claustres, M.; Romey, M.C.

    2007-09-28

    Growing evidences show that functionally relevant polymorphisms in various promoters alter both transcriptional activity and affinities of existing protein-DNA interactions, and thus influence disease progression in humans. We previously reported the -94G>T CFTR promoter variant in a female CF patient in whom any known disease-causing mutation has been detected. To investigate whether the -94G>T could be a regulatory variant, we have proceeded to in silico analyses and functional studies including EMSA and reporter gene assays. Our data indicate that the promoter variant decreases basal CFTR transcriptional activity in different epithelial cells and alters binding affinities of both Sp1 and USF nuclear proteins to the CFTR promoter. The present report provides evidence for the first functional polymorphism that negatively affects the CFTR transcriptional activity and demonstrates a cooperative role of Sp1 and USF transcription factors in transactivation of the CFTR gene promoter.

  4. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    PubMed Central

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  5. Defective CFTR- β-catenin interaction promotes NF-κB nuclear translocation and intestinal inflammation in cystic fibrosis

    PubMed Central

    Zhang, Jie Ting; Tsang, Lai Ling; Jiang, Xiaohua; Chan, Hsiao Chang

    2016-01-01

    While inflammation with aberrant activation of NF-κB pathway is a hallmark of cystic fibrosis (CF), the molecular mechanisms underlying the link between CFTR defect and activation of NF-κB-mediated pro-inflammatory response remain elusive. Here, we investigated the link between CFTR defect and NF-κB activation in ΔF508cftr−/− mouse intestine and human intestinal epithelial cell lines. Our results show that the NF-κB/COX-2/PGE2 pathway is activated whereas the β-catenin pathway is suppressed in CF mouse intestine and CFTR-knockdown cells. Activation of β-catenin pathway by GSK3 inhibitors suppresses CFTR mutation/knockdown-induced NF-κB/COX-2/PGE2 pathway in ΔF508 mouse intestine and CFTR-knockdown cells. In contrast, suppression of β-catenin signaling induces the nuclear translocation of NF-κB. In addition, CFTR co-localizes and interacts with β-catenin while CFTR mutation disrupts the interaction between NF-κB and β-catenin in mouse intestine. Treatment with proteasome inhibitor MG132 completely reverses the reduced expression of β-catenin in Caco-2 cells. Collectively, these results indicate that CFTR stabilizes β-catenin and prevents its degradation, defect of which results in the activation of NF-κB-mediated inflammatory cascade. The present study has demonstrated a previously unsuspected interaction between CFTR and β-catenin that regulates NF-κB nuclear translocation in mouse intestine. Therefore, our study provides novel insights into the physiological function of CFTR and pathogenesis of CF-related diseases in addition to the NF-κB-mediated intestinal inflammation seen in CF. PMID:27588407

  6. Gene mutation in microRNA target sites of CFTR gene: a novel pathogenetic mechanism in cystic fibrosis?

    PubMed

    Amato, Felice; Seia, Manuela; Giordano, Sonia; Elce, Ausilia; Zarrilli, Federica; Castaldo, Giuseppe; Tomaiuolo, Rossella

    2013-01-01

    Cystic fibrosis (CF) is the most frequent lethal genetic disorder among Caucasians. It depends on alterations of a chloride channel expressed by most epithelial cells and encoded by CFTR gene. Also using scanning techniques to analyze the whole coding regions of CFTR gene, mutations are not identified in up to 10% of CF alleles, and such figure increases in CFTR-related disorders (CFTR-RD). Other gene regions may be the site of causing-disease mutations. We searched for genetic variants in the 1500 bp of CFTR 3' untranslated region, typical target of microRNA (miRNA) posttranscriptional gene regulation, in either CF patients with the F508del homozygous genotype and different clinical expression (n = 20), CF (n = 32) and CFTR-RD (n = 43) patients with one or none mutation after CFTR scanning and in controls (n = 50). We identified three SNPs, one of which, the c.*1043A>C, was located in a region predicted to bind miR-433 and miR-509-3p. Such mutation was peculiar of a CFTR-RD patient that had Congenital Bilateral Absence of Vas Deferens (CBAVD), diffuse bronchiectasis, a borderline sweat chloride test and the heterozygous severe F508del mutation on the other allele. The expression analysis demonstrated that the c.*1043A>C increases the affinity for miR-509-3p and slightly decreases that for the miR-433. Both miRNAs cause in vitro a reduced expression of CFTR protein. Thus, the c.*1043A>C may act as a mild CFTR mutation enhancing the affinity for inhibitory miRNAs as a novel pathogenetic mechanism in CF.

  7. A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction.

    PubMed

    Sharma, Neeraj; LaRusch, Jessica; Sosnay, Patrick R; Gottschalk, Laura B; Lopez, Andrea P; Pellicore, Matthew J; Evans, Taylor; Davis, Emily; Atalar, Melis; Na, Chan-Hyun; Rosson, Gedge D; Belchis, Deborah; Milewski, Michal; Pandey, Akhilesh; Cutting, Garry R

    2016-12-01

    The development of cystic fibrosis transmembrane conductance regulator (CFTR) targeted therapy for cystic fibrosis has generated interest in maximizing membrane residence of mutant forms of CFTR by manipulating interactions with scaffold proteins, such as sodium/hydrogen exchange regulatory factor-1 (NHERF1). In this study, we explored whether COOH-terminal sequences in CFTR beyond the PDZ-binding motif influence its interaction with NHERF1. NHERF1 displayed minimal self-association in blot overlays (NHERF1, Kd = 1,382 ± 61.1 nM) at concentrations well above physiological levels, estimated at 240 nM from RNA-sequencing and 260 nM by liquid chromatography tandem mass spectrometry in sweat gland, a key site of CFTR function in vivo. However, NHERF1 oligomerized at considerably lower concentrations (10 nM) in the presence of the last 111 amino acids of CFTR (20 nM) in blot overlays and cross-linking assays and in coimmunoprecipitations using differently tagged versions of NHERF1. Deletion and alanine mutagenesis revealed that a six-amino acid sequence (1417)EENKVR(1422) and the terminal (1478)TRL(1480) (PDZ-binding motif) in the COOH-terminus were essential for the enhanced oligomerization of NHERF1. Full-length CFTR stably expressed in Madin-Darby canine kidney epithelial cells fostered NHERF1 oligomerization that was substantially reduced (∼5-fold) on alanine substitution of EEN, KVR, or EENKVR residues or deletion of the TRL motif. Confocal fluorescent microscopy revealed that the EENKVR and TRL sequences contribute to preferential localization of CFTR to the apical membrane. Together, these results indicate that COOH-terminal sequences mediate enhanced NHERF1 interaction and facilitate the localization of CFTR, a property that could be manipulated to stabilize mutant forms of CFTR at the apical surface to maximize the effect of CFTR-targeted therapeutics.

  8. Lumacaftor/ivacaftor combination for cystic fibrosis patients homozygous for Phe508del-CFTR.

    PubMed

    Zhang, W; Zhang, X; Zhang, Y H; Strokes, D C; Naren, A P

    2016-04-01

    Cystic fibrosis (CF) is a life-shortening inherited disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel activity resulting from mutations in the CFTR gene. Phe508del is the most prevalent mutation, with approximately 90% of all CF patients carrying it on at least one allele. Over the past two or three decades, significant progress has been made in understanding the pathogenesis of CF, and in the development of effective CF therapies. The approval of Orkambi® (lumacaftor/ivacaftor) marks another milestone in CF therapeutics development, which, with the advent of personalized medicine, could potentially revolutionize CF care and management. This article reviews the rationale, progress and future direction in the development of lumacaftor/ivacaftor combination to treat CF patients homozygous for the Phe508del-CFTR mutation.

  9. CFTR gene variant for patients with congenital absence of vas deferens

    SciTech Connect

    Zielenski, J.; Markiewicz, D.; Corey, M.

    1995-10-01

    Obstructive azoospermia due to congenital absence of vas deferens is a prominent clinical feature among male patients with cystic fibrosis (CF). A similar autosomal recessive condition with no other CF manifestations is classified as congenital bilateral absence of vas deferens (CBAVD). Since 50%-64% of CBAVD patients have been found to be positive for at least one known CFTR mutation, it is believed that at least part of the CBAVD population represents an atypical form of CF affecting only the male reproductive system. This explanation is not completely satisfactory, however, because only {approximately}10% of CBAVD patients are found to carry known CF mutations on both chromosomes, even after exhaustive screening of the entire CFTR coding region. Here we present data to show that a previously known sequence variant in intron 8 of the CFTR gene is a specific and frequent mutation associated with CBAVD. 20 refs., 1 tab.

  10. Accelerated degradation of methyl iodide by agrochemicals.

    PubMed

    Zheng, Wei; Papiernik, Sharon K; Guo, Mingxin; Yates, Scott R

    2003-01-29

    The fumigant methyl iodide (MeI, iodomethane) is considered a promising alternative to methyl bromide (MeBr) for soil-borne pest control in high-cash-value crops. However, the high vapor pressure of MeI results in emissions of a significant proportion of the applied mass into the ambient air, and this may lead to pollution of the environment. Integrating the application of certain agrochemicals with soil fumigation provides a novel approach to reduce excessive fumigant emissions. This study investigated the potential for several agrochemicals that are commonly used in farming operations, including fertilizers and nitrification inhibitors, to transform MeI in aqueous solution. The pseudo-first-order hydrolysis half-life (t(1/2)) of MeI was approximately 108 d, while the transformation of MeI in aqueous solutions containing selected agrochemicals was more rapid, with t(1/2) < 100 d (t(1/2) < 0.5 d in some solutions containing nitrification inhibitors). The influence of these agrochemicals on the rate of MeI degradation in soil was also determined. Adsorption to soil apparently reduced the availability of some nitrification inhibitors in the soil aqueous phase and lowered the degradation rate in soil. In contrast, addition of the nitrification inhibitors thiourea and allylthiourea to soil significantly accelerated the degradation of MeI, possibly due to soil surface catalysis. The t(1/2) of MeI was <20 h in thiourea- and allylthiourea-amended soil, considerably less than that in unamended soil (t(1/2) > 300 h).

  11. CFTR mutation analysis and haplotype associations in CF patients.

    PubMed

    Cordovado, S K; Hendrix, M; Greene, C N; Mochal, S; Earley, M C; Farrell, P M; Kharrazi, M; Hannon, W H; Mueller, P W

    2012-02-01

    Most newborn screening (NBS) laboratories use second-tier molecular tests for cystic fibrosis (CF) using dried blood spots (DBS). The Centers for Disease Control and Prevention's NBS Quality Assurance Program offers proficiency testing (PT) in DBS for CF transmembrane conductance regulator (CFTR) gene mutation detection. Extensive molecular characterization on 76 CF patients, family members or screen positive newborns was performed for quality assurance. The coding, regulatory regions and portions of all introns were sequenced and large insertions/deletions were characterized as well as two intronic di-nucleotide microsatellites. For CF patient samples, at least two mutations were identified/verified and four specimens contained three likely CF-associated mutations. Thirty-four sequence variations in 152 chromosomes were identified, five of which were not previously reported. Twenty-seven of these variants were used to predict haplotypes from the major haplotype block defined by HapMap data that spans the promoter through intron 19. Chromosomes containing the F508del (p.Phe508del), G542X (p.Gly542X) and N1303K (p.Asn1303Lys) mutations shared a common haplotype subgroup, consistent with a common ancient European founder. Understanding the haplotype background of CF-associated mutations in the U.S. population provides a framework for future phenotype/genotype studies and will assist in determining a likely cis/trans phase of the mutations without need for parent studies.

  12. Screening of the CFTR gene in Indian patients.

    PubMed

    Deepak, Rani R; Ashavaid, Tester F

    2012-12-01

    Cystic fibrosis (CF) has been observed to be far more common in India, than was previously thought. Variability in CF clinical symptoms among individuals, results in diagnostic errors. Also, CF diagnostic facilities are not available at all diagnostic centers across India. Sweat test (gold standard for CF diagnosis) has some limitations. Mutation analysis, therefore, would be useful in detecting the mutant CF alleles in Indian patients. This study, aimed at identifying common CF transmembrane conductance regulator (CFTR) mutations, to develop a molecular diagnostic test in Indian patients, and establish genotype-phenotype correlation. Mutation identification was performed by single stranded conformation polymorphism (SSCP) screening, followed by DNA sequencing of regions with an abnormal SSCP pattern. ∆F508 accounts for about 53% of CF alleles. A substantial proportion of these patients have rare and/or novel mutations. Eight novel and 12 known polymorphisms were also identified. Considering the high percentage of rare/novel mutations, along with ethnic history of Indian population, we can speculate that the remaining uncharacterized mutations might also not be prevalent mutations. The total number of CF disease-causing mutations in Indian patients is very large. Thus, DNA-based population screening will be complicated, and an indirect genetic diagnosis (screening entire gene) would be necessary to characterize all mutations.

  13. Significance of the percentage of cholesterol efflux capacity and total cholesterol efflux capacity in patients with or without coronary artery disease.

    PubMed

    Norimatsu, Kenji; Kuwano, Takashi; Miura, Shin-Ichiro; Shimizu, Tomohiko; Shiga, Yuhei; Suematsu, Yasunori; Miyase, Yuiko; Adachi, Sen; Nakamura, Ayumi; Imaizumi, Satoshi; Iwata, Atsushi; Nishikawa, Hiroaki; Uehara, Yoshinari; Saku, Keijiro

    2017-01-01

    We hypothesized that cholesterol efflux capacity is more useful than the lipid profile as a marker of the presence and the severity of coronary artery disease (CAD). Therefore, we investigated the associations between the presence and the severity of CAD and both the percentage of cholesterol efflux capacity and total cholesterol efflux capacity and the lipid profile including the high-density lipoprotein cholesterol (HDL-C) level in patients who underwent coronary computed tomography angiography (CTA). The subjects consisted of 204 patients who were clinically suspected to have CAD and underwent CTA. We isolated HDL from plasma by ultracentrifugation and measured the percentage of cholesterol efflux capacity using (3)H-cholesterol-labeled J774 macrophage cells and calculated total cholesterol efflux capacity as follows: the percentage of cholesterol efflux capacity/100× HDL-C levels. While the percentage of cholesterol efflux capacity was not associated with the presence or the severity of CAD, total cholesterol efflux capacity and HDL-C in patients with CAD were significantly lower than those in patients without CAD. In addition, total cholesterol efflux capacity and HDL-C, but not the percentage of cholesterol efflux capacity, significantly decreased as the number of coronary arteries with significant stenosis increased. Total cholesterol efflux capacity was positively correlated with HDL-C, whereas the percentage of cholesterol efflux capacity showed only weak association. In a logistic regression analysis, the presence of CAD was independently associated with total cholesterol efflux capacity, in addition to age and gender. Finally, a receiver-operating characteristic curve analysis indicated that the areas under the curves for total cholesterol efflux capacity and HDL-C were similar. In conclusion, the percentage of cholesterol efflux capacity using the fixed amount of isolated HDL was not associated with CAD. On the other hand, the calculated total

  14. cAMP-activated chloride channels in a CFTR-transfected pancreatic adenocarcinoma-derived cell line, pANS6.

    PubMed

    Smith, A N; Wardle, C J; Winpenny, J P; Verdon, B; Gray, M A; Argent, B E; Harris, A

    1995-06-09

    Pancreatic adenocarcinoma cell lines rarely express the CFTR gene, despite the high levels of CFTR protein that are present in primary pancreatic duct cells. We have attempted to generate a non-CF pancreatic adenocarcinoma cell line that stably produces high levels of CFTR mRNA and protein by transfecting a vector containing the CFTR cDNA, driven by a strong mammalian promoter, into the poorly differentiated pancreatic adenocarcinoma cell line, Panc-1. The pANS6 pancreatic duct cell line expresses substantial levels of CFTR mRNA, but little CFTR protein. Despite this we were able to detect low conductance chloride channels in 40% of patches, stimulated with cAMP, that have similar biophysical properties to CFTR.

  15. In vivo analysis of DNase I hypersensitive sites in the human CFTR gene.

    PubMed Central

    Moulin, D. S.; Manson, A. L.; Nuthall, H. N.; Smith, D. J.; Huxley, C.; Harris, A.

    1999-01-01

    BACKGROUND: The cystic fibrosis transmembrane conductance regulator gene (CFTR) shows a complex pattern of expression. The regulatory elements conferring tissue-specific and temporal regulation are thought to lie mainly outside the promoter region. Previously, we identified DNase I hypersensitive sites (DHS) that may contain regulatory elements associated with the CFTR gene at -79.5 and at -20.5 kb with respect to the ATG and at 10 kb into the first intron. MATERIALS AND METHODS: In order to evaluate these regulatory elements in vivo we examined these DHS in a human CFTR gene that was introduced on a yeast artificial chromosome (YAC) into transgenic mice. The 310 kb human CFTR YAC was shown to restore the pheno-type of CF-null mice and so is likely to contain most of the regulatory elements required for tissue-specific expression of CFTR. RESULTS: We found that the YAC does not include the -79.5 kb region. The DHS at -20.5 kb is present in the chromatin of most tissues of the transgenic mice, supporting its non-tissue-specific nature. The DHS in the first intron is present in a more restricted set of tissues in the mice, although its presence does not show complete concordance with CFTR expression. The intron I DHS may be important for the higher levels of expression found in human pancreatic ducts and in lung submucosal glands. CONCLUSION: These data support the in vivo importance of these regulatory elements. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:10448643

  16. Some gating potentiators, including VX-770, diminish ΔF508-CFTR functional expression.

    PubMed

    Veit, Guido; Avramescu, Radu G; Perdomo, Doranda; Phuan, Puay-Wah; Bagdany, Miklos; Apaja, Pirjo M; Borot, Florence; Szollosi, Daniel; Wu, Yu-Sheng; Finkbeiner, Walter E; Hegedus, Tamas; Verkman, Alan S; Lukacs, Gergely L

    2014-07-23

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane regulator (CFTR) that result in reduced anion conductance at the apical membrane of secretory epithelia. Treatment of CF patients carrying the G551D gating mutation with the potentiator VX-770 (ivacaftor) largely restores channel activity and has shown substantial clinical benefit. However, most CF patients carry the ΔF508 mutation, which impairs CFTR folding, processing, function, and stability. Studies in homozygous ΔF508 CF patients indicated little clinical benefit of monotherapy with the investigational corrector VX-809 (lumacaftor) or VX-770, whereas combination clinical trials show limited but significant improvements in lung function. We show that VX-770, as well as most other potentiators, reduces the correction efficacy of VX-809 and another investigational corrector, VX-661. To mimic the administration of VX-770 alone or in combination with VX-809, we examined its long-term effect in immortalized and primary human respiratory epithelia. VX-770 diminished the folding efficiency and the metabolic stability of ΔF508-CFTR at the endoplasmic reticulum (ER) and post-ER compartments, respectively, causing reduced cell surface ΔF508-CFTR density and function. VX-770-induced destabilization of ΔF508-CFTR was influenced by second-site suppressor mutations of the folding defect and was prevented by stabilization of the nucleotide-binding domain 1 (NBD1)-NBD2 interface. The reduced correction efficiency of ΔF508-CFTR, as well as of two other processing mutations in the presence of VX-770, suggests the need for further optimization of potentiators to maximize the clinical benefit of corrector-potentiator combination therapy in CF.

  17. Ribosomal Stalk Protein Silencing Partially Corrects the ΔF508-CFTR Functional Expression Defect

    PubMed Central

    Veit, Guido; Oliver, Kathryn; Apaja, Pirjo M.; Perdomo, Doranda; Bidaud-Meynard, Aurélien; Guo, Jingyu; Icyuz, Mert; Sorscher, Eric J.; Hartman, John L.; Lukacs, Gergely L.

    2016-01-01

    The most common cystic fibrosis (CF) causing mutation, deletion of phenylalanine 508 (ΔF508 or Phe508del), results in functional expression defect of the CF transmembrane conductance regulator (CFTR) at the apical plasma membrane (PM) of secretory epithelia, which is attributed to the degradation of the misfolded channel at the endoplasmic reticulum (ER). Deletion of phenylalanine 670 (ΔF670) in the yeast oligomycin resistance 1 gene (YOR1, an ABC transporter) of Saccharomyces cerevisiae phenocopies the ΔF508-CFTR folding and trafficking defects. Genome-wide phenotypic (phenomic) analysis of the Yor1-ΔF670 biogenesis identified several modifier genes of mRNA processing and translation, which conferred oligomycin resistance to yeast. Silencing of orthologues of these candidate genes enhanced the ΔF508-CFTR functional expression at the apical PM in human CF bronchial epithelia. Although knockdown of RPL12, a component of the ribosomal stalk, attenuated the translational elongation rate, it increased the folding efficiency as well as the conformational stability of the ΔF508-CFTR, manifesting in 3-fold augmented PM density and function of the mutant. Combination of RPL12 knockdown with the corrector drug, VX-809 (lumacaftor) restored the mutant function to ~50% of the wild-type channel in primary CFTRΔF508/ΔF508 human bronchial epithelia. These results and the observation that silencing of other ribosomal stalk proteins partially rescue the loss-of-function phenotype of ΔF508-CFTR suggest that the ribosomal stalk modulates the folding efficiency of the mutant and is a potential therapeutic target for correction of the ΔF508-CFTR folding defect. PMID:27168400

  18. Acquired CFTR Dysfunction in Chronic Bronchitis and Other Diseases of Mucus Clearance

    PubMed Central

    Raju, S. Vamsee; Solomon, George M.; Dransfield, Mark T; Rowe, Steven M

    2015-01-01

    Summary Chronic obstructive pulmonary disease (COPD) is a major public health problem accounting for more than 100,000 deaths and 750,000 hospitalizations each year in the United States alone. Though bronchodilators, inhaled steroids and other anti-inflammatory drugs can improve symptoms and reduce the risk of exacerbations, no therapies alter the natural history of the disease. This is the result of a number of factors including our poor understanding of the pathobiologic processes that drive specific COPD phenotypes, which has hindered drug development. Chronic bronchitis is perhaps the most clinically troublesome phenotype as most patients with COPD complain of cough and sputum production, and yet there are no effective treatments to target the mucus hypersecretion, accumulation and poor clearance that lead to these symptoms. Though it is well known that the absence of cystic fibrosis (CF) transmembrane receptor (CFTR) is the cause of CF, the prototypical disease of impaired mucociliary clearance, emerging data strongly suggest cigarette smoke and its components can lead to acquired CFTR dysfunction. Findings in vitro, in animal models, as well smokers with and without COPD also exhibit acquired CFTR dysfunction, which is associated with chronic bronchitis. This abnormality is not only present in the airways but is also present in extrapulmonary organs, suggesting CFTR dysfunction may contribute to smoking related lung disease as well as commonly associated comorbidities in which CFTR has a role. The development of potent CFTR modulators for the treatment of CF has made these findings clinically relevant as they may also have a role in treating COPD and other diseases of mucus clearance. PMID:26857776

  19. Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease.

    PubMed

    Flores, Alyssa M; Casey, Scott D; Felix, Christian M; Phuan, Puay W; Verkman, A S; Levin, Marc H

    2016-05-01

    Dry eye disorders, including Sjögren's syndrome, constitute a common problem in the aging population, with limited effective therapeutic options available. The cAMP-activated Cl(-) channel cystic fibrosis transmembrane conductance regulator (CFTR) is a major prosecretory channel at the ocular surface. We investigated whether compounds that target CFTR can correct the abnormal tear film in dry eye. Small-molecule activators of human wild-type CFTR identified by high-throughput screening were evaluated in cell culture and in vivo assays, to select compounds that stimulate Cl(-)-driven fluid secretion across the ocular surface in mice. An aminophenyl-1,3,5-triazine, CFTRact-K089, fully activated CFTR in cell cultures with EC50 ∼250 nM and produced an ∼8.5 mV hyperpolarization in ocular surface potential difference. When delivered topically, CFTRact-K089 doubled basal tear volume for 4 h and had no effect in CF mice. CFTRact-K089 showed sustained tear film bioavailability without detectable systemic absorption. In a mouse model of aqueous-deficient dry eye produced by lacrimal ablation, topical administration of 0.1 nmol CFTRact-K089 3 times daily restored tear volume to basal levels, preventing corneal epithelial disruption when initiated at the time of surgery and reversing it when started after development of dry eye. Our results support the potential utility of CFTR-targeted activators as a novel prosecretory treatment for dry eye.-Flores, A. M., Casey, S. D., Felix, C. M., Phuan, P. W., Verkman, A. S., Levin, M. H. Small-molecule CFTR activators increase tear secretion and prevent experimental dry eye disease.

  20. Mechanisms of CFTR Functional Variants That Impair Regulated Bicarbonate Permeation and Increase Risk for Pancreatitis but Not for Cystic Fibrosis

    PubMed Central

    Lewis, Michele D.; Park, Hyun Woo; Brand, Randall E.; Gelrud, Andres; Anderson, Michelle A.; Banks, Peter A.; Conwell, Darwin; Lawrence, Christopher; Romagnuolo, Joseph; Baillie, John; Alkaade, Samer; Cote, Gregory; Gardner, Timothy B.; Amann, Stephen T.; Slivka, Adam; Sandhu, Bimaljit; Aloe, Amy; Kienholz, Michelle L.; Yadav, Dhiraj; Barmada, M. Michael; Bahar, Ivet; Lee, Min Goo; Whitcomb, David C.

    2014-01-01

    CFTR is a dynamically regulated anion channel. Intracellular WNK1-SPAK activation causes CFTR to change permeability and conductance characteristics from a chloride-preferring to bicarbonate-preferring channel through unknown mechanisms. Two severe CFTR mutations (CFTRsev) cause complete loss of CFTR function and result in cystic fibrosis (CF), a severe genetic disorder affecting sweat glands, nasal sinuses, lungs, pancreas, liver, intestines, and male reproductive system. We hypothesize that those CFTR mutations that disrupt the WNK1-SPAK activation mechanisms cause a selective, bicarbonate defect in channel function (CFTRBD) affecting organs that utilize CFTR for bicarbonate secretion (e.g. the pancreas, nasal sinus, vas deferens) but do not cause typical CF. To understand the structural and functional requirements of the CFTR bicarbonate-preferring channel, we (a) screened 984 well-phenotyped pancreatitis cases for candidate CFTRBD mutations from among 81 previously described CFTR variants; (b) conducted electrophysiology studies on clones of variants found in pancreatitis but not CF; (c) computationally constructed a new, complete structural model of CFTR for molecular dynamics simulation of wild-type and mutant variants; and (d) tested the newly defined CFTRBD variants for disease in non-pancreas organs utilizing CFTR for bicarbonate secretion. Nine variants (CFTR R74Q, R75Q, R117H, R170H, L967S, L997F, D1152H, S1235R, and D1270N) not associated with typical CF were associated with pancreatitis (OR 1.5, p = 0.002). Clones expressed in HEK 293T cells had normal chloride but not bicarbonate permeability and conductance with WNK1-SPAK activation. Molecular dynamics simulations suggest physical restriction of the CFTR channel and altered dynamic channel regulation. Comparing pancreatitis patients and controls, CFTRBD increased risk for rhinosinusitis (OR 2.3, p<0.005) and male infertility (OR 395, p<<0.0001). WNK1-SPAK pathway-activated increases in CFTR

  1. Role of Mutant CFTR in Hypersusceptibility of Cystic Fibrosis Patients to Lung Infections

    NASA Astrophysics Data System (ADS)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.; Olsen, John C.; Johnson, Larry G.; Yankaskas, James R.; Goldberg, Joanna B.

    1996-01-01

    Cystic fibrosis (CF) patients are hypersusceptible to chronic Pseudomonas aeruginosa lung infections. Cultured human airway epithelial cells expressing the ΔF508 allele of the cystic fibrosis transmembrane conductance regulator (CFTR) were defective in uptake of P. aeruginosa compared with cells expressing the wild-type allele. Pseudomonas aeruginosa lipopolysaccharide (LPS)-core oligosaccharide was identified as the bacterial ligand for epithelial cell ingestion; exogenous oligosaccharide inhibited bacterial ingestion in a neonatal mouse model, resulting in increased amounts of bacteria in the lungs. CFTR may contribute to a host-defense mechanism that is important for clearance of P. aeruginosa from the respiratory tract.

  2. Assessment of CFTR function in rectal biopsies for the diagnosis of cystic fibrosis.

    PubMed

    Mall, Marcus; Hirtz, Stephanie; Gonska, Tanja; Kunzelmann, Karl

    2004-08-01

    The Ussing chamber technique has contributed significantly to our understanding of the role of ion transport in the pathogenesis of human diseases like cystic fibrosis (CF). Here, we summarize protocols developed to study the Cl- channel function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein in rectal biopsies from normal individuals and CF patients. These protocols can be applied to study the function and pharmacological modulation of wild-type and mutant CFTR in the context of the native epithelium. Together with sweat testing and genetic analyses, these functional measurements may aid in establishing a diagnosis of CF.

  3. First evidence for the presence of efflux pump in the earthworm Eisenia andrei.

    PubMed

    Hackenberger, Branimir K; Velki, Mirna; Stepić, Sandra; Hackenberger, Davorka K

    2012-01-01

    Efflux pumps are transport proteins involved in the extrusion of toxic substrates from cells to the external environment. Activities of efflux pumps have been found in many organisms, however such activity has not been evidenced in earthworms. Adult Eisenia andrei earthworms were exposed to efflux modulators - verapamil (a known inhibitor of efflux pump protein) and dexamethasone (a known inducer of efflux activity) - and the amount of absorbed fluorescent dye rhodamine B was measured. The results showed that verapamil inhibited efflux activity and decreased removal of rhodamine B, whereas dexamethasone induced efflux activity and increased removal of rhodamine B. This is the first evidence of the presence of efflux pump in earthworm Eisenia andrei. Since earthworms are often used as test organisms due to their sensitive reactions towards environmental influences, the discovery of efflux pump activity can contribute to the better understanding of toxicity of certain pollutants.

  4. Differential expression and localization of CFTR and ENaC in mouse endometrium during pre-implantation.

    PubMed

    Yang, Jian Zhi; Ajonuma, Louis Chukwuemeka; Tsang, Lai Ling; Lam, Sun Yee; Rowlands, Dewi Kenneth; Ho, Lok Sze; Zhou, Chen Xi; Chung, Yiu Wa; Chan, Hsiao Chang

    2004-01-01

    Interaction between the cystic fibrosis transmembrane conductance regulator (CFTR), a CAMP-activated Cl- channel, and epithelial Na+ channel (ENaC) has been proposed as the major mechanism regulating uterine fluid absorption and secretion. Differential expression of these ion channels may give rise to dynamic changes in the fluid environment affecting various reproductive events in the female reproductive tract. This study investigated the expression and localization of CFTR and ENaC during the pre-implantation period. Semi-quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry were used to study the expression and localization of CFTR and ENaC in uteri collected from mature superovulated female mice. RT-PCR showed maximal ENaC and CFTR expression on day 3 after mating. Maximal immunoreactivity was also observed for both ENaC and CFTR on day 3 after mating. However, ENaC was immunolocalized to the apical membrane of both luminal and glandular epithelia, while CFTR was predominantly found in the stromal cells rather than the epithelial cells. Differential expression and localization of CFTR and ENaC provide a molecular mechanism by which maximal fluid absorption can be achieved immediately prior to implantation, to ensure the immobilization of the blastocyst necessary for implantation.

  5. VAMP-associated Proteins (VAP) as Receptors That Couple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Proteostasis with Lipid Homeostasis.

    PubMed

    Ernst, Wayne L; Shome, Kuntala; Wu, Christine C; Gong, Xiaoyan; Frizzell, Raymond A; Aridor, Meir

    2016-03-04

    Unesterified cholesterol accumulates in late endosomes in cells expressing the misfolded cystic fibrosis transmembrane conductance regulator (CFTR). CFTR misfolding in the endoplasmic reticulum (ER) or general activation of ER stress led to dynein-mediated clustering of cholesterol-loaded late endosomes at the Golgi region, a process regulated by ER-localized VAMP-associated proteins (VAPs). We hypothesized that VAPs serve as intracellular receptors that couple lipid homeostasis through interactions with two phenylalanines in an acidic track (FFAT) binding signals (found in lipid sorting and sensing proteins, LSS) with proteostasis regulation. VAPB inhibited the degradation of ΔF508-CFTR. The activity was mapped to the ligand-binding major sperm protein (MSP) domain, which was sufficient in regulating CFTR biogenesis. We identified mutations in an unstructured loop within the MSP that uncoupled VAPB-regulated CFTR biogenesis from basic interactions with FFAT. Using this information, we defined functional and physical interactions between VAPB and proteostasis regulators (ligands), including the unfolded protein response sensor ATF6 and the ER degradation cluster that included FAF1, VCP, BAP31, and Derlin-1. VAPB inhibited the degradation of ΔF508-CFTR in the ER through interactions with the RMA1-Derlin-BAP31-VCP pathway. Analysis of pseudoligands containing tandem FFAT signals supports a competitive model for VAP interactions that direct CFTR biogenesis. The results suggest a model in which VAP-ligand binding couples proteostasis and lipid homeostasis leading to observed phenotypes of lipid abnormalities in protein folding diseases.

  6. A Genotypic-Oriented View of CFTR Genetics Highlights Specific Mutational Patterns Underlying Clinical Macrocategories of Cystic Fibrosis

    PubMed Central

    Lucarelli, Marco; Bruno, Sabina Maria; Pierandrei, Silvia; Ferraguti, Giampiero; Stamato, Antonella; Narzi, Fabiana; Amato, Annalisa; Cimino, Giuseppe; Bertasi, Serenella; Quattrucci, Serena; Strom, Roberto

    2015-01-01

    Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype–phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype–phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype–phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway. PMID:25910067

  7. Differential contribution of cis-regulatory elements to higher order chromatin structure and expression of the CFTR locus

    PubMed Central

    Yang, Rui; Kerschner, Jenny L.; Gosalia, Nehal; Neems, Daniel; Gorsic, Lidija K.; Safi, Alexias; Crawford, Gregory E.; Kosak, Steven T.; Leir, Shih-Hsing; Harris, Ann

    2016-01-01

    Higher order chromatin structure establishes domains that organize the genome and coordinate gene expression. However, the molecular mechanisms controlling transcription of individual loci within a topological domain (TAD) are not fully understood. The cystic fibrosis transmembrane conductance regulator (CFTR) gene provides a paradigm for investigating these mechanisms. CFTR occupies a TAD bordered by CTCF/cohesin binding sites within which are cell-type-selective cis-regulatory elements for the locus. We showed previously that intronic and extragenic enhancers, when occupied by specific transcription factors, are recruited to the CFTR promoter by a looping mechanism to drive gene expression. Here we use a combination of CRISPR/Cas9 editing of cis-regulatory elements and siRNA-mediated depletion of architectural proteins to determine the relative contribution of structural elements and enhancers to the higher order structure and expression of the CFTR locus. We found the boundaries of the CFTR TAD are conserved among diverse cell types and are dependent on CTCF and cohesin complex. Removal of an upstream CTCF-binding insulator alters the interaction profile, but has little effect on CFTR expression. Within the TAD, intronic enhancers recruit cell-type selective transcription factors and deletion of a pivotal enhancer element dramatically decreases CFTR expression, but has minor effect on its 3D structure. PMID:26673704

  8. Folate Protects Hepatocytes of Hyperhomocysteinemia Mice from Apoptosis via Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)-activated Endoplasmic Reticulum Stress.

    PubMed

    Yang, Anning; Sun, Yue; Mao, Caiyan; Yang, Songhao; Huang, Min; Deng, Mei; Ding, Ning; Yang, Xiaoling; Zhang, Minghao; Jin, Shaoju; Jiang, Yideng; Huang, Ying

    2017-02-23

    Folate deficiency is a known risk factor for liver injury; however, the underlying mechanism remains unclear. In this study, we employed a high homocysteine-induced liver injury model of Apolipoprotein E-deficient (ApoE(-/-) ) mice fed high-methionine diet and found that high homocysteine induced endoplasmic reticulum (ER) stress and liver cell apoptosis by downregulation of cystic fibrosis transmembrane conductance regulator (CFTR) expression; observations that were attenuated with supplementation of dietary folate. The regulation on CFTR expression was mediated by CFTR promoter methylation and trimethylation of lysine 27 on histone H3 (H3K27me3). Mechanistically, folate inhibited homocysteine-induced CFTR promoter methylation and H3K27me3, which resulted in upregulation of CFTR expression, and reduced ER stress and liver cell apoptosis. Further study showed that folate inhibited the expression of DNA methyltransferase 1 and enhancer of zeste homolog 2, downregulated the cellular concentrations of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) and upregulated the SAM/SAH ratio, leading to the inhibition of Hcy-induced DNA hypermethylation and H3K27me3 in CFTR promoter. In conclusion, our results provide insight into the protective role of folate in homocysteine-induced ER stress and liver cell apoptosis through the regulation of CFTR expression. This article is protected by copyright. All rights reserved.

  9. The BaBar cesium iodide electromagnetic calorimeter

    SciTech Connect

    Wuest, C.R.

    1994-12-01

    The BABAR Cesium Iodide Electromagnetic Calorimeter is currently in the technical design stage. The calorimeter consists of approximately 10,000 individual thallium-doped cesium iodide crystals arranged in a near-hermetic barrel and endcap structure. Taking previous cesium iodide calorimeters as a benchmark, we hope to build a system with roughly two times better energy resolution. This will be achieved by a combination of high quality crystal growing, precision mechanical processing of crystals and support structure, highly efficient light collection and low noise readout electronics. The calorimeter described here represents the current state of the design and we are undertaking an active period of optimization before this design is finalized. We discuss here the physics motivation, the current design and options for optimization.

  10. Removal of iodide ion from simulated radioactive liquid waste

    NASA Astrophysics Data System (ADS)

    Kodama, H.

    1999-01-01

    The previous study reported that BiPbO2(NO3) is one of the most promising candidate materials for removing and immobilizing radioactive iodide. In that case, the solution contained only dissolved NaI and did not contain competing anions. This paper reports the reactivity of BiPbO2(NO3) with iodide ions in simulated radioactive liquid waste. This liquid contains many components, especially highly concentrated NaNO2, Na2CO3 and NaNO3. The obtained results show that BiPbO2(NO3) is useful for removing iodide ion from the simulated radioactive liquid waste but that there is a problem which should be resolved in the future. The problem is that a competing anion, HCO3 -, interferes with the exchange reaction, and only the surfaces of the BiPbO2(NO3) crystals are used for the reaction.

  11. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    SciTech Connect

    Soelberg, Nick; Watson, Tony

    2014-08-22

    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  12. Thyroid effects of iodine and iodide in potable water

    NASA Technical Reports Server (NTRS)

    Bull, Richard J.; Thrall, Karla D.; Sherer, Todd T.

    1991-01-01

    Experiments are reviewed which examine the comparative toxicological effects of iodide (I) and iodine (I2) when used to disinfect drinking water. References are made to a subchronic study in rats, a comparison of the distribution of radiolabeled I and I2, and a demonstration of thyroxine formation in the gastrointestinal tract. The results of the study of the rats are examined in detail; the findings show that I and I2 have opposite effects on the concentrations of thyroid hormones in blood. Iodide slightly decreases circulating thyroxine, while I2 significantly increases the thyroxine concentrations, decreases triiodothyronine levels, and does not change the weight of the thyroid gland. The related effects of I2 ingestion are set forth in detail and are shown to be unique to I2 contamination. Iodine can counteract the effects of iodide and should therefore be used as a disinfectant in drinking water.

  13. Introduction of extrinsic defects into mercuric iodide during processing

    SciTech Connect

    Hung, C.; Bao, X.J.; Schlesinger, T.E. ); James, R.B. ); Cheng, A.Y.; Ortale, C.; van den Berg, L. )

    1993-05-01

    Low temperature (4.2 K) photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI[sub 2]) crystals which were intentionally doped with copper or silver during KI etching. PL spectra obtained after these doping experiments show specific Cu and Ag features similar to those previously observed after deposition of Cu or Ag contacts on mercuric iodide crystals. The in-diffusion of Cu or Ag into bulk HgI[sub 2] has also been confirmed a few days after doping. This diffusion introduces new recombination centers in the material. This work suggests that the processing steps used to fabricate mercuric iodide nuclear detectors can lead to the introduction of new defects which are detrimental to detector performance.

  14. Standard free energy of formation of iron iodide

    NASA Technical Reports Server (NTRS)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.

    1983-01-01

    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  15. Efflux Pump Control Alters Synthetic Gene Circuit Function.

    PubMed

    Diao, Junchen; Charlebois, Daniel A; Nevozhay, Dmitry; Bódi, Zoltán; Pál, Csaba; Balázsi, Gábor

    2016-07-15

    Synthetic biology aims to design new biological systems for predefined purposes, such as the controlled secretion of biofuels, pharmaceuticals, or other chemicals. Synthetic gene circuits regulating an efflux pump from the ATP-binding cassette (ABC) protein family could achieve this. However, ABC efflux pumps can also drive out intracellular inducer molecules that control the gene circuits. This will introduce an implicit feedback that could alter gene circuit function in ways that are poorly understood. Here, we used two synthetic gene circuits inducible by tetracycline family molecules to regulate the expression of a yeast ABC pump (Pdr5p) that pumps out the inducer. Pdr5p altered the dose-responses of the original gene circuits substantially in Saccharomyces cerevisiae. While one aspect of the change could be attributed to the efflux pumping function of Pdr5p, another aspect remained unexplained. Quantitative modeling indicated that reduced regulator gene expression in addition to efflux pump function could fully explain the altered dose-responses. These predictions were validated experimentally. Overall, we highlight how efflux pumps can alter gene circuit dynamics and demonstrate the utility of mathematical modeling in understanding synthetic gene circuit function in new circumstances.

  16. Multidrug Efflux Pumps in Staphylococcus aureus: an Update

    PubMed Central

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions. PMID:23569469

  17. Multidrug Efflux Pumps in Staphylococcus aureus: an Update.

    PubMed

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions.

  18. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR.

    PubMed

    Cui, Guiying; Rahman, Kazi S; Infield, Daniel T; Kuang, Christopher; Prince, Chengyu Z; McCarty, Nael A

    2014-08-01

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) bears six extracellular loops (ECL1-6); ECL1 is the site of several mutations associated with CF. Mutation R117H has been reported to reduce current amplitude, whereas D110H, E116K, and R117C/L/P may impair channel stability. We hypothesized that these amino acids might not be directly involved in ion conduction and permeation but may contribute to stabilizing the outer vestibule architecture in CFTR. We used cRNA injected oocytes combined with electrophysiological techniques to test this hypothesis. Mutants bearing cysteine at these sites were not functionally modified by extracellular MTS reagents and were blocked by GlyH-101 similarly to WT-CFTR. These results suggest that these three residues do not contribute directly to permeation in CFTR. In contrast, mutants D110R-, E116R-, and R117A-CFTR exhibited instability of the open state and significantly shortened burst duration compared with WT-CFTR and failed to be locked into the open state by AMP-PNP (adenosine 5'-(β,γ-imido) triphosphate); charge-retaining mutants showed mainly the full open state with comparably longer open burst duration. These interactions suggest that these ECL1 residues might be involved in maintaining the outer pore architecture of CFTR. A CFTR homology model suggested that E116 interacts with R104 in both the closed and open states, D110 interacts with K892 in the fully closed state, and R117 interacts with E1126 in the open state. These interactions were confirmed experimentally. The results suggest that D110, E116, and R117 may contribute to stabilizing the architecture of the outer pore of CFTR by interactions with other charged residues.

  19. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR

    PubMed Central

    Cui, Guiying; Rahman, Kazi S.; Infield, Daniel T.; Kuang, Christopher; Prince, Chengyu Z.

    2014-01-01

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) bears six extracellular loops (ECL1–6); ECL1 is the site of several mutations associated with CF. Mutation R117H has been reported to reduce current amplitude, whereas D110H, E116K, and R117C/L/P may impair channel stability. We hypothesized that these amino acids might not be directly involved in ion conduction and permeation but may contribute to stabilizing the outer vestibule architecture in CFTR. We used cRNA injected oocytes combined with electrophysiological techniques to test this hypothesis. Mutants bearing cysteine at these sites were not functionally modified by extracellular MTS reagents and were blocked by GlyH-101 similarly to WT-CFTR. These results suggest that these three residues do not contribute directly to permeation in CFTR. In contrast, mutants D110R-, E116R-, and R117A-CFTR exhibited instability of the open state and significantly shortened burst duration compared with WT-CFTR and failed to be locked into the open state by AMP-PNP (adenosine 5′-(β,γ-imido) triphosphate); charge-retaining mutants showed mainly the full open state with comparably longer open burst duration. These interactions suggest that these ECL1 residues might be involved in maintaining the outer pore architecture of CFTR. A CFTR homology model suggested that E116 interacts with R104 in both the closed and open states, D110 interacts with K892 in the fully closed state, and R117 interacts with E1126 in the open state. These interactions were confirmed experimentally. The results suggest that D110, E116, and R117 may contribute to stabilizing the architecture of the outer pore of CFTR by interactions with other charged residues. PMID:25024266

  20. Chlorogenic Acid Activates CFTR-Mediated Cl- Secretion in Mice and Humans: Therapeutic Implications for Chronic Rhinosinusitis

    PubMed Central

    Illing, Elisa; Cho, Do-Yeon; Zhang, Shaoyan; Skinner, Daniel F.; Dunlap, Quinn A.; Sorscher, Eric J.; Woodworth, Bradford A.

    2016-01-01

    Objectives Salubrious effects of the green coffee bean are purportedly secondary to high concentrations of chlorogenic acid. Chlorogenic acid has a molecular structure similar to bioflavonoids that activate transepithelial Cl- transport in sinonasal epithelia. In contrast to flavonoids, the drug is freely soluble in water. The objective of this study is to evaluate the Cl- secretory capability of chlorogenic acid and its potential as a therapeutic activator of mucus clearance in sinus disease. Study Design Basic research Setting Laboratory Subjects and Methods Chlorogenic acid was tested on primary murine nasal septal epithelial(MNSE)[CFTR+/+ and transgenic CFTR-/-] and human sinonasal epithelial(HSNE)[CFTR+/+ and F508del/F508del] cultures under pharmacologic conditions in Ussing chambers to evaluate effects on transepithelial Cl- transport. Cellular cAMP, phosphorylation of the CFTR regulatory domain(R-D), and CFTR mRNA transcription were also measured. Results Chlorogenic acid stimulated transepithelial Cl- secretion [(change in short-circuit current(ΔISC=μA/cm2)] in MNSE(13.1+/-0.9 vs. 0.1+/-0.1, p<0.05) and HSNE(34.3+/-0.9 vs. 0.0+/-0.1, p<0.05). The drug had a long duration until peak effect at 15-30 minutes after application. Significant inhibition with INH-172, as well as absent stimulation in cultures lacking functional CFTR, suggests effects are dependent on CFTR-mediated pathways. However, the absence of elevated cellular cAMP and phosphorylation the CFTR R-D indicates chlorogenic acid does not work through a PKA-dependent mechanism. Conclusion Chlorogenic acid is a water soluble agent that promotes CFTR-mediated Cl- transport in mouse and human sinonasal epithelium. Translating activators of mucociliary transport to clinical use provides a new therapeutic approach to sinus disease. Further in vivo evaluation is planned. PMID:26019132

  1. MiR-101 and miR-144 Regulate the Expression of the CFTR Chloride Channel in the Lung

    PubMed Central

    Hassan, Fatemat; Nuovo, Gerard J.; Crawford, Melissa; Boyaka, Prosper N.; Kirkby, Stephen; Nana-Sinkam, Serge P.; Cormet-Boyaka, Estelle

    2012-01-01

    The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that plays a critical role in the lung by maintaining fluid homeostasis. Absence or malfunction of CFTR leads to Cystic Fibrosis, a disease characterized by chronic infection and inflammation. We recently reported that air pollutants such as cigarette smoke and cadmium negatively regulate the expression of CFTR by affecting several steps in the biogenesis of CFTR protein. MicroRNAs (miRNAs) have recently received a great deal of attention as both biomarkers and therapeutics due to their ability to regulate multiple genes. Here, we show that cigarette smoke and cadmium up-regulate the expression of two miRNAs (miR-101 and miR-144) that are predicted to target CFTR in human bronchial epithelial cells. When premature miR-101 and miR-144 were transfected in human airway epithelial cells, they directly targeted the CFTR 3′UTR and suppressed the expression of the CFTR protein. Since miR-101 was highly up-regulated by cigarette smoke in vitro, we investigated whether such increase also occurred in vivo. Mice exposed to cigarette smoke for 4 weeks demonstrated an up-regulation of miR-101 and suppression of CFTR protein in their lungs. Finally, we show that miR-101 is highly expressed in lung samples from patients with severe chronic obstructive pulmonary disease (COPD) when compared to control patients. Taken together, these results suggest that chronic cigarette smoking up-regulates miR-101 and that this miRNA could contribute to suppression of CFTR in the lungs of COPD patients. PMID:23226399

  2. Role of CFTR in oxidative stress and suicidal death of renal cells during cisplatin-induced nephrotoxicity.

    PubMed

    Rubera, I; Duranton, C; Melis, N; Cougnon, M; Mograbi, B; Tauc, M

    2013-10-03

    The clinical use of the antineoplastic drug cisplatin is limited by its deleterious nephrotoxic side effect. Cisplatin-induced nephrotoxicity is associated with an increase in oxidative stress, leading ultimately to renal cell death and irreversible kidney dysfunction. Oxidative stress could be modified by the cystic fibrosis transmembrane conductance regulator protein (CFTR), a Cl(-) channel not only involved in chloride secretion but as well in glutathione (GSH) transport. Thus, we tested whether the inhibition of CFTR could protect against cisplatin-induced nephrotoxicity. Using a renal proximal cell line, we show that the specific inhibitor of CFTR, CFTR(inh)-172, prevents cisplatin-induced cell death and apoptosis by modulating the intracellular reactive oxygen species balance and the intracellular GSH concentration. This CFTR(inh)-172-mediated protective effect occurs without affecting cellular cisplatin uptake or the formation of platinum-DNA adducts. The protective effect of CFTR(inh)-172 in cisplatin-induced nephrotoxicity was also investigated in a rat model. Five days after receiving a single cisplatin injection (5 mg/kg), rats exhibited renal failure, as evidenced by the alteration of biochemical and functional parameters. Pretreatment of rats with CFTR(inh)-172 (1 mg/kg) prior to cisplatin injection significantly prevented these deleterious cisplatin-induced nephrotoxic effects. Finally, we demonstrate that CFTR(inh)-172 does not impair cisplatin-induced cell death in the cisplatin-sensitive A549 cancer cell line. In conclusion, the use of a specific inhibitor of CFTR may represent a novel therapeutic approach in the prevention of nephrotoxic side effects during cisplatin treatment without affecting its antitumor efficacy.

  3. Benzopyrimido-pyrrolo-oxazine-dione (R)-BPO-27 Inhibits CFTR Chloride Channel Gating by Competition with ATP

    PubMed Central

    Kim, Yonjung; Anderson, Marc O.; Park, Jinhong; Lee, Min Goo; Namkung, Wan

    2015-01-01

    We previously reported that benzopyrimido-pyrrolo-oxazinedione BPO-27 [6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4′,5′:3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid] inhibits the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel with low nanomolar potency and reduces cystogenesis in a model of polycystic kidney disease. We used computational chemistry and patch-clamp to show that enantiomerically pure (R)-BPO-27 inhibits CFTR by competition with ATP, whereas (S)-BPO-27 is inactive. Docking computations using a homology model of CFTR structure suggested that (R)-BPO-27 binds near the canonical ATP binding site, and these findings were supported by molecular dynamics simulations showing a lower binding energy for the (R) versus (S) stereoisomers. Three additional lower-potency BPO-27 analogs were modeled in a similar fashion, with the binding energies predicted in the correct order. Whole-cell patch-clamp studies showed linear CFTR currents with a voltage-independent (R)-BPO-27 block mechanism. Single-channel recordings in inside-out patches showed reduced CFTR channel open probability and increased channel closed time by (R)-BPO-27 without altered unitary channel conductance. At a concentration of (R)-BPO-27 that inhibited CFTR chloride current by ∼50%, the EC50 for ATP activation of CFTR increased from 0.27 to 1.77 mM but was not changed by CFTRinh-172 [4-[[4-oxo-2-thioxo-3-[3-trifluoromethyl)phenyl]-5-thiazolidinylidene]methyl]benzoic acid], a thiazolidinone CFTR inhibitor that acts at a site distinct from the ATP binding site. Our results suggest that (R)-BPO-27 inhibition of CFTR involves competition with ATP. PMID:26174774

  4. MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung.

    PubMed

    Hassan, Fatemat; Nuovo, Gerard J; Crawford, Melissa; Boyaka, Prosper N; Kirkby, Stephen; Nana-Sinkam, Serge P; Cormet-Boyaka, Estelle

    2012-01-01

    The Cystic Fibrosis Transmembrane conductance Regulator (CFTR) is a chloride channel that plays a critical role in the lung by maintaining fluid homeostasis. Absence or malfunction of CFTR leads to Cystic Fibrosis, a disease characterized by chronic infection and inflammation. We recently reported that air pollutants such as cigarette smoke and cadmium negatively regulate the expression of CFTR by affecting several steps in the biogenesis of CFTR protein. MicroRNAs (miRNAs) have recently received a great deal of attention as both biomarkers and therapeutics due to their ability to regulate multiple genes. Here, we show that cigarette smoke and cadmium up-regulate the expression of two miRNAs (miR-101 and miR-144) that are predicted to target CFTR in human bronchial epithelial cells. When premature miR-101 and miR-144 were transfected in human airway epithelial cells, they directly targeted the CFTR 3'UTR and suppressed the expression of the CFTR protein. Since miR-101 was highly up-regulated by cigarette smoke in vitro, we investigated whether such increase also occurred in vivo. Mice exposed to cigarette smoke for 4 weeks demonstrated an up-regulation of miR-101 and suppression of CFTR protein in their lungs. Finally, we show that miR-101 is highly expressed in lung samples from patients with severe chronic obstructive pulmonary disease (COPD) when compared to control patients. Taken together, these results suggest that chronic cigarette smoking up-regulates miR-101 and that this miRNA could contribute to suppression of CFTR in the lungs of COPD patients.

  5. Benzopyrimido-pyrrolo-oxazine-dione (R)-BPO-27 Inhibits CFTR Chloride Channel Gating by Competition with ATP.

    PubMed

    Kim, Yonjung; Anderson, Marc O; Park, Jinhong; Lee, Min Goo; Namkung, Wan; Verkman, A S

    2015-10-01

    We previously reported that benzopyrimido-pyrrolo-oxazinedione BPO-27 [6-(5-bromofuran-2-yl)-7,9-dimethyl-8,10-dioxo-11-phenyl-7,8,9,10-tetrahydro-6H-benzo[b]pyrimido [4',5':3,4]pyrrolo [1,2-d][1,4]oxazine-2-carboxylic acid] inhibits the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel with low nanomolar potency and reduces cystogenesis in a model of polycystic kidney disease. We used computational chemistry and patch-clamp to show that enantiomerically pure (R)-BPO-27 inhibits CFTR by competition with ATP, whereas (S)-BPO-27 is inactive. Docking computations using a homology model of CFTR structure suggested that (R)-BPO-27 binds near the canonical ATP binding site, and these findings were supported by molecular dynamics simulations showing a lower binding energy for the (R) versus (S) stereoisomers. Three additional lower-potency BPO-27 analogs were modeled in a similar fashion, with the binding energies predicted in the correct order. Whole-cell patch-clamp studies showed linear CFTR currents with a voltage-independent (R)-BPO-27 block mechanism. Single-channel recordings in inside-out patches showed reduced CFTR channel open probability and increased channel closed time by (R)-BPO-27 without altered unitary channel conductance. At a concentration of (R)-BPO-27 that inhibited CFTR chloride current by ∼50%, the EC50 for ATP activation of CFTR increased from 0.27 to 1.77 mM but was not changed by CFTRinh-172 [4-[[4-oxo-2-thioxo-3-[3-trifluoromethyl)phenyl]-5-thiazolidinylidene]methyl]benzoic acid], a thiazolidinone CFTR inhibitor that acts at a site distinct from the ATP binding site. Our results suggest that (R)-BPO-27 inhibition of CFTR involves competition with ATP.

  6. Functional differences in pore properties between wild-type and cysteine-less forms of the CFTR chloride channel.

    PubMed

    Holstead, Ryan G; Li, Man-Song; Linsdell, Paul

    2011-10-01

    Studies of the structure and function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel have been advanced by the development of functional channel variants in which all 18 endogenous cysteine residues have been mutated ("cys-less" CFTR). However, cys-less CFTR has a slightly higher single-channel conductance than wild-type CFTR, raising questions as to the suitability of cys-less as a model of the wild-type CFTR pore. We used site-directed mutagenesis and patch-clamp recording to investigate the origin of this conductance difference and to determine the extent of functional differences between wild-type and cys-less CFTR channel permeation properties. Our results suggest that the conductance difference is the result of a single substitution, of C343: the point mutant C343S has a conductance similar to cys-less, whereas the reverse mutation, S343C in a cys-less background, restores wild-type conductance levels. Other cysteine substitutions (C128S, C225S, C376S, C866S) were without effect. Substitution of other residues for C343 suggested that conductance is dependent on amino acid side chain volume at this position. A range of other functional pore properties, including interactions with channel blockers (Au[CN] (2) (-) , 5-nitro-2-[3-phenylpropylamino]benzoic acid, suramin) and anion permeability, were not significantly different between wild-type and cys-less CFTR. Our results suggest that functional differences between these two CFTR constructs are of limited scale and scope and result from a small change in side chain volume at position 343. These results therefore support the use of cys-less as a model of the CFTR pore region.

  7. Iodide-mediated photooxidation of arsenite under 254 nm irradiation.

    PubMed

    Yeo, Jiman; Choi, Wonyong

    2009-05-15

    The preoxidation of As(III) to As(V) is a desirable process to increase the removal efficiency of arsenic in water treatment In this work, the photooxidation of As(III) under 254 nm irradiation was investigated in the concentration range of 1-1000 microM in the presence of potassium iodide (typically 100 microM). Although the direct photooxidation of As(III) in water was negligible, the presence of iodide dramatically enhanced the oxidation rate. The quantitative conversion of As(III) to As(V) was achieved. The quantum yields of As(III) photooxidation ranged from 0.08 to 0.6, depending on the concentration of iodide and As(III). The excitation of iodides under 254 nm irradiation led to the generation of iodine atoms and triiodides, which seem to be involved in the oxidation process of As(III). Because the efficiency of iodine atom generation is highly dependent on the presence of suitable electron acceptors,the photooxidation of As(III) was efficient in an air- or N2O-saturated solution but markedly reduced in the N2-saturated solution. The production of H2O2 was also accompanied by the generation of As(V). The addition of excess methanol (OH radical scavenger) did not reduce the photooxidation rate at all, which ruled out the possibility of hydroxyl radical involvement. It was found that the in situ photogenerated triiodides oxidize As(III) with regenerating iodides by completing a cycle. The proposed UV254/KI/As(III) process is essentially an iodide-mediated photocatalysis.

  8. Enhanced Olefin Cross Metathesis Reactions: The Copper Iodide Effect

    PubMed Central

    Voigtritter, Karl; Ghorai, Subir

    2011-01-01

    Copper iodide has been shown to be an effective co-catalyst for the olefin cross metathesis reaction. In particular, it has both a catalyst stabilizing effect due to iodide ion, as well as copper(I)-based phosphine-scavenging properties that apply to use of the Grubbs-2 catalyst. A variety of Michael acceptors and olefinic partners can be cross-coupled under mild conditions in refluxing diethyl ether that avoid chlorinated solvents. This effect has also been applied to chemistry in water at room temperature using the new surfactant TPGS-750-M. PMID:21528868

  9. Oral potassium iodide for the treatment of sporotrichosis.

    PubMed

    Xue, Si-Liang; Li, Li

    2009-06-01

    Potassium Iodide is the antimycotic of choice for the treatment of cutaneous sporotrichosis, because of its efficacy, safety and low cost. We carried out a review of published studies on the benefits and adverse reactions of using SSKI (Saturated Solution Potassium Iodide) as treatment for sporotrichosis, but could not identify any well-designed clinical trails. There is an urgent need to conduct randomized double-blind placebo-controlled trials and critically assess usefulness of SSKI by using a standardize monitoring or an effective self-report system.

  10. Rapid efflux of Ca2+ from heart mitochondria in the presence of inorganic pyrophosphate.

    PubMed

    Vercesi, A; Lehninger, A L

    1984-01-13

    Inorganic pyrophosphate (PPi) in the intracellular concentration range causes rapid efflux of Ca2+ from rat heart mitochondria oxidizing pyruvate + malate in a low Na+ medium. Half-maximal rates of Ca2+ efflux were given by 20 microM PPi. During and after PPi-stimulated Ca2+ efflux the mitochondria retain their structural integrity and complete respiratory control. Carboxyatractyloside inhibits PPi-stimulated Ca2+ efflux, indicating PPi must enter the matrix in order to promote Ca2+ efflux. Heart mitochondria have a much higher affinity for PPi uptake and PPi-induced Ca2+ efflux than liver mitochondria.

  11. Further Evidence That the CFTR Variant c.2620-6T>C Is Benign.

    PubMed

    Wallerstein, Violet I; Wallerstein, Robert

    2017-01-01

    The c.2620-6T>C variant in the CFTR gene is a rare variant about which little is known. We present an asymptomatic adult who has this variant as well as the well described delta F508 pathogenic variant in transpresentation. This patient provides additional evidence that this is a benign polymorphism.

  12. Further Evidence That the CFTR Variant c.2620-6T>C Is Benign

    PubMed Central

    Wallerstein, Violet I.

    2017-01-01

    The c.2620-6T>C variant in the CFTR gene is a rare variant about which little is known. We present an asymptomatic adult who has this variant as well as the well described delta F508 pathogenic variant in transpresentation. This patient provides additional evidence that this is a benign polymorphism. PMID:28163942

  13. Sec16A is critical for both conventional and unconventional secretion of CFTR

    PubMed Central

    Piao, He; Kim, Jiyoon; Noh, Shin Hye; Kweon, Hee-Seok; Kim, Joo Young; Lee, Min Goo

    2017-01-01

    CFTR is a transmembrane protein that reaches the cell surface via the conventional Golgi mediated secretion pathway. Interestingly, ER-to-Golgi blockade or ER stress induces alternative GRASP-mediated, Golgi-bypassing unconventional trafficking of wild-type CFTR and the disease-causing ΔF508-CFTR, which has folding and trafficking defects. Here, we show that Sec16A, the key regulator of conventional ER-to-Golgi transport, plays a critical role in the ER exit of protein cargos during unconventional secretion. In an initial gene silencing screen, Sec16A knockdown abolished the unconventional secretion of wild-type and ΔF508-CFTR induced by ER-to-Golgi blockade, whereas the knockdown of other COPII-related components did not. Notably, during unconventional secretion, Sec16A was redistributed to cell periphery and associated with GRASP55 in mammalian cells. Molecular and morphological analyses revealed that IRE1α-mediated signaling is an upstream regulator of Sec16A during ER-to-Golgi blockade or ER stress associated unconventional secretion. These findings highlight a novel function of Sec16A as an essential mediator of ER stress-associated unconventional secretion. PMID:28067262

  14. Clinical practice and genetic counseling for cystic fibrosis and CFTR-related disorders

    PubMed Central

    Moskowitz, Samuel M.; Chmiel, James F.; Sternen, Darci L.; Cheng, Edith; Gibson, Ronald L; Marshall, Susan G.; Cutting, Garry R.

    2009-01-01

    Cystic fibrosis transmembrane conductance regulator-related disorders encompass a disease spectrum from focal male reproductive tract involvement in congenital absence of the vas deferens to multiorgan involvement in classic cystic fibrosis. The reproductive, gastrointestinal, and exocrine manifestations of cystic fibrosis transmembrane conductance regulator deficiency are correlated with CFTR genotype, whereas the respiratory manifestations that are the main cause of morbidity and mortality in cystic fibrosis are less predictable. Molecular genetic testing of CFTR has led to new diagnostic strategies and will enable targeting of molecular therapies now in development. Older diagnostic methods that measure sweat chloride and nasal potential difference nonetheless remain important because of their sensitivity and specificity. In addition, the measurement of immunoreactive trypsinogen and the genotyping of CFTR alleles are key to newborn screening programs because of low cost. The multiorgan nature of cystic fibrosis leads to a heavy burden of care, thus therapeutic regimens are tailored to the specific manifestations present in each patient. The variability of cystic fibrosis lung disease and the variable expressivity of mild CFTR alleles complicate genetic counseling for this autosomal recessive disorder. Widespread implementation of newborn screening programs among populations with significant cystic fibrosis mutation carrier frequencies is expected to result in increasing demands on genetic counseling resources. PMID:19092437

  15. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations

    PubMed Central

    Veit, Gudio; Avramescu, Radu G.; Chiang, Annette N.; Houck, Scott A.; Cai, Zhiwei; Peters, Kathryn W.; Hong, Jeong S.; Pollard, Harvey B.; Guggino, William B.; Balch, William E.; Skach, William R.; Cutting, Garry R.; Frizzell, Raymond A.; Sheppard, David N.; Cyr, Douglas M.; Sorscher, Eric J.; Brodsky, Jeffrey L.; Lukacs, Gergely L.

    2016-01-01

    More than 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) have been described that confer a range of molecular cell biological and functional phenotypes. Most of these mutations lead to compromised anion conductance at the apical plasma membrane of secretory epithelia and cause cystic fibrosis (CF) with variable disease severity. Based on the molecular phenotypic complexity of CFTR mutants and their susceptibility to pharmacotherapy, it has been recognized that mutations may impose combinatorial defects in CFTR channel biology. This notion led to the conclusion that the combination of pharmacotherapies addressing single defects (e.g., transcription, translation, folding, and/or gating) may show improved clinical benefit over available low-efficacy monotherapies. Indeed, recent phase 3 clinical trials combining ivacaftor (a gating potentiator) and lumacaftor (a folding corrector) have proven efficacious in CF patients harboring the most common mutation (deletion of residue F508, ΔF508, or Phe508del). This drug combination was recently approved by the U.S. Food and Drug Administration for patients homozygous for ΔF508. Emerging studies of the structural, cell biological, and functional defects caused by rare mutations provide a new framework that reveals a mixture of deficiencies in different CFTR alleles. Establishment of a set of combinatorial categories of the previously defined basic defects in CF alleles will aid the design of even more efficacious therapeutic interventions for CF patients. PMID:26823392

  16. Allosteric modulation balances thermodynamic stability and restores function of ΔF508 CFTR

    PubMed Central

    Aleksandrov, Andrei A.; Kota, Pradeep; Cui, Liying; Jensen, Tim; Alekseev, Alexey E.; Reyes, Santiago; He, Lihua; Gentzsch, Martina; Aleksandrov, Luba A.; Dokholyan, Nikolay V.; Riordan, John R.

    2013-01-01

    Most cystic fibrosis is caused by a deletion of a single residue (F508) in CFTR that disrupts the folding and biosynthetic maturation of the ion channel protein. Progress towards understanding the underlying mechanisms and overcoming the defect remain incomplete. Here we show that the thermal instability of human ΔF508 CFTR channel activity evident in both cell-attached membrane patches and planar phospholipid bilayers is not observed in corresponding mutant CFTRs of several non-mammalian species. These more stable orthologs are distinguished from their mammalian counterparts by the substitution of proline residues at several key dynamic locations in the first nucleotide domain (NBD1), including the structurally diverse region (SDR), the gamma phosphate switch loop and the Regulatory Insertion (RI). Molecular Dynamic analyses revealed that addition of the prolines could reduce flexibility at these locations and increase the temperatures of unfolding transitions of ΔF508 NBD1 to that of the wild-type. Introduction of these prolines experimentally into full-length human ΔF508 CFTR together with the already recognized I539T suppressor mutation, also in the SDR, restored channel function and thermodynamic stability as well as its trafficking to and lifetime at the cell surface. Thus, while cellular manipulations that circumvent its culling by quality control systems leave ΔF508 CFTR dysfunctional at physiological temperature, restoration of the delicate balance between the dynamic protein’s inherent stability and channel activity returns a near-normal state. PMID:22406676

  17. Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening

    NASA Astrophysics Data System (ADS)

    Kalid, Ori; Mense, Martin; Fischman, Sharon; Shitrit, Alina; Bihler, Hermann; Ben-Zeev, Efrat; Schutz, Nili; Pedemonte, Nicoletta; Thomas, Philip J.; Bridges, Robert J.; Wetmore, Diana R.; Marantz, Yael; Senderowitz, Hanoch

    2010-12-01

    Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.

  18. Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore.

    PubMed

    El Hiani, Yassine; Negoda, Alexander; Linsdell, Paul

    2016-05-01

    Most ATP-binding cassette (ABC) proteins function as ATP-dependent membrane pumps. One exception is the cystic fibrosis transmembrane conductance regulator (CFTR), an ABC protein that functions as a Cl(-) ion channel. As such, the CFTR protein must form a continuous pathway for the movement of Cl(-) ions from the cytoplasm to the extracellular solution when in its open channel state. Extensive functional investigations have characterized most parts of this Cl(-) permeation pathway. However, one region remains unexplored-the pathway connecting the cytoplasm to the membrane-spanning pore. We used patch clamp recording and extensive substituted cysteine accessibility mutagenesis to identify amino acid side-chains in cytoplasmic regions of CFTR that lie close to the pathway taken by Cl(-) ions as they pass from the cytoplasm through this pathway. Our results suggest that Cl(-) ions enter the permeation pathway via a single lateral tunnel formed by the cytoplasmic parts of the protein, and then follow a fairly direct central pathway towards the membrane-spanning parts of the protein. However, this pathway is not lined continuously by any particular part of the protein; instead, the contributions of different cytoplasmic regions of the protein appear to change as the permeation pathway approaches the membrane, which appears to reflect the ways in which different cytoplasmic regions of the protein are oriented towards its central axis. Our results allow us to define for the first time the complete Cl(-) permeation pathway in CFTR, from the cytoplasm to the extracellular solution.

  19. Screening of Two Neighboring CFTR Mutations in Iranian Infertile Men with Non-Obstructive Azoospermia

    PubMed Central

    Heidari, Somayeh; Hojati, Zohreh; Motovali-Bashi, Majid

    2017-01-01

    The genetic association between cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations and male infertility due to congenital bilateral absence of vas deferens (CBAVD) is well established. Mutant CFTR, however may also be involved in the etiology of male infertility in non-CBAVD cases. The present study was conducted to estimate the frequency of ∆I507 and ∆F508 CFTR gene mutations in Iranian infertile males. We undertook the first study of association between these CFTR mutations and non-obstructive azoospermia in Iran. In this case-control study, 100 fertile healthy fathers and 100 non-obstructive azoospermia’s men were recruited from Isfahan Infertility Center (IIC) and Sari Saint Mary’s Infertility Center, between 2008 and 2009. Screening of F508del and I507del mutations was carried out by the multiplex-ARMS-PCR. Significance of differences in mutation frequencies between the patient and control groups was assessed by Fisher’s exact test. The ΔF508 was detected in three patients. However there are no significant association was found between the presence of this mutated allele and infertility [OR=9.2 (allele-based) and 7.2 (individual-based), P=0.179]. None of the samples carried the ΔI507 mutation. Altogether, we show that neither ΔI507 nor ΔF508 is involved in this population of Iranian infertile males with non-obstructive azoospermia. PMID:28042420

  20. Alteration of CFTR transmembrane span integration by disease-causing mutations.

    PubMed

    Patrick, Anna E; Karamyshev, Andrey L; Millen, Linda; Thomas, Philip J

    2011-12-01

    Many missense mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) result in its misfolding, endoplasmic reticulum (ER) accumulation, and, thus, cystic fibrosis. A number of these mutations are located in the predicted CFTR transmembrane (TM) spans and have been projected to alter span integration. However, the boundaries of the spans have not been precisely defined experimentally. In this study, the ER luminal integration profiles of TM1 and TM2 were determined using the ER glycosylation machinery, and the effects of the CF-causing mutations G85E and G91R thereon were assessed. The mutations either destabilize the integrated conformation or alter the TM1 ER integration profile. G85E misfolding is based in TM1 destabilization by glutamic acid and loss of glycine and correlates with the temperature-insensitive ER accumulation of immature full-length CFTR harboring the mutation. By contrast, temperature-dependent misfolding owing to the G91R mutation depends on the introduction of the basic side chain rather than the loss of the glycine. This work demonstrates that CF-causing mutations predicted to have similar effects on CFTR structure actually result in disparate molecular perturbations that underlie ER accumulation and the pathology of CF.

  1. Mechanism-based corrector combination restores ΔF508-CFTR folding and function

    PubMed Central

    Okiyoneda, Tsukasa; Veit, Guido; Dekkers, Johanna F.; Bagdany, Miklos; Soya, Naoto; Xu, Haijin; Roldan, Ariel; Verkman, Alan S.; Kurth, Mark; Simon, Agnes; Hegedus, Tamas; Beekman, Jeffrey M.; Lukacs, Gergely L.

    2013-01-01

    The most common cystic fibrosis (CF) mutation, ΔF508 in the nucleotide binding domain-1 (NBD1), impairs CFTR coupled-domain folding, plasma membrane (PM) expression, function and stability. VX-809, a promising investigational corrector of ΔF508-CFTR misprocessing, has limited clinical benefit and incompletely understood mechanism, hampering drug development. Based on the effect of second site suppressor mutations, robust ΔF508-CFTR correction likely requires stabilization of NBD1 and the membrane spanning domains (MSDs)-NBD1 interface, both established primary conformational defects. Here, we elucidated the molecular targets of available correctors; class-I stabilizes the NBD1-MSD1/2 interface, class-II targets NBD2, and only chemical chaperones, surrogates of class-III correctors, stabilize the human ΔF508-NBD1. While VX-809 can correct missense mutations primarily destabilizing the NBD1-MSD1/2 interface, functional PM expression of ΔF508-CFTR also requires compounds that counteract the NBD1 and NBD2 stability defects in CF bronchial epithelial cells and intestinal organoids. Thus, structure-guided corrector combination represents an effective approach for CF therapy. PMID:23666117

  2. Newborn Screening Quality Assurance Program for CFTR Mutation Detection and Gene Sequencing to Identify Cystic Fibrosis

    PubMed Central

    Hendrix, Miyono M.; Foster, Stephanie L.; Cordovado, Suzanne K.

    2016-01-01

    All newborn screening laboratories in the United States and many worldwide screen for cystic fibrosis. Most laboratories use a second-tier genotyping assay to identify a panel of mutations in the CF transmembrane regulator (CFTR) gene. Centers for Disease Control and Prevention’s Newborn Screening Quality Assurance Program houses a dried blood spot repository of samples containing CFTR mutations to assist newborn screening laboratories and ensure high-quality mutation detection in a high-throughput environment. Recently, CFTR mutation detection has increased in complexity with expanded genotyping panels and gene sequencing. To accommodate the growing quality assurance needs, the repository samples were characterized with several multiplex genotyping methods, Sanger sequencing, and 3 next-generation sequencing assays using a high-throughput, low-concentration DNA extraction method. The samples performed well in all of the assays, providing newborn screening laboratories with a resource for complex CFTR mutation detection and next-generation sequencing as they transition to new methods. PMID:28261631

  3. RND multidrug efflux pumps: what are they good for?

    PubMed

    Alvarez-Ortega, Carolina; Olivares, Jorge; Martínez, José L

    2013-01-01

    Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating resistance to toxic compounds in several life forms. In bacteria, these elements are involved in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps belong to the core of bacterial genomes and thus have evolved over millions of years. The selective pressure stemming from the use of antibiotics to treat bacterial infections is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements have evolved in response to antibiotics. In the last years, several studies have identified numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review we present some examples of these functions that range from bacterial interactions with plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance of cellular homeostasis.

  4. RND multidrug efflux pumps: what are they good for?

    PubMed Central

    Alvarez-Ortega, Carolina; Olivares, Jorge; Martínez, José L.

    2013-01-01

    Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating resistance to toxic compounds in several life forms. In bacteria, these elements are involved in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps belong to the core of bacterial genomes and thus have evolved over millions of years. The selective pressure stemming from the use of antibiotics to treat bacterial infections is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements have evolved in response to antibiotics. In the last years, several studies have identified numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review we present some examples of these functions that range from bacterial interactions with plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance of cellular homeostasis. PMID:23386844

  5. Personalized medicine in cystic fibrosis: genistein supplementation as a treatment option for patients with a rare S1045Y-CFTR mutation.

    PubMed

    Arora, Kavisha; Yarlagadda, Sunitha; Zhang, Weiqiang; Moon, ChangSuk; Bouquet, Erin; Srinivasan, Saumini; Li, Chunying; Stokes, Dennis C; Naren, Anjaparavanda P

    2016-08-01

    Cystic fibrosis (CF) is a life-shortening disease caused by the mutations that generate nonfunctional CF transmembrane conductance regulator (CFTR) protein. A rare serine-to-tyrosine (S1045Y) CFTR mutation was earlier reported to result in CF-associated fatality. We identified an African-American patient with the S1045Y mutation in CFTR, as well as a stop-codon mutation, who has a mild CF phenotype. The underlying mechanism of CF caused by S1045Y-CFTR has not been elucidated. In this study, we determined that S1045Y-CFTR exhibits twofold attenuated function compared with wild-type (WT)-CFTR. We report that serine-to-tyrosine mutation leads to increased tyrosine phosphorylation of S1045Y-CFTR, followed by recruitment and binding of E3-ubiquitin ligase c-cbl, resulting in enhanced ubiquitination and passage of S1045Y-CFTR in the endosome/lysosome degradative compartments. We demonstrate that inhibition of tyrosine phosphorylation partially rescues S1045Y-CFTR surface expression and function. Based on our findings, it could be suggested that consuming genistein (a tyrosine phosphorylation inhibitor) would likely ameliorate CF symptoms in individuals with S1045Y-CFTR, providing a unique personalized therapy for this rare CF mutation.

  6. Relationships among CFTR expression, HCO3− secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies

    PubMed Central

    Shah, Viral S.; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H.; Parker, Connor P.; Ostedgaard, Lynda S.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10–50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl− secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3− secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3− at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR+/− or CFTR+/∆F508) expressed CFTR and secreted HCO3− at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3− secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl− secretion, the amount of CFTR is rate-limiting for HCO3− secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers. PMID:27114540

  7. Rab27a negatively regulates CFTR chloride channel function in colonic epithelia: Involvement of the effector proteins in the regulatory mechanism

    SciTech Connect

    Saxena, Sunil K. . E-mail: ssaxena@stevens.edu; Kaur, Simarna

    2006-07-21

    Cystic fibrosis, an autosomal recessive disorder, is caused by the disruption of biosynthesis or function of CFTR. CFTR regulatory mechanisms include channel transport to plasma membrane and protein-protein interactions. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. The colorectal epithelial HT-29 cells natively express CFTR and respond to cAMP with an increase in CFTR-mediated currents. DPC-inhibited currents could be completely eliminated with CFTR-specific SiRNA. Over-expression of Rab27a inhibited, while isoform specific SiRNA and Rab27a antibody stimulated CFTR-mediated currents in HT-29 cells. CFTR activity is inhibited both by Rab27a (Q78L) (constitutive active GTP-bound form of Rab27a) and Rab27a (T23N) (constitutive negative form that mimics the GDP-bound form). Rab27a mediated effects could be reversed by Rab27a-binding proteins, the synaptotagmin-like protein (SLP-5) and Munc13-4 accessory protein (a putative priming factor for exocytosis). The SLP reversal of Rab27a effect was restricted to C2A/C2B domains while the SHD motif imparted little more inhibition. The CFTR-mediated currents remain unaffected by Rab3 though SLP-5 appears to weakly bind it. The immunoprecipitation experiments suggest protein-protein interactions between Rab27a and CFTR. Rab27a appears to impair CFTR appearance at the cell surface by trapping CFTR in the intracellular compartments. Munc13-4 and SLP-5, on the other hand, limit Rab27a availability to CFTR, thus minimizing its effect on channel function. These observations decisively prove that Rab27a is involved in CFTR channel regulation through protein-protein interactions involving Munc13-4 and SLP-5 effector proteins, and thus could be a potential target for cystic fibrosis therapy.

  8. Evidence for Terrestrial Sources of Methyl Iodide

    NASA Astrophysics Data System (ADS)

    Varner, R. K.; Sive, B. C.; Russo, R. S.; Zhou, Y.; White, M. L.; Csakai, A.; Beckman, P.; Ambrose, J.; Wingenter, O. W.; Mao, H.; Talbot, R. W.

    2005-12-01

    The major source of methyl iodide (MeI) to the atmosphere has been shown to be supersaturation of ocean surface waters through biological and/or photoproduction pathways. Minor contributions of MeI to the atmosphere are release by rice plants/paddies, salt marshes and fungi. To date, there has been no direct evidence of a significant terrestrial source of MeI. We present the first direct evidence of a significant plant and soil source of MeI. Canopy measurements of MeI were made in the loblolly pine plantation at Duke Forest, Chapel Hill, North Carolina during a three week field campaign from September 8 through 28, 2004. Approximately 700, 2-liter electropolished stainless steel canisters (University of California, Irvine) were filled hourly at both ambient CO2 (Ring 1) and elevated CO2 (Ring 2) of the FACTS-1 Research Facility. Canister samples were collected simultaneously in Rings 1 and 2 each hour for a total of 12 days from a 16 m inlet. Additionally on September 20 and 24, simultaneous samples from both 16 m and 20 m were collected in Rings 1 and 2 in order to determine the gradient of MeI. The measurements from the 16m height indicate a diurnal pattern of increasing MeI at night resulting from a decrease in boundary layer height coupled with a local source of MeI. Gradient fluxes were calculated using CO2 gradients and eddy covariance data from the site. The flux data indicate a positive flux of MeI out of the canopy. A second field campaign at Duke Forest from June 1 through 12, 2005 where we used Teflon bag branch enclosures to measure the flux of MeI from branches of Pinus taeda (loblolly pine) and Liquidambar styraciflua (sweetgum) over two 48-hour periods. Ambient and post-branch samples were collected at both Rings 1 and 2 approximately every 2 hours for each plant species. Canister analysis revealed significantly different concentrations of MeI from ambient to post-branch enclosure. Fluxes calculated based on emission of MeI per leaf area of the

  9. Mechanisms and physiological roles of K+ efflux from root cells.

    PubMed

    Demidchik, Vadim

    2014-05-15

    Potassium is the most abundant macronutrient, which is involved in a multitude of physiological processes. Potassium uptake in roots is crucial for plants; however, K(+) efflux can also occur and has important functions. Potassium efflux from roots is mainly induced by stresses, such as pathogens, salinity, freezing, oxidants and heavy metals. Reactive oxygen species (ROS) and exogenous purines also cause this reaction. The depolarisation and activation of cation channels are required for K(+) efflux from plant roots. Potassium channels and nonselective cation channels (NSCCs) are involved in this process. Some of them are 'constitutive', while the others require a chemical agent for activation. In Arabidopsis, there are 77 genes that can potentially encode K(+)-permeable channels. Potassium-selective channel genes include 9 Shaker and 6 Tandem-Pore K(+) channels. Genes of NSCCs are more abundant and present by 20 cyclic nucleotide gated channels, 20 ionotropic glutamate receptors, 1 two-pore channel, 10 mechanosensitive-like channels, 2 mechanosensitive 'Mid1-Complementing Activity' channels, 1 mechanosensitive Piezo channel, and 8 annexins. Two Shakers (SKOR and GORK) and several NSCCs are expressed in root cell plasma membranes. SKOR mediates K(+) efflux from xylem parenchyma cells to xylem vessels while GORK is expressed in the epidermis and functions in K(+) release. Both these channels are activated by ROS. The GORK channel activity is stimulated by hydroxyl radicals that are generated in a Ca(2+)-dependent manner in stress conditions, such as salinity or pathogen attack, resulting in dramatic K(+) efflux from root cells. Potassium loss simulates cytosolic proteases and endonucleases, leading to programmed cell death. Other physiological functions of K(+) efflux channels include repolarisation of the plasma membrane during action potentials and the 'hypothetical' function of a metabolic switch, which provides inhibition of energy-consuming biosyntheses and

  10. Structure–activity analysis of a CFTR channel potentiator: Distinct molecular parts underlie dual gating effects

    PubMed Central

    Töröcsik, Beáta

    2014-01-01

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) is a member of the ATP-binding cassette transporter superfamily that functions as an epithelial chloride channel. Gating of the CFTR ion conduction pore involves a conserved irreversible cyclic mechanism driven by ATP binding and hydrolysis at two cytosolic nucleotide-binding domains (NBDs): formation of an intramolecular NBD dimer that occludes two ATP molecules opens the pore, whereas dimer disruption after ATP hydrolysis closes it. CFTR dysfunction resulting from inherited mutations causes CF. The most common CF mutation, deletion of phenylalanine 508 (ΔF508), impairs both protein folding and processing and channel gating. Development of ΔF508 CFTR correctors (to increase cell surface expression) and potentiators (to enhance open probability, Po) is therefore a key focus of CF research. The practical utility of 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB), one of the most efficacious potentiators of ΔF508 CFTR identified to date, is limited by its pore-blocking side effect. NPPB-mediated stimulation of Po is unique in that it involves modulation of gating transition state stability. Although stabilization by NPPB of the transition state for pore opening enhances both the rate of channel opening and the very slow rate of nonhydrolytic closure, because of CFTR’s cyclic gating mechanism, the net effect is Po stimulation. In addition, slowing of ATP hydrolysis by NPPB delays pore closure, further enhancing Po. Here we show that NPPB stimulates gating at a site outside the pore and that these individual actions of NPPB on CFTR are fully attributable to one or the other of its two complementary molecular parts, 3-nitrobenzoate (3NB) and 3-phenylpropylamine (3PP), both of which stimulate Po: the pore-blocking 3NB selectively stabilizes the transition state for opening, whereas the nonblocking 3PP selectively slows the ATP hydrolysis step. Understanding structure–activity relationships of NPPB

  11. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    PubMed

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux.

  12. Chloramphenicol and expression of multidrug efflux pump in Enterobacter aerogenes.

    PubMed

    Ghisalberti, Didier; Masi, Muriel; Pagès, Jean-Marie; Chevalier, Jacqueline

    2005-03-25

    Chloramphenicol has been reported to act as an inducer of the multidrug resistance in Escherichia coli. A resistant variant able to grow on plates containing 64 microg/ml chloramphenicol was obtained from the Enterobacter aerogenes ATCC 13048-type strain. Chloramphenicol resistance was due to an active efflux of this antibiotic and it was associated with resistance to fluoroquinolones and tetracycline, but not to aminoglycoside or beta-lactam antibiotics. MDR in the chloramphenicol-resistant variant is linked to the overexpression of the major AcrAB-TolC efflux system. This overexpression seems unrelated to the global Mar and the local AcrR regulatory pathways.

  13. Calcium Efflux from Internally Dialyzed Squid Giant Axons

    PubMed Central

    Dipolo, Reinaldo

    1973-01-01

    Calcium efflux has been studied in squid giant axons under conditions in which the internal composition was controlled by means of a dialysis perfusion technique. The mean calcium efflux from axons dialyzed with 0.3 µM calcium and 5 mM ATP was 0.26 pmol/cm2·s at 22°C. The curve relating the Ca efflux with the internal Ca concentration had a slope of about one for [Ca]i lower than 0.3µM and a slope smaller than one for higher concentrations. Under the above conditions replacement of [Na]o and [Ca]o by Tris and Mg causes an 80% fall in the calcium efflux. When the axons were dialyzed with a medium free of ATP and containing 2 mM cyanide plus 5µg/ml oligomycin, analysis of the perfusion effluent gave values of 1–4 µM ATP. Under this low ATP condition, replacement of external sodium and calcium causes the same drop in the calcium efflux. The same effect was observed at higher [Ca]i, (80 µM). These results suggest that the Na-Ca exchange component of the calcium efflux is apparently not dependent on the amounts of ATP in the axoplasm. Axons previously depleted of ATP show a significant transient drop in the calcium efflux when ATP is added to the dialysis medium. This effect probably represents the sequestering of calcium by the mitochondrial system. The consumption of calcium by the mitochondria of the axoplasm in dialyzed axons was determined to be of the order of 6.0 x 10-7 mol Ca++/mg of protein with an initial rate of 2.6 x 10-8 mol Ca++/min·mg of protein. Axons dialyzed with 2 mM cyanide after 8–10-min delays show a rise in the calcium efflux in the presence of "normal" amounts of exogenous ATP. This effect seems to indicate that cyanide, per se, can release calcium ions from internal sources. PMID:4751386

  14. Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps.

    PubMed

    Ruggerone, Paolo; Vargiu, Attilio V; Collu, Francesca; Fischer, Nadine; Kandt, Christian

    2013-01-01

    Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa.

  15. Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps

    PubMed Central

    Ruggerone, Paolo; Vargiu, Attilio V.; Collu, Francesca; Fischer, Nadine; Kandt, Christian

    2013-01-01

    Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND) protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa. PMID:24688701

  16. Intra- and extragenic marker haplotypes of CFTR mutations in cystic fibrosis families.

    PubMed

    Dörk, T; Neumann, T; Wulbrand, U; Wulf, B; Kälin, N; Maass, G; Krawczak, M; Guillermit, H; Ferec, C; Horn, G

    1992-02-01

    In order to facilitate the screening for the less common mutations in the cystic fibrosis (CF) gene viz., the CF transmembrane conductance regulator gene (CFTR), marker haplotypes were determined for German non-CF (N) and CF chromosomes by polymerase chain reaction analysis of four polymorphisms upstream of the CF gene (XV-2c, KM.19, MP6-D9, J44) and six intragenic polymorphisms (GATT, TUB9, M470V, T854T, TUB18, TUB20) that span the CFTR gene from exon 6 through exon 21. Novel informative sequence variants of CFTR were detected in front of exons 10 (1525-61 A or G), 19 (3601-65 C or A), and 21 (4006-200 A or G). The CF locus exhibits strong long-range marker-marker linkage disequilibrium with breakpoints of recombination between XV-2c and KM.19, and between exons 10 and 19 of CFTR. Marker alleles of GATT-TUB9 and TUB18-TUB20 were found to be in absolute linkage disequilibrium. Four major haplotypes encompass more than 90% of German N and CF chromosomes. Fifteen CFTR mutations detected on 421 out of 500 CF chromosomes were each identified on one of these four predominant 7-marker haplotypes. Whereas all analysed delta F508 chromosomes carried the same KM.19-D9-J44-GATT-TUB9-M470V-T854T haplotype, another frequent mutation in Germany, R553X, was identified on two different major haplotypes. Hence, a priori haplotyping cannot exclude a particular CF mutation, but in combination with population genetic data, enables mutations to be ranked by decreasing probability.

  17. Ultrastructural changes in exocrine tissues of a DeltaF-508 CFTR mouse model.

    PubMed

    Thomopoulos, G N; Shori, D K; Asking, B; Kosta, A; Dimopoulou, A; Paterson, K; Hartley, R; Colledge, W H

    2001-01-01

    Cystic fibrosis (CF) is characterized by abnormal secretion from epithelial cells. We wanted to detect changes in the ultrastructural characteristics of cells within a number of exocrine tissues, including the colon, submandibular and parotid salivary glands of DeltaF-508 CFTR animals. Therefore, in the present study a DeltaF-508 CFTR mouse model was compared to control, by applying conventional and complex carbohydrates staining techniques to tissue sections at the electron microscope level. The colon of DeltaF-508 CFTR mice contained thick mucous secretions that harbored many bacteria, along with cytoplasmic fragments and leukocytes. Leukocytes were also seen to infiltrate the cytoplasm of goblet cells. Tissues were taken before, 10 min after isoprenaline, and 30 min after a further injection of methacholine. In the submandibular gland, there is limited secretory activity after isoprenaline treatment, and this increases further with methacholine treatment. Depletion of the secretory granules of acinar cells is observed, following the combined isoprenaline and methacholine treatment, but no significant changes in granule numbers occurred in granular tubule cells. Glycogen, abundant before treatment, is reduced within 10 min of isoprenaline treatment and is completely exhausted by 30 min, especially in the convoluted granular tubule cells. A few secretory granules in acinar and in granular tubule cells of the DeltaF-508 CFTR submandibular glands displayed two electron densities. The secretory responses of the parotid gland cells were similar to those in submandibular gland cells, except that in these DeltaF-508 CFTR cells, secretory granules appeared more polymorphic in structure than those found in control animals.

  18. Mutations at the signature sequence of CFTR create a Cd(2+)-gated chloride channel.

    PubMed

    Wang, Xiaohui; Bompadre, Silvia G; Li, Min; Hwang, Tzyh-Chang

    2009-01-01

    The canonical sequence LSGGQ, also known as the signature sequence, defines the adenosine triphosphate (ATP)-binding cassette transporter superfamily. Crystallographic studies reveal that the signature sequence, together with the Walker A and Walker B motifs, forms the ATP-binding pocket upon dimerization of the two nucleotide-binding domains (NBDs) in a head-to-tail configuration. The importance of the signature sequence is attested by the fact that a glycine to aspartate mutation (i.e., G551D) in cystic fibrosis transmembrane conductance regulator (CFTR) results in a severe phenotype of cystic fibrosis. We previously showed that the G551D mutation completely eliminates ATP-dependent gating of the CFTR chloride channel. Here, we report that micromolar [Cd(2+)] can dramatically increase the activity of G551D-CFTR in the absence of ATP. This effect of Cd(2+) is not seen in wild-type channels or in G551A. Pretreatment of G551D-CFTR with the cysteine modification reagent 2-aminoethyl methane thiosulfonate hydrobromide protects the channel from Cd(2+) activation, suggesting an involvement of endogenous cysteine residue(s) in mediating this effect of Cd(2+). The mutants G551C, L548C, and S549C, all in the signature sequence of CFTR's NBD1, show robust response to Cd(2+). On the other hand, negligible effects of Cd(2+) were seen with T547C, Q552C, and R553C, indicating that a specific region of the signature sequence is involved in transmitting the signal of Cd(2+) binding to the gate. Collectively, these results suggest that the effect of Cd(2+) is mediated by a metal bridge formation between yet to be identified cysteine residue(s) and the engineered aspartate or cysteine in the signature sequence. We propose that the signature sequence serves as a switch that transduces the signal of ligand binding to the channel gate.

  19. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.

    PubMed

    Jih, Kang-Yang; Sohma, Yoshiro; Hwang, Tzyh-Chang

    2012-10-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a unique member of the ATP-binding cassette (ABC) protein superfamily. Unlike most other ABC proteins that function as active transporters, CFTR is an ATP-gated chloride channel. The opening of CFTR's gate is associated with ATP-induced dimerization of its two nucleotide-binding domains (NBD1 and NBD2), whereas gate closure is facilitated by ATP hydrolysis-triggered partial separation of the NBDs. This generally held theme of CFTR gating-a strict coupling between the ATP hydrolysis cycle and the gating cycle-is put to the test by our recent finding of a short-lived, post-hydrolytic state that can bind ATP and reenter the ATP-induced original open state. We accidentally found a mutant CFTR channel that exhibits two distinct open conductance states, the smaller O1 state and the larger O2 state. In the presence of ATP, the transition between the two states follows a preferred O1→O2 order, a telltale sign of a violation of microscopic reversibility, hence demanding an external energy input likely from ATP hydrolysis, as such preferred gating transition was abolished in a hydrolysis-deficient mutant. Interestingly, we also observed a considerable amount of opening events that contain more than one O1→O2 transition, indicating that more than one ATP molecule may be hydrolyzed within an opening burst. We thus conclude a nonintegral stoichiometry between the gating cycle and ATP consumption. Our results lead to a six-state gating model conforming to the classical allosteric mechanism: both NBDs and transmembrane domains hold a certain degree of autonomy, whereas the conformational change in one domain will facilitate the conformational change in the other domain.

  20. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  1. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  2. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  3. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  4. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  5. Development of a mercuric iodide solid state spectrometer for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Vallerga, J.

    1983-01-01

    Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.

  6. PH Dependent Interactions between Aqueous Iodide Ion and Selected Oxidizers.

    DTIC Science & Technology

    1985-12-06

    COSATI CODES I&. SUBJECT IERMS (Continue an evven d mocesaey and idoetfy by 510&k number) C’ ELD GROUP SUB-ROUP >Oxidize Iodometry Titration Oxidation... iodometry : hypochlorite interacts instantly with iodide ion. However, a kinetically rapid decon reaction may not be best for all possible situations. An

  7. 21 CFR 520.763 - Dithiazanine iodide oral dosage forms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dithiazanine iodide oral dosage forms. 520.763 Section 520.763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS §...

  8. Physical property measurements of doped cesium iodide crystals

    NASA Technical Reports Server (NTRS)

    Synder, R. S.; Clotfelter, W. N.

    1974-01-01

    Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.

  9. Multicenter intestinal current measurements in rectal biopsies from CF and non-CF subjects to monitor CFTR function.

    PubMed

    Clancy, John P; Szczesniak, Rhonda D; Ashlock, Melissa A; Ernst, Sarah E; Fan, Lijuan; Hornick, Douglas B; Karp, Philip H; Khan, Umer; Lymp, James; Ostmann, Alicia J; Rezayat, Amir; Starner, Timothy D; Sugandha, Shajan P; Sun, Hongtao; Quinney, Nancy; Donaldson, Scott H; Rowe, Steven M; Gabriel, Sherif E

    2013-01-01

    Intestinal current measurements (ICM) from rectal biopsies are a sensitive means to detect cystic fibrosis transmembrane conductance regulator (CFTR) function, but have not been optimized for multicenter use. We piloted multicenter standard operating procedures (SOPs) to detect CFTR activity by ICM and examined key questions for use in clinical trials. SOPs for ICM using human rectal biopsies were developed across three centers and used to characterize ion transport from non-CF and CF subjects (two severe CFTR mutations). All data were centrally evaluated by a blinded interpreter. SOPs were then used across four centers to examine the effect of cold storage on CFTR currents and compare CFTR currents in biopsies from one subject studied simultaneously either at two sites (24 hours post-biopsy) or when biopsies were obtained by either forceps or suction. Rectal biopsies from 44 non-CF and 17 CF subjects were analyzed. Mean differences (µA/cm(2); 95% confidence intervals) between CF and non-CF were forskolin/IBMX=102.6(128.0 to 81.1), carbachol=96.3(118.7 to 73.9), forskolin/IBMX+carbachol=200.9(243.1 to 158.6), and bumetanide=-44.6 (-33.7 to -55.6) (P<0.005, CF vs non-CF for all parameters). Receiver Operating Characteristic curves indicated that each parameter discriminated CF from non-CF subjects (area under the curve of 0.94-0.98). CFTR dependent currents following 18-24 hours of cold storage for forskolin/IBMX, carbachol, and forskolin/IBMX+carbachol stimulation (n=17 non-CF subjects) were 44%, 47.5%, and 47.3%, respectively of those in fresh biopsies. CFTR-dependent currents from biopsies studied after cold storage at two sites simultaneously demonstrated moderate correlation (n=14 non-CF subjects, Pearson correlation coefficients 0.389, 0.484, and 0.533). Similar CFTR dependent currents were detected from fresh biopsies obtained by either forceps or suction (within-subject comparisons, n=22 biopsies from three non-CF subjects). Multicenter ICM is a feasible

  10. Cystic fibrosis transmembrane conductance regulator (CFTR) gene abnormalities in Indian males with congenital bilateral absence of vas deferens & renal anomalies

    PubMed Central

    Gajbhiye, Rahul; Kadam, Kaushiki; Khole, Aalok; Gaikwad, Avinash; Kadam, Seema; Shah, Rupin; Kumaraswamy, Rangaswamy; Khole, Vrinda

    2016-01-01

    Background & objectives: The role of cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in congenital bilateral absence of vas deferens and unilateral renal agenesis (CBAVD-URA) has been controversial. Here, we report the cases of five Indian males with CBAVD-URA. The objective was to evaluate the presence or absence of CFTR gene mutations and variants in CBAVD-URA. The female partners of these males were also screened for cystic fibrosis (CF) carrier status. Methods: Direct DNA sequencing of CFTR gene was carried out in five Indian infertile males having CBAVD-URA. Female partners (n=5) and healthy controls (n=32) were also screened. Results: Three potential regulatory CFTR gene variants (c.1540A>G, c.2694T>G and c.4521G>A) were detected along with IVS8-5T mutation in three infertile males with CBAVD-URA. Five novel CFTR gene variants (c.621+91A>G, c.2752+106A>T, c.2751+85_88delTA, c.3120+529InsC and c.4375-69C>T), four potential regulatory CFTR gene variants (M470V, T854T, P1290P, Q1463Q) and seven previously reported CFTR gene variants (c.196+12T>C, c.875+40A>G, c.3041-71G>C, c.3271+42A>T, c.3272-93T>C, c.3500-140A>C and c.3601-65C>A) were detected in infertile men having CBAVD and renal anomalies Interpretation & conclusions: Based on our findings, we speculate that CBAVD-URA may also be attributed to CFTR gene mutations and can be considered as CFTR-related disorder (CFTR-RD). The CFTR gene mutation screening may be offered to CBAVD-URA men and their female partners undergoing ICSI. Further studies need to be done in a large sample to confirm the findings. PMID:27488005

  11. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    SciTech Connect

    Soelberg, Nicholas Ray; Watson, Tony Leroy

    2015-09-30

    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  12. Large-area mercuric iodide x-ray imager

    NASA Astrophysics Data System (ADS)

    Zentai, George; Partain, Larry D.; Pavlyuchkova, Raisa; Virshup, Gary F.; Zuck, Asaf; Melekhov, Leonid; Dagan, O.; Vilensky, Alexander I.; Gilboa, Haim

    2002-05-01

    Single crystals of mercuric iodide have been studied for many years for nuclear detectors. We have investigated the use of x-ray photoconductive polycrystalline mercuric iodide coatings on amorphous silicon flat panel thin film transistor (TFT) arrays as x-ray detectors for radiographic and fluoroscopic applications in medical imaging. The mercuric iodide coatings were vacuum deposited by Physical Vapor Deposition (PVD). This coating technology is capable of being scaled up to sizes required in common medical imaging applications. Coatings were deposited on 4 inches X 4 inches TFT arrays for imaging performance evaluation and also on conductive-coated glass substrates for measurements of x-ray sensitivity, dark current and image lag. The TFT arrays used included pixel pitch dimensions of both 100 and 139 microns. Coating thickness between 150 microns and 250 microns were tested in the 25 kVp-100 kVp x-ray energy range utilizing exposures typical for both fluoroscopic, and radiographic imaging. X-ray sensitivities measured for the mercuric iodide samples and coated TFT detectors were superior to any published results for competitive materials (up to 7100 ke/mR/pixel for 100 micron pixels). It is believed that this higher sensitivity, can result in fluoroscopic imaging signal levels high enough to overshadow electronic noise. Image lag characteristics appear adequate for fluoroscopic rates. Resolution tests on resolution target phantoms showed that resolution is limited to the Nyquist frequency for the 139 micron pixel detectors. The ability to operate at low voltages gives adequate dark currents for most applications and allows low voltage electronics designs. Mercuric Iodide coated TFT arrays were found to be outstanding candidates for direct digital radiographic detectors for both static and dynamic (fluoroscopic) applications. Their high x-ray sensitivity, high resolution, low dark current, low voltage operation, and good lag characteristics provide a unique

  13. Current insights into the role of PKA phosphorylation in CFTR channel activity and the pharmacological rescue of cystic fibrosis disease-causing mutants.

    PubMed

    Chin, Stephanie; Hung, Maurita; Bear, Christine E

    2017-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) channel gating is predominantly regulated by protein kinase A (PKA)-dependent phosphorylation. In addition to regulating CFTR channel activity, PKA phosphorylation is also involved in enhancing CFTR trafficking and mediating conformational changes at the interdomain interfaces of the protein. The major cystic fibrosis (CF)-causing mutation is the deletion of phenylalanine at position 508 (F508del); it causes many defects that affect CFTR trafficking, stability, and gating at the cell surface. Due to the multiple roles of PKA phosphorylation, there is growing interest in targeting PKA-dependent signaling for rescuing the trafficking and functional defects of F508del-CFTR. This review will discuss the effects of PKA phosphorylation on wild-type CFTR, the consequences of CF mutations on PKA phosphorylation, and the development of therapies that target PKA-mediated signaling.

  14. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates.

    PubMed

    Balganesh, Meenakshi; Dinesh, Neela; Sharma, Sreevalli; Kuruppath, Sanjana; Nair, Anju V; Sharma, Umender

    2012-05-01

    Active efflux of drugs mediated by efflux pumps that confer drug resistance is one of the mechanisms developed by bacteria to counter the adverse effects of antibiotics and chemicals. To understand these efflux mechanisms in Mycobacterium tuberculosis, we generated knockout (KO) mutants of four efflux pumps of the pathogen belonging to different classes. We measured the MICs and kill values of two different compound classes on the wild type (WT) and the efflux pump (EP) KO mutants in the presence and absence of the efflux inhibitors verapamil and l-phenylalanyl-l-arginyl-β-naphthylamide (PAβN). Among the pumps studied, the efflux pumps belonging to the ABC (ATP-binding cassette) class, encoded by Rv1218c, and the SMR (small multidrug resistance) class, encoded by Rv3065, appear to play important roles in mediating the efflux of different chemical classes and antibiotics. Efflux pumps encoded by Rv0849 and Rv1258c also mediate the efflux of these compounds, but to a lesser extent. Increased killing is observed in WT M. tuberculosis cells by these compounds in the presence of either verapamil or PAβN. The efflux pump KO mutants were more susceptible to these compounds in the presence of efflux inhibitors. We have shown that these four efflux pumps of M. tuberculosis play a vital role in mediating efflux of different chemical scaffolds. Inhibitors of one or several of these efflux pumps could have a significant impact in the treatment of tuberculosis. The identification and characterization of Rv0849, a new efflux pump belonging to the MFS (major facilitator superfamily) class, are reported.

  15. Divergent CFTR orthologs respond differently to the channel inhibitors CFTRinh-172, glibenclamide, and GlyH-101

    PubMed Central

    Stahl, Maximilian; Stahl, Klaus; Brubacher, Marie B.

    2012-01-01

    Comparison of diverse orthologs is a powerful tool to study the structure and function of channel proteins. We investigated the response of human, killifish, pig, and shark cystic fibrosis transmembrane conductance regulator (CFTR) to specific inhibitors of the channel: CFTRinh-172, glibenclamide, and GlyH-101. In three systems, including organ perfusion of the shark rectal gland, primary cultures of shark rectal gland tubules, and expression studies of each ortholog in cRNA microinjected Xenopus laevis oocytes, we observed fundamental differences in the sensitivity to inhibition by these channel blockers. In organ perfusion studies, shark CFTR was insensitive to inhibition by CFTRinh-172. This insensitivity was also seen in short-circuit current experiments with cultured rectal gland tubular epithelial cells (maximum inhibition 4 ± 1.3%). In oocyte expression studies, shark CFTR was again insensitive to CFTRinh-172 (maximum inhibition 10.3 ± 2.5% at 25 μM), pig CFTR was insensitive to glibenclamide (maximum inhibition 18.4 ± 4.4% at 250 μM), and all orthologs were sensitive to GlyH-101. The amino acid residues considered responsible by previous site-directed mutagenesis for binding of the three inhibitors are conserved in the four CFTR isoforms studied. These experiments demonstrate a profound difference in the sensitivity of different orthologs of CFTR proteins to inhibition by CFTR blockers that cannot be explained by mutagenesis of single amino acids. We believe that the potency of the inhibitors CFTRinh-172, glibenclamide, and GlyH-101 on the CFTR chloride channel protein is likely dictated by the local environment and the three-dimensional structure of additional residues that form the vestibules, the chloride pore, and regulatory regions of the channel. PMID:21940661

  16. Glucocorticoids Distinctively Modulate the CFTR Channel with Possible Implications in Lung Development and Transition into Extrauterine Life.

    PubMed

    Laube, Mandy; Bossmann, Miriam; Thome, Ulrich H

    2015-01-01

    During fetal development, the lung is filled with fluid that is secreted by an active Cl- transport promoting lung growth. The basolateral Na+,K+,2Cl- cotransporter (NKCC1) participates in Cl- secretion. The apical Cl- channels responsible for secretion are unknown but studies suggest an involvement of the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is developmentally regulated with a high expression in early fetal development and a decline in late gestation. Perinatal lung transition is triggered by hormones that stimulate alveolar Na+ channels resulting in fluid absorption. Little is known on how hormones affect pulmonary Cl- channels. Since the rise of fetal cortisol levels correlates with the decrease in fetal CFTR expression, a causal relation may be assumed. The aim of this study was to analyze the influence of glucocorticoids on pulmonary Cl- channels. Alveolar cells from fetal and adult rats, A549 cells, bronchial Calu-3 and 16HBE14o- cells, and primary rat airway cells were studied with real-time quantitative PCR and Ussing chambers. In fetal and adult alveolar cells, glucocorticoids strongly reduced Cftr expression and channel activity, which was prevented by mifepristone. In bronchial and primary airway cells CFTR mRNA expression was also reduced, whereas channel activity was increased which was prevented by LY-294002 in Calu-3 cells. Therefore, glucocorticoids strongly reduce CFTR expression while their effect on CFTR activity depends on the physiological function of the cells. Another apical Cl- channel, anoctamin 1 showed a glucocorticoid-induced reduction of mRNA expression in alveolar cells and an increase in bronchial cells. Furthermore, voltage-gated chloride channel 5 and anoctamine 6 mRNA expression were increased in alveolar cells. NKCC1 expression was reduced by glucocorticoids in alveolar and bronchial cells alike. The results demonstrate that glucocorticoids differentially modulate pulmonary Cl- channels and are likely

  17. Sesamin enhances cholesterol efflux in RAW264.7 macrophages.

    PubMed

    Liu, Nan; Wu, Chongming; Sun, Lizhong; Zheng, Jun; Guo, Peng

    2014-06-06

    Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicited by oxidized low-density lipoprotein cholesterol (oxLDL) in RAW264.7 cells. Treatment with sesamin (10 μM) significantly enhanced cholesterol efflux mediated by high-density lipoprotein (HDL). Realtime quantitative PCR and luciferase assays showed that sesamin significantly increased the mRNA levels of PPARγ, LXRα, and ABCG1, and increased the transcriptional activity of PPARγ. The stimulating effect of sesamin on cholesterol efflux was substantially inhibited by the co-treatment with GW9662, a potent inhibitor of PPARγ. These results suggest that sesamin is a new inhibitor of foam cell formation that may stimulate cholesterol efflux through upregulation of the PPARγ-LXRα-ABCG1 pathway.

  18. Recent advances toward a molecular mechanism of efflux pump inhibition

    PubMed Central

    Opperman, Timothy J.; Nguyen, Son T.

    2015-01-01

    Multidrug resistance (MDR) in Gram-negative pathogens, such as the Enterobacteriaceae and Pseudomonas aeruginosa, poses a significant threat to our ability to effectively treat infections caused by these organisms. A major component in the development of the MDR phenotype in Gram-negative bacteria is overexpression of Resistance-Nodulation-Division (RND)-type efflux pumps, which actively pump antibacterial agents and biocides from the periplasm to the outside of the cell. Consequently, bacterial efflux pumps are an important target for developing novel antibacterial treatments. Potent efflux pump inhibitors (EPIs) could be used as adjunctive therapies that would increase the potency of existing antibiotics and decrease the emergence of MDR bacteria. Several potent inhibitors of RND-type efflux pump have been reported in the literature, and at least three of these EPI series were optimized in a pre-clinical development program. However, none of these compounds have been tested in the clinic. One of the major hurdles to the development of EPIs has been the lack of biochemical, computational, and structural methods that could be used to guide rational drug design. Here, we review recent reports that have advanced our understanding of the mechanism of action of several potent EPIs against RND-type pumps. PMID:25999939

  19. ABCG1 is involved in vitamin E efflux.

    PubMed

    Olivier, Maryline; BottG, Remain; Frisdal, Eric; Nowick, Marion; Plengpanich, Wanee; Desmarchelier, Charles; Roi, Stéphanie; Quinn, Carmel M; Gelissen, Ingrid; Jessup, Wendy; Van Eck, Miranda; Guérin, Maryse; Le Goff, Wilfried; Reboul, Emmanuelle

    2014-12-01

    Vitamin E membrane transport has been shown to involve the cholesterol transporters SR-BI, ABCA1 and NPC1L1. Our aim was to investigate the possible participation of another cholesterol transporter in cellular vitamin E efflux: ABCG1. In Abcgl-deficient mice, vitamin E concentration was reduced in plasma lipoproteins whereas most tissues displayed a higher vitamin E content compared to wild-type mice. α- and γ-tocopherol efflux was increased in CHO cells overexpressing human ABCG1 compared to control cells. Conversely, α- and γ- tocopherol efflux was decreased in ABCG1-knockdown human cells (Hep3B hepatocytes and THP-1 macro- phages). Interestingly, α- and γ-tocopherol significantly downregulated ABCG1 and ABCA1 expression levels in Hep3B and THP-1, an effect confirmed in vivo in rats given vitamin E for 5 days. This was likely due to reduced LXR activation by oxysterols, as Hep3B cells and rat liver treated with vitamin E displayed a significantly reduced content in oxysterols compared to their respective controls. Overall, the present study reveals for the first time that ABCG1 is involved in cellular vitamin E efflux.

  20. Molecular Components of Nitrate and Nitrite Efflux in Yeast

    PubMed Central

    Cabrera, Elisa; González-Montelongo, Rafaela; Giraldez, Teresa; de la Rosa, Diego Alvarez

    2014-01-01

    Some eukaryotes, such as plant and fungi, are capable of utilizing nitrate as the sole nitrogen source. Once transported into the cell, nitrate is reduced to ammonium by the consecutive action of nitrate and nitrite reductase. How nitrate assimilation is balanced with nitrate and nitrite efflux is unknown, as are the proteins involved. The nitrate assimilatory yeast Hansenula polymorpha was used as a model to dissect these efflux systems. We identified the sulfite transporters Ssu1 and Ssu2 as effective nitrate exporters, Ssu2 being quantitatively more important, and we characterize the Nar1 protein as a nitrate/nitrite exporter. The use of strains lacking either SSU2 or NAR1 along with the nitrate reductase gene YNR1 showed that nitrate reductase activity is not required for net nitrate uptake. Growth test experiments indicated that Ssu2 and Nar1 exporters allow yeast to cope with nitrite toxicity. We also have shown that the well-known Saccharomyces cerevisiae sulfite efflux permease Ssu1 is also able to excrete nitrite and nitrate. These results characterize for the first time essential components of the nitrate/nitrite efflux system and their impact on net nitrate uptake and its regulation. PMID:24363367

  1. Neuroinflammation activates efflux transport by NFκB

    PubMed Central

    Yu, Chuanhui; Argyropoulos, George; Zhang, Yan; Kastin, Abba J.; Hsuchou, Hung; Pan, Weihong

    2009-01-01

    Background/aims Although it is known that drug delivery across the blood-brain barrier (BBB) may be hampered by efflux transport activity of the multidrug resistance (mdr) gene product P-glycoprotein, it is not clear how inflammation regulates efflux transporters. In rat brain endothelial (RBE4) cells of BBB origin, the proinflammatory cytokine TNF mainly induces transcriptional upregulation of mdr1b, and to a lesser extent mdr1a, resulting in greater efflux of the substrates (Yu C et al., Cell Physiol Biochem, 2007). This study further determined the mechanisms by which TNF activates mdr1b promoter activity. Methods/Results Luciferase reporter assays and DNA binding studies show that (a) maximal basal promoter activity was conferred by a 476 bp sequence upstream to the mdr1b transcriptional initiation site; (2) TNF induced upregulation of promoter activity by NFkB nuclear translocation; and (3) the NFκB binding site of the mdr1b promoter was solely responsible for basal and TNF-activated gene transcription, whereas the p53 binding site was not involved. Binding of the p65 subunit of NFκB to nuclear DNA from RBE4 cells was shown by electrophoretic mobility shift assay and chromatin immunoprecipitation assays. Conclusion Thus, NFκB mediated TNF-induced upregulation of mdr1b promoter activity, illustrating how inflammation activates BBB efflux transport. PMID:19088456

  2. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand.

    PubMed

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-10-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration "hot spots", an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific