S-graphite slit pore: A superior selective adsorbent for light hydrocarbons
NASA Astrophysics Data System (ADS)
Xue, Qingzhong; Li, Xiaofang; Chang, Xiao; Ling, Cuicui; Zhu, Lei; Xing, Wei
2018-06-01
Separation of light hydrocarbons (C1-C3) is extremely significant since these are alternative energy resources and raw materials in the industrial process. In this work, we have examined the performance of S-graphite slit pore in selective separation of CH4 over C2H2, C2H4, C2H6, C3H6 and C3H8 using Grand Canonical Monte Carlo calculations. Generally, its C3/C1 selectivity is higher than C2/C1 selectivity. Exactly, at 300 K and 1 bar, the selectivity is around 13, 17 and 18 for CH4/C2H2, CH4/C2H4 and CH4/C2H6 while it is about 63 and 70 for CH4/C3H6 and CH4/C3H8, respectively. Importantly, we have found that the optimum pore size is 0.65 nm for CH4/C2H2 and CH4/C2H4, 0.75 nm for CH4/C2H6, which is smaller than that (1.0 nm) for CH4/C3H6 and CH4/C3H8. Besides, density functional theory calculations demonstrate the remarkable selective separation of CH4 over C2H2, C2H4, C2H6, C3H6 and C3H8 of S-graphite slit pore is attributed to its stronger interactions with C2H2, C2H4, C2H6, C3H6 and C3H8 molecule than CH4 molecule due to the larger polarizability of C2 and C3 molecules, which also manifests that S-graphite slit pore is an extremely promising candidate for separating light hydrocarbons.
Oxidative desulfurization of fuels catalyzed by Fenton-like ionic liquids at room temperature.
Jiang, Yunqing; Zhu, Wenshuai; Li, Huaming; Yin, Sheng; Liu, Hua; Xie, Qingjie
2011-03-21
Oxidation of the sulfur-containing compounds benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been studied in a desulfurization system composed of model oil, hydrogen peroxide, and different types of ionic liquids [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3), [(C(8)H(17))(3)CH(3)N]Cl/CuCl(2), [(C(8)H(17))(3)CH(3)N]Cl/ZnCl(2), [(C(8)H(17))(3)CH(3)N]Cl/SnCl(2), [(C(4)H(9))(3)CH(3)N]Cl/FeCl(3), [C(10)H(21)(CH(3))(3)N]Cl/FeCl(3), [(C(10)H(21))(2)(CH(3))(2)N]Cl/FeCl(3). Deep desulfurization is achieved in the Fenton-like ionic liquid [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) at 25 °C for 1 h. The desulfurization of DBT reaches 97.9%, in consuming very low amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) (only 0.702 mmol). The reaction conditions, for example, the amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) or H(2)O(2), the temperature, and the molar ratio of FeCl(3) to [(C(8)H(17))(3)CH(3)N]Cl, are investigated for this system. The oxidation reactivity of the different sulfur-containing compounds is found to decrease in the order of DBT>BT>4,6-DMDBT. The desulfurization system can be recycled six times without significant decrease in activity. The sulfur level of FCC gasoline could be reduced from 360 ppm to 110 ppm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland
Kotarba, M.J.; Rice, D.D.
2001-01-01
Coalbed gases in the Lower Silesian Coal Basin (LSCB) of Poland are highly variable in both their molecular and stable isotope compositions. Geochemical indices and stable isotope ratios vary within the following ranges: hydrocarbon (CHC) index CHC = CH4/(C2H6+C3H8) from 1.1 to 5825, wet gas (C2+) index C2+ = (C2H6+ C3H8+ C4H10+ C5H12) / (CH4+ C2H6+ C3H8+ C4H10+ C5H12) 100 (%) from 0.0 to 48.3%, CO2-CH4 (CDMI) index CDMI = CO2/ (CO2+ CH4) 100 (%) from 0.1 to 99.9%, ??13C(CH4) from -66.1 to -24.6%o, ??D(CH4) from -266 to -117%o, ??13C(C2H6) from -27.8 to -22.8%o, and ??13C(CO2) from -26.6 to 16.8%o. Isotopic studies reveal the presence of 3 genetic types of natural gases: thermogenic (CH4, higher gaseous hydrocarbons, and CO2), endogenic CO2, and microbial CH4 and CO2. Thermogenic gases resulted from coalification processes, which were probably completed by Late Carboniferous and Early Permian time. Endogenic CO2 migrated along the deep-seated faults from upper mantle and/or magma chambers. Minor volumes of microbial CH4 and CO2 occur at shallow depths close to the abandoned mine workings. "Late-stage" microbial processes have commenced in the Upper Cretaceous and are probably active at present. However, depth-related isotopic fractionation which has resulted from physical and physicochemical (e.g. diffusion and adsorption/desorption) processes during gas migration cannot be neglected. The strongest rock and gas outbursts occur only in those parts of coal deposits of the LSCB which are dominated by large amounts of endogenic CO2. ?? 2001 Elsevier Science Ltd.
Yang, Jingying; Xie, Zuowei
2015-04-14
Rare-earth metallacarborane alkyls can be stabilized by the incorporation of a functional sidearm into both π and σ ligands. Reaction of [Me3NH][7,8-O(CH2)2-7,8-C2B9H10] with one equiv. of Ln(CH2C6H4-o-NMe2)3 gave metallacarborane alkyls [η(1):η(5)-O(CH2)2C2B9H9]Ln(σ:η(1)-CH2C6H4-o-NMe2)(THF)2 (Ln = Y (), Gd (), Er ()) via alkane elimination. They represent the first examples of rare-earth metallacarborane alkyls. Treatment of with RN[double bond, length as m-dash]C[double bond, length as m-dash]NR (R = Cy, (i)Pr) or 2-benzoylpyridine afforded the corresponding mono-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[η(2)-(RN)2C(CH2C6H4-o-NMe2)](DME) (R = Cy (), (i)Pr ()) or [η(1):η(5)-O(CH2)2C2B9H9]Y[C5H4NC(Ph)(CH2C6H4-o-NMe2)O](THF)2 (), respectively. Complex also reacted with ArNCO or ArNC (Ar = 2,6-diisopropylphenyl, 2,6-dimethylphenyl) to give di-insertion products [η(1):η(5)-O(CH2)2C2B9H9]Y[OC([double bond, length as m-dash]NC6H3Me2)N(C6H3Me2)C(CH2C6H4-o-NMe2)O](THF)2 () or [η(1):η(5)-O(CH2)2C2B9H9]Y[C([double bond, length as m-dash]NC6H3(i)Pr2)C([double bond, length as m-dash]NC6H3(i)Pr2)(CH2C6H4-o-NMe2)](DME) (). These results showed that the reactivity pattern of the Ln-C σ bond in rare-earth metallacarborane alkyls was dependent on the nature of the unsaturated organic molecules. New complexes were characterized by various spectroscopic techniques and elemental analysis. Some were further confirmed by single-crystal X-ray analysis.
C-H activations at iridium(I) square-planar complexes promoted by a fifth ligand.
Martín, Marta; Torres, Olga; Oñate, Enrique; Sola, Eduardo; Oro, Luis A
2005-12-28
In the presence of ligands such as acetonitrile, ethylene, or propylene, the Ir(I) complex [Ir(1,2,5,6-eta-C8H12)(NCMe)(PMe3)]BF4 (1) transforms into the Ir(III) derivatives [Ir(1-kappa-4,5,6-eta-C8H12)(NCMe)(L)(PMe3)]BF4 (L = NCMe, 2; eta2-C2H4, 3; eta2-C3H6, 4), respectively, through a sequence of C-H oxidative addition and insertion elementary steps. The rate of this transformation depends on the nature of L and, in the case of NCMe, the pseudo-first-order rate constants display a dependence upon ligand concentration suggesting the formation of five-coordinate reaction intermediates. A similar reaction between 1 and vinyl acetate affords the Ir(III) complex [Ir(1-kappa-4,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (7) via the isolable five-coordinate Ir(I) compound [Ir(1,2,5,6-eta-C8H12){kappa-O-eta2-OC(Me)OC2H3}(PMe3)]BF4 (6). DFT (B3LYP) calculations in model complexes show that reactions initiated by acetonitrile or ethylene five-coordinate adducts involve C-H oxidative addition transition states of lower energy than that found in the absence of these ligands. Key species in these ligand-assisted transformations are the distorted (nonsquare-planar) intermediates preceding the intramolecular C-H oxidative addition step, which are generated after release of one cyclooctadiene double bond from the five-coordinate species. The feasibility of this mechanism is also investigated for complexes [IrCl(L)(PiPr3)2] (L = eta2-C2H4, 27; eta2-C3H6, 28). In the presence of NCMe, these complexes afford the C-H activation products [IrClH(CH=CHR)(NCMe)(PiPr3)2] (R = H, 29; Me, 30) via the common cyclometalated intermediate [IrClH{kappa-P,C-P(iPr)2CH(CH3)CH2}(NCMe)(PiPr3)] (31). The most effective C-H oxidative addition mechanism seems to involve three-coordinate intermediates generated by photochemical release of the alkene ligand. However, in the absence of light, the reaction rates display dependences upon NCMe concentration again indicating the intermediacy of five-coordinate acetonitrile adducts.
NASA Astrophysics Data System (ADS)
Tavares, Eder C.; Rubinger, Mayura M. M.; Zacchi, Carlos H. C.; Silva, Simone A.; Oliveira, Marcelo R. L.; Guilardi, Silvana; Alcântara, Antônio F. de C.; Piló-Veloso, Dorila; Zambolim, Laércio
2014-06-01
A series of allyl sulfonamides prepared from the reaction of the Morita-Baylis-Hillman adduct 2-[hydroxy(phenyl)methyl]acrylonitrile with primary sulfonamides (RSO2NH2), where R = C6H5 (1), 4-Fsbnd C6H4 (2), 4-Clsbnd C6H4 (3), 4-Brsbnd C6H4 (4), 4-NO2sbnd C6H4 (5), CH3 (6), CH3CH2 (7), CH3(CH2)3 (8), and CH3(CH2)7 (9), were characterized by IR, 1H and 13C NMR spectroscopies, mass spectrometry and elemental analyses. BLYP/6-31G* calculations suggested stereoselective reactions, resulting in the exclusive formation of the thermodynamically more stable Z-products. The Z-configuration of the products was confirmed by NOE difference spectroscopy and single crystal X-ray diffraction measurements. The allyl sulfonamides were active against Colletotrichum gloeosporioides, an important agent of anthracnose in plants.
Zhu, Xiancui; Li, Yang; Guo, Dianjun; Wang, Shaowu; Wei, Yun; Zhou, Shuangliu
2018-03-12
Herein, rare-earth metal dialkyl complexes supported by a neutral pyrrolyl-functionalized β-diketiminato ligand with the formula LRE(CH 2 SiMe 3 ) 2 (thf) (RE = Y (1a), Dy (1b), Er (1c), Yb (1d); L = MeC(NDipp)CHC(Me)NCH 2 CH 2 NC 4 H 2 -2,5-Me 2 , Dipp = 2,6- i Pr 2 C 6 H 3 ) were synthesized via the reactions of the β-diketimine HL with the rare-earth metal trialkyl complexes RE(CH 2 SiMe 3 ) 3 (thf) 2 in high yields. The reactivities of 1 with pyridine derivatives, unsaturated substrates, and elemental sulfur were investigated, and some interesting chemical transformations were observed. Ligand exchange and activation of sp 2 and sp 3 C-H bonds occurred during the reactions with pyridine derivatives to afford different types of mononuclear rare-earth metal pyridyl complexes, namely, LEr(CH 2 SiMe 3 ) 2 (η 1 -NC 5 H 4 ) (2c), LRE(η 3 -CH 2 -2-NC 5 H 2 -4,6-Me 2 ) 2 (RE = Y (3a), Er (3c)), and LRE(CH 2 SiMe 3 )(η 2 -(C,N)-2-(2-C 6 H 4 NC 5 H 4 )) (RE = Er (4c), Yb = (4d)). Similarly, activation of the sp C-H bond occurred during the reaction of phenylacetylene with 1c to produce the dinuclear erbium alkynyl complex [LEr(CH 2 SiMe 3 )(μ-C[triple bond, length as m-dash]CPh)] 2 (5c). The mixed amidinate-β-diketiminato ytterbium complex LYb[(Dipp)NC(CH 2 SiMe 3 )N(Dipp)](CH 2 SiMe 3 ) (6d) was obtained by the insertion of bis(2,6-diisopropylphenyl)carbodiimide into a Yb-alkyl bond, as well as via the direct alkane elimination of a CH 2 SiMe 3 moiety with bis(2,6-diisopropylphenyl)formamidine to afford the erbium complex LEr(DippNCHNDipp)(CH 2 SiMe 3 ) (7c). A rare sp 2 C-H bond oxidation of the β-diketiminato backbone with elemental sulfur insertion was detected to provide the unprecedented dinuclear rare-earth metal thiolate complexes (LRE) 2 (μ-SCH 2 SiMe 3 ) 2 (μ-SCC(Me)(NDipp)C(Me)NCH 2 CH 2 NC 4 H 2 Me 2 -2,5) (RE = Y (8a), Er (8c)) in the reactions of S 8 with 1a and 1c, respectively. The molecular structures of the complexes 1-8 were determined by single-crystal X-ray diffraction analyses.
NASA Astrophysics Data System (ADS)
Mao, Shide; Lü, Mengxin; Shi, Zeming
2017-12-01
A general equation of state (EOS) explicit in Helmholtz free energy has been developed to predict the pressure-volume-temperature-composition (PVTx) and vapor-liquid equilibrium (VLE) properties of the CH4-C2H6-C3H8-CO2-N2 fluid mixtures (main components of natural gases). This EOS, which is a function of temperature, density and composition, with four mixing parameters used, is based on the improved EOS of Sun and Ely (2004) for the pure components (CH4, C2H6, C3H8, CO2 and N2) and contains a simple generalized departure function presented by Lemmon and Jacobsen (1999). Comparison with the experimental data available indicates that the EOS can calculate the PVTx and VLE properties of the CH4-C2H6-C3H8-CO2-N2 fluid mixtures within or close to experimental uncertainties up to 623 K and 1000 bar within full range of composition. Isochores of the CH4-C2H6-C3H8-CO2-N2 system can be directly calculated from this EOS to interpret the corresponding microthermometric and Raman analysis data of fluid inclusions. The general EOS can calculate other thermodynamic properties if the ideal Helmholtz free energy of fluids is combined, and can also be extended to the multi-component natural gases including the secondary alkanes (carbon number above three) and none-alkane components such as H2S, SO2, O2, CO, Ar and H2O. This part of work will be finished in the near future.
Belisario-Lara, Daniel; Mebel, Alexander M; Kaiser, Ralf I
2018-04-26
Ab initio G3(CCSD,MP2)//B3LYP/6-311G(d,p) calculations of potential energy surfaces have been carried out to unravel the mechanism of the initial stages of pyrolysis of three C 10 H 14 isomers: n-, s-, and t-butylbenzenes. The computed energy and molecular parameters have been utilized in RRKM-master equation calculations to predict temperature- and pressure-dependent rate constants and product branching ratios for the primary unimolecular decomposition of these molecules and for the secondary decomposition of their radical fragments. The results showed that the primary dissociation of n-butylbenzene produces mostly benzyl (C 7 H 7 ) + propyl (C 3 H 7 ) and 1-phenyl-2-ethyl (C 6 H 5 C 2 H 4 ) + ethyl (C 2 H 5 ), with their relative yields strongly dependent on temperature and pressure, together with a minor amount of 1-phenyl-prop-3-yl (C 9 H 11 ) + methyl (CH 3 ). Secondary decomposition reactions that are anticipated to occur on a nanosecond scale under typical combustion conditions split propyl (C 3 H 7 ) into ethylene (C 2 H 4 ) + methyl (CH 3 ), ethyl (C 2 H 5 ) into ethylene (C 2 H 4 ) + hydrogen (H), 1-phenyl-2-ethyl (C 6 H 5 C 2 H 4 ) into mostly styrene (C 8 H 8 ) + hydrogen (H) and to a lesser extent phenyl (C 6 H 5 ) + ethylene (C 2 H 4 ), and 1-phenyl-prop-3-yl (C 9 H 11 ) into predominantly benzyl (C 7 H 7 ) + ethylene (C 2 H 4 ). The primary decomposition of s-butylbenzene is predicted to produce 1-phenyl-1-ethyl (C 6 H 5 CHCH 3 ) + ethyl (C 2 H 5 ) and a minor amount of 1-phenyl-prop-1-yl (C 9 H 11 ) + methyl (CH 3 ), and then 1-phenyl-1-ethyl (C 6 H 5 CHCH 3 ) and 1-phenyl-prop-1-yl (C 9 H 11 ) rapidly dissociate to styrene (C 8 H 8 ) + hydrogen (H) and styrene (C 8 H 8 ) + methyl (CH 3 ), respectively. t-Butylbenzene decomposes nearly exclusively to 2-phenyl-prop-2-yl (C 9 H 11 ) + methyl (CH 3 ), and further, 2-phenyl-prop-2-yl (C 9 H 11 ) rapidly eliminates a hydrogen atom to form 2-phenylpropene (C 9 H 10 ). If hydrogen atoms or other reactive radicals are available to make a direct hydrogen-atom abstraction from butylbenzenes possible, the C 10 H 13 radicals (1-phenyl-but-1-yl, 2-phenyl-but-2-yl, and t-phenyl-isobutyl) can be formed as the primary products from n-, s-, and t-butylbenzene, respectively. The secondary decomposition of 1-phenyl-but-1-yl leads to styrene (C 8 H 8 ) + ethyl (C 2 H 5 ), whereas 2-phenyl-but-2-yl and t-phenyl-isobutyl dissociate to 2-phenylpropene (C 9 H 10 ) + methyl (CH 3 ). Thus, the three butylbenzene isomers produce distinct but overlapping nascent pyrolysis fragments, which likely affect the successive oxidation mechanism and combustion kinetics of these JP-8 fuel components. Temperature- and pressure-dependent rate constants generated for the initial stages of pyrolysis of butylbenzenes are recommended for kinetic modeling.
NASA Technical Reports Server (NTRS)
Courtin, R.; Gautier, D.; Marten, A.; Bezard, B.; Hanel, R.
1984-01-01
The vertical distributions and mixing ratios of minor constituents in the northern hemisphere of Saturn are investigated. Results are obtained for NH3, PH3, C2H2, C2H6, CH3D, and CH4; the D/H ratio is obtained from the CH4 and CH3D abundances. The NH3 mixing ratio in the upper atmosphere is found to be compatible with the saturated partial pressure. The inferred PH3/H2 ratio of 1.4 + or - 0.8 x 10 to the -6th is higher than the value derived from the solar P/H ratio. The stratospheric C2H2/H2 and C2H6/H2 ratios are, respectively, 2.1 + or - 1.4 x 10 to the -7th and 3.0 + or - 1.1 x 10 to the -6th; the latter decreases sharply below the 20-50 mbar level. The results for CH3D/H2 and CH4/H2 imply an enrichment of Saturn's upper atmosphere in carbon by a factor of at least three over the solar abundance. The interpretation of two NH3 lines in the five-micron window suggests a NH3/H2 ratio at the two bar level below the solar value.
Lang, Georgette M; Shima, Takanori; Wang, Leyong; Cluff, Kyle J; Skopek, Katrin; Hampel, Frank; Blümel, Janet; Gladysz, John A
2016-06-22
Reactions of trans-Fe(CO)3(P((CH2)mCH═CH2)3)2 (m = a/4; b/5, c/6, e/8) and Grubbs' catalyst (12-24 mol %, CH2Cl2, reflux) give the cage-like trienes trans- Fe(CO)3(P((CH2)mCH═CH(CH2)m)3 P) (3a-c,e, 60-81%). Hydrogenations (ClRh(PPh3)3, 60-80 °C) yield the title compounds trans- Fe(CO)3(P((CH2)n)3 P) (4a-c,e, 74-86%; n = 2m + 2), which have idealized D3h symmetry. A crystal structure of 4c suggests enough van der Waals clearance for the Fe(CO)3 moiety to rotate within the three P(CH2)14P linkages; structures of E,E,E-3a show rotation to be blocked by the shorter P(CH2)4CH═CH(CH2)4P linkages. Additions of NO(+)BF4(-) give the isoelectronic and isosteric cations [ Fe(CO)2(NO)(P((CH2)n)3 P)](+)BF4(-) (5a-c(+)BF4(-); 81-98%). Additions of [H(OEt2)2](+)BArf(-) (BArf = B(3,5-C6H3(CF3)2)4) afford the metal hydride complexes mer,trans-[ Fe(CO)3(H)(P((CH2)n)3 P)](+)BArf(-) (6a-c,e(+)BArf(-); 98-99%). The behavior of the rotators in the preceding complexes is probed by VT NMR. At ambient temperature in solution, 5a,b(+)BF4(-) and 6a(+)BArf(-) show two sets of P(CH2)n/2 (13)C NMR signals (2:1), whereas 5c(+)BF4(-) and 6b,c(+)BArf(-) show only one. At higher temperatures, the signals of 5b(+)BF4(-) coalesce; at lower temperatures, those of 5c(+)BF4(-) and 6b(+)BArf(-) decoalesce. These data give ΔH(⧧)/ΔS(⧧) values (kcal/mol and eu) of 8.3/-28.4 and 9.5/-6.5 for Fe(CO)2(NO)(+) rotation (5b,c(+)) and 6.1/-23.5 for Fe(CO)3(H)(+) rotation (6b(+)). (13)C CP/MAS NMR spectra show that the Fe(CO)3 moiety in polycrystalline 4c (but not 4a) undergoes rapid rotation between -60 and 95 °C. Approaches to minimizing these barriers and developing molecular gyroscopes are discussed.
Low-Temperature Rate Coefficients of C2H with CH4 and CD4 from 154 to 359 K
NASA Technical Reports Server (NTRS)
Opansky, Brian J.; Leone, Stephen R.
1996-01-01
Rate coefficients for the reaction C2H + CH4 yields C2H2 + CH3 and C2H + CD4 yields C2HD + CD3 are measured over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C2H (Chi(exp 2) Sigma(+) (0,0,0)) in absorption. The rate coefficients for the reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359 K, which can be expressed as k(sub CH4) = (1.2 +/- 0.1) x 10(exp -11) exp((-491 +/- 12)/T) and k(sub CD4) = (8.7 +/- 1.8) x 10(exp -12) exp((-650 +/- 61)/T) cm(exp 3) molecule(exp -1) s(exp -1), respectively. The reaction of C2H + CH4 exhibits a significant kinetic isotope effect at 300 K of k(sub CH4)/k(sub CD4) = 2.5 +/- 0.2. Temperature dependent rate constants for C2H + C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as k(sub C2H2) = 8.6 x 10(exp -16) T(exp 1.8) exp((474 +/- 90)/T) cm(exp 3) molecule(exp -1) s(exp -1).
Alkali metal complexes of sterically demanding amino-functionalized secondary phosphanide ligands.
Izod, Keith; Stewart, John C; Clegg, William; Harrington, Ross W
2007-01-14
The reaction between {(Me(3)Si)(2)CH}PCl(2) (4) and one equivalent of either [C(6)H(4)-2-NMe(2)]Li or [2-C(5)H(4)N]ZnCl, followed by in situ reduction with LiAlH(4) gives the secondary phosphanes {(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))PH (5) and {(Me(3)Si)(2)CH}(2-C(5)H(4)N)PH (6) in good yields as colourless oils. Metalation of 5 with Bu(n)Li in THF gives the lithium phosphanide [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Li(THF)(2)] (7), which undergoes metathesis with either NaOBu(t) or KOBu(t) to give the heavier alkali metal derivatives [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Na(tmeda)] (8) and [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]K(pmdeta)] (9) after recrystallization in the presence of the corresponding amine co-ligand [tmeda = N,N,N',N'-tetramethylethylenediamine, pmdeta = N,N,N',N'',N''-pentamethyldiethylenetriamine]. The pyridyl-functionalized phosphane 6 undergoes deprotonation on treatment with Bu(n)Li to give a red oil corresponding to the lithium compound [{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Li (10) which could not be crystallized. Treatment of this oil with NaOBu(t) gives the sodium derivative [{[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Na}(2) x (Et(2)O)](2) (11), whilst treatment of with KOBu(t), followed by recrystallization in the presence of pmdeta gives the complex [[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]K(pmdeta)](2) (12). Compounds 5-12 have been characterised by (1)H, (13)C{(1)H} and (31)P{(1)H} NMR spectroscopy and elemental analyses; compounds 7-9, and 12 have additionally been characterised by X-ray crystallography. Compounds 7-9 crystallize as discrete monomers, whereas 11 crystallizes as an unusual dimer of dimers and 12 crystallizes as a dimer with bridging pyridyl-phosphanide ligands.
Experimental characterization of enhanced SNCR process with carbonaceous gas additives.
Yao, Ting; Duan, Yufeng; Yang, Zhizhong; Li, Yuan; Wang, Linwei; Zhu, Chun; Zhou, Qiang; Zhang, Jun; She, Min; Liu, Meng
2017-06-01
Carbonaceous gases such as CO and alkanes are commonly used as additives to enhance the selective non-catalytic reduction (SNCR) performance due to their high reducibility. This study compared the effect of CO and CH 4 on NO reduction in a tubular reactor with simulated flue gas. The enhancement of C 3 H 8 on SNCR process was tested at extremely low temperature, i.e. 650 °C. Experimental results suggested that reactions between NH 3 and SO 2 were favored at low temperatures and the competition for NH 3 between SO 2 and NO was influenced by gas additives. A maximum downward shift of 25 °C and 100 °C in temperature window for 50% NO reduction efficiency was obtained with the addition of CO and CH 4 , respectively. Considerable CO emission was observed with addition of CH 4 . The addition of CH 4 contributed to the formation of a self-accelerating reaction route within NO/O 2 /NH 3 SNCR reaction system. NO 2 produced from NO accelerates the oxidation of CH 4 to CO, while the oxidation of CH 4 returns to enhance the NO reduction globally. Optimal NO reduction of 44% was achieved with addition of C 3 H 8 at 650 °C. Substantial portion of C 3 H 8 was partially oxidized to CO and the remaining was converted into C 2 H 4 and C 3 H 6 during the SNCR process. Oxidative dehydrogenation of C 3 H 8 was involved. High reactivity of C 3 H 6 and C 2 H 4 favored the further oxidation and cracking to produce CO. These differences in oxidation behavior significantly influence the promotion capacities of CO, CH 4 and C 3 H 8 for NO reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Janini, Thomas E; Rakosi, Robert; Durr, Christopher B; Bertke, Jeffrey A; Bunge, Scott D
2009-12-21
The synthesis and structural characterization of six 1,1,3,3-tetramethylguanidine (H-TMG) solvated lanthanide aryloxide complexes are reported. Ln[N{Si(CH3)3}2]3 (Ln = Nd, La) was reacted with two equivalents of both H-TMG and HOAr {HOAr = HOC6H2(CMe3)2-2,6 (H-DBP) or HOC6H2(CMe3)2-2,6-CH3-4 (H-4MeDBP)} and one equivelent of ethanol (HOEt) to yield the corresponding [Nd(H-TMG)2(4MeDBP)2(OEt)] (1) and [La(H-TMG)2(DBP)2(OEt)] (2). Compounds 1 and 2 were further reacted with 4-pentyn-1-ol {HO(CH2)3C[triple bond]CH} to isolate [Nd(H-TMG)2(4MeDBP)2{O(CH2)3C[triple bond]CH}] (3) and [La(H-TMG)2(DBP)2{O(CH2)3C[triple bond]CH}] (4), respectively. Three equivalents of HOAr and one equivalent of H-TMG were additionally reacted with Ln[N{Si(CH3)3}2]3 to generate [Nd(4MeDBP)3(H-TMG)] (5) and [La(DBP)3(H-TMG)] (6). In order to examine the formation of 1-6, the interaction of H-TMG and HOAr was further examined in solution and the hydrogen bonded complexes (H-TMG:HOAr), 7 and 8, were isolated. Upon successful isolation of 1-6, the utility of 1, 2, 4 and 5 as pre-catalysts for the intramolecular hydroalkoxylation of 4-pentyn-1-ol was investigated. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and 1H and 13C NMR investigations.
Neutral Fe(IV) alkylidenes, including some that bind dinitrogen.
Lindley, Brian M; Jacobs, Brian P; MacMillan, Samantha N; Wolczanski, Peter T
2016-03-11
Neutral, formally Fe(IV) alkylidene species are sought as plausible olefin metathesis catalysts, and the synthesis of several is described herein. The complexes are prepared via nucleophilic attack (Nu = MeLi, PhCH2K, 2-picolyllithium, Me2PCH2Li, MePhPCH2Li, Ph2PCH2Li) at the imine of cationic [mer-{κ-C,N,C-(C6H4-yl)-2-CH=N(2-C6H4-C(iPr)=)}Fe(PMe3)3][B(3,5-CF3-C6H3)4]. In contrast, MeMgCl and mesityllithium displaced and deprotonated bound PMe3, respectively. Structural details are provided for mer-{κ-C,N,C-(C6H4-yl)-2-CH(Bn)N(2-C6H4-C(iPr))}Fe{trans-(PMe3)2}N2 and {κ-C,N,C,P-(C6H4-yl)-2-CH(CH2PMe2)N(2-C6H4-C(iPr)=)}Fe(PMe3)2.
Single Crystal Epitaxy and Characterization of Beta-SiC.
1982-07-01
and CH4 (35, 40), SiC] 4 and C3H8 (40-43), SiCl4 and C6H6 (37), SiCl4 and C7H8 (37, 44), and SiC]4 and CCI 4 (45-47). In all cases, the carrier gas...crystal layer on top of the as-formed 8-SiC substrate. Their problem may arise from the use of the gas combination of SiCl4 and CCI 4, because still...falling between those for the CH4- and the C2H4-c-ritaining systems. (4) The SiCl4 /CCI4/H2 System The species considered to be in the gaseous phase of
Falvello, Larry R; Ginés, Juan Carlos; Carbó, Jorge J; Lledós, Agustí; Navarro, Rafael; Soler, Tatiana; Urriolabeitia, Esteban P
2006-08-21
The phosphorus ylide ligand [Ph3P=C(CO2Me)C(=NPh)CO2Me] (L1) has been prepared and fully characterized by spectroscopic, crystallographic, and density functional theory (DFT) methods (B3LYP level). The reactivity of L1 toward several cationic Pd(II) and Pt(II) precursors, with two vacant coordination sites, has been studied. The reaction of [M(C/\\X)(THF)2]ClO4 with L1 (1:1 molar ratio) gives [M(C/\\X)(L1)]ClO4 [M = Pd, C/\\X = C6H4CH2NMe2 (1), S-C6H4C(H)MeNMe2 (2), CH2-8-C9H6N (3), C6H4-2-NC5H4 (4), o-CH2C6H4P(o-tol)2 (6), eta3-C3H5 (7); M = Pt, C/\\X = o-CH2C6H4P(o-tol)2 (5); M(C/\\X) = Pd(C6F5)(SC4H8) (8), PdCl2 (9)]. In complexes 1-9, the ligand L1 bonds systematically to the metal center through the iminic N and the carbonyl O of the stabilizing CO2Me group, as is evident from the NMR data and from the X-ray structure of 3. Ligand L1 can also be orthopalladated by reaction with Pd(OAc)2 and LiCl, giving the dinuclear derivative [Pd(mu-Cl)(C6H4-2-PPh2=C(CO2Me)C(CO2Me)=NPh)]2 (10). The X-ray crystal structure of 10 is also reported. In none of the prepared complexes 1-10 was the C(alpha) atom found to be bonded to the metal center. DFT calculations and Bader analysis were performed on ylide L1 and complex 9 and its congeners in order to assess the preference of the six-membered N,O metallacycle over the four-membered C,N and five-membered C,O rings. The presence of two stabilizing groups at the ylidic C causes a reduction of its bonding capabilities. The increasing strength of the Pd-C, Pd-O, and Pd-N bonds along with other subtle effects are responsible for the relative stabilities of the different bonding modes.
Hu, Jia; Feng, Hao; Xie, Yaoming; King, R Bruce; Schaefer, Henry F
2018-03-29
Stepwise interaction of first row transition metal atoms with 1,5-cyclooctadiene to give (C 8 H 12 ) 2 M complexes is studied using the M06-L/DZP density functional method. The experimentally known (C 8 H 12 ) 2 Ni is the thermodynamically most favorable complex, with a predicted geometry consistent with its experimental structure as determined by X-ray crystallography. The other transition metal atoms from scandium to zinc also interact exothermically with 1,5-cyclooctadiene to give (C 8 H 12 ) 2 M derivatives, but these exhibit lower symmetry than the S 4 symmetry exhibited by (C 8 H 12 ) 2 Ni. Carbon-hydrogen activation of CH 2 groups in a C 8 H 12 ligand is predicted for most systems. Thus, conversion of (η 2,2 -C 8 H 12 ) 2 M to (η 3,2 -C 8 H 11 )(η 2,1 -C 8 H 13 )M, through a hydride intermediate (η 3,2 -C 8 H 11 )(η 2,2 -C 8 H 12 )MH, is predicted for scandium, vanadium, chromium, manganese, and cobalt. For titanium with a low-lying empty orbital, further C-H activation through a hydride intermediate (η 6 -C 8 H 10 )(η 2,1 -C 8 H 13 )TiH is predicted, leading ultimately to (η 6 -C 8 H 10 )(η 1,1 -C 8 H 14 )Ti, in which the hexahapto η 6 -C 8 H 10 ligand is shown by NICS to be aromatic. These two C-H activation processes on a titanium center represent the dehydrogenation of 1,5-cyclooctadiene to 1,3,5-cyclooctatriene with the second 1,5-cyclooctadiene ligand as the hydrogen acceptor. For zinc C-H activation terminates at (η 1 -C 8 H 11 )(C 8 H 12 )ZnH, which has a C-Zn-H three-center bond. No energetically favorable C-H activation processes are predicted for the iron, nickel, and copper (η 2,2 -C 8 H 12 ) 2 M derivatives.
Laurencin, Danielle; Garcia Fidalgo, Eva; Villanneau, Richard; Villain, Françoise; Herson, Patrick; Pacifico, Jessica; Stoeckli-Evans, Helen; Bénard, Marc; Rohmer, Marie-Madeleine; Süss-Fink, Georg; Proust, Anna
2004-01-05
Reactions of the molybdates Na(2)MoO4.2 H2O and (nBu(4)N)2[Mo2O7] with [[Ru(arene)Cl(2)](2)] (arene=C(6)H5CH3, 1,3,5-C6H3(CH3)(3), 1,2,4,5-C6H2(CH3)4) in water or organic solvents led to formation of the triple-cubane organometallic oxides [[Ru(eta(6)-arene)](4)Mo4O16], whose crystal and molecular structures were determined. Refluxing triple cubane [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] in methanol caused partial isomerization to the windmill form. The two isomers of [[Ru(eta(6)-C6H5CH3)](4)Mo4O16] were characterized by Raman and Mo K-edge X-ray absorption spectroscopy (XAS), both in the solid-state and in solution. This triple-cubane isomer was also used as a spectroscopic model to account for isomerization of the p-cymene windmill [[Ru(eta(6)-1,4-CH3C6H4CH(CH3)2)](4)Mo4O16] in solution. Using both Raman and XAS techniques, we were then able to determine the ratio between the windmill and triple-cubane isomers in dichloromethane and in chloroform. Density functional calculations on [[Ru(eta(6)-arene)](4)Mo4O16] (arene=C6H6, C6H5CH3, 1,3,5-C6H3(CH3)3, 1,4-CH3C6H4CH(CH3)2, C6(CH3)6) suggest that the windmill form is intrinsically more stable, provided the complexes are assumed to be isolated. Intramolecular electrostatic interactions and steric bulk induced by substituted arenes were found to modulate but not to reverse the energy difference between the isomers. The stability of the triple-cubane isomers should therefore be accounted for by effects of the surroundings that induce a shift in the energy balance between both forms.
Adams, Richard D; Dhull, Poonam; Tedder, Jonathan D
2018-06-14
The reaction of Re 2 (CO) 8 (μ-C 6 H 5 )(μ-H) (1) with thiophene in CH 2 Cl 2 at 40 °C yielded the new compound Re 2 (CO) 8 (μ-η 2 -SC 4 H 3 )(μ-H) (2), which contains a bridging σ-π-coordinated thienyl ligand formed by the activation of the C-H bond at the 2 position of the thiophene. Compound 2 exhibits dynamical activity on the NMR time scale involving rearrangements of the bridging thienyl ligand. The reaction of compound 2 with a second 1 equiv of 1 at 45 °C yielded the doubly metalated product [Re 2 (CO) 8 (μ-H)] 2 (μ-η 2 -2,3-μ-η 2 -4,5-C 4 H 2 S) (3), formed by the activation of the C-H bond at the 5 position of the thienyl ligand in 2. Heating 3 in a hexane solvent to reflux transformed it into the ring-opened compound Re(CO) 4 [μ-η 5 -η 2 -SCC(H)C(H)C(H)][Re(CO) 3 ][Re 2 (CO) 8 (μ-H)] (4) by the loss of one CO ligand. Compound 4 contains a doubly metalated 1-thiapentadienyl ligand formed by the cleavage of one of the C-S bonds. When heated to reflux (125 °C) in an octane solvent in the presence of H 2 O, the new compound Re(CO) 4 [η 5 -μ-η 2 -SC(H)C(H)C(H)C(H)]Re(CO) 3 (5) was obtained by cleavage of the Re 2 (CO) 8 (μ-H) group from 4 with formation of the known coproduct [Re(CO) 3 (μ 3 -OH)] 4 . All new products were characterized by single-crystal X-ray diffraction analyses.
Bielsa, Raquel; Navarro, Rafael; Soler, Tatiana; Urriolabeitia, Esteban P
2008-04-07
The reaction of Pd(OAc)2 with bis-iminophosphoranes Ph3P=NCH2CH2CH2N=PPh3 (1a), [C6H4(C(O)N=PPh3)2-1,3] (1b) and [C6H4(C(O)N=PPh3)2-1,2] (1c), gives the orthopalladated tetranuclear complexes [{Pd(mu-Cl){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2]2 (2a) [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3']2 (2b) and [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2']2 (2c). The reaction takes place in CH2Cl2 for 1a, but must be performed in glacial acetic acid for 1b and 1c. The process implies in all cases the activation of a C-H bond on a Ph ring of the phosphonium group, with concomitant formation of endo complexes. This is the expected behaviour for 1a, but for 1b and 1c reverses the exo orientation observed in other ketostabilized iminophosphoranes. The influence of the solvent in the orientation of the reaction is discussed. The dinuclear acetylacetonate complexes [{Pd(acac-O,O'){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2] (3a), [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3'] (3b) and [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2'] (3c) have been obtained from the halide-bridging tetranuclear derivatives. The X-ray crystal structure of [3c.4CHCl3] is also reported.
) Polytrifluorochloroethylene [C2F3Cl]n Polyvinylacetate [CH2CHOCOCH3]n Polyvinyl alcohol (C2H3-O-H)n Polyvinyl butyral [C8H1302 other materal for properties of interest in high-energy physics: stopping power (<-dE/dx>) tables (C10H16O) Aniline (C6H5NH2) Anthracene (C14H10) Benzene C6H6 Butane (C4H10) n-Butyl alcohol (C4H9OH) Carbon
Ion-molecule reactions relevant to Titan's ionosphere.
NASA Astrophysics Data System (ADS)
McEwan, M. J.; Scott, G. B. I.; Anicich, V. G.
1998-02-01
Twenty four new ion-molecule reactions are presented for inclusion in the modeling of the ionosphere of Saturn's satellite Titan. Sixteen reactions were re-examined to reduce uncertainties in the previous literature results. In this study the authors have examined the reactions of N+ and N2+ with CH4, C2H2, C2H4, C2H6, HCN, CH2CHCN and HC3N; the reaction of N+ with CH3CN; the reactions of C3H5+ with CH4, C2H2 C2H4, C2H6, H2, HCN, HC3N and CH2CHCN; the reactions of C2N2+ with C2H2; C2H2+ and C2N2; C2H4 with C2H3+, C2H4+, CHCCNH+, and HC5N+; HCNH+ with C2H6; C3H6+ with C3H6; HCN with C2H6+, C3H6+, c-C3H6+, C2N2+ and NO+; N2 with C2H2+ and C2H5+; C2H4+ and HC3N. The ions selected for this study were derived either from nitrogen, appropriate hydrocarbons or nitriles. The reactant neutrals were selected on the basis of their known presence in Titan's atmosphere. The reaction products are consistent with the expected increase in ion size through ion-molecule reaction processing. Data are also presented for the reactions of 23 ions with molecular nitrogen. Almost all of these ions are unreactive with N2.
Bernardes, Carlos E S; Minas da Piedade, Manuel E
2008-10-09
The energetics of the phenolic O-H bond in a series of 2- and 4-HOC 6H 4C(O)Y (Y = H, CH3, CH 2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH 3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds and of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y, was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-hydroxybenzaldehyde (2HBA), 4-hydroxybenzaldehyde (4HBA), 2'-hydroxyacetophenone (2HAP), 2-hydroxybenzamide (2HBM), and 4-hydroxybenzamide (4HBM), at 298.15 K, were determined by micro- or macrocombustion calorimetry. The corresponding enthalpies of vaporization or sublimation were also measured by Calvet drop-calorimetry and Knudsen effusion measurements. The combination of the obtained experimental data led to Delta f H m (o)(2HBA, g) = -238.3 +/- 2.5 kJ.mol (-1), DeltafHm(o)(4HBA, g) = -220.3 +/- 2.0 kJ.mol(-1), Delta f H m (o)(2HAP, g) = -291.8 +/- 2.1 kJ.mol(-1), DeltafHm(o)(2HBM, g) = -304.8 +/- 1.5 kJ.mol (-1), and DeltafHm(o) (4HBM, g) = -278.4 +/- 2.4 kJ.mol (-1). These values, were used to assess the predictions of the B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p), B3LYP/aug-cc-pVDZ, B3P86/6-31G(d,p), B3P86/6-311+G(d,p), B3P86/aug-cc-pVDZ, and CBS-QB3 methods, for the enthalpies of a series of isodesmic gas phase reactions. In general, the CBS-QB3 method was able to reproduce the experimental enthalpies of reaction within their uncertainties. The B3LYP/6-311+G(d,p) method, with a slightly poorer accuracy than the CBS-QB3 approach, achieved the best performance of the tested DFT models. It was further used to analyze the trends of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y evaluated by the ortho-para method and to compare the energetics of the phenolic O-H bond in 2- and 4-HOC 6H 4C(O)Y compounds. It was concluded that the O-H bond "strength" is systematically larger for 2-hydroxybenzoyl than for the corresponding 4-hydroxybenzoyl isomers mainly due to the presence of the intramolecular O...H hydrogen bond in the 2-isomers. The observed differences are, however, significantly dependent on the nature of the substituent Y, in particular, when an intramolecular H-bond can be present in the radical obtained upon cleavage of the O-H bond.
NASA Astrophysics Data System (ADS)
Thomas, Gerald F.; Mulder, Fred; Meath, William J.
1980-12-01
The non-empirical generalized Kirkwood, Unsöld, and the single-Δ Unsöld methods (with double-zeta quality SCF wave-functions) are used to calculate isotropic dispersion (and induction) energy coefficients C2n, with n ⩽ 5, for interactions involving ground state CH 4, C 2H 6, C 3H 8, n-C 4H 10 and cyclo-C 3H 6. Results are also given for the related multipole polarizabilities α l, multipole sums S1/(0) and S1(-1) which are evaluated using sum rules, and the permanent multipole moments. for l = 1 (dipole) to l = 3 (octupole). Estimates of the reliability of the non-empirical methods, for the type of molecules considered, are obtained by a comparison with accurate literature values of α 1S1(-1) and C6. This, and the asymptotic properties of the multipolar expansion of the dispersion energy, the use to discuss recommended representation for the isotropic long range interaction energies through R-10 where R is the intermolecular separation.
Zhang, Guangchao; Deng, Baojia; Wang, Shaowu; Wei, Yun; Zhou, Shuangliu; Zhu, Xiancui; Huang, Zeming; Mu, Xiaolong
2016-10-21
Different di and trinuclear rare-earth metal complexes supported by 3-amido appended indolyl ligands were synthesized and their catalytic activities towards isoprene polymerization were investigated. Treatment of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-(CyN[double bond, length as m-dash]CH)C 8 H 5 NH in toluene or in THF afforded dinuclear rare-earth metal alkyl complexes having indolyl ligands in different hapticities with central metals {[η 2 :η 1 -μ-η 1 -3-(CyNCH(CH 2 SiMe 3 ))Ind]RE-(thf)(CH 2 SiMe 3 )} 2 (Cy = cyclohexyl, Ind = Indolyl, RE = Yb (1), Er (2), Y (3)) or {[η 1 -μ-η 1 -3-(CyNCH(CH 2 SiMe 3 ))Ind]RE-(thf) 2 (CH 2 SiMe 3 )} 2 (RE = Yb (4), Er (5), Y (6), Gd (7)), respectively. These two series of dinuclear complexes could be transferred to each other easily by only changing the solvents in the process. Reaction of [Er(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-t-butylaminomethylindole 3-( t BuNHCH 2 )C 8 H 5 NH in THF afforded the unexpected trinuclear erbium alkyl complex [η 2 :η 1 -μ-η 1 -3-( t BuNCH 2 )Ind] 4 Er 3 (thf) 5 (CH 2 SiMe 3 ) (8), which can also be prepared by reaction of 3 equiv. of [Er(CH 2 SiMe 3 ) 3 (thf) 2 ] with 4 equiv. of 3-( t BuNHCH 2 )C 8 H 5 NH in THF. Accordingly, complexes [η 2 :η 1 -μ-η 1 -3-( t BuNCH 2 )Ind] 4 RE 3 (thf) 5 (CH 2 SiMe 3 ) (RE = Y (9), Dy (10)) were prepared by reactions of 3 equiv. of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 4 equiv. of 3-( t BuNHCH 2 )C 8 H 5 NH in THF. Reactions of [RE(CH 2 SiMe 3 ) 3 (thf) 2 ] with 1 equiv. of 3-t-butylaminomethylindole 3-( t BuNHCH 2 )C 8 H 5 NH in THF, followed by treatment with 1 equiv. of [(2,6- i Pr 2 C 6 H 3 )N[double bond, length as m-dash]CHNH(C 6 H 3 i Pr 2 -2,6)] afforded, after workup, the dinuclear rare-earth metal complexes [η 1 -μ-η 1 :η 1 -3-( t BuNCH 2 )Ind][η 1 -μ-η 1 :η 3 -3-( t BuNCH 2 )Ind]RE 2 (thf)[(η 3 -2,6- i Pr 2 C 6 H 3 )NCHN(C 6 H 3 i Pr 2 -2,6)] 2 (RE = Er (11), Y (12)) having the indolyl ligands bonded with the rare-earth metal in different ligations. All new complexes 1-12 were fully characterized by spectroscopic methods and elemental analyses, and their structures were determined by X-ray crystallographic analyses. It was found that, except for complexes 1, 4, 11 and 12, all complexes were highly efficient catalysts for selective isoprene polymerization (up to 99% 1,4-cis selectivity) with the cooperation of co-catalysts, and the trinuclear complexes displayed advantages over dinuclear complexes in terms of molecular weight of polymers.
NASA Astrophysics Data System (ADS)
Kuz'mina, L. G.; Navasardyan, M. A.; Mikhailov, A. A.
2017-11-01
X-ray diffraction study of two crystalline modifications of C2H5O-C6H3(OH)-CH=N-C6H4-CH3 ( 1a, sp. gr. P21/ n, and 1b, sp. gr. C2/c) and C3H7O-C6H3(OH)-CH=N-C6H4-C4H9 ( 2, sp. gr. P212121) has been performed. The 1a crystal structure contains two independent molecules. The molecules are conformationally nonrigid with respect to the mutual rotation of benzene rings; the dihedral angles between their planes are 29.19° and 26.00° in the independent molecules of 1a, 18.72° in the molecule of 1b, and 50.35° in the molecule of 2. The crystal packing of the compounds is discussed.
NASA Astrophysics Data System (ADS)
Lee, Shih-Huang; Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian
2013-11-01
We investigated the dynamics of the reaction of 3P atomic carbon with propene (C3H6) at reactant collision energy 3.8 kcal mol-1 in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C4H5, C4H4, C3H3, and CH3 were observed and attributed to exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a 3P carbon atom to the C=C bond of propene, cyclic complex c-H2C(C)CHCH3 undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H2CCCHCH3. Both the isomers of H2CCCHCH3 in turns decompose to C4H5 + H and C3H3 + CH3. A portion of C4H5 that has enough internal energy further decomposes to C4H4 + H. The three exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3 have average translational energy releases 13.5, 3.2, and 15.2 kcal mol-1, respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH3-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of 3P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.
Chou, Ching-Yin; Lee, Yuan-Pern
2016-10-07
The addition reactions of chlorine atom with isobutene (i-C 4 H 8 ) in solid para-hydrogen (p-H 2 ) were investigated with infrared (IR) absorption spectra. When a p-H 2 matrix containing Cl 2 and isobutene was irradiated with ultraviolet light at 365 nm, intense lines in a set at 534.5, 1001.0, 1212.9, 1366.0, 2961.6, and 2934.7 cm -1 , and several weaker others due to the 1-chloro-2-methyl-2-propyl radical, ⋅ C(CH 3 ) 2 CH 2 Cl, and those in a second set including intense ones at 642.7, 799.2, 1098.2, 1371.8, and 3027.3 cm -1 due to the 2-chloro-2-methylpropyl radical, ⋅ CH 2 C(CH 3 ) 2 Cl, appeared; the ratio of ⋅ C(CH 3 ) 2 CH 2 Cl to ⋅ CH 2 C(CH 3 ) 2 Cl was approximately (3 ± 1):1. The observed wavenumbers and relative intensities agree with the vibrational wavenumbers and IR intensities predicted with the B3PW91/aug-cc-pVTZ method. That the Cl atom adds to both carbons of the C=C bond of isobutene with the terminal site slightly favored is consistent with the energies of products predicted theoretically, but is in contrast to the reaction of Cl + propene in solid p-H 2 in which the addition of Cl to mainly the central C atom was previously reported. The role of the p-H 2 matrix in affecting the reaction paths is discussed. Absorption lines of the complex i-C 4 H 8 ⋅Cl 2 and the dichloro-product anti-1,2-dichloro-2-methylpropane, a-CH 2 ClCCl(CH 3 ) 2 , are also characterized.
NASA Technical Reports Server (NTRS)
Shaffer, W. A.
1983-01-01
Methods used to determine various atmospheric gas distributions are summarized. The experimentally determined mixing ratio profiles (the mixing ratio of a gas is the ratio of the number of gas molecules to the number of air molecules) of some atmospheric gases are shown. In most in situ experiments stratospheric gas samples are collected at several altitudes by balloon, aircraft, or rocket. These samples are then analyzed by various methods. Mixing ratio profiles of Ci, ClO, and OH were determined by laser induced fluorescence of samples. Others have analyzed gas samples by gas chromatography in order to determine the molecular abundances of CCl2F2, CCl4, CCl3F, CFCl3, CF2Cl2, CHClF2, CH3CCl3, CH4, CO, C2Cl3F3, C2Cl4, C2HCl3, C2H2, C2H4, C2H6, C3H8, C6H6, C7H8, H2, and N2O.
Syed, Atiya; Khajuria, Ruchi; Kumar, Sandeep; Jassal, Amanpreet Kaur; Hundal, Maninder S; Pandey, Sushil K
2014-01-01
Diaryldithiophosphate complexes of mono- and dibutyltin(IV) corresponding to [(ArO)(2)PS(2)(n)Sn(nBu)xCl(4-x-n)] (Ar = o-CH(3)C(6)H(4), m-CH(3)C(6)H(4), p-CH(3)C(6)H(4), 4-Cl-3-CH(3)C(6)H(3), (3,5-CH(3))(2)C(6)H(3); n = 1, 2 for x = 1 and n = 2 for x = 2) were successfully isolated and characterized by elemental analyses, IR, multinuclear NMR ((1)H, (13)C, (31)P and (119)Sn) spectroscopy and X-ray analysis. The thermal properties of the complex [(3,5-CH(3))(2)C(6)H(3)O(2)PS(2)](2)Sn(nBu)(2) (12) have been examined by combined DTA/ DTG thermal analyses. Single crystal X-ray analysis of [(3,5-CH(3))(2)C(6)H(3)O(2)PS(2)](2)S(n)(nBu)(2) (12) revealed that two diaryldithiophosphate ions are coordinated to tin atom in an anisobidentate fashion through the sulfur atoms of each dithiophosphate moiety leading to distorted skew-trapezoidal bipyramidal geometry. The antifungal activity depicts that these complexes are active against fungus Penicillium chrysogenium.
NASA Astrophysics Data System (ADS)
McLain, J. L.; Molek, C. D.; , D. Osborne, Jr.; Adams, N. G.
2009-05-01
A study has been made of the electron-ion dissociative recombination of the protonated cyanides (RCNH+, R = H, CH3, C2H5) and their proton-bound dimers (RCN)2H+ at 300 K. This has been accomplished with the flowing afterglow technique using an electrostatic Langmuir probe to determine the electron density decay along the flow tube. For the protonated species, the recombination coefficients, [alpha]e(cm3 s-1), are (3.6 +/- 0.5) × 10-7, (3.4 +/- 0.5) × 10-7, (4.6 +/- 0.7) × 10-7 for R = H, CH3, C2H5, respectively. For the proton-bound dimers, the [alpha]e are substantially greater being (2.4 +/- 0.4) × 10-6, (2.8 +/- 0.4) × 10-6, (2.3 +/- 0.3) × 10-6 for R = H, CH3, C2H5, respectively. Fitting of the electron density decay data to a simple model has shown that the rate coefficients for the three-body association of RCNH+ with RCN are very large being (2.0 +/- 0.5) × 10-26 cm6 s-1. The significance of these data to the Titan ionosphere is discussed.
Orthopalladation of iminophosphoranes: synthesis, structure and study of stability.
Bielsa, Raquel; Navarro, Rafael; Soler, Tatiana; Urriolabeitia, Esteban P
2008-03-07
The reaction of Pd(OAc)(2) with polyfunctional iminophosphoranes Ph(3)P=NCH(2)CO(2)Me (1a), Ph(3)P=NCH(2)C(O)NMe(2) (1b), Ph(3)P=NCH(2)CH(2)SMe (1c) and Ph(3)P=NCH(2)-2-NC(5)H(4) (1d), gives the orthopalladated dinuclear complex [Pd(mu-Cl){C(6)H(4)(PPh(2)=NCH(2)CO(2)Me-kappa-C,N)-2}](2) (2a) and the mononuclear derivatives [PdCl{C(6)H(4)(PPh(2)=NCH(2)CONMe(2)-kappa-C,N,O)-2}] (2b), [PdCl{C(6)H(4)(PPh(2)=NCH(2)CH(2)SMe-kappa-C,N,S)-2}] (2c) and [PdCl{C(6)H(4)(PPh(2)=NCH(2)-2-NC(5)H(4)-kappa-C,N,N)-2}] (2d). The reaction implies the activation of a C-H bond in a phenyl ring of the phosphonium group, this fact being worthy of note due to the strongly deactivating nature of the phosphonium unit. The palladacycle containing the metallated carbon atom is remarkably stable toward the coordination of incoming ligands, while that formed by the iminic N atom and another heteroatom (O, 2a and 2b; S, 2c; N, 2d) is less stable and the resulting complexes can be considered as hemilabile. The X-ray crystal structures of the cyclopalladated [Pd(mu-Cl){C(6)H(4)(PPh(2)=NCH(2)CO(2)Me-kappa-C,N)-2}](2) (2a), [PdCl{C(6)H(4)(PPh(2)=NCH(2)-2-NC(5)H(4)-kappa-C,N,N)-2}] (2d), [Pd{C(6)H(4)(PPh(2)=NCH(2)CONMe(2)-kappa-C,N,O)-2}(NCMe)](ClO(4)) (7b) and [Pd{C(6)H(4)(PPh(2)NCH(2)CONMe(2)-kappa-C,N,O)-2}(py)](ClO(4)) (3b), and the coordination compound cis-[Pd(Cl)(2)(Ph(3)P=NCH(2)CH(2)SMe-kappa-N,S)] (8) are also reported.
Evaluation of advanced bladder technology
NASA Technical Reports Server (NTRS)
Christensen, M. V.; Pasternak, R. A.
1972-01-01
Research conducted during this period is reported. Studies presented include: (1) diffusion and permeation of CO2, O2, N2, and NO2 through polytetra fluoroethylene; (2) diffusion, permeation and solubility of simple gases (CO2, O2, N2, CH4, C2H6, C3H8, and C2H4) through a copolymer of hexafluoro propylene and tetrafluoro ethylene (FEP); (3) viscous flow and diffusion of gases throug small apertures; (4) diffusion and permeation of O2, N2, CO2, CH4, C2H6, and C3H8 through nitroso rubber; and (5) results of gas transport studies with carborane siloxane, nitroso rubber, silicone membrane, krytox coating on teflon, and FEP coated glass cloth. Publications generated under this program are listed.
Zhao, Long; Yang, Tao; Kaiser, Ralf I; Troy, Tyler P; Ahmed, Musahid; Belisario-Lara, Daniel; Ribeiro, Joao Marcelo; Mebel, Alexander M
2017-02-16
Exploiting a high temperature chemical reactor, we explored the pyrolysis of helium-seeded n-decane as a surrogate of the n-alkane fraction of Jet Propellant-8 (JP-8) over a temperature range of 1100-1600 K at a pressure of 600 Torr. The nascent products were identified in situ in a supersonic molecular beam via single photon vacuum ultraviolet (VUV) photoionization coupled with a mass spectroscopic analysis of the ions in a reflectron time-of-flight mass spectrometer (ReTOF). Our studies probe, for the first time, the initial reaction products formed in the decomposition of n-decane-including radicals and thermally labile closed-shell species effectively excluding mass growth processes. The present study identified 18 products: molecular hydrogen (H 2 ), C2 to C7 1-alkenes [ethylene (C 2 H 4 ) to 1-heptene (C 7 H 14 )], C1-C3 radicals [methyl (CH 3 ), vinyl (C 2 H 3 ), ethyl (C 2 H 5 ), propargyl (C 3 H 3 ), allyl (C 3 H 5 )], small C1-C3 hydrocarbons [methane (CH 4 ), acetylene (C 2 H 2 ), allene (C 3 H 4 ), methylacetylene (C 3 H 4 )], along with higher-order reaction products [1,3-butadiene (C 4 H 6 ), 2-butene (C 4 H 8 )]. On the basis of electronic structure calculations, n-decane decomposes initially by C-C bond cleavage (excluding the terminal C-C bonds) producing a mixture of alkyl radicals from ethyl to octyl. These alkyl radicals are unstable under the experimental conditions and rapidly dissociate by C-C bond β-scission to split ethylene (C 2 H 4 ) plus a 1-alkyl radical with the number of carbon atoms reduced by two and 1,4-, 1,5-, 1,6-, or 1,7-H shifts followed by C-C β-scission producing alkenes from propene to 1-octene in combination with smaller 1-alkyl radicals. The higher alkenes become increasingly unstable with rising temperature. When the C-C β-scission continues all the way to the propyl radical (C 3 H 7 ), it dissociates producing methyl (CH 3 ) plus ethylene (C 2 H 4 ). Also, at higher temperatures, hydrogen atoms can abstract hydrogen from C 10 H 22 to yield n-decyl radicals, while methyl (CH 3 ) can also abstract hydrogen or recombine with hydrogen to form methane. These n-decyl radicals can decompose via C-C-bond β-scission to C3 to C9 alkenes.
[Raman Characterization of Hydrate Crystal Structure Influenced by Mine Gas Concentration].
Zhang, Bao-yong; Zhou, Hong-ji; Wu, Qiang; Gao, Xia
2016-01-01
CH4 /C2H6/N2 mixed hydrate formation experiments were performed at 2 degrees C and 5 MPa for three different mine gas concentrations (CH4/C2H6/N2, G1 = 54 : 36 : 10, G2 = 67.5 : 22.5 : 10, G3 = 81 : 9 : 10). Raman spectra for hydration products were obtained by using Microscopic Raman Spectrometer. Hydrate structure is determined by the Raman shift of symmetric C-C stretching vibration mode of C2H6 in the hydrate phase. This work is focused on the cage occupancies and hydration numbers, calculated by the fitting methods of Raman peaks. The results show that structure I (s I) hydrate forms in the G1 and G2 gas systems, while structure II (s II) hydrate forms in the G3 gas system, concentration variation of C2H6 in the gas samples leads to a change in hydrate structure from s I to s II; the percentages of CH4 and C2H6 in s I hydrate phase are less affected by the concentration of gas samples, the percentages of CH4 are respectively 34.4% and 35.7%, C2H6 are respectively 64.6% and 63.9% for gas systems of G1 and G2, the percentages of CH4 and 2 H6 are respectively 73.5% and 22.8% for gas systems of G3, the proportions of object molecules largely depend on the hydrate structure; CH4 and C2H6 molecules occupy 98%, 98% and 92% of the large cages and CH4 molecules occupy 80%, 60% and 84% of the small cages for gas systems of G1, G2 and G3, respectively; additionally, N2 molecules occupy less than 5% of the small cages is due to its weak adsorption ability and the lower partial pressure.
Rate Constant and RRKM Product Study for the Reaction Between CH3 and C2H3 at T = 298K
NASA Technical Reports Server (NTRS)
Thorn, R. Peyton, Jr.; Payne, Walter A., Jr.; Chillier, Xavier D. F.; Stief, Louis J.; Nesbitt, Fred L.; Tardy, D. C.
2000-01-01
The total rate constant k1 has been determined at P = 1 Torr nominal pressure (He) and at T = 298 K for the vinyl-methyl cross-radical reaction CH3 + C2H3 yields products. The measurements were performed in a discharge flow system coupled with collision-free sampling to a mass spectrometer operated at low electron energies. Vinyl and methyl radicals were generated by the reactions of F with C2H4 and CH4, respectively. The kinetic studies were performed by monitoring the decay of C2H3 with methyl in excess, 6 < |CH3|(sub 0)/|C2H3|(sub 0) < 21. The overall rate coefficient was determined to be k1(298 K) = (1.02 +/- 0.53)x10(exp -10) cubic cm/molecule/s with the quoted uncertainty representing total errors. Numerical modeling was required to correct for secondary vinyl consumption by reactions such as C2H3 + H and C2H3 + C2H3. The present result for k1 at T = 298 K is compared to two previous studies at high pressure (100-300 Torr He) and to a very recent study at low pressure (0.9-3.7 Torr He). Comparison is also made with the rate constant for the similar reaction CH3 + C2H5 and with a value for k1 estimated by the geometric mean rule employing values for k(CH3 + CH3) and k(C2H3 + C2H3). Qualitative product studies at T = 298 K and 200 K indicated formation of C3H6, C2H2, and C2H5 as products of the combination-stabilization, disproportionation, and combination-decomposition channels, respectively, of the CH3 + C2H3 reaction. We also observed the secondary C4H8 product of the subsequent reaction of C3H5 with excess CH3; this observation provides convincing evidence for the combination-decomposition channel yielding C3H5 + H. RRKM calculations with helium as the deactivator support the present and very recent experimental observations that allylic C-H bond rupture is an important path in the combination reaction. The pressure and temperature dependencies of the branching fractions are also predicted.
Kinetic Studies of the Thermal Decomposition of Methylperoxynitrate and of Ozone-Olefin Reactions.
NASA Astrophysics Data System (ADS)
Bahta, Abraha
This research concerns the thermal decomposition kinetics of CH(,3)O(,2)NO(,2) and laboratory kinetic measurements of ozone-olefin reactions. In the first system, the thermal decomposition rate of CH(,3)O(,2)NO(,2) was studied in the temperature range of 256-268 K at (TURN)350 torr total pressure and in the pressure range of 50-720 torr at 263 K by the perturbation of the equilibrium: (UNFORMATTED TABLE FOLLOWS). CH(,3)O(,2) + NO(,2) (+M) (DBLARR) CH(,3)O(,2)NO(,2) (+M) (3,-3). with NO. CH(,3)O(,2) + NO (--->) CH(,3)O + NO(,2) (4). (TABLE ENDS). The CH(,3)O(,2)NO(,2) was generated in situ by the photolysis of Cl(,2) in the presence of O(,2), CH(,4) and NO(,2). The decomposition kinetics were monitored in the presence of NO by the change in ultraviolet absorption at 250 nm. The Arrhenius expression obtained for the thermal decomposition is k(,-3) = 6 x 10('15) exp{-(21,000 (+OR-) 1500)/RT} sec('-1) at (TURNEQ)350 torr total pressure (mostly CH(,4)) where R = 1.987 cal/mole('-) K. The uncertainty in the Arrhenius parameters can be greatly reduced by combining this expression with data for k(,3) and thermodynamics data to give k(,-3) = (6 (+OR-) 3) x 10('15) exp{-(21,300 (+OR-) 300)/RT} sec('-1) at (TURNEQ)350 torr total pressure. Computations based on the pressure dependence of the forward reaction give k(,-3)('(INFIN)) = 2.1 x 10('16) exp{-(21,700 (+OR -) 300)/RT} sec('-1) k(,-3)('(DEGREES)) = 3.3 x 10(' -4) exp{-(20,150 x 300)/RT} cm('3) sec('-1). At 263 K the equilibrium constant K(,3,-3){263 K} is determined to be (2.68 (+OR-) 0.26) x 10('-10) cm('3). In the stratosphere the CH(,3)O(,2)NO(,2) lifetime will be controlled by play a role in the NO(,x) budget of the lower stratosphere. In the second part, the kinetics of the reactions of O(,3) with C(,2)H(,4), C(,3)H(,4), 1,3-C(,4)H(,6), and trans-1,3-C(,5)H(,8) were studied with initial olefin-to -ozone ratios (GREATERTHEQ) 4.9, in the presence of excess O(,2), and over the temperature range 232 to 300 K. The initial O(,3) pressure was varied from 5-18 mtorr, and the olefin pressure was varied from 0.1 to 4.5 torr (C(,2)H(,4)), 2.8 to 39.6 torr (allene), 52.7 to 600 mtorr (1,3-C(,4)H(,6)), or 26.2 to 106 mtorr (1,3-C(,5)H(,8)). The O(,3) decay was monitored by ultraviolet absorption. The reaction is first order in both O(,3) and olefin. The rate coefficients are independent of the O(,2) pressure (100-400 torr), and in the case of the O(,3)/C(,2)H(,4) system, the rate coefficients are independent of the nature of the diluent gas--N(,2), O(,2), and air were used. These measured rate coefficients were found to fit the Arrhenius expressions: (UNFORMATTED TABLE FOLLOWS). For C(,2)H(,4): k{232-298 K}=(7.88(+OR -)0.46)x10('-15) exp{-(5085(+OR-)580)/RT}. For C(,3)H(,4): k{252-298 K}=(1.92(+OR -)0.14)x10('-15) exp{-(5430(+OR-)830)/RT}. For 1,3-C(,4)H(,6): k{254-299 K}=(2.43(+OR -)0.15)x10('-14) exp{-(4900(+OR-)670)}. and. For t-1,3-C(,5)H(,8): k{262-298 K}=(6.56(+OR -)0.40)x10('-12). exp{-(7140(+OR-)860)/RT}. (TABLE ENDS). cm('3) s('-1), where the uncertainties represent one standard deviation.
Sarazin, Yann; Howard, Ruth H; Hughes, David L; Humphrey, Simon M; Bochmann, Manfred
2006-01-14
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)
Minyaev, Mikhail E; Nifant'ev, Ilya E; Tavtorkin, Alexander N; Korchagina, Sof'ya A; Zeynalova, Shadana Sh; Ananyev, Ivan V; Churakov, Andrei V
2017-10-01
The crystal structures of rare-earth diaryl- or dialkylphosphate derivatives are poorly explored. Crystals of bis[bis(2,6-diisopropylphenyl)phosphato-κO]chloridotetrakis(methanol-κO)neodymium methanol disolvate, [Nd(C 24 H 34 O 4 P)Cl(CH 4 O) 4 ]·2CH 3 OH, (1), and of the lutetium, [Lu(C 24 H 34 O 4 P)Cl(CH 4 O) 4 ]·2CH 3 OH, (2), and yttrium, [Y(C 24 H 34 O 4 P)Cl(CH 4 O) 4 ]·2CH 3 OH, (3), analogues have been obtained by reactions between lithium bis(2,6-diisopropylphenyl)phosphate and LnCl 3 (H 2 O) 6 (in a 2:1 ratio) in methanol. Compounds (1)-(3) crystallize in the C2/c space group. Their crystal structures are isomorphous. The molecule possesses C 2 symmetry with a twofold crystallographic axis passing through the Ln and Cl atoms. The bis(2,6-diisopropylphenyl)phosphate ligands all display a κ 1 O-monodentate coordination mode. The coordination polyhedron for the metal atom [coordination number (CN) = 7] is a distorted pentagonal bipyramid. Each [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 2 Cl(CH 3 OH) 4 ] molecular unit exhibits two intramolecular O-H...O hydrogen bonds, forming six-membered rings, and two intramolecular O-H...Cl interactions, forming four-membered rings. Intermolecular O-H...O hydrogen bonds connect each unit via four noncoordinating methanol molecules with four other units, forming a two-dimensional hydrogen-bond network. Crystals of bis[bis(2,6-diisopropylphenyl)phosphato-κO]tetrakis(methanol-κO)(nitrato-κ 2 O,O')neodymium methanol disolvate, [Nd(C 24 H 34 O 4 P)(NO 3 )(CH 4 O) 4 ]·2CH 3 OH, (4), have been obtained in an analogous manner from NdCl 3 (H 2 O) 6 . Compound (4) also crystalizes in the C2/c space group. Its crystal structure is similar to those of (1)-(3). The κ 2 O,O'-bidentate nitrate anion is disordered over a twofold axis, being located nearly on it. Half of the molecule is crystallographically unique (CN Nd = 8). Unlike (1)-(3), complex (4) exhibits disorder of all three methanol molecules, one isopropyl group of the phosphate ligand and the NO 3 - ligand. The structure of (4) displays intra- and intermolecular O-H...O hydrogen bonds similar to those in (1)-(3). Compounds (1)-(4) represent the first reported mononuclear bis[bis(diaryl/dialkyl)phosphate] rare-earth complexes.
NASA Astrophysics Data System (ADS)
Lan, X.; Tans, P. P.; Sweeney, C.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Crotwell, M.; Miller, B.; Kofler, J.; Newberger, T.; McKain, K.; Wolter, S.; Montzka, S. A.
2016-12-01
Recent studies on whether methane (CH4) emissions from oil and natural gas (ONG) operations in the U.S. have increased are still inconclusive. To provide observational evidence we carefully analyzed the in-situ CH4 measurements from the NOAA/ESRL Global Greenhouse Gas Reference Network (GGGRN) for the best estimates of CH4 trends for 2006-2016. Methane data from more than 20 surface and aircraft sites across the U.S. were included in this study. Variations of sampling frequencies in different seasons were taken into account for accurate trend detection. Correlations among measurements within short sampling intervals were also considered for uncertainty estimates. We found that most of our sites had similar CH4 trends of 6 ppb/yr, which was comparable with the recent global background CH4 trend. Substantially higher growth rates were found at the Southern Great Plain site in Oklahoma (SGP, downwind of the Eagle Ford, Barnett Shale and Woodford ONG fields) and the Dahlen sites in North Dakota (DND, downwind of the Bakken ONG field), which indicated influences from regional ONG activities. Ethane (C2H6) measurements from SGP (C2H6 measurements were not available from DND) and propane (C3H8) measurements from both SPG and DND exhibited significant increasing trends, while trends at other sites were either non-significant (trend < 2*S.D.) or only marginally significant. Linear correlations were well identified for surface C3H8 and CH4 enhancements at these two sites, relative to observations at higher altitudes. However, by applying the observed enhancement ratios of surface C3H8 /CH4 and the C3H8 trends (as indicator for ONG emissions) on CH4 trend estimates, we would infer much larger surface CH4 trends than what we actually observed at these two sites. This discrepancy suggests that using enhancement ratios of C3H8 /CH4 is not likely a reliable approach to compute CH4 emission trends.
Guron, Marta; Wei, Xiaolan; Carroll, Patrick J; Sneddon, Larry G
2010-07-05
The ruthenium-catalyzed metathesis reactions of dialkenyl-substituted ortho- and meta-carboranes provide excellent routes to both cyclic-substituted o-carboranes and new types of main-chain m-carborane polymers. The adjacent positions of the two olefins in the 1,2-(alkenyl)(2)-o-carboranes strongly favor the formation of ring-closed (RCM) products with the reactions of 1,2-(CH(2)=CHCH(2))(2)-1,2-C(2)B(10)H(10) (1), 1,2-(CH(2)=CH(CH(2))(3)CH(2))(2)-1,2-C(2)B(10)H(10) (2), 1,2-(CH(2)=CHSiMe(2))(2)-1,2-C(2)B(10)H(10) (3), 1,2-(CH(2)=CHCH(2)SiMe(2))(2)-1,2-C(2)B(10)H(10) (4), and 1,2-[CH(2)=CH(CH(2))(4)SiMe(2)](2)-1,2-C(2)B(10)H(10) (5) affording 1,2-(-CH(2)CH=CHCH(2)-)-C(2)B(10)H(10) (10), 1,2-[-CH(2)(CH(2))(3)CH=CH(CH(2))(3)CH(2)-]-1,2-C(2)B(10)H(10) (11), 1,2-[-SiMe(2)CH=CHSiMe(2)-]-1,2-C(2)B(10)H(10) (12), 1,2-[-SiMe(2)CH(2)CH=CHCH(2)SMe(2)-]-C(2)B(10)H(10) (13), and 1,2-[-SiMe(2)(CH(2))(4)CH=CH(CH(2))(4)SiMe(2)-]-C(2)B(10)H(10) (14), respectively, in 72-97% yields. On the other hand, the reaction of 1,2-(CH(2)-CHCH(2)OC(=O))(2)-1,2-C(2)B(10)H(10) (6) gave cyclo-[1,2-(1',8'-C(=O)OCH(2)CH=CHCH(2)OC(=O))-1,2-C(2)B(10)H(10)](2) (15a) and polymer 15b resulting from intermolecular metathesis reactions. The nonadjacent positions of the alkenyl groups in the 1,7-(alkenyl)(2)-m-carboranes, 1,7-(CH(2)=CHCH(2))(2)-1,7-C(2)B(10)H(10) (7), 1,7-(CH(2)=CH(CH(2))(3)CH(2))(2)-1,7-C(2)B(10)H(10) (8), and 1,7-(CH(2)=CHCH(2)SiMe(2))(2)-1,7-C(2)B(10)H(10) (9), disfavor the formation of RCM products, and in these cases, acyclic diene metathesis polymerizations (ADMET) produced new types of main chain m-carborane polymers. The structures of 3, 9, 11, 12, 13, and 15a were crystallographically confirmed.
Izod, Keith; Liddle, Stephen T; Clegg, William
2004-08-07
Protonation of the heteroleptic, cyclometalated lanthanum phosphide complex [((Me3Si)2CH)(C6H4-2-CH2NMe2)P]La(THF)[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))] with [Et3NH][BPh4] yields the cationic alkyllanthanum complex [(THF)4La[P(C6H4-2-CH2NMe2)(CH(SiMe3)(SiMe2CH2))
The 12C/ 13C isotopic ratio in Titan hydrocarbons from Cassini/CIRS infrared spectra
NASA Astrophysics Data System (ADS)
Nixon, C. A.; Achterberg, R. K.; Vinatier, S.; Bézard, B.; Coustenis, A.; Irwin, P. G. J.; Teanby, N. A.; de Kok, R.; Romani, P. N.; Jennings, D. E.; Bjoraker, G. L.; Flasar, F. M.
2008-06-01
We have analyzed infrared spectra of Titan recorded by the Cassini Composite Infrared Spectrometer (CIRS) to measure the isotopic ratio 12C/ 13C in each of three chemical species in Titan's stratosphere: CH 4, C 2H 2 and C 2H 6. This is the first measurement of 12C/ 13C in any C 2 molecule on Titan, and the first measurement of 12CH 4/ 13CH 4 (non-deuterated) on Titan by remote sensing. Our spectra cover five widely-spaced latitudes, 65° S to 71° N and we have searched for both latitude variability of 12C/ 13C within a given species, and also for differences between the 12C/ 13C in the three gases. For CH 4 alone, we find C12/C13=76.6±2.7 (1- σ), essentially in agreement with the 12CH 4/ 13CH 4 measured by the Huygens Gas Chromatograph/Mass Spectrometer instrument (GCMS) [Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784]: 82.3±1.0, and also with measured values in H 13CN and 13CH 3D by CIRS at lower precision [Bézard, B., Nixon, C., Kleiner, I., Jennings, D., 2007. Icarus 191, 397-400; Vinatier, S., Bézard, B., Nixon, C., 2007. Icarus 191, 712-721]. For the C 2 species, we find C12/C13=84.8±3.2 in C 2H 2 and 89.8±7.3 in C 2H 6, a possible trend of increasingly value with molecular mass, although these values are both compatible with the Huygens GCMS value to within error bars. There are no convincing trends in latitude. Combining all fifteen measurements, we obtain a value of C12/C13=80.8±2.0, also compatible with GCMS. Therefore, the evidence is mounting that 12C/ 13C is some 8% lower on Titan than on the Earth (88.9, inorganic standard), and lower than typical for the outer planets ( 88±7 [Sada, P.V., McCabe, G.H., Bjoraker, G.L., Jennings, D.E., Reuter, D.C., 1996. Astrophys. J. 472, 903-907]). There is no current model for this enrichment, and we discuss several mechanisms that may be at work.
Stability of methane in reduced C-O-H fluid at 6.3 GPa and 1300-1400°C
NASA Astrophysics Data System (ADS)
Sokol, A. G.; Tomilenko, A. A.; Bul'bak, T. A.; Palyanova, G. A.; Palyanov, Yu. N.; Sobolev, N. V.
2017-06-01
The composition of a reduced C-O-H fluid was studied by the method of chromatography-mass spectrometry under the conditions of 6.3 GPa, 1300-1400°C, and fO2 typical of the base of the subcratonic lithosphere. Fluids containing water (4.4-96.3 rel. %), methane (37.6-0.06 rel. %), and variable concentrations of ethane, propane, and butane were obtained in experiments. With increasing fO2, the proportion of the CH4/C2H6 peak areas on chromatograms first increases and then decreases, whereas the CH4/C3H8 and CH4/C4H10 ratios continually decrease. The new data show that ethane and heavier HCs may be more stable to oxidation, than previously thought. Therefore, when reduced fluids pass the "redox-front," carbon is not completely released from the fluid and may be involved in diamond formation.
NASA Astrophysics Data System (ADS)
Das, Surjya P.; Wittekopf, Burghard; Weil, Konrad G.
1988-11-01
Silver nitrate can form homogeneous liquid phases with some organic nitriles and water, even when there is no miscibility between the pure liquid components. We determined the shapes of the single phase regions in the ternary phase diagram for the following systems: silver nitrate /RCN /H2O with R =CH3, C3H7, C6H5, and C6H5CH2 at room temperature and for R =C6H5 also at 60 °C and O °C. Furthermore we studied kinematic viscosities, electrical conductivities, and densities of mixtures containing silver nitrate, RCN, and water with the mole ratios X /4 /1 (0.2≦ X ≦S 3.4). In these cases also R = C2H5 and C4H9 were studied. The organic nitriles show different dependences of viscosity and conductivity on the silver nitrate content from the aliphatic ones.
Antoniadis, Constantinos D; Blake, Alexander J; Hadjikakou, Sotiris K; Hadjiliadis, Nick; Hubberstey, Peter; Schröder, Martin; Wilson, Claire
2006-08-01
The structures of four selenium analogues of the antithyroid drug 6-n-propyl-2-thiouracil [systematic name: 2,3-dihydro-6-n-propyl-2-thioxopyrimidin-4(1H)-one], namely 6-methyl-2-selenouracil, C(5)H(6)N(2)OSe (1), 6-ethyl-2-selenouracil, C(6)H(8)N(2)OSe (2), 6-n-propyl-2-selenouracil, C(7)H(10)N(2)OSe (3), and 6-isopropyl-2-selenouracil, C(7)H(10)N(2)OSe (4), are described, along with that of the dichloromethane monosolvate of 6-isopropyl-2-selenouracil, C(7)H(10)N(2)OSe.CH(2)Cl(2) (4.CH(2)Cl(2)). The extended structure of (1) is a two-dimensional sheet of topology 6(3) with a brick-wall architecture. The extended structures of (2) and (4) are analogous, being based on a chain of eight-membered R(8)(6)(32) hydrogen-bonded rings. In (3) and (4.CH(2)Cl(2)), R(2)(2)(8) hydrogen bonding links molecules into chains. 6-n-Propyl-2-selenouracil.I(2), C(7)H(10)N(2)OSe.I(2) (7), is a charge-transfer complex with a ;spoke' structure, the extended structure of which is based on a linear chain formed principally by intermolecular N-H...O hydrogen bonds. Re-crystallization of 6-ethyl-2-selenouracil or (7) from acetone gave crystals of the diselenides [N-(6'-ethyl-4'-pyrimidone)(6-ethyl-2-selenouracil)(2)(Se-Se)].2H(2)O (9.2H(2)O) or [N-(6'-n-propyl-4'-pyrimidone)(6-n-propyl-2-selenouracil)(2)(Se-Se)] (10), respectively: these have similar extended chain structures formed via N-H...O and C-H...O hydrogen bonds, stacked to give two-dimensional sheets. Re-crystallization of (7) from methanol/acetonitrile led via deselenation to the formation of crystals of 6-n-propyl-2-uracil (11), in which six symmetry-related molecules combine to form a six-membered R(6)(6)(24) hydrogen-bonded ring, with each pair of molecules linked by an R(2)(2)(8) motif.
Anderson, Craig M; Jain, Swapan S; Silber, Lisa; Chen, Kody; Guha, Sumedha; Zhang, Wancong; McLaughlin, Emily C; Hu, Yongfeng; Tanski, Joseph M
2015-04-01
The reaction of Na[RuCl4(SO(CH3)2)2], 1, with one equivalent of FcCONHCH2C6H4N (Fc=FeC10H9), L1, FcCOOCH2CH2C3H3N2, L2, FcCOOC6H4N, L3, afforded the dinuclear species, Na[FcCONHCH2C6H4N[RuCl4(SO(CH3)2)
Smith, Mackenzie L; Kort, Eric A; Karion, Anna; Sweeney, Colm; Herndon, Scott C; Yacovitch, Tara I
2015-07-07
We present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region. Distinct C2H6:CH4 × 100% molar ratios of 0.0%, 1.8%, and 9.6%, indicative of microbial, low-C2H6 fossil, and high-C2H6 fossil sources, respectively, emerged in observations over the emissions source region of the Barnett Shale. Ethane-to-methane correlations were used in conjunction with C2H6 and CH4 fluxes to quantify the fraction of CH4 emissions derived from fossil and microbial sources. On the basis of two analyses, we find 71-85% of the observed methane emissions quantified in the Barnett Shale are derived from fossil sources. The average ethane flux observed from the studied region of the Barnett Shale was 6.6 ± 0.2 × 10(3) kg hr(-1) and consistent across six days in spring and fall of 2013.
Lai, Ya-Yuan; Chang, Yu-Chang; Chen, Jyh-Horung; Wang, Shin-Shin; Tung, Jo-Yu
2016-03-21
The inner C-benzyl- and C-o-xylyl (or m-xylyl, p-xylyl)-substituted cobalt(ii) complexes of a 2-N-substituted N-confused porphyrin were synthesized from the reaction of 2-NC3H5NCTPPH (1) and CoCl2·6H2O in toluene (or o-xylene, m-xylene, p-xylene). The crystal structures of diamagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-hydrogen-21-carbaporphyrinato-N,N',N'')zinc(ii) [Zn(2-NC3H5-21-H-NCTPP)Cl; 3 ] and paramagnetic chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-benzyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-CH2C6H5NCTPP)Cl; 7], and chloro(2-aza-2-allyl-5,10,15,20-tetraphenyl-21-Y-xylyl-21-carbaporphyrinato-N,N',N'')cobalt(ii) [Co(2-NC3H5-21-Y-CH2C6H4CH3NCTPP)Cl] [Y = o (8), m (9), p (10)] were determined. The coordination sphere around the Zn(2+) (or Co(2+)) ion in 3 (or 7-10) is a distorted tetrahedron (DT). The free energy of activation at the coalescence temperature Tc for the exchange of phenyl ortho protons o-H (26) with o-H (22) in 3 in a CDCl3 solvent is found to be ΔG = 61.4 kJ mol(-1) through (1)H NMR temperature-dependent measurements. The axial zero-field splitting parameter |D| was found to vary from 35.6 cm(-1) in 7 (or 30.7 cm(-1) in 8) to 42.0 cm(-1) in 9 and 46.9 cm(-1) in 10 through paramagnetic susceptibility measurements. The magnitude of |D| can be related to the coordination sphere at the cobalt sites.
Electronically Strongly Coupled Divinylheterocyclic-Bridged Diruthenium Complexes.
Pfaff, Ulrike; Hildebrandt, Alexander; Korb, Marcus; Oßwald, Steffen; Linseis, Michael; Schreiter, Katja; Spange, Stefan; Winter, Rainer F; Lang, Heinrich
2016-01-11
Complexes [{Ru(CO)Cl(PiPr3 )2 }2 (μ-2,5-(CH-CH)2 -(c) C4 H2 E] (E=NR; R=C6 H4 -4-NMe2 (10 a), C6 H4 -4-OMe (10 b), C6 H4 -4-Me (10 c), C6 H5 (10 d), C6 H4 -4-CO2 Et (10 e), C6 H4 -4-NO2 (10 f), C6 H3 -3,5-(CF3 )2 (10 g), CH3 (11); E=O (12), S (13)) are discussed. The solid state structures of four alkynes and two complexes are reported. (Spectro)electrochemical studies show a moderate influence of the nature of the heteroatom and the electron-donating or -withdrawing substituents R in 10 a-g on the electrochemical and spectroscopic properties. The CVs display two consecutive one-electron redox events with ΔE°'=350-495 mV. A linear relationship between ΔE°' and the σp Hammett constant for 10 a-f was found. IR, UV/Vis/NIR and EPR studies for 10(+) -13(+) confirm full charge delocalization over the {Ru}CH-CH-heterocycle-CH-CH{Ru} backbone, classifying them as Class III systems according to the Robin and Day classification. DFT-optimized structures of the neutral complexes agree well with the experimental ones and provide insight into the structural consequences of stepwise oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bray, C. J.; Spooner, E. T. C.
1992-01-01
Eighteen fluid inclusion volatile peaks have been detected and identified from 1-2 g samples (quartz) by gas chromatography using heated (~105°C) on-line crushing, helium carrier gas, a single porous polymer column (HayeSep R; 10' × 1/8″: 100/120#; Ni alloy tubing), two temperature programme conditions for separate sample aliquots, micro-thermal conductivity (TCD) and photoionization detectors (PID; 11.7 eV lamp), and off-line digital peak processing. In order of retention time these volatile peaks are: N 2, Ar, CO, CH 4, CO 2, C 2H 4, C 2H 6, C 2H 2, COS, C 3H 6, C 3H 8, C 3H 4 (propyne), H 2O (22.7 min at 80°C), SO 2, ± iso- C4H10 ± C4H8 (1-butene) ± CH3SH, C 4H 8 (iso-butylene), (?) C 4H 6 (1,3 butadiene) and ± n- C4H10 ± C4H8 (trans-2-butene) (80 and -70°C temperature programme conditions combined). H 2O is analysed directly. O 2 can be analysed cryogenically between N 2 and Ar, but has not been detected in natural samples to date in this study. H 2S, SO 2, NH 3, HCl, HCN, and H 2 ca nnot be analysed at present. Blanks determined by crushing heat-treated Brazilian quartz (800-900°C/4 h) are zero for 80°C temperature programme conditions, except for a large, unidentified peak at ~64 min, but contain H 2O, CO 2, and some low molecular weight hydrocarbons at -70°C temperature conditions due to cryogenic accumulation from the carrier gas and subsequent elution. TCD detection limits are ~30 ppm molar in inclusions; PID detection limits are ~ 1 ppm molar in inclusions and lower for unsaturated hydrocarbons (e.g., ~0.2 ppm for C 2H 4; ~ 1 ppb for C 2H 2; ~0.3 ppb for C 3H 6). Precisions (1σ) are ~ ±1-2% and ~ ± 13% for H 2O in terms of total moles detected; the latter value is equivalent to ±0.6 mol% at the 95 mol% H 2O level. Major fluid inclusion volatile species have been successfully analysed on a ~50 mg fluid inclusion section chip (~7 mm × ~10 mm × ~100 μm). Initial inclusion volatile analyses of fluids of interpreted magmatic origin from the Cretaceous Boss Mtn. monzogranite stock-related MoS 2 deposit, central British Columbia of ~97 mol% H 2O, ~3% CO 2, ~ 140-150 ppm N 2, and ~16-39 ppm CH 4 (~300-350°C) are reasonable in comparison with high temperature (~400-900°C) volcanic gas analyses from four, active calc-alkaline volcanoes; e.g., the H 2O contents of volcanic gases from the White Island (New Zealand), Mount St. Helens (Washington, USA), Merapi (Bali, Indonesia), and Momotombo (Nicaragua) volcanoes are 88-95%, >90% (often >95%), 88-95% and ~93%, respectively; CO 2 contents are ~3-10%, 1-10%, 3-8%, and ~3.5%. CO 2/N 2 ratios for the Boss Mtn. MoS 2 fluids of ~ 190-220 are in the range for known volcanic gas ratios (e.g., ~ 150- 240; White Island). The ∑S content of the Boss Mtn. MoS 2 fluid prior to S loss by sulphide precipitation may have been ~2 mol% since CO 2/∑S molar ratios of analysed high-temperature volcanic gases are ~ 1.5. This estimate is supported by ∑S contents for White Island, Merapi and Momotombo volcanic gases of ~2%, ~0.5-2.5%, and ~2%. COS has been determined in H 2O-CO 2 fluid inclusions of interpreted magmatic origin from the Boss Mtn. MoS 2 deposit and the Tanco zoned granitic pegmatite, S.E. Manitoba at ~50-100 ppm molar levels, which are consistent with levels in volcanic gases. It appears that low, but significant, concentrations of C 2-C 4 alkanes (~ 1-20 ppm), C 2-C 4 alkenes (~ 1-480 ppb) and alkynes (e.g., C 3H 4) have been detected in magmatically derived fluids (Boss Mtn. MoS 2 deposit; Tanco granitic pegmatite). Significantly higher, low molecular weight hydrocarbon concentrations have been determined in a CH 4-rich (~ 2%), externally derived fluid of possible metamorphic or deep crustal origin trapped as inclusions in metasomatic wall-rock tourmaline adjacent to the Tanco pegmatite (e.g., 300/470 ppm C 2H 6; 50/90 ppm C 3H 8; 3-60 ppm C 2H 4/C 3H 6 n-C 4H 10).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Jiang, L.; Bai, Z.
Interactions of the two common atmospheric bases, ammonia (NH{sub 3}) and methylamine MA (CH{sub 3}NH{sub 2}), which are considered to be important stabilizers of binary clusters in the Earth’s atmosphere, with H{sub 2}SO{sub 4}, the key atmospheric precursor, and 14 common atmospheric organic acids (COA) (formic (CH{sub 2}O{sub 2}), acetic (C{sub 2}H{sub 4}O{sub 2}), oxalic (C{sub 2}H{sub 2}O{sub 4}), malonic (C{sub 3}H{sub 4}O{sub 4}), succinic (C{sub 4}H{sub 6}O{sub 4}), glutaric acid (C{sub 5}H{sub 8}O{sub 4}), adipic (C{sub 6}H{sub 10}O{sub 4}), benzoic (C{sub 6}H{sub 5}COOH), phenylacetic (C{sub 6}H{sub 5}CH{sub 2}COOH), pyruvic (C{sub 3}H{sub 4}O{sub 3}), maleic acid (C{sub 4}H{sub 4}O{sub 4}),more » malic (C{sub 4}H{sub 6}O{sub 5}), tartaric (C{sub 4}H{sub 6}O{sub 6}) and pinonic acid (C{sub 10}H{sub 16}O{sub 3})) have been studied using the composite high-accuracy G3MP2 method. The thermodynamic stability of mixed (COA) (H{sub 2}SO{sub 4}), (COA)(B1) and (COA)(B2) dimers and (COA) (H{sub 2}SO{sub 4}) (B1) and (COA) (H{sub 2}SO{sub 4}) (B1) trimers, where B1 and B2 represent methylamine (CH{sub 3}NH{sub 2}) and ammonia (NH{sub 3}), respectively, have been investigated and their impacts on the thermodynamic stability of clusters containing H{sub 2}SO{sub 4} have been analyzed. It has been shown that in many cases the interactions of H{sub 2}SO{sub 4} with COA, ammonia and methylamine lead to the formation of heteromolecular dimers and trimers, which are certainly more stable than (H{sub 2}SO{sub 4}){sub 2} and (H{sub 2}SO{sub 4}){sub 3}. It has also been found that free energies of (COA) (H{sub 2}SO{sub 4})+ CH{sub 3}NH{sub 2}⇔(COA) (H{sub 2}SO{sub 4})(CH{sub 3}NH{sub 2}) reactions exceed 10-15 kcal mol{sup −1}. This is a clear indication that mixed trimers composed of COA, H{sub 2}SO{sub 4} and methylamine are very stable and can thus serve as possible nucleation sites. The present study leads us to conclude that the interactions of COA coexisting with H{sub 2}SO{sub 4} and common atmospheric bases in the Earth’s atmosphere may be an important factor affecting the stability of nucleating sulfuric acid clusters and that the impacts of COA on atmospheric nucleation should be studied in further details.« less
Páramo, Alejandra; Canosa, André; Le Picard, Sébastien D; Sims, Ian R
2008-10-02
The kinetics of reactions of C2(a(3)Pi(u)) and C2(X(1)Sigma(g)(+)) with various hydrocarbons (CH4, C2H2, C2H4, C2H6, and C3H8) have been studied in a uniform supersonic flow expansion over the temperature range 24-300 K. Rate coefficients have been obtained by using the pulsed laser photolysis-laser induced fluorescence technique, where both radicals were produced at the same time but detected separately. The reactivity of the triplet state was found to be significantly lower than that of the singlet ground state for all reactants over the whole temperature range of the study. Whereas C2(X(1)Sigma(g)(+)) reacts with a rate coefficient close to the gas kinetic limit with all hydrocarbons studied apart from CH4, C2(a(3)Pi(u)) appears to be more sensitive to the molecular and electronic structure of the reactant partners. The latter reacts at least one order of magnitude faster with unsaturated hydrocarbons than with alkanes, and the rate coefficients increase very significantly with the size of the alkane. Results are briefly discussed in terms of their potential astrophysical impact.
Atmospheric Science Data Center
2013-02-18
... Methyl bromide (CH3Br) Bromopropane (C3H7Br) Methyl Chloride(CH3Cl) Ethyl Chloride (C2H5Cl) Vinyl chloride (C2H3Cl) ... Trichloroethylene (C2HCl3) Tetrachloroethylene (C2Cl4) Methylene bromide (CH2Br2) Chlorodibromomethane(CHClBr2) Bromoform ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padalwar, Nitin Balkrushna; Vidyasagar, Kanamaluru
2016-11-15
The following twelve mercurous and mercuric organophosphomates, bis/diphosphonates and phenylarsonates have been isolated and structurally characterized by single crystal X-ray diffraction, {sup 13}C-and {sup 31}P NMR, infrared and Raman spectroscopic methods: Hg{sub 2}(HO{sub 3}PC{sub 6}H{sub 5}){sub 2}(1), Hg{sub 2}(HO{sub 3}P(C{sub 6}H{sub 4})PO{sub 3}H)(2), Hg{sub 2}(HO{sub 3}P(C{sub 6}H{sub 4}){sub 2}PO{sub 3}H)(3), Hg{sub 2}(HO{sub 3}P(CH{sub 2}){sub 4}PO{sub 3}H)(4), Hg{sub 2}(O{sub 3}PC{sub 6}H{sub 5})·H{sub 2}O(5), (Hg{sub 2}){sub 2}(O{sub 3}P(CH{sub 2}){sub 2}PO{sub 3})(6), (Hg{sub 2}){sub 2}(O{sub 3}P(CH{sub 2}){sub 3}PO{sub 3})(7), Hg(O{sub 3}PC{sub 6}H{sub 5})·H{sub 2}O(8), Hg(O{sub 3}PCH{sub 2}C{sub 6}H{sub 5})·H{sub 2}O(9), Hg(O{sub 3}AsC{sub 6}H{sub 5})·H{sub 2}O(10), Hg{sub 3}(O{sub 3}AsC{sub 6}H{sub 5}){sub 2}(HO{sub 3}AsC{sub 6}H{submore » 5}){sub 2}(11) and (Hg{sub 2})Hg{sub 3}(O{sub 3}P(C{sub 6}H{sub 4})PO{sub 3}){sub 2}·2H{sub 2}O(12). Compounds 1–7 are the first examples of mercurous phosphonates and di/bisphosphonates. They contain Hg{sub 2}O{sub 6} units, which consist of Hg{sub 2}{sup 2+} cations with Hg-Hg bond of ~2.5 Å length. Phenylphosphonates 1 and 5 are layered compounds, whereas bis/diphosphonates 2, 3, 4, 6 and 7 have pillared-layered and three-dimensional structures. Compounds 8–11 are layered mercuric phosphonates and phenylarsonates. Compound 12 is a three-dimensional mixed-valent mercury phenylenebisphosphonate. - Graphical abstract: The first examples of mercurous organophosphonates and organodiphosphonates have layered, pillared-layered and three-dimensional structures.« less
NASA Technical Reports Server (NTRS)
Moses, Julianne I.; Bezard, Bruno; Lellouch, Emmanuel; Gladstone, G. Randall; Feuchtgruber, Helmut; Allen, Mark
2000-01-01
To investigate the details of hydrocarbon photochemistry on Saturn, we have developed a one-dimensional diurnally averaged model that couples hydrocarbon and oxygen photochemistry, molecular and eddy diffusion, radiative transfer, and condensation. The model results are compared with observations from the Infrared Space Observatory (ISO) to place tighter constraints on molecular abundances, to better define Saturn's eddy diffusion coefficient profile, and to identify important chemical schemes that control the abundances of the observable hydrocarbons in Saturn's upper atmosphere. From the ISO observations, we determine that the column 12 densities of CH3, CH3C2H, and C4H2 above 10 mbar are 4 (sup +2) (sub -1.5) x 10 (exp 13) cm (sup -2), (1.1 plus or minus 0.3) x 10 (exp 15) cm (exp -2), and (1.2 plus or minus 0.3) x 10 (exp 14) cm (sup -2), respectively. The observed ISO emission features also indicate C2H2 mixing ratios of 1.2 (sup +0.9) (sub -0.6) x 10 (exp -6) at 0.3 mbar and (2.7 plus or minus 0.8) x 10 (exp -7) at 1.4 mbar, and a C2H6 mixing ratio of (9 plus or minus 2.5) x 10 (exp -6) at 0.5 mbar. Upper limits are provided for C2H4, CH2CCH2, C3H8, and C6H2 sensitivity of the model results to variations in the eddy diffusion coefficient profile, the solar flux, the CH4 photolysis branching ratios, the atomic hydrogen influx, and key reaction rates are discussed in detail. We find that C4H2 and CH3C2H are particularly good tracers of important chemical processes and physical conditions in Saturn's upper atmosphere, and C2H6 is a good tracer of the eddy diffusion coefficient in Saturn's lower stratosphere. The eddy diffusion coefficient must be smaller than approximately 3 x 10 (exp 4) sq cm s (sup -1) at pressures greater than 1 mbar in order to reproduce the C2H6 abundance inferred from ISO observations. The eddy diffusion coefficients in the upper stratosphere could be constrained by observations of CH3 radicals if the low-temperature chemistry of CH3 were better understood. We also discuss the implications of our modeling for aerosol formation in Saturn's lower stratosphere-diacetylene, butane, and water condense between approximately 1 and 300 mbar in our model and will dominate stratospheric haze formation at nonauroral latitudes. Our photochemical models will be useful for planning observational sequences and for analyzing data from the upcoming Cassini mission.
Song, Li-Cheng; Li, Jia-Peng; Xie, Zhao-Jun; Song, Hai-Bin
2013-10-07
Four new dinuclear Ni/Mn model complexes RN(PPh2)2Ni(μ-SEt)2(μ-Cl)Mn(CO)3 (7, R = p-MeC6H4CH2; 8, R = EtO2CCH2) and RN(PPh2)2Ni(μ-SEt)2(μ-Br)Mn(CO)3 (9, R = p-MeC6H4CH2; 10, R = EtO2CCH2) have been prepared via the four separated step-reactions involving six new precursors RN(PPh2)2 (1, R = p-MeC6H4CH2; 2, R = EtO2CCH2), RN(PPh2)2NiCl2 (3, R = p-MeC6H4CH2; 4, R = EtO2CCH2), and RN(PPh2)2Ni(SEt)2 (5, R = p-MeC6H4CH2; 6, R = EtO2CCH2). The Et3N-assisted aminolysis of Ph2PCl with p-MeC6H4CH2NH2 or EtO2CCH2NH2·HCl in CH2Cl2 gave the azadiphosphine ligands 1 and 2 in 38% and 53% yields, whereas the coordination reaction of 1 or 2 with NiCl2·6H2O in CH2Cl2/MeOH afforded the mononuclear Ni dichloride complexes 3 and 4 in 59% and 78% yields, respectively. While thiolysis of 3 or 4 with EtSH under the assistance of Et3N in CH2Cl2 produced the mononuclear Ni dithiolate complexes 5 and 6 in 64% and 68% yields, further treatment of 5 and 6 with Mn(CO)5Cl or Mn(CO)5Br resulted in formation of the dinuclear Ni/Mn model complexes 7-10 in 31-73% yields. All the new compounds 1-10 have been structurally characterized, while model complexes 7 and 9 have been found to be catalysts for HOAc proton reduction to hydrogen under CV conditions.
Infrared polar brightening on Jupiter. III - Spectrometry from the Voyager 1 IRIS experiment
NASA Technical Reports Server (NTRS)
Kim, S. J.; Caldwell, J.; Rivolo, A. R.; Wagener, R.; Orton, G. S.
1985-01-01
Spectra from the Voyager 1 IRIS experiment confirm the existence of enhanced infrared emission near Jupiter's north magnetic pole in March 1979. The spectral characteristics of the enhanced emission are consistent with a Planck source function. A temperature-pressure profile is derived for the region near the north magnetic pole, from which quantitative abundance estimates of minor species are made. Some species previously detected on Jupiter, including CH3D, C2H2, and C2H6, have been observed again near the pole. Newly discovered species, not previously observed on Jupiter, include C2H4, C3H4, and C6H6. All of these species except CH3D appear to have enhanced abundances at the north polar region with respect to midlatitudes. Upper limits are determined for C4H2 and C3H8. The quantitative results are compared with model calculations based on ultraviolet results from the IUE satellite. The plausibility of the C6H6 identification is discussed in terms of the literature on C2H2 polymerization. The relation of C6H6 to cuprene is also discussed.
NASA Astrophysics Data System (ADS)
Gowda, B. Thimme; Shetty, Mahesha; Jayalakshmi, K. L.
2005-02-01
Twenty three N-(2-/3-substituted phenyl)-4-substituted benzenesulphonamides of the general formula, 4-X'C6H4SO2NH(2-/3-XC6H4), where X' = H, CH3, C2H5, F, Cl or Br and X = CH3 or Cl have been prepared and characterized, and their infrared spectra in the solid state, 1H and 13C NMR spectra in solution were studied. The N-H stretching vibrations, νN-H, absorb in the range 3285 - 3199 cm-1, while the asymmetric and symmetric SO2 vibrations vary in the ranges 1376 - 1309 cm-1 and 1177 - 1148 cm-1, respectively. The S-N and C-N stretching vibrations absorb in the ranges 945 - 893 cm-1 and 1304 - 1168 cm-1, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at ortho or meta positions with either a methyl group or Cl. The observed 1H and 13C chemical shifts of
Minyaev, Mikhail E; Tavtorkin, Alexander N; Korchagina, Sof'ya A; Bondarenko, Galina N; Churakov, Andrei V; Nifant'ev, Ilya E
2018-05-01
Crystals of mononuclear tris[bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-κO)lanthanide methanol monosolvates of lanthanum, [La(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (1), cerium, [Ce(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (2), and neodymium, [Nd(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (3), have been obtained by reactions between LnCl 3 (H 2 O) n (n = 6 or 7) and lithium bis(2,6-diisopropylphenyl) phosphate in a 1:3 molar ratio in methanol media. Compounds (1)-(3) crystallize in the monoclinic P2 1 /c space group and have isomorphous crystal structures. All three bis(2,6-diisopropylphenyl) phosphate ligands display a κO-monodentate coordination mode. The coordination number of the metal atom is 8. Each [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 3 (CH 3 OH) 5 ] molecular unit exhibits four intramolecular O-H...O hydrogen bonds, forming six-membered rings. The unit forms two intermolecular O-H...O hydrogen bonds with one noncoordinating methanol molecule. All six hydroxy H atoms are involved in hydrogen bonding within the [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 3 (CH 3 OH) 5 ]·CH 3 OH unit. This, along with the high steric hindrance induced by the three bulky diaryl phosphate ligands, prevents the formation of a hydrogen-bond network. Complexes (1)-(3) exhibit disorder of two of the isopropyl groups of the phosphate ligands. The cerium compound (2) demonstrates an essential catalytic inhibition in the thermal decomposition of polydimethylsiloxane in air at 573 K. Catalytic systems based on the neodymium complex tris[bis(2,6-diisopropylphenyl) phosphato-κO]neodymium, (3'), which was obtained as a dry powder of (3) upon removal of methanol, display a high catalytic activity in isoprene and butadiene polymerization.
Lo, Po-Kam; Lau, Kai-Chung
2011-02-10
The ionization energies (IEs) and heats of formation (ΔH°(f0)/ΔH°(f298)) for thiophene (C(4)H(4)S), furan (C(4)H(4)O), pyrrole (C(4)H(4)NH), 1,3-cyclopentadiene (C(4)H(4)CH(2)), and borole (C(4)H(4)BH) have been calculated by the wave function-based ab initio CCSD(T)/CBS approach, which involves the approximation to the complete basis set (CBS) limit at the coupled-cluster level with single and double excitations plus a quasi-perturbative triple excitation [CCSD(T)]. Where appropriate, the zero-point vibrational energy correction (ZPVE), the core-valence electronic correction (CV), and the scalar relativistic effect (SR) are included in these calculations. The respective CCSD(T)/CBS predictions for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2), being 8.888, 8.897, 8.222, and 8.582 eV, are in excellent agreement with the experimental values obtained from previous photoelectron and photoion measurements. The ΔH°(f0)/ΔH°(f298) values for the aforementioned molecules and their corresponding cations have also been predicted by the CCSD(T)/CBS method, and the results are compared with the available experimental data. The comparisons between the CCSD(T)/CBS predictions and the experimental values for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2) suggest that the CCSD(T)/CBS procedure is capable of predicting reliable IE values for five-membered-ring molecules with an uncertainty of ±13 meV. In view of the excellent agreements between the CCSD(T)/CBS predictions and the experimental values for C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, and C(4)H(4)CH(2), the similar CCSD(T)/CBS IE and ΔH°(f0)/ΔH°(f298) predictions for C(4)H(4)BH, whose thermochemical data are not readily available due to its reactive nature, should constitute a reliable data set. The CCSD(T)/CBS IE(C(4)H(4)BH) value is 8.868 eV, and ΔH°(f0)/ΔH°(f298) values for C(4)H(4)BH and C(4)H(4)BH(+) are 269.5/258.6 and 1125.1/1114.6 kJ/mol, respectively. The highest occupied molecular orbitals (HOMO) of C(4)H(4)S, C(4)H(4)O, C(4)H(4)NH, C(4)H(4)CH(2), and C(4)H(4)BH have also been studied by the natural bond orbital (NBO) method, and the extent of π-electron delocalization in these five-membered rings are discussed in correlation with their molecular structures and orbitals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru; Kucherepa, N. S.; Rodnikova, M. N.
The molecular and crystal structures of two p-(alkoxybenzylidene)-p'-toluidines C{sub 5}H{sub 11}O-C{sub 6}H{sub 4}-CH=N-C{sub 6}H{sub 4}-CH{sub 3} (1) and C{sub 8}H{sub 17}O-C{sub 6}H{sub 4}-CH=N-C{sub 6}H{sub 4}-CH{sub 3} (2), which form the nematic phase upon melting, is determined by X-ray diffraction. The geometry of the benzylideneaniline fragments in molecules 1 and 2 is actually identical. The crystal packings of 1 and 2 are characterized by the alternation of layers formed by loosely packed aliphatic fragments of molecules and layers of closely packed aromatic fragments. The packing in the aromatic regions of 1 follows the parquet pattern. The crystal packing of 2 hasmore » a stacking structure, which is formed by {pi}-stacking dimers superimposed on one another. The formation of the mesogenic phase upon melting of crystals 1 is due to the disturbance of the structurality of loose aliphatic layers with retention of the structure of the aromatic regions, which are stabilized by the cooperative effect of weak directed C-H ... {pi}-system interactions. The mesogenic phase of crystals 2 is formed upon melting as a consequence of the retention of the structure of {pi}-stacking dimers.« less
Photochemistry of Pluto's atmosphere and ionosphere near perihelion
NASA Astrophysics Data System (ADS)
Krasnopolsky, Vladimir A.; Cruikshank, Dale P.
1999-09-01
We consider Pluto's photochemistry using a background model for a hydrodynamically escaping atmosphere by Krasnopolsky [1999]. Some adjustments are made in the basic continuity equation and in the boundary conditions to account for hydrodynamic flow in the atmosphere. We model the photochemistry for 44 neutral and 23 ion species. Because of the high methane mixing ratio, Pluto's photochemistry is more similar to that of Titan than that of Triton. Charge exchange between N2+ and CH4 significantly reduces the production of atomic nitrogen. The most abundant photochemical products are C2H2(3×1017), C4H2(1017), HCN(6×1016), H2(4×1016), C2H4(4×1016), HC3N(3.4×1016), C2H6(2×1016), C3H2(9×1015), and C3H4 (8×1015, all in cm-2). In addition to the parent N2, CH4, and CO molecules which absorb photons with λ<145nm, these products absorb almost completely photons with λ<185nm, therefore significantly increasing the number of dissociation events. Photochemical losses of the parent species are much smaller than their escape. Precipitation rates are the highest for C2H2, C4H2, HC3N, HCN, C2H6, and C2H4 (65, 58, 23, 14, 9, and 6 g cm-2 Byr-1, respectively, reduced by a factor of 3 to account for seasonal variations). Escape of photochemical products is highest for H2, H, C2H2, C2H4, HCN, and N(2×1026, 1.4×1026, 6×1024, 3.6×1024, 2.3×1024, and 1.8×1024s-1, respectively). The electron density reaches a maximum of 800 cm-3 at 2250 km. The most abundant ions are HCNH+, C3H3+, and C3H5+. Some of the photochemical products might be detected using the technique of UV solar occultation spectroscopy from a spacecraft flyby.
Langeslay, Ryan R; Fieser, Megan E; Ziller, Joseph W; Furche, Filipp; Evans, William J
2016-03-30
The reactivity of the recently discovered Th(2+) complex [K(18-crown-6)(THF)2][Cp″3Th], 1 [Cp'' = C5H3(SiMe3)2-1,3], with hydrogen reagents has been investigated and found to provide syntheses of new classes of thorium hydride compounds. Complex 1 reacts with [Et3NH][BPh4] to form the terminal Th(4+) hydride complex Cp″3ThH, 2, a reaction that formally involves a net two-electron reduction. Complex 1 also reacts in the solid state and in solution with H2 to form a mixed-valent bimetallic product, [K(18-crown-6)(Et2O)][Cp″2ThH2]2, 3, which was analyzed by X-ray crystallography, electron paramagnetic resonance and optical spectroscopy, and density functional theory. The existence of 3, which formally contains Th(3+) and Th(4+), suggested that KC8 could reduce [(C5Me5)2ThH2]2. In the presence of 18-crown-6, this reaction forms an analogous mixed-valent product formulated as [K(18-crown-6)(THF)][(C5Me5)2ThH2]2, 4. A similar complex with (C5Me4H)(1-) ligands was not obtained, but reaction of (C5Me4H)3Th with H2 in the presence of KC8 and 2.2.2-cryptand at -45 °C produced two monometallic hydride products, namely, (C5Me4H)3ThH, 5, and [K(2.2.2-cryptand)]{(C5Me4H)2[η(1):η(5)-C5Me3H(CH2)]ThH]}, 6. Complex 6 contains a metalated tetramethylcyclopentadienyl dianion, [C5Me3H(CH2)](2-), that binds in a tuck-in mode.
Fulvene to cyclopentadienyl conversion with homoleptic complexes of zirconium and hafnium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, J.S.; Lachicotte, R.J.; Bazan, G.C.
1999-09-27
The reaction of 6,6-dimethylfulvene with M(CH{sub 2}Ph){sub 4} (M = Zr, Hf) in benzene gives [{eta}{sup 5}-C{sub 5}H{sub 4}(CMe{sub 2}CH{sub 2}Ph)]M(CH{sub 2}Ph){sub 3} (1, M = Zr; 2, M = Hf) without any observable byproducts. A similar reaction for M = Ti is not observed. The single-crystal X-ray study of 1 shows a three-legged piano-stool geometry with an {eta}{sup 2}-bound benzyl ligand. A second equivalent of 6,6-dimethylfulvene does not react with either 1 or 2. The bulkier 6,6-diphenyfulvene only reacts cleanly with the more Lewis acidic Hf(CH{sub 2}Ph){sub 4} to give [{eta}{sup 5}-C{sub 5}H{sub 4}(CPh{sub 2}CH{sub 2}Ph)]Hf(CH{sub 2}Ph){sub 3} (3).more » Using the tetraamido complexes M(NMe{sub 2}Ph){sub 4} and 6,6-dimethylfulvene, one obtains dimethylamine and [{eta}{sup 5}-C{sub 5}H{sub 4}(CMeCH{sub 2})]M(NMe{sub 2}){sub 3} (4 for M = Zr) in good yield. These products are formally derived from the deprotonation of a fulvene methyl group and subsequent coordination of the resulting 2-propenylcyclopentadienyl fragment. Reaction of 4 and 6,6-dimethylfulvene affords the bent metallocene [{eta}{sup 5}-C{sub 5}H{sub 4}(CMeCH{sub 2})]{sub 2}Zr(NMe{sub 2}){sub 2} (5). Excess 8,8-dimethylbenzofulvene and M(NMe{sub 2}){sub 4} provides exclusively the product with only one coordinated indene.« less
Measurement of clathrate hydrates via Raman spectroscopy
Sum, A.K.; Burruss, R.C.; Sloan, E.D.
1997-01-01
Raman spectra of clathrate hydrate guest molecules are presented for three known structures (I (sI), II (sII), and H (sH)) in the following systems: CH4 (sI), CO2 (sI), C3H8 (sII), CH4 + CO2 (sI), CD4 + C3H8 (sII), CH4 + N2 (sI), CH4 + THF-d8 (sII), and CH4 + C7D14 (sH). Relative occupancy of CH4 in the large and small cavities of sI were determined by deconvoluting the ??1 symmetric bands, resulting in hydration numbers of 6.04 ?? 0.03. The frequency of the ??1 bands for CH4 in structures I, II, and H differ statistically, so that Raman spectroscopy is a potential tool to identify hydrate crystal structure. Hydrate guest compositions were also measured for two vapor compositions of the CH4 + CO2 system, and they compared favorably with predictions. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities. Hydration numbers from 7.27 to 7.45 were calculated for the mixed hydrate.
Ma, Li; Pan, Yi; Man, Wai-Lun; Kwong, Hoi-Ki; Lam, William W Y; Chen, Gui; Lau, Kai-Chung; Lau, Tai-Chu
2014-05-28
The oxidation of various alkanes catalyzed by [Mn(V)(N)(CN)4](2-) using various terminal oxidants at room temperature has been investigated. Excellent yields of alcohols and ketones (>95%) are obtained using H2O2 as oxidant and CF3CH2OH as solvent. Good yields (>80%) are also obtained using (NH4)2[Ce(NO3)6] in CF3CH2OH/H2O. Kinetic isotope effects (KIEs) are determined by using an equimolar mixture of cyclohexane (c-C6H12) and cyclohexane-d12 (c-C6D12) as substrate. The KIEs are 3.1 ± 0.3 and 3.6 ± 0.2 for oxidation by H2O2 and Ce(IV), respectively. On the other hand, the rate constants for the formation of products using c-C6H12 or c-C6D12 as single substrate are the same. These results are consistent with initial rate-limiting formation of an active intermediate between [Mn(N)(CN)4](2-) and H2O2 or Ce(IV), followed by H-atom abstraction from cyclohexane by the active intermediate. When PhCH2C(CH3)2OOH (MPPH) is used as oxidant for the oxidation of c-C6H12, the major products are c-C6H11OH, c-C6H10O, and PhCH2C(CH3)2OH (MPPOH), suggesting heterolytic cleavage of MPPH to generate a Mn═O intermediate. In the reaction of H2O2 with [Mn(N)(CN)4](2-) in CF3CH2OH, a peak at m/z 628.1 was observed in the electrospray ionization mass spectrometry, which is assigned to the solvated manganese nitrido oxo species, (PPh4)[Mn(N)(O)(CN)4](-)·CF3CH2OH. On the basis of the experimental results the proposed mechanism for catalytic alkane oxidation by [Mn(V)(N)(CN)4](2-)/ROOH involves initial rate-limiting O-atom transfer from ROOH to [Mn(N)(CN)4](2-) to generate a manganese(VII) nitrido oxo active species, [Mn(VII)(N)(O)(CN)4](2-), which then oxidizes alkanes (R'H) via a H-atom abstraction/O-rebound mechanism. The proposed mechanism is also supported by density functional theory calculations.
An experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon
Tran, L.S.; Glaude, P.A.; Battin-Leclerc, F.
2013-01-01
The structures of three laminar premixed stoichiometric flames at low pressure (6.7 kPa): a pure methane flame, a pure ethanol flame and a methane flame doped by 30% of ethanol, have been investigated and compared. The results consist of concentration profiles of methane, ethanol, O2, Ar, CO, CO2, H2O, H2, C2H6, C2H4, C2H2, C3H8, C3H6, p-C3H4, a-C3H4, CH2O, CH3HCO, measured as a function of the height above the burner by probe sampling followed by on-line gas chromatography analyses. Flame temperature profiles have been also obtained using a PtRh (6%)-PtRh (30%) type B thermocouple. The similarities and differences between the three flames were analyzed. The results show that, in these three flames, the concentration of the C2 intermediates is much larger than that of the C3 species. In general, mole fraction of all intermediate species in the pure ethanol flame is the largest, followed by the doped flame, and finally the pure methane flame. PMID:24092946
Aguilar, David; Navarro, Rafael; Soler, Tatiana; Urriolabeitia, Esteban P
2010-11-21
The orthopalladation of iminophosphoranes [R(3)P=N-C(10)H(7)-1] (R(3) = Ph(3) 1, p-Tol(3) 2, PhMe(2) 3, Ph(2)Me 4, N-C(10)H(7)-1 = 1-naphthyl) has been studied. It occurs regioselectively at the aryl ring bonded to the P atom in 1 and 2, giving endo-[Pd(μ-Cl)(C(6)H(4)-(PPh(2=N-1-C(10)H(7))-2)-κ-C,N](2) (5) or endo-[Pd(μ-Cl)(C(6)H(3)-(P(p-Tol)(2)=N-C(10)H(7)-1)-2-Me-5)-κ-C,N](2) (6), while in 3 the 1-naphthyl group is metallated instead, giving exo-[Pd(μ-Cl)(C(10)H(6)-(N=PPhMe(2))-8)-κ-C,N](2) (7). In the case of 4, orthopalladation at room temperature affords the kinetic exo isomer [Pd(μ-Cl)(C(10)H(6)-(N=PPh(2)Me)-8)-κ-C,N](2) (11exo), while a mixture of 11exo and the thermodynamic endo isomer [Pd(μ-Cl)(C(6)H(4)-(PPhMe=N-C(10)H(7)-1)-2)-κ-C,N](2) (11endo) is obtained in refluxing toluene. The heating in toluene of the acetate bridge dimer [Pd(μ-OAc)(C(10)H(6)-(N=PPh(2)Me)-8)-κ-C,N](2) (13exo) promotes the facile transformation of the exo isomer into the endo isomer [Pd(μ-OAc)(C(6)H(4)-(PPhMe=N-C(10)H(7)-1)-2)-κ-C,N](2) (13endo), confirming that the exo isomers are formed under kinetic control. Reactions of the orthometallated complexes have led to functionalized molecules. The stoichiometric reactions of the orthometallated complexes [Pd(μ-Cl)(C(10)H(6)-(N=PPhMe(2))-8)-κ-C,N](2) (7), [Pd(μ-Cl)(C(6)H(4)-(PPh(2)[=NPh)-2)](2) (17) and [Pd(μ-Cl)(C(6)H(3)-(C(O)N=PPh(3))-2-OMe-4)](2) (18) with I(2) or with CO results in the synthesis of the ortho-halogenated compounds [PhMe(2)P=N-C(10)H(6)-I-8] (19), [I-C(6)H(4)-(PPh(2)=NPh)-2] (21) and [Ph(3)P=NC(O)C(6)H(3)-I-2-OMe-5] (23) or the heterocycles [C(10)H(6)-(N=PPhMe(2))-1-(C(O))-8]Cl (20), [C(6)H(5)-(N=PPh(2)-C(6)H(4)-C(O)-2]ClO(4) (22) and [C(6)H(3)-(C(O)-1,2-N-PPh(3))-OMe-4]Cl (24).
Water-soluble titanium alkoxide material
Boyle, Timothy J.
2010-06-22
A water soluble, water stable, titanium alkoxide composition represented by the chemical formula (OC.sub.6H.sub.6N).sub.2Ti(OC.sub.6H.sub.2(CH.sub.2N(CH.sub.3).sub.2).sub- .3-2,4,6).sub.2 with a theoretical molecular weight of 792.8 and an elemental composition of 63.6% C, 8.1% H, 14.1% N, 8.1% O and 6.0% Ti.
Lipke, Mark C; Neumeyer, Felix; Tilley, T Don
2014-04-23
Solid samples of η(3)-silane complexes [PhBP(Ph)3]RuH(η(3)-H2SiRR') (R,R' = Et2, 1a; PhMe, 1b; Ph2, 1c, MeMes, 1d) decompose when exposed to dynamic vacuum. Gas-phase H2/D2 exchange between isolated, solid samples of 1c-d3 and 1c indicate that a reversible elimination of H2 is the first step in the irreversible decomposition. An efficient solution-phase trap for hydrogen, the 16-electron ruthenium benzyl complex [PhBP(Ph)3]Ru[η(3)-CH2(3,5-Me2C6H3)] (3) reacts quantitatively with H2 in benzene via elimination of mesitylene to form the η(5)-cyclohexadienyl complex [PhBP(Ph)3]Ru(η(5)-C6H7) (4). This H2 trapping reaction was utilized to drive forward and quantify the elimination of H2 from 1b,d in solution, which resulted in the decomposition of 1b,d to form 4 and several organosilicon products that could not be identified. Reaction of {[PhBP(Ph)3]Ru(μ-Cl)}2 (2) with (THF)2Li(SiHMes2) forms a new η(3)-H2Si species [PhBP(Ph)3]Ru[CH2(2-(η(3)-H2SiMes)-3,5-Me2C6H2)] (5) which reacts with H2 to form the η(3)-H2SiMes2 complex [PhBP(Ph)3]RuH(η(3)-H2SiMes2) (1e). Complex 1e was identified by NMR spectroscopy prior to its decomposition by elimination of Mes2SiH2 to form 4. DFT calculations indicate that an isomer of 5, the 16-electron silylene complex [PhBP(Ph)3]Ru(μ-H)(═SiMes2), is only 2 kcal/mol higher in energy than 5. Treatment of 5 with XylNC (Xyl = 2,6-dimethylphenyl) resulted in trapping of [PhBP(Ph)3]Ru(μ-H)(═SiMes2) to form the 18-electron silylene complex [PhBP(Ph)3]Ru(CNXyl)(μ-H)(═SiMes2) (6). A closely related germylene complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)](H)(═GeH(t)Bu) (8) was prepared from reaction of (t)BuGeH3 with the benzyl complex [PhBP(Ph)3]Ru[CN(2,6-diphenyl-4-MeC6H2)][η(1)-CH2(3,5-Me2C6H3)] (7). Single crystal XRD analysis indicated that unlike for 6, the hydride ligand in 8 is a terminal hydride that does not engage in 3c-2e Ru-H → Ge bonding. Complex 1b is an effective precatalyst for the catalytic Ge-H dehydrocoupling of (t)BuGeH3 to form ((t)BuGeH2)2 (85% yield) and H2.
Isotopic signatures of anthropogenic CH4 sources in Alberta, Canada
NASA Astrophysics Data System (ADS)
Lopez, M.; Sherwood, O. A.; Dlugokencky, E. J.; Kessler, R.; Giroux, L.; Worthy, D. E. J.
2017-09-01
A mobile system was used for continuous ambient measurements of stable CH4 isotopes (12CH4 and 13CH4) and ethane (C2H6). This system was used during a winter mobile campaign to investigate the CH4 isotopic signatures and the C2H6/CH4 ratios of the main anthropogenic sources of CH4 in the Canadian province of Alberta. Individual signatures were derived from δ13CH4 and C2H6 measurements in plumes arriving from identifiable single sources. Methane emissions from beef cattle feedlots (n = 2) and landfill (n = 1) had δ13CH4 signatures of -66.7 ± 2.4‰ and -55.3 ± 0.2‰, respectively. The CH4 emissions associated with the oil or gas industry had distinct δ13CH4 signatures, depending on the formation process. Emissions from oil storage tanks (n = 5) had δ13CH4 signatures ranging from -54.9 ± 2.9‰ to -60.6 ± 0.6‰ and non-detectable C2H6, characteristic of secondary microbial methanogenesis in oil-bearing reservoirs. In contrast, CH4 emissions associated with natural gas facilities (n = 8) had δ13CH4 signatures ranging from -41.7 ± 0.7‰ to -49.7 ± 0.7‰ and C2H6/CH4 molar ratios of 0.10 for raw natural gas to 0.04 for processed/refined natural gas, consistent with thermogenic origins. These isotopic signatures and C2H6/CH4 ratios have been used for source discrimination in the weekly atmospheric measurements of stable CH4 isotopes over a two-month winter period at the Lac La Biche (LLB) measurement station, located in Alberta, approximately 200 km northeast of Edmonton. The average signature of -59.5 ± 1.4‰ observed at LLB is likely associated with transport of air after passing over oil industry sources located south of the station.
NASA Astrophysics Data System (ADS)
Holmes, John L.; Aubry, Christiane; Wang, Xian
2007-11-01
This paper describes, with examples, a critical assessment of thermochemical data for some small molecules and free radicals. The available heats of formation, [Delta]fH° (all 298 K values). for simple alkyl hydroperoxides and di-alkyl peroxides were compared and new data are provided. The [Delta]fH° values, all ±5 kJ/mol, are: CH3OOH, -135; CH3CH2OOH, -168; n-C3H7OOH, -189; s-C3H7OOH, -205; t-C4H9OOH, -240; CH3OOCH3, -132; CH3CH2OOCH3, -165; C2H5OOC2H5, -198; n-C3H7OOn-C3H7, -240; s-C3H7OOs-C3H7, -272; t-C4H9OOt-C4H9, -342. These are consistent with established O-O bond dissociation energies and with additivity considerations. [Delta]fH° values for the corresponding alkoxy radicals are also addressed. A similar survey was applied to the homologous n-alkyl aldehydes, C2 to C8, for which recommended [Delta]fH° values, all ±1.5 kJ/mol, are: -166.5, -189, -207.5, -227, -248, -268 and -289, respectively. Particular attention was given to [Delta]fH°(CH3CO) = -10.3 ± 1.8 kJ/mol. The current NIST WebBook datum, [Delta]fH°(CS) = 280.3 kJ/mol, is arguably the best value, being consistent with related thermochemical data. Finally the [Delta]fH° values for the allylic free radicals CH2CHCH2, 174 ± 3 kJ/mol, CH2CHCH(OH), 4.5 ± 4 kJ/mol, and (CH2CH)2C(OH), 37 ± 4 kJ/mol, derived from experimental data and results of computational chemistry are described, together with some related homolytic bond strengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lingxiang; Omid, Maryam; Lin, Haiqing
Cross-linking has been widely utilized to modify polyimide nanostructures for membrane gas separations, such as increasing size sieving ability and diffusivity selectivity for H2/CO2 and CO2/CH4 separation, and improving resistance to plasticization derived from CO2 and heavy hydrocarbons for CO2/CH4 and C3H6/C3H8 separations. However, there is a lack of fundamental understanding of the relationship between cross linked structure and membrane gas separation properties. This chapter critically reviews the effect of cross linking on polymer physical properties (such as glass transition temperature, Tg), and current strategies adopted to cross link polyimides for membrane gas separation. The information is synthesized to elucidatemore » the effect of cross linking on Tg and cross linking density in polyimides, which is then used to interpret the changes of gas permeability and selectivity. The benefits of cross linking in improving gas separation properties are also illustrated in Robeson’s upper bound plots for H2/CO2, CO2/CH4 and C3H6/C3H8 separation.« less
Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor
NASA Astrophysics Data System (ADS)
Porterfield, Jessica P.; Nguyen, Thanh Lam; Baraban, Joshua H.; Buckingham, Grant; Troy, Tyler; Kostko, Oleg; Ahmed, Musahid; Stanton, John F.; Daily, John W.; Ellison, Barney
2016-06-01
he thermal decomposition of cyclohexanone (C_6H10=O) has been studied in a set of flash-pyrolysis micro-reactors. Samples of C_6H10=O were first observed to decompose at 1200 K. Short residence times of 100 μsec and dilution of samples (<0.1%) isolate unimolecular decomposition. Products were identified by tunable VUV photoionization mass spectroscopy, photoionization appearance thresholds, and complementary matrix infrared absorption spectroscopy. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways pictured to the right. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C_6H_9OH), is followed by retro-Diels-Alder cleavage to CH_2=CH_2 and CH_2=C(OH)-CH=CH_2. Further isomerization of CH_2=C(OH)CH=CH_2 to methyl vinyl ketone (CH_3COCH=CH_2, MVK) was also observed. Photoionization spectra identified both enols, C_6H_9OH and CH=C(OH)CH=CH_2, and the ionization threshold of C_6H_9OH was measured to be 8.2 ± 0.1 eV. At 1200 K, the products of cyclohexanone pyrolysis were found to be: C_6H_9OH, CH_2=C(OH)CH=CH_2, MVK, CH_2CHCH_2, CO, CH_2=C=O, CH_3, CH_2=C=CH_2, CH_2=CH-CH=CH_2, CH_2=CHCH_2CH_3, CH_2=CH_2, and HCCH.
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Dufour, Gaelle; Boone, Chris D.; Bernath, Peter F.; Chiou, Linda; Coheur, Pierre-Francois; Turquety, Solene; Clerbaux, Cathy
2007-01-01
Simultaneous ACE (Atmospheric Chemistry Experiment) upper tropospheric CO, C2H6, HCN, CH3Cl, CH4 , C2H2 , CH30H, HCOOH, and OCS measurements show plumes up to 185 ppbv (10 (exp -9) per unit volume) for CO, 1.36 ppbv for C2H6, 755 pptv (10(exp -12) per unit volume) for HCN, 1.12 ppbv for CH3C1, 1.82 ppmv, (10(exp -6) per unit volume) for CH4, 0.178 ppbv for C2H2, 3.89 ppbv for CH30H, 0.843 ppbv for HCOOH, and 0.48 ppbv for OCS in western Canada and Alaska at 50 deg N-68 deg N latitude between 29 June and 23 July 2004. Enhancement ratios and emission factors for HCOOH, CH30H, HCN, C2H6, and OCS relative to CO at 250-350 hPa are inferred from measurements of young plumes compared with lower mixing ratios assumed to represent background conditions based on a CO emission factor derived from boreal measurements. Results are generally consistent with the limited data reported for various vegetative types and emission phases measured in extratropical forests including boreal forests. The low correlation between fire product emission mixing ratios and the S176 mixing ratio is consistent with no significant SF6 emissions from the biomass fires.
Mechanistic investigations of imine hydrogenation catalyzed by cationic iridium complexes.
Martín, Marta; Sola, Eduardo; Tejero, Santiago; Andrés, José L; Oro, Luis A
2006-05-15
Complexes [IrH2(eta6-C6H6)(PiPr3)]BF4 (1) and [IrH2(NCMe)3(PiPr3)]BF4 (2) are catalyst precursors for homogeneous hydrogenation of N-benzylideneaniline under mild conditions. Precursor 1 generates the resting state [IrH2{eta5-(C6H5)NHCH2Ph}(PiPr3)]BF4 (3), while 2 gives rise to a mixture of [IrH{PhN=CH(C6H4)-kappaN,C}(NCMe)2(PiPr3)]BF4 (4) and [IrH{PhN=CH(C6H4)-kappaN,C}(NCMe)(NH2Ph)(PiPr3)]BF4 (5), in which the aniline ligand is derived from hydrolysis of the imine. The less hindered benzophenone imine forms the catalytically inactive, doubly cyclometalated compound [Ir{HN=CPh(C6H4)-kappaN,C}2(NH2CHPh2)(PiPr3)]BF4 (6). Hydrogenations with precursor 1 are fast and their reaction profiles are strongly dependent on solvent, concentrations, and temperature. Significant induction periods, minimized by addition of the amine hydrogenation product, are commonly observed. The catalytic rate law (THF) is rate = k[1][PhN=CHPh]p(H2). The results of selected stoichiometric reactions of potential catalytic intermediates exclude participation of the cyclometalated compounds [IrH{PhN=CH(C6H4)-kappaN,C}(S)2(PiPr3)]BF4 [S = acetonitrile (4), [D6]acetone (7), [D4]methanol (8)] in catalysis. Reactions between resting state 3 and D2 reveal a selective sequence of deuterium incorporation into the complex which is accelerated by the amine product. Hydrogen bonding among the components of the catalytic reaction was examined by MP2 calculations on model compounds. The calculations allow formulation of an ionic, outer-sphere, bifunctional hydrogenation mechanism comprising 1) amine-assisted oxidative addition of H2 to 3, the result of which is equivalent to heterolytic splitting of dihydrogen, 2) replacement of a hydrogen-bonded amine by imine, and 3) simultaneous H delta+/H delta- transfer to the imine substrate from the NH moiety of an arene-coordinated amine ligand and the metal, respectively.
Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter
NASA Technical Reports Server (NTRS)
Sada, P. V.; Bjoraker, G. L.; Jennings, D. E.; McCabe, G. H.; Romani, P. N.
1998-01-01
We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. c1998 Academic Press.
Sherlock, David J.; Chandrasekaran, A.; Prakasha, T. K.; Day, Roberta O.; Holmes, Robert R.
1998-01-12
New bicyclic tetraoxyphosphoranes all containing a six-membered oxaphosphorinane ring, C(6)H(8)(CH(2)O)(2)P(OC(12)H(8))(OXyl) (1), (C(6)H(4)O)(2)P(OC(12)H(8))(OXyl) (2), CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(OC(12)H(8))(OXyl) (3), O(2)S[(t-Bu)MeC(6)H(2)O](2)P(OC(12)H(8))(OXyl) (4), and S[(t-Bu)MeC(6)H(2)O](2)P(OC(12)H(8))(OXyl) (5), were synthesized by the oxidative addition reaction of the cyclic phosphine P(OC(12)H(8))(OXyl) (6) with an appropriate diol in the presence of N-chlorodiisopropylamine. X-ray analysis revealed trigonal bipyramidal (TBP) geometries for 1-4 where the dioxa ring varied in size from six- to eight-membered. With a sulfur donor atom as part of an eight-membered ring in place of a potential oxygen donor atom of a sulfone group as in 4, the X-ray study of 5 showed the formation of a hexacoordinated structure via a P-S interaction. Ring constraints are evaluated to give an order of conformational flexibility associated with the (TBP) tetraoxyphosphoranes 4 > 3 approximately 1 > 2 which parallels the degree of shielding from (31)P NMR chemical shifts: 4 > 3 > 1 > 2. The six- and seven-membered dioxa rings in 1 and 2, respectively, are positioned at axial-equatorial sites, whereas the eight-membered dioxa ring in 3 and 4 occupies diequatorial sites of a TBP. V-T (1)H NMR data give barriers to xylyl group rotation about the C-OXyl bond. The geometry of 5 is located along a coordinate from square pyramidal toward octahedral to the extent of 60.7%. Achieving hexacoordination in bicyclic tetraoxyphosphoranes of reduced electrophilicity relative to bicyclic pentaoxyphosphoranes appears to be dependent on the presence of a sufficiently strong donor atom.
NASA Astrophysics Data System (ADS)
Shetty, Mahesha; Gowda, B. Thimme
2005-02-01
Fifty four N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides of the general formula 4-X'C6H4SO2NH(i,j-X2C6H3), where X' = H, CH3, C2H5, F, Cl or Br; i,j = 2,3; 2,4; 2,5; 2,6 or 3, 4; and X = CH3 or Cl, are prepared and characterized and their infrared, 1H and 13C NMR spectra in solution are studied. The N-H stretching vibrations νN-H absorb in the range 3305 - 3205 cm-1, while the asymmetric and symmetric SO2 vibrations vary in the ranges 1377 - 1307 cm-1 and 1184 - 1128 cm-1, respectively. The N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides show C-S, S-N and C-N stretching vibrations in the ranges 844 - 800 cm-1, 945 - 891 cm-1 and 1309 - 1170 cm-1, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at ortho or meta positions with either a methyl group or Cl. The observed 1H and 13C chemical shifts of
NASA Astrophysics Data System (ADS)
Ayed, Meriem; Mestiri, Imen; Ayed, Brahim; Haddad, Amor
2017-01-01
Two new organic-inorganic hybrid compound, (C5H5N5)2(C5H6N5)4[(HAsO4)2Mo6O18]·11H2O (I) and Na2(Himi)3[SeMo6O21(CH3COO)3]·6H2O (II) were synthesized and structurally characterized by scanning electron microscopy (SEM), elemental analyses, FTIR, UV spectroscopy, thermal stability analysis, XRD and single crystal X-ray diffraction. Crystal data: (I) triclinic system, space group P-1, a = 11,217 (9) Å, b = 11,637 (8) Å, c = 14,919 (8) Å, α = 70,90 (5)°, β = 70,83 (2)°, γ = 62,00(1)° and Z = 1; (II) triclinic system, space group P-1, a = 10.6740(1) Å, b = 10.6740(1) Å, c = 20.0570(1) Å, α = 76.285(1)°, β = 82.198(2)°, γ = 87.075(1)°, Z = 1. The crystal structure of (I) can be described by infinite polyanions [(HAsO4)2Mo6O18]4- organized with water molecules in layers parallel to the c-direction; adjacent layers are further joined up by hydrogen bonding interactions with organic groups which were associated in chains spreading along the b-direction. The structure of (II) consists of functionalized selenomolybdate clusters [SeMo6O21(CH3COO)3]5-, protonated imidazole cations, sodium ions and lattice water molecules, which are held together to generate a three-dimensional supramolecular network via hydrogen-bonding interaction. Furthermore, the electrochemical properties of these compounds have been studied.
VizieR Online Data Catalog: IR absorbance spectra of CH4, C2H6, C3H8 & C4H10 (Turner+, 2018)
NASA Astrophysics Data System (ADS)
Turner, A. M.; Abplanalp, M. J.; Blair, T. J.; Dayuha, R.; Kaiser, R. I.
2018-03-01
In situ infrared data were collected by a Nicolet 6700 Fourier Transform Infrared Spectrometer at 4cm-1 resolution throughout the irradiation and temperature programmed desorption (TPD). (2 data files).
Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor
Porterfield, Jessica P.; Nguyen, Thanh Lam; Baraban, Joshua H.; ...
2015-11-30
Here, the thermal decomposition of cyclohexanone (C 6H 10=O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C 6H 10=O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 μs. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of whichmore » open roughly simultaneously. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C 6H 9OH), is followed by retro-Diels–Alder cleavage to CH 2=CH 2 and CH 2=C(OH)–CH=CH 2. Further isomerization of CH 2=C(OH)–CH=CH 2 to methyl vinyl ketone (CH 3CO–CH=CH 2, MVK) was also observed. Photoionization spectra identified both enols, C 6H 9OH and CH 2=C(OH)–CH=CH 2, and the ionization threshold of C 6H 9OH was measured to be 8.2 ± 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be Δ fH 298(cis-CH 3CO–CH=CH 2) = -26.1 ± 0.5 kcal mol –1 and Δ fH 298(s-cis-1-CH 2=C(OH)–CH=CH 2) = -13.7 ± 0.5 kcal mol –1. The reaction enthalpy Δ rxnH 298(C 6H 10=O → CH 2=CH 2 + s-cis-1-CH 2=C(OH)–CH=CH 2) is 53 ± 1 kcal mol –1 and Δ rxnH 298(C 6H 10=O → CH 2=CH 2 + cis-CH 3CO–CH=CH 2) is 41 ± 1 kcal mol –1. At 1200 K, the products of cyclohexanone pyrolysis were found to be C 6H 9OH, CH 2=C(OH)–CH=CH 2, MVK, CH 2CHCH 2, CO, CH 2=C=O, CH 3, CH 2=C=CH 2, CH 2=CH–CH=CH 2, CH 2=CHCH 2CH 3, CH 2=CH 2, and HC≡CH.« less
Saha, Dipendu; Orkoulas, Gerassimos; Yohannan, Samuel; Ho, Hoi Chun; Cakmak, Ercan; Chen, Jihua; Ozcan, Soydan
2017-04-26
In this work, nanoporous boron nitride sample was synthesized with a Brunauer-Emmett-Teller (BET) surface area of 1360 m 2 /g and particle size 5-7 μm. The boron nitride was characterized with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electron microscopy (TEM and SEM). Thermogravimetric analysis (TGA) under nitrogen and air and subsequent analysis with XPS and XRD suggested that its structure is stable in air up to 800 °C and in nitrogen up to 1050 °C, which is higher than most of the common adsorbents reported so far. Nitrogen and hydrocarbon adsorption at 298 K and pressure up to 1 bar suggested that all hydrocarbon adsorption amounts were higher than that of nitrogen and the adsorbed amount of hydrocarbon increases with an increase in its molecular weight. The kinetics of adsorption data suggested that adsorption becomes slower with the increase in molecular weight of hydrocarbons. The equilibrium data suggested that that boron nitride is selective to paraffins in a paraffin-olefin mixture and hence may act as an "olefin generator". The ideal adsorbed solution theory (IAST)-based selectivity for CH 4 /N 2 , C 2 H 6 /CH 4 , and C 3 H 8 /C 3 H 6 was very high and probably higher than the majority of adsorbents reported in the literature. IAST-based calculations were also employed to simulate the binary mixture adsorption data for the gas pairs of CH 4 /N 2 , C 2 H 6 /CH 4 , C 2 H 6 /C 2 H 4 , and C 3 H 8 /C 3 H 6 . Finally, a simple mathematical model was employed to simulate the breakthrough behavior of the above-mentioned four gas pairs in a dynamic column experiment. The overall results suggest that nanoporous boron nitride can be used as a potential adsorbent for light hydrocarbon separation.
On the mechanism of nitrosoarene-alkyne cycloaddition.
Penoni, Andrea; Palmisano, Giovanni; Zhao, Yi-Lei; Houk, Kendall N; Volkman, Jerome; Nicholas, Kenneth M
2009-01-21
The thermal reaction between nitrosoarenes and alkynes produces N-hydroxyindoles as the major products. The mechanism of these novel reactions has been probed using a combination of experimental and computational methods. The reaction of nitrosobenzene (NB) with an excess of phenyl acetylene (PA) is determined to be first order in each reactant in benzene at 75 degrees C. The reaction rates have been determined for reactions between phenyl acetylene with a set of p-substituted nitrosoarenes, 4-X-C(6)H(4)NO, and of 4-O(2)N-C(6)H(4)NO with a set of p-substituted arylalkynes, 4-Y-C(6)H(4)C[triple bond]CH. The former reactions are accelerated by electron-withdrawing X groups (rho = +0.4), while the latter are faster with electron-donating Y groups (rho = -0.9). The kinetic isotope effect for the reaction of C(6)H(5)NO/C(6)D(5)NO with PhC[triple bond]CH is found to be 1.1 (+/-0.1) while that between PhC[triple bond]CH/PhC[triple bond]CD with PhNO is also 1.1 (+/-0.1). The reaction between nitrosobenzene and the radical clock probe cyclopropylacetylene affords 3-cyclopropyl indole in low yield. In addition to 3-carbomethoxy-N-hydroxyindole, the reaction between PA and o-carbomethoxy-nitrosobenzene also affords a tricyclic indole derivative, 3, likely derived from trapping of an intermediate indoline nitrone with PA and subsequent rearrangement. Computational studies of the reaction mechanism were carried out with density functional theory at the (U)B3LYP/6-31+G(d) level. The lowest energy pathway of the reaction of PhNO with alkynes was found to be stepwise; the N-C bond between nitrosoarene and acetylene is formed first, the resulting vinyl diradical undergoes cis-trans isomerization, and then the C-C bond forms. Conjugating substituents Z on the alkyne, Z-C[triple bond]CH, lower the calculated (and observed) activation barrier, Z = -H (19 kcal/mol), -Ph (15.8 kcal/mol), and -C(O)H (13 kcal/mol). The regioselectivity of the reaction, with formation of the 3-substituted indole, was reproduced by the calculations of PhNO + PhC[triple bond]CH; the rate-limiting step for formation of the 2-substituted indole is higher in energy by 11.6 kcal/mol. The effects of -NO(2), -CN, -Cl, -Br, -Me, and -OMe substituents were computed for the reactions of p-X-C(6)H(4)NO with PhC[triple bond]CH and of PhNO and/or p-NO(2)-C(6)H(4)NO with p-Y-C(6)H(4)C[triple bond]CH. The activation energies for the set of p-X-C(6)H(4)NO vary by 4.3 kcal/mol and follow the trend found experimentally, with electron-withdrawing X groups accelerating the reactions. The range of barriers for the p-Y-C(6)H(4)C[triple bond]CH reactions is smaller, about 1.5 and 1.8 kcal/mol in the cases of PhNO and p-NO(2)-PhNO, respectively. In agreement with the experiments, electron-donating Y groups on the alkyne accelerate the reactions with p-NO(2)-C(6)H(4)NO, while both ED and EW groups are predicted to facilitate the reaction. The calculated kinetic isotope effect for the reaction of C(6)H(5)NO/C(6)D(5)NO with PhC[triple bond]CH is negligible (as found experimentally) while that for PhC[triple bond]CH/PhC[triple bond]CD with PhNO (0.7) differs somewhat from the experiment (1.1). Taken together the experimental and computational results point to the operation of a stepwise diradical cycloaddition, with rate-limiting N-C bond formation and rapid C-C connection to form a bicyclic cyclohexadienyl-N-oxyl diradical, followed by fast tautomerization to the N-hydroxyindole product.
Kayaki, Yoshihito; Shimokawatoko, Yoshiki; Ikariya, Takao
2007-07-09
Ligand substitution of RuCl2[P(C6H5)3]3 and Cp*RuCl(isoprene) (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) complexes with hydroxymethylphosphines was investigated to develop new catalyst systems for CO2 hydrogenation. A reaction of P(C6H5)2CH2OH with RuCl2[P(C6H5)3]3 in CH2Cl2 gave Ru(H)Cl(CO)[P(C6H5)2CH2OH]3 (1), which was characterized by NMR spectroscopy and X-ray crystallographic analysis. An isotope labeling experiment using P(C6H5)213CH2OH indicated that the carbonyl moiety in complex 1 originated from formaldehyde formed by degradation of the hydroxymethylphosphine. Elimination of formaldehyde from PCy2CH2OH (Cy=cyclohexyl) was also promoted by treatment of RuCl2[P(C6H5)3]3 in ethanol to give RuCl2(PHCy2)4 under mild conditions. On the other hand, the substitution reaction using Cp*RuCl(isoprene) with the hydroxymethylphosphine ligands proceeded smoothly with formation of Cp*RuCl(L)2 [2a-2c; L=P(C6H5)2CH2OH, PCy(CH2OH)2, and P(CH2OH)3] in good yields. The isolable hydroxymethylphosphine complexes 1 and 2 efficiently catalyzed the hydrogenative amidation of supercritical carbon dioxide (scCO2) to N,N-dimethylformamide (DMF).
Ledger, Araminta E W; Moreno, Aitor; Ellul, Charles E; Mahon, Mary F; Pregosin, Paul S; Whittlesey, Michael K; Williams, Jonathan M J
2010-08-16
Treatment of Ru(PPh(3))(3)HCl with the pincer phosphines 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (xantphos), bis(2-diphenylphosphinophenyl)ether (DPEphos), or (Ph(2)PCH(2)CH(2))(2)O affords Ru(P-O-P)(PPh(3))HCl (xantphos, 1a; DPEphos, 1b; (Ph(2)PCH(2)CH(2))(2)O, 1c). The X-ray crystal structures of 1a-c show that all three P-O-P ligands coordinate in a tridentate manner through phosphorus and oxygen. Abstraction of the chloride ligand from 1a-c by NaBAr(4)(F) (BAr(4)(F) = B(3,5-C(6)H(3)(CF(3))(2))(4)) gives the cationic aqua complexes [Ru(P-O-P)(PPh(3))(H(2)O)H]BAr(4)(F) (3a-c). Removal of chloride from 1a by AgOTf yields Ru(xantphos)(PPh(3))H(OTf) (2a), which reacts with water to form [Ru(xantphos)(PPh(3))(H(2)O)H](OTf). The aqua complexes 3a-b react with O(2) to generate [Ru(xantphos)(PPh(3))(eta(2)-O(2))H]BAr(4)(F) (5a) and [Ru(DPEphos)(PPh(3))(eta(2)-O(2))H]BAr(4)(F) (5b). Addition of H(2) or N(2) to 3a-c yields the thermally unstable dihydrogen and dinitrogen species [Ru(P-O-P)(PPh(3))(eta(2)-H(2))H]BAr(4)(F) (6a-c) and [Ru(P-O-P)(PPh(3))(N(2))H]BAr(4)(F) (7a-c), which have been characterized by multinuclear NMR spectroscopy at low temperature. Ru(PPh(3))(3)HCl reacts with 1,1'-bis(diphenylphosphino)ferrocene (dppf) to give the 16-electron complex Ru(dppf)(PPh(3))HCl (1d), which upon treatment with NaBAr(4)(F), affords [Ru(dppf){(eta(6)-C(6)H(5))PPh(2)}H]BAr(4)(F) (8), in which the PPh(3) ligand binds eta(6) through one of the PPh(3) phenyl rings. Reaction of 8 with CO or PMe(3) at elevated temperatures yields the 18-electron products [Ru(dppf)(PPh(3))(CO)(2)H]BAr(F)(4) (9) and [Ru(PMe(3))(5)H]BAr(4)(F) (10).
C-H Hot Bands in the Near-IR Emission Spectra of Leonids
NASA Technical Reports Server (NTRS)
Freund, F. T.; Scoville, J.; Holm, R.; Seelemann, R.; Freund, M. M.
2002-01-01
The reported infrared (IR) emission spectra from 1999 Leonid fireballs show a 3.4 micron C-H emission band and unidentified bands at longer wavelengths. Upon atmospheric entry, the Leonid meteorites were flash-heated to temperatures around 2400K, which would destroy any organics on the surface of the meteorite grains. We propose that the nu(sub )CH emission band in the Leonid emission spectra arises from matrix-embedded C(sub n)-H-O entities that are protected from instant pyrolysis. Our model is based on IR absorption nu(sub )CH bands, which we observed in laboratory-grown MgO and natural olivine single crystals, where they arise from C(sub n)-H-O units imbedded in the mineral matrix, indicative of aliphatic -CH2- and -CH3 organics. Instead of being pyrolyzed, the C(sub n)-H-O entities in the Leonid trails become vibrationally excited to higher levels n = 1, 2, 3 etc. During de-excitation they emit at 3.4 microns, due to the (0 => 1) transition, and at longer wavelengths, due to hot bands. As a first step toward verifying this hypothesis we measured the C-H vibrational manifold of hexane (C6H14). The calculated positions of the (2 => l ) , (3 => 2), and possibly (4 => 3) hot bands agree with the Leonid emission bands at 3.5, 3.8 and 4.l microns.
Montiel-Palma, Virginia; Muñoz-Hernández, Miguel A; Cuevas-Chávez, Cynthia A; Vendier, Laure; Grellier, Mary; Sabo-Etienne, Sylviane
2013-09-03
The synthesis of the new phosphinodi(benzylsilane) compound PhP{(o-C6H4CH2)SiMe2H}2 (1) is achieved in a one-pot reaction from the corresponding phenylbis(o-tolylphosphine). Compound 1 acts as a pincer-type ligand capable of adopting different coordination modes at Ru through different extents of Si-H bond activation as demonstrated by a combination of X-ray diffraction analysis, density functional theory calculations, and multinuclear NMR spectroscopy. Reaction of 1 with RuH2(H2)2(PCy3)2 (2) yields quantitatively [RuH2{[η(2)-(HSiMe2)-CH2-o-C6H4]2PPh}(PCy3)] (3), a complex stabilized by two rare high order ε-agostic Si-H bonds and involved in terminal hydride/η(2)-Si-H exchange processes. A small free energy of reaction (ΔrG298 = +16.9 kJ mol(-1)) was computed for dihydrogen loss from 3 with concomitant formation of the 16-electron species [RuH{[η(2)-(HSiMe2)-CH2-o-C6H4]PPh[CH2-o-C6H4SiMe2]}(PCy3)] (4). Complex 4 features an unprecedented (29)Si NMR decoalescence process. The dehydrogenation process is fully reversible under standard conditions (1 bar, 298 K).
Liu, Bing; Yao, Shuo; Liu, Xinyao; Li, Xu; Krishna, Rajamani; Li, Guanghua; Huo, Qisheng; Liu, Yunling
2017-09-27
By means of modulating the axial ligand and adopting supermolecular building blocks (SBBs) strategy, two polyhedron-based metal-organic frameworks (PMOFs) have been successfully synthesized [Cu 6 (C 17 O 9 N 2 H 8 ) 3 (C 6 H 12 N 2 )(H 2 O) 2 (DMF) 2 ]·3DMF·8H 2 O (JLU-Liu46) and [Cu 6 (C 17 O 9 N 2 H 8 ) 3 (C 4 H 4 N 2 )(H 2 O) 2 (DMF) 2 ]·3DMF·8H 2 O (JLU-Liu47), which possess a high density of Lewis basic sites (LBSs) and open metal sites (OMSs). Since the size of axial ligand in JLU-Liu47 is smaller than that in JLU-Liu46, JLU-Liu47 shows larger pore volume and higher BET surface area. Then, the adsorption ability of JLU-Liu47 for some small gases is better than JLU-Liu46. It is worthwhile to mention that both of the two compounds exhibit outstanding adsorption capability for CO 2 ascribed to the introducing of urea groups. In addition, the theoretical ideal adsorbed solution theory (IAST) calculation and transient breakthrough simulation indicate that JLU-Liu46 and JLU-Liu47 should be potential materials for gas storage and separation, particularly for CO 2 /N 2 , CO 2 /CH 4 , and C 3 H 8 /CH 4 separation.
NASA Astrophysics Data System (ADS)
Anafcheh, Maryam
2018-01-01
We have applied density functional theory calculations to study the reactions of NH2 + CnHn (n = 20, 40, 50, 60, 70 and 80). Due to the hard curvature in C20 cage, the NH2• + C20H20 → NH3 + C20H19• reaction is nearly thermoneutral with a high potential barrier height. For the CnHn fulleranes with n > 20 the transition states appear earlier on the reaction paths, as can be anticipated for exothermic reactions. Using the spherical excess parameter, we distinguished different curvatures on the surfaces of fullerane cages. The reaction enthalpies ΔH°298 and potential barrier heights ΔETS of the considered reactions indicate good correlation with the values of ϕi parameter, showing an upward trend with the curvature increasing at carbon sites. We have also investigated the H-abstraction of the chemical derivatives of the C20H20 cage (C20H19-CH3, C20H19-CH2CH3 and C20H19-CH2CH2CH3) in comparison to the corresponding isolated alkanes (CH4, C2H6 and C3H8). Overall, it could be inferred that the H-abstraction from the primary and secondary C-H bonds of isolated alkanes could occur more easily than fullarane derivatives.
1982-03-18
31/81 C. P . Mathew 2/1/79 - 10/31/79 S. Narasimhan 4/1/79 - present K. Ruralidhar 8/15/79 - 8/15/81 B. Nazer 9/1/80 - present V. Somayaji 8/15/81...readily / - 5. hydrolyzed to the corresponding amines. CH2RI+ R-C- N + H3B*SMe2 0.25 h ,H HCIH 2 >II NaOH RHNH RCH 2N\\ NCH2R 70-90% AB 70-90+ H On...derivatives, which are sufficiently weakly basic as not to complex with BMS. / 0 B R-C---NH 2 + 4/3 BH3’SMe 2 -> RCH2- N + 2 H2 (6) \\B - I - \\ 6. Treatment of
Wang, Heng; Castillo, Álvaro; Bozzelli, Joseph W
2015-07-23
Enthalpies of formation for 14 C2–C4 fluorinated hydrocarbons were calculated with nine popular ab initio and density functional theory methods: B3LYP, CBS-QB3, CBS-APNO, M06, M06-2X, ωB97X, G4, G4(MP2)-6X, and W1U via several series of isodesmic reactions. The recommended ideal gas phase ΔHf298° (kcal mol(–1)) values calculated in this study are the following: −65.4 for CH3CH2F; −70.2 for CH3CH2CH2F; −75.3 for CH3CHFCH3; −75.2 for CH3CH2CH2CH2F; −80.3 for CH3CHFCH2CH3; −108.1 for CH2F2; −120.9 for CH3CHF2; −125.8 for CH3CH2CHF2; −133.3 for CH3CF2CH3; −166.7 for CHF3; −180.5 for CH3CF3; −185.5 for CH3CH2CF3; −223.2 for CF4; and −85.8 for (CH3)3CF. Entropies (S298° in cal mol(–1) K(–1)) were estimated using B3LYP/6-31+G(d,p) computed frequencies and geometries. Rotational barriers were determined and hindered internal rotational contributions for S298°, and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation, with direct integration over energy levels of the intramolecular rotation potential energy curve. Thermochemical properties for the fluorinated carbon groups C/C/F/H2, C/C2/F/H, C/C/F2/H, C/C2/F2, and C/C/F3 were derived from the above target fluorocarbons. Previously published enthalpies and groups for 1,2-difluoroethane, 1,1,2-trifluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,2-pentafluoroethane, 2-fluoro-2-methylpropane that were previously determined via work reaction schemes are revised using updated reference species values. Standard deviations are compared for the calculation methods.
Cao, Xiaoxiao; Su, Yan; Liu, Yuan; Zhao, Jijun; Liu, Changling
2014-01-09
Using first-principle calculations at B97-D/6-311++G(2d,2p) level, we systematically explore the gas capacity of five standard water cavities (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) in clathrate hydrate and study the inclusion complexes to infer general trends in vibrational frequencies of guest molecules as a function of cage size and number of guest molecules. In addition, the Raman spectra of hydrates from CO2/CH4 gases are simulated. From our calculations, the maximum cage occupancy of the five considered cages (5(12), 4(3)5(6)6(3), 5(12)6(2), 5(12)6(4), and 5(12)6(8)) is one, one, two, three, and seven for both CH4 and CO2 guest molecules, respectively. Meanwhile, the optimum cage occupancy are one, one, one, two, and four for CO2 molecules and one, one, two, three, and five for CH4 molecules, respectively. Both the C-H stretching frequency of CH4 and the C-O stretching frequency of CO2 gradually decrease as size of the water cages increases. Meanwhile, the C-H stretching frequency gradually increases as the amount of CH4 molecules in the water cavity (e.g., 5(12)6(8)) increases.
Organotin Selenide Clusters and Hybrid Capsules.
Dehnen, Stefanie; Hanau, Katharina; Rinn, Niklas; Argentari, Mario
2018-05-22
Several compounds with unique structural motifs that have already been known from organotin sulfide chemistry, but remained unprecedented in organotin selenide chemistry so far, have been synthesized. The reaction of [(R1Sn)4Se6] (R1 = CMe2CH2C(O)Me) with N2H4·H2O/(SiMe3)2Se and with PhN2H3/(SiMe3)2Se led to the formation of [{(R2Sn)2SnSe4}2(µ-Se)2] (1) and [{(R3Sn)2SnSe4}2(µ-Se)2] (2) (R2 = CMe2CH2C(Me)NNH2, R3 = CMe2CH2C(Me)NNPhH), respectively. Addition of o-phthalaldehyde to [(R2Sn)4Se6] yielded a cluster with intramolecular bridging of the organic groups, [(R4Sn2)2Se6] (3, R4 = (CMe2CH2C(Me)NNCH)2C6H4). The introduction of organic ligands with longer chains finally allowed the isolation of inorganic-organic capsules of the type [(µ-R)3(Sn3Se4)2]X2, with R = (CMe2CH2C(Me)NNHC(O))2(CH2)4, X = [SnC3], Cl (4a, 4b) or R = CMe2CH2C(Me)NNH)2, X = [SnCl3] (5). The capsules enclose solvent molecules and/or anions as guests. All compounds were characterized via single-crystal X-ray diffraction, NMR spectroscopy and mass spectrometry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xiang, Li; Xie, Zuowei
2014-08-04
Heating a benzene solution of [η(5)-(Me2NCH2CH2)C2B9H10] Ta(NMe2)3 (1) in the presence of pyridine gave an unprecedented complex [η(1):η(6)-(Me2NCH2CH2)C2B9H10]Ta (NMe2)(NC5H5) (2). On the other hand, reaction of (η(5)-C2B9H11)TaMe3 with adamantly isonitrile (AdNC) in dimethoxyethane (DME) at room temperature afforded another unexpected complex (η(6)-C2B9H11)Ta[η(3)-C,C,N-CH2C(CH3)NAd](DME) (4). These results show that pyridine and DME are essential for the formation of 2 and 4, respectively. It is suggested that the nido-η(5)-C2B9H10R(2−) ligand in tantallacarboranes takes up two electrons released by reductive elimination to form an arachno-η(6)-C2B9H10R(4−) fragment via the cage C–C bond cleavage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paganini, L.; Mumma, M. J.; Villanueva, G. L.
2015-07-20
We observed comet C/2003 K4 (LINEAR) using NIRSPEC at the Keck Observatory on UT 2004 November 28, when the comet was at 1.28 AU from the Sun (post-perihelion) and 1.38 AU from Earth. We detected six gaseous species (H{sub 2}O, OH*, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}, and HCN) and obtained upper limits for three others (H{sub 2}CO, C{sub 2}H{sub 2}, and NH{sub 3}). Our results indicate a water production rate of (1.72 ± 0.18) × 10{sup 29} molecules s{sup −1}, in reasonable agreement with production rates from SOHO (on the same day), Odin (one day earlier), and Nançaymore » (about two weeks earlier). We also report abundances (relative to water) for seven trace species: CH{sub 3}OH (∼1.8%), CH{sub 4} (∼0.9%), and C{sub 2}H{sub 6} (∼0.4%) that were consistent with mean values among Oort cloud (OC) comets, while NH{sub 3} (<0.55%), HCN (∼0.07%), H{sub 2}CO (<0.07%), and C{sub 2}H{sub 2} (<0.04%) were “lower” than the mean values in other OC comets. We extracted inner-coma rotational temperatures for four species (H{sub 2}O, C{sub 2}H{sub 6}, CH{sub 3}OH, and CH{sub 4}), all of which are consistent with 70 K (within 1σ). The extracted ortho-para ratio for water was 3.0 ± 0.15, corresponding to spin temperatures larger than 39 K (at the 1σ level) and agreeing with those obtained with the Spitzer Space Telescope at the 2σ level.« less
Gold complexes with the selenolate ligand [2-(Me2NCH2)C6H4Se]-.
Crespo, Olga; Gimeno, M Concepción; Laguna, Antonio; Kulcsar, Monika; Silvestru, Cristian
2009-05-04
The reaction of [2-(Me(2)NCH(2))C(6)H(4)Se]M (M = Li, K) with the gold(phosphine) complexes [AuCl(PR(3))] gives the mononuclear gold-selenolate species [Au{SeC(6)H(4)(CH(2)NMe(2))-2}(PPh(3))] (1) or [Au{SeC(6)H(4)(CH(2)NMe(2))-2}(PPh(2)py)] (2), respectively. The treatment of the [2-(Me(2)NCH(2))C(6)H(4)Se]M with [Au(2)Cl(2)(mu-P-P)] [P-P = bis(diphenylphosphino)methane (dppm), bis(diphenylphosphino)ethane (dppe), 1,1'-bis(diphenylphosphino)ferrocene (dppf)] derivatives gives complexes with stoichiometry [Au(2){SeC(6)H(4)(CH(2)NMe(2))-2}(2)(mu-P-P)] [P-P = dppm (3), dppe (4), or dppf (5)]. These complexes exhibit a different structural framework, that is, 4 crystallizes as a chain polymer with intermolecular aurophilic bonding, while 5 shows an intramolecular Au(I)...Au(I) interaction. The gold(III) derivative Bu(4)N[Au(C(6)F(5))(3){SeC(6)H(4)(CH(2)NMe(2))-2}] (6) is obtained by reaction of [2-(Me(2)NCH(2))C(6)H(4)Se]K and Bu(4)N[AuBr(C(6)F(5))(3)], in a 1:1 molar ratio. These species exhibit luminescence which probably arises from a mixed (3)LMMCT and (3)MC excited state. The emission properties in these complexes seem to be useful for structural predictions and lead to the proposal of intermolecular aggregation in the solid state and frozen solution for complexes 1, 2, 3, whose crystal structures have not been elucidated.
Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation
NASA Astrophysics Data System (ADS)
Young, Leslie A.; Kammer, Joshua A.; Steffl, Andrew J.; Gladstone, G. Randall; Summers, Michael E.; Strobel, Darrell F.; Hinson, David P.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly; McComas, David J.; Cheng, Andrew F.; Gao, Peter; Lavvas, Panayotis; Linscott, Ivan R.; Wong, Michael L.; Yung, Yuk L.; Cunningham, Nathanial; Davis, Michael; Parker, Joel Wm.; Schindhelm, Eric; Siegmund, Oswald H. W.; Stone, John; Retherford, Kurt; Versteeg, Maarten
2018-01-01
The Alice instrument on NASA's New Horizons spacecraft observed an ultraviolet solar occultation by Pluto's atmosphere on 2015 July 14. The transmission vs. altitude was sensitive to the presence of N2, CH4, C2H2, C2H4, C2H6, and haze. We derived line-of-sight abundances and local number densities for the 5 molecular species, and line-of-sight optical depth and extinction coefficients for the haze. We found the following major conclusions: (1) We confirmed temperatures in Pluto's upper atmosphere that were colder than expected before the New Horizons flyby, with upper atmospheric temperatures near 65-68 K. The inferred enhanced Jeans escape rates were (3-7) × 1022 N2 s-1 and (4-8) × 1025 CH4 s-1 at the exobase (at a radius of ∼ 2900 km, or an altitude of ∼1710 km). (2) We measured CH4 abundances from 80 to 1200 km above the surface. A joint analysis of the Alice CH4 and Alice and REX N2 measurements implied a very stable lower atmosphere with a small eddy diffusion coefficient, most likely between 550 and 4000 cm2 s-1. Such a small eddy diffusion coefficient placed the homopause within 12 km of the surface, giving Pluto a small planetary boundary layer. The inferred CH4 surface mixing ratio was ∼ 0.28-0.35%. (3) The abundance profiles of the ;C2Hx hydrocarbons; (C2H2, C2H4, C2H6) were not simply exponential with altitude. We detected local maxima in line-of-sight abundance near 410 km altitude for C2H4, near 320 km for C2H2, and an inflection point or the suggestion of a local maximum at 260 km for C2H6. We also detected local minima near 200 km altitude for C2H4, near 170 km for C2H2, and an inflection point or minimum near 170-200 km for C2H6. These compared favorably with models for hydrocarbon production near 300-400 km and haze condensation near 200 km, especially for C2H2 and C2H4 (Wong et al., 2017). (4) We found haze that had an extinction coefficient approximately proportional to N2 density.
Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor.
Porterfield, Jessica P; Nguyen, Thanh Lam; Baraban, Joshua H; Buckingham, Grant T; Troy, Tyler P; Kostko, Oleg; Ahmed, Musahid; Stanton, John F; Daily, John W; Ellison, G Barney
2015-12-24
The thermal decomposition of cyclohexanone (C6H10═O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C6H10═O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 μs. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of which open roughly simultaneously. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C6H9OH), is followed by retro-Diels-Alder cleavage to CH2═CH2 and CH2═C(OH)-CH═CH2. Further isomerization of CH2═C(OH)-CH═CH2 to methyl vinyl ketone (CH3CO-CH═CH2, MVK) was also observed. Photoionization spectra identified both enols, C6H9OH and CH2═C(OH)-CH═CH2, and the ionization threshold of C6H9OH was measured to be 8.2 ± 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be ΔfH298(cis-CH3CO-CH═CH2) = -26.1 ± 0.5 kcal mol(-1) and ΔfH298(s-cis-1-CH2═C(OH)-CH═CH2) = -13.7 ± 0.5 kcal mol(-1). The reaction enthalpy ΔrxnH298(C6H10═O → CH2═CH2 + s-cis-1-CH2═C(OH)-CH═CH2) is 53 ± 1 kcal mol(-1) and ΔrxnH298(C6H10═O → CH2═CH2 + cis-CH3CO-CH═CH2) is 41 ± 1 kcal mol(-1). At 1200 K, the products of cyclohexanone pyrolysis were found to be C6H9OH, CH2═C(OH)-CH═CH2, MVK, CH2CHCH2, CO, CH2═C═O, CH3, CH2═C═CH2, CH2═CH-CH═CH2, CH2═CHCH2CH3, CH2═CH2, and HC≡CH.
Abundances of ethylene oxide and acetaldehyde in hot molecular cloud cores
NASA Technical Reports Server (NTRS)
Nummelin, A.; Dickens, J. E.; Bergman, P.; Hjalmarson, A.; Irvine, W. M.; Ikeda, M.; Ohishi, M.
1998-01-01
We have searched for millimetre-wave line emission from ethylene oxide (c-C2H4O) and its structural isomer acetaldehyde (CH3CHO) in 11 molecular clouds using SEST. Ethylene oxide and acetaldehyde were detected through multiple lines in the hot cores NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2. Acetaldehyde was also detected towards G10.47+0.03, G322.2+0.6, and Orion 3'N, and one ethylene oxide line was tentatively detected in G10.47+0.03. Column densities and rotational excitation temperatures were derived using a procedure which fits the observed line intensifies by finding the minimum chi 2-value. The resulting rotational excitation temperatures of ethylene oxide and acetaldehyde are in the range 16-38 K, indicating that these species are excited in the outer, cooler parts of the hot cores or that the excitation is significantly subthermal. For an assumed source size of 20", the deduced column densities are (0.6-1)x10(14) cm-2 for ethylene oxide and (2-5)x10(14) cm-2 for acetaldehyde. The fractional abundances with respect to H2 are X[c-C2H4O]=(2-6)xl0(-10), and X[CH3CHO]=(0.8-3)x10(-9). The ratio X[CH3CHO]/X[c-C2H4O] varies between 2.6 (NGC 6334F) and 8.5 (G327.3-0.6). We also detected and analysed multiple transitions of CH3OH, CH3OCH3, C2H5OH, and HCOOH. The chemical, and possibly evolutionary, states of NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2 seem to be very similar.
Mechanisms of Polymer Curing and Thermal Degradation
1979-12-01
respectively. 29 0)- Fi . J . IR S e t u f i ( - 3 E hy y p e o y Ph n l S f n .30 z Iii 41 rI2P6i4000 3500 3000 42500 §200010 6010 2010 0 0 0 0...Polymer X Obs.6(_pm) Obs.(ppmA H 7.9,8.0 g,h 7.8 g,h 7.5 I ,e 7.5 i ,c,2 7.3 b,e 6.0-7.2 b,d,f,j,=CH 7.2 d 7.0 f,j 3.1 a HC C =- T O" 7.9 g 7.9 g 7.3 b...e 7.4 b,e 7.1 d 6.0-7.1 c,d,f,=CH 7.0 f,c 3.1 a 3.1 a aFor X 0 H, ggh, f= i b Based on first-order analysis of multiplets. 37 t TABLE 4. SUMMARY OF 13C
Monegan, Jessie D; Bunge, Scott D
2009-04-06
The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.
NASA Technical Reports Server (NTRS)
Mumma, M. J.; DiSanti, M. A.; Dello Russo, N.; Fomenkova, M.; Magee-Sauer, K.; Kaminski, C. D.; Xie, D. X.
1996-01-01
The saturated hydrocarbons ethane (C2H6) and methane (CH4) along with carbon monoxide (CO) and water (H2O) were detected in comet C/1996 B2 Hyakutake with the use of high-resolution infrared spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The inferred production rates of molecular gases from the icy, cometary nucleus (in molecules per second) are 6.4 X 10(26) for C2H6, 1.2 X 10(27) for CH4, 9.8 X 10(27) for CO, and 1.7 X 10(29) for H2O. An abundance of C2H6 comparable to that of CH4 implies that ices in C/1996 B2 Hyakutake did not originate in a thermochemically equilibrated region of the solar nebula. The abundances are consistent with a kinetically controlled production process, but production of C2H6 by gas-phase ion molecule reactions in the natal cloud core is energetically forbidden. The high C2H6/CH4 ratio is consistent with production of C2H6 in icy grain mantles in the natal cloud, either by photolysis of CH4-rich ice or by hydrogen-addition reactions to acetylene condensed from the gas phase.
Jornet-Mollá, Verónica; Duan, Yan; Giménez-Saiz, Carlos; Waerenborgh, João C; Romero, Francisco M
2016-11-28
The paper reports the syntheses, crystal structures, thermal and (photo)magnetic properties of spin crossover salts of formula [Fe(bpp) 2 ](C 6 H 8 O 4 )·4H 2 O (1·4H 2 O), [Fe(bpp) 2 ](C 8 H 4 O 4 )·2CH 3 OH·H 2 O (2·2MeOH·H 2 O) and [Fe(bpp) 2 ](C 8 H 4 O 4 )·5H 2 O (2·5H 2 O) (bpp = 2,6-bis(pyrazol-3yl)pyridine; C 6 H 8 O 4 = adipate dianion; C 8 H 4 O 4 = terephthalate dianion). The salts exhibit an intricate network of hydrogen bonds between low-spin iron(ii) complexes and carboxylate dianions, with solvent molecules sitting in the voids. Desolvation is accompanied by a low-spin (LS) to high-spin (HS) transformation in the materials. The dehydrated phase 2 undergoes a two-step transition with a second step showing thermal hysteresis (T 1/2 ↑ = 139 K and T 1/2 ↓ = 118 K). 2 displays a quantitative LS to HS photomagnetic conversion, with a T(LIESST) value of 63 K.
Selective cyclopalladation of R3P=NCH2Aryl iminophosphoranes. Experimental and computational study.
Bielsa, Raquel; Navarro, Rafael; Urriolabeitia, Esteban P; Lledós, Agustí
2007-11-26
The orientation of the orthopalladation of iminophosphoranes R3P=NCH2Aryl (R=Ph, Aryl=Ph (1a), C6H(4)-2-Br (1b), C6H4-Me-2 (1e), C6H3-(Me)(2)-2,5 (1f); R=p-tolyl, Aryl=Ph (1c); R=m-tolyl, Aryl=Ph (1d); R3P=MePh2P, and Aryl=Ph (1g)) has been studied. 1a reacts with Pd(OAc)2 (OAc=acetate) giving endo-[Pd(micro-Cl){C,N-C6H4(PPh2=NCH2Ph)-2}]2 (3a), while exo-[Pd(micro-Br){C,N-C6H4(CH2N=PPh3)-2}]2 (3b) could only be obtained by the oxidative addition of 1b to Pd2(dba)3. The endo form of the metalated ligand is favored kinetically and thermodynamically, as shown by the conversion of exo-[Pd(micro-OAc){C,N-C6H4(CH2N=PPh3)-2}]2 (2b) into endo-[Pd(micro-OAc){C,N-C6H4(PPh2=NCH2Ph)-2}]2 (2a) in refluxing toluene. The orientation of the reaction is not affected by the introduction of electron-releasing substituents at the Ph rings of the PR3 (1c and 1d) or the benzyl units (1e and 1f), and endo complexes (3c-3f) were obtained in all cases. The palladation of MePh2P=NCH2Ph (1g) can be regioselectively oriented as a function of the solvent. The exo isomer [Pd(micro-Cl){C6H4(CH2N=PPh2Me)-2}]2 (exo-3g) is obtained in refluxing CH2Cl2, while endo-[Pd(micro-Cl){C,N-C6H4(PPh(Me)=NCH2Ph)-2}]2 (endo-3g) can be isolated as a single isomer in refluxing toluene. In this case, the exo metalation is kinetically favored while an endo process occurs under thermodynamic control, as shown through the rearrangement of [Pd(micro-OAc){C6H4(CH2N=PPh2Me)-2}]2 (exo-2g) into [Pd(micro-OAc){C,N-C6H4(P(Ph)Me=NCH2Ph)-2}]2 (endo-2g) in refluxing toluene. The preference for the endo palladation of 1a and the kinetic versus thermodynamic control in 1g has been explained through DFT studies of the reaction mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goel, S.; Pandey, U.K.; Pandey, O.P.
1988-05-01
Reactions of neodymium trichloride and samarium trichloride with 6,7,13,14-R/sub 4/ - 3,10-X/sub 2/-(14)-5,7,12,14-tetraene-1,5,8,12-N/sub 4/-(2,4,9,11-N/sub 4/) (R = CH/sub 3/, X = 0 (L/sub 1//sup (1)/); R = C/sub 6/H/sub 5/, X = O (L/sub 1//sup (2)/); R = CH/sub 3/, X = S(L/sub 2//sup (1)/)) and R = C/sub 6/H/sub 5/, X = S(/sub 2//sup (2)/)) have been studied in ethanol and complexes of the type (M(L/sub 1//sup (1)/ or L/sub 1//sup (2)/))Cl/sub 3/ and (M(L/sub 2//sup (1)/ or L/sub 2//sup (2)/)(H/sub 2/O)/sub 2/)Cl/sub 3/ (M = Nd(III) and Sm(III)) have been isolated. In addition, macrocyclic complexes of Nd(III) andmore » Sm(III) with another series of tetraaza ligands, viz, 5,6,11,12-R/sub 4/-3,8-X/sub 2/-(12)-4,6,10,12-tetraene-1,4,7,10-N/sub 4/-(2,9-N/sub 2/) (R = CH/sub 3/, X = O (L/sub 3//sup (1)/); R = C/sub 6/H/sub 5/, X = O(L/sub 3//sup (2)/); R = CH/sub 3/, X = S(L/sub 4//sup (1)/); R = C/sub 6/H/sub 5/, X = S(L/sub 4//sup (2)/)), formulated as (M(L/sub 3//sup (1)/, L/sub 3//sup (2)/, L/sub 4//sup (1)/ or L/sub 4//sup (2)/)(H/sub 2/O)/sub 2/)Cl/sub 3/ (M = Nd(III) and Sm(III)) have been prepared by template condensation of Nd(III) and Sm(III) complexes of diacetylbis(semicarbazonethiosemicarbazone) or benzilibis(semicarbazonethiosemicarbazone) with diacetyl or benzil. The complexes have been identified by elemental analysis, electrical conductance, spectral and thermal measurements.« less
Separation of C2 hydrocarbons from methane in a microporous metal-organic framework
NASA Astrophysics Data System (ADS)
Tang, Fu-Shun; Lin, Rui-Biao; Lin, Rong-Guang; Zhao, John Cong-Gui; Chen, Banglin
2018-02-01
The recovery of C2 hydrocarbons including acetylene, ethylene and ethane is challenging but important for natural gas upgrading. The separation of C2 hydrocarbons over methane was demonstrated here by using a microporous metal-organic framework [Zn3(OH)2(SDB)2] (H2SDB = 4,4'-sulfonyldibenzoic acid) consisting narrow one-dimensional pore channels. Gas sorption experiments revealed that this MOF material showed considerable uptake capacity for C2H2, C2H4 and C2H6 under ambient conditions, while its capacity for CH4 was very low. High selectivity from IAST calculations for C2H2/CH4, C2H4/CH4 and C2H6/CH4 binary mixtures demonstrated that this MOF material were promising for efficiently separating important separation of C2 hydrocarbons from methane in natural gas processing.
Coder’s Manual: A Guide to TEPIAC Documentation.
1977-07-01
Po Polonium Am Americium Hg Mercury Pr Praseodymium *Ar Argon (Hydrargyrum) Pt Platinum (also A) Ho Holmium Pu Plutonium *As Arsenic *1 Iodine Ra...Er 20 3 208 D ChD2 110 F F 2 Fe (FeF 21 209 E C 6H1 5ErO1 2S 3[Er(C 2 HSO 4)3] III G GaO4P [GaPO4] 210 F CH3 F 112 H 1iNO 212 G C8 H20Ge [Ge(C 2 H 5...Fluidity, 69 Heat conductance (contact), 62 Fluidized bed, 27 Heat conduction, 57 Fluorescence, 125 Heat conductivity, 57 Food products, 31 Heat content
Song, Li-Cheng; Han, Xiao-Feng; Chen, Wei; Li, Jia-Peng; Wang, Xu-Yong
2017-08-14
A new series of the structural and functional models for the active site of [NiFe]-H 2 ases has been prepared by a simple and convenient synthetic route. Thus, treatment of diphosphines RN(PPh 2 ) 2 (1a, R = p-MeC 6 H 4 CH 2 ; 1b, R = EtO 2 CCH 2 ) with an equimolar NiCl 2 ·6H 2 O, NiBr 2 ·3H 2 O, and NiI 2 in refluxing CH 2 Cl 2 /MeOH or EtOH gave the mononuclear Ni complexes RN(PPh 2 ) 2 NiX 2 (2a, R = p-MeC 6 H 4 CH 2 , X = Cl; 2b, R = EtO 2 CCH 2 , X = Cl; 3a, R = p-MeC 6 H 4 CH 2 , X = Br; 3b, R = EtO 2 CCH 2 , X = Br; 4a, R = p-MeC 6 H 4 CH 2 , X = I; 4b, R = EtO 2 CCH 2 , X = I) in 67-97% yields. Further treatment of complexes 2a,b-4a,b with an equimolar mononuclear Fe complex (dppv)(CO) 2 Fe(pdt) and NaBF 4 resulted in formation of the targeted model complexes [RN(PPh 2 ) 2 Ni(μ-pdt)(μ-X)Fe(CO)(dppv)](BF 4 ) (5a, R = p-MeC 6 H 4 CH 2 , X = Cl; 5b, R = EtO 2 CCH 2 , X = Cl; 6a, R = p-MeC 6 H 4 CH 2 , X = Br; 6b, R = EtO 2 CCH 2 , X = Br; 7a, R = p-MeC 6 H 4 CH 2 , X = I; 7b, R = EtO 2 CCH 2 , X = I) in 60-96% yields. All the new complexes 3a,b-4a,b and 5a,b-7a,b have been characterized by elemental analysis and spectroscopy, and particularly for some of them (3a,b/4a,b and 5b/6b) by X-ray crystallography. More interestingly, the electrochemical and electrocatalytic properties of such halogenido-bridged model complexes are first studied systematically and particularly they have been found to be pre-catalysts for proton reduction to H 2 under CV conditions.
NASA Astrophysics Data System (ADS)
Zhao, Yuefeng; Wang, Chao; Li, Li; Wang, Lijuan; Pan, Jie
2018-03-01
In this work, a two-dimensional fluid model is built up to numerically investigate the reaction pathways of producing and losing particles in atmospheric pressure methane nanosecond pulsed needle-plane discharge plasma. The calculation results indicate that the electron collisions with CH4 are the key pathways to produce the neutral particles CH2 and CH as well as the charged particles e and CH3+. CH3, H2, H, C2H2, and C2H4 primarily result from the reactions between the neutral particles and CH4. The charge transfer reactions are the significant pathways to produce CH4+, C2H2+, and C2H4+. As to the neutral species CH and H and the charged species CH3+, the reactions between themselves and CH4 contribute to substantial losses of these particles. The ways responsible for losing CH3, H2, C2H2, and C2H4 are CH3 + H → CH4, H2 + CH → CH2 + H, CH4+ + C2H2 → C2H2+ + CH4, and CH4+ + C2H4 → C2H4+ + CH4, respectively. Both electrons and C2H4+ are consumed by the dissociative electron-ion recombination reactions. The essential reaction pathways of losing CH4+ and C2H2+ are the charge transfer reactions.
NASA Technical Reports Server (NTRS)
DiSanti, Michael A.; Bonev, Boncho P.; Mumma, Michael J.; Villanueva, Geronimo L.
2010-01-01
We report high resolution (lambda/delta lambda approximately 24,000) observations of Comet 21 P/Giacobini-Zinner (21P) between approximately 2.85 -- 3.54 micrometers, obtained with NIRSPEC at Keck 2 on UT 2005 June 03 (R(sub h) = 1.12 AU, delta = 1.45 AU). These simultaneously sampled multiple emissions from the v7 band of C2H6 and the v2 and v3 bands of CH3OH, together with several hot bands of H2O, permitting a direct measure of parent volatile abundances in 21P. Our spectra reveal highly depleted C2H6 (0.13-0.14 percent relative to H2O) and CH3OH/C2H6 approximately 10, consistent with previously published abundances from observations in the IR [1,2] and millimeter sub-mm (reporting CH3OH/H2O [3]) during its previous apparition in 1998. We observed similarly high CH3OH/C2H6, and also similar rotational temperature to that measured for 21 P, in Comet 8P/Tuttle [4,5]. We used our (higher signal-to-noise) NIRSPEC observations of 8P to produce effective (empirical) CH3OH g-factors for several lines in the v2 band. These will be presented together with interpretation of our results, including constraints on the spin temperature of water. We acknowledge support from the NASA Planetary Atmospheres, Planetary Astronomy, and Astrobiology Programs and from the NSF Astronomy and Astrophysics Research Grants Program.
Unimolecular Thermal Fragmentation of Ortho-Benzyne
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X.; Maccarone, A. T.; Nimlos, M. R.
2007-01-01
The ortho-benzyne diradical, o-C{sub 6}H{sub 4} has been produced with a supersonic nozzle and its subsequent thermal decomposition has been studied. As the temperature of the nozzle is increased, the benzyne molecule fragments: o-C{sub 6}H{sub 4} + {Delta} {yields} products. The thermal dissociation products were identified by three experimental methods: (i) time-of-flight photoionization mass spectrometry, (ii) matrix-isolation Fourier transform infrared absorption spectroscopy, and (iii) chemical ionization mass spectrometry. At the threshold dissociation temperature, o-benzyne cleanly decomposes into acetylene and diacetylene via an apparent retro-Diels-Alder process: o-C{sub 6}H{sub 4} + {Delta} {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH. The experimentalmore » {Delta}{sub rxn}H{sub 298}(o-C{sub 6}H{sub 4} {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH) is found to be 57 {+-} 3 kcal mol{sup -1}. Further experiments with the substituted benzyne, 3,6-(CH{sub 3}){sub 2}-o-C{sub 6}H{sub 2}, are consistent with a retro-Diels-Alder fragmentation. But at higher nozzle temperatures, the cracking pattern becomes more complicated. To interpret these experiments, the retro-Diels-Alder fragmentation of o-benzyne has been investigated by rigorous ab initio electronic structure computations. These calculations used basis sets as large as [C(7s6p5d4f3g2h1i)/H(6s5p4d3f2g1h)] (cc-pV6Z) and electron correlation treatments as extensive as full coupled cluster through triple excitations (CCSDT), in cases with a perturbative term for connected quadruples [CCSDT(Q)]. Focal point extrapolations of the computational data yield a 0 K barrier for the concerted, C{sub 2v}-symmetric decomposition of o-benzyne, E{sub b}(o-C{sub 6}H{sub 4} {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH) = 88.0 {+-} 0.5 kcal mol{sup -1}. A barrier of this magnitude is consistent with the experimental results. A careful assessment of the thermochemistry for the high temperature fragmentation of benzene is presented: C{sub 6}H{sub 6} {yields} H+[C{sub 6}H{sub 5}] {yields} H+[o-C{sub 6}H{sub 4}] {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH. Benzyne may be an important intermediate in the thermal decomposition of many alkylbenzenes (arenes). High engine temperatures above 1500 K may crack these alkylbenzenes to a mixture of alkyl radicals and phenyl radicals. The phenyl radicals will then dissociate first to benzyne and then to acetylene and diacetylene.« less
Unimolecular thermal fragmentation of ortho-benzene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X.; Maccarone, A. T.; Nimlos, M. R.
2007-01-01
The ortho-benzyne diradical, o-C{sub 6}H{sub 4} has been produced with a supersonic nozzle and its subsequent thermal decomposition has been studied. As the temperature of the nozzle is increased, the benzyne molecule fragments o-C{sub 6}H{sub 4}{sup +} {Delta} {yields} products. The thermal dissociation products were identified by three experimental methods: (i) time-of-flight photoionization mass spectrometry, (ii) matrix-isolation Fourier transform infrared absorption spectroscopy, and (iii) chemical ionization mass spectrometry. At the threshold dissociation temperature, o-benzyne cleanly decomposes into acetylene and diacetylene via an apparent retro-Diels-Alder process: o-C{sub 6}H{sub 4}{sup +}{Delta}{yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH. The experimental {Delta}{sub rxn}H{submore » 298}(o-C{sub 6}H{sub 4} {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH) is found to be 57 {+-} 3 kcal mol{sup -1}. Further experiments with the substituted benzyne, 3,6-(CH{sub 3}){sub 2}-o-C{sub 6}H{sub 2}, are consistent with a retro-Diels-Alder fragmentation. But at higher nozzle temperatures, the cracking pattern becomes more complicated. To interpret these experiments, the retro-Diels-Alder fragmentation of o-benzyne has been investigated by rigorous ab initio electronic structure computations. These calculations used basis sets as large as [C(7s6p5d4f3g2h1i)/H(6s5p4d3f2g1h)] (cc-pV6Z) and electron correlation treatments as extensive as full coupled cluster through triple excitations (CCSDT), in cases with a perturbative term for connected quadruples [CCSDT(Q)]. Focal point extrapolations of the computational data yield a 0 K barrier for the concerted, C{sub 2v}-symmetric decomposition of o-benzyne, E{sub b}(o-C{sub 6}H{sub 4} {yields} HC {triple_bond} CH+HC {triple_bond} C-C {triple_bond} CH) = 88.0 {+-} 0.5 kcal mol{sup -1}. A barrier of this magnitude is consistent with the experimental results. A careful assessment of the thermochemistry for the high temperature fragmentation of benzene is presented: C{sub 6}H{sub 6} {yields} H+[C{sub 6}H{sub 5}] {yields} H+[o-C{sub 6}H{sub 4}] {yields} HC {triple_bond} CH-HC {triple_bond} C-C {triple_bond} CH. Benzyne may be an important intermediate in the thermal decomposition of many alkylbenzenes (arenes). High engine temperatures above 1500 K may crack these alkylbenzenes to a mixture of alkyl radicals and phenyl radicals. The phenyl radicals will then dissociate first to benzyne and then to acetylene and diacetylene.« less
Synthesis of Potential Prophylactic Agents Against Cyanide Intoxication
1993-05-06
34/21) S 2,6-C 2 Ad 72 mp 139" CsH3C12NO 163 (lie mp 139.5-140.5") 6 4-OMe A 45 Mp 73-79e CH 7N0% (lit t mp 73-741) 7 2-OMe A 50 Mp 66" C*HNO 126 (litf...Form. Found cation. Compd. No. Reactants Yield, % Mp, *C (cation.anion) %C %H %N anion Part A. 1 -Alkoxypyridinium salts. 14 2,3-Mes, 87 120-122 CH ...111 + 4(C6H6CVs O, 28.62 3.22 4.40 ..... (MeO)2SO2 _OSO 2 CH s ) is 4-OMe,6 + 78 46-48 CSH 121NO 2 34.18 4.30 4.91 154, 126 Ed (CsH12NO2-) 34.02
Bunge, Scott D.; Boyle, Timothy J.
2005-08-16
A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..
Philippopoulos, Athanassios I.; Hadjiliadis, Nick; Hart, Claire E.; Donnadieu, Bruno; Mc Gowan, Patrick C.; Poilblanc, René
1997-04-23
The synthesis of monometallic rhodium(III) and rhodium(I) derivatives of dialkylamino-functionalized cyclopentadienyl using the corresponding cyclopentadiene as starting material is facilitated by the presence of the basic amino group. This procedure affords the chloro salts of the substituted rhodicinium cation [(eta(5)-C(5)H(4)(CH(2))(2)NMe(2)H)(2)Rh(III)](3+) ([1][Cl](3)) from the reaction of the [2-(dimethylamino)ethyl]cyclopentadiene with Na(3)Rh(III)Cl(6). 12H(2)O. Similarly the cationic half-sandwich complexes [(eta(5)-C(5)H(4)(CH(2))(n)()NMe(2)H)Rh(I)(cod)](+) (n = 2, [2][Cl], n = 3, [5][Cl]) are obtained from the reaction of the corresponding dialkylamino cyclopentadiene with [RhCl(cod)](2). These types of cationic complexes, 1, 2, and 5, bear pendant ammonium groups. The most classical procedure, starting from the lithium or more efficiently from the sodium cyclopentadienide salt, was used to synthesize neutral complexes [(eta(5)-C(5)H(4)(CH(2))(n)()NMe(2))Rh(I)(cod)] (n = 2, 3; n = 3, 4). The structure of the chloride bis(hexafluorophosphate) salt, [(eta(5)-C(5)H(4)(CH(2))(2)NMe(2)H)(2)Rh(III)](3+)(Cl(-))(PF(6)(-))(2), ([1][Cl][PF(6)](2)) was solved in the triclinic space group P&onemacr; with one molecule in the unit cell, the dimensions of which are a = 6.617(2) Å, b= 7.436(2) Å, c = 13.965(3) Å, alpha = 76.39(2) degrees, beta = 82.31(3) degrees, gamma = 87.26(2) degrees, and V = 661.8(3) Å(3). The noncentrosymmetric character of this solid is attributed to the chloride ion. The tetrafluoroborate salt [(eta(5)-C(5)H(4)(CH(2))(2)NMe(2)H)Rh(I)(cod)](+)(BF(4)(-)) ([2][BF(4)]) crystallizes in the tetragonal space group P4(2)/n with eight molecules in the unit cell, the dimensions of which are a= 21.183(2) Å, b = 21.179(3) Å, c= 8.324(2) Å, and V = 3734(1) Å(3). Least squares refinement leads to values for the conventional R index of [1][Cl][PF(6)](2) (0.0484 for 2191 reflections used) and of [2][BF(4)] (0.0525 for 1083 reflections used); in both cases I > 3sigma(I). As expected, compounds like [2][Cl](3,) [1][Cl][PF(6)](2), [2][Cl], [2][BF(4)], [5][Cl], and [5][BF(4)] are soluble in water.
New ruthenium carboxylate complexes having a 1-5-. eta. sup 5 -cyclooctadienyl ligand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osakada, Kohtaro; Grohmann, A.; Yamamoto, Akio
1990-07-01
Reaction of 3-butenoic acid with Ru(cod)(cot) (cod) = 1-2-{eta}{sup 2}:5-6-{eta}{sup 2}-cyclooctadiene; cot = 1-6-{eta}{sup 6}-cyclooctatriene in the presence of PMe{sub 3} gives a new ruthenium(II) complex formulated as Ru(1-5-{eta}{sup 5}-C{sub 8}H{sub 11}){eta}{sup 1}(O),{eta}{sup 2}(C,C{prime}-OCOCH{sub 2}CH{double bond}CH{sub 2})(PMe{sub 3}) (1). X-ray crystallography revealed its structure as having a piano-stool coordination around the ruthenium center. Crystals of 1 are tetragonal, space group P4{sub 3}2{sub 1}2, with a = 12.559 (3) {angstrom}, c = 20.455 (4) {angstrom}, and Z = 8. {sup 1}H and {sup 13}C({sup 1}H) NMR spectra of 1 agree well for the structure with the allyl entity of the carboxylatemore » {pi}-bonded through the C{double bond}C double bond to ruthenium.« less
Handford, Rex C; Wakeham, Russell J; Patrick, Brian O; Legzdins, Peter
2017-03-20
Treatment of CH 2 Cl 2 solutions of Cp*M(NO)Cl 2 (Cp* = η 5 -C 5 (CH 3 ) 5 ; M = Mo, W) first with 2 equiv of AgSbF 6 in the presence of PhCN and then with 1 equiv of Ph 2 PCH 2 CH 2 PPh 2 affords the yellow-orange salts [Cp*M(NO)(PhCN)(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 )](SbF 6 ) 2 in good yields (M = Mo, W). Reduction of [Cp*M(NO)(PhCN)(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 )](SbF 6 ) 2 with 2 equiv of Cp 2 Co in C 6 H 6 at 80 °C produces the corresponding 18e neutral compounds, Cp*M(NO)(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 ) which have been isolated as analytically pure orange-red solids. The addition of 1 equiv of the Lewis acid, Sc(OTf) 3 , to solutions of Cp*M(NO)(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 ) at room temperature results in the immediate formation of thermally stable Cp*M(NO→Sc(OTf) 3 )(H)(κ 3 -(C 6 H 4 )PhPCH 2 CH 2 PPh 2 ) complexes in which one of the phenyl substituents of the Ph 2 PCH 2 CH 2 PPh 2 ligands has undergone intramolecular orthometalation. In a similar manner, addition of BF 3 produces the analogous Cp*M(NO→BF 3 )(H)(κ 3 -(C 6 H 4 )PhPCH 2 CH 2 PPh 2 ) complexes. In contrast, B(C 6 F 5 ) 3 forms the 1:1 Lewis acid-base adducts, Cp*M(NO→B(C 6 F 5 ) 3 )(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 ) in CH 2 Cl 2 at room temperature. Upon warming to 80 °C, Cp*Mo(NO→B(C 6 F 5 ) 3 )(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 ) converts cleanly to the orthometalated product Cp*Mo(NO→B(C 6 F 5 ) 3 )(H)(κ 3 -(C 6 H 4 )PhPCH 2 CH 2 PPh 2 ), but Cp*W(NO→B(C 6 F 5 ) 3 )(κ 2 -Ph 2 PCH 2 CH 2 PPh 2 ) generates a mixture of products whose identities remain to be ascertained. Attempts to extend this chemistry to include related Ph 2 PCH 2 PPh 2 compounds have had only limited success. All new complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses.
Zhou, Shuangliu; Wu, Zhangshuan; Zhou, Lingmin; Wang, Shaowu; Zhang, Lijun; Zhu, Xiancui; Wei, Yun; Zhai, Jinhua; Wu, Jie
2013-06-03
The reactions of Me2Si(C9H6CH2CH2-DG)2 (DG = NMe2 (1), CH2NMe2 (2), OMe (3), and N(CH2CH2)2O (4)) with [(Me3Si)2N]3RE(μ-Cl)Li(THF)3 in toluene afforded a series of racemic divalent rare-earth metal complexes: {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2-DG)2}RE (DG = NMe2, RE = Yb (6) and Eu (7); DG = CH2NMe2, RE = Yb (8), Eu (9), and Sm (10); DG = OMe, RE = Yb (11) and Eu (12); DG = N(CH2CH2)2O, RE = Yb (13) and Eu (14)). Similarly, the racemic divalent rare-earth metal complexes {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2CH2NMe2)(C9H5CH2CH2OMe)}RE (RE = Yb (15) and Eu (16)) were also obtained. The reaction of Me2Si(C9H5CH2CH2OMe)2Li2 with NdCl3 gave a racemic dimeric neodymium chloride {η(5):η(1):η(5)-Me2Si(C9H5CH2CH2OMe)2NdCl}2 (17), whereas the reaction of Me2Si(C9H5CH2CH2NMe2)2Li2 with SmCl3 afforded a racemic dinuclear samarium chloride bridged by lithium chloride {η(5):η(1):η(5):η(1)-Me2Si(C9H5CH2CH2NMe2)2SmCl}2(μ-LiCl) (18). Further reaction of complex 18 with LiCH2SiMe3 provided an unexpected rare-earth metal alkyl complex {η(5):η(1):η(5):η(1):σ-Me2Si(C9H5CH2CH2NMe2)[(C9H5CH2CH2N(CH2)Me]}Sm (19) through the activation of an sp(3) C-H bond α-adjacent to the nitrogen atom. Complexes 19 and {η(5):η(1):η(5):η(1):σ-Me2Si(C9H5CH2CH2NMe2)[(C9H5CH2CH2N(CH2)Me]}Y (20) were also obtained by one-pot reactions of Me2Si(C9H5CH2CH2NMe2)2Li2 with RECl3 followed by treatment with LiCH2SiMe3. All compounds were fully characterized by spectroscopic methods and elemental analysis. Complexes 6-10 and 14-20 were further characterized by single-crystal X-ray diffraction analysis. All of the prepared rare-earth metal complexes were racemic, suggesting that racemic organo rare-earth metal complexes could be controllably synthesized by the cooperation between a bridge and the intramolecular coordination of donor atoms.
Bakali, A El; Dupont, L; Lefort, B; Lamoureux, N; Pauwels, J F; Montero, M
2007-05-17
Temperature and mole fraction profiles have been measured in laminar stoichiometric premixed CH4/O2/N2 and CH4/1.5%C6H5CH3/O2/N2 flames at low pressure (0.0519 bar) by using thermocouple, molecular beam/mass spectrometry (MB/MS), and gas chromatography/mass spectrometry (GC/MS) techniques. The present study completes our previous work performed on the thermal degradation of benzene in CH4/O2/N2 operating at similar conditions. Mole fraction profiles of reactants, final products, and reactive and stable intermediate species have been analyzed. The main intermediate aromatic species analyzed in the methane-toluene flame were benzene, phenol, ethylbenzene, benzylalcohol, styrene, and benzaldehyde. These new experimental results have been modeled with our previous model including submechanisms for aromatics (benzene up to p-xylene) and aliphatic (C1 up to C7) oxidation. Good agreement has been observed for the main species analyzed. The main reaction paths governing the degradation of toluene in the methane flame were identified, and it occurs mainly via the formation of benzene (C6H5CH3 + H = C6H6 + CH3) and benzyl radical (C6H5CH3 + H = C6H5CH2 + H2). Due to the abundance of methyl radicals, it was observed that recombination of benzyl and methyl is responsible for main monosubstitute aromatic species analyzed in the methane-toluene flame. The oxidation of these substitute species led to cyclopentadienyl radical as observed in a methane-benzene flame.
4-Alkynylphenylsilatranes: Insecticidal activity, mammalian toxicity, and mode of action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horsham, M.A.; Palmer, C.J.; Cole, L.M.
1990-08-01
4-Ethynyl- and 4-(prop-1-ynyl)phenylsilatranes (N(CH{sub 2}CH{sub 2}O){sub 3}SiR, R = C{sub 6}H{sub 4}-4-C{triple bond}CH or C{sub 6}H{sub 4}-4-C{triple bond}CCH{sub 3}) are highly toxic to houseflies (pretreated with piperonyl butoxide) and milkweed bugs (topical LD{sub 50}s 3-14 {mu}g/g) and to mice (intraperitoneal LD{sub 50}s 0.4-0.9 mg/kg), and they are moderately potent inhibitors of the ({sup 35}S)-tert-butylbicyclophosphorothionate or TBPS binding site (GABA-gated chloride channel) of mouse brain membranes. Scatchard analysis indicates noncompetitive interaction of 4-ethynylphenylsilatrane with the TBPS binding site. Phenylsilatrane analogues with 4-substituents of H, CH{sub 3}, Cl, Br, and C{triple bond}CSi(CH{sub 3}){sub 3} are highly toxic to mice but have littlemore » or no activity in the insect and receptor assays. Radioligand binding studies with (4-{sup 3}H)phenylsilatrane failed to reveal a specific binding site in mouse brain. Silatranes with R = H, CH{sub 3}, CH{sub 2}Cl, CH{double bond}CH{sub 2}, OCH{sub 2}CH{sub 3}, and C{sub 6}H{sub 4}-4-CH{sub 2}CH{sub 3} are of little or no activity in the insect and mouse toxicity and TBPS binding site assays as are the trithia and monocyclic analogues of phenylsilatrane. 4-Alkynylphenylsilatranes are new probes to examine the GABA receptor-ionophore complex of insects and mammals.« less
Yuan, Bin; Wu, Xiaofei; Chen, Yingxi; Huang, Jianhan; Luo, Hongmei; Deng, Shuguang
2013-03-15
Adsorptive separations of C(2)H(6)/CH(4) and CH(4)/N(2) binary mixtures are of paramount importance from the energy and environmental points of view. A mesoporous carbon adsorbent was synthesized using a soft template method and characterized with TEM, TGA, and nitrogen adsorption/desorption. Adsorption equilibrium and kinetics of C(2)H(6), CH(4), and N(2) on the mesoporous carbon adsorbent were determined at 278, 298, and 318 K and pressures up to 100 kPa. The adsorption capacities of C(2)H(6) and CH(4) on the mesoporous carbon adsorbent at 298 K and 100 kPa are 2.20 mmol/g and 1.05 mmol/g, respectively. Both are significantly higher than those of many adsorbents including pillared clays and ETS-10 at a similar condition. The equilibrium selectivities of C(2)H(6)/CH(4) and CH(4)/N(2) at 298 K are 19.6 and 5.8, respectively. It was observed that the adsorption of C(2)H(6), CH(4), and N(2) gases on the carbon adsorbent was reversible with modest isosteric heats of adsorption, which implies that this carbon adsorbent can be easily regenerated in a cyclic adsorption process. These results suggest that the mesoporous carbon studied in this work is a promising alternative adsorbent for the separations of C(2)H(6)/CH(4) and CH(4)/N(2) gas mixtures. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Aarset, Kirsten; Boldermo, Kjell Gunnar; Hagen, Kolbjørn
2010-08-01
The molecular structure and conformational composition of methyl chloroacetate, H 2ClC sbnd C( dbnd O) sbnd O sbnd CH 3, have been determined by gas-phase electron-diffraction (GED), using results from ab initio molecular orbital calculations (HF, MP2 and MP3/6-311+G(d,p)) to obtain constraints on some of the structural parameters. The molecules exist in the gas-phase at 25 °C as a mixture of two stable conformers: syn with C sbnd Cl eclipsing C dbnd O and gauche with C sbnd H approximately eclipsing C dbnd O. In both of these conformers O sbnd CH 3 is also eclipsing C dbnd O. The experimentally observed conformational composition at 25 °C was 36(8)% syn and 64(8)% gauche (parenthesised values are 2 σ), corresponding to a free energy difference between conformers of ΔGexp° = 1.4(9) kJ/mol. The corresponding theoretical values obtained for Δ G° are 1.1 kJ/mol (HF), 2.3 kJ/mol (MP2), and 2.4 kJ/mol (MP3). The results for the principal distances ( rh1) and angles ( ∠h1) for the major gauche conformer obtained from the combined GED/ ab initio study (2 σ uncertainties) are r(CO sbnd CCl) = 1.502(9) Å, r(C sbnd H) = 1.084(6) Å (average value), r(C sbnd Cl) = 1.782(4) Å, r(C dbnd O) = 1.213(4) Å, r(CO sbnd O) = 1.346(4) Å, r(CH 3sbnd O) = 1.468(10) Å, ∠C sbnd C sbnd Cl = 110.0(6)°, ∠C sbnd C dbnd O = 124.7(6)°, ∠C sbnd C sbnd O = 108.3(10)°, ∠C sbnd O sbnd C = 115.9(8)°, ϕ(Cl sbnd C sbnd C dbnd O) = 111(2)°, ϕ(C sbnd O sbnd C dbnd O) = 3(3)°.
Kottalanka, Ravi K; Harinath, A; Rej, Supriya; Panda, Tarun K
2015-12-14
We report here a series of alkali and alkaline earth metal complexes, each with a bulky iminopyrrolyl ligand [2-(Ph3CN=CH)C4H3NH] (1-H) moiety in their coordination sphere, synthesized using either alkane elimination or silylamine elimination methods or the salt metathesis route. The lithium salt of molecular composition [Li(2-(Ph3CN=CH)C4H3N)(THF)2] (2) was prepared using the alkane elimination method, and the silylamine elimination method was used to synthesize the dimeric sodium and tetra-nuclear potassium salts of composition [(2-(Ph3CN=CH)C4H3N)Na(THF)]2 (3) and [(2-(Ph3CN=CH)C4H3N)K(THF)0.5]4 (4) respectively. The magnesium complex of composition [(THF)2Mg(CH2Ph){2-(Ph3CN=CH)C4H3N}] (5) was synthesized through the alkane elimination method, in which [Mg(CH2Ph)2(OEt2)2] was treated with the bulky iminopyrrole ligand 1-H in 1 : 1 molar ratio, whereas the bis(iminopyrrolyl)magnesium complex [(THF)2Mg{2-(Ph3CN=CH)C4H3N}2] (6) was isolated using the salt metathesis route. The heavier alkaline earth metal complexes of the general formula {(THF)nM(2-(Ph3CN=CH)C4H3N)2} [M = Ca (7), Sr (8), and n = 2; M = Ba (9), n = 3] were prepared in pure form using two synthetic methods: in the first method, the bulky iminopyrrole ligand 1-H was directly treated with the alkaline earth metal precursor [M{N(SiMe3)2}2(THF)n] (where M = Ca, Sr and Ba) in 2 : 1 molar ratio in THF solvent at ambient temperature. The complexes 7-9 were also obtained using the salt metathesis reaction, which involves the treatment of the potassium salt (4) with the corresponding metal diiodides MI2 (M = Ca, Sr and Ba) in 2 : 1 molar ratio in THF solvent. The molecular structures of all the metal complexes (1-H, 2-9) in the solid state were established through single-crystal X-ray diffraction analysis. The complexes 5-9 were tested as catalysts for the ring-opening polymerization of ε-caprolactone. High activity was observed in the heavier alkaline earth metal complexes 7-9, with a very narrow polydispersity index in comparison to that of magnesium complexes 5 and 6.
η(4) -HBCC-σ,π-Borataallyl Complexes of Ruthenium Comprising an Agostic Interaction.
Saha, Koushik; Joseph, Benson; Ramalakshmi, Rongala; Anju, R S; Varghese, Babu; Ghosh, Sundargopal
2016-06-01
Thermolysis of [Cp*Ru(PPh2 (CH2 )PPh2 )BH2 (L2 )] 1 (Cp*=η(5) -C5 Me5 ; L=C7 H4 NS2 ), with terminal alkynes led to the formation of η(4) -σ,π-borataallyl complexes [Cp*Ru(μ-H)B{R-C=CH2 }(L)2 ] (2 a-c) and η(2) -vinylborane complexes [Cp*Ru(R-C=CH2 )BH(L)2 ] (3 a-c) (2 a, 3 a: R=Ph; 2 b, 3 b: R=COOCH3 ; 2 c, 3 c: R=p-CH3 -C6 H4 ; L=C7 H4 NS2 ) through hydroboration reaction. Ruthenium and the HBCC unit of the vinylborane moiety in 2 a-c are linked by a unique η(4) -interaction. Conversions of 1 into 3 a-c proceed through the formation of intermediates 2 a-c. Furthermore, in an attempt to expand the library of these novel complexes, chemistry of σ-borane complex [Cp*RuCO(μ-H)BH2 L] 4 (L=C7 H4 NS2 ) was investigated with both internal and terminal alkynes. Interestingly, under photolytic conditions, 4 reacts with methyl propiolate to generate the η(4) -σ,π-borataallyl complexes [Cp*Ru(μ-H)BH{R-C=CH2 }(L)] 5 and [Cp*Ru(μ-H)BH{HC=CH-R}(L)] 6 (R=COOCH3 ; L=C7 H4 NS2 ) by Markovnikov and anti-Markovnikov hydroboration. In an extension, photolysis of 4 in the presence of dimethyl acetylenedicarboxylate yielded η(4) -σ,π-borataallyl complex [Cp*Ru(μ-H)BH{R-C=CH-R}(L)] 7 (R=COOCH3 ; L=C7 H4 NS2 ). An agostic interaction was also found to be present in 2 a-c and 5-7, which is rare among the borataallyl complexes. All the new compounds have been characterized in solution by IR, (1) H, (11) B, (13) C NMR spectroscopy, mass spectrometry and the structural types were unequivocally established by crystallographic analysis of 2 b, 3 a-c and 5-7. DFT calculations were performed to evaluate possible bonding and electronic structures of the new compounds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Lin; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter
2016-11-15
The selective activation of the C-F bonds in substituted (2,6-difluorophenyl)phenylimines (2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-n'-R-C 6 H 4 (n' = 2, R = H (1); n' = 2, R = Me (2); n' = 4, R = tBu (3))) by Fe(PMe 3 ) 4 with an auxiliary strong Lewis acid (LiBr, LiI, or ZnCl 2 ) was explored. As a result, iron(ii) halides ((H 5 C 6 -(C[double bond, length as m-dash]NH)-2-FH 3 C 6 )FeX(PMe 3 ) 3 (X = Br (8); Cl (9)) and (n-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeX(PMe 3 ) 3 (n = 2, R = Me, X = Br (11); n = 4, R = tBu, X = I (12))) were obtained. Under similar reaction conditions, using LiBF 4 instead of LiBr or ZnCl 2 , the reaction of (2,6-difluorophenyl)phenylimine with Fe(PMe 3 ) 4 afforded an ionic complex [(2,6-F 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )Fe(PMe 3 ) 4 ](BF 4 ) (10) via the activation of a C-H bond. The method of C-F bond activation with an auxiliary strong Lewis acid is appropriate for monofluoroarylmethanimines. Without the Lewis acid, iron(ii) hydrides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-FH 3 C 6 )FeH(PMe 3 ) 3 (R = H (13); Me (14))) were generated from the reactions of Fe(PMe 3 ) 4 with the monofluoroarylmethanimines (2-FH 4 C 6 -(C[double bond, length as m-dash]NH)-2'-RC 6 H 4 (R = H (4); Me (5))); however, in the presence of ZnCl 2 or LiBr, iron(ii) halides ((2-RH 4 C 6 -(C[double bond, length as m-dash]NH)-H 4 C 6 )FeX(PMe 3 ) 3 (R = H, X = Cl (15); R = Me, X = Br (16))) could be obtained through the activation of a C-F bond. Furthermore, a C-F bond activation with good regioselectivity in (pentafluorophenyl)arylmethanimines (F 5 C 6 -(C[double bond, length as m-dash]NH)-2,6-Y 2 C 6 H 3 (Y = F (6); H (7))) could be realized in the presence of ZnCl 2 to produce iron(ii) chlorides ((2,6-Y 2 H 3 C 6 -(C[double bond, length as m-dash]NH)-F 4 C 6 )FeCl(PMe 3 ) 3 (Y = F (17); H (18))). This series of iron(ii) halides could be used to catalyze the hydrosilylation reaction of aldehydes. Due to the stability of iron(ii) halides to high temperature, the reaction mixture was allowed to be heated to 100 °C and the reaction could finish within 0.5 h.
Double differential cross sections of ethane molecule
NASA Astrophysics Data System (ADS)
Kumar, Rajeev
2018-05-01
Partial and total double differential cross sections corresponding to various cations C2H6+, C2H4+, C2H5+, C2H3+, C2H2+, CH3+, H+, CH2+, C2H+, H2+, CH+, H3+, C2+ and C+ produced during the direct and dissociative electron ionization of Ethane (C2H6) molecule have been calculated at fixed impinging electron energies 200 and 500eV by using modified Jain-Khare semi empirical approach. The calculation for double differential cross sections is made as a function of energy loss suffered by primary electron and angle of incident. To the best of my knowledge no other data is available for the comparison.
NASA Astrophysics Data System (ADS)
Thomas, A. V.; Pasteris, J. D.; Bray, C. J.; Spooner, E. T. C.
1990-03-01
Fluid inclusions in tourmaline and quartz from the footwall contact of the Tanco granitic pegmatite, S.E. Manitoba were studied using microthermometry (MT), laser Raman spectroscopy (LRS) and gas chromatography (GC). CH 4-bearing, aqueous inclusions occur in metasomatic tourmaline of the footwall amphibolite contact. The internal pressures estimated from MT are lower than those obtained from LRS (mean difference = 54 ± 19 bars). The difference is probably due to errors in the measurement of Th CH 4 (V) and to the presence of clathrate at Th CH 4 (V) into which CO 2 had been preferentially partitioned. LRS estimates of pressure (125-184 bars) are believed to be more accurate. Aqueous phase salinities based on LRS estimates of pressure are higher than those derived using the data from MT: 10-20 eq. wt% NaCl. The composition of the inclusions determined by GC bulk analysis is 97.3 mol% H 2O, 2.2 mol% CH 4, 0.4 mol% CO 2, 250 ppm C 2H 6, 130 ppm N 2, 33 ppm C 3H 8, 11 ppm C 2H 4, and 3 ppm C 3H 6, plus trace amounts of C 4 hydrocarbons. The composition is broadly similar to that calculated from MT (92% H 2O and 8% CH 4, with 7 eq. wt% NaCl dissolved in the aqueous phase and 2 mol% CO 2 dissolved in the CH 4 phase), as expected due to the dominance of a single generation of inclusions in the tourmaline. However, two important differences in composition are: (i) the CH 4 to CO 2 ratio of this fluid determined by GC is 5.33, which is significantly lower than that indicated by MT (49.0); and (ii) the H 2O content estimated from MT is 92 mol% compared to 98 mol% from GC. GC analyses may have been contaminated by the presence of secondary inclusions in the tourmaline. However, the rarity of the latter suggests that they cannot be completely responsible for the discrepancy. The differences may be accounted for by the presence of clathrate during measurement of Th CH 4 (critical), which would reduce CO 2 relative to CH 4 in the residual fluid, and by errors in visually estimating vol% H 2O. The compositions of the primary inclusions in tourmaline are unlike any of those found within the pegmatite and indicate that the fluid was externally derived, probably of metamorphic origin. Inclusions in quartz of the border unit of the pegmatite are secondary and are either aqueous (18 to 30 eq. wt% CaCl 2; Th total = 184 ± 14° C) or carbonic. Tm CO 2 for the carbonic inclusions ranges from -57.5 to -65.4°C and is positively correlated with Th CO 2. Analyses of X CH 4 based on LRS agree within 5 mol% of those derived from MT and together indicate a range of compositions from 5 to 50 mol% CH 4 in the CO 2 phase. Bulk analysis by GC gives 99.0 mol% H 2O, 0.6 mol% CO 2, 0.4 mol% CH 4, 160 ppm N 2, 7 ppm C 2H 6, 4 ppm C 3H 8, and 2 ppm C 2H 4, with trace amounts of COS (carbonyl sulphide) and C 3H 6. The level of H 2O in the analysis is consistent with the dominance of the aqueous inclusions in these samples, and the CH4: CO2 ratios are consistent with estimates from MT and LRS. The preservation of variable ratios of CH 4:CO 2 in inclusions < 50 μm apart indicates that neither H 2 diffusion out of the inclusions nor reduction of fluids leaving the pegmatite were responsible for the more oxidized chemistries of the border unit inclusions relative to those in the tourmaline of the metasomatised amphibolite. The compositions of the inclusions in the quartz lie between those of the fluid trapped by the tourmaline (externally derived) and the measured composition of a CO 2-bearing pegmatitic fluid, which indicates that the secondary fluids trapped in the border unit quartz were produced by late mixing.
The conformations of 13-vertex ML2C2B10 metallacarboranes: experimental and computational studies.
Dalby, Kelly J; Ellis, David; Erhardt, Stefan; McIntosh, Ruaraidh D; Macgregor, Stuart A; Rae, Karen; Rosair, Georgina M; Settels, Volker; Welch, Alan J; Hodson, Bruce E; McGrath, Thomas D; Stone, F Gordon A
2007-03-21
The docosahedral metallacarboranes 4,4-(PMe(2)Ph)2-4,1,6-closo-PtC(2)B(10)H(12), 4,4-(PMe(2)Ph)2-4,1,10-closo-PtC(2)B(10)H(12), and [N(PPh(3))2][4,4-cod-4,1,10-closo-RhC(2)B(10)H(12)] were prepared by reduction/metalation of either 1,2-closo-C(2)B(10)H(12) or 1,12-closo-C(2)B(10)H(12). All three species were fully characterized, with a particular point of interest of the latter being the conformation of the {ML2} fragment relative to the carborane ligand face. Comparison with conformations previously established for six other ML(2)C(2)B(10) species of varying heteroatom patterns (4,1,2-MC(2)B(10), 4,1,6-MC(2)B(10), 4,1,10-MC(2)B(10), and 4,1,12-MC(2)B(10)) reveals clear preferences. In all cases a qualitative understanding of these was afforded by simple MO arguments applied to the model heteroarene complexes [(PH3)2PtC(2)B(4)H(6)]2- and [(PH3)2PtCB(5)H(6)]3-. Moreover, DFT calculations on [(PH3)2PtC(2)B(4)H(6)]2- in its various isomeric forms approximately reproduced the observed conformations in the 4,1,2-, 4,1,6-, and 4,1,10-MC(2)B(10) species, although analogous calculations on [(PH3)2PtCB(5)H(6)]3- did not reproduce the conformation observed in the 4,1,12-MC(2)B(10) metallacarborane. DFT calculations on (PH3)2PtC(2)B(10)H(12) yielded good agreement with experimental conformations in all four isomeric cases. Apparent discrepancies between observed and computed Pt-C distances were probed by further refinement of the 4,1,2- model to 1,2-(CH2)3-4,4-(PMe3)2-4,1,2-closo-PtC(2)B(10)H(10). This still has a more distorted structure than measured experimentally for 1,2-(CH2)3-4,4-(PMe(2)Ph)2-4,1,2-closo-PtC(2)B(10)H(10), but the structural differences lie on a very shallow potential energy surface. For the model compound a henicosahedral transition state was located 8.3 kcal mol(-1) above the ground-state structure, consistent with the fluxionality of 1,2-(CH2)3-4,4-(PMe(2)Ph)2-4,1,2-closo-PtC(2)B(10)H(10) in solution.
NASA Astrophysics Data System (ADS)
Assan, Sabina; Baudic, Alexia; Guemri, Ali; Ciais, Philippe; Gros, Valerie; Vogel, Felix R.
2017-06-01
Due to increased demand for an understanding of CH4 emissions from industrial sites, the subject of cross sensitivities caused by absorption from multiple gases on δ13CH4 and C2H6 measured in the near-infrared spectral domain using CRDS has become increasingly important. Extensive laboratory tests are presented here, which characterize these cross sensitivities and propose corrections for the biases they induce. We found methane isotopic measurements to be subject to interference from elevated C2H6 concentrations resulting in heavier δ13CH4 by +23.5 ‰ per ppm C2H6 / ppm CH4. Measured C2H6 is subject to absorption interference from a number of other trace gases, predominantly H2O (with an average linear sensitivity of 0.9 ppm C2H6 per % H2O in ambient conditions). Yet, this sensitivity was found to be discontinuous with a strong hysteresis effect and we suggest removing H2O from gas samples prior to analysis. The C2H6 calibration factor was calculated using a GC and measured as 0.5 (confirmed up to 5 ppm C2H6). Field tests at a natural gas compressor station demonstrated that the presence of C2H6 in gas emissions at an average level of 0.3 ppm shifted the isotopic signature by 2.5 ‰, whilst after calibration we find that the average C2H6 : CH4 ratio shifts by +0.06. These results indicate that, when using such a CRDS instrument in conditions of elevated C2H6 for CH4 source determination, it is imperative to account for the biases discussed within this study.
NASA Astrophysics Data System (ADS)
Sabounchei, Seyyed Javad; Panahimehr, Mohammad; Hosseinzadeh, Marjan; Karamian, Roya; Asadbegy, Mostafa; Masumi, Azadeh
2014-03-01
The reaction of Ph2PCH2PPh2 (dppm) with 2-bromo-3-nitroacetophenone and 2,2‧,4‧-trichloroacetophenone in chloroform produce the new phosphonium salts [Ph2PCH2PPh2CH2C(O)C6H4NO2]Br (1) and [Ph2PCH2PPh2CH2C(O)C6H3Cl2]Cl (2). Further, by reaction of the monophosphonium salts of dppm with the strong base triethylaminethe corresponding bidentate phosphorus ylides, Ph2PCH2PPh2C(H)C(O)C6H4NO2 (3) and Ph2PCH2PPh2C(H)C(O)C6H3Cl2 (4) were obtained. The reaction of these ligands with mercury(II) halides in dry methanol led to the formation of the mononuclear complexes {HgX2[(Ph2PCH2PPh2C(H)C(O)C6H4NO2)]} [X = Cl (5), Br (6), I (7)] and {HgX2[(Ph2PCH2PPh2C(H)C(O)C6H3Cl2)]} [X = Cl (8), Br (9), I (10)]. Characterization of the obtained compounds was performed by elemental analysis, IR, 1H, 31P and 13C NMR. The structure of compound 1 being unequivocally determined by single crystal X-ray diffraction techniques. The mass spectrum of compound 6 (as an instance) also demonstrates the synthesize of these compounds. In all complexes the title ylides are coordinated through the ylidic carbon and the phosphine atom. These compounds form five membered ring under complexation. The antibacterial effects of DMSO solutions of the ligands and their metal complexes were evaluated by the disc diffusion method against six Gram positive and negative bacteria. All compounds represent antibacterial activity against these bacteria with high levels of inhibitory potency exhibited against the Gram positive species.
NASA Astrophysics Data System (ADS)
Hong, Min; Yin, Han-Dong; Cui, Ji-Chun
2011-03-01
We report the synthesis of four diorganotin(IV) compounds of Schiff base pyruvic acid hydrazone derivatives formulated as [R 2SnLY] 2, where L 1 is 2-SC 4H 3CON 2C(CH 3)CO 2 with Y = CH 3CH 2CH 2CH 2OH, R = n-Bu ( 1); L 2 is C 6H 5CON 2C(CH 3)CO 2 with Y = CH 3CH 2OH, R = p-F-Bz ( 2); L 3 is 2-HOC 6H 4CON 2C(CH 3)CO 2 with Y dbnd H 2O, R = p-CN -Bz ( 3); and L 4 is 4-NO 2-C 6H 4CON 2C(CH 3)CO 2 with Y dbnd CH 3CH 2OH, R = Bz ( 4). The structures of all compounds have been established by a combination of single-crystal X-ray diffraction analysis, 1H and 119Sn NMR spectroscopy, IR spectroscopy, and elemental analysis. Studies reveal that four ligands present the same coordination mode with tin center, which all present tridentate ONO donor Schiff bases and coordinate to the tin center in an enolic form. In compounds 1- 4, each tin atom is seven-coordinated and exhibits a distorted pentagonal bipyramid with a planar SnO 4N unit and two apical alkyl carbon atoms, thus forming a weakly-bridged dimeric molecule. Additionally, the distance of Sn⋯O bridge in each compound is obviously affected by the choice of different alkyl groups and coordination solvent molecules, which fluctuates in the range of 2.571(5)-2.839(4) Å. Furthermore, the supramolecular structure analysis show that there are two types of supramolecular infrastructures, 1D chain or 2D network, which are formed by intermolecular O-H···N or C-H⋯X (X = O, N or F) hydrogen bonds.
NASA Astrophysics Data System (ADS)
Preuss, Evelyn; Corre, Marife D.; Damris, Muhammad; Tjoa, Aiyen; Rahayu Utami, Sri; Veldkamp, Edzo
2015-04-01
Demand for palm oil has increased strongly in recent decades. Global palm oil production quadrupled between 1990 and 2009, and although almost half of the global supply is already produced in Indonesia, a doubling of current production is planned for the next ten years. This agricultural expansion is achieved by conversion of rainforest. Land-use conversion affects soil carbon dioxide (CO2) and methane (CH4) fluxes through changes in nutrient availability and soil properties which, in turn, influence plant productivity, microbial activity and gas diffusivity. Our study was aimed to assess changes in soil CO2 and CH4 fluxes with forest conversion to oil palm and rubber plantations. Our study area was Jambi Province, Sumatra, Indonesia. We selected two soil landscapes in this region: loam and clay Acrisol soils. At each landscape, we investigated four land-use systems: lowland secondary rainforest, secondary forest with regenerating rubber (referred here as jungle rubber), rubber (7-17 years old) and oil palm plantations (9-16 years old). Each land use in each soil landscape was represented by four sites as replicates, totaling to 32 sites. We measured soil-atmosphere CH4 and CO2 fluxes using vented static chamber method with monthly sampling from November 2012 to December 2013. There were no differences in soil CO2 and CH4 fluxes (all P > 0.05) between soil landscapes for each land-use type. For soil CO2 fluxes, in both clay and loam Acrisol soil landscapes oil palm were lower compared to the other land uses (P < 0.007). In the clay Acrisol, soil CO2 fluxes were 107.2 ± 7.2 mg C m-2 h-1 for oil palm, and 195.9 ± 13.5 mg C m-2 h-1for forest, 185.3 ± 9.4 mg C m-2 h-1for jungle rubber and 182.8 ± 16.2 mg C m2 h-1for rubber. In the loam Acrisol, soil CO2 fluxes were 115.7 ± 11.0 mg CO2-C m2 h-1 for oil palm, and 186.6 ± 13.7, 178.7 ± 11.2, 182.9 ± 14.5 mg CO2-C m-2 h-1 for forest, jungle rubber and rubber, respectively. The seasonal patterns of soil CO2 fluxes were positively correlated with water-filled pore space (WFPS) in loam Acrisol jungle rubber (P < 0.05), and positively correlated with soil temperature in loam Acrisol forest (P < 0.05) andclay Acrisol oil palm (P < 0.01). For soil CH4 fluxes, in the clay Acrisol CH4 uptake was highest in the forest (40.3 ± 10.3 μg CH4-C m-2 h-1)followed by the jungle rubber (20.8 ± 7.2 μg CH4-C m2 h-1) and both were higher than in the rubber (3.0 ± 1.3 μg CH4-C m-2 h1) and oil palm (6.4 ± 3.1 μg CH4-C m-2 h-1) (P = 0.005). In the loam Acrisol, two out of four forest plots generally showed net CH4 emissions, resulting to a large variation around the mean CH4 flux from the forest (1.6 ± 17.1 μg C m-2 h-1); comparing only the three land uses, a similar trend was observed as that in the clay Acrisol: larger CH4 uptake in jungle rubber (26.9 ± 3.9 μg C m-2 h-1) than in rubber (9.7 ± 3.8 μg C m-2 h-1) and oil palm (14.9 ± 3.1 μg C m-2 h-1). The seasonal patterns of soil CH4 fluxes for each land use and soil landscape were all positively correlated with WFPS (all P < 0.05). Across landscapes and land uses, annual soil CH4 fluxes were correlated with soil fertility index (r = -0.38, P = 0.04, n = 32). Conversion of forest to oil palm and rubber plantations decreased soil CO2 fluxes and CH4 uptake mainly due to changes in soil moisture, temperature and fertility. These changes in soil trace gas fluxes should be considered in the greenhouse gas life-cycle analysis of these economically important crops.
Dynamics of the C/H and C/F exchanges in the reaction of 3P carbon atoms with vinyl fluoride
NASA Astrophysics Data System (ADS)
Lee, Shih-Huang; Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian
2013-08-01
Two product channels C3H2F + H and C3H3 + F were identified in the reaction of C(3P) atoms with vinyl fluoride (C2H3F) at collision energy 3.7 kcal mol-1 in a crossed molecular-beam apparatus using selective photoionization. Time-of-flight (TOF) spectra of products C3H2F and C3H3 were measured at 12-16 laboratory angles as well as a TOF spectrum of atomic F, a counter part of C3H3, was recorded at single laboratory angle. From the best simulation of product TOF spectra, translational-energy distributions at seven scattering angles and a nearly isotropic (forward and backward peaked) angular distribution were derivable for exit channel C3H2F + H (C3H3 + F) that has average kinetic-energy release of 14.5 (4.9) kcal mol-1. Products C3H2F + H and C3H3 + F were estimated to have a branching ratio of ˜53:47. Furthermore, TOF spectra and photoionization spectra of products C3H2F and C3H3 were measured at laboratory angle 62° with photoionization energy ranging from 7 eV to 11.6 eV. The appearance of TOF spectra is insensitive to photon energy, implying that only single species overwhelmingly contributes to products C3H2F and C3H3. HCCCHF (H2CCCH) was identified as the dominant species based on the measured ionization threshold of 8.3 ± 0.2 (8.6 ± 0.2) eV and the maximal translational-energy release. The C/H and C/F exchange mechanisms are stated.
NASA Astrophysics Data System (ADS)
Tahir, Beenish; Tahir, Muhammad; Amin, Nor Aishah Saidina
2017-10-01
Copper modified polymeric graphitic carbon nitride (Cu/g-C3N4) nanorods for photo-induced CO2 conversion with methane (CH4) and water (H2O) as reducing system under simulated solar energy has been investigated. The nanocatalysts, synthesized by pyrolysis and sonication, were characterized by XRD, FTIR, Raman analysis, XPS, SEM, N2 adsorption-desorption and PL spectroscopy. The presence of Cu2+ ions over the g-C3N4 structure inhibited charge carriers recombination process. The results indicated that photo-activity and selectivity of Cu/g-C3N4 photo-catalyst for CO2 reduction greatly dependent on the type of CO2-reduction system. CO2 was efficiently converted to CH4 and CH3OH with traces of C2H4 and C2H6 hydrocarbons in the CO2-water system. The yield of the main product, CH4 over 3 wt.% Cu/g-C3N4 was 109 μmole g-cata.-1 h-1 under visible light irradiation, significantly higher than the pure g-C3N4 catalyst (60 μmole/g.cat). In photo-induced CO2-CH4 reaction, CO and H2 were detected as the main products with smaller amount of hydrocarbons. The highest efficiency was detected over 3 wt.%Cu-loading of g-C3N4 and at optimal CH4/CO2 feed ratio of 1.0. The maximum yield of CO and H2 detected were 142 and 76 μmole g-catal.-1 h-1, respectively at selectivity 66.6% and 32.5%, respectively. Significantly enhanced CO2/CH4 reduction over Cu/g-C3N4 was attributed to its polymeric structure with efficient charge transfer property and inhibited charges recombination rate. A proposed photo-induced reaction mechanism, corroborated with the experimental data, was also deliberated.
TeX4 (X = F, Cl, Br) as Lewis acids--complexes with soft thio- and seleno-ether ligands.
Hector, Andrew L; Jolleys, Andrew; Levason, William; Reid, Gillian
2012-08-28
TeF(4) reacts with OPR(3) (R = Me or Ph) in anhydrous CH(2)Cl(2) to give the colourless, square based pyramidal 1 : 1 complexes [TeF(4)(OPR(3))] only, in which the OPR(3) is coordinated basally in the solid state, (R = Me: d(Te-O) = 2.122(2) Å; R = Ph: d(Te-O) = 2.1849(14) Å). Variable temperature (19)F{(1)H}, (31)P{(1)H} and (125)Te{(1)H} NMR spectroscopic studies strongly suggest this is the low temperature structure in solution, although the systems are dynamic. The much softer donor ligands SMe(2) and SeMe(2) show a lower affinity for TeF(4), although unstable, yellow products with spectroscopic features consistent with [TeF(4)(EMe(2))] are obtained by the reaction of TeF(4) in neat SMe(2) or via reaction in CH(2)Cl(2) with SeMe(2). TeX(4) (X = F, Cl or Br) causes oxidation and halogenation of TeMe(2) to form X(2)TeMe(2). The Br(2)TeMe(2) hydrolyses in trace moisture to form [BrMe(2)Te-O-TeMe(2)Br], the crystal structure of which has been determined. TeX(4) (X = Cl or Br) react with the selenoethers SeMe(2), MeSe(CH(2))(3)SeMe or o-C(6)H(4)(SeMe)(2) (X = Cl) in anhydrous CH(2)Cl(2) to give the distorted octahedral monomers trans-[TeX(4)(SeMe(2))(2)], cis-[TeX(4){MeSe(CH(2))(3)SeMe}] and cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], which have been characterised by IR, Raman and multinuclear NMR ((1)H, (77)Se{(1)H} and (125)Te{(1)H}) spectroscopy, and via X-ray structure determinations of representative examples. Tetrahydrothiophene (tht) can form both 1 : 1 and 1 : 2 Te : L complexes. For X = Br, the former has been shown to be a Br-bridged dimer, [Br(3)(tht)Te(μ-Br)(2)TeBr(3)(tht)], by crystallography with the tht ligands anti, whereas the latter are trans-octahedral monomers. Like its selenoether analogue, MeS(CH(2))(3)SMe forms distorted octahedral cis-chelates, [TeX(4){MeS(CH(2))(3)SMe}], whereas the more rigid o-C(6)H(4)(SMe)(2) unexpectedly forms a zig-zag chain polymer in the solid state, [TeCl(4){o-C(6)H(4)(SMe)(2)}](n), in which the dithioether adopts an extremely unusual bridging mode. This is in contrast to the chelating monomer, cis-[TeCl(4){o-C(6)H(4)(SeMe)(2)}], formed with the analogous selenoether and may be attributed to small differences in the ligand chelate bite angles. The wider bite angle xylyl-linked bidentates, o-C(6)H(4)(CH(2)EMe(2))(2) behave differently; the thioether forms cis-chelated [TeX(4){o-C(6)H(4)(CH(2)SMe)(2)}] confirmed crystallographically, whereas the selenoether undergoes C-Se cleavage and rearrangement on treatment with TeX(4), forming the cyclic selenonium salts, [C(9)H(11)Se](2)[TeX(6)]. The tetrathiamacrocycle, [14]aneS(4) (1,4,8,11-tetrathiacyclotetradecane), does not react cleanly with TeCl(4), but forms the very poorly soluble [TeCl(4)([14]aneS(4))](n), shown by crystallography to be a zig-zag polymer with exo-coordinated [14]aneS(4) units linked via alternate S atoms to a cis-TeCl(4) unit. Trends in the (125)Te{(1)H} NMR shifts for this series of Te(IV) halides chalcogenoether complexes are discussed.
Clathrate hydrates in the solar system
NASA Technical Reports Server (NTRS)
Miller, S. L.
1985-01-01
Clathrate hydrates are crystalline compounds in which an expanded ice lattice forms cages that contain gas molecules. There are two principal hydrate structures. Structure I, with a 12 A cubic unit cell, contains 46 water molecules and 8 cages of two types, giving an ideal formula (for CH4) of CH4.5.75H2O. The actual formula contains somewhat more water as the cages are not completely filled. Other examples that form Structure I hydrates are C2H6, C2H4, C2H2, CO2, SO2, OCS, Xe, H2S. Structure II, with a 17 A cubic unit cell, contains 136 water molecules, and 8 large and 16 small cages. The ideal formula for CHCl3 is CHCL3.17H2O. Other examples of Structure II hydrates include C3H8, C2H5Cl, acetone, and tetrahydrofuran. Small molecules such as Ar, Kr and probably N2 and O2 also form a Structure II hydrate. The small molecules occupy both the large and small cages, giving an ideal formula of Ar.5.67H2O. The conditions of pressure and temperature for hydrate formation are discussed.
NASA Technical Reports Server (NTRS)
Bogan, Denis
1999-01-01
Laboratory measurements have been carried out to determine low temperature chemical rate coefficients of ethynyl radical (C2H) for the atmospheres of the outer planets and their satellites. This effort is directly related to the Cassini mission which will explore Saturn and Titan. A laser-based photolysis/infrared laser probe setup was used to measure the temperature dependence of kinetic rate coefficients from approx. equal to 150 to 350 K for C2H radicals with H2, C2H2, CH4, CD4, C2H4, C2H6, C3H8, n-C4H10, i-C4H10, neo-C5H12, C3H4 (methylacetylene and allene), HCN, and CH3CN. The results revealed discrepancies of an order of magnitude or more compared with the low temperature rate coefficients used in present models. A new Laval nozzle, low Mach number supersonic expansion kinetics apparatus has been constructed, resulting in the first measurements of neutral C2H radical kinetics at 90 K and permitting studies on condensable gases with insufficient vapor pressure at low temperatures. New studies of C 2H with acetylene have been completed.
NASA Astrophysics Data System (ADS)
Hora, Nicholas J.; Wahl, Benjamin M.; Soares, Camilla; Lara, Skylee A.; Lanska, John R.; Phillips, James A.
2018-04-01
The nature of the interactions between silicon tetrafluoride and series of nitrogen bases, including nitriles (RCN, with R > CH3), pyridine, and various fluoro-substituted pyridines, has been investigated via quantum-chemical computations, low-temperature IR spectroscopy, and bulk reactivity experiments. Using (primarily) M06 with the 6-311+G(2df,2pd) basis set, we obtained equilibrium structures, binding energies, harmonic frequencies, and N-Si potentials in the gas-phase and in bulk dielectric media for an extensive series of 1:1 molecular complexes, including: C6H5CH2CN-SiF4, CH3CH2CN-SiF4, (CH3)3CCN-SiF4, C5H5N-SiF4, 4-FC5H4N-SiF4, 3,5-C5F2H3N-SiF4, 2,6-C5F2H3N-SiF4 and 3,4,5-C5F3H2N-SiF4. In addition, for the analogous 2:1 complexes of pyridine and 3,5-difluororpyridine, we obtained equilibrium structures, binding energies, and harmonic frequencies. The N-Si distances in the 1:1 nitrile complexes are fairly long, ranging from 2.84 Å to 2.88 Å, and the binding energies range from 4.0 to 4.2 kcal/mol (16.7-17.6 kJ/mol). Also, computations predict extremely anharmonic N-Si potentials, for which the inner portions of the curve are preferentially stabilized in dielectric media, which predict an enhancement of these interactions in condensed-phases. However, we see no evidence of bulk reactivity between C6H5CH2CN, CH3CH2CN, or (CH3)3CCN and SiF4, nor any significant interaction between (CH3)3CCN and SiF4 in low temperature IR spectra of solid, (CH3)3CCN/SiF4 thin films. Conversely, the interactions in four of the five 1:1, pyridine-SiF4 complexes are generally stronger; binding energies range from 5.7 to 9.6 kcal/mol (23.8-40.2 kJ/mol), and correspondingly the N-Si distances are relatively short (2.12-2.25 Å). The exception is 2,6-C5F2H3N-SiF4, for which the binding energy is only 3.6 kcal/mol (15.1 kJ/mol), and the N-Si distance is quite long (3.12 Å). In addition, both pyridine and 3,5-difluororpyridine were found to form stable reaction products with SiF4; but no analogous product was obtained with 2,6-difluororpyridine and SiF4, nor was any significant interaction indicated in low-temperature IR spectra of 2,6-difluororpyridine/SiF4 films. By contrast, low temperature spectra of pyridine/SiF4 and 3,5-difluororpyridine/SiF4 thin films are consistent with the presence of a distinct 2:1 reaction product. Moreover, the observed frequencies agree reasonably well with those predicted for the cis, octahedral coordination isomers of the 2:1 molecular complexes, in which the N-Si bonds are compressed slightly relative to those in the predicted gas-phase structures.
Lee, Shih-Huang; Chin, Chih-Hao; Chen, Wei-Kan; Huang, Wen-Jian; Hsieh, Chu-Chun
2011-05-14
We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C(2)H(3)N and C(2)H(2)N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N((2)D)+C(2)H(4) established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N((2)D) atom adds to the C=C π-bond of ethene (C(2)H(4)) to form a cyclic complex c-CH(2)(N)CH(2) that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C(2)H(3)N; c-CH(2)(N)CH+H is the dominant product channel. Subsequently, most C(2)H(3)N radicals, notably c-CH(2)(N)CH, further decompose to CH(2)CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru; Kucherepa, N. S.; Rodnikova, M. N.
The molecular and crystal structures of two p-alkoxybenzylidene)-p'-toluidines C{sub 2}H{sub 5}O-C{sub 6}H{sub 4}-CH=N-C{sub 6}H{sub 4}-CH{sub 3} (1) and C{sub 4}H{sub 9}O-C{sub 6}H{sub 4}-CH=N-C{sub 6}H{sub 4}-CH{sub 3} (2) are determined by X-ray diffraction. Crystals 1 and 2 contain four and two crystallographically independent molecules, respectively. In 1, the geometry of the independent molecules is almost identical. In 2, the independent molecules differ in the conformation of the alkyl chain, which is disordered in one of them. An analysis of the crystal packing of 2 reveals the alternation of spacious layers formed by loosely packed aliphatic fragments of molecules and layers ofmore » closely packed aromatic fragments, which ensures the formation of the mesogenic phase in the course of melting of crystals 2. In crystal 1, loose aliphatic layers are absent.« less
NASA Astrophysics Data System (ADS)
Agelakopoulou, T.; Bassiotis, I.; Metaxa, E.; Roubani-Kalantzopoulou, F.
Air pollution has a great impact on the social and economic aspects all over the world. In order to account the human interaction with the atmospheric environment, a suitable scientific basis is needed. That is why six physicochemical quantities have been determined in a previous work for each one heterogeneous system between organic volatile pollutants and oxide-pigments of works of art. This investigation is extended in order to determine experimentally five new ones. Thus, a more precise contribution to the elucidation of the mechanism of the deterioration of various works of art in museums is achieved. These physicochemical quantities are: (1) local adsorption energies, (2) local monolayer capacities, (3) local adsorption isotherms, (4) density probability function, and (5) pollutant concentration on the oxide-pigment at equilibrium. All these adsorption parameters mentioned above have been calculated as a function of experimental time for the systems: C 6H 6/TiO 2, C 6H 6/NO 2/TiO 2, C 6H 6/Cr 2O 3, C 6H 6/NO 2/Cr 2O 3, C 6H 5CH 3/TiO 2, C 6H 5CH 3/NO 2/TiO 2, C 6H 5CH 3/Cr 2O 3, C 6H 5CH 3/NO 2/Cr 2O 3, C 6H 6/PbO, C 6H 6/NO 2/PbO, C 6H 5CH 3/PbO, and C 6H 5CH 3/NO 2/PbO for the first time. Thus, in this work we shall stress the recent new aspect of Reversed Flow-(Inverse) Gas Chromatography (RF-GC or RF-IGC), i.e. the time-resolved chromatography related to the evaluation of some important adsorption parameters. Gas Chromatography is a promising meeting place of surface science and atmospheric chemistry.
Intramolecular B/N frustrated Lewis pairs and the hydrogenation of carbon dioxide.
Courtemanche, Marc-André; Pulis, Alexander P; Rochette, Étienne; Légaré, Marc-André; Stephan, Douglas W; Fontaine, Frédéric-Georges
2015-06-18
The FLP species 1-BR2-2-NMe2-C6H4 (R = 2,4,6-Me3C6H2, 2,4,5-Me3C6H2) reacts with H2 in sequential hydrogen activation and protodeborylation reactions to give (1-BH2-2-NMe2-C6H4)2. While reacts with H2/CO2 to give formyl, acetal and methoxy-derivatives, reacts with H2/CO2 to give C6H4(NMe2)(B(2,4,5-Me3C6H2)O)2CH2. The mechanism of CO2 reduction is considered.
The Synthesis, Characterization and Dehydrogenation of Sigma‐Complexes of BN‐Cyclohexanes
Kumar, Amit; Ishibashi, Jacob S. A.; Hooper, Thomas N.; Mikulas, Tanya C.; Dixon, David A.
2015-01-01
Abstract The coordination chemistry of the 1,2‐BN‐cyclohexanes 2,2‐R2‐1,2‐B,N‐C4H10 (R2=HH, MeH, Me2) with Ir and Rh metal fragments has been studied. This led to the solution (NMR spectroscopy) and solid‐state (X‐ray diffraction) characterization of [Ir(PCy3)2(H)2(η2η2‐H2BNR2C4H8)][BArF 4] (NR2=NH2, NMeH) and [Rh(iPr2PCH2CH2CH2PiPr2)(η2η2‐H2BNR2C4H8)][BArF 4] (NR2=NH2, NMeH, NMe2). For NR2=NH2 subsequent metal‐promoted, dehydrocoupling shows the eventual formation of the cyclic tricyclic borazine [BNC4H8]3, via amino‐borane and, tentatively characterized using DFT/GIAO chemical shift calculations, cycloborazane intermediates. For NR2=NMeH the final product is the cyclic amino‐borane HBNMeC4H8. The mechanism of dehydrogenation of 2,2‐H,Me‐1,2‐B,N‐C4H10 using the {Rh(iPr2PCH2CH2CH2PiPr2)}+ catalyst has been probed. Catalytic experiments indicate the rapid formation of a dimeric species, [Rh2(iPr2PCH2CH2CH2PiPr2)2H5][BArF 4]. Using the initial rate method starting from this dimer, a first‐order relationship to [amine‐borane], but half‐order to [Rh] is established, which is suggested to be due to a rapid dimer–monomer equilibrium operating. PMID:26602704
The Synthesis, Characterization and Dehydrogenation of Sigma-Complexes of BN-Cyclohexanes
Kumar, Amit; Ishibashi, Jacob S. A.; Hooper, Thomas N.; ...
2015-11-25
The coordination chemistry of the 1,2-BN-cyclohexanes 2,2-R 2-1,2-B,N-C 4H 10 (R 2=HH, MeH, Me 2) with Ir and Rh metal fragments has been studied. This led to the solution (NMR spectroscopy) and solid-state (X-ray diffraction) characterization of [Ir(PCy 3) 2(H) 2(η 2η 2-H 2BNR 2C 4H 8)][BAr F 4] (NR 2=NH 2, NMeH) and [Rh( iPr 2PCH 2CH 2CH 2P iPr 2)(η 2η 2-H 2BNR 2C 4H 8)][BAr F 4] (NR 2=NH 2, NMeH, NMe 2). For NR 2=NH 2 subsequent metal-promoted, dehydrocoupling shows the eventual formation of the cyclic tricyclic borazine [BNC 4H 8] 3, via amino-borane and, tentativelymore » characterized using DFT/GIAO chemical shift calculations, cycloborazane intermediates. For NR 2=NMeH the final product is the cyclic amino-borane HBNMeC 4H 8. The mechanism of dehydrogenation of 2,2-H,Me-1,2-B,N-C 4H 10 using the {Rh( iPr 2PCH 2CH 2CH 2P iPr 2)} + catalyst has been probed. Catalytic experiments indicate the rapid formation of a dimeric species, [Rh 2( iPr 2PCH 2CH 2CH 2P iPr 2) 2H 5][BAr F 4]. Using the initial rate method starting from this dimer, a first-order relationship to [amine-borane], but half-order to [Rh] is established, which is suggested to be due to a rapid dimer–monomer equilibrium operating.« less
Izod, Keith; Watson, James M; Clegg, William; Harrington, Ross W
2011-11-28
Treatment of the secondary phosphine {(Me(3)Si)(2)CH}PH(C(6)H(4)-2-SMe) with BH(3)·SMe(2) gives the corresponding phosphine-borane {(Me(3)Si)(2)CH}PH(BH(3))(C(6)H(4)-2-SMe) (9) as a colourless solid. Deprotonation of 9 with n-BuLi, PhCH(2)Na or PhCH(2)K proceeds cleanly to give the corresponding alkali metal complexes [[{(Me(3)Si)(2)CH}P(BH(3))(C(6)H(4)-2-SMe)]ML](n) [ML = Li(THF), n = 2 (10); ML = Na(tmeda), n = ∞ (11); ML = K(pmdeta), n = 2 (12)] as yellow/orange crystalline solids. X-ray crystallography reveals that the phosphido-borane ligands bind the metal centres through their sulfur and phosphorus atoms and through the hydrogen atoms of the BH(3) group in each case, leading to dimeric or polymeric structures. Compounds 10-12 are stable towards both heat and ambient light; however, on heating in toluene solution in the presence of 10, traces of free phosphine-borane 9 are slowly converted to the free phosphine {(Me(3)Si)(2)CH}PH(C(6)H(4)-2-SMe) (5) with concomitant formation of the corresponding phosphido-bis(borane) complex [{(Me(3)Si)(2)CH}P(BH(3))(2)(C(6)H(4)-2-SMe)]Li (14).
Jura, Marek; Levason, William; Reid, Gillian; Webster, Michael
2009-10-07
Two very unusual sulfonium salts, [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)], obtained from reaction of the thioethers with NbF(5) in CH(2)Cl(2) solution, are reported and their structures described; the eight-coordinate tetrafluoro Nb(v) cation of the dithioether is obtained from the same reaction.
NASA Technical Reports Server (NTRS)
Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.
2007-01-01
Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance of C-C and C-H bond ruptures, cyclization, decyclization, and complex decompositions are discussed in terms of energetics and structural properties. The pressure dependence of the product yields were computed and dominant reaction paths in this chemically activated system were determined. Both modeling and experiment suggest that the observed pressure dependence of [1-C4H8]/[C4H10] is due to decomposition of the chemically activated combination adduct 1-C4H8* in which the weaker allylic C-C bond is broken: H2C=CHCH2CH3 yields C3H5 + CH3. This reaction occurs even at moderate pressures of approx.200 Torr (26 kPa) and becomes more significant at lower pressures. The additional products detected at lower pressures are formed from secondary radical-radical reactions involving allyl, methyl, ethyl, and vinyl radicals. The modeling studies have extended the predictions of product distributions to different temperatures (200-700 K) and a wider range of pressures (10(exp -3) - 10(exp 5) Torr). These calculations indicate that the high-pressure [1-C4H8]/[C4H10] yield ratio is 1.3 +/- 0.1.
NASA Astrophysics Data System (ADS)
Yang, X. J.; Li, Aigen; Glaser, R.; Zhong, J. X.
2016-07-01
The so-called “unidentified” infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are ubiquitously seen in a wide variety of astrophysical regions. The UIE features are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, e.g., polycyclic aromatic hydrocarbon (PAH) molecules. The 3.3 μm aromatic C-H stretching feature is often accompanied by a weaker feature at 3.4 μm. The latter is generally thought to result from the C-H stretch of aliphatic groups attached to the aromatic systems. The ratio of the observed intensity of the 3.3 μm aromatic C-H feature to that of the 3.4 μm aliphatic C-H feature allows one to estimate the aliphatic fraction of the UIE carriers, provided that the intrinsic oscillator strengths of the 3.3 μm aromatic C-H stretch ({A}3.3) and the 3.4 μm aliphatic C-H stretch ({A}3.4) are known. While previous studies on the aliphatic fraction of the UIE carriers were mostly based on the {A}3.4/{A}3.3 ratios derived from the mono-methyl derivatives of small PAH molecules, in this work we employ density functional theory to compute the infrared vibrational spectra of PAH molecules with a wide range of sidegroups including ethyl, propyl, butyl, and several unsaturated alkyl chains, as well as all the isomers of dimethyl-substituted pyrene. We find that, except for PAHs with unsaturated alkyl chains, the corresponding {A}3.4/{A}3.3 ratios are close to that of mono-methyl PAHs. This confirms the predominantly aromatic nature of the UIE carriers previously inferred from the {A}3.4/{A}3.3 ratio derived from mono-methyl PAHs.
Viñas, Clara; Cirera, M. Rosa; Teixidor, Francesc; Kivekäs, Raikko; Sillanpää, Reijo; Llibre, Joan
1998-12-28
The first cyclic monothioether derivative of [C(2)B(9)H(12)](-) has been synthesized from 1-(SH)-1,2-C(2)B(10)H(11). Reaction of the latter with (n)BuLi and 1,3-dibromopropane leads to 1,2-&mgr;-(S(CH(2))(3))-1,2-C(2)B(10)H(10). Partial degradation leads to [7,8-&mgr;-(S(CH(2))(3))-7,8-C(2)B(9)H(10)](-). Reaction of [7,8-&mgr;-(S(CH(2))(3))-7,8-C(2)B(9)H(10)](-) with [PdCl(2)(PRR'(2))(2)] leads to different sets of compounds depending on the nature of R and R'. If R = R' = (t)Bu, a closo compound with one vertex occupied by "[Pd(P(t)Bu(3))(2)]" is obtained. When aryl groups are present in the starting phosphine complex, the zwitterionic non-metal-containing compounds are obtained. The crystal structure of one of them has been determined, and the compound has been proven to be 7,8-&mgr;-(S(CH(2))(3))-11-PPh(3)-7,8-C(2)B(9)H(9). The reaction of [7,8-&mgr;-(S(CH(2))(3))-7,8-C(2)B(9)H(10)](-) with [RhCl(PPh(3))(3)] leads to [Rh(7,8-&mgr;-(S(CH(2))(3))-7,8-C(2)B(9)H(10))(PPh(3))(2)]. An agostic B-Hright harpoon-up Rh interaction has been produced, identified by a (1)H{(11)B} NMR resonance at -4.78 ppm. In this instance the cluster is connected to "Rh" via the thioether and B(11)-H. The reaction of [7,8-&mgr;-(S(CH(2))(3))-7,8-C(2)B(9)H(10)](-) with [RuCl(2)(PPh(3))(3)] leads to a compound with two B-Hright harpoon-up Ru interactions. Contrarily to its noncyclic analogues, it seems that only one isomer has been obtained.
Xu, Mei-Juan; Wu, Bin; Ding, Tao; Chu, Ji-Hong; Li, Chang-Yin; Zhang, Jun; Wu, Ting; Wu, Jian; Liu, Shi-Jia; Liu, Shen-Lin; Ju, Wen-Zheng; Li, Ping
2012-10-15
Prenylated flavonoids and isoflavonoids are widely distributed throughout the plant kingdom, with many biological effects. Psoralea corylifolia, which contains many kinds of prenylated components, has been widely used as a medicinal plant in Asia and India for thousands of years. The goal of this study was to characterize the components in P. corylifolia using a liquid chromatography with diode-array detection and quadrupole time-of-flight mass spectrometry (LC-DAD/Q-TOF-MS) method, and to elucidate the fragmentation behavior of the different prenyl substituent groups and their appropriate characteristic pathways in positive ion mode. The calculated accurate masses of the protonated molecules, the fragment ions, the retention behavior, and the data from UV spectra were used for identification of the components in P. corylifolia. A total of 45 compounds, including 43 prenylated components, were identified or tentatively identified in P. corylifolia. Different diagnostic fragment ions and neutral losses were observed in different prenyl substructures: neutral loss of 56 Da (C(4)H(8)) and a fragment ion at m/z 69 (C(5)H(9)(+)) were generated by a prenyl chain; neutral losses of 42 Da (C(3)H(6)), 54 Da (C(4)H(6)), 15 Da (CH(3•)) and 16 Da (CH(4)) were observed in a ring-closed prenyl group; neutral losses of 72 Da (C(4)H(8)O), 60 Da (C(2)H(4)O(2)), 58 Da (C(3)H(6)O) and 18 Da (H(2)O) were detected in a 2,2-dimethyl-3,4-dihydroxydihydropyran ring; neutral losses of 72 Da (C(4)H(8)O), 60 Da (C(3)H(8)O) and 18 Da (H(2)O) were yielded from a 2,2-dimethyl-3-hydroxydihydropyran ring, a 2-(1-hydroxy-1-methylethyl)dihydrofuran ring or a 1-hydroxy-3-methylbut-3-enyl chain. This method can be applied for analysis of prenylated components in P. corylifolia and other herbal medicines. Copyright © 2012 John Wiley & Sons, Ltd.
40 CFR 1065.365 - Nonmethane cutter penetration fractions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... hydrocarbon standard or equal to the THC analyzer's span value. For CH4 analyzers with multiple ranges... single FID for THC and CH4 determination with an NMC that is calibrated with propane, C3H8, by bypassing... hydrocarbon standard and the C2H6 concentration typical of the peak total hydrocarbon (THC) concentration...
Flux measurements of benzene and toluene from landfill cover soils.
Tassi, Franco; Montegrossi, Giordano; Vaselli, Orlando; Morandi, Andrea; Capecchiacci, Francesco; Nisi, Barbara
2011-01-01
Carbon dioxide and CH(4), C(6)H(6) and C(7)H(8) fluxes from the soil cover of Case Passerini landfill site (Florence, Italy) were measured using the accumulation and static closed chamber methods, respectively. Results show that the CH(4)/CO(2), CH(4)/C(6)H(6) and CH(4)/C(7)H(8) ratios of the flux values are relatively low when compared with those of the 'pristine' biogas produced by degradation processes acting on the solid waste material disposed in the landfill. This suggests that when biogas transits through the cover soil, CH(4) is affected by degradation processes activated by oxidizing bacteria at higher extent than both CO(2) and mono-aromatics. Among the investigated hydrocarbons, C(6)H(6) has shown the highest stability in a wide range of redox conditions. Toluene behaviour only partially resembles that of C(6)H(6), possibly because de-methylation processes require less energy than that necessary for the degradation of C(6)H(6), the latter likely occurring via benzoate at anaerobic conditions and/or through various aerobic metabolic pathways at relatively shallow depth in the cover soil where free oxygen is present. According to these considerations, aromatics are likely to play an important role in the environmental impact of biogas released into the atmosphere from such anthropogenic emission sites, usually only ascribed to CO(2) and CH(4). In this regard, flux measurements using accumulation and static closed chamber methods coupled with gas chromatography and gas chromatography-mass spectrometry analysis may properly be used to obtain a dataset for the estimation of the amount of volatile organic compounds dispersed from landfills.
Zhao, Long; Yang, Tao; Kaiser, Ralf I; Troy, Tyler P; Ahmed, Musahid; Ribeiro, Joao Marcelo; Belisario-Lara, Daniel; Mebel, Alexander M
2017-02-16
We investigated temperature-dependent products in the pyrolysis of helium-seeded n-dodecane, which represents a surrogate of the n-alkane fraction of Jet Propellant-8 (JP-8) aviation fuel. The experiments were performed in a high temperature chemical reactor over a temperature range of 1200 K to 1600 K at a pressure of 600 Torr, with in situ identification of the nascent products in a supersonic molecular beam using single photon vacuum ultraviolet (VUV) photoionization coupled with the analysis of the ions in a reflectron time-of-flight mass spectrometer (ReTOF). For the first time, the initial decomposition products of n-dodecane-including radicals and thermally labile closed-shell species-were probed in experiments, which effectively exclude mass growth processes. A total of 15 different products were identified, such as molecular hydrogen (H 2 ), C2 to C7 1-alkenes [ethylene (C 2 H 4 ) to 1-heptene (C 7 H 14 )], C1-C3 radicals [methyl (CH 3 ), ethyl (C 2 H 5 ), allyl (C 3 H 5 )], small C1-C3 hydrocarbons [acetylene (C 2 H 2 ), allene (C 3 H 4 ), methylacetylene (C 3 H 4 )], as well as the reaction products [1,3-butadiene (C 4 H 6 ), 2-butene (C 4 H 8 )] attributed to higher-order processes. Electronic structure calculations carried out at the G3(CCSD,MP2)//B3LYP/6-311G(d,p) level of theory combined with RRKM/master equation of rate constants for relevant reaction steps showed that n-dodecane decomposes initially by a nonterminal C-C bond cleavage and producing a mixture of alkyl radicals from ethyl to decyl with approximately equal branching ratios. The alkyl radicals appear to be unstable under the experimental conditions and to rapidly dissociate either directly by C-C bond β-scission to produce ethylene (C 2 H 4 ) plus a smaller 1-alkyl radical with the number of carbon atoms diminished by two or via 1,5-, 1,6-, or 1,7- 1,4-, 1,9-, or 1,8-H shifts followed by C-C β-scission producing alkenes from propene to 1-nonene together with smaller 1-alkyl radicals. The stability and hence the branching ratios of higher alkenes decrease as temperature increases. The C-C β-scission continues all the way to the propyl radical (C 3 H 7 ), which dissociates to methyl (CH 3 ) plus ethylene (C 2 H 4 ). In addition, at higher temperatures, another mechanism can contribute, in which hydrogen atoms abstract hydrogen from C 12 H 26 producing various n-dodecyl radicals and these radicals then decompose by C-C bond β-scission to C3 to C11 alkenes.
Tong, Glenna So Ming; Law, Yuen-Chi; Kui, Steven C F; Zhu, Nianyong; Leung, King Hong; Phillips, David Lee; Che, Chi-Ming
2010-06-11
The complexes [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)R}](+) (n = 1: R = alkyl and aryl (Ar); n = 1-3: R = phenyl (Ph) or Ph-N(CH(3))(2)-4; n = 1 and 2, R = Ph-NH(2)-4; tBu(3)tpy = 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine) and [Pt(Cl(3)tpy)(C[triple bond]CR)](+) (R = tert-butyl (tBu), Ph, 9,9'-dibutylfluorene, 9,9'-dibutyl-7-dimethyl-amine-fluorene; Cl(3)tpy = 4,4',4''-trichloro-2,2':6',2''-terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu(3)tpy)(C[triple bond]CR)](+) (R = n-butyl, Ph, and C(6)H(4)-OCH(3)-4) obtained in acetonitrile at 298 K reveal that the structural distortion of the C[triple bond]C bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations on [Pt(H(3)tpy)(C[triple bond]CR)](+) (R = n-propyl (nPr), 2-pyridyl (Py)), [Pt(H(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)Ph}](+) (n = 1-3), and [Pt(H(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)C(6)H(4)-N(CH(3))(2)-4}](+)/+H(+) (n = 1-3; H(3)tpy = nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar ("cop") with and perpendicular ("per") to the H(3)tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, lambda(1) and lambda(2), of [Pt(Y(3)tpy)(C[triple bond]CR)](+) (Y = tBu or Cl, R = aryl) are attributed to (1)[pi(C[triple bond]CR)-->pi*(Y(3)tpy)] in the "cop" conformation and mixed (1)[d(pi)(Pt)-->pi*(Y(3)tpy)]/(1)[pi(C[triple bond]CR)-->pi*(Y(3)tpy)] transitions in the "per" conformation. The lowest energy absorption peak lambda(1) for [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)C(6)H(4)-H-4}](+) (n = 1-3) shows a redshift with increasing chain length. However, for [Pt(tBu(3)tpy){C[triple bond]C(C6H4C[triple bond]C)(n-1)C(6)H(4)-N(CH(3))(2)-4}](+) (n = 1-3), lambda(1) shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y(3)tpy)(C[triple bond]CR)](+) (Y = tBu or Cl) at 524-642 nm measured in dichloromethane at 298 K are assigned to the (3)[pi(C[triple bond]CAr)-->pi*(Y(3)tpy)] excited states and mixed (3)[d(pi)(Pt)-->pi*(Y(3)tpy)]/(3)[pi(C[triple bond]C)-->pi*(Y(3)tpy)] excited states for R = aryl and alkyl groups, respectively. [Pt(tBu(3)tpy){C[triple bond]C(C(6)H(4)C[triple bond]C)(n-1)C(6)H(4)-N(CH(3))(2)-4}](+) (n = 1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S(0)) and the lowest triplet excited state (T(1)).
The vanadium nitrogenase of Azotobacter chroococcum. Reduction of acetylene and ethylene to ethane.
Dilworth, M J; Eady, R R; Eldridge, M E
1988-01-01
1. The vanadium (V-) nitrogenase of Azobacter chroococcum transfers up to 7.4% of the electrons used in acetylene (C2H2) reduction for the formation of ethane (C2H6). The apparent Km for C2H2 (6 kPa) is the same for either ethylene (C2H4) or ethane (C2H6) formation and much higher than the reported Km values for C2H2 reduction to C2H4 by molybdenum (Mo-) nitrogenases. Reduction of C2H2 in 2H2O yields predominantly [cis-2H2]ethylene. 2. The ratio of electron flux yielding C2H6 to that yielding C2H4 (the C2H6/C2H4 ratio) is increased by raising the ratio of Fe protein to VFe protein and by increasing the assay temperature up to at least 40 degrees C. pH values above 7.5 decrease the C2H6/C2H4 ratio. 3. C2H4 and C2H6 formation from C2H2 by V-nitrogenase are not inhibited by H2. CO inhibits both processes much less strongly than it inhibits C2H4 formation from C2H2 with Mo-nitrogenase. 4. Although V-nitrogenase also catalyses the slow CO-sensitive reduction of C2H4 to C2H6, free C2H4 is not an intermediate in C2H6 formation from C2H2. 5. Propyne (CH3C identical to CH) is not reduced by the V-nitrogenase. 6. Some implications of these results for the mechanism of C2H6 formation by the V-nitrogenase are discussed. PMID:3162672
Dissociative photoionization of 1,3-butadiene: experimental and theoretical insights.
Fang, Wenzheng; Gong, Lei; Zhang, Qiang; Shan, Xiaobin; Liu, Fuyi; Wang, Zhenya; Sheng, Liusi
2011-05-07
The vacuum-ultraviolet photoionization and dissociative photoionization of 1,3-butadiene in a region ∼8.5-17 eV have been investigated with time-of-flight photoionization mass spectrometry using tunable synchrotron radiation. The adiabatic ionization energy of 1,3-butadiene and appearance energies for its fragment ions, C(4)H(5)(+), C(4)H(4)(+), C(4)H(3)(+), C(3)H(3)(+), C(2)H(4)(+), C(2)H(3)(+), and C(2)H(2)(+), are determined to be 9.09, 11.72, 13.11, 15.20, 11.50, 12.44, 15.15, and 15.14 eV, respectively, by measurements of photoionization efficiency spectra. Ab initio molecular orbital calculations have been performed to investigate the reaction mechanism of dissociative photoionization of 1,3-butadiene. On the basis of experimental and theoretical results, seven dissociative photoionization channels are proposed: C(4)H(5)(+) + H, C(4)H(4)(+) + H(2), C(4)H(3)(+) + H(2) + H, C(3)H(3)(+) + CH(3), C(2)H(4)(+) + C(2)H(2), C(2)H(3)(+) + C(2)H(2) + H, and C(2)H(2)(+) + C(2)H(2) + H(2). Channel C(3)H(3)(+) + CH(3) is found to be the dominant one, followed by C(4)H(5)(+) + H and C(2)H(4)(+) + C(2)H(2). The majority of these channels occur via isomerization prior to dissociation. Transition structures and intermediates for those isomerization processes were also determined.
Dong, Feng; Heinbuch, Scott; Xie, Yan; Rocca, Jorge J; Bernstein, Elliot R; Wang, Zhe-Chen; Deng, Ke; He, Sheng-Gui
2008-02-13
Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable vanadium oxide clusters VO2, V2O5, V3O7, V4O10, etc. tend to associate with C2H4 generating products V(m)O(n)C2H4. Oxygen-rich clusters VO3(V2O5)(n=0,1,2...), (e.g., VO3, V3O8, and V5O13) react with C2H4 molecules to cause a cleavage of the C=C bond of C2H4 to produce (V2O5)(n)VO2CH2 clusters. For the reactions of vanadium oxide clusters (V(m)O(n)) with C2H2 molecules, V(m)O(n)C2H2 are assigned as the major products of the association reactions. Additionally, a dehydration reaction for VO3 + C2H2 to produce VO2C2 is also identified. C2H6 molecules are quite stable toward reaction with neutral vanadium oxide clusters. Density functional theory calculations are employed to investigate association reactions for V2O5 + C2H(x). The observed relative reactivity of C2 hydrocarbons toward neutral vanadium oxide clusters is well interpreted by using the DFT calculated binding energies. DFT calculations of the pathways for VO3+C2H4 and VO3+C2H2 reaction systems indicate that the reactions VO3+C2H4 --> VO2CH2 + H2CO and VO3+C2H2 --> VO2C2 + H2O are thermodynamically favorable and overall barrierless at room temperature, in good agreement with the experimental observations.
Polyoxomolybdates functionalized by a flexible carboxylic acid and their photochromic properties
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Pengtao; Wang, Yaping; Zhang, Dongdi; Niu, Jingyang; Wang, Jingping
2017-11-01
Two inorganic-organic hybridized polyoxomolybdates, Cs8NaH [(SeMo6O21)C6H3O3(CH2CO2)3]2·10H2O (1) and Cs8H4 [(AsMo6O21)C6H3O3(CH2CO2)3]2·10H2O (2), functionalized by a flexible tri-podal multicarboxylic ligand 1,3,5-tris (carboxymethoxy)benzene (TCMB) have been synthesized and characterized. Single-crystal X-ray diffraction analysis reveals that each of the two hybrids consists of two {XMo6} (X = Se, As) units supported by two TCMB molecules. The photochromism and thermochromism behaviors of the two compounds have been explored. The color of compound 2 could change dramatically from white to black within just 1 min of irradiation by a Xe lamp. During thermochromic experiments the two compounds change their color at 423 K for 1 and 393 K for 2, respectively.
Research in Chemical Kinetics. Annual Report, 1993
DOE R&D Accomplishments Database
Rowland, F. S.
1993-01-01
Progress on the seven projects under this contract is reported. The projects are: (1) Chlorine atom reactions with vinyl bromide. Mass spectrometric investigations of the anti-Markownikoff rule. (2) Chlorine atom reactions with CF{sub 2}{double_bond}CFBr. (3) Gas phase thermal {sup 38}Cl reactions with (CH{sub 2}{double_bond}CH){sub n}M (M=Sn, Si, n=4; M=Sb, n=3; M=Hg, n=2). (4) Gas phase reactions of thermal chlorine atoms with (CH{sub 3}){sub 4}M (M=C, Si, Ge, Sn, Pb). (5) Hydrogen abstraction reactions by thermal chlorine atoms with HFCs, HCFCs, and halomethanes. (6) Half-stabilization pressure of chlorine atoms plus ethylene in a nitrogen bath. (7) {sup 14}C content of atmospheric OCS, C{sub 2}H{sub 6} and C{sub 3}H{sub 8}.
Properties of Multiphase Polyurethane Systems.
1981-08-01
based on 4,4’-diphenylmethane dilsocyanate (MDI), N -methyl diethanolamine ( MDEA ), and polytetramethylene oxide (PTMO) and were synthesized with four...several levels of ammonium sulfonation (Scheme II) MDI/ MDEA /PTMO Series H04CH2 CH2CH2CH20- H + 0 = C = N -- -CH 2-O- N = C = 0 PTMO MDI 70 C HO OH...catalyst I II11 1 " 0 = C = N "---CH 2 - - N -C-O’-CH 2 CH C2H2 0-4C-’-( >-CH2DMA 1 CH3 70C I * HO - CM2 - CH2 - N - CH2 - CH2 - OH--- MDEA 0 H H 0 CH3H ... H2
Alvarez, Marc A [Santa Fe, NM; Martinez, Rodolfo A [Santa Fe, NM; Unkefer, Clifford J [Los Alamos, NM
2008-01-22
The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.
Gao, Mingzhang; Wang, Min; Zheng, Qi-Huang
2016-03-01
The target tracer carbon-11-labeled imidazopyridine- and purine-thioacetamide derivatives, N-(3-[(11)C]methoxy-4-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (3-[(11)C]4a) and N-(4-[(11)C]methoxy-3-methoxyphenyl)-2-((5-methoxy-3H-imidazo[4,5-b]pyridin-2-yl)thio)acetamide (4-[(11)C]4a); 2-((6-amino-9H-purin-8-yl)thio)-N-(3-[(11)C]methoxy-4-methoxyphenyl)acetamide (3-[(11)C]8a) and 2-((6-amino-9H-purin-8-yl)thio)-N-(4-[(11)C]methoxy-3-methoxyphenyl)acetamide (4-[(11)C]8a), were prepared by O-[(11)C]methylation of their corresponding precursors with [(11)C]CH3OTf under basic condition (2N NaOH) and isolated by a simplified solid-phase extraction (SPE) method in 50-60% radiochemical yields based on [(11)C]CO2 and decay corrected to end of bombardment (EOB). The overall synthesis time from EOB was 23min, the radiochemical purity was >99%, and the specific activity at end of synthesis (EOS) was 185-555GBq/μmol. Copyright © 2016 Elsevier Ltd. All rights reserved.
A DFT/HF study of the potential energy surface of protonated ethane C2H7+
NASA Astrophysics Data System (ADS)
Hrusak, Jan; Zabka, Jan; Dolejsek, Zdenek; Herman, Zdenek
1997-11-01
Structures and energies of several isomers of the C2H7+ cation have been calculated using the parametrized B3LYP HF/DFT method. The B3LYP/6-31G** geometries of the individual isomers are of at least the same quality as the MP2/6-31G** results. The zero-point-energy corrected relative stabilities of the individual C2H7+ isomers are in excellent agreement with the much more costly MP4SDTQ/6-31G** MO calculations. A structure with a linear C---H---C skeleton and a CC distance of about 2.5 A was found to be a higher order saddle point on the PES resulting from curve crossing between the reactant and product channels CH3+ + CH4; this finding is of importance in interpreting the experimental results on the hydride ion transfer between CH3+ and CH4. The calculations are also consistent with the earlier experimental results on the formation of the products C2H5+ + H2.
Jensen, Michael P; Wick, Douglas D; Reinartz, Stefan; White, Peter S; Templeton, Joseph L; Goldberg, Karen I
2003-07-16
Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.
Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde
NASA Astrophysics Data System (ADS)
Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney
2013-09-01
The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.
NASA Technical Reports Server (NTRS)
Roth, Nathan X.; Gibb, Erika; Bonev, Boncho P.; Disanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Paganini, Lucas
2017-01-01
On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C2012 K1 (PanSTARRS) using the long-slit, high resolution ( lambda/delta lambda is approximately or equal to 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H2O, HCN, CH4, C2H6, CH3OH, and CO). Upper limits were derived for C2H2, NH3, and H2CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampled Oort cloud comets, trace gas abundance ratios in C2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH3OH and C2H6 are enriched while H2CO, CH4, and possibly C2H2 are depleted. When placed in context with comets observed in the near- infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C2H6, CH3OH, CH4) among the comet population. The level of enrichment or depletion in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.
NASA Astrophysics Data System (ADS)
Bergantini, Alexandre; Maksyutenko, Pavlo; Kaiser, Ralf I.
2017-06-01
The structural isomers ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3) were detected in several low-, intermediate-, and high-mass star-forming regions, including Sgr B2, Orion, and W33A, with the relative abundance ratios of ethanol/dimethyl ether varying from about 0.03 to 3.4. Until now, no experimental data regarding the formation mechanisms and branching ratios of these two species in laboratory simulation experiments could be provided. Here, we exploit tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) to detect and analyze the production of complex organic molecules (COMs) resulting from the exposure of water/methane (H2O/CH4) ices to energetic electrons. The main goal is to understand the formation mechanisms in star-forming regions of two C2H6O isomers: ethanol (CH3CH2OH) and dimethyl ether (CH3OCH3). The results show that the experimental branching ratios favor the synthesis of ethanol versus dimethyl ether (31 ± 11:1). This finding diverges from the abundances observed toward most star-forming regions, suggesting that production routes on interstellar grains to form dimethyl ether might be missing; alternatively, ethanol can be overproduced in the present simulation experiments, such as via radical-radical recombination pathways involving ethyl and hydroxyl radicals. Finally, the PI-ReTOF-MS data suggest the formation of methylacetylene (C3H4), ketene (CH2CO), propene (C3H6), vinyl alcohol (CH2CHOH), acetaldehyde (CH3CHO), and methyl hydroperoxide (CH3OOH), in addition to ethane (C2H6), methanol (CH3OH), and CO2 detected from infrared spectroscopy. The yield of all the confirmed species is also determined.
Catalytic Activation of Nitrogen Dioxide for Selective Synthesis of Nitroorganics
2015-01-15
observed, with C-P and C-C reductive elimination of ancillary phosphine ligands taking place preferentially, though traces of nitroarene are...reductive elimination) as well as some phosphine oxide. Thermolysis of (Ph3P)Pd(IPr)(C6H4CH3)(NO2) gives unusual C–C reductive elimination of the...N-heterocyclic carbene to give the imidazolium salt [CH3C6H4–IPr]NO2. Only in the case of the bis(diphenylphosphino) ferrocene complex [Fe(C5H4PPh2
Mazzega Sbovata, Silvia; Bettio, Frazia; Marzano, Christine; Tassan, Augusto; Mozzon, Mirto; Bertani, Roberta; Benetollo, Franco; Michelin, Rino A
2008-04-01
New substituted benzyl iminoether derivatives of the type cis- and trans-[PtCl(2){E-N(H)C(OMe)CH(2)-C(6)H(4)-p-R}(2)] (R=Me (1a, 2a), OMe (3a, 4a), F (5a, 6a)) have been synthesized and characterized by elemental analyses, FT-IR spectroscopy and NMR techniques. The iminoether ligands are in the E configuration, which is stable in solution and in the solid state, as confirmed by the (1)H NMR data. Complex trans-[PtCl(2){E-N(H)C(OMe)CH(2)-C(6)H(4)-p-F}(2)] (6a) was also characterized by an X-ray diffraction study. Complexes 1a-6a have been tested against a panel of human tumor cell lines in order to evaluate their cytotoxic activity. cis-Isomers were significant more potent than the corresponding trans-isomers against all tumor cell lines tested; moreover, complexes 1a and 5a showed IC(50) values from about 2-fold to 6-fold lower than those exhibited by cisplatin, used as reference platinum anticancer drug.
Ramalakshmi, Rongala; Maheswari, K; Sharmila, Dudekula; Paul, Anamika; Roisnel, Thierry; Halet, Jean-François; Ghosh, Sundargopal
2016-10-18
Reactions of cyclopentadienyl transition-metal halide complexes [Cp*Mo(CO) 3 Cl], 1, and [CpFe(CO) 2 I], 2, (Cp = C 5 H 5 ; Cp* = η 5 -C 5 Me 5 ) with borate ligands are reported. Treatment of 1 with [NaBt 2 ] (Bt 2 = dihydrobis(2-mercapto-benzothiazolyl)borate) in toluene yielded [Cp*Mo(CO) 2 (C 7 H 4 S 2 N)], 3, and [Cp*Mo(CO) 2 (η 3 -CH 2 C 6 H 5 )], 4, with a selective binding of toluene through C-H activation followed by orthometallation. Note that compound 4 is a structurally characterized toluene-activated molecule in which the metal is in η 3 -coordination mode. Under similar reaction conditions, [NaPy 2 ] (Py 2 = dihydrobis(2-mercaptopyridyl)borate) produced only the mercaptopyridyl molybdenum complex [Cp*Mo(CO) 2 (C 5 H 4 SN)], 5, in good yield. On the other hand, when compound 2 was treated individually with [NaBt] (Bt = trihydro(2-mercapto-benzothiazolyl)borate) and [NaPy 2 ] in THF, formation of the η 1 -coordinated complexes [CpFe(CO) 2 (C 7 H 4 S 2 N)], 6, and [CpFe(CO) 2 (C 5 H 4 SN)], 7, was observed. The solid-state molecular structures of compounds 3, 4, 6, and 7 have been established by single-crystal X-ray crystallographic analyses.
Zhang, Jian-Wei; Hu, Man-Cheng; Li, Shu-Ni; Jiang, Yu-Cheng; Qu, Peng; Zhai, Quan-Guo
2018-02-20
A porous MOF platform (SNNU-65s) formed by creatively combining paddle-wheel-like [Cu 2 (COO) 4 ] and trigonal prismatic [M 3 (μ 3 -O)(COO) 6 ] building blocks was designed herein. The mixed and high-density open metal sites and the OH-functionalized pore surface promote SNNU-65s to exhibit ultra-high C 2 H 2 uptake and separation performance. Impressively, SNNU-65-Cu-Ga stands out for the highest C 2 H 2 /CO 2 (18.7) and C 2 H 2 /CH 4 (120.6) selectivity among all the reported MOFs at room temperature.
Storage and recovery of methane-ethane mixtures in single shale pores
NASA Astrophysics Data System (ADS)
Wu, Haiyi; Qiao, Rui
2017-11-01
Natural gas production from shale formations has received extensive attention recently. While great progress has been made in understanding the adsorption and transport of single-component gas inside shales' nanopores, the adsorption and transport of multicomponent shale gas under reservoir conditions (CH4 and C2H6 mixture) has only begun to be studied. In this work, we use molecular simulations to compute the storage of CH4 and C2H6 mixtures in single nanopores and their subsequent recovery. We show that surface adsorption contributes greatly to the storage of CH4 and C2H6 inside the pores and C2H6 is enriched over CH4. The enrichment of C2H6 is enhanced as the pore is narrowed, but is weakened as the pressure increases. We show that the recovery of gas mixtures from the nanopores approximately follows the diffusive scaling law. The ratio of the production rates of C2H6 and CH4 is close to their initial mole ratio inside the pore despite that the mobility of pure C2H6 is much smaller than that of pure CH4 inside the pores. By using scale analysis, we show that the strong coupling between the transport of CH4 and C2H6 is responsible for the effective recovery of C2H6 from the nanopores.
NASA Astrophysics Data System (ADS)
Douglas, Kevin; Slater, Eloise; Blitz, Mark; Plane, John; Heard, Dwayne; Seakins, Paul
2016-04-01
The Cassini-Huygens mission to Titan revealed unexpectedly large amounts of benzene in the troposphere, and confirmed the absence of a global ethane ocean as predicted by photochemical models of methane conversion over the lifetime of the solar system. An important chemical intermediate in both the production and loss of benzene and ethane is the first electronically excited state of methylene, 1CH2. For example, at room temperature an important reaction of 1CH2 is with acetylene (R1a), leading to the formation of propargyl (C3H3)[1]. The subsequent recombination of propargyl radicals is the major suggested route to benzene in Titan's atmosphere (R2)[2]. In addition to reaction of 1CH2 leading to products, there is also competition between inelastic electronic relaxation to form the ground triplet state 3CH2 (R1b). This ground state 3CH2 has a markedly different reactivity to the singlet, reacting primarily with methyl radicals (CH3) to form ethene (R3). As methyl radical recombination is the primary route to ethane (R4)[3], reactions of 1CH2 will also heavily influence the ethane budget on Titan. 1CH2 + C2H2 → C3H3 + H (R1a) 1CH2 + C2H2 → 3CH2 + C2H2 (R1b) C3H3 + C3H3 → C6H6 (R2) 3CH2 + CH3 → C2H4 + H (R3) CH3 + CH3 (+ M) → C2H6 (R4) Thus this competition between chemical reaction and electronic relaxation in the reactions of 1CH2 with H2, CH4, C2H4, and C2H6 will play an important role in determining the benzene and ethane budgets on Titan. Despite this there are no measurements of any rate constants for 1CH2 at temperatures relevant to Titan's atmosphere (60 - 170 K). Using a pulsed Laval nozzle apparatus coupled with pulsed laser photolysis laser-induced fluorescence, the low temperature reaction kinetics for the removal of 1CH2 with nitrogen, hydrogen, methane, ethane, ethene, acetylene, and oxygen, have been studied. The results revealed an increase in the removal rate of 1CH2 at temperatures below 200 K, with a sharp increase of around a factor of 5 observed at 45±5 K. In addition to measuring total removal rates of 1CH2, the fraction of 1CH2 removed via electronic relaxation verses chemical reaction to products has also been investigated. Results for the reactive species ethane, ethene, and acetylene at 45±5 K, and for hydrogen and methane at 73±9 K indicate that following reactions with 1CH2, removal of 1CH2 is predominantly due to electronic relaxation (> 95 %) and not chemical reaction to products. This is in agreement with previous studies that show that with decreasing temperature, the fraction of reactive removal of 1CH2 to chemical products decreases while the fraction of removal by electronic relaxation increases[4][5]. These results indicate that 1CH2 formed in Titan's atmosphere will be rapidly relaxed to it's ground state via collisions with both reactive and non-reactive species, and thus will play a less significant role in the formation of larger hydrocarbons than previously thought. However for a full understanding of the implications of these results, the new measurements are to be included in a 1D model of Titan's atmosphere to determine the impact of the laboratory measurements on observation/model agreement. [1] K. Gannon et. al., J. Phys. Chem. A, (2010), 114, 9413 [2] E.H. Wilson, S.K. Atreya, J. Geophys. Res., (2004), 109, 6002 [3] M. Fulchignoni, Nature, (2005), 438, 785 [4] K. Gannon, Faraday Discuss., (2010), 147, 173 [5] K. Gannon, J. Phys. Chem. A, (2008), 112, 9575
Kato, Merii; Sah, Ajay Kumar; Tanase, Tomoaki; Mikuriya, Masahiro
2006-08-21
Tetranuclear copper(II) complexes containing alpha-D-glucose-1-phosphate (alpha-D-Glc-1P), [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(bpy)4(H2O)2]X3 [X = NO3 (1a), Cl (1b), Br (1c)], and [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(phen)4(H2O)2](NO3)3 (2) were prepared by reacting the copper(II) salt with Na2[alpha-D-Glc-1P] in the presence of diimine ancillary ligands, and the structure of 2 was characterized by X-ray crystallography to comprise four {Cu(phen)}2+ fragments connected by the two sugar phosphate dianions in 1,3-O,O' and 1,1-O mu4-bridging fashion as well as a mu-hydroxo anion. The crystal structure of 2 involves two chemically independent complex cations in which the C2 enantiomeric structure for the trapezoidal tetracopper(II) framework is switched according to the orientation of the alpha-D-glucopyranosyl moieties. Temperature-dependent magnetic susceptibility data of 1a indicated that antiferromagnetic spin coupling is operative between the two metal ions joined by the hydroxo bridge (J = -52 cm(-1)) while antiferromagnetic interaction through the Cu-O-Cu sugar phosphate bridges is weak (J = -13 cm(-1)). Complex 1a readily reacted with carboxylic acids to afford the tetranuclear copper(II) complexes, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-CA)2(bpy)4](NO3)2 [CA = CH3COO (3), o-C6H4(COO)(COOH) (4)]. Reactions with m-phenylenediacetic acid [m-C6H4(CH2COOH)2] also gave the discrete tetracopper(II) cationic complex [Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)(CH2COOH))2(bpy)4](NO3)2 (5a) as well as the cluster polymer formulated as {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)2)(bpy)4](NO3)2}n (5b). The tetracopper structure of 1a is converted into a symmetrical rectangular core in complexes 3, 4, and 5b, where the hydroxo bridge is dissociated and, instead, two carboxylate anions bridge another pair of Cu(II) ions in a 1,1-O monodentate fashion. The similar reactions were applied to incorporate sugar acids onto the tetranuclear copper(II) centers. Reactions of 1a with delta-D-gluconolactone, D-glucuronic acid, or D-glucaric acid in dimethylformamide resulted in the formation of discrete tetracopper complexes with sugar acids, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-SA)2(bpy)4](NO3)2 [SA = D-gluconate (6), D-glucuronate (7), D-glucarateH (8a)]. The structures of 6 and 7 were determined by X-ray crystallography to be almost identical with that of 3 with additional chelating coordination of the C-2 hydroxyl group of D-gluconate moieties (6) or the C-5 cyclic O atom of D-glucuronate units (7). Those with D-glucaric acid and D-lactobionic acid afforded chiral one-dimensional polymers, {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-glucarate)(bpy)4](NO3)2}n (8b) and {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-D-lactobionate)(bpy)4(H2O)2](NO3)3}n (9), respectively, in which the D-Glc-1P-bridged tetracopper(II) units are connected by sugar acid moieties through the C-1 and C-6 carboxylate O atoms in 8b and the C-1 carboxylate and C-6 alkoxy O atoms of the gluconate chain in 9. When complex 7 containing d-glucuronate moieties was heated in water, the mononuclear copper(II) complex with 2-dihydroxy malonate, [Cu(mu-O2CC(OH)2CO2)(bpy)] (10), and the dicopper(II) complex with oxalate, [Cu2(mu-C2O4)(bpy)2(H2O)2](NO3)2 (11), were obtained as a result of oxidative degradation of the carbohydrates through C-C bond cleavage reactions.
Lam, Jacky W Y; Qin, Anjun; Dong, Yuping; Lai, Lo Ming; Häussler, Matthias; Dong, Yongqiang; Tang, Ben Zhong
2006-11-02
Biphenyl (Biph)-containing 1-phenyl-1-octynes and their polymers are synthesized, and the effects of functional bridge groups on the mesomorphic and optical properties of the polymers are studied. The nonmesomorphic disubstituted acetylene monomers (C6H13)C[triple bond]C(C6H4)O(CH2)12O-Biph-OC7H15 (1), (C6H13)C[triple bond]C(C6H4)O(CH2)11OOC-Biph-OC7H15 (2), and (C6H13)C[triple bond]C(C6H4)CO2(CH2)12OOC-Biph-OC7H15 (3) are prepared by multistep reaction routes and converted into their corresponding polymers P1-P3 by a WCl6-Ph4Sn catalyst. The structures and properties of the polymers are characterized and evaluated by NMR, TGA, DSC, POM, XRD, UV, and PL analyses. The mesogenic pendants have endowed the polymers with high thermal stability (> or =400 degrees C). While P1 exhibits no liquid crystallinity, P2 and P3 form enantiotropic S(A) phase with a monolayer structure. Upon photoexcitation, the polymers emit blue and blue-green lights of 460 and 480 nm, respectively, in THF with quantum efficiencies larger than 30%. UV irradiation of a thin film of P2 through a mask oxidizes and quenches the light emission of the exposed regions, generating a two-dimensional luminescent photoimage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szmytkowski, Czesław, E-mail: czsz@mif.pg.gda.pl; Stefanowska, Sylwia; Zawadzki, Mateusz
We report electron-scattering cross sections determined for 2-methyl–2-butene [(H{sub 3}C)HC = C(CH{sub 3}){sub 2}] and 2,3-dimethyl–2-butene [(H{sub 3}C){sub 2}C = C(CH{sub 3}){sub 2}] molecules. Absolute grand-total cross sections (TCSs) were measured for incident electron energies in the 0.5–300 eV range, using a linear electron-transmission technique. The experimental TCS energy dependences for the both targets appear to be very similar with respect to the shape. In each TCS curve, three features are discernible: the resonant-like structure located around 2.6–2.7 eV, the broad distinct enhancement peaking near 8.5 eV, and a weak hump in the vicinity of 24 eV. Theoretical integral elasticmore » (ECS) and ionization (ICS) cross sections were computed up to 3 keV by means of the additivity rule (AR) approximation and the binary-encounter-Bethe method, respectively. Their sums, (ECS+ICS), are in a reasonable agreement with the respective measured TCSs. To examine the effect of methylation of hydrogen sides in the ethylene [H{sub 2}C = CH{sub 2}] molecule on the TCS, we compared the TCS energy curves for the sequence of methylated ethylenes: propene [H{sub 2}C = CH(CH{sub 3})], 2-methylpropene [H{sub 2}C = C(CH{sub 3}){sub 2}], 2-methyl–2-butene [(H{sub 3}C)HC = C(CH{sub 3}){sub 2}], and 2,3-dimethyl–2-butene [(H{sub 3}C){sub 2}C = C(CH{sub 3}){sub 2}], measured in the same laboratory. Moreover, the isomeric effect is also discussed for the C{sub 5}H{sub 10} and C{sub 6}H{sub 12} compounds.« less
NASA Astrophysics Data System (ADS)
Tomé, Maria; López, Concepción; González, Asensio; Ozay, Bahadir; Quirante, Josefina; Font-Bardía, Mercè; Calvet, Teresa; Calvis, Carme; Messeguer, Ramon; Baldomá, Laura; Badía, Josefa
2013-09-01
The synthesis and characterization of the new 2-phenylindole derivative: C8H3N-2-C6H5-3NOMe-5OMe (3c) and the trans- and cis-isomers of [Pt(3c)Cl2(DMSO)] complexes (4c and 5c, respectively) are described. The crystal structures of 4c·CH2Cl2 and 5c confirm: (a) the existence of a Pt-Nindole bond, (b) the relative arrangement of the Cl- ligands [trans- (in 4c) or cis- (in 5c)] and (c) the anti-(E) configuration of the oxime. The cytotoxic assessment of C8H3N-2-(C6H4-4‧R1)-3NOMe-5R2 [with R1 = R2 = H (3a); R1 = Cl, R2 = H (3b) and R1 = H, R2 = OMe (3c)] and the geometrical isomers of [Pt(L)Cl2(DMSO)] with L = 3a-3c [trans- (4a-4c) and cis- (5a-5c), respectively] against human breast adenocarcinoma cell lines (MDA-MB231 and MCF-7) is also reported and reveals that all the platinum(II) complexes (except 4a) are more cytotoxic than cisplatin in front of the MCF7 cell line. Electrophoretic DNA migration studies of the synthesized compounds in the absence and in the presence of topoisomerase-I have been performed, in order to get further insights into their mechanism of action.
Kirillova, Marina V; Kuznetsov, Maxim L; da Silva, José A L; Guedes da Silva, Maria Fátima C; Fraústo da Silva, João J R; Pombeiro, Armando J L
2008-01-01
Synthetic amavadin Ca[V{ON[CH(CH(3))COO](2)}(2)] and its models Ca[V{ON(CH(2)COO)(2)}(2)] and [VO{N(CH(2)CH(2)O)(3)}], in the presence of K(2)S(2)O(8) in trifluoroacetic acid (TFA), exhibit remarkable catalytic activity for the one-pot carboxylation of ethane to propionic and acetic acids with the former as the main product (overall yields up to 93 %, catalyst turnover numbers (TONs) up to 2.0 x 10(4)). The simpler V complexes [VO(CF(3)SO(3))(2)], [VO(acac)(2)] and VOSO(4) are less active. The effects of various factors, namely, C(2)H(6) and CO pressures, time, temperature, and amounts of catalyst, TFA and K(2)S(2)O(8), have been investigated, and this allowed optimisation of the process and control of selectivity. (13)C-labelling experiments indicated that the formation of acetic acid follows two pathways, the dominant one via oxidation of ethane with preservation of the C--C bond, and the other via rupture of this bond and carbonylation of the methyl group by CO; the C--C bond is retained in the formation of propionic acid upon carbonylation of ethane. The reactions proceed via both C- and O-centred radicals, as shown by experiments with radical traps. On the basis of detailed DFT calculations, plausible reaction mechanisms are discussed. The carboxylation of ethane in the presence of CO follows the sequential formation of C(2)H(5) (*), C(2)H(5)CO(*), C(2)H(5)COO(*) and C(2)H(5)COOH. The C(2)H(5)COO(*) radical is easily formed on reaction of C(2)H(5)CO(*) with a peroxo V catalyst via a V{eta(1)-OOC(O)C(2)H(5)} intermediate. In the absence of CO, carboxylation proceeds by reaction of C(2)H(5) (*) with TFA. For the oxidation of ethane to acetic acid, either with preservation or cleavage of the C-C bond, metal-assisted and purely organic pathways are also proposed and discussed.
Effects of the η(5)-C5H4(i)Pr Ligand on the Properties Exhibited by Its Tungsten Nitrosyl Complexes.
Fabulyak, Diana; Baillie, Rhett A; Patrick, Brian O; Legzdins, Peter; Rosenfeld, Devon C
2016-02-15
Reaction of Na[η(5)-C5H4(i)Pr] with W(CO)6 in refluxing THF for 4 days generates a solution of Na[(η(5)-C5H4(i)Pr)W(CO)3] that when treated with N-methyl-N-nitroso-p-toluenesulfonamide at ambient temperatures affords (η(5)-C5H4(i)Pr)W(NO)(CO)2 (1) that is isolable in good yield as an analytically pure orange oil. Treatment of 1 with an equimolar amount of I2 in Et2O at ambient temperatures affords (η(5)-C5H4(i)Pr)W(NO)I2 (2) as a dark brown solid in excellent yield. Sequential treatment at low temperatures of 2 with 0.5 equiv of Mg(CH2CMe3)2 and Mg(CH2CH═CMe2)2 in Et2O produces the alkyl allyl complex, (η(5)-C5H4(i)Pr)W(NO)(CH2CMe3)(η(3)-CH2CHCMe2) (3), as a thermally sensitive yellow liquid. Complex 3 may also be synthesized, albeit in low yield, in one vessel at low temperatures by reacting 1 first with 1 equiv of PCl5 and then with the binary magnesium reagents specified above. Interestingly, similar treatment of 1 in Et2O with PCl5 and only 0.5 equiv of Mg(CH2CH═CMe2)2 results in the formation of the unusual complex (η(5)-C5H4(i)Pr)W(NO)(PCl2CMe2CH═CH2)Cl2 (4), which probably is formed via a metathesis reaction of the binary magnesium reagent with (η(5)-C5H4(i)Pr)W(NO)(PCl3)Cl2. The C-D activation of C6D6 by complex 3 has been investigated and compared to that exhibited by its η(5)-C5Me5, η(5)-C5Me4H, and η(5)-C5Me4(n)Pr analogues. Kinetic analyses of the various activations have established that the presence of the η(5)-C5H4(i)Pr ligand significantly increases the rate of the reaction, an outcome that can be attributed to a combination of steric and electronic factors. In addition, mechanistic studies have established that in solution 3 loses neopentane under ambient conditions to generate exclusively the 16e η(2)-diene intermediate complex (η(5)-C5H4(i)Pr)W(NO)(η(2)-CH2═CMeCH═CH2), which then effects the subsequent C-D activations. This behavior contrasts with that exhibited by the η(5)-C5Me5 analogue of 3 which forms both η(2)-diene and η(2)-allene intermediates upon thermolysis. Sixteen-electron (η(5)-C5H4(i)Pr)W(NO)(η(2)-CH2═CMeCH═CH2) has been isolated as its 18e PMe3 adduct. All new organometallic complexes have been characterized by conventional spectroscopic and analytical methods, and the solid-state molecular structures of two of them have been established by single-crystal X-ray crystallographic analyses.
Chifotides, Helen T; Giles, Ian D; Dunbar, Kim R
2013-02-27
The comprehensive investigation reported herein provides compelling evidence that anion-π interactions are the main driving force in the formation of self-assembled Fe(II)-templated metallacycles with bptz [3,6-bis(2-pyridyl)-1,2,4,5-tetrazine] in high yields. It was demonstrated by X-ray crystallography, (1)H NMR, solution and solid-state MAS (19)F NMR spectroscopies, CV and MS studies that the anions [X](-) = [BF(4)](-), [ClO(4)](-) and the anions [Y](-) = [SbF(6)](-), [AsF(6)](-), [PF(6)](-) template molecular squares [Fe(4)(bptz)(4)(CH(3)CN)(8)][X](8) and pentagons [Fe(5)(bptz)(5)(CH(3)CN)(10)][Y](10), respectively. The X-ray structures of [{Fe(4)(bptz)(4)(CH(3)CN)(8)}⊂BF(4)][BF(4)](7) and [{Fe(5)(bptz)(5)(CH(3)CN)(10)}⊂2SbF(6)][SbF(6)](8) revealed that the [BF(4)](-) and [SbF(6)](-) anions occupy the π-acidic cavities, establishing close directional F···C(tetrazine) contacts with the tetrazine rings that are by ~0.4 Å shorter than the sum of the F···C van der Waals radii (ΣR(vdW) F···C = 3.17 Å). The number and strength of F···C(tetrazine) contacts are maximized; the F···C(tetrazine) distances and anion positioning versus the polygon opposing tetrazine rings are in agreement with DFT calculations for C(2)N(4)R(2)···[X](-)···C(2)N(4)R(2) (R = F, CN; [X](-) = [BF(4)](-), [PF(6)](-)). In unprecedented solid-state (19)F MAS NMR studies, the templating anions, engaged in anion-π interactions in the solid state, exhibit downfield chemical shifts Δδ((19)F) ≈ 3.5-4.0 ppm versus peripheral anions. NMR, CV, and MS studies also establish that the Fe(II) metallacycles remain intact in solution. Additionally, interconversion studies between the Fe(II) metallacycles in solution, monitored by (1)H NMR spectroscopy, underscore the remarkable stability of the metallapentacycles [Fe(5)(bptz)(5)(CH(3)CN)(10)][PF(6)](10) ≪ [Fe(5)(bptz)(5)(CH(3)CN)(10)][SbF(6)](10) < [Fe(5)(bptz)(5)(CH(3)CN)(10)][AsF(6)](10) versus [Fe(4)(bptz)(4)(CH(3)CN)(8)][BF(4)](8), given the inherent angle strain in five-membered rings. Finally, the low anion activation energies of encapsulation (ΔG(‡) ≈ 50 kJ/mol), determined from variable-temperature (19)F NMR studies for [Fe(5)(bptz)(5)(CH(3)CN)(10)][PF(6)](10) and [Zn(4)(bptz)(4)(CH(3)CN)(8)][BF(4)](8), confirm anion encapsulation in the π-acidic cavities by anion-π contacts (~20-70 kJ/mol).
NASA Astrophysics Data System (ADS)
Mumma, Michael J.; Villanueva, Geronimo L.; Novak, Robert E.
2015-11-01
Five groups report methane detections on Mars; all results suggest local release and high temporal variability [1-7]. Our team searched for CH4 on many dates and seasons and detected it on several dates [1, 9, 10]. TLS (Curiosity rover) reported methane upper limits [6], and then detections [7] that were consistent in size with earlier reports and that also showed rapid modulation of CH4 abundance.[8] argued that absorption features assigned to Mars 12CH4 by [1] might instead be weak lines of terrestrial 13CH4. If not properly removed, terrestrial 13CH4 signatures would appear on the blue wing of terrestrial 12CH4 even when Mars is red-shifted - but they do not (Fig. S6 of [1]), demonstrating that terrestrial signatures were correctly removed. [9] demonstrated that including the dependence of δ13CH4 with altitude did not affect the residual features, nor did taking δ13CH4 as zero. Were δ13CH4 important, its omission would have overemphasized the depth of 13CH4 terrestrial absorption, introducing emission features in the residual spectra [1]. However, the residual features are seen in absorption, establishing their origin as non-terrestrial - [8] now agrees with this view.We later reported results for multiple organic gases (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), three nitriles (N2O, NH3, HCN) and two chlorinated species (HCl, CH3Cl) [9]. Most of these species cannot be detected with current space assets, owing to instrumental limitations (e.g., spectral resolving power). However, the high resolution infrared spectrometers (NOMAD, ACS) on ExoMars 2016 (Trace Gas Orbiter) will begin measurements in late 2016. In solar occultation, TGO sensitivities will far exceed prior capabilities.We published detailed hemispheric maps of H2O and HDO on Mars, inferring the size of a lost early ocean [10]. In 2016, we plan to acquire 3-D spatial maps of HDO and H2O with ALMA, and improved maps of organics with iSHELL/NASA-IRTF.References: [1] Mumma et al. Sci09; [2] Formisano et al. Sci04; [3] Krasnopolsky et al. Icar04; [4] Fonti and Marzo A&A10 [5] Krasnopolsky, Icar12; [6] Webster et al. Sci13; [7] Webster et al. Sci15; [8] Zahnle et al. Icar11; [9] Villanueva et al. Icar13; [10] Villanueva et al. Sci15.
C=C bond cleavage on neutral VO3(V2O5)n clusters.
Dong, Feng; Heinbuch, Scott; Xie, Yan; Bernstein, Elliot R; Rocca, Jorge J; Wang, Zhe-Chen; Ding, Xun-Lei; He, Sheng-Gui
2009-01-28
The reactions of neutral vanadium oxide clusters with alkenes (ethylene, propylene, 1-butene, and 1,3-butadiene) are investigated by experiments and density function theory (DFT) calculations. Single photon ionization through extreme ultraviolet radiation (EUV, 46.9 nm, 26.5 eV) is used to detect neutral cluster distributions and reaction products. In the experiments, we observe products (V(2)O(5))(n)VO(2)CH(2), (V(2)O(5))(n)VO(2)C(2)H(4), (V(2)O(5))(n)VO(2)C(3)H(4), and (V(2)O(5))(n)VO(2)C(3)H(6), for neural V(m)O(n) clusters in reactions with C(2)H(4), C(3)H(6), C(4)H(6), and C(4)H(8), respectively. The observation of these products indicates that the C=C bonds of alkenes can be broken on neutral oxygen rich vanadium oxide clusters with the general structure VO(3)(V(2)O(5))(n=0,1,2...). DFT calculations demonstrate that the reaction VO(3) + C(3)H(6) --> VO(2)C(2)H(4) + H(2)CO is thermodynamically favorable and overall barrierless at room temperature. They also provide a mechanistic explanation for the general reaction in which the C=C double bond of alkenes is broken on VO(3)(V(2)O(5))(n=0,1,2...) clusters. A catalytic cycle for alkene oxidation on vanadium oxide is suggested based on our experimental and theoretical investigations. The reactions of V(m)O(n) with C(6)H(6) and C(2)F(4) are also investigated by experiments. The products VO(2)(V(2)O(5))(n)C(6)H(4) are observed for dehydration reactions between V(m)O(n) clusters and C(6)H(6). No product is detected for V(m)O(n) clusters reacting with C(2)F(4). The mechanisms of the reactions between VO(3) and C(2)F(4)/C(6)H(6) are also investigated by calculations at the B3LYP/TZVP level.
Oremland, R.S.; Des Marais, D.J.
1983-01-01
Distribution and isotopic composition (??13C) of low molecular weight hydrocarbon gases were studied in Big Soda Lake (depth = 64 m), an alkaline, meromictic lake with permanently anoxic bottom waters. Methane increased with depth in the anoxic mixolimnion (depth = 20-35 m), reached uniform concentrations (55 ??M/l) in the monimolimnion (35-64 m) and again increased with depth in monimolimnion bottom sediments (>400 ??M/kg below 1 m sub-bottom depth). The ??13C[CH4] values in bottom sediment below 1 m sub-bottom depth (<-70 per mil) increased with vertical distance up the core (??13C[CH4] = -55 per mil at sediment surface). Monimolimnion ??13C[CH4] values (-55 to -61 per mil) were greater than most ??13C[CH4] values found in the anoxic mixolimnion (92% of samples had ??13C[CH4] values between -20 and -48 per mil). No significant concentrations of ethylene or propylene were found in the lake. However ethane, propane, isobutane and n-butane concentrations all increased with water column depth, with respective maximum concentrations of 260, 80, 23 and 22 nM/l encountered between 50-60 m depth. Concentrations of ethane, propane and butanes decreased with depth in the bottom sediments. Ratios of CH4 [C2H6 + C3H8] were high (250-620) in the anoxic mixolimnion, decreased to ~161 in the monimolimnion and increased with depth in the sediment to values as high as 1736. We concluded that methane has a biogenic origin in both the sediments and the anoxic water column and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in ??13C[CH4] and CH4 (C2H6 + C3H8) with depth in the water column and sediments are probably caused by bacteria] processes. These might include anaerobic methane oxidation and different rates of methanogenesis and C2 to C4 alkane production by microorganisms. ?? 1983.
4-[2-(4-cyanophenyl)ethenyl]-N-methylpyridinium tetraphenylborate.
Jin, Dan; Zhang, De Chun
2005-11-01
In the title compound, C(15)H(13)N(2)(+).C(24)H(20)B(-), the pyridyl ring of the cation makes a dihedral angle of 1.6 degrees with the benzene ring. Each is rotated in the same direction with respect to the central -C-CH=CH-C- linkage, by 3.8 and 5.3 degrees, respectively. The anions have a slightly distorted tetrahedral geometry. Molecular packing analysis was carried out using the packing energy portioning scheme in the program OPEC. Around each anion in the crystal structure there are eight anions, which interact with the central anion through C-H...pi interactions. The cations are hydrogen bonded in a head-to-tail fashion, forming chains along [101].
NASA Astrophysics Data System (ADS)
Abplanalp, Matthew J.; Kaiser, Ralf I.
2017-02-01
The processing of the hydrocarbon ice, ethylene (C2H4/C2D4), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH4 (CD4)], acetylene [C2H2 (C2D2)], the ethyl radical [C2H5 (C2D5)], ethane [C2H6 (C2D6)], 1-butene [C4H8 (C4D8)], and n-butane [C4H10 (C4D10)]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C n H2n+2 (n = 4-10), C n H2n (n = 2-12, 14, 16), C n H2n-2 (n = 3-12, 14, 16), C n H2n-4 (n = 4-12, 14, 16), C n H2n-6 (n = 4-10, 12), C n H2n-8 (n = 6-10), and C n H2n-10 (n = 6-10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C3H4) or 1, 3-butadiene (C4H6) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical environments.
Meot-Ner, M
1978-12-01
The CH3+ ion, formed in ionized methane, undergoes consecutive eliminative condensation reactions with methane to form the carbonium ions C2H5+, i-C3H7+ and t-C4H9+. At T smaller than 500 degrees K, NCH4 greater than 10(16) cm-3 these ions react with NH3 in competitive condensation -- H+ transfer reactions, e.g. C2H5 + NH3 M leads to C2H5NH3+ leads to NH4+ + C2H4 At particle densities of NCH4 smaller than 10(16) cm-3 proton transfer is the only significant reaction channel. At NCH4 greater than 10(17) cm-3 condensation constitutes 5--20% of the overall reactions. The product of the condensation reaction further associates with CO2 to form C2H5NH3+ . CO2; the atomic composition of this cluster ion is identical with the protonated amino acid alanine. The carbonium ions i-C3H7+ and t-C4H9+ condense also with HCN to yield protonated isocyanides. HCNH% also appears to condense with HCN at T greater than 570 degrees K, and form cluster ions with HCN at lower temperatures. The rate constants of the condensation reactions vary with temperature and pressure in a complex manner. Under conditions similar to those on Titan at an altitude of 100 km (T = 100--150 degrees K, NCH4 approximately 10(18) cm-3), with a methane atmosphere containing 1% H2 and traces of NH3 and H2O, ion-molecule condensation reactions followed by H+ transfer are expected to lead to the atmospheric synthesis of C2H6, C3H8, CH3OH, C2H5OH and the terminal ions NH4+, CH3NH3+ and C2H5NH3+. At higher temperatures (250 degrees K smaller than T smaller than 400 degrees K), the synthesis of i-C4H10, i-C3H7OH and t-C4H9OH and of the ions i-C3H7NH3+ and t-C4H9NH3+ is also expected. Electron recombination of the terminal ions may yield amines, imines and nitriles. Cycles of protonation and dissociative recombination of the alkanes and alcohols produced in condensation reactions will also produce unsaturated hydrocarbons, ketones and aldehydes in the ionized atmosphere.
Optical and magnetic properties for metal halide-based organic-inorganic layered perovskites
NASA Astrophysics Data System (ADS)
Shikoh, Eiji; Ando, Yasuo; Era, Masanao; Miyazaki, Terunobu
2001-05-01
Layered perovskites (RNH 3) 2CuCl 4, where R was methyl-benzene C 6H 5-CH 2, 1-methyl-naphthalene 1-C 10H 9-CH 2, 1-propyl-naphthalene 1-C 10H 9-O(CH 2) 3 and 1-butyl-naphthalene 1-C 10H 9-O(CH 2) 4, were synthesized. These complexes showed ferromagnetism, with different Curie temperatures, TC, depending on the structure of the molecule. The change of TC by taking into account the overlap of the electronic states between the organic and the inorganic layers were discussed.
Wen, Mingwei; Huang, Fang; Lu, Gang; Wang, Zhi-Xiang
2013-10-21
Density functional theory computations have been applied to gain insight into the CO2 reduction to CH4 with Et3SiH, catalyzed by ammonium hydridoborate 1 ([TMPH](+)[HB(C6F5)3](-), where TMP = 2,2,6,6-tetramethylpiperidine) and B(C6F5)3. The study shows that CO2 is activated through the concerted transfer of H(δ+) and H(δ-) of 1 to CO2, giving a complex (IM2) with a well-formed HCOOH entity, followed by breaking of the O-H bond of the HCOOH entity to return H(δ+) to TMP, resulting in an intermediate 2 ([TMPH](+)[HC(═O)OB(C6F5)3)](-)), with CO2 being inserted into the B-H bond of 1. However, unlike CO2 insertion into transition-metal hydrides, the direct insertion of CO2 into the B-H bond of 1 is inoperative. The computed CO2 activation mechanism agrees with the experimental synthesis of 2 via reacting HCOOH with TMP/B(C6F5)3. Subsequent to the CO2 activation and B(C6F5)3-mediated hydrosilylation of 2 to regenerate the catalyst (1), giving HC(═O)OSiEt3 (5), three hydride-transfer steps take place, sequentially transferring H(δ-) of Et3SiH to 5 to (Et3SiO)2CH2 (6, the product of the first hydride-transfer step) to Et3SiOCH3 (7, the product of the second hydride-transfer step) and finally resulting in CH4. These hydride transfers are mediated by B(C6F5)3 via two SN2 processes without involving 1. B(C6F5)3 acts as a hydride carrier that, with the assistance of a nucleophilic attack of 5-7, first grabs H(δ-) from Et3SiH (the first SN2 process), giving HB(C6F5)3(-), and then leave H(δ-) of HB(C6F5)3(-) to the electrophilic C center of 5-7 (the second SN2 process). The SN2 processes utilize the electrophilic and nucleophilic characteristics possessed by the hydride acceptors (5-7). The hydride-transfer mechanism is different from that in the CO2 reduction to methanol catalyzed by N-heterocyclic carbene (NHC) and PCP-pincer nickel hydride ([Ni]H), where the characteristic of possessing a C═O double bond of the hydride acceptors is utilized for hydride transfer. The mechanistic differences elucidate why the present system can completely reduce CO2 to CH4, whereas NHC and [Ni]H catalysts can only mediate the reduction of CO2 to [Si]OCH3 and catBOCH3, respectively. Understanding this could help in the development of catalysts for selective CO2 reduction to CH4 or methanol.
Detection methods for atoms and radicals in the gas phase
NASA Astrophysics Data System (ADS)
Hack, W.
This report lists atoms and free radicals in the gas phase which are of interest for environmental and flame chemistry and have been detected directly. The detection methods which have been used are discussed with respect to their range of application, specificity and sensitivity. In table 1, detection methods for the five atoms of group IV (C, Si, Ge, Sn, Pb) and about 60 radicals containing at least one atom of group IV are summarized (CH, Cd, Cf, CC1, CBr, Cn, Cs, CSe, CH2, CD2, Chf, Cdf, CHC1, CHBr, CF2, CC12, CBr2, CFC1, CFBr, CH3, CD3, CF3, CH2F, CH2C1, CH2Br, CHF2, CHC12, CHBr2, Hco, Fco, CH30, CD30, CH2OH, CH3S, Nco, CH4N, CH302, CF302; C2, C2N, C2H, C20, C2HO, C2H3, C2F3, C2H5, C2HsO, C2H4OH, CH3CO, CD3CO, C2H3O, C2H502, CH3COO2, C2H4N, C2H6N, C3; Si, SiF, SiF2, SiO, SiC, Si2; Ge, GeC, GeO, GeF, GeF2, GeCl2, Sn, SnF, SnO, SnF2, Pb, PbF, PbF2, PbO, PbS). In table 2 detection methods for about 25 other atoms and 60 radicals are listed: (H, D, O, O2, Oh, Od, HO2, DO2, F, Ci, Br, I, Fo, Cio, BrO, Io, FO2, C1O2, Li, Na, K, Rb, Cs, N, N3, Nh, Nd, Nf, Nci, NBr, NH2, ND2, Nhd, Nhf, NF2, NC12, N2H3, No, NO2, NO3, Hno, Dno, P, Ph, Pd, Pf, Pci, PH2, PD2, PF2, Po, As, AsO, AsS, Sb, Bi, S, S2, Sh, Sd, Sf, SF2, So, Hso, Dso, Sn, Se, Te, Se2, SeH, SeD, SeF, SeO, SeS, SeN, TeH, TeO, Bh, BH2, Bo, Bn, B02, Cd, Hg, UF5). The tables also cite some recent kinetic applications of the various methods.
Solvato-polymorph of [(η6-C6H6)RuCl (L)]PF6 (L = (2,6-dimethyl-phenyl-pyridin-2-yl methylene amine)
NASA Astrophysics Data System (ADS)
Gichumbi, Joel M.; Friedrich, Holger B.; Omondi, Bernard
2016-06-01
A half-sandwich complex salt of ruthenium containing the Schiff base ligand, 2, 6-dimethyl-N-(pyridin-2-ylmethylene)aniline has been synthesized and structurally characterized. The complex salt 1, [(η6-C6H6)RuCl(C5H4NCHdbnd N(2,6-(CH3)2C6H3)]PF6 was obtained from the reaction of the ruthenium arene precursor, [(η6- C6H6)Ru(μ-Cl)Cl]2 with the Schiff base in a 1:2 ratio followed by treatment with NH4PF6. Its acetone solvate 2, [(η6-C6H6)RuCl(C5H4NCHdbnd N (2, 6- (CH3)2C6H3)]PF6. (CH3)2CO was obtained by recrystallization of 1 from a solution of hexane and acetone. 1 and 2 crystallize in the monoclinic P21/c and P21/n space groups as blocks and as prisms respectively. The ruthenium centers in 1 and 2 are coordinated to the bidentate Schiff base, to a chloride atom, and to the arene ring to give a pseudo-octahedral geometry around them. The whole arrangement is referred to as the familiar three-legged piano stool in which the Schiff base and the Cl atom serve as the base while the arene ring serve as the apex of the stool. Polymorph 2 has an acetone molecule in the asymmetric unit. Of interest is the similar behavior of the solvate on heating which shows the crystals shuttering at about 531.6 and 523.4 K for 1 and 2 respectively.
The Unexpectedly Bright Comet C-2012 F6 (Lemmon) Unveiled at Near-Infrared Wavelengths
NASA Technical Reports Server (NTRS)
Paganini, Lucas; Disanti, Michael A.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; Keane, Jacqueline V.; Gibb, Erika L.; Boehnhardt, Hermann; Meech, Karen J.
2013-01-01
We acquired near-infrared spectra of the Oort cloud comet C/2012 F6 (Lemmon) at three different heliocentric distances (R h) during the comet's 2013 perihelion passage, providing a comprehensive measure of the outgassing behavior of parent volatiles and cosmogonic indicators. Our observations were performed pre-perihelion at R h = 1.2 AU with CRIRES (on 2013 February 2 and 4), and post-perihelion at R h = 0.75 AU with CSHELL (on March 31 and April 1) and R h = 1.74 AU with NIRSPEC (on June 20). We detected 10 volatile species (H2O, OH* prompt emission, C2H6, CH3OH, H2CO, HCN, CO, CH4, NH3, and NH2), and obtained upper limits for two others (C2H2 and HDO). One-dimensional spatial profiles displayed different distributions for some volatiles, confirming either the existence of polar and apolar ices, or of chemically distinct active vents in the nucleus. The ortho-para ratio for water was 3.31 +/- 0.33 (weighted mean of CRIRES and NIRSPEC results), implying a spin temperature >37 K at the 95% confidence limit. Our (3s) upper limit for HDO corresponds to D/H < 2.45 × 10-3 (i.e., <16 Vienna Standard Mean Ocean Water, VSMOW). At R h = 1.2 AU (CRIRES), the production rate for water was Q(H2O) = 1.9 +/- 0.1 × 1029 s-1 and its rotational temperature was T rot 69 K. At R h = 0.75 AU (CSHELL), we measured Q(H2O) = 4.6 +/- 0.6 × 1029 s-1 and T rot = 80 K on March 31, and 6.6 +/- 0.9 × 1029 s-1 and T rot = 100 K on April 1. At R h = 1.74 AU (NIRSPEC), we obtained Q(H2O) = 1.1 +/- 0.1 × 1029 s-1 and T rot 50 K. The measured volatile abundance ratios classify comet C/2012 F6 as rather depleted in C2H6 and CH3OH, while HCN, CH4, and CO displayed abundances close to their median values found among comets. H2CO was the only volatile showing a relative enhancement. The relative paucity of C2H6 and CH3OH (with respect to H2O) suggests formation within warm regions of the nebula. However, the normal abundance of HCN and hypervolatiles CH4 and CO, and the enhancement of H2CO, may indicate a possible heterogeneous nucleus of comet C/2012 F6 (Lemmon), possibly as a result of radial mixing within the protoplanetary disk
Photochemical Modeling of CH3 Abundances in the Outer Solar System
NASA Technical Reports Server (NTRS)
Lee, Anthony Y. T.; Yung, Yuk L.; Moses, Julianne
2000-01-01
Recent measurements of methyl radicals (CH3) in the upper atmospheres of Saturn and Neptune by the Infrared Space Observatory (ISO) provide new constraints to photochemical models of hydrocarbon chemistry in the outer solar system. The derived column abundances of CH3 on Saturn above 10 mbar and Neptune above the 0.2 mbar pressure level are (2.5 - 6.0) x 10(exp 13) / sq cm and (0.7 - 2.8) x 10(exp 13) / sq cm, respectively. We use the updated Caltech/Jet Propulsion Laboratory photochemical model, which incorporates hydrocarbon photochemistry, vertical molecular and bulk atmospheric eddy diffusion, and realistic radiative transfer modeling, to study the CH3 abundances in the upper atmosphere of the giant planets and Titan. We identify the key reactions that control the concentrations of CH3 in the model, such as the three-body recombination reaction, CH3 + CH3 + M yields C2H6 + M. We evaluate and extrapolate the three-body rate constant of this reaction to the low-temperature limit (1.8 x 10(exp -16) T(sup -3.75) e(sup -300/T), T < 300 K) and compare methyl radical abundances in five atmospheres: Jupiter, Saturn, Uranus, Neptune, and Titan. The sensitivity of our models to the rate coefficients for the reactions H + CH3 + M yields CH4 + M, H + C2H3 yields C2H2 + H2, (sup 1)CH2 + H2 yields CH3 + H, and H + C2H5 yields 2CH3, the branching ratios of CH4 photolysis, vertical mixing in the five atmospheres, and Lyman alpha photon enhancement at the orbit of Neptune have all been tested. The results of our model CH3 abundances for both Saturn (5.1 x 10(exp 13) / sq cm) and Neptune (2.2 x 10(exp 13) / sq cm) show good agreement with ISO Short Wavelength Spectrometer measurements. Using the same chemical reaction set, our calculations also successfully generate vertical profiles of stable hydrocarbons consistent with Voyager and ground-based measurements in these outer solar system atmospheres. Predictions of CH3 column concentrations (for p <= 0.2 mbar) in the atmospheres of Jupiter (3.3 x 10(exp 13) /sq cm), Uranus (2.5 x 10(exp 12) / sq cm), and Titan (1.9 x 10(exp 15) / sq cm) may be checked by future observations.
NASA Technical Reports Server (NTRS)
Bonev, Boncho P.; Villanueva, Geronimo L.; Disanti, Michael A.; Boehnhardt, Hermann; Lippi, Manuela; Gibb, Erika L.; Paganini, Lucas; Mumma, Michael J.
2017-01-01
Comet C/2006 W3 (Christensen) remained outside a heliocentric distance (Rh) of 3.1 au throughout its apparition, but it presented an exceptional opportunity to directly sense a suite of molecules released from its nucleus. The Cryogenic Infrared Echelle Spectrograph at ESO-VLT detected infrared emissions from the three hypervolatiles (CO, CH4, and C2H6) that have the lowest sublimation temperatures among species that are commonly studied in comets by remote sensing. Even at Rh 3.25 au, the production rate of each molecule exceeded those measured for the same species in a number of other comets, although these comets were observed much closer to the Sun. Detections of CO at Rh = 3.25, 4.03, and 4.73 au constrained its post-perihelion decrease in production rate, which most likely dominated the outgassing. At 3.25 au, our measured abundances scaled as CO/CH4/C2H6 approx. = 100/4.4/2.1. The C2H6/CH4 ratio falls within the range of previously studied comets at Rh < 2 au, while CO/CH4 is comparatively high and similar to in situ measurements from Rosetta at approx.10 km from the nucleus of 67P/Churyumov-Gerasimenko conducted at a very similar Rh (3.15 au). The independent detections of H2O (Herschel Space Observatory) and CO (this work) imply a coma abundance H2O/CO approx. = 20% in C/2006 W3 near Rh = 5 au. All these measurements are of high value for constraining models of nucleus sublimation (plausibly CO-driven) beyond Rh = 3au, where molecular detections in comets are still especially sparse.
Lampland, Nicole L.; Zhu, Jing; Hovey, Megan; ...
2015-06-25
{Bo MCp tet}Lu(CH 2Ph) 2 ( 1; Bo MCp tet = MeC(Ox Me2 2C 5Me 4; Ox Me2 = 4,4-dimethyl-2-oxazoline) was prepared in 95% yield from the reaction of Bo MCp tetH and Lu(CH 2Ph) 3THF 3. Compound 1 reacts with 1 or 2 equiv of H 2NCH 2R (R = C 6H 5, 1-C 10H 7) to give the corresponding imido complexes [{Bo MCp tet}LuNCH 2R] 2 (R = C 6H 5 ( 2a), 1-C 10H 7 ( 2b)) or amido complexes {Bo MCp tet}Lu(NHCH 2R) 2 (R = C 6H 5 ( 3a), 1-C 10H 7 ( 3b)).more » When isolated, the imido species are insoluble in nonprotic organic solvents. Crystallographic characterization reveals dimeric [{Bo MCp tet}LuNCH 2(1-C 10H 7)] 2 in the solid state. The reaction of 1 and NH3B(C6F5)3 affords crystallographically characterized {Bo MCp tet}Lu{NHB(C 6F 5) 2}C 6F 5. This species is proposed to form via a transient lutetium imido, which undergoes C6F5 migration to the lutetium center.« less
Li, Meng; Hua, Bin; Pu, Jian; Chi, Bo; Jian, Li
2015-01-01
Pd-, Cu-, Ni- and NiCu-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ anodes, designated as M-BZCYYb, were prepared by impregnating M-containing solution into BZCYYb scaffold, and investigated in the aspects of electrocatalytic activity for the reactions of H2 and CH4 oxidation and the resistance to carbon deposition. Impregnation of Pd, Ni or NiCu significantly reduced both the ohmic (RΩ) and polarization (RP) losses of BZCYYb anode exposed to H2 or CH4, while Cu impregnation decreased only RΩ in H2 and the both in CH4. Pd-, Ni- and NiCu-BZCYYb anodes were resistant to carbon deposition in wet (3 mol. % H2O) CH4 at 750°C. Deposited carbon fibers were observed in Pd- and Ni-BZCYYb anodes exposed to dry CH4 at 750°C for 12 h, and not observed in NiCu-BZCYYb exposed to dry CH4 at 750°C for 24 h. The performance of a full cell with NiCu-BZCYYb anode, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd doped CeO2 (LSCF-GDC) cathode was stable at 750°C in wet CH4 for 130 h, indicating that NiCu-BZCYYb is a promising anode for direct CH4 solid oxide fuel cells (SOFCs). PMID:25563843
Chen, Sihuai; Mereacre, Valeriu; Zhao, Zhiying; Zhang, Wanwan; Zhang, Mengsi; He, Zhangzhen
2018-06-05
Three dodecanuclear 3d-4f coordination clusters, [CrIII6LnIII6(μ3-OH)8(tbdea)6(C6H5COO)16]·2H2O (Ln = Dy (1), Y (2)) and [CoIII6DyIII6(μ3-OH)8(nbdea)6(m-CH3C6H4COO)16]·2H2O·2CH3CN (3), have been synthesized under solvothermal conditions and characterized. Single-crystal X-ray diffraction analysis revealed that all three compounds possess an analogous {MIII6LnIII6} core (M = Cr, Co; Ln = Dy, Y) and dc magnetic susceptibility studies indicated that the magnetic exchange couplings between DyIII ions are dominant antiferromagnetic, while the CrIII-DyIII interactions are weakly ferromagnetic. Furthermore, the ac magnetic susceptibility measurements showed that both CrIII6DyIII6 compound 1 and CoIIi6DyIII6 compound 3 containing highly anisotropic DyIII ions displayed single-molecule magnetic (SMM) behavior with the energy barrier Ueff increasing from 12.8 K (for 1) to 20.8 K (for 3), indicating that weak 3d-4f exchange couplings enhance the QTM and reduce the energy barrier.
Usmanov, Dilshadbek T; Chen, Lee Chuin; Hiraoka, Kenzo; Wada, Hiroshi; Nonami, Hiroshi; Yamabe, Shinichi
2016-12-01
Experimental and theoretical studies on the oxidation of saturated hydrocarbons (n-hexane, cyclohexane, n-heptane, n-octane and isooctane) and ethanol in 28 Torr O 2 or air plasma generated by a hollow cathode discharge ion source were made. Ions corresponding to [M + 15] + and [M + 13] + in addition to [M - H] + and [M - 3H] + were detected as major ions where M is the sample molecule. The ions [M + 15] + and [M + 13] + were assigned as oxidation products, [M - H + O] + and [M - 3H + O] + , respectively. By the tandem mass spectrometry analysis of [M - H + O] + and [M - 3H + O] + , H 2 O, olefins (and/or cycloalkanes) and oxygen-containing compounds were eliminated from these ions. Ozone as one of the terminal products in the O 2 plasma was postulated as the oxidizing reagent. As an example, the reactions of C 6 H 14 +• with O 2 and of C 6 H 13 + (CH 3 CH 2 CH + CH 2 CH 2 CH 3 ) with ozone were examined by density functional theory calculations. Nucleophilic interaction of ozone with C 6 H 13 + leads to the formation of protonated ketone, CH 3 CH 2 C(=OH + )CH 2 CH 2 CH 3 . In air plasma, [M - H + O] + became predominant over carbocations, [M - H] + and [M - 3H] + . For ethanol, the protonated acetic acid CH 3 C(OH) 2 + (m/z 61.03) was formed as the oxidation product. The peaks at m/z 75.04 and 75.08 are assigned as protonated ethyl formate and protonated diethyl ether, respectively, and that at m/z 89.06 as protonated ethyl acetate. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xianhui; Ngo, Huong T.; Walker, Devin M.
The performance of catalytic tri-reforming under industrially relevant situations (e.g., pellet catalysts, pressurized reactor) was investigated using surrogate biogas as the feedstock. Tri-reforming using Ni/Mg/Ce 0.6Zr 0.4O 2/Al 2O 3 pellet catalysts was studied in a bench scale fixed-bed reactor. The feed molar ratio for CH 4: CO 2: air was fixed as 1.0: 0.70: 0.95. The effects of temperature (800 – 860 °C), pressure (1 – 6 bar), and H 2O/CH 4 molar feed ratio (0.23 – 0.65) were examined. Pressure has substantial impact on the reaction and transport rates and equilibrium conversions, making it a key variable. Atmore » 860 °C, CO 2 conversion increased from 4 to 61% and H 2/CO molar ratio decreased from 2.0 to 1.1 as the pressure changed from 1 to 6 bar. CO 2 conversion and H 2/CO molar ratio were also influenced by the temperature and H 2O/CH 4 molar ratio. At 3 bar, CO 2 conversion varied between 4 and 43% and the H 2/CO molar ratio varied between 1.2 and 1.9 as the temperature changed from 800 to 860 °C. At 3 bar and 860 °C, CO 2 conversion decreased from 35 to 8% and H 2/CO molar ratio increased from 1.7 to 2.4 when the H 2O/CH 4 molar ratio was increased from 0.23 to 0.65. This work demonstrates that the tri-reforming technology is feasible for converting biogas under scaled-up conditions in a fixed-bed reactor.« less
Tri-reforming of surrogate blogs over Ni/Mg/ceria-zirconia/alumina pellet catalysts
Zhao, Xianhui; Ngo, Huong T.; Walker, Devin M.; ...
2018-01-23
The performance of catalytic tri-reforming under industrially relevant situations (e.g., pellet catalysts, pressurized reactor) was investigated using surrogate biogas as the feedstock. Tri-reforming using Ni/Mg/Ce 0.6Zr 0.4O 2/Al 2O 3 pellet catalysts was studied in a bench scale fixed-bed reactor. The feed molar ratio for CH 4: CO 2: air was fixed as 1.0: 0.70: 0.95. The effects of temperature (800 – 860 °C), pressure (1 – 6 bar), and H 2O/CH 4 molar feed ratio (0.23 – 0.65) were examined. Pressure has substantial impact on the reaction and transport rates and equilibrium conversions, making it a key variable. Atmore » 860 °C, CO 2 conversion increased from 4 to 61% and H 2/CO molar ratio decreased from 2.0 to 1.1 as the pressure changed from 1 to 6 bar. CO 2 conversion and H 2/CO molar ratio were also influenced by the temperature and H 2O/CH 4 molar ratio. At 3 bar, CO 2 conversion varied between 4 and 43% and the H 2/CO molar ratio varied between 1.2 and 1.9 as the temperature changed from 800 to 860 °C. At 3 bar and 860 °C, CO 2 conversion decreased from 35 to 8% and H 2/CO molar ratio increased from 1.7 to 2.4 when the H 2O/CH 4 molar ratio was increased from 0.23 to 0.65. This work demonstrates that the tri-reforming technology is feasible for converting biogas under scaled-up conditions in a fixed-bed reactor.« less
The thermal decomposition of the benzyl radical in a heated micro-reactor. I. Experimental findings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckingham, Grant T.; Ormond, Thomas K.; National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401
2015-01-28
The pyrolysis of the benzyl radical has been studied in a set of heated micro-reactors. A combination of photoionization mass spectrometry (PIMS) and matrix isolation infrared (IR) spectroscopy has been used to identify the decomposition products. Both benzyl bromide and ethyl benzene have been used as precursors of the parent species, C{sub 6}H{sub 5}CH{sub 2}, as well as a set of isotopically labeled radicals: C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2}. The combination of PIMS and IR spectroscopy has been used to identify the earliest pyrolysis products from benzyl radical as: C{sub 5}H{submore » 4}=C=CH{sub 2}, H atom, C{sub 5}H{sub 4}—C ≡ CH, C{sub 5}H{sub 5}, HCCCH{sub 2}, and HC ≡ CH. Pyrolysis of the C{sub 6}H{sub 5}CD{sub 2}, C{sub 6}D{sub 5}CH{sub 2}, and C{sub 6}H{sub 5}{sup 13}CH{sub 2} benzyl radicals produces a set of methyl radicals, cyclopentadienyl radicals, and benzynes that are not predicted by a fulvenallene pathway. Explicit PIMS searches for the cycloheptatrienyl radical were unsuccessful, there is no evidence for the isomerization of benzyl and cycloheptatrienyl radicals: C{sub 6}H{sub 5}CH{sub 2}⇋C{sub 7}H{sub 7}. These labeling studies suggest that there must be other thermal decomposition routes for the C{sub 6}H{sub 5}CH{sub 2} radical that differ from the fulvenallene pathway.« less
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Duraj, Stan A.; Fanwic, Phillp E.; Hepp, Aloysius F.; Martuch, Robert A.
2003-01-01
The synthesis and structural characterization of a novel ionic Ga(III) five coordinate complex [{CH3(C5H4N)}Ga(SCH2(CO)O)2]-[(4-MepyH)]+, (4-Mepy = CH3(C5H5N)) from the reaction between Ga2Cl4 with sodium mercapto-acetic acid in 4-methylpyridine is described. Under basic reaction conditions the mercapto ligand is found to behave as a 2e- bidentate ligand. Single crystal X-ray diffraction studies show the complex to have a distorted square pyramidal geometry with the [(-SCH2(CO)CO-)] ligands in a trans conformation. The compound crystallizes in the P2(sub 1)/c (No. 14) space group with a = 7.7413(6) A, b = 16.744(2) A, c = 14.459(2) A, V = 1987.1(6) A(sup 3), R(F) = 0.032 and R(sub w) = 0.038.
Cyanide ion complexation by a cationic borane.
Chiu, Ching-Wen; Gabbaï, François P
2008-02-14
While we have previously reported that [1-(Mes2B)-8-(Me3NCH2)-C10H6]+ ([2]+) complexes fluoride ions to form [1-(Mes2FB)-8-(Me3NCH2)-C10H6] (2-F), we now show that this cationic borane also complexes cyanide to form [1-(Mes2(NC)B)-8-(Me3NCH2)-C10H6] (2-CN). This reaction also occurs under biphasic conditions (H2O-CHCl3) and may serve to transport cyanide in organic phases. The zwitterionic cyanoborate 2-CN has been fully characterized and its crystal structure determined. UV-vis titration experiments carried out in THF indicate that [2]+ has a higher affinity for fluoride (K > 10(8) M(-1)) than cyanide (K = 8.0 (+/-0.5) x 10(5) M(-1)). Steric effects which impede cyanide binding to the sterically congested boron center of [2]+ are most likely at the origin of this selectivity. Finally, electrochemical studies indicate that [2]+ is significantly more electrophilic than its neutral precursor 1-(Mes2B)-8-(Me2NCH2)-(C10H6) (1). These studies also show that reduction of [2]+ is irreversible, possibly because of elimination of the NMe3 moiety under reductive conditions. In fact, [2]OTf reacts with NaBH4 to afford 1-(Mes2B)-8-(CH3)-(C10H6) (4) which has also been fully characterized.
NASA Astrophysics Data System (ADS)
Zhang, Ling; Jiang, Ke; Yang, Yu; Cui, Yuanjing; Chen, Banglin; Qian, Guodong
2017-11-01
Efficient separation of the small gas molecules especially the hydrocarbons is essential to social economy. The microporous metal-organic frameworks (MOFs) are taking precedence in this respect by virtue of their irreplaceable advantages. Herein, the new organic linker 5-(5-carboxypyridin-3-yl)isophthalic acid simplified as H3L-N has been excavated to construct successfully the novel Zn-based heterocycle metal-organic framework ZnL·(DMF)1.5·(H2O)6.0 (ZJU-197, ZJU = Zhejiang University, DMF = N,N-dimethylformamide). ZJU-197 has been structurally characterized and explored in details for gas separation. It is commendable that the activated ZJU-197a has exhibited excellent C2H2/C2H4, CO2/CH4 and CO2/N2 separations simultaneously with IAST selectivity of 137.8, 53.0 and 514.1 respectively at ambient conditions.
Stephen, Emma; Huang, Deguang; Shaw, Jennifer L; Blake, Alexander J; Collison, David; Davies, E Stephen; Edge, Ruth; Howard, Judith A K; McInnes, Eric J L; Wilson, Claire; Wolowska, Joanna; McMaster, Jonathan; Schröder, Martin
2011-09-05
The Ni(II) complexes [Ni([9]aneNS(2)-CH(3))(2)](2+) ([9]aneNS(2)-CH(3)=N-methyl-1-aza-4,7-dithiacyclononane), [Ni(bis[9]aneNS(2)-C(2)H(4))](2+) (bis[9]aneNS(2)-C(2)H(4)=1,2-bis-(1-aza-4,7-dithiacyclononylethane) and [Ni([9]aneS(3))(2)](2+) ([9]aneS(3)=1,4,7-trithiacyclononane) have been prepared and can be electrochemically and chemically oxidized to give the formal Ni(III) products, which have been characterized by X-ray crystallography, UV/Vis and multi-frequency EPR spectroscopy. The single-crystal X-ray structure of [Ni(III)([9]aneNS(2)-CH(3))(2)](ClO(4))(6)·(H(5)O(2))(3) reveals an octahedral co-ordination at the Ni centre, while the crystal structure of [Ni(III)(bis[9]aneNS(2)-C(2)H(4))](ClO(4))(6)·(H(3)O)(3)·3H(2)O exhibits a more distorted co-ordination. In the homoleptic analogue, [Ni(III)([9]aneS(3))(2)](ClO(4))(3), structurally characterized at 30 K, the Ni-S distances [2.249(6), 2.251(5) and 2.437(2) Å] are consistent with a Jahn-Teller distorted octahedral stereochemistry. [Ni([9]aneNS(2)-CH(3))(2)](PF(6))(2) shows a one-electron oxidation process in MeCN (0.2 M NBu(4)PF(6), 293 K) at E(½)=+1.10 V versus Fc(+)/Fc assigned to a formal Ni(III)/Ni(II) couple. [Ni(bis[9]aneNS(2)-C(2)H(4))](PF(6))(2) exhibits a one-electron oxidation process at E(½)=+0.98 V and a reduction process at E(½)=-1.25 V assigned to Ni(II)/Ni(III) and Ni(II)/Ni(I) couples, respectively. The multi-frequency X-, L-, S-, K-band EPR spectra of the 3+ cations and their 86.2% (61)Ni-enriched analogues were simulated. Treatment of the spin Hamiltonian parameters by perturbation theory reveals that the SOMO has 50.6%, 42.8% and 37.2% Ni character in [Ni([9]aneNS(2)-CH(3))(2)](3+), [Ni(bis[9]aneNS(2)-C(2)H(4))](3+) and [Ni([9]aneS(3))(2)](3+), respectively, consistent with DFT calculations, and reflecting delocalisation of charge onto the S-thioether centres. EPR spectra for [(61)Ni([9]aneS(3))(2)](3+) are consistent with a dynamic Jahn-Teller distortion in this compound. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO.
Seixas, João D; Santos, Marino F A; Mukhopadhyay, Abhik; Coelho, Ana C; Reis, Patrícia M; Veiros, Luís F; Marques, Ana R; Penacho, Nuno; Gonçalves, Ana M L; Romão, Maria J; Bernardes, Gonçalo J L; Santos-Silva, Teresa; Romão, Carlos C
2015-03-21
A few ruthenium based metal carbonyl complexes, e.g. CORM-2 and CORM-3, have therapeutic activity attributed to their ability to deliver CO to biological targets. In this work, a series of related complexes with the formula [Ru(CO)3Cl2L] (L = DMSO (3), L-H3CSO(CH2)2CH(NH2)CO2H) (6a); D,L-H3CSO(CH2)2CH(NH2)CO2H (6b); 3-NC5H4(CH2)2SO3Na (7); 4-NC5H4(CH2)2SO3Na (8); PTA (9); DAPTA (10); H3CS(CH2)2CH(OH)CO2H (11); CNCMe2CO2Me (12); CNCMeEtCO2Me (13); CN(c-C3H4)CO2Et) (14)) were designed, synthesized and studied. The effects of L on their stability, CO release profile, cytotoxicity and anti-inflammatory properties are described. The stability in aqueous solution depends on the nature of L as shown using HPLC and LC-MS studies. The isocyanide derivatives are the least stable complexes, and the S-bound methionine oxide derivative is the more stable one. The complexes do not release CO gas to the headspace, but release CO2 instead. X-ray diffraction of crystals of the model protein Hen Egg White Lysozyme soaked with 6b (4UWN) and 8 (4UWN) shows the addition of Ru(II)(CO)(H2O)4 at the His15 binding site. Soakings with 7(4UWN) produced the metallacarboxylate [Ru(COOH)(CO)(H2O)3](+) bound to the His15 site. The aqueous chemistry of these complexes is governed by the water-gas shift reaction initiated with the nucleophilic attack of HO(-) on coordinated CO. DFT calculations show this addition to be essentially barrierless. The complexes have low cytotoxicity and low hemolytic indices. Following i.v. administration of CORM-3, the in vivo bio-distribution of CO differs from that obtained with CO inhalation or with heme oxygenase stimulation. A mechanism for CO transport and delivery from these complexes is proposed.
Intermediates in the Formation of Aromatics in Hydrocarbon Combustion
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)
1994-01-01
The formation of the first benzene ring is believed to be the rate limiting step in soot formation. Two different mechanisms have been proposed for formation of cyclic C6 species. The first involves the reaction of two acetylenes to give CH2CHCCH (vinyl acetylene), the loss of a H to give CHCHCCH (n-C41-13) or CH2CCCH (iso-C4H3), and addition of another acetylene to n-C4H3, followed by ring closure to give phenyl radical. Miller and Melius argue that only n-C4H3 leads to phenyl radical and since iso-C4H3 is more stable than n-C4H3 this mechanism is unlikely. An alternative mechanism proposed by them is formation of benzene from the dimerization of two CH2CCH (propargyl) radicals (formed by the reaction of singlet methylene with C2H2). We report reaction pathways and accurate energetics (from CASSCF/internally contracted CI calculations) for the reactions of CH(pi-2) and CH2-1 with acetylene, the reaction of vinylidene with acetylene, and the reaction of n-C4H3 and iso-C4H3 with acetylene. These calculations identify two new reactive intermediates CHCHCH ( a A"-2 ground state in Cs symmetry; spin coupling is a doublet from three singly occupied orbitals) and CHCCH (B-3 ground state in C2 symmetry) from the reaction of CH with acetylene. These species dimerize with no barrier to form benzene and para-benzyne, respectively. CHCCH is proposed as a reactive intermediate which can add to benzene to give higher polynuclear aromatic hydrocarbons or fullerenes. The addition of a C3H2 unit releases two C-C bond energies and thus the resulting addition product contains sufficient energy to break several CH bonds leading to a reduction in the H to C ratio as the cluster size increases. It is found that iso-C4H3 adds to acetylene to initially give a fulvene radical but that this species rearranges to phenyl radical. Thus, the reaction of acetylene with iso-C4H3 does lead to phenyl radical and the cyclization pathway may also contribute to formation of the initial benzene ring.
Deuterated Methane and Ethane in the Atmosphere of Jupiter
NASA Astrophysics Data System (ADS)
Parkinson, C. D.; Yung, Y. L.; Lee, A. Y.; Crisp, D.
2003-12-01
CH3D and C2H5D are isotopic tracers in the deep Jovian atmosphere and susceptible to transport and chemical effects. It is expected that the tropospheric ([D]/[H])CH4 ratios determined from the various observations made should be relatively invariable, yet previous determinations of this quantity for Jupiter have given results inconsistent with experimental error bars. This suggests that there may be a problem with the interpretion of some of the observations, or that the apparent CH3D column abundance is variable. We report on the effects of varying important parameters over this pressure regime on the CH3D and C2H5D mixing ratios, CH3D and C2H5D fractionation, the ([D]/[H])CH4, ([D]/[H])C2H_6 and D/H (= ([D]/[H])H2) ratios and compare with the various CH3D and HD observations. Our results show that since the CH3D and C2H5D mixing ratios are strongly dependent upon K(z) in the region of interest where temporal or latitudinal variations in K(z) could significantly impact the measured ([D]/[H])CH4 ratio. The K(z) adopted represents complex upward convection and downdraft mixing that occurs in the Jovian atmosphere as evidenced by recent observations (Gierasch et al., 2000; Ingersoll et al., 2000; Roos-Serote et al., 2000; Vincent et al., 2000). Using our technique allows for the first time a way to explain the discrepancies in the ([D]/[H])CH4 ratio observations by offering a plausible link between the CH3D and C2H5D observations and upper tropospheric dynamical processes. In any case our calculations show how ([D]/[H])CH4 and ([D]/[H])C2H_6 can be used as a diagnostic tracer to constrain K(z) and to better understand the dynamics of the atmosphere in this pressure regime. Additionally, we have made calculations of the C2H5D in the thermosphere of Jupiter. The principal reactions determining the D abundance appear to be generation by reaction of H with vibrationally hot HD and loss by reaction of D with H2(v=0,1) and CH3. The H, CH3D and C2H5D distributions have been calculated using the Caltech/JPL KINETICS 1-D photochemistry-diffusion model with the column H constrained using the H lyman-alpha airglow. Reactions involving C2H5D are described by Parkinson (2002). Performing sensitivity studies, we have found an enhancement of greater than two orders of magnitude in C2H5D due to the vibrational chemistry, which is significantly larger than that for CH3D enhancement reported by Parkinson et al (2003). This is of great interest and suggests that C2H5D should be detectable in the lower thermosphere: we propose that observations of this species should be made. Enhancement of deuterated hydrocarbons indicates that there may be exchange of these species between the statosphere and troposphere and further show their usefulness as isotopic tracers in the Jovian atmosphere.
Pre- and Post-Perihelion Observations of C/2009 P1 (Garradd): Evidence for an Oxygen-Rich Heritage?
NASA Astrophysics Data System (ADS)
DiSanti, Michael A.; Villanueva, G. L.; Paganini, L.; Bonev, B. P.; Keane, J. V.; Meech, K. J.; Mumma, M. J.
2013-10-01
We present pre- and post-perihelion observations of Comet C/2009 P1 (Garradd), on UT 2011 October 13 (heliocentric distance Rh = 1.83 AU) and 2012 January 8 (Rh = 1.57 AU), respectively, using the high-resolution infrared spectrometer (NIRSPEC) on the Keck II 10-m telescope on Mauna Kea, HI. On October 13, we obtained production rates for nine primary volatiles (native ices): H2O, CO, CH3OH, CH4, C2H6, HCN, C2H2, H2CO, and NH3. On January 8, we obtained production rates for three of these (H2O, CH4, and HCN) and sensitive upper limits for three others (C2H2, H2CO, and NH3). CO was enriched and C2H2 was depleted, yet C2H6 and CH3OH were close to their current mean values as measured in a dominant group of Oort cloud comets. We compare the composition of Garradd with other CO-rich comets C/1999 T1 (McNaught-Hartley), C/1996 B2 (Hyakutake), and C/1995 O1 (Hale-Bopp), and with other comets in our database. We discuss possible implications regarding the processing history of its pre-cometary ices. Our measurements of C/2009 P1 indicate consistent pre- and post-perihelion abundance ratios for trace species relative to H2O, suggesting we were measuring a homogeneous composition to the depths sampled in the nucleus. The overall gas production was lower post-perihelion despite its smaller heliocentric distance on January 8. This is qualitatively consistent with other studies of C/2009 P1. On October 13, the water profile showed a pronounced excess towards the Sun-facing hemisphere that was not seen in other molecules nor in the dust continuum. Inter-comparison of profiles from October 13 permitted us to estimate the fraction of all H2O released in the coma and contained within our slit. We attribute this excess H2O to release from relatively pure, water-rich icy grains. Similar evidence for extended release was not observed on January 8 and this, together with its overall lower gas production post-perihelion, suggests loss of one or more active regions on the nucleus, perhaps resulting from depletion of volatiles and/or a seasonal change in pole orientation affecting the degree of insolation received locally on the nucleus.
Origin of the SN2 benzylic effect.
Galabov, Boris; Nikolova, Valia; Wilke, Jeremiah J; Schaefer, Henry F; Allen, Wesley D
2008-07-30
The S N2 identity exchange reactions of the fluoride ion with benzyl fluoride and 10 para-substituted derivatives (RC6H 4CH 2F, R = CH3, OH, OCH 3, NH2, F, Cl, CCH, CN, COF, and NO2) have been investigated by both rigorous ab initio methods and carefully calibrated density functional theory. Groundbreaking focal-point computations were executed for the C6H5CH 2F + F (-) and C 6H 5CH2Cl + Cl (-) SN2 reactions at the highest possible levels of electronic structure theory, employing complete basis set (CBS) extrapolations of aug-cc-pV XZ (X = 2-5) Hartree-Fock and MP2 energies, and including higher-order electron correlation via CCSD/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ coupled cluster wave functions. Strong linear dependences are found between the computed electrostatic potential at the reaction-center carbon atom and the effective SN2 activation energies within the series of para-substituted benzyl fluorides. An activation strain energy decomposition indicates that the SN2 reactivity of these benzylic compounds is governed by the intrinsic electrostatic interaction between the reacting fragments. The delocalization of nucleophilic charge into the aromatic ring in the SN2 transition states is quite limited and should not be considered the origin of benzylic acceleration of SN2 reactions. Our rigorous focal-point computations validate the benzylic effect by establishing SN2 barriers for (F (-), Cl (-)) identity exchange in (C6H5CH2F, C6H 5CH2Cl) that are lower than those of (CH3F, CH3Cl) by (3.8, 1.6) kcal mol (-1), in order.
NASA Astrophysics Data System (ADS)
Hand, Kevin P.; Carlson, R. W.; Tsapin, A. I.
2006-09-01
Irradiation of low temperature ices in the laboratory provides insight into processes that may be occurring on icy bodies in the solar system. Here we report on results from high-energy (10keV) electron irradiation of thin ice films at 1e-8 torr and 70-120K. Mixtures include water with CO2, C3H8, C3H6, C4H10 (butane and isobutane), C4H8,(1-butene and cis/trans-2-butene), and NH3. During irradiation of H2O + alkane films at 80K, CO2 and CH4 production is observed and both species are retained in the ice, possibly trapped in clathrates. The -CH3 infrared bands initially present are seen to decrease with increasing dose. Bands associated with -CH2- persist, indicating polymerization of the initial short-chain hydrocarbons. In alkenes a similar evolution toward polymerization is observed, however the first step appears to be the destruction of the C=C bond. Upon warming of the film, mass spectra data compliment the mid-infrared data and indicate the production of H2CO, however glycolic acid is not explicitly seen in the mass spectra. When warmed to 300K, residues remained for all irradiated films except that of the H2O + CO2 mixtures. Residues were analyzed with Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI). Results show the production of large aliphatic, very refractory, hydrocarbons (with m/z up to 2500). Mid-infrared spectra of the residues indicate carbonyls and alcohols, likely due to polymerized aldehydes and carboxylic acids. Films of H2O + C3H8 + NH3 at 70K show the production of OCN- (cyanate ion), formamide, along with other possible amides and hydrocarbons. HPLC results indicate the production of racemic alanine. Finally, results of abiotic experiments are compared to results from the irradiation of bacterial spores in ice. The application to Europa and Enceladus is discussed.
Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment.
Hörst, S M; Yelle, R V; Buch, A; Carrasco, N; Cernogora, G; Dutuit, O; Quirico, E; Sciamma-O'Brien, E; Smith, M A; Somogyi, A; Szopa, C; Thissen, R; Vuitton, V
2012-09-01
The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N(2)/CH(4)/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C(4)H(5)N(3)O, C(4)H(4)N(2)O(2), C(5)H(6)N(2)O(2), C(5)H(5)N(5), and C(6)H(9)N(3)O(2) are produced by chemistry in the simulation chamber. Gas chromatography-mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C(4)H(5)N(3)O), uracil (C(5)H(4)N(2)O(2)), thymine (C(5)H(6)N(2)O(2)), guanine (C(5)H(5)N(5)O), glycine (C(2)H(5)NO(2)), and alanine (C(3)H(7)NO(2)). Adenine (C(5)H(5)N(5)) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin.
Mena, Inmaculada; García-Orduña, Pilar; Polo, Víctor; Lahoz, Fernando J; Casado, Miguel A; Oro, Luis A
2017-08-29
Herein we report on the different chemical reactivity displayed by two mononuclear terminal amido compounds depending on the nature of the coordinated diene. Hence, treatment of amido-bridged iridium complexes [{Ir(μ-NH 2 )(tfbb)} 3 ] (1; tfbb = tetrafluorobenzobarrelene) with dppp (dppp = bis(diphenylphosphane)propane) leads to the rupture of the amido bridges forming the mononuclear terminal amido compound [Ir(NH 2 )(dppp)(tfbb)] (3) in the first stage. On changing the reaction conditions, the formation of a C-NH 2 bond between the amido moiety and the coordinated diene is observed and a new dinuclear complex [{Ir(1,2-η 2 -4-κ-C 12 H 8 F 4 N)(dppp)} 2 (μ-dppp)] (4) has been isolated. On the contrary, the diiridium amido-bridged complex [{Ir(μ-NH 2 )(cod)} 2 ] (2; cod = 1,5-cyclooctadiene) in the presence of dppb (dppb = bis(diphenylphosphane)butane) allows the isolation of a mononuclear complex [Ir(1,2,3-η 3 -6-κ-C 8 H 10 )H(dppb)] (5), as a consequence of the extrusion of ammonia. The monitoring of the reaction of 2 with dppb (and dppp) allowed us to detect terminal amido complexes [Ir(NH 2 )(P-P)(cod)] (P-P = dppb (6), dppp (7)) in solution, as confirmed by an X-ray analysis of 7. Complex 7 was observed to evolve into hydrido species 5 at room temperature. DFT studies showed that C-H bond activation occurs through the deprotonation of one methylene fragment of the cod ligand by the highly basic terminal amido moiety instead of C-H oxidative addition to the Ir(i) center.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Nathan X.; Gibb, Erika L.; Bonev, Boncho P.
On 2014 May 22 and 24 we characterized the volatile composition of the dynamically new Oort cloud comet C/2012 K1 (PanSTARRS) using the long-slit, high resolution ( λ /Δ λ ≈ 25,000) near-infrared echelle spectrograph (NIRSPEC) at the 10 m Keck II telescope on Maunakea, Hawaii. We detected fluorescent emission from six primary volatiles (H{sub 2}O, HCN, CH{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, and CO). Upper limits were derived for C{sub 2}H{sub 2}, NH{sub 3}, and H{sub 2}CO. We report rotational temperatures, production rates, and mixing ratios (relative to water). Compared with median abundance ratios for primary volatiles in other sampledmore » Oort cloud comets, trace gas abundance ratios in C/2012 K1 (PanSTARRS) for CO and HCN are consistent, but CH{sub 3}OH and C{sub 2}H{sub 6} are enriched while H{sub 2}CO, CH{sub 4}, and possibly C{sub 2}H{sub 2} are depleted. When placed in context with comets observed in the near-infrared to date, the data suggest a continuous distribution of abundances of some organic volatiles (HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, CH{sub 4}) among the comet population. The level of “enrichment” or “depletion” in a given comet does not necessarily correlate across all molecules sampled, suggesting that chemical diversity among comets may be more complex than the simple organics-enriched, organics-normal, and organics-depleted framework.« less
1980-11-01
FINSTER , E SINN, R N GRIMES N0001475--0305 UNCLASSIFIED TR-35 NL’ minimnmlhnnnhu ,IIIIIIIIIIIIIl hEIIIIIIIIEIII EEEEEEEEEEEL 1.8 MICROCOPY’ RESOLUTION...David C./ Finster Ekk/inn Russell . Grimes Department of Chemistry ",00t University ofLyirginla ’ Charlottesville, Va. 22901 Prepared for Publication In...a Commo-Metallacarborane. Synthesis and Structure of a Fluxi:. Metal-Boron Cluster, [n5C 5 (CCB3)512HCo3(C13)4C4B8H7 David C. Finster , Ekk Sinn, and
Hg-sensitized photolysis of diethylamine in the absence and presence of O/sub 2/ or N/sub 2/O
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeStefano, G.; Heicklen, J.
1986-09-11
The Hg-sensitized photolysis of diethylamine (DEA) was studied in the absence and presence of O/sub 2/ or N/sub 2/O at room temperature. In the absence of foreign gases, the products were H/sub 2/, CH/sub 3/CH=NC/sub 2/H/sub 5/ and N,N'-diethylbutane-2,3-diamine (III), with respective quantum yields of 1.0, 1.0, and similarly ordered 0.02. Thus CH/sub 3/CHNHC/sub 2/H/sub 5/ radicals are produced exclusively and they are removed by self reaction: 2CH/sub 3/CHNHC/sub 2/H/sub 5/ ..-->.. DEA + CH/sub 3/CH=NC/sub 2/H/sub 5/ (4a) and 2CH/sub 3/CHNHC/sub 2/H/sub 5/ ..-->.. diamine III (4b), with k/sub 4a//k/sub 4b/ = 47.0 +/- 5.6. In the presence ofmore » O/sub 2/ the radicals are scavenged exclusively by abstraction of the H atom on the nitrogen to give the imine CH/sub 3/CH=NC/sub 2/H/sub 5/ as the exclusive product: (CH/sub 3/CHNHC/sub 2/H/sub 5/ + O/sub 2/ ..-->.. CH/sub 3/CH=NC/sub 2/H/sub 5/ + HO/sub 2/ (5). The Hg-sensitized photolysis of N/sub 2/O gives O(/sup 3/P) atoms, which in the presence of DEA react to give the imine and (C/sub 2/H/sub 5/)/sub 2/NOH (DEHA) as products in concerted parallel steps: O(/sup 3/P) + (C/sub 2/H/sub 5/)/sub 2/NH ..-->.. CH/sub 3/CH=NC/sub 2/H/sub 5/ + H/sub 2/O (9a) and O(/sup 3/P) + (C/sub 2/H/sub 5/)/sub 2/NH ..-->.. (C/sub 2/H/sub 5/)/sub 2/NOH (9b), with k/sub 9a//k/sub 9b/ similarly ordered 9.5 +/- 1.7.« less
Han, Xue; Ke, Jie; Suleiman, Norhidayah; Levason, William; Pugh, David; Zhang, Wenjian; Reid, Gillian; Licence, Peter; George, Michael W
2016-06-07
We present investigations into a variety of supporting electrolytes and supercritical fluids probing the phase and conductivity behaviour of these systems and show that they not only provide sufficient electrical conductivity for an electrodeposition bath, but match the requirements imposed by the different precursors and process parameters, e.g. increased temperature, for potential deposition experiments. The two supercritical fluids that have been explored in this study are difluoromethane (CH2F2) and 1,1-difluoroethane (CHF2CH3). For CH2F2, the phase behaviour and electrical conductivity of eight ionic compounds have been studied. Each compound consists of a cation and an anion from the selected candidates i.e. tetramethylammonium ([N(CH3)4](+)), tetrabutylammonium ([N((n)C4H9)4](+)), 1-ethyl-3-methylimidazolium ([EMIM](+)) and 1-butyl-3-methylimidazolium ([BMIM](+)) for cations, and tetrakis(perfluoro-tert-butoxy)aluminate ([Al(OC(CF3)3)4](-)), chloride (Cl(-)), trifluoromethyl sulfonimide ([NTf2](-)) and tris(pentafluoroethyl)trifluorophosphate ([FAP](-)) for anions. For CHF2CH3, [N((n)C4H9)4][BF4] and [N((n)C4H9)4][B{3,5-C6H3(CF3)2}4] have been investigated for comparison with the previously measured solubility and conductivity in CH2F2. We have found that [N((n)C4H9)4][Al(OC(CF3)3)4], [N((n)C4H9)4][FAP] and [N(CH3)4][FAP] have much higher molar conductivity in scCH2F2 at similar conditions than [N((n)C4H9)4][BF4], a widely used commercial electrolyte. Additionally, scCHF2CH3 shows potential for use as the solvent for supercritical fluid electrodeposition, especially at high temperatures since high density of this fluid can be achieved at lower operating pressures than similar fluids that can be used to produce electrochemical baths with comparable conductivity.
Martian CH(4): sources, flux, and detection.
Onstott, T C; McGown, D; Kessler, J; Lollar, B Sherwood; Lehmann, K K; Clifford, S M
2006-04-01
Recent observations have detected trace amounts of CH(4) heterogeneously distributed in the martian atmosphere, which indicated a subsurface CH(4) flux of ~2 x 10(5) to 2 x 10(9) cm(2) s(1). Four different origins for this CH(4) were considered: (1) volcanogenic; (2) sublimation of hydrate- rich ice; (3) diffusive transport through hydrate-saturated cryosphere; and (4) microbial CH(4) generation above the cryosphere. A diffusive flux model of the martian crust for He, H(2), and CH(4) was developed based upon measurements of deep fracture water samples from South Africa. This model distinguishes between abiogenic and microbial CH(4) sources based upon their isotopic composition, and couples microbial CH(4) production to H(2) generation by H(2)O radiolysis. For a He flux of approximately 10(5) cm(2) s(1) this model yields an abiogenic CH(4) flux and a microbial CH(4) flux of approximately 10(6) and approximately 10(9) cm(2) s(1), respectively. This flux will only reach the martian surface if CH(4) hydrate is saturated in the cryosphere; otherwise it will be captured within the cryosphere. The sublimation of a hydrate-rich cryosphere could generate the observed CH(4) flux, whereas microbial CH(4) production in a hypersaline environment above the hydrate stability zone only seems capable of supplying approximately 10(5) cm(2) s(1) of CH(4). The model predicts that He/H(2)/CH(4)/C(2)H(6) abundances and the C and H isotopic values of CH(4) and the C isotopic composition of C(2)H(6) could reveal the different sources. Cavity ring-down spectrometers represent the instrument type that would be most capable of performing the C and H measurements of CH(4) on near future rover missions and pinpointing the cause and source of the CH(4) emissions.
1980-11-01
MERCURY-BRIDGED COBALTACARBORANE COMPLEXES CONTAINING B-HG-B TH--ETC(U) NOV 80 D C FINSTER . R N GRIMES N0 0 0 1 4-75-0305 UNCLASSXFIED TR NL ILn...C5R5) Co 3)2C2B3 4 2 5 .- -C5R5 )Co(CH3)2C2B3H4 ]HgCl, (R=H, CH3 ) and Related Compounds, David C./ Finster -- Russell N./Grimes ( Department of Chemistry...Compounds 1 \\David C. Finster And Russell N. Grimes* Abstract. Reactions of the nid~p-cobaltacarborane anions 01CR )(C 3 )C BH and [n (H 1oC ihH~5n 5
NASA Astrophysics Data System (ADS)
Ferrando, S.; Castelli, D.; Frezzotti, M. L.
2017-12-01
Abiogenic CH4 can be produced by interaction between carbonates and reducing fluids derived from the hydration of ultramafics (e.g., mantle peridotite or HP Ol-serpentinite). This process occurs during slab exhumation because cooling promotes serpentinization of olivine in presence of water (Fo + H2O = Atg + Brc and the linked reactions: Fa + H2O = Fe-Atg + Mag + H2 and Atg + CaCO3 + H2 = Di + Brc + CH4 + H2O) at ca. 500-375°C (P=2.0-0.2 GPa). Experiments in the CH4-H2O-NaCl system indicate that, at these conditions, fluids are immiscible even for very low salinity (ca. 3 wt%) and that the NaCl content in the aqueous part of the fluid increases with temperature whereas the CH4 content in the gaseous part shows an opposite trend (Lamb et al., 2002; Li, 2017).In HP rodingite from the Piemonte ophiolite Zone (W Alps), primary fluid inclusions consisting of a brine (6 wt% CaCl2 + 6 wt% NaCl) with H2 + CH4 ≤ 1 mol % [CH4/(H2+CH4) = 0.37-10] occur in vesuvianite veins that formed at P=0.2 GPa and T=375°C. We interpret them as the aqueous part of an immiscible reducing fluid produced during late Alpine serpentinization of the surrounding ultramafics. Interestingly, CH4-H2 gaseous fluids are never reported in rodingite, whereas early CH4-H2O-H2±graphite and CH4-H2±graphite fluid inclusions, with variable gas-water proportions, trapped in calcite at P≤1.0 GPa and T≤450°C, are recently reported from HP "graphitized" ophicarbonate from the Lanzo peridotite Massif (W Alps; Vitale Brovarone et al., 2017).Both HP ophiolites and partially-serpentinized peridotite massifs are, thus, efficient lithologies to produce CH4 during exhumation. The amount of released CH4 depends on the amount of water available during exhumation. However, when fluids immiscibility occurs, the gaseous-rich part (CH4-H2) of the immiscible fluid produced in ultramafics likely remains confined in the slab because it is less mobile with respect to the aqueous-rich part due to its high dihedral angle. If C saturation conditions are reached, graphite precipitates in the rock. Conversely, the aqueous-rich part (brine with minor CH4-H2) of the immiscible fluid is more mobile and, then, able to migrate to the surface. Lamb et al. (2002): Geochim. Cosmochi. Acta, 66, 3971-3986 Li (2017): Geochem. Persp. Let., 3, 12-21 Vitale Brovarone et al. (2017): Nat. Comm., 8, 14134
NASA Astrophysics Data System (ADS)
Ádámkovics, Máté; Boering, Kristie A.
2003-08-01
The fundamental kinetics of photochemical particle formation and the mechanism(s) for polymerization of hydrocarbons to form condensable species under anoxic conditions have yet to be determined experimentally. Thus these processes remain highly parameterized in models of planetary atmospheres. We have developed instrumentation for simultaneously measuring the net production rates of complex gas-phase hydrocarbons and of organic aerosols formed from irradiating mixtures of simple precursor gases through online quadrupole mass spectrometry measurements of stable gas-phase species and in situ optical scattering detection of the particulates at 633 nm. The new technique and results for the generation of hydrocarbon aerosol from the irradiation of pure, gas-phase CH4 at a pressure of 70 Torr with 8.8 +/- 0.8 × 1015 photons s-1 of vacuum ultraviolet light (120-300nm) are reported. The net production rates for the following gaseous species are measured: H2 = 9.9 +/- 2.2 . 1011, C2H2 = 2.8 +/- 0.5 . 1010, C2H4 = 5.5 +/- 9.4 . 109, C2H6 = 8.6 +/- 2.5 . 1010, C3H4 = 2.5 +/- 1.2 . 109, C4H2 = 6.6 +/- 5.0 . 108, C4H10 = 1.3 +/- 0.5 . 1010 cm-3 s-1. The production of hydrocarbon particulates is detected by optical scattering, and the condensed phase C-C bond formation rate is inferred to be 7.5 +/- 3.1 . 1011 cm-3 s-1. Applications of this technique to the atmospheres of Titan and terrestrial-like planets, such as the early Earth before the rise of molecular oxygen, are discussed.
Pre- and Post-perihelion Observations of C/2009 P1 (Garradd): Evidence for an Oxygen-rich Heritage?
NASA Technical Reports Server (NTRS)
Disanti, Michael Antonio; Villanueva, Geronimo Luis; Paganini, Lucas; Bonev, Boncho P.; Keane, Jacqueline V.; Meech, Karen J.; Mumma, Michael Jon
2013-01-01
We conducted pre- and post-perihelion observations of Comet C/2009 P1 (Garradd) on UT 2011 October 13 and 2012 January 8, at heliocentric distances of 1.83 and 1.57 AU, respectively, using the high-resolution infrared spectrometer (NIRSPEC) at the Keck II 10-m telescope on Mauna Kea, HI. Pre-perihelion, we obtained production rates for nine primary volatiles (native ices): H2O, CO, CH3OH, CH4, C2H6, HCN, C2H2, H2CO, and NH3. Post-perihelion, we obtained production rates for three of these (H2O, CH4, and HCN) and sensitive upper limits for three others (C2H2, H2CO, and NH3). CO was enriched and C2H2 was depleted, yet C2H6 and CH3OH were close to their currentmean values asmeasured in a dominant group of Oort cloud comets. This may indicate processing of its pre-cometary ices in a relatively oxygen-rich environment. Our measurements indicate consistent pre- and post-perihelion abundance ratios relative to H2O, suggesting we were measuring compositional homogeneity among measured species to the depths in the nucleus sampled. However, the overall gas production was lower post-perihelion despite its smaller heliocentric distance on January 8. This is qualitatively consistent with other studies of C/2009 P1, perhaps due to seasonal differences in the heating of one or more active regions on the nucleus. On October 13, the water profile showed a pronounced excess towards the Sun-facing hemisphere that was not seen in other molecules, including H2O on January 8, nor in the dust continuum. Inter-comparison of profiles from October 13 permitted us to quantify contributions due to release of H2O from the nucleus, and fromits release in the coma. This resulted in the latter source contributing 25-30% of the total observed water within our slit, which covered roughly +/-300 km by +/-4500 km from the nucleus. We attribute this excess H2O, which peaked at a mean projected distance of 1300-1500 km from the nucleus, to release from water-rich, relatively pure icy grains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergantini, Alexandre; Maksyutenko, Pavlo; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu
The structural isomers ethanol (CH{sub 3}CH{sub 2}OH) and dimethyl ether (CH{sub 3}OCH{sub 3}) were detected in several low-, intermediate-, and high-mass star-forming regions, including Sgr B2, Orion, and W33A, with the relative abundance ratios of ethanol/dimethyl ether varying from about 0.03 to 3.4. Until now, no experimental data regarding the formation mechanisms and branching ratios of these two species in laboratory simulation experiments could be provided. Here, we exploit tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) to detect and analyze the production of complex organic molecules (COMs) resulting from the exposure of water/methane (H{sub 2}O/CH{sub 4}) ices to energetic electrons.more » The main goal is to understand the formation mechanisms in star-forming regions of two C{sub 2}H{sub 6}O isomers: ethanol (CH{sub 3}CH{sub 2}OH) and dimethyl ether (CH{sub 3}OCH{sub 3}). The results show that the experimental branching ratios favor the synthesis of ethanol versus dimethyl ether (31 ± 11:1). This finding diverges from the abundances observed toward most star-forming regions, suggesting that production routes on interstellar grains to form dimethyl ether might be missing; alternatively, ethanol can be overproduced in the present simulation experiments, such as via radical–radical recombination pathways involving ethyl and hydroxyl radicals. Finally, the PI-ReTOF-MS data suggest the formation of methylacetylene (C{sub 3}H{sub 4}), ketene (CH{sub 2}CO), propene (C{sub 3}H{sub 6}), vinyl alcohol (CH{sub 2}CHOH), acetaldehyde (CH{sub 3}CHO), and methyl hydroperoxide (CH{sub 3}OOH), in addition to ethane (C{sub 2}H{sub 6}), methanol (CH{sub 3}OH), and CO{sub 2} detected from infrared spectroscopy. The yield of all the confirmed species is also determined.« less
Heat resistant polymers of oxidized styrylphosphine
NASA Technical Reports Server (NTRS)
Paciorek, K. J. L. (Inventor)
1980-01-01
A flame resistant, nontoxic polymer which may be used safely in confined locations where there is inadequate ventilation is prepared either by polymerizing compounds having the formula R-N=P(C6H5)2(C6H4)CH=CH2 where R is an organic moeity selected from the group of (C6H5)2P(O)-, (C6H5O)2P(O)-, (C6H5)2 C3N3-, or their mixtures, or by reacting a polymer with an organic azide such as diphenylphosphinylazide, diphenyl-phosphorylazide, 2-azido-4,6-diphenly-5-triazine, 2,4-diazido-6-phenyl-s-triazine, trimethylsilyoazide, triphenylsilylazine, and phenylazine. The reaction of the styrylphosphine with the organozaide results in the oxidation of the trivalent phosphorus atom to the pentavalent state in the form of an unsaturated P=N linkage known as a phosphazene group.
NASA Technical Reports Server (NTRS)
Russo, R. S.; Talbot, R. W.; Dibb, J. E.; Scheuer, E.; Seid, G.; Jordan, C. E.; Fuelberg, H. E.; Sachse, G. W.; Avery, M. A.; Vay, S. A.
2003-01-01
We characterize the chemical composition of Asian continental outflow observed during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) mission during February-April 2001 in the western Pacific using data collected on the NASA DC-8 aircraft. A significant anthropogenic impact was present in the free troposphere and as far east as 150degE longitude reflecting rapid uplift and transport of continental emissions. Five-day backward trajectories were utilized to identify five principal Asian source regions of outflow: central, coastal, north-northwest(NNW), southeast (SE), and west-southwest (WSW). The maximum mixing ratios for several species, such as CO, C2Cl4, CH3Cl, and hydrocarbons, were more than a factor of 2 larger in the boundary layer of the central and coastal regions due to industrial activity in East Asia. CO was well correlated with C2H2, C2H6, C2Cl4, and CH3Cl at low altitudes in these two regions (r(sup 2) approx. 0.77-0.97). The NNW, WSW, and SE regions were impacted by anthropogenic sources above the boundary layer presumably due to the longer transport distances of air masses to the western Pacific. Frontal and convective lifting of continental emissions was most likely responsible for the high altitude outflow in these three regions. Photochemical processing was influential in each source region resulting in enhanced mixing ratios of O3, PAN, HNO3, H2O2, and CH3OOH. The air masses encountered in all five regions were composed of a complex mixture of photcrchemically aged air with more recent emissions mixed into the outflow as indicated by enhanced hydrocarbon ratios (C2H2/CO greater than or equal to 3 and C3H8/C2H6 greater than or equal to 0.2). Combustion, industrial activities, and the burning of biofuels and biomass all contributed to the chemical composition of air masses from each source region as demonstrated by the H6, SO2, and C2Cl4 were compared for the TRACE-P and PEM-West B missions. In the more northern regions, O3, CO, and SO2 were higher at low altitudes during TRACE-P. In general, mixing ratios were fairly similar between the two missions in the southern regions. A comparison between CO/CO2, CO/CH4, C2H6/C3H8, NO(x)/SO2, and NO(y)/(SO2 + nss-SO4) ratios for the five source regions and for the 2000 Asian emissions summary showed vay close agreement indicating that Asian emissions were well represented by the TRACE-P data and tbe emissions inventory.
Tong, Lok H; Guénée, Laure; Williams, Alan F
2011-03-21
The synthesis of a penta(1-methylpyrazole)ferrocenyl phosphine oxide ligand (1) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))] is reported together with its X-ray crystal structure. Its self-assembly behavior with a dirhodium(II) tetraoctanoate linker (2) [Rh(2)(O(2)CC(7)H(15))(4)] was investigated for construction of fullerene-like assemblies of composition [(ligand)(12)(linker)(30)]. Reaction between 1 and 2 in acetonitrile resulted in the formation of a light purple precipitate (3). Evidence for the ligand-to-linker ratio of 1:2.5 expected for a fullerene-like structure [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))](12)[Rh(2)(O(2)CC(7)H(15))(4)](30) was obtained from (1)H NMR and elemental analysis. IR and Raman studies confirmed the diaxially bound coordination environment of the dirhodium linker by comparing the stretching frequencies of the carboxylate group and the rhodium-rhodium bond with those in model compound (5), [Rh(2)(O(2)CC(7)H(15))(4)](C(3)H(3)N(2)CH(3))(2), the bis-adduct of linker 2 with 1-methylpyrazole. X-ray powder diffraction and molecular modeling studies provide additional support for the formation of a spherical molecule topologically identical to fullerene with a diameter of approximately 38 Å and a molecular formula of [(1)(12)(2)(30)]. Dissolution of 3 in tetrahydrofuran (THF) followed by layering with acetonitrile afforded purple crystals of [(1)(2)(2)](∞) (6) [Fe(C(5)(C(3)H(2)N(2)CH(3))(5))(C(5)H(4)PO(t-C(4)H(9))(2))][Rh(2)(O(2)CC(7)H(15))(4)](2) with a two-dimensional polymeric structure determined by X-ray crystallography. The dirhodium linkers link ferrocenyl units by coordination to the pyrazoles but only four of the five pyrazole moieties of the pentapyrazole ligand are coordinated. The ligand-to-linker ratio of 1:2 in 6 was confirmed by (1)H NMR spectroscopy and elemental analysis, while results from IR and Raman are in agreement with the diaxially coordinated environment of the linker observed in the solid state.
Ye, Weilin; Li, Chunguang; Zheng, Chuantao; ...
2016-07-18
A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH 4) and ethane (C 2H 6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0–3001.5 cm –1 was used to simultaneously target two absorption lines, C 2H 6 at 2996.88 cm –1 and CH 4 at 2999.06 cm –1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH 4 and 1.86 ppbv for Cmore » 2H 6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH 4 and C 2H 6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH 4 and 2.4 ppbv for C 2H 6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH 4 and C 2H 6 were conducted. As a result, the reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Weilin; Li, Chunguang; Zheng, Chuantao
A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH 4) and ethane (C 2H 6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0–3001.5 cm –1 was used to simultaneously target two absorption lines, C 2H 6 at 2996.88 cm –1 and CH 4 at 2999.06 cm –1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH 4 and 1.86 ppbv for Cmore » 2H 6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH 4 and C 2H 6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH 4 and 2.4 ppbv for C 2H 6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH 4 and C 2H 6 were conducted. As a result, the reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giles, Ian D.; DeHope, Alan J.; Zuckerman, Nathaniel B.
In energetic materials, the crystal density is an important parameter that affects the performance of the material. When making ionic energetic materials, the choice of counter-ion can have detrimental or beneficial effects on the packing, and therefore the density, of the resulting energetic crystal. Presented herein are a series of five ionic energetic crystals, all containing the dianion 5,5′-(3,3′-bi[1,2,4-oxadiazole]-5,5′-diyl)bis(1 H -tetrazol-1-olate), with the following cations: hydrazinium ( 1 ) (2N 2 H 5 + ·C 6 N 12 O 4 2− ), hydroxylammonium ( 2 ) 2NH 4 O + ·C 6 N 12 O 4 2− [Pagoria et al..more » (2017). Chem. Heterocycl. Compd , 53 , 760–778; included for comparison], dimethylammonium ( 3 ) (2C 2 H 8 N + ·C 6 N 12 O 4 2− ), 5-amino-1 H -tetrazol-4-ium ( 4 ) (2CH 4 N 5 + ·C 6 N 12 O 4 2− ·4H 2 O), and aminoguanidinium ( 5 ) (2CH 7 N 4 + ·C 6 N 12 O 4 2− ). Both the supramolecular interactions and the sterics of the cation play a role in the density of the resulting crystals, which range from 1.544 to 1.873 Mg m −1 . In 5 , the tetrazolate ring is disordered over two positions [occupancy ratio 0.907 (5):0.093 (5)] due to a 180° rotation in the terminal tetrazole rings.« less
Giles, Ian D.; DeHope, Alan J.; Zuckerman, Nathaniel B.; ...
2018-03-09
In energetic materials, the crystal density is an important parameter that affects the performance of the material. When making ionic energetic materials, the choice of counter-ion can have detrimental or beneficial effects on the packing, and therefore the density, of the resulting energetic crystal. Presented herein are a series of five ionic energetic crystals, all containing the dianion 5,5′-(3,3′-bi[1,2,4-oxadiazole]-5,5′-diyl)bis(1 H -tetrazol-1-olate), with the following cations: hydrazinium ( 1 ) (2N 2 H 5 + ·C 6 N 12 O 4 2− ), hydroxylammonium ( 2 ) 2NH 4 O + ·C 6 N 12 O 4 2− [Pagoria et al..more » (2017). Chem. Heterocycl. Compd , 53 , 760–778; included for comparison], dimethylammonium ( 3 ) (2C 2 H 8 N + ·C 6 N 12 O 4 2− ), 5-amino-1 H -tetrazol-4-ium ( 4 ) (2CH 4 N 5 + ·C 6 N 12 O 4 2− ·4H 2 O), and aminoguanidinium ( 5 ) (2CH 7 N 4 + ·C 6 N 12 O 4 2− ). Both the supramolecular interactions and the sterics of the cation play a role in the density of the resulting crystals, which range from 1.544 to 1.873 Mg m −1 . In 5 , the tetrazolate ring is disordered over two positions [occupancy ratio 0.907 (5):0.093 (5)] due to a 180° rotation in the terminal tetrazole rings.« less
Bottenus, Brienne N; Kan, Para; Jenkins, Tyler; Ballard, Beau; Rold, Tammy L; Barnes, Charles; Cutler, Cathy; Hoffman, Timothy J; Green, Mark A; Jurisson, Silvia S
2010-01-01
A variety of (bis)thiosemicarbazone-based ligand systems have been investigated as chelating agents for Au(III) complexes with potential radiotherapeutic applications. Ligand systems containing an ethyl, propyl or butyl backbone between the two imine N donors have been synthesized to evaluate chelate ring size effects on the resultant Au(III) complex stability at the macroscopic and radiotracer levels. The Au(III) complexes were synthesized and characterized by NMR, electrospray ionization mass spectra, elemental analysis and X-ray crystallography. The (198)Au complexes were evaluated in vitro at the tracer level for stability in phosphate-buffered saline at pH 7.4 and 37 degrees C. One of these complexes [(198)Au(3,4-HxTSE)] showed high in vitro stability and was further evaluated in vivo in normal mice. [Au(ATSM)]AuCl(4).2CH(3)OH, (ATSM=diacetyl-bis(N(4)-methylthiosemicarbazone)) H(14)C(8)N(6)O(2)S(2)Cl(4)Au(2).2CH(3)OH, crystallized from methanol in the monoclinic space group P21/n with a=14.7293(13) A, b=7.7432(7) A, c=20.4363(18) A, beta=100.140(2) degrees, V=2294.4 (4) A(3), Z=4; [Au(3,4-HxTSE)]Cl.CH(3)CH(2)OH/AuCl(2), (3,4-HxTSE=3,4-hexanedione-bis(N(4)-ethylthiosemicarbazone)) H(26)C(13.6)N(6)O(0.8)S(2)Cl(1.2)Au(1.2), crystallized from ethanol in the monoclinic space group P21/c with a=10.1990(10) A, b=13.8833(14) A, c=15.1752(15) A, beta=99.353(2) degrees , V=2120.2 (4) A(3), Z=4. These studies revealed poor stability of the [(198)Au][Au(3,4-HxTSE)](+) complex; however, crystal structure data suggest potential alterations to the ligand backbone may increase stability. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sanders, Lary; Hanton, Scott D.; Weisshaar, James C.
1990-03-01
We describe a crossed beam experiment which measures total cross sections for reaction of electronic state-specified V+ with small hydrocarbons at well-defined collision energy E=0.2 eV. The V+ state distribution created at each ionizing wavelength is directly measured by angle-integrated photoelectron spectroscopy (preceding paper). Reactant and product ions are collected and analyzed by pulsed time-of-flight mass spectrometry following a reaction time of 6 μs. Tests of the performance of the apparatus are described in detail. Our experiment defines the reactant V+ electronic state distribution and the collision energy much more precisely than previous work. For all three hydrocarbons C2H6, C3H8, and C2H4, H2 elimination products dominate at 0.2 eV. We observe a dramatic dependence of cross section on the V+ electronic term. The second excited term 3d34s(3F) is more reactive than either lower energy quintet term 3d4(5D) or 3d34s(5F) by a factor of ≥270, 80, and ≥6 for the C2H6, C3H8, and C2H4 reactions, respectively. The 3d34s(3F) reaction cross sections at 0.2 eV are 20±11 Å2, 37±19 Å2, and 2.7±1.6 Å2, respectively, compared with Langevin cross sections of ˜80 Å2. For the C2H6 and C3H8 reactions, cross sections are independent of initial spin-orbit level J within the 3F term to the limits of our accuracy. Comparison with earlier work by Armentrout and co-workers shows that electronic excitation to d3s(3F) is far more effective at promoting H2 elimination than addition of the same total kinetic energy to reactants. Electron spin is clearly a key determinant of V+ reactivity with small hydrocarbons. We suggest that triplet V+ reacts much more efficiently than quintet V+ because of its ability to conserve total electron spin along paths to insertion in a C-H bond of the hydrocarbon.
Gas-phase nitrosation of ethylene and related events in the C2H4NO+ landscape.
Gerbaux, Pascal; Dechamps, Noemie; Flammang, Robert; Nam, Pham Cam; Nguyen, Minh Tho; Djazi, Fayçal; Berruyer, Florence; Bouchoux, Guy
2008-06-19
The C2H4NO(+) system has been examined by means of quantum chemical calculations using the G2 and G3B3 approaches and tandem mass spectrometry experiments. Theoretical investigation of the C2H4NO(+) potential-energy surface includes 19 stable C2H4NO(+) structures and a large set of their possible interconnections. These computations provide insights for the understanding of the (i) addition of the nitrosonium cation NO(+) to the ethylene molecule, (ii) skeletal rearrangements evidenced in previous experimental studies on comparable systems, and (iii) experimental identification of new C2H4NO(+) structures. It is predicted from computation that gas-phase nitrosation of ethylene may produce C2H4(*)NO(+) adducts, the most stable structure of which is a pi-complex, 1, stabilized by ca. 65 kJ/mol with respect to its separated components. This complex was produced in the gas phase by a transnitrosation process involving as reactant a complex between water and NO(+) (H2O.NO(+)) and the ethylene molecule and fully characterized by collisional experiments. Among the other C 2H 4NO (+) structures predicted by theory to be protected against dissociation or isomerization by significant energy barriers, five were also experimentally identified. These finding include structures CH3CHNO(+) (5), CH 3CNOH (+) ( 8), CH3NHCO(+) (18), CH3NCOH(+) (19), and an ion/neutral complex CH2O...HCNH(+) (12).
NASA Astrophysics Data System (ADS)
Behmard, Aida; Graninger, Dawn; Fayolle, Edith; Oberg, Karin I.
2017-01-01
Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) in pure ices and in relation to water ice, the dominant ice constituent during star and planet formation. These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.
Step Stress Testing of Receiver/Transmitter Units. Part 1
1993-02-01
voltage reading taken must be multiplied by 10 (as instructed on the test box) to convert to the proper milliampere (mA) reading. D- 16 018 CAUTIONII...INTERVALs4 and 5 above using VARIABLEs below. INTERVAL 6&7 8&9 10&11 12&13 14&15 16 &17 18&19 20&21 FINALVAL (oC) 85 94 102 111 119 127 135 143 INTERVAL...22.Z deg. ch~ 6 22. d. ~ch- 69 2.3ds ch- 09 11.5dgC ch- 16 22.2 d.~ _h 9 2. oSc 0 2. eg;S ch 1 2. oCch- 1a 22.3 d92_C Ch, 11 2. de;C ch- 12 22.2 dog-C
Ye, Weilin; Li, Chunguang; Zheng, Chuantao; Sanchez, Nancy P; Gluszek, Aleksander K; Hudzikowski, Arkadiusz J; Dong, Lei; Griffin, Robert J; Tittel, Frank K
2016-07-25
A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH4) and ethane (C2H6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0-3001.5 cm-1 was used to simultaneously target two absorption lines, C2H6 at 2996.88 cm-1 and CH4 at 2999.06 cm-1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH4 and 1.86 ppbv for C2H6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH4 and C2H6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH4 and 2.4 ppbv for C2H6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH4 and C2H6 were conducted. The reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems.
Gas-phase hydrogen atom abstraction reactions of S- with H2, CH4, and C2H6
NASA Astrophysics Data System (ADS)
Angel, Laurence A.; Dogbevia, Moses K.; Rempala, Katarzyna M.; Ervin, Kent M.
2003-11-01
Reaction cross sections, product axial velocity distributions, and potential energy surfaces are presented for the hydrogen atom abstraction reactions S-+RH→R+HS- (R=H, CH3, C2H5) as a function of collision energy. The observed threshold energy, E0, for S-+H2→H+HS- agrees with the reaction endothermicity, ΔrH0. At low collision energies, the H+HS- products exhibit symmetric, low-recoil-velocity scattering, consistent with statistical reaction behavior. The S-+CH4→CH3+HS- and S-+C2H6→C2H5+HS reactions, in contrast, show large excess threshold energies when compared to ΔrH0. The excess energies are partly explained by a potential energy barrier separating products from reactants. However, additional dynamical constraints must account for more than half of the excess threshold energy. The observed behavior seems to be general for collisional activation of anion-molecule reactions that proceed through a tight, late transition state. For RH=CH4 and C2H6, the HS- velocity distributions show anisotropic backward scattering at low collision energies indicating small impact parameters and a direct rebound reaction mechanism. At higher collision energies, there is a transition to HS- forward scattering and high velocities consistent with grazing collisions and a stripping mechanism.
NASA Technical Reports Server (NTRS)
Talbot, R. W.; Dibb, J. E.; Klemm, K. I.; Bradshaw, J. D.; Sandholm, S. T.; Blake, D. R.; Sachse, G. W.; Collins, J.; Heikes, B. G.; Gregory, G. L.;
1996-01-01
An important objective of the Pacific Exploratory Mission-West A (PEM-West A) was the chemical characterization of the outflow of tropospheric trace gases and aerosol particles from the Asian continent over the western Pacific Ocean. This paper summarizes the chemistry of this outflow during the period September - October 1991. The vertical distributions of CO, C2H6, and NO(x), showed regions of outflow at altitudes below 2 km and from 8 to 12 km. Mixing ratios of CO were approx. equals 130 parts per billion by volume (ppbv), approx. equals 1OOO parts per trillion by volume (pptv) for C2H6, and approx. equals 100 pptv for NO(x) in both of these regions. Direct outflow of Asian industrial materials was clearly evident at altitudes below 2 km, where halocarbon tracer compounds such as CH3CCl3 and C2Cl4 were enhanced about threefold compared to aged Pacific air. The source attribution of species outflowing from Asia to the Pacific at 8-12 km altitude was not straightforward. Above 10 km altitude there were substantial enhancements of NO(y), O3, CO, CH4, SO2, C2H6, C3H8, C2H2, and aerosol Pb-210 but not halocarbon industrial tracers. These air masses were rich in nitrogen relative to sulfur and contained ratios of C2H2/CO and C3H8/C2H6 (approx. equals l.5 and 0.1 respectively) indicative of several- day-old combustion emissions. It is unclear if these emissions were of Asian origin, or if they were rapidly transported to this region from Europe by the high wind speeds in this tropospheric region (60 - 70 m/s). The significant cyclonic activity over Asia at this time could have transported to the upper troposphere emissions from biomass burning in Southeast Asia or emissions from the extensive use of various biomass materials for cooking and space heating. Apparently, the emissions in the upper troposphere were brought there by wet convective systems since water-soluble gases and aerosols were depleted in these air masses. Near 9 km altitude there was a distinct regional outflow that appeared to be heavily influenced by biogenic processes on the Asian continent, especially from the southeastern area. These air masses contained CH4 in excess of 1800 ppbv, while CO2 and OCS were significantly depleted (349 - 352 ppmv and 450 - 500 pptv, respectively). This signature seemingly reflected CH4 emissions from wetlands and rice paddies with coincident biospheric uptake of tropospheric CO2 and OCS.
Synthesis, X-ray crystal structures and catecholase activity investigation of new chalcone ligands
NASA Astrophysics Data System (ADS)
Thabti, Salima; Djedouani, Amel; Rahmouni, Samra; Touzani, Rachid; Bendaas, Abderrahmen; Mousser, Hénia; Mousser, Abdelhamid
2015-12-01
The reaction of dehydroacetic acid DHA carboxaldehyde and RCHO derivatives (R = quinoleine-8-; indole-3-; pyrrol-2- and 4-(dimethylamino)phenyl - afforded four new chalcone ligands (4-hydroxy-6-methyl-3-[(2E)-3-quinolin-8-ylprop-2-enoyl]-2H-pyran-2-one) L1, (4-hydroxy-3-[(2E)-3-(1H-indol-3-yl)prop-2-enoyl]-6-methyl-2H-pyran-2-one) L2, (4-hydroxy-6-methyl-3-[(2E)-3-(1H-pyrrol-2-yl)prop-2-enoyl]-2H-pyran-2-one) L3, and (3-{(2E)-3-[4-(dimethylamino)phenyl]prop-2-enoyl}-4-hydroxy-6-methyl-2H-pyran-2-one) L4. L3 and L4 were characterized by X-ray crystallography. Molecules crystallize with four and two molecules in the asymmetric unit, respectively and adopt an E conformation about the Cdbnd C bond. Both structures are stabilized by an extended network O-H … O. Furthermore, N-H … O and C-H … O hydrogen bonds are observed in L3 and L4 structures, respectively. The in situ generated copper (II) complexes of the four compounds L1, L2, L3 and L4 were examined for their catalytic activities and were found to catalyze the oxidation reaction of catechol to o-quinone under atmospheric dioxygen. The rates of this oxidation depend on three parameters: ligand, ion salts and solvent nature and the combination L2[Cu (CH3COO)2] leads to the faster catalytic process.
Detection of C2H4 Neptune from ISO/PHT-S Observations
NASA Technical Reports Server (NTRS)
Schulz, B.; Encrenaz, Th.; Bezard, B.; Romani, P. N.; Lellouch, E.; Atreya, S. K.
1999-01-01
The 6-12 micrometer spectrum of Neptune has been recorded with the PHT-S instrument of the Infrared Space Observatory (ISO) at a resolution of 0.095 micrometer. In addition to the emissions of CH4, CH3D and C2H6 previously identified, the spectrum shows the first firm identification of ethylene C2H4. The inferred column density above the 0.2-mbar level is in the range (1.1 - 3) x 10(exp 14) molecules/cm. To produce this low amount, previous photochemical models invoked rapid mixing between the source and sink regions of C2H4. We show that this requirement can be relaxed if recent laboratory measurements of CH4 photolysis branching ratios at Lyman alpha are used.
High Temperature Adhesive Systems
1989-04-01
Condition Yield Characterizat ion Comments XXXII CN SiC) ( xs ) Combustion quingline 7% Analysis Ref. 19 CN 220"C,2h IR CN C13SiOSiCI 3 XXXII quinoline 23.6...IR Ref. 19 %91CN 219"C,4h NHM CN Na0CH 3 mp 195-196’C NH CHP0H 43% Ref. 18 XXX (D CN Re lux, 3hXXXI ONM SiC1 4 ( xs ) IR XXXII XXXI qulnoline 71.7% Ref...18 219"C, 0.5h XXXI • -CN NaOCH 3 50% mp 192-196C Ref. 16 CH30H CN reflux, 3h SiCI4 ( xs ) Combustion XXXII XXXI quinoline 58./% Analysis Ref.16 219
Lyubov, Dmitry M; Cherkasov, Anton V; Fukin, Georgy K; Ketkov, Sergey Yu; Shavyrin, Andrey S; Trifonov, Alexander A
2014-10-14
The reaction of Ap(9Me)Lu(CH2SiMe3)2(thf) (Ap(9Me) = (2,4,6-trimethylphenyl)[6-(2,4,6-triisopropylphenyl)pyridine-2-yl]amido ligand) with two molar equivalents of PhSiH3 affords a trinuclear alkyl-hydrido cluster [(Ap(9Me)Lu)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2]. The analogous reactions with Ap(9Me)Ln(CH2SiMe3)2(thf) (Ln = Y, Yb) are more complex and result in the formation of mixtures of two types of trinuclear alkyl-hydrido complexes [(Ap(9Me)Ln)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2] and [(Ap(9Me)Ln)3(μ(2)-H)3(μ(3)-H)2(CH2SiH2Ph)(thf)2] differing in the alkyl group. The DFT calculations of [(Ap*Y)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2] (Ap* = (2,6-diisopropylphenyl)[6-(2,4,6-triisopropylphenyl)pyridine-2-yl]amido ligand) confirm localization of the HOMO on the Ap*-Y(1A)-CH2SiMe3 fragment, thus explaining its enhanced reactivity. Analysis of the electron density distribution reveals the Y-H and H-H bonding interactions in the (Y)3(μ(2)-H)3(μ(3)-H)2 moiety. The NMR studies of diamagnetic complexes [(Ap(9Me)Lu)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2] and [(Ap*Y)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2] demonstrated that the trinuclear cores are retained in the solution and revealed exchange between μ(3)- and μ(2)-bridging hydrido ligands. Complexes [(Ap*Ln)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2], the cationic yttrium hydrido cluster [(Ap*Y)3(μ(2)-H)3(μ(3)-H)2(thf)3](+)[B(C6F5)4](-) as well as [(Ap(9Me)Ln)3(μ(2)-H)3(μ(3)-H)2(CH2SiMe3)(thf)2] proved to be active in catalysis of ethylene polymerization under mild conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abplanalp, Matthew J.; Kaiser, Ralf I., E-mail: ra
The processing of the hydrocarbon ice, ethylene (C{sub 2}H{sub 4}/C{sub 2}D{sub 4}), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH{sub 4} (CD{submore » 4})], acetylene [C{sub 2}H{sub 2} (C{sub 2}D{sub 2})], the ethyl radical [C{sub 2}H{sub 5} (C{sub 2}D{sub 5})], ethane [C{sub 2}H{sub 6} (C{sub 2}D{sub 6})], 1-butene [C{sub 4}H{sub 8} (C{sub 4}D{sub 8})], and n -butane [C{sub 4}H{sub 10} (C{sub 4}D{sub 10})]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C{sub n}H{sub 2n+2} (n = 4–10), C{sub n}H{sub 2n} ( n = 2–12, 14, 16), C{sub n}H{sub 2n−2} ( n = 3–12, 14, 16), C{sub n}H{sub 2n−4} (n = 4–12, 14, 16), C{sub n}H{sub 2n−6} (n = 4–10, 12), C{sub n}H{sub 2n−8} ( n = 6–10), and C{sub n}H{sub 2n−10} ( n = 6–10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C{sub 3}H{sub 4}) or 1, 3-butadiene (C{sub 4}H{sub 6}) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical environments.« less
Gans, Bérenger; Garcia, Gustavo A; Boyé-Péronne, Séverine; Loison, Jean-Christophe; Douin, Stéphane; Gaie-Levrel, François; Gauyacq, Dolores
2011-06-02
The absolute photoionization cross section of C(2)H(5) has been measured at 10.54 eV using vacuum ultraviolet (VUV) laser photoionization. The C(2)H(5) radical was produced in situ using the rapid C(2)H(6) + F → C(2)H(5) + HF reaction. Its absolute photoionization cross section has been determined in two different ways: first using the C(2)H(5) + NO(2) → C(2)H(5)O + NO reaction in a fast flow reactor, and the known absolute photoionization cross section of NO. In a second experiment, it has been measured relative to the known absolute photoionization cross section of CH(3) as a reference by using the CH(4) + F → CH(3) + HF and C(2)H(6) + F → C(2)H(5) + HF reactions successively. Both methods gave similar results, the second one being more precise and yielding the value: σ(C(2)H(5))(ion) = (5.6 ± 1.4) Mb at 10.54 eV. This value is used to calibrate on an absolute scale the photoionization curve of C(2)H(5) produced in a pyrolytic source from the C(2)H(5)NO(2) precursor, and ionized by the VUV beam of the DESIRS beamline at SOLEIL synchrotron facility. In this latter experiment, a recently developed ion imaging technique is used to discriminate the direct photoionization process from dissociative ionization contributions to the C(2)H(5)(+) signal. The imaging technique applied on the photoelectron signal also allows a slow photoelectron spectrum with a 40 meV resolution to be extracted, indicating that photoionization around the adiabatic ionization threshold involves a complex vibrational overlap between the neutral and cationic ground states, as was previously observed in the literature. Comparison with earlier photoionization studies, in particular with the photoionization yield recorded by Ruscic et al. is also discussed. © 2011 American Chemical Society
Effects of various reactive gas atmospheres on the properties of bio-oil using microwave pyrolysis
USDA-ARS?s Scientific Manuscript database
Fast pyrolysis of lignocellulosic biomass produces organic liquids (bio-oil), bio-char, water, and non-condensable gases. The non-condensable gas component typically contains syngas (H2, CO and CO2) as well as small hydrocarbons (CH4, C2H6, and C3H8). Tail Gas Reactive Pyrolysis (TGRP), a patent p...
Trevitt, Adam J; Soorkia, Satchin; Savee, John D; Selby, Talitha S; Osborn, David L; Taatjes, Craig A; Leone, Stephen R
2011-11-24
The gas-phase CN + propene reaction is investigated using synchrotron photoionization mass spectrometry (SPIMS) over the 9.8-11.5 eV photon energy range. Experiments are conducted at room temperature in 4 Torr of He buffer gas. The CN + propene addition reaction produces two distinct product mass channels, C(3)H(3)N and C(4)H(5)N, corresponding to CH(3) and H elimination, respectively. The CH(3) and H elimination channels are measured to have branching fractions of 0.59 ± 0.15 and 0.41 ± 0.10, respectively. The absolute photoionization cross sections between 9.8 and 11.5 eV are measured for the three considered H-elimination coproducts: 1-, 2-, and 3-cyanopropene. Based on fits using the experimentally measured photoionization spectra for the C(4)H(5)N mass channel and contrary to the previous study (Int. J. Mass. Spectrom.2009, 280, 113-118), where it was concluded that 3-cyanopropene was not a significant product, the new data suggests 3-cyanopropene is produced in significant quantity along with 1-cyanopropene, with isomer branching fractions from this mass channel of 0.50 ± 0.12 and 0.50 ± 0.24, respectively. However, similarities between the 1-, 2-, and 3-cyanopropene photoionization spectra make an unequivocal assignment difficult based solely on photoionization spectra. The CN + CH(2)CHCD(3) reaction is studied and shows, in addition to the H-elimination product signal, a D-elimination product channel (m/z 69, consistent with CH(2)CHCD(2)CN), providing further evidence for the formation of the 3-cyanopropene reaction product.
A new metal-organic framework for separation of C2H2/CH4 and CO2/CH4 at room temperature
NASA Astrophysics Data System (ADS)
Duan, Xing; Zhou, You; Lv, Ran; Yu, Ben; Chen, Haodong; Ji, Zhenguo; Cui, Yuanjing; Yang, Yu; Qian, Guodong
2018-04-01
A 3D microporous metal-organic framework with open Cu2+ sites and suitable pore space, [Cu2(L)(H2O)2]·(H2O)4(DMF)8 (ZJU-15, H4L = 5,5‧-(9H-carbazole-2,7-diyl)diisophthalic acid; DMF = N,N-dimethylformamide; ZJU = Zhejiang University), has been constructed and characterized. The activated ZJU-15a has three different types of cages and exhibits BET surface area of 1660 m2 g-1, and can separate gas mixture of C2H2/CH4 and CO2/CH4 at room temperature.
A Triatomic Silicon(0) Cluster Stabilized by a Cyclic Alkyl(amino) Carbene.
Mondal, Kartik Chandra; Roy, Sudipta; Dittrich, Birger; Andrada, Diego M; Frenking, Gernot; Roesky, Herbert W
2016-02-24
Reduction of the neutral carbene tetrachlorosilane adduct (cAAC)SiCl4 (cAAC=cyclic alkyl(amino) carbene :C(CMe2)2 (CH2)N(2,6-iPr2C6H3) with potassium graphite produces stable (cAAC)3Si3, a carbene-stabilized triatomic silicon(0) molecule. The Si-Si bond lengths in (cAAC)3Si3 are 2.399(8), 2.369(8) and 2.398(8) Å, which are in the range of Si-Si single bonds. Each trigonal pyramidal silicon atom of the triangular molecule (cAAC)3Si3 possesses a lone pair of electrons. Its bonding, stability, and electron density distributions were studied by quantum chemical calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shock Synthesis in the Atmosphere of Jupiter
NASA Astrophysics Data System (ADS)
Khare, B. N.; Sagan, C.; McDonald, G. D.; de Vanssay, E.; Borucki, W. J.; McKay, C. P.; Bernstein, M. P.; Hartman, T. G.; Lech, J.
1996-09-01
We have previously investigated an approximate simulation of the Jupiter troposphere at the 1 bar NH_3 cloud level using Laser Induced Plasma (LIP) for shock synthesis in a 84.62:13.3:1.07:1.01 H_2:He:CH_4:NH_3 gas mixture, and found by GC/MS that HCN is the most abundant product, more abundant than all the major product hydrocarbons (C_2H_6, C_2H_2, C_3H_8, and C_4H10) combined. Using purge and trap isolation techniques on the LIP gas mixture using two absorbent traps in tandem, thermal desorption GC/MS has revealed a large array of product molecules starting from simple hydrocarbons such as C_2H_2, C_2H_4, etc., simple nitriles such as HCN, CH_3CN, etc., to molecules up to C13 (e.g. C13H23N). Here we report the results of our more accurate simulation of Jupiter at the 5 bar level using LIP with a 88:11.7:0.2:0.1 H_2:He:CH_4:NH_3 mixture, for comparison with mass spectral data from the Galileo probe. We detect in this more acurate simulation of Jupiter many of the same compounds, such as HCN, dimethylaminoacetonitrile, and dimethylcyanamide, as in the previous lower dilution experiment. We will compare the present results with those from low-pressure continuous flow plasma discharge experiments (McDonald et al. 1992, al Icarus 99, 131). We will also discuss the relevance of our data in light of the significant discrepancies between standard models of the jovian atmosphere and the compositional data returned by the Galileo entry probe.
Electrocatalysts for carbon dioxide conversion
Masel, Richard I; Salehi-Khojin, Amin
2015-04-21
Electrocatalysts for carbon dioxide conversion include at least one catalytically active element with a particle size above 0.6 nm. The electrocatalysts can also include a Helper Catalyst. The catalysts can be used to increase the rate, modify the selectivity or lower the overpotential of electrochemical conversion of CO.sub.2. Chemical processes and devices using the catalysts also include processes to produce CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.
A Multi-Wavelength Study of Parent Volatile Abundances in Comet C/2006 M4 (SWAN)
NASA Technical Reports Server (NTRS)
DiSanti, Michael A.; Villanueva, Geronimo L.; Milam, Stefanie N.; Zack, Lindsay N.; Bonev, Boncho P.; Mumma, Michael; Ziurys, Lucy M.; Anderson, William M.
2009-01-01
Volatile organic emissions were detected post-perihelion in the long period comet C/2006 M4 (SWAN) in October and November 2006. Our study combines target-of-opportunity, observations using the infrared Cryogenic Echelle Spectrometer (CSHELL) at the NASA-IRTF 3-m telescope, and millimeter wavelength observations using the Arizona Radio Observatory (ARO) 12-m telescope. Five parent volatiles were measured with CSHELL (H2O, CO, CH3OH, CH4, and C2H6), and two additional species (HCN and CS) were measured with the ARID 12-m. These revealed highly depleted CO and somewhat enriched CH3OH compared with abundances observed in the dominant group of long-period (Oort cloud) comets in our sample and similar to those observed recently in Comet 8P/Tuttle. This may indicate highly efficient H-atom addition to CO at very low temperature (approx.10-20 K) on the surfaces of interstellar (pre-cometary) grains. Comet C12006 M4 had nearly "normal" C2H6, and CH4, suggesting a processing history similar to that experienced by the dominant group. When compared with estimated water production at the time of the millimeter observations, HCN was slightly depleted compared with the normal abundance in comets based on 1R observations but was consistent with the majority of values from the millimeter. The ratio CS/HCN in C/2006 M4 was within the range measured in ten comets at millimeter wavelengths. The higher apparent H-atom conversion efficiency compared with most comets may indicate that the icy grains incorporated into C/2006 M4 were exposed to higher H-atom densities, or alternatively to similar densities but for a longer period of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, T.Y.; Garner, L.R.; Baenziger, N.C.
1990-10-03
Low-pressure carbonylation of the mono(peralkylcyclopentadienyl)tantalum(V) alkyls ({eta}-C{sub 5}Me{sub 4}R)TaR{prime}Cl{sub 3} (R = Me, Et; R{prime} = CH{sub 2}C{sub 6}H{sub 4}-p-Me, CH{sub 2}CMe{sub 3}) yields either the O-bound enolate or the {eta}{sup 2}-acyl as shown by ir/NMR spectroscopy and x-ray diffractometry. The p-tolyl enolate ({eta}-C{sub 5}Me{sub 5})Ta(OCH{double bond}CHC{sub 6}H{sub 4}-p-Me)Cl{sub 3}, derived directly from carbonylation of the tantalum 4-methylbenzyl precursor, is shown to possess a cis configuration in solution and in the solid state. Key structural features from a single-crystal x-ray diffraction study of the tetrahydrofuran-ligated enolate complex are reported. The mechanism of formation of the enolate from carbonylation of themore » 4-methylbenzyl complex is discussed. The previously reported acyl ({eta}-C{sub 5}Me{sub 4}R)Ta(C(O)CH{sub 2}CMe{sub 3})Cl{sub 3} has been reexamined and found to possess a symmetric, strongly distorted {eta}{sup 2}-acyl coordination by solution {sup 1}H NMR spectroscopy and solid-state x-ray diffractometry. The molecular structures of ({eta}-C{sub 5}Me{sub 5})Ta(OCH{double bond}CHC{sub 6}H{sub 4}-p-Me)Cl{sub 3} and ({eta}-C{sub 5}Me{sub 5})Ta(C(O)CH{sub 2}CMe{sub 3})Cl{sub 3}, which are reported here, are the first structural determinations of a tantalum enolate and of a tantalum {eta}{sup 2}-acyl. 41 refs., 2 figs., 8 tabs.« less
NASA Astrophysics Data System (ADS)
Yang, X. J.; Li, Aigen; Glaser, R.; Zhong, J. X.
2017-03-01
The so-called unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μ {{m}} ubiquitously seen in a wide variety of astrophysical regions are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. Astronomical PAHs may have an aliphatic component, as revealed by the detection in many UIE sources of the aliphatic C-H stretching feature at 3.4 μ {{m}}. The ratio of the observed intensity of the 3.4 μ {{m}} feature to that of the 3.3 μ {{m}} aromatic C-H feature allows one to estimate the aliphatic fraction of the UIE carriers. This requires knowledge of the intrinsic oscillator strengths of the 3.3 μ {{m}} aromatic C-H stretch ({A}3.3) and the 3.4 μ {{m}} aliphatic C-H stretch ({A}3.4). Lacking experimental data on {A}3.3 and {A}3.4 for the UIE candidate materials, one often has to rely on quantum-chemical computations. Although the second-order Møller-Plesset (MP2) perturbation theory with a large basis set is more accurate than the B3LYP density functional theory, MP2 is computationally very demanding and impractical for large molecules. Based on methylated PAHs, we show here that, by scaling the band strengths computed at an inexpensive level (e.g., B3LYP/6-31G*), we are able to obtain band strengths as accurate as those computed at far more expensive levels (e.g., MP2/6-311+G(3df,3pd)). We calculate the model spectra of methylated PAHs and their cations excited by starlight of different spectral shapes and intensities. We find that {({I}3.4/{I}3.3)}{mod}, the ratio of the model intensity of the 3.4 μ {{m}} feature to that of the 3.3 μ {{m}} feature, is insensitive to the spectral shape and intensity of the exciting starlight. We derive a straightforward relation for determining the aliphatic fraction of the UIE carriers (I.e., the ratio of the number of C atoms in aliphatic units {N}{{C},{ali}} to that in aromatic rings {N}{{C},{aro}}) from the observed band ratios {({I}3.4/{I}3.3)}{obs}: {N}{{C},{ali}}/{N}{{C},{aro}}≈ 0.57× {({I}3.4/{I}3.3)}{obs} for neutrals and {N}{{C},{ali}}/{N}{{C},{aro}}≈ 0.26× {({I}3.4/{I}3.3)}{obs} for cations.
Infrared spectroscopy of Triton and Pluto ice analogs: the case for saturated hydrocarbons.
Bohn, R B; Sandford, S A; Allamandola, L J; Cruikshank, D P
1994-09-01
The infrared transmission spectra and photochemical behavior of various organic compounds isolated in solid N2 ices, appropriate for applications to Triton and Pluto, are presented. It is shown that excess absorption in the surface spectra of Triton and Pluto, i.e., absorption not explained by present models incorporating molecules already identified on these bodies (N2, CH4, CO, and CO2), that starts near 4450 cm-1 (2.25 micrometers) and extends to lower frequencies, may be due to alkanes (C(n)H2n+2) and related molecules frozen in the nitrogen. Branched and linear alkanes may be responsible. Experiments in which the photochemistry of N2:CH4 and N(2):CH4:CO ices was explored demonstrate that the surface ices of Triton and Pluto may contain a wide variety of additional species containing H, C, O, and N. Of these, the reactive molecule diazomethane, CH2N2, is particularly important since it may be largely responsible for the synthesis of larger alkanes from CH4 and other small alkanes. Diazomethane would also be expected to drive chemical reactions involving organics in the surface ices of Triton and Pluto toward saturation, i.e., to reduce multiple CC bonds. The positions and intrinsic strengths (A values) of many of the infrared absorption bands of N2 matrix-isolated molecules of relevance to Triton and Pluto have also been determined. These can be used to aid in their search and to place constraints on their abundances. For example, using these A values the abundance ratios CH4/N2 approximately 1.3 x 10(-3), C2H4/N2 < or = 9.5 x 10(-7) and H2CO/N2 < or = 7.8 x 10(-7) are deduced for Triton and CH4/N2 approximately 3.1 x 10(-3), C2H4/N2 < or = 4.1 x 10(-6), and H2CO/N2 < or = 5.2 x 10(-6) deduced for Pluto. The small amounts of C2H4 and H2CO in the surface ices of these bodies are in disagreement with the large abundances expected from many theoretical models.
FY 1980 Report on Dye Laser Materials
1981-02-01
C02H H Rh 19 H C2H 5 CH3 CO9H H i Rh6G H C2H 5 CH3 Co2 C2H5 H RhB C2H5 C2H!5 H CO,H H Rh3B C2A5 C2H5 H CO2CH 5 H Rh 101 RING- RING RING...Dye designations Ring SRh 101 Rh 101 - Diethyl SRh B Rh B Rhb 3B Mono ethyl (methyl) -- Rh 19 (116) Rh 6G Unsubstituted -- Rh 110 Rh 123 Nominal Single...Broadband Lasing Wave-lengths of the Rhodamine Dyes. Lasing Wavelength, n Approximate Dye Conc. x 104 Range Midpoint Rh 110 1.0 567-577 572 2.0 Rh 123
Origin of methane-rich natural gas at the West Pacific convergent plate boundary.
Sano, Yuji; Kinoshita, Naoya; Kagoshima, Takanori; Takahata, Naoto; Sakata, Susumu; Toki, Tomohiro; Kawagucci, Shinsuke; Waseda, Amane; Lan, Tefang; Wen, Hsinyi; Chen, Ai-Ti; Lee, Hsiaofen; Yang, Tsanyao F; Zheng, Guodong; Tomonaga, Yama; Roulleau, Emilie; Pinti, Daniele L
2017-11-15
Methane emission from the geosphere is generally characterized by a radiocarbon-free signature and might preserve information on the deep carbon cycle on Earth. Here we report a clear relationship between the origin of methane-rich natural gases and the geodynamic setting of the West Pacific convergent plate boundary. Natural gases in the frontal arc basin (South Kanto gas fields, Northeast Japan) show a typical microbial signature with light carbon isotopes, high CH 4 /C 2 H 6 and CH 4 / 3 He ratios. In the Akita-Niigata region - which corresponds to the slope stretching from the volcanic-arc to the back-arc -a thermogenic signature characterize the gases, with prevalence of heavy carbon isotopes, low CH 4 /C 2 H 6 and CH 4 / 3 He ratios. Natural gases from mud volcanoes in South Taiwan at the collision zone show heavy carbon isotopes, middle CH 4 /C 2 H 6 ratios and low CH 4 / 3 He ratios. On the other hand, those from the Tokara Islands situated on the volcanic front of Southwest Japan show the heaviest carbon isotopes, middle CH 4 /C 2 H 6 ratios and the lowest CH 4 / 3 He ratios. The observed geochemical signatures of natural gases are clearly explained by a mixing of microbial, thermogenic and abiotic methane. An increasing contribution of abiotic methane towards more tectonically active regions of the plate boundary is suggested.
Isotopic Ratios in Titan's Methane: Measurements and Modeling
NASA Technical Reports Server (NTRS)
Nixon, C. A.; Temelso, B.; Vinatier, S.; Teanby, N. A.; Bezard, B.; Achterberg, R. K.; Mandt, K. E.; Sherrill, C. D.; Irwin, P. G.; Jennings, D. E.;
2012-01-01
The existence of methane in Titan's atmosphere (approx. 6% level at the surface) presents a unique enigma, as photochemical models predict that the current inventory will be entirely depleted by photochemistry in a timescale of approx 20 Myr. In this paper, we examine the clues available from isotopic ratios (C-12/C-13 and D/H) in Titan's methane as to the past atmosphere history of this species. We first analyze recent infrared spectra of CH4 collected by the Cassini Composite Infrared Spectrometer, measuring simultaneously for the first time the abundances of all three detected minor isotopologues: (13)CH4, (12)CH3D, and (13)CH3D. From these we compute estimates of C-12/C-13 = 86.5 +/- 8.2 and D/H = (1.59 +/- 0.33) x 10(exp -4) , in agreement with recent results from the Huygens GCMS and Cassini INMS instruments. We also use the transition state theory to estimate the fractionation that occurs in carbon and hydrogen during a critical reaction that plays a key role in the chemical depletion of Titan's methane: CH4 + C2H yields CH3 + C2H2. Using these new measurements and predictions we proceed to model the time evolution of C-12/C-13 and D/H in Titan's methane under several prototypical replenishment scenarios. In our Model 1 (no resupply of CH4), we find that the present-day C-12/C-13 implies that the CH4 entered the atmosphere 60-1600 Myr ago if methane is depleted by chemistry and photolysis alone, but much more recently-most likely less than 10 Myr ago-if hydrodynamic escape is also occurring. On the other hand, if methane has been continuously supplied at the replenishment rate then the isotopic ratios provide no constraints, and likewise for the case where atmospheric methane is increasing, We conclude by discussing how these findings may be combined with other evidence to constrain the overall history of the atmospheric methane.
Duncan, Juliana R; Solaka, Sarah A; Setser, D W; Holmes, Bert E
2010-01-21
The recombination of CH(2)Cl and CH(2)F radicals generates vibrationally excited CH(2)ClCH(2)Cl, CH(2)FCH(2)F, and CH(2)ClCH(2)F molecules with about 90 kcal mol(-1) of energy in a room temperature bath gas. New experimental data for CH(2)ClCH(2)F have been obtained that are combined with previously published studies for C(2)H(4)Cl(2) and C(2)H(4)F(2) to define reliable rate constants of 3.0 x 10(8) (C(2)H(4)F(2)), 2.4 x 10(8) (C(2)H(4)Cl(2)), and 1.9 x 10(8) (CH(2)ClCH(2)F) s(-1) for HCl and HF elimination. The product branching ratio for CH(2)ClCH(2)F is approximately 1. These experimental rate constants are compared to calculated statistical rate constants (RRKM) to assign threshold energies for HF and HCl elimination. The calculated rate constants are based on transition-state models obtained from calculations of electronic structures; the energy levels of the asymmetric, hindered, internal rotation were directly included in the state counting to obtain a more realistic measure for the density of internal states for the molecules. The assigned threshold energies for C(2)H(4)F(2) and C(2)H(4)Cl(2) are both 63 +/- 2 kcal mol(-1). The threshold energies for CH(2)ClCH(2)F are 65 +/- 2 (HCl) and 63 +/- 2 (HF) kcal mol(-1). These threshold energies are 5-7 kcal mol(-1) higher than the corresponding values for C(2)H(5)Cl or C(2)H(5)F, and beta-substitution of F or Cl atoms raises threshold energies for HF or HCl elimination reactions. The treatment presented here for obtaining the densities of states and the entropy of activation from models with asymmetric internal rotations with high barriers can be used to judge the validity of using a symmetric internal-rotor approximation for other cases. Finally, threshold energies for the 1,2-fluorochloroethanes are compared to those of the 1,1-fluorochloroethanes to illustrate substituent effects on the relative energies of the isomeric transition states.
NASA Technical Reports Server (NTRS)
Mumma, M. J.; {agamomo. :/; Vo; DiSanti, M. A.; Bonev, B. P.; Lippi, M.; Boehnhardt, H.; Keane, J. V.; Meech, K. J.; Blake, G. A.
2012-01-01
We quantified primary volatiles in comet C/2009 Pl (Garradd) through pre- and post-perihelion observations acquired during its apparition in 2011-12 [1,2,3]. Detected volatiles include H2O, CO, CH4, C2H2, C2H6, HCN, NH3, H2CO, and CH3OH. We present production rates and chemical abundance ratios (relative to water) for all species, and I-D spatial profiles for multiple primary volatiles. We discuss these findings in the context of an emerging taxonomy based on primary volatiles in comets [4]. We used three spectrometer/telescope combinations. On UT 20ll August 7 (Rh 2.4 AU) and September 17-21 (Rh 2.0 AU), we used CRIRES at ESO's Very Large Telescope (VLT) [1]. On September 8 and 9 (Rh 2.1 AU), we used NIRSPEC at Keck-2 and CSHELL at IRTF [2]. Using NIRSPEC on October 13 and 2012 January 08 (Rh 1.83 and 1.57 AU, respectively), we detected nine primary volatiles pre-perihelion, and six post-perihelion [3]. CO was enriched in Garradd while C2H2 was strongly depleted. C2H6 and CH3OH displayed abundances close to those measured for the majority of Oort cloud comets observed to date. The high fractional abundance of CO identifies comet C12009 P1 as a CO-rich comet. Spatial profiles revealed notable differences among individual primary species. Given the relatively large heliocentric distance of C/2009 Pl, we explored the effect of water not being fully sublimated within our field of view and we identi$, the "missing" water fraction needed to reconcile the retrieved abundance ratios with the mean values found for "organics-normal" comets.
NASA Astrophysics Data System (ADS)
Zhang, Xiaowei; Xing, Peiqi; Geng, Xiujuan; Sun, Daofeng; Xiao, Zhenyu; Wang, Lei
2015-09-01
Eight new coordination polymers (CPs), namely, [Zn(1,2-mbix)(tbtpa)]n (1), [Co(1,2-mbix)(tbtpa)]n (2), [CdCl(1,2-mbix)(tbtpa)0.5]n (3), {[Cd(1,2-bix)(tbtpa)]·H2O}n (4), {[Cd0.5(1,2-bix)(tbtpa)0.5]·H2O}n (5), {[Co0.5(1,2-bix)(tbtpa)0.5]·2H2O}n (6), {[Co(1,2-bix)(tbtpa)]·H2O}n (7) and {[Co(1,2-bix)(tbtpa)]·Diox·2H2O}n (8), were synthesized under solvothermal conditions based on mix-ligand strategy (H2tbtpa=tetrabromoterephthalic acid and 1,2-mbix=1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,2-bix=1,2-bis(imidazol-1-ylmethyl)benzene). All of the CPs have been structurally characterized by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). X-ray diffraction analyses show that 1 and 2 are isotypics which have 2D highly undulated networks with (4,4)-sql topology with the existence of C-H ⋯Br interactions; for 3, it has a 2D planar network with (4,4)-sql topology with the occurrence of C-H ⋯Cl interactions other than C-H ⋯Br interactions; 4 shows a 3D 2-fold interpenetrated nets with rare 65·8-mok topology which has a self-catention property. As the same case as 1 and 2, 5 and 6 are also isostructural with planar layers with 44-sql topology which further assembled into 3D supramolecular structure through the interdigitated stacking fashion and the C-Br ⋯Cph interactions. As for 7, it has a 2D slightly undulated networks with (4,4)-sql topology which has one dimension channel. While 8 has a 2-fold interpenetrated networks with (3,4)-connect jeb topology with point symbol {63}{65·8}. And their structures can be tuned by conformations of bis(imidazol) ligands and solvent mixture. Besides, the TGA properties for all compounds and the luminescent properties for 1, 3, 4, 5 are discussed in detail.
Hydrogen addition reactions of aliphatic hydrocarbons in comets
NASA Astrophysics Data System (ADS)
Kobayashi, Hitomi; Watanabe, N.; Watanabe, Y.; Fukushima, T.; Kawakita, H.
2013-10-01
Comets are thought as remnants of early solar nebula. Their chemical compositions are precious clue to chemical and physical evolution of the proto-planetary disk. Some hydrocarbons such as C2H6, C2H2 and CH4 in comets have been observed by using near-infrared spectroscopy. Although the compositions of C2H6 were about 1% relative to the water in normal comets, there are few reports on the detection of C2H6 in ISM. Some formation mechanisms of C2H6 in ISM have been proposed, and there are two leading hypotheses; one is the dimerizations of CH3 and another is the hydrogen addition reactions of C2H2 on cold icy grains. To evaluate these formation mechanisms for cometary C2H6 quantitatively, it is important to search the C2H4 in comets, which is the intermediate product of the hydrogen addition reactions toward C2H6. However, it is very difficult to detect the C2H4 in comets in NIR (3 microns) regions because of observing circumstances. The hydrogen addition reactions of C2H2 at low temperature conditions are not well characterized both theoretically and experimentally. For example, there are no reports on the reaction rate coefficients of those reaction system. To determine the production rates of those hydrogen addition reactions, we performed the laboratory experiments of the hydrogenation of C2H2 and C2H4. We used four types of the initial composition of the ices: pure C2H4, pure C2H2, C2H2 on amorphous solid water (ASW) and C2H4 on ASW at three different temperatures of 10, 20, and 30K. We found 1) reactions are more efficient when there are ASW in the initial compositions of the ice; 2) hydrogenation of C2H4 occur more rapid than that of C2H2.
Jalil, AbdelAziz; Clymer, Rebecca N; Hamilton, Clifton R; Vaddypally, Shivaiah; Gau, Michael R; Zdilla, Michael J
2017-03-01
Due to the flammability of liquid electrolytes used in lithium ion batteries, solid lithium ion conductors are of interest to reduce danger and increase safety. The two dominating general classes of electrolytes under exploration as alternatives are ceramic and polymer electrolytes. Our group has been exploring the preparation of molecular solvates of lithium salts as alternatives. Dissolution of LiCl or LiPF 6 in pyridine (py) or vinylpyridine (VnPy) and slow vapor diffusion with diethyl ether gives solvates of the lithium salts coordinated by pyridine ligands. For LiPF 6 , the solvates formed in pyridine and vinylpyridine, namely tetrakis(pyridine-κN)lithium(I) hexafluorophosphate, [Li(C 5 H 5 N) 4 ]PF 6 , and tetrakis(4-ethenylpyridine-κN)lithium(I) hexafluorophosphate, [Li(C 7 H 7 N) 4 ]PF 6 , exhibit analogous structures involving tetracoordinated lithium ions with neighboring PF 6 - anions in the I-4 and Aea2 space groups, respectively. For LiCl solvates, two very different structures form. catena-Poly[[(pyridine-κN)lithium]-μ 3 -chlorido], [LiCl(C 5 H 5 N)] n , crystalizes in the P2 1 2 1 2 1 space group and contains channels of edge-fused LiCl rhombs templated by rows of π-stacked pyridine ligands, while the structure of the LiCl-VnPy solvate, namely di-μ-chlorido-bis[bis(4-ethenylpyridine-κN)lithium], [Li 2 Cl 2 (C 7 H 7 N) 4 ], is described in the P2 1 /n space group as dinuclear (VnPy) 2 Li(μ-Cl) 2 Li(VnPy) 2 units packed with neighbors via a dense array of π-π interactions.
Low Temperature Studies of the Removal Reactions of 1CH2 with Relevance to the Atmosphere of Titan
NASA Astrophysics Data System (ADS)
Douglas, Kevin; Slater, Eloise; Feng, Wuhu; Blitz, Mark; Plane, John; Heard, Dwayne; Seakins, Paul
2017-04-01
The photolysis of methane by UV photons is the primary source of hydrocarbon radicals in the atmosphere of Titan and the giant planets. Although there is still significant uncertainty in the branching ratios of products, the production of the first singlet excited state of methylene, 1CH2, is thought to be a significant channel. Reactions of 1CH2 with methane (R1a) and hydrogen (R2a) are a significant source of methyl radicals, the recombination of which is the primary route to ethane on Titan (R3). The reaction of 1CH2 with acetylene is also a source of propargyl, C3H3, the recombination of which is the primary route to benzene on Titan. However, in addition to these reactions of 1CH2 leading to chemical products, there is also competition between inelastic electronic relaxation to form ground triplet state methylene, 3CH2 (R1b and R2b). Triplet methylene is much less reactive, and cannot undergo the complex insertion elimination reactions of singlet methylene. The main reaction of 3CH2 occurs with other radical species such as H (R4). 1CH2 + CH4 → CH3 + H2 (R1a) 1CH2 + CH4 → 3CH2 + CH4 (R1b) 1CH2 + H2 → CH3 + H (R2a) 1CH2 + H2 → 3CH2 + H2 (R2a) CH3 + CH3 (+M) → C2H6 (R3) 3CH2 + H → CH + H2 (R4) Using pulsed laser photolysis laser-induced fluorescence, we have studied the reaction kinetics for the removal of 1CH2 with N2, H2, CH4, C2H6, C2H4, C2H6, and O2 as a function of temperature. Low temperatures between 43 and 135 K were obtained using a pulsed Laval nozzle apparatus, while data at 160 K was obtained using a low flow reaction cell with cryogenic cooling. In addition to measuring total removal rates, the fraction of 1CH2 removed via electronic relaxation versus chemical reaction to products has also been investigated for H2 and CH4 at 160 and 73 K. Results show that that removal of 1CH2 by electronic relaxation increases with decreasing temperature. These experimental results indicate that the majority of 1CH2 formed in Titan's atmosphere will be rapidly relaxed to its ground state via collisions with both reactive and non-reactive species, and thus is likely to play a less significant role in the formation of larger hydrocarbons than previously thought. However, for a full understanding of the implications of these results, the new measurements have been included in a 1D model of Titan's atmosphere. The model results show a significant reduction in ethane concentrations (10 - 50 %), due to reduction in CH3 production via reactions R1a and R1b. In addition we also observe an increase in ethylene concentrations, the result of increased amounts of 3CH2 reacting with H radicals to form CH (R4), which primarily react with methane to form ethylene. Additional work is also underway to determine branching ratios between reaction and relaxation of 1CH2 with ethane, ethylene, and acetylene. Model results have shown that if a similar trend to reactions with H2 and CH4 is observed, there would be significant reductions in benzene production on Titan.
Chisholm, Malcolm H.; Huang, Jui-Hsien; Huffman, John C.; Parkin, Ivan P.
1997-04-09
Hydrocarbon solutions of Mo(2)(NMe(2))(6) and 2,2'-methylenebis(6-tert-butyl-4-methylphenol) (>/=2 equiv), HO&ndblwave;CH(2)&ndblwave;OH, yield Mo(2)(NMe(2))(2)(O&ndblwave;CH(2)&ndblwave;O)(2), I, which exists in bridged Ib and chelated Ic isomers. These are formed under kinetic control, and recrystallization allows the separation of Ib (orange cubes) from Ic (yellow cubes) both of which have been crystallographically characterized. In each there is an ethane-like O(2)NMo&tbd1;MoO(2)N core with Mo-Mo = 2.2 Å (average). In Ib the two O&ndblwave;CH(2)&ndblwave;O ligands span the Mo&tbd1;Mo bond yielding a molecule of C(2) symmetry. In Ic the molecule has near-C(2) symmetry in the solid state, but in solution there is either rapid rotation about the M&tbd1;M bond or the anti-rotamer is preferred. In benzene-d(6), Ib and Ic do not interconvert at 110 degrees C over a period of days. However, the addition of pyridine or acetonitrile causes the isomerization of Ib to Ic, thereby establishing that Ic is the thermodynamic isomer. The rate of conversion of Ib to Ic has been shown to be dependent on the square of the concentration of added pyridine: k(obs) = k[py](2). From the temperature dependence of k(obs), we determine DeltaH() = 19 (+/-1) kcal/mol and DeltaS() = -25 (+/-3) eu for the pyridine-promoted isomerization of Ib to Ic. The related reaction involving W(2)(NMe(2))(6) and HO&ndblwave;CH(2)&ndblwave;OH (>/=2 equiv) in hydrocarbon solvents at room temperature and below yields a dark brown crystalline compound, wherein C-H activation has occurred at one of the O&ndblwave;CH(2)&ndblwave;O diolate ligands, W(2)(&mgr;-H)(&mgr;-NMe(2))(NMe(2))(eta(2)-O&ndblwave;CH(2)&ndblwave;O)(eta(3)-O&ndblwave;CH&ndblwave;O)(HNMe(2)), 2. The W-W distance in 2 is 2.495(1) Å, consistent with a (W=W)(8+) core. Heating 2 in the solid-state under a dynamic vacuum leads to the elimination of HNMe(2) and the formation of 3, W(2)(NMe(2))(2)(eta(2)-O&ndblwave;CH(2)&ndblwave;O)(2), an analog of Ic. In benzene-d(6) the equilibrium involving 2 and 3 + HNMe(2) has been observed by (1)H NMR spectroscopy. The addition of pyridine to hydrocarbon solutions of 3 yields W(2)(&mgr;-H)(&mgr;-NMe(2))(eta(2)-O&ndblwave;CH(2)&ndblwave;O)(&mgr;(3)-O&ndblwave;CH&ndblwave;O)(NMe(2))(py), 4, which has been shown by single-crystal X-ray crystallography to be an analogue of 2. Studies of the addition of PMe(3) to toluene-d(8) solutions of 3 at low temperatures reveal that adduct formation occurs prior to C-H oxidative addition. For the equilibrium involving 4 and 3 + py in benzene-d(6), DeltaH degrees = 14 (+/-1) kcal/mol and DeltaS degrees = 22 (+/-3) eu.
Hoshina, Kennosuke; Kawamura, Haruna; Tsuge, Masashi; Tamiya, Minoru; Ishiguro, Masaji
2011-02-14
We investigated a formation channel of triatomic molecular hydrogen ions from ethane dication induced by irradiation of intense laser fields (800 nm, 100 fs, ∼1 × 10(14) W∕cm(2)) by using time of flight mass spectrometry. Hydrogen ion and molecular hydrogen ion (H,D)(n)(+) (n = 1-3) ejected from ethane dications, produced by double ionization of three types of samples, CH(3)CH(3), CD(3)CD(3), and CH(3)CD(3), were measured. All fragments were found to comprise components with a kinetic energy of ∼3.5 eV originating from a two-body Coulomb explosion of ethane dications. Based on the signal intensities and the anisotropy of the ejection direction with respect to the laser polarization direction, the branching ratios, H(+):D(+) = 66:34, H(2)(+):HD(+):D(2)(+) = 63:6:31, and H(3)(+):H(2)D(+):HD(2)(+):D(3)(+) = 26:31:34:9 for the decomposition of C(2)H(3)D(3)(2+), were determined. The ratio of hydrogen molecules, H(2):HD:D(2) = 31:48:21, was also estimated from the signal intensities of the counter ion C(2)(H,D)(4)(2+). The similarity in the extent of H∕D mixture in (H,D)(3)(+) with that of (H,D)(2) suggests that these two dissociation channels have a common precursor with the C(2)H(4)(2+)...H(2) complex structure, as proposed theoretically in the case of H(3)(+) ejection from allene dication [A. M. Mebel and A. D. Bandrauk, J. Chem. Phys. 129, 224311 (2008)]. In contrast, the (H,D)(2)(+) ejection path with a lower extent of H∕D mixture and a large anisotropy is expected to proceed essentially via a different path with a much rapid decomposition rate. For the Coulomb explosion path of C-C bond breaking, the yield ratios of two channels, CH(3)CD(3)(2+)→ CH(3)(+) + CD(3)(+) and CH(2)D(+) + CHD(2)(+), were 81:19 and 92:8 for the perpendicular and parallel directions, respectively. This indicates that the process occurs at a rapid rate, which is comparable to hydrogen migration through the C-C bond, resulting in smaller anisotropy for the latter channel that needs H∕D exchange.
NASA Technical Reports Server (NTRS)
Disanti, M. A.; Bonev, B. P.; Gibb, L. E.; Paganini, L.; Villanueva, G.; Mumma, M. J.; Keane, J. V.; Blake, G. A.; Dello Russo, N.; Meech, K. J.;
2016-01-01
We report production rates for H2O and eight trace molecules (CO, C2H6, CH4, CH3OH, NH3, H2CO, HCN, C2H2) in the dynamically new, Sun-grazing Comet C2012 S1 (ISON), using high-resolution spectroscopy at Keck II and the NASA IRTF on 10pre-perihelion dates encompassing heliocentric distances Rh1.210.34 AU. Measured water production rates spanned two orders of magnitude, consistent with a long-term heliocentric power law Q(H2O) Rh-3.10.1). Abundance ratios for CO, C2H6, and CH4 with respect to H2O remained constant with Rh and below their corresponding mean values measured among a dominant sample of Oort Cloud comets. CH3OH was also depleted for Rh 0.5 AU, but was closer to its mean value for Rh0.5 AU. The remaining four molecules exhibited higher abundance ratios within 0.5 AU: for Rh 0.8 AU, NH3 and C2H2 were consistent with their mean values while H2CO and HCN were depleted. For Rh 0.5 AU, all four were enriched, with NH3, H2CO, and HCN increasing most. Spatial profiles of gas emission in ISON consistently peaked sunward of the dust continuum, which was asymmetric antisunward and remained singly peaked for all observations. NH3 within 0.5 AU showed a broad spatial distribution, possibly indicating its release in the coma provided that optical depth effects were unimportant. The column abundance ratio NH2H2O at 0.83 AU was close to the typical NHOH from optical wavelengths, but was higher within 0.5 AU. Establishing its production rate and testing its parentage (e.g., NH3) require modeling of coma outflow.
1989-02-01
Reference 20. (8) PN H dCHCHCHH 2T NO2 + H20 PNA (9) PNA - 2C H2CH 2 CH2 NNO + other products PNSA (10) BDD . 02 NNH(CH2 )4 NHNO 2 + 2H2 0 BONA (11) BDNA ...ONNH(CH2 )4 NHNO + other products BONSA 2H+ (12) BDNA --> ý4-CH2CH2 -N=N=0+] 2 + 2H2 0 (a) (13) (a) --- 4 [(CH2 )4 ]++ + 2N2 0 (b) (14) (b) --- H2 C
Betke, Ulf; Neuschulz, Kai; Wickleder, Mathias S
2011-11-04
Oxide methanesulfonates of Mo, U, Re, and V have been prepared by reaction of MoO(3), UO(2)(CH(3)COO)(2)·2H(2)O, Re(2)O(7)(H(2)O)(2), and V(2)O(5) with CH(3)SO(3)H or mixtures thereof with its anhydride. These compounds are the first examples of solvent-free oxide methanesulfonates of these elements. MoO(2)(CH(3)SO(3))(2) (Pbca, a=1487.05(4), b=752.55(2), c=1549.61(5) pm, V=1.73414(9) nm(3), Z=8) contains [MoO(2)] moieties connected by [CH(3)SO(3)] ions to form layers parallel to (100). UO(2)(CH(3)SO(3))(2) (P2(1)/c, a=1320.4(1), b=1014.41(6), c=1533.7(1) pm, β=112.80(1)°, V=1.8937(3) nm(3), Z=8) consists of linear UO(2)(2+) ions coordinated by five [CH(3)SO(3)] ions, forming a layer structure. VO(CH(3)SO(3))(2) (P2(1)/c, a=1136.5(1), b=869.87(7), c=915.5(1) pm, β=113.66(1)°, V=0.8290(2) nm(3), Z=4) contains [VO] units connected by methanesulfonate anions to form corrugated layers parallel to (100). In ReO(3)(CH(3)SO(3)) (P1, a=574.0(1), b=1279.6(3), c=1641.9(3) pm, α=102.08(2), β=96.11(2), γ=99.04(2)°, V=1.1523(4) nm(3), Z=8) a chain structure exhibiting infinite O-[ReO(2)]-O-[ReO(2)]-O chains is formed. Each [ReO(2)]-O-[ReO(2)] unit is coordinated by two bidentate [CH(3)SO(3)] ions. V(2)O(3)(CH(3)SO(3))(4) (I2/a, a=1645.2(3), b=583.1(1), c=1670.2(3) pm, β=102.58(3), V=1.5637(5) pm(3), Z=4) adopts a chain structure, too, but contains discrete [VO]-O-[VO] moieties, each coordinated by two bidentate [CH(3)SO(3)] ligands. Additional methanesulfonate ions connect the [V(2)O(3)] groups along [001]. Thermal decomposition of the compounds was monitored under N(2) and O(2) atmosphere by thermogravimetric/differential thermal analysis and XRD measurements. Under N(2) the decomposition proceeds with reduction of the metal leading to the oxides MoO(2), U(3)O(7), V(4)O(7), and VO(2); for MoO(2)(CH(3)SO(3))(2), a small amount of MoS(2) is formed. If the thermal decomposition is carried out in a atmosphere of O(2) the oxides MoO(3) and V(2)O(5) are formed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chao, Chih-Kai; Ahmed, S Kaleem; Gerdes, John M; Thompson, Charles M
2016-11-21
The organophosphate O-(2-fluoroethyl)-O-(p-nitrophenyl) methyphosphonate 1 is the first-in-class, fluorine-18 radiolabeled organophosphate inhibitor ([ 18 F]1) of acetylcholinesterase (AChE). In rats, [ 18 F]1 localizes in AChE rich regions of the brain and other tissues where it likely exists as the (CH 3 )( 18 FCH 2 CH 2 O)P(O)-AChE adduct (ChE-1). Characterization of this adduct would define the inhibition mechanism and subsequent postinhibitory pathways and reactivation rates. To validate this adduct, the stability (hydrolysis) of 1 and ChE-1 reactivation rates were determined. Base hydrolysis of 1 yields p-nitrophenol and (CH 3 ) (FCH 2 CH 2 O)P(O)OH with pseudo first order rate constants (k obsd ) at pH 7.4 (PBS) of 3.25 × 10 -4 min -1 (t 1/2 = 35.5 h) at 25 °C and 8.70 × 10 -4 min -1 (t 1/2 = 13.3 h) at 37 °C. Compound 1 was a potent inhibitor of human acetylcholinesterase (HuAChE; k i = 7.5 × 10 5 M -1 min -1 ), electric eel acetylcholinesterase (EEAChE) (k i = 3.0 × 10 6 M -1 min -1 ), and human serum butyrylcholinesterase (HuBChE; 1.95 × 10 5 M -1 min -1 ). Spontaneous and oxime-mediated reactivation rates for the (CH 3 ) (FCH 2 CH 2 O)P(O)-serine ChE adducts using 2-PAM (10 μM) were (a) HuAChE 8.8 × 10 -5 min -1 (t 1/2 = 131.2 h) and 2.41 × 10 -2 min -1 (t 1/2 = 0.48 h), (b) EEAChE 9.32 × 10 -3 min -1 (t 1/2 = 1.24 h) and 3.33 × 10 -2 min -1 (t 1/2 = 0.35 h), and (c) HuBChE 1.16 × 10 -4 min -1 (t 1/2 = 99.6 h) and 4.19 × 10 -2 min -1 (t 1/2 = 0.27 h). All ChE-1 adducts undergo rapid and near complete restoration of enzyme activity following addition of 2-PAM (30 min), and no aging was observed for either reactivation process. The fast reactivation rates and absence of aging of ChE-1 adducts are explained on the basis of the electron-withdrawing fluorine group that favors the nucleophilic reactivation processes but disfavors cation-based dealkylation aging mechanisms. Therefore, the likely fate of radiolabeled compound 1 in vivo is the formation of (CH 3 )(FCH 2 CH 2 O)P(O)-serine adducts and monoacid (CH 3 )(FCH 2 CH 2 O)P(O)OH from hydrolysis and reactivation.
Bathie, Fiona L B; Bowen, Chris J; Hutton, Craig A; O'Hair, Richard A J
2018-07-15
Potassium organotrifluoroborates (RBF 3 K) are important reagents used in organic synthesis. Although mass spectrometry is commonly used to confirm their molecular formulae, the gas-phase fragmentation reactions of organotrifluoroborates and their alkali metal cluster ions have not been previously reported. Negative-ion mode electrospray ionization (ESI) together with collision-induced dissociation (CID) using a triple quadrupole mass spectrometer were used to examine the fragmentation pathways for RBF 3 - (where R = CH 3 , CH 3 CH 2 , CH 3 (CH 2 ) 3 , CH 3 (CH 2 ) 5 , c-C 3 H 5 , C 6 H 5 , C 6 H 5 CH 2 , CH 2 CHCH 2 , CH 2 CH, C 6 H 5 CO) and M(RBF 3 ) 2 - (M = Na, K), while density functional theory (DFT) calculations at the M06/def2-TZVP level were used to examine the structures and energies associated with fragmentation reactions for R = Me and Ph. Upon CID, preferentially elimination of HF occurs for RBF 3 - ions for systems where R = an alkyl anion, whereas R - formation is favoured when R = a stabilized anion. At higher collision energies loss of F - and additional HF losses are sometimes observed. Upon CID of M(RBF 3 ) 2 - , formation of RBF 3 - is the preferred pathway with some fluoride transfer observed only when M = Na. The DFT-calculated relative thermochemistry for competing fragmentation pathways is consistent with the experiments. The main fragmentation pathways of RBF 3 - are HF elimination and/or R - loss. This contrasts with the fragmentation reactions of other organometallate anions, where reductive elimination, beta hydride transfer and bond homolysis are often observed. The presence of fluoride transfer upon CID of Na(RBF 3 ) 2 - but not K(RBF 3 ) 2 - is in agreement with the known fluoride affinities of Na + and K + and can be rationalized by Pearson's HSAB theory. Copyright © 2018 John Wiley & Sons, Ltd.
Gases and water isotopes in a geochemical section across the Larderello, Italy, geothermal field
Truesdell, A.H.; Nehring, N.L.
1978-01-01
Steam samples from six wells (Colombaia, Pineta, Larderello 57, Larderello 155, Gabbro 6, and Gabbro 1) in a south to north section across the Larderello geothermal field have been analyzed for inorganic and hydrocarbon gases and for oxygen-18 and deuterium of steam. The wells generally decrease in depth and increase in age toward the south. The steam samples are generally characterized by (1) Total gas contents increasing south to north from 0.003 to 0.05 mole fraction; (2) Constant CO2 (95??2 percent); near constant H2S (1.6??0.8), N2 (1.2??0.8), H2 (2??1), CH4 (1.2??1), and no O2 in the dry gas; (3) Presence of numerous, straight chain and branched C2 to C6 hydrocarbons plus benzene in amounts independent of CH4 contents with highest concentrations in the deeper wells; (4) Oxygen-18 contents of steam increasing south to north from -5.0??? to -0.4??? with little change in deuterium (-42??2???). These observations are interpreted as showing: (1) Decreasing gas contents with amount of production because the proportion of steam boiled from liquid water increases with production; (2) Synthesis of CH4 from H2 and CO2 with CO2 and H2 produced by thermal metamorphism and rock-water reactions; (3) Extraction of C2 to C6 hydrocarbons from rock organic matter; (4) Either oxygen isotope exchange followed by distillation of steam from the north toward the south (2 plates at ???220??C) or mixture of deeper more-exchange waters from the north with shallow, less-exchanged recharging waters from the south. ?? 1978 Birkha??user Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mul, W.P.; Elsevier, C.J.; van Leijen, M.
1991-01-01
The linear tetranuclear complex Ru{sub 4}(CO){sub 10}(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr){sub 2} (1), containing two {eta}{sup 5}-azaruthenacyclopentadienyl systems, reacts with oxidizing reagents (I{sub 2}, Br{sub 2}, NBS, CCl{sub 4}) at elevated temperatures (40-90C) in heptane or benzene to give the new dimeric halide-bridged organoruthenium(II) complexes (Ru(CO){sub 2}X(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr)){sub 2} (X = I (3a), X = Br (3b), Cl (3c); yield 30-80%) together with (Ru(CO){sub 3}X{sub 2}){sub 2}. The reactions of 1 with CX{sub 4} (X = I, Br, Cl) are accelerated by CO, probably because Ru{sub 4}(CO){sub 12}(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr){sub 2} (5), which contains two unbridged metal-metal bonds,more » is formed prior to oxidation. The halide-bridged dimers 3a-c are obtained as mixtures of four isomers, the configurations of which are discussed. Splitting of the halide bridges takes place when a solution of 3a-c is saturated with CO, whereby mononuclear fac-Ru(CO){sub 3}X(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr) (4a-c) is obtained. This process is reversible; ie., passing a stream of nitrogen through a solution of 4a-c or removal of the solvent under vacuum causes the reverse reaction with reformation of 3a-c. Compounds 3a-c and 4a-c have been characterized by IR (3, 4), FD mass (3), {sup 1}H (3, 4), and {sup 13}C{l brace}H{r brace} NMR (4) spectroscopy and satisfactory elemental analyses have been obtained for 3a-c. Compounds 3 and 4 are suitable precursors for the preparation of new homo- and heteronuclear transition-metal complexes.« less
Forrest, Sebastian J K; Pringle, Paul G; Sparkes, Hazel A; Wass, Duncan F
2014-11-21
The ligands 1,2-C6H4(CH2P(t)Bu2)2 (La) and 1,2-C6H4(P(t)Bu2)(CH2P(t)Bu2) (Lb) displace norbornene (nbe) from [Pt(η(2)-nbe)3] to give [PtL(η(2)-nbe)] where L = La (1a) or Lb (1b); 1a is fluxional on the NMR timescale. Reaction of 1a,b with CO gives the corresponding monocarbonyls [PtL(CO)] where L = La (2a) or Lb (2b) which then react further, and reversibly, to give the dicarbonyls [PtL(CO)2] where L = La (3a) or Lb (3b). The CO interchange between 2a,b and 3a,b is compared with the only other such system (2f and 3f), which are complexes of (C2F5)2PCH2CH2P(C2F5)2 (Lf). Ethene reacts smoothly with 2a to give (4a) and H2 with 2a generates some [PtH2(La)]. Protonation of 2a gives [Pt(La)(H)(CO)][B(C6F5)4] (5a) whose crystal structure has been determined. Similarly protonation of 2b gives [Pt(Lb)(H)(CO)][B(C6F5)4] as a mixture of geometric isomers 5b–6b.
Zhou, Xiaobing; Stobart, Stephen R.; Gossage, Robert A.
1997-08-13
Treatment of SiEt(3)(CH=CH(2)) with ZrCp(2)HCl (Schwartz's reagent) followed by reaction with PPh(2)Cl provides a high-yield (75%) route to Ph(2)PCH(2)CH(2)SiEt(3), and accordingly hydrozirconation of CH(2)=CHCH(2)SiHMe(2) affords the intermediate ZrCp(2)(CH(2)CH(2)CH(2)SiHMe(2))Cl (2). The latter, which is very sensitive to hydrolysis and reacts with HCl forming SiHMe(2)Pr(n)() and with NBS or I(2) affording SiHMe(2)CH(2)CH(2)CH(2)X (X = Br (3), I (4)), behaves similarly with PPh(2)Cl, PPhCl(2), or PBr(3) undergoing cleavage to the known Ph(2)PCH(2)CH(2)CH(2)SiMe(2)H (i.e. chelH, A) and the novel bis- and tris(silylpropyl)phosphines PhP(CH(2)CH(2)CH(2)SiMe(2)H)(2) (5) and P(CH(2)CH(2)CH(2)SiMe(2)H)(3) (6), respectively, with concomitant formation of ZrCp(2)Cl(2). Corresponding hydroboration of allylsilanes is facile, but subsequent phosphine halide cleavage yields (phosphinoalkyl)silanes only as constituents of intractable mixtures. Hydrozirconation followed by phosphination with PPh(2)Cl also converts SiHMe(CH(2)CH=CH(2))(2) to SiHMe(CH(2)CH(2)CH(2)PPh(2))(2) (i.e. biPSiH, B) together with a propyl analogue Ph(2)PCH(2)CH(2)CH(2)SiMe(Pr(n)())H (7) of A (ca. 2:1 ratio), as well as SiH(CH(2)CH=CH(2))(3) to a mixture (ca. 5:2:1 ratio) of SiH(CH(2)CH(2)CH(2)PPh(2))(3) (i.e. triPSiH, C), a new analogue SiH(Pr(n)())(CH(2)CH(2)CH(2)PPh(2))(2) (8) of B, and a further analogue Ph(2)PCH(2)CH(2)CH(2)SiHPr(n)()(2) (9) of A. A further analogue SiH(2)(CH(2)CH(2)CH(2)PPh(2))(2) (10) of biPSiH (B) is obtained similarly starting from SiH(2)(CH(2)CH=CH(2))(2). Steric control of silylalkyl cleavage from 2 is indicated by the fact that, like PPh(2)Cl (which forms B), two further biPSiH analogues SiH(Me)[CH(2)CH(2)CH(2)P(n-hex)(2)](2) (11) and SiH(Me)(CH(2)CH(2)CH(2)PPhBz)(2) (12) were obtained using P(n-hex)(2)Cl (i.e. n-hex = CH(3)(CH(2))(4)CH(2)-) or PPhBzCl (i.e. Bz = -CH(2)C(6)H(5)), respectively, whereas neither PPr(i)(2)Cl nor PBu(t)(2)Cl led to (phosphinoalkyl)silane formation. The surface-substrate linking reagent Ph(2)PCH(2)CH(2)CH(2)Si(OEt)(3) (D) is formed efficiently by similar means from Si(OEt)(3)(CH(2)CH=CH(2)). NMR data ((1)H, (13)C, (29)Si, (31)P) for 2-12 have been measured and are discussed.
NASA Astrophysics Data System (ADS)
Gowda, B. Thimme; Jayalakshmi, K. L.; Shetty, Mahesha
2004-05-01
Thirty N-(p-substituted phenyl)-p-substituted benzenesulphonamides of the general formula, p-X'C6H4SO2NH(p-XC6H4), where X' or X = H, CH3, C2H5, F, Cl or Br, are synthesised and their infrared spectra in the solid state and 1H and 13C NMR spectra in solution are measured. The N-H stretching vibrational frequencies, νN-H vary in the range 3334 - 3219 cm-1, while the asymmetric and symmetric SO2 vibrations appear in the ranges 1377 - 1311 cm-1 and 1182 - 1151 cm-1, respectively. The compounds exhibit S-N and C-N stretching vibrational absorptions in the ranges 937 - 898 cm-1 and 1310 - 1180 cm-1, respectively. There are no particular trends in the variation of these frequencies on substitution with either electron withdrawing or electron donating groups. The 1H and 13C chemical shifts of N-(p-substituted phenyl)-p-substituted benzenesulphonamides,
Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.
Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S
2009-11-04
(PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.
Guan, Jia; Wriglesworth, Alisdair; Sun, Xue Zhong; Brothers, Edward N; Zarić, Snežana D; Evans, Meagan E; Jones, William D; Towrie, Michael; Hall, Michael B; George, Michael W
2018-02-07
Carbon-hydrogen bond activation of alkanes by Tp'Rh(CNR) (Tp' = Tp = trispyrazolylborate or Tp* = tris(3,5-dimethylpyrazolyl)borate) were followed by time-resolved infrared spectroscopy (TRIR) in the υ(CNR) and υ(B-H) spectral regions on Tp*Rh(CNCH 2 CMe 3 ), and their reaction mechanisms were modeled by density functional theory (DFT) on TpRh(CNMe). The major intermediate species were: κ 3 -η 1 -alkane complex (1); κ 2 -η 2 -alkane complex (2); and κ 3 -alkyl hydride (3). Calculations predict that the barrier between 1 and 2 arises from a triplet-singlet crossing and intermediate 2 proceeds over the rate-determining C-H activation barrier to give the final product 3. The activation lifetimes measured for the Tp*Rh(CNR) and Tp*Rh(CO) fragments with n-heptane and four cycloalkanes (C 5 H 10 , C 6 H 12 , C 7 H 14 , and C 8 H 16 ) increase with alkanes size and show a dramatic increase between C 6 H 12 and C 7 H 14 . A similar step-like behavior was observed previously with CpRh(CO) and Cp*Rh(CO) fragments and is attributed to the wider difference in C-H bonds that appear at C 7 H 14 . However, Tp'Rh(CNR) and Tp'Rh(CO) fragments have much longer absolute lifetimes compared to those of CpRh(CO) and Cp*Rh(CO) fragments, because the reduced electron density in dechelated κ 2 -η 2 -alkane Tp' complexes stabilizes the d 8 Rh(I) in a square-planar geometry and weakens the metal's ability for oxidative addition of the C-H bond. Further, the Tp'Rh(CNR) fragment has significantly slower rates of C-H activation in comparison to the Tp'Rh(CO) fragment for the larger cycloalkanes, because the steric bulk of the neopentyl isocyanide ligand hinders the rechelation in κ 2 -Tp'Rh(CNR)(cycloalkane) species and results in the C-H activation without the assistance of the rechelation.
Foley, Nicholas A; Lail, Marty; Lee, John P; Gunnoe, T Brent; Cundari, Thomas R; Petersen, Jeffrey L
2007-05-30
Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.
The unexpectedly bright comet C/2012 F6 (Lemmon) unveiled at near-infrared wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paganini, Lucas; DiSanti, Michael A.; Mumma, Michael J.
2014-01-01
We acquired near-infrared spectra of the Oort cloud comet C/2012 F6 (Lemmon) at three different heliocentric distances (R {sub h}) during the comet's 2013 perihelion passage, providing a comprehensive measure of the outgassing behavior of parent volatiles and cosmogonic indicators. Our observations were performed pre-perihelion at R {sub h} = 1.2 AU with CRIRES (on 2013 February 2 and 4), and post-perihelion at R {sub h} = 0.75 AU with CSHELL (on March 31 and April 1) and R {sub h} = 1.74 AU with NIRSPEC (on June 20). We detected 10 volatile species (H{sub 2}O, OH* prompt emission, C{submore » 2}H{sub 6}, CH{sub 3}OH, H{sub 2}CO, HCN, CO, CH{sub 4}, NH{sub 3}, and NH{sub 2}), and obtained upper limits for two others (C{sub 2}H{sub 2} and HDO). One-dimensional spatial profiles displayed different distributions for some volatiles, confirming either the existence of polar and apolar ices, or of chemically distinct active vents in the nucleus. The ortho-para ratio for water was 3.31 ± 0.33 (weighted mean of CRIRES and NIRSPEC results), implying a spin temperature >37 K at the 95% confidence limit. Our (3σ) upper limit for HDO corresponds to D/H < 2.45 × 10{sup –3} (i.e., <16 Vienna Standard Mean Ocean Water, VSMOW). At R {sub h} = 1.2 AU (CRIRES), the production rate for water was Q(H{sub 2}O) = 1.9 ± 0.1 × 10{sup 29} s{sup –1} and its rotational temperature was T {sub rot} ∼ 69 K. At R {sub h} = 0.75 AU (CSHELL), we measured Q(H{sub 2}O) = 4.6 ± 0.6 × 10{sup 29} s{sup –1} and T {sub rot} = 80 K on March 31, and 6.6 ± 0.9 × 10{sup 29} s{sup –1} and T {sub rot} = 100 K on April 1. At R {sub h} = 1.74 AU (NIRSPEC), we obtained Q(H{sub 2}O) = 1.1 ± 0.1 × 10{sup 29} s{sup –1} and T {sub rot} ∼ 50 K. The measured volatile abundance ratios classify comet C/2012 F6 as rather depleted in C{sub 2}H{sub 6} and CH{sub 3}OH, while HCN, CH{sub 4}, and CO displayed abundances close to their median values found among comets. H{sub 2}CO was the only volatile showing a relative enhancement. The relative paucity of C{sub 2}H{sub 6} and CH{sub 3}OH (with respect to H{sub 2}O) suggests formation within warm regions of the nebula. However, the normal abundance of HCN and hypervolatiles CH{sub 4} and CO, and the enhancement of H{sub 2}CO, may indicate a possible heterogeneous nucleus of comet C/2012 F6 (Lemmon), possibly as a result of radial mixing within the protoplanetary disk.« less
Nagy, Péter; Ashby, Michael T
2005-06-01
Cystine and HOCl (a neutrophil-derived oxidant) react to form an intermediate that has a half-life of ca. 5 min at pH 7.5. The intermediate subsequently decomposes to eventually yield a mixture of cystine, higher oxides of Cys, and other uncharacterized species. Spectral titrations, transitory (1)H NMR and UV-vis spectra, and the reaction properties of the intermediate are consistent with a formulation of N,N'-dichlorocystine {NDC = [-SCH(2)CH(NHCl)(CO(2)H)](2)}. The reaction of equimolar amounts of HOCl with cystine at pH 11.3 does not yield N-chlorocystine [NCC = (-O2C)(H3N+)CHCH(2)SSCH(2)CH(NHCl)(CO(2)H)] but rather a 1:1 mixture of NDC and cystine. This result could be explained by two mechanisms: rapid disproportionation of NCC to produce NDC and cystine or a faster reaction of the second equivalent of HOCl with NCC than the first equivalent of HOCl reacts with cystine. The latter mechanism is favored because of our observation by NMR spectroscopy that NDC decomposes via a species that we have assigned as NCC. Thus, disproportionation of NCC is apparently a relatively slow process. The rates of reaction of cystine(0) = [-SCH(2)CH(NH(3)(+))(CO(2)(-))](2) degrees , cystine(1-) = [((-)O(2)C)(H(2)N)CHCH(2)SSCH(2)CH(NH(3)(+))(CO(2)(-))](-), and cystine(2-) = [-SCH(2)CH(NH2)(CO2)(-))]2(2-) have been investigated, and it is clear that cystine(0) is unreactive, whereas cystine(2-) is about four times more reactive than cystine(1-). Accordingly, the following mechanism is proposed (constants for 5 degrees C): HOCl = H+ + OCl-, pK1 = 7.47; cystine(0) = cystine(1-) + H+, pK2 = 8.15; cystine(1-) = cystine(2-) + H+, pK3 = 9.00; cystine(1-) + HOCl --> NCC(1-) + H2O, k4 = 4.3(2) x 10(6) M(-1) s(-1); cystine(2-) + HOCl --> NCC(2)(-) + H2O, k5 = 1.6(2) x 10(7) M(-1) s(-1); NCC(1-) --> NCC(2-) + H+, k6 = fast; NCC(2-) + HOCl --> NDC(2-) + H2O, k7 = fast. At physiologic pH, the k4 pathway dominates. The generation of long-lived chloramine derivatives of cystine may have physiological consequences, since such compounds are known to react with nucleophiles via mechanisms that are also characteristic of HOCl, electrophilic transfer C+.
NASA Astrophysics Data System (ADS)
Kille, N.; Chiu, R.; Frey, M.; Hase, F.; Kumar Sha, M.; Blumenstock, T.; Hannigan, J. W.; Volkamer, R. M.
2017-12-01
Methane (CH4) is a major greenhouse gas emitted from biogenic, thermogenic, and pyrogenic sources. Here we demonstrate a novel approach to separate sources of CH4 emissions based on a network of small portable sensors performing column measurements in the Northern Colorado Front Range (NCFR). In the study area CH4 is emitted from biogenic sources such as concentrated animal feeding operations (CAFOs) and natural gas production and storage. In March 2015 we deployed a network of five Fourier Transform Spectrometers (FTS) to characterize the regional scale methane dome in Colorado's Denver-Julesburg Basin based on excess vertical column measurements (the column enhancement inside the dome over background). Three EM27sun FTS measured CH4, oxygen (O2) and water vapor (H2O) columns at Eaton, CO (inside the dome) and at two boundary sites; the CU mobile SOF (Solar Occultation Flux) measured ethane (C2H6), ammonia (NH3), and H2O at Eaton, CO. The column averaged dry air mole fractions XCH4, XC2H6, and XNH3 were determined using O2 columns for air mass factor normalization, and background column was subtracted to derive excess vertical columns of DXCH4, DXC2H6, DXNH3 at Eaton, CO. Eaton is located both near CAFOs and at the northern edge of oil and natural gas production wells. Our approach for source apportioning methane employs a linear regression analysis that explains DXCH4 in terms of DXC2H6 as tracer for natural gas sources, and DXNH3 as tracer for CAFO emissions. The results of the source apportionment are compared with literature values of the NH3/CH4 and C2H6/CH4 ratio to evaluate the method of excess columns, which is independent of boundary layer height.
NASA Astrophysics Data System (ADS)
AlDamen, Murad A.; Juwhari, Hassan K.; Al-zuheiri, Aya M.; Alnazer, Louy A.
2017-12-01
Single crystal of Li[UO2(CH3COO)3]3[Co(H2O)6] was prepared and found to crystallize in the monoclinic crystal system in the sp. gr. C2/ c, with Z = 2, and unit cell parameters a = 22.1857(15) Å, b = 13.6477(8) Å, c = 15.6921(10) Å, β = 117.842(9)°, V = 4201.3(4) Å3. The crystal was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry. The single crystal X-ray diffraction analysis revealed that the crystal has a lamellar structure in which a cobalt hydrate is sandwiched within the Li[UO2(CH3COO)3]3 2- chains. Furthermore, the room temperature photoluminescence spectrum of the complex was investigated in the solid state.
NASA Astrophysics Data System (ADS)
Pawal, S. B.; Lolage, S. R.; Chavan, S. S.
2018-02-01
A new series of trinuclear complexes of the type Ni[R-C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (1a-c) and Zn[Rsbnd C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (2a-c) have been prepared from the reaction of trans-[RuCl(dppe)2Ctbnd Csbnd C6H3(OH)(CHO)] (1) with aniline, 4-nitroaniline and 4-methoxyaniline (R1-3) in presence of nickel acetate and zinc acetate in CH2Cl2/MeOH (1:1) mixture. The structural properties of the complexes have been characterized by elemental analyses and spectroscopic techniques viz. FTIR, UV-Visible, 1H NMR and 31P NMR spectral studies. The crystal structure and morphology of the hybrid complexes was investigated with the help of X-ray powder diffraction (XRPD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The thermal properties of 1a-c and 2a-c were studied by thermogravimetric (TG) analysis. The electrochemical behaviour of the complexes reveals that all complexes displayed a quasireversible redox behaviour corresponding to Ru(II)/Ru(III) and Ni(II)/Ni(III) couples for 1a-c and only Ru(II)/Ru(III) couple for 2a-c. All complexes are emissive in solution at room temperature revealing the influence of substituents and solvent polarity on emission properties of the complexes.
NASA Astrophysics Data System (ADS)
Wong, M. H.
2017-12-01
NASA and ESA are considering options for in situ science with atmospheric entry probes to the ice giants Uranus and Neptune. Nominal probe entry mass is in the 300-kg range, although a miniaturized secondary probe option is being studied in the 30-kg range. In all cases, compositional sampling would commence near the 100-mbar level at Uranus, after ejection of the heat shield and deployment of the descent parachute. In this presentation, I review existing literature on the composition, mass loading, and vertical distribution of condensed material that the probe may encounter. Sample inlets for measurement of the gas composition should be heated to avoid potential buildup of condensate, which would block the flow of atmospheric gas into composition sensors. Heating rate and temperature values -- sufficient to keep sample inlets clean under various assumptions -- will be presented. Three main types of condensed material will be considered: Stratospheric hydrocarbon ices: Solar UV photolyzes CH4, leading to the production of volatile hydrocarbons with higher C/H ratios. These species diffuse from their production regions into colder levels where the ices of C2H2, C2H6, and C4H2 condense. Some studies have also considered condensation of C3H8, C4H10, C6H6, and C6H2. Gunk: The hydrocarbon ices are thought to become polymerized due to irradiation from solar UV. The exact composition of the resulting gunk is not known. Solid-state photochemical processing may produce the traces of reddish (blue-absorbing) haze material, present in the troposphere at temperatures warm enough to sublimate the simple hydrocarbon ices. Tropospheric ices: In the region accessible to probes under study (P < 10 bar), much thicker condensation clouds may form from volatile gases CH4, NH3, and H2S. If large amounts of NH3 are sequestered in the deeper H2O liquid cloud, then the S/N ratio could exceed 1 in the probe-accessible region of the atmosphere, leading to NH4SH and H2S ices below the CH4-ice cloud deck. Otherwise, NH4SH and NH3 ices would be found. This work is supported by a grant from the NASA Planetary Science Deep Space Small Satellite Program to the Small Next-generation Atmospheric Probe (SNAP) mission concept study (PI: Kunio Sayanagi).
Camilo, Mariana R; Martins, Felipe T; Malta, Valéria R S; Ellena, Javier; Carlos, Rose M
2013-02-01
In the title complex, [Ru(C(10)H(8)N(2))(2)(C(5)H(6)N(2))(2)](PF(6))(2)·CH(3)CN, the Ru(II) atom is bonded to two α-diimine ligands, viz. 2,2'-bipyridine, in a cis configuration and to two 4-amino-pyridine (4Apy) ligands in the expected distorted octa-hedral configuration. The compound is isostructural with [Ru(C(10)H(8)N(2))(2)(C(5)H(6)N(2))(2)](ClO(4))(2)·CH(3)CN [Duan et al. (1999 ▶). J. Coord. Chem.46, 301-312] and both structures are stabilized by classical hydrogen bonds between 4Apy ligands as donors and counter-ions and acetonitrile solvent mol-ecules as acceptors. Indeed, N-H⋯F inter-actions give rise to an inter-molecularly locked assembly of two centrosymmetric complex mol-ecules and two PF(6) (-) counter-ions, which can be considered as the building units of both crystal architectures. The building blocks are connected to one another through hydrogen bonds between 4Apy and the connecting pieces made up of two centrosymmetric motifs with PF(6) (-) ions and acetonitrile mol-ecules, giving rise to ribbons running parallel to [011]. 2(1)-Screw-axis-related complex mol-ecules and PF(6) (-) counter-ions alternate in helical chains formed along the a axis by means of these contacts.
NASA Astrophysics Data System (ADS)
Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon
1996-11-01
The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.
Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment
Yelle, R.V.; Buch, A.; Carrasco, N.; Cernogora, G.; Dutuit, O.; Quirico, E.; Sciamma-O'Brien, E.; Smith, M.A.; Somogyi, Á.; Szopa, C.; Thissen, R.; Vuitton, V.
2012-01-01
Abstract The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N2/CH4/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C4H5N3O, C4H4N2O2, C5H6N2O2, C5H5N5, and C6H9N3O2 are produced by chemistry in the simulation chamber. Gas chromatography–mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C4H5N3O), uracil (C5H4N2O2), thymine (C5H6N2O2), guanine (C5H5N5O), glycine (C2H5NO2), and alanine (C3H7NO2). Adenine (C5H5N5) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin. Key Words: Astrochemistry—Planetary atmospheres—Titan—Astrobiology. Astrobiology 12, 809–817. PMID:22917035
Formaldehyde activation factor, tetrahydromethanopterin, a coenzyme of methanogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escalante-Semerena, J.C.; Leigh, J.A.; Rinehart, K.L. Jr.
1984-04-01
An oxygen-labile formaldehyde activation factor (FAF) was isolated in highly purified form by use of anoxic fractionation procedures. The molecular weight of FAF was determined to be 776 and that of methanopterin (MPT) 772 by fast-atom-bombardment mass spectrometry (FABMS). High-resolution FABMS measurements on MPT and FAF indicated molecular formulas of C/sub 30/H/sub 41/N/sub 6/O/sub 16/P and C/sub 30/H/sub 45/N/sub 6/O/sub 16/P, respectively. The presence of phosphorus was confirmed by 100-MHz /sup 31/P NMR. The 360-MHz /sup 1/H NMR spectrum of FAF in deuterium oxide was similar to that of MPT. A functional relationship between MPT and FAF was documented; bothmore » compounds stimulated the reductive demethylation of 2-(methylthio)ethanesulfonic acid (CH/sub 3/-S-CoM) to CH/sub 4/ when formaldehyde oxidation provided a source of electrons, and FAF replaced MPT in the CH/sub 3/-S-CoM-stimulated conversion of CO/sub 2/ to CH/sub 4/ under H/sub 2/ (the RPG effect). MPT was enzymically converted to FAF during the reduction of CH/sub 3/-S-CoM, and HCHO to CH/sub 4/ under H/sub 2/. Evidence indicates that FAF is tetrahydromethanopterin. 14 references, 8 figures.« less
High-dispersion infrared spectroscopic observations of comet 8P/Tuttle with VLT/CRIRES
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Bockelée-Morvan, D.; Kawakita, H.; Dello Russo, N.; Jehin, E.; Manfroid, J.; Smette, A.; Hutsemékers, D.; Stüwe, J.; Weiler, M.; Arpigny, C.; Biver, N.; Cochran, A.; Crovisier, J.; Magain, P.; Sana, H.; Schulz, R.; Vervack, R. J.; Weaver, H.; Zucconi, J.-M.
2010-01-01
We report on the composition of the Halley-family comet (HFC) 8P/Tuttle investigated with high-dispersion near-infrared spectroscopic observations. The observations were carried out at the ESO VLT (Very Large Telescope) with the CRIRES instrument as part of a multi-wavelength observation campaign of 8P/Tuttle performed in late January and early February 2008. Radar observations suggested that 8P/Tuttle is a contact binary, and it was proposed that these components might be heterogeneous in chemistry. We determined mixing ratios of organic volatiles with respect to H2O and found that mixing ratios were consistent with previous near infrared spectroscopic observations obtained in late December 2007 and in late January 2008. It has been suggested that because 8P/Tuttle is a contact binary, it might be chemically heterogeneous. However, we find no evidence for chemical heterogeneity within the nucleus of 8P/Tuttle. We also compared the mixing ratios of organic molecules in 8P/Tuttle with those of both other HFCs and long period comets (LPCs) and found that HCN, C2H2, and C2H6 are depleted whereas CH4 and CH3OH have normal abundances. This may indicate that 8P/Tuttle was formed in a different region of the early solar nebula than other HFCs and LPCs. We estimated the conversion efficiency from C2H2 to C2H6 by hydrogen addition reactions on cold grains by employing the C2H6/(C2H6+C2H2) ratio. The C2H6/(C2H6+C2H2) ratio in 8P/Tuttle is consistent with the ratios found in other HFCs and LPCs within the error bars. We also discuss the source of C2 and CN based on our observations and conclude that the abundances of C2H2 and C2H6 are insufficient to explain the C2 abundances in comet 8P/Tuttle and that the abundance of HCN is insufficient to explain the CN abundances in the comet, so at least one additional parent is needed for each species, as pointed out in previous study. Based on observations collected at the European Southern Observatory, Paranal, Chile (ESO Prog. 080.C-0615 and 280.C-5053).We regret to note the death of Dr. J. -M. Zucconi in 2009 May.
Crystal structures of two solvates of (18-crown-6)potassium acetate.
Liebing, Phil; Zaeni, Ahmad; Olbrich, Falk; Edelmann, Frank T
2016-12-01
The crystal and mol-ecular strutures of two solvated forms of [K(18 c 6)]OAc (18 c 6 = 18-crown-6 = 1,4,7,10,13,16-hexa-oxa-cyclo-octa-decane and OAc = acetate) were determined by single-crystal X-ray diffraction, namely (acetato-κ 2 O , O ')(1,4,7,10,13,16-hexa-oxa-cyclo-octa-decane-κ 6 O )potassium dihydrate, [K(CH 3 COO)(C 12 H 24 O 6 )]·2H 2 O ( 1 ) and (acetato-κ 2 O , O ')aqua-(1,4,7,10,13,16-hexa-oxa-cyclo-octa-decane-κ 6 O )potassium acetic acid monosolvate [K(CH 3 COO)(C 12 H 24 O 6 )(H 2 O)]·CH 3 COOH ( 2 ). In both compounds, the acetate anion is bonded to the potassium ion in a chelating fashion and the metal atom is consequently slightly displaced from the O 6 plane of the crown ether. In the crystals, O-H⋯O hydrogen bonds lead to a polymeric ladder structure in the dihydrate 1 , while the acetic acid hydrate 2 features inversion dimers.
Oana, Melania; Nakatsuka, Yumiko; Albert, Daniel R; Davis, H Floyd
2012-05-31
The photodissociation dynamics of CpCo(CO)(2) was studied in a molecular beam using photofragment translational energy spectroscopy with 157 nm photoionization detection of the metallic products. At 532 and 355 nm excitation, the dominant one-photon channel involved loss of a single CO ligand producing CpCoCO. The product angular distributions were isotropic, and a large fraction of excess energy appeared as product vibrational excitation. Production of CpCO + 2CO resulted from two-photon absorption processes. The two-photon dissociation of mixtures containing CpCo(CO)(2) and H(2) at the orifice of a pulsed nozzle was used to produce a novel 16-electron unsaturated species, CpCoH(2). Transition metal ligand exchange reactions, CpCoH(2) + L → CpCoL + H(2) (L = propyne, propene, or ammonia), were studied under single-collision conditions for the first time. In all cases, ligand exchange occurred via 18-electron association complexes with lifetimes comparable to their rotational periods. Although ligand exchange reactions were not detected from CpCoH(2) collisions with methane or propane (L = CH(4) or C(3)H(8)), a molecular beam containing CpCoCH(4) was produced by photolysis of mixtures containing CpCo(CO)(2) and CH(4).
Mindiola, Daniel J.; Waterman, Rory; Iluc, Vlad M.; ...
2014-12-01
Here, the three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu 2PCH 2CH 2PtBu 2, R = 2,6- iPr 2C 6H 3, 2,4,6-Me 3C 6H 2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6- iPr 2C 6H 3, reductive carbonylation results in formation of the (dtbpe)Ni(CO) 2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr 2C 6H 3). Given the ability of the Ni=N bond to have biradical character as suggested bymore » theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6- iPr 2C 6H 3} when this species is treated with HSn( nBu) 3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6- iPr 2C 6H 3)} to the imido (dtbpe)Ni=N{2,6- iPr 2C 6H 3}—is promoted when using the radical Mes*O • (Mes* = 2,4,6- tBu 3C 6H 2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6- iPr 2C 6H 3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6- iPr 2C 6H 3}.« less
2015-01-01
The three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu2PCH2CH2PtBu2, R = 2,6-iPr2C6H3, 2,4,6-Me3C6H2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6-iPr2C6H3, reductive carbonylation results in formation of the (dtbpe)Ni(CO)2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr2C6H3). Given the ability of the Ni=N bond to have biradical character as suggested by theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6-iPr2C6H3} when this species is treated with HSn(nBu)3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6-iPr2C6H3)} to the imido (dtbpe)Ni=N{2,6-iPr2C6H3}—is promoted when using the radical Mes*O• (Mes* = 2,4,6-tBu3C6H2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6-iPr2C6H3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6-iPr2C6H3}. PMID:25437507
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mindiola, Daniel J.; Waterman, Rory; Iluc, Vlad M.
Here, the three-coordinate imidos (dtbpe)Ni=NR (dtbpe = tBu 2PCH 2CH 2PtBu 2, R = 2,6- iPr 2C 6H 3, 2,4,6-Me 3C 6H 2 (Mes), and 1-adamantyl (Ad)), which contain a legitimate Ni–N double bond as well as basic imido nitrogen based on theoretical analysis, readily deprotonate HC≡CPh to form the amide acetylide species (dtbpe)Ni{NH(Ar)}(C≡CPh). In the case of R = 2,6- iPr 2C 6H 3, reductive carbonylation results in formation of the (dtbpe)Ni(CO) 2 along with the N–C coupled product keteneimine PhCH=C=N(2,6- iPr 2C 6H 3). Given the ability of the Ni=N bond to have biradical character as suggested bymore » theoretical analysis, H atom abstraction can also occur in (dtbpe)Ni=N{2,6- iPr 2C 6H 3} when this species is treated with HSn( nBu) 3. Likewise, the microscopic reverse reaction—conversion of the Ni(I) anilide (dtbpe)Ni{NH(2,6- iPr 2C 6H 3)} to the imido (dtbpe)Ni=N{2,6- iPr 2C 6H 3}—is promoted when using the radical Mes*O • (Mes* = 2,4,6- tBu 3C 6H 2). Reactivity studies involving the imido complexes, in particular (dtbpe)Ni=N{2,6- iPr 2C 6H 3}, are also reported with small, unsaturated molecules such as diphenylketene, benzylisocyanate, benzaldehyde, and carbon dioxide, including the formation of C–N and N–N bonds by coupling reactions. In addition to NMR spectroscopic data and combustion analysis, we also report structural studies for all the cycloaddition reactions involving the imido (dtbpe)Ni=N{2,6- iPr 2C 6H 3}.« less
NASA Technical Reports Server (NTRS)
DiSanti, M. A.; Bonev, B. P.; Vilanueva, G. L.; Paganini, L.; Radeva, Y. L.; Mumma, M. J.; Gibb, E.; Magee-Sauer, K.
2012-01-01
Comets retain relatively primitive icy material remaining from the epoch of Solar System formation, however the extent to which they are modified from their initial state remains a key question in cometary science. High-resolution lR spectroscopy has emerged as a powerful tool for measuring vibrational emissions from primary volatiles (i.e., those contained in the nuclei of comets). With modern instrumentation, most notably NIRSPEC at the Keck II 10-m telescope, we can quantify species of astrobiological importance (e.g., H20, C2H2, CH4, C2H6, CO, H2CO, CH30H, HCN, NH3). In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6 and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules (and their variability among comets) is a feasible task that contributes to understanding their delivery to Earth's early biosphere and to the synthesis of more complex pre biotic compounds. Over 20 comets have now been measured with IR spectroscopy, and this sample reveals significant diversity in primary volatile compositions. From this, a taxonomic classification scheme is emerging, presumably reflecting the diverse conditions experienced by pre-cometary grains in interstellar and subsequent nebular environs. The importance of H-atom addition to C2H2 on the surfaces of interstellar grains to produce C2H6 was validated by the discovery of abundant ethane in comet C/1996 B2 (Hyakutake) with C2H6/CH4 well above that achievable by gas-phase chemistry , and then in irradiation experiments on laboratory ices at 10 - 50 K. The large abundance ratios C2H6/CH4 observed universally in comets establish H-atom addition as an important and likely ubiquitous process, and comparing C2H6/C2H2 among comets can provide information on its efficiency. The IR is uniquely capable since symmetric hydrocarbons (e.g., C2H2, CH4, C2H6) have no electric dipole moment and thus no allowed pure rotational transitions. CO should also be hydrogenated on grain surfaces. Irradiation experiments on interstellar ice analogs show this to require very low temperatures, the resulting yields of H2CO and CH30H being highly dependent on temperature in the range approx 10 - 25 K. The relative abundances of these chemically-related molecules in comets provide one measure of the efficiency of H-atom addition to CO Oxidation of CO is also important on grain mantles, as evidenced by the widespread presence of C02 ice towards interstellar sources observed with ISO and in a survey of 17 comets observed with AKARI. H-atom addition to C2H2 produces the vinyl radical, and through subsequent oxidation1reduction reactions can lead to vinyl alcohol, acetaldehyde, and ethanol This may have implications for interpreting observed abundance ratios CO/C2H2. We will discuss possible implications regarding formation conditions in the context of measured primary volatile compositions, emphasizing recently observed comets and published results. These are continually providing new insights regarding our taxonomic scheme and also delivery of pre-biological material to the young Earth.
Chakraborty, Arghya; Fulara, Jan; Dietsche, Rainer; Maier, John P
2014-04-21
Mass selective deposition of C7H3(+) (m/z = 87) into solid neon reveals the 1(1)A1←X(1)A1 electronic absorption system of hepta-1,2,3,4,5,6-heptahexaenylium cation B(+) [H2CCCCCCCH](+) with an origin band at 441.3 nm, 1(1)A'←X(1)A' transition of 2,4-pentadiynylium,1-ethynyl cation C(+) [HCCCHCCCCH](+) starting at 414.6 nm and the 1(1)A1←X(1)A1 one of cyclopropenylium,1,3-butadiynyl cation A(+) [HCCCCC<(CH=CH)](+) with an onset at 322.2 nm. Vibrationally resolved fluorescence was observed for isomer B(+) upon laser excitation of the absorption bands in the 1(1)A1←X(1)A1 transition. After neutralization of the cations in the matrix five absorption systems of the C7H3 neutral radicals starting at 530.3, 479.4, 482.3, 325.0 and 302.5 nm were detected. These were identified as the 1(2)A'←X(2)A' and 2(2)A'←X(2)A' electronic transitions of 2-(buta-1,3-diynyl)cycloprop-2yl-1-1ylidene E˙ [HCCCCC<(C=CH2)]˙, 1(2)B1←X(2)B1 of 1,2,3,4,5,6-heptahexaenyl B˙ [H2CCCCCCCH]˙, 3(2)B1←X(2)B1 of 3-buta-1,3-diynyl-cyclopropenyl A˙ [HCCCCC<(CH=CH)]˙ and 2(2)B1←X(2)A2 transition of 1,2-divinylidene-cyclopropanyl radical F˙ [HCC-cyc-(CCHC)-CCH]˙, respectively. The assignment is based on calculated vertical excitation energies using the CASPT2 method. Comparison of the calculated harmonic vibrational frequencies with those inferred from the spectra supports the assignment.
Behera, B; Das, Puspendu K
2018-05-10
Blue-shifting H-bonded (C-D···O) complexes between CDCl 3 and CH 3 HCO, (CH 3 ) 2 CO, and C 2 H 5 (CH 3 )CO, and red-shifting H-bonded (C-D···S) complexes between CDCl 3 with (CH 3 ) 2 S and (C 2 H 5 ) 2 S have been identified by Fourier transform infrared spectroscopy in the gas phase at room temperature. With increasing partial pressure of the components, a new band appears in the C-D stretching region of the vibrational spectra. The intensity of this band decreases with an increase in temperature at constant pressure, which provides the basis for identification of the H-bonded bands in the spectrum. The C-D stretching frequency of CDCl 3 is blue-shifted by +7.1, +4, and +3.2 cm -1 upon complexation with CH 3 HCO, (CH 3 ) 2 CO, and C 2 H 5 (CH 3 )CO, respectively, and red-shifted by -14 and -19.2 cm -1 upon complexation with (CH 3 ) 2 S and (C 2 H 5 ) 2 S, respectively. By using quantum chemical calculations at the MP2/6-311++G** level, we predict the geometry, electronic structural parameters, binding energy, and spectral shift of H-bonded complexes between CDCl 3 and two series of compounds named RCOR' (H 2 CO, CH 3 HCO, (CH 3 ) 2 CO, and C 2 H 5 (CH 3 )CO) and RSR' (H 2 S, CH 3 HS, (CH 3 ) 2 S, and (C 2 H 5 ) 2 S) series. The calculated and observed spectral shifts follow the same trends. With an increase in basicity of the H-bond acceptor, the C-D bond length increases, force constant decreases, and the frequency shifts to the red from the blue. The potential energy scans of the above complexes are done, which show that electrostatic attraction between electropositive D and electron-rich O/S causes bond elongation and red shift, and the electronic and nuclear repulsions lead to bond contraction and blue shifts. The dominance of the two opposing forces at the equilibrium geometry of the complex determines the nature of the shift, which changes both in magnitude and in direction with the basicity of the hydrogen-bond acceptor.
Electrocatalytic process for carbon dioxide conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masel, Richard I.; Salehi-Khojin, Amin
2017-01-31
An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and Helper Catalyst in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. the reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2,more » and CF.sub.3COOH.« less
Electrocatalytic process for carbon dioxide conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masel, Richard I.; Salehi-Khojin, Amin; Kutz, Robert
An electrocatalytic process for carbon dioxide conversion includes combining a Catalytically Active Element and a Helper Polymer in the presence of carbon dioxide, allowing a reaction to proceed to produce a reaction product, and applying electrical energy to said reaction to achieve electrochemical conversion of said carbon dioxide reactant to said reaction product. The Catalytically Active Element can be a metal in the form of supported or unsupported particles or flakes with an average size between 0.6 nm and 100 nm. The reaction products comprise at least one of CO, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH,more » C.sub.2H.sub.6, (COOH).sub.2, (COO.sup.-).sub.2, and CF.sub.3COOH.« less
NASA Astrophysics Data System (ADS)
Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi
2017-09-01
Long carbon-chain molecules were searched for toward the low-mass star-forming region L1527, which is a prototypical source of warm carbon-chain chemistry (WCCC), using the 100 m Green Bank Telescope. Long carbon-chain molecules, C7H (2Π1/2), C6H (2Π3/2 and 2Π1/2), CH3C4H, and C6H2 (cumulene carbene, CCCCCCH2), and cyclic species of C3H and C3H2O were detected. In particular, C7H was detected for the first time in molecular clouds. The column density of C7H is determined to be 6 × 1010 cm-2. The column densities of the carbon-chain molecules including CH3C4H and C6H in L1527 relative to those in the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) tend to be systematically lower for long carbon-chain lengths. However, the column densities of C7H and C6H2 do not follow this trend and are found to be relatively abundant in L1527. This result implies that these long carbon-chain molecules are remnants of the cold starless phase. The results—that both the remnants and WCCC products are observed toward L1527—are consistent with the suggestion that the protostar can also be born in the parent core at a relatively early stage in the chemical evolution.
Better Ceramics Through Chemistry IV. Materials Research Society Sumposium Proceedings. Volume 180
1991-03-31
GELS 117 L.F. Nazar, D.G. Napier, D. Lapham, and E. Epperson SMALL ANGLE X - RAY SCATTERING STUDIES Or POLYMERIC ZIRCONIUM SPECIES IN AQUEOUS SOLUTION...recently obtained the first X - ray crystallographic data on bismuth alkoxides, Bi(OR) 3 (R = C(CH3) 3 and C6 H4 (CH 3 )2 -2,6) [8]. These data showed that...d8, ppm): 12.5 (O2CMe), 9.6 (OCMe3). The complex was identified by X - ray crystallography. 1 crystallizes in space group P21/n with a = 13.149(2) A, b
NASA Astrophysics Data System (ADS)
Dey, D. K.; Dey, S. P.; Elmali, A.; Elerman, Y.
2001-05-01
The Schiff base, N-2-[3'-(methoxysalicylideneimino)benzyl]-3″-methoxysalicylidene-imine, 1,2-C 6H 4[NCHC 6H 3(OMe-3')OH-2']CH 2NCHC 6H 3(OMe-3″)OH-2″, has been prepared by the reaction of 2-amino-1-benzylamine and 3-methoxysalicylaldehyde ( o-vanillin) in ethanol. The molecular structure has been confirmed by single crystal X-ray crystallography. The crystal is in the monoclinic space group P2 1/ n with a=16.179(5), b=6.715(5), c=18.780(6) Å, β=100.56(3)°, Dcalc=1.293 mg cm -3, V=2006(2) Å 3 and R=0.0357 for 3929 independent reflections. The 1H and 13C NMR spectra in CDCl 3 solution indicate the retention of solid state structure in solution. The title compound is not planar. Intramolecular hydrogen bonds occur between O(1) and N(1) [2.614(2) Å] and between O(2) and N(2) [2.585(2) Å] atoms, the hydrogen atom essentially being bonded to the oxygen atom. Minimum energy conformations from AM1 were calculated as a function of five torsion angles θ1 (C6-C7-N1-C8), θ2 (C14-N2-C15-C16), θ3 (C9-C8-N1-C7), θ4 (C13-C14-N2-C15) and θ5 (C10-C9-C8-N1), varied every 5°. The optimized geometry of the crystal structure corresponding to the non-planar conformation is the most stable conformation in all calculations. The results strongly indicate that the minimum energy conformation is primarily determined by non-bonded hydrogen-hydrogen repulsions.
Hydrogen absorption-desorption properties of U 2Ti
NASA Astrophysics Data System (ADS)
Takuya, Yamamoto; Satoru, Tanaka; Michio, Yamawaki
1990-02-01
Hydrogen absorption-desorption properties of U 2Ti intermetallic compound was examined over the temperature range of 298 to 973 K and at hydrogen pressures below 10 5 Pa. It absorbs hydrogen up to 7.6 atoms per F.U. (formula unit) by two step reactions and hence each desorption isotherm is separated into two plateau regions. In the first plateau, a newly-found ternary hydride is formed, where the hydrogen concentration, cH, reaches 2.4 H atoms/F.U. In the second plateau, UH 3 is formed and cH reaches 7.6 H atoms/F.U. The specimen is disintegrated into fine powder in the second plateau, while in the first plateau the ternary hydride which was identified to be UTi 2H x, ( x = 4.8 to 6.2) showed high durability against powdering. It is predicted that UTi 2 can be suitable material for tritium storage.
Trapping-mediated dissociative chemisorption of C3H8 and C3D8 on Ir(110)
NASA Astrophysics Data System (ADS)
Kelly, D.; Weinberg, W. H.
1996-07-01
We have employed molecular beam techniques to investigate the molecular trapping and trapping-mediated dissociative chemisorption of C3H8 and C3D8 on Ir(110) at low beam translational energies, Ei≤5 kcal/mol, and surface temperatures, Ts, from 85 to 1200 K. For Ts=85 K, C3H8 is molecularly adsorbed on Ir(110) with a trapping probability, ξ, equal to 0.94 at Ei=1.6 kcal/mol and ξ=0.86 at Ei=5 kcal/mol. At Ei=1.9 kcal/mol and Ts=85 K, ξ of C3D8 is equal to 0.93. From 150 K to approximately 700 K, the initial probabilities of dissociative chemisorption of propane decrease with increasing Ts. For Ts from 700 to 1200 K, however, the initial probability of dissociative chemisorption maintains the essentially constant value of 0.16. These observations are explained within the context of a kinetic model which includes both C-H (C-D) and C-C bond cleavage. Below 450 K propane chemisorption on Ir(110) arises essentially solely from C-H (C-D) bond cleavage, an unactivated mechanism (with respect to a gas-phase energy zero) for this system, which accounts for the decrease in initial probabilities of chemisorption with increasing Ts. With increasing Ts, however, C-C bond cleavage, the activation energy of which is greater than the desorption energy of physically adsorbed propane, increasingly contributes to the measured probability of dissociative chemisorption. The activation energies, referenced to the bottom of the physically adsorbed molecular well, for C-H and C-C bond cleavage for C3H8 on Ir(110) are found to be Er,CH=5.3±0.3 kcal/mol and Er,CC=9.9±0.6 kcal/mol, respectively. The activation energies for C-D and C-C bond cleavage for C3D8 on Ir(110) are 6.3±0.3 kcal/mol and 10.5±0.6 kcal/mol, respectively. The desorption activation energy of propane from Ir(110) is approximately 9.5 kcal/mol. These activation energies are compared to activation energies determined recently for ethane and propane adsorption on Ir(111), Ru(001), and Pt(110)-(1×2), and ethane activation on Ir(110).
Yi, Chae S.; Zeczycki, Tonya N.; Guzei, Ilia A.
2008-01-01
The tetrametallic ruthenium-oxo-hydroxo-hydride complex {[(PCy3)(CO)RuH]4(μ4-O)(μ3-OH)(μ2-OH)} (1) was synthesized in two steps from the monomeric complex (PCy3)(CO)RuHCl (2). The tetrameric complex 1 was found to be a highly effective catalyst for the transfer dehydrogenation of alcohols. Complex 1 showed a different catalytic activity pattern towards primary and secondary benzyl alcohols, as indicated by the Hammett correlation for the oxidation reaction of p-X-C6H4CH2OH (ρ = −0.45) and p-X-C6H4CH(OH)CH3 (ρ = +0.22) (X = OMe, CH3, H, Cl, CF3). Both a sigmoidal curve from the plot of initial rate vs [PhCH(OH)CH3] (K0.5 = 0.34 M; Hill coefficient, n = 4.2±0.1) and the phosphine inhibition kinetics revealed the highly cooperative nature of the complex for the oxidation of secondary alcohols. PMID:18726005
Dell'Amico, Daniela Belli; Calderazzo, Fausto; Marchetti, Fabio; Ramello, Stefano; Samaritani, Simona
2008-02-04
The hexanuclear Pd6Cl12, i.e., the crystal phase classified as beta-PdCl2, was obtained by reacting [TBA]2[Pd2Cl6] with AlCl3 (or FeCl3) in CH2Cl2. The action of AlCl3 on PtCl42-, followed by digestion of the resulting solid in 1,2-C2H4Cl2 (DCE), CHCl3, or benzene, produced Pt6Cl12.DCE, Pt6Cl12.CHCl3, or Pt6Cl12.C6H6, respectively. Treating [TBA]2[PtCl6] with a slight excess of AlCl3 afforded [TBA][Pt2Cl9], whose anion was established crystallographically to be constituted by two "PtCl6" octahedra sharing a face. Dehydration of H2PtCl6.nH2O with SOCl2 gave an amorphous compound closely analyzing as PtCl4, reactive with [Q]Cl in SOCl2 to yield [Q][Pt2Cl9] or [Q]2[Pt2Cl10], depending on the [Q]Cl/Pt molar ratio (Q=TBA+, PPN+). A single-crystal X-ray diffraction study has shown [PPN]2[Pt2Cl10].C7H8 to contain dinuclear anions formed by two edge-sharing PtCl6 octahedra.
Variable (Tg, Ts) Measurements of Alkane Dissociative Sticking Coefficients
NASA Astrophysics Data System (ADS)
Valadez, Leticia; Dewitt, Kristy; Abbott, Heather; Kolasinski, Kurt; Harrision, Ian
2006-03-01
Dissociative sticking coefficients S(Tg, Ts) for CH4 and C2H6 on Pt(111) have been measured as a function of gas temperature (Tg) and surface temperature (Ts) using an effusive molecular beam. Microcanonical unimolecular rate theory (MURT) was employed to extract transition state characteristics [e.g., E0(CH4) = 52.5±3.5 kJ/mol-1 and E0(C2H6) = 26.5±3 kJ/mol-1]. MURT allows our S(Tg, Ts) values to be directly compared to other supersonic molecular beam and thermal equilibrium sticking measurements. The S(Tg, Ts) depend strongly on Ts, however, only for CH4 is a strong Tg dependence observed. The fairly weak Tg dependence for C2H6 suggests that vibrational mode specific behavior and/or molecular rotations play stronger roles in the dissociative chemisorption of C2H6 than they do for CH4. Interestingly, thermal S(Tg=Ts) predictions based on MURT modeling of our CH4/Pt(111) data are three orders of magnitude higher than recent thermal equilibrium measurements on supported Pt nanocrystallite catalysts [J. M. Wei, E. Iglesia, J. Phys. Chem. B 108, 4094 (2004)].
Atmospheric Science Data Center
2013-02-19
... Methyl bromide (CH3Br) Bromopropane (C3H7 Br) Methyl Chloride (CH3Cl) Ethyl Chloride (C2H5Cl) Vinyl chloride (C2H3Cl) ... Trichloroethylene (C2HCl3) Tetrachloroethylene (C2Cl4) Methylene bromide (CH2Br2) Chlorodibromomethane (CHClBr2) Bromoform ...
Zwitterionic metal carboxylate complexes: In solid state
NASA Astrophysics Data System (ADS)
Nath, Bhaskar; Kalita, Dipjyoti; Baruah, Jubaraj B.
2012-07-01
A flexible dicarboxylic acid having composition [(CH(o-C5H4N)(p-C6H4OCH2CO2H)2] derived from corresponding bis-phenol reacts with various metal(II) acetates such as manganese(II), cobalt(II) and nickel(II) acetate leads to zwtterionic complexes with compositions [CH(o-C5H4N)(p-C6H4OCH2CO2){p-C6H4OCH2CO2M(H2O)5}].6H2O (where M = Mn, Co, Ni). The complexes are characterised by X-ray crystallography. These complexes have chiral center due to unsymmetric structure conferred to the ligand through coordination at only one carboxylate group of the ligand. In solid state these complexes are racemic.
Thermal Chemistry of Cp*W(NO)(CH2CMe3)(H)(L) Complexes (L = Lewis Base).
Fabulyak, Diana; Handford, Rex C; Holmes, Aaron S; Levesque, Taleah M; Wakeham, Russell J; Patrick, Brian O; Legzdins, Peter; Rosenfeld, Devon C
2017-01-03
The complexes trans-Cp*W(NO)(CH 2 CMe 3 )(H)(L) (Cp* = η 5 -C 5 Me 5 ) result from the treatment of Cp*W(NO)(CH 2 CMe 3 ) 2 in n-pentane with H 2 (∼1 atm) in the presence of a Lewis base, L. The designation of a particular geometrical isomer as cis or trans indicates the relative positions of the alkyl and hydrido ligands in the base of a four-legged piano-stool molecular structure. The thermal behavior of these complexes is markedly dependent on the nature of L. Some of them can be isolated at ambient temperatures [e.g., L = P(OMe) 3 , P(OPh) 3 , or P(OCH 2 ) 3 CMe]. Others undergo reductive elimination of CMe 4 via trans to cis isomerization to generate the 16e reactive intermediates Cp*W(NO)(L). These intermediates can intramolecularly activate a C-H bond of L to form 18e cis complexes that may convert to the thermodynamically more stable trans isomers [e.g., Cp*W(NO)(PPh 3 ) initially forms cis-Cp*W(NO)(H)(κ 2 -PPh 2 C 6 H 4 ) that upon being warmed in n-pentane at 80 °C isomerizes to trans-Cp*W(NO)(H)(κ 2 -PPh 2 C 6 H 4 )]. Alternatively, the Cp*W(NO)(L) intermediates can effect the intermolecular activation of a substrate R-H to form trans-Cp*W(NO)(R)(H)(L) complexes [e.g., L = P(OMe) 3 or P(OCH 2 ) 3 CMe; R-H = C 6 H 6 or Me 4 Si] probably via their cis isomers. These latter activations are also accompanied by the formation of some Cp*W(NO)(L) 2 disproportionation products. An added complication in the L = P(OMe) 3 system is that thermolysis of trans-Cp*W(NO)(CH 2 CMe 3 )(H)(P(OMe) 3 ) results in it undergoing an Arbuzov-like rearrangement and being converted mainly into [Cp*W(NO)(Me)(PO(OMe) 2 )] 2 , which exists as a mixture of two isomers. All new complexes have been characterized by conventional and spectroscopic methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.Y.; Fang, Y.K.; Huang, C.F.
1985-02-01
Hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared and studied in a radiofrequency glowdischarge system, using a gas mixture of SiH/sub 4/ and one of the following carbon sources: methane (CH/sub 4/), benzene (C/sub 6/H/sub 6/), toluene (C/sub 7/H/sub 8/), sigma-xylene (C/sub 8/H/sub 10/), trichloroethane (C/sub 2/H/sub 3/Cl/sub 3/), trichloroethylene (C/sub 2/HCl/sub 3/), or carbon tetrachloride (CCl/sub 4/). The effect of doping phosphorus and boron into those a-SiC:H films on chemical etching rate, electrica dc resistivity, breakdown strength, and optical refractive index have been systematically investigated. Their chemical etching properties were examined by immersing in 49% HF, buffered HF,more » 180/sup 0/C H/sub 3/PO/sub 4/ solutions, or in CF/sub 4/ + O/sub 2/ plasma. It was found that the boron-doped a-SiC:H film possesses five times slower etching rate than the undoped one, while phosphorus-doped a-SiC:H film shows about three times slower. Among those a-SiC:H films, the one obtained from a mixture of SiH/sub 4/ and benzene shows the best etch-resistant property, while the ones obtained from a mixture of SiH/sub 4/ and chlorine containing carbon sources (e.g., trichloroethylene, trichloroethane, or carbon tetrachloride) shows that they are poor in etching resistance (i.e., the etching rate is higher). By measuring dc resistivity, dielectric breakdown strength, and effective refractive index, it was found that boron- or phosphorus-doped a-SiC:H films exhibit much higher dielectric strength and resistivity, but lower etching rate, presumably because of higher density.« less
Functionalization of metallabenzenes through nucleophilic aromatic substitution of hydrogen.
Clark, George R; Ferguson, Lauren A; McIntosh, Amy E; Söhnel, Tilo; Wright, L James
2010-09-29
The cationic metallabenzenes [Ir(C(5)H(4){SMe-1})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (1) and [Os(C(5)H(4){SMe-1})(CO)(2)(PPh(3))(2)][CF(3)SO(3)] (2) undergo regioselective nucleophilic aromatic substitution of hydrogen at the metallabenzene ring position γ to the metal in a two-step process that first involves treatment with appropriate nucleophiles and then oxidation. Thus, reaction between compound 1 and NaBH(4), MeLi, or NaOEt gives the corresponding neutral iridacyclohexa-1,4-diene complexes Ir(C(5)H(3){SMe-1}{H-3}{Nu-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2) (Nu = H (3), Me (4), OEt (5)). Similarly, reaction between 2 and NaBH(4) or MeLi gives the corresponding osmacyclohexa-1,4-diene complexes Os(C(5)H(3){SMe-1}{H-3}{Nu-3})(CO)(2)(PPh(3))(2) (Nu = H (8), Me (9)). The metallacyclohexa-1,4-diene rings in all these compounds are rearomatized on treatment with the oxidizing agent O(2), CuCl(2), or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). Accordingly, the cationic metallabenzene 1 or 2 is returned after reaction between 3 and DDQ/NEt(4)PF(6) or between 8 and DDQ/NaO(3)SCF(3), respectively. The substituted cationic iridabenzene [Ir(C(5)H(3){SMe-1}{Me-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (6) or [Ir(C(5)H(4){SMe-1}{OEt-3})(κ(2)-S(2)CNEt(2))(PPh(3))(2)]PF(6) (7) is produced in a similar manner through reaction between 4 or 5, respectively, and DDQ/NEt(4)PF(6), and the substituted cationic osmabenzene [Os(C(5)H(3){SMe-1}{Me-3})(CO)(2)(PPh(3))(2)]Cl (10) is formed in good yield on treatment of 9 with CuCl(2). The starting cationic iridabenzene 1 is conveniently prepared by treatment of the neutral iridabenzene Ir(C(5)H(4){SMe-1})Cl(2)(PPh(3))(2) with NaS(2)CNEt(2) and NEt(4)PF(6), and the related starting cationic osmabenzene 2 is obtained by treatment of Os(C(5)H(4){S-1})(CO)(PPh(3))(2) with CF(3)SO(3)CH(3) and CO. The stepwise transformations of 1 into 6 or 7 as well as 2 into 10 provide the first examples in metallabenzene chemistry of regioselective nucleophilic aromatic substitutions of hydrogen by external nucleophiles. DFT calculations have been used to rationalize the preferred sites for nucleophilic attack at the metallabenzene rings of 1 and 2. The crystal structures of 1, 3, 6, and 7 have been obtained.
The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures
NASA Astrophysics Data System (ADS)
Huang, Ruifang; Sun, Weidong; Liu, Jinzhong; Ding, Xing; Peng, Shaobang; Zhan, Wenhuan
2016-09-01
Serpentinization potentially contributes to the origin and evolution of life during early history of the Earth. Serpentinization produces molecular hydrogen (H2) that can be utilized by microorganisms to gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H2/CH4 ratio, has been proposed to differentiate abiotic from biotic methane, with values approximately larger than 40 for abiotic methane and values of <40 for biotic methane. The definition of the criterion was based on two serpentinization experiments at 200 °C and 0.3 kbar. However, it is not clear whether the criterion is applicable at a wider range of temperatures. In this study, we performed sixteen experiments at 311-500 °C and 3.0 kbar using natural ground peridotite. Our results demonstrate that the H2/CH4 ratios strongly depend on temperature. At 311 °C and 3.0 kbar, the H2/CH4 ratios ranged from 58 to 2,120, much greater than the critical value of 40. By contrast, at 400-500 °C, the H2/CH4 ratios were much lower, ranging from 0.1 to 8.2. The results of this study suggest that the H2/CH4 ratios cannot reliably discriminate abiotic from biotic methane.
The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures.
Huang, Ruifang; Sun, Weidong; Liu, Jinzhong; Ding, Xing; Peng, Shaobang; Zhan, Wenhuan
2016-09-26
Serpentinization potentially contributes to the origin and evolution of life during early history of the Earth. Serpentinization produces molecular hydrogen (H 2 ) that can be utilized by microorganisms to gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H 2 /CH 4 ratio, has been proposed to differentiate abiotic from biotic methane, with values approximately larger than 40 for abiotic methane and values of <40 for biotic methane. The definition of the criterion was based on two serpentinization experiments at 200 °C and 0.3 kbar. However, it is not clear whether the criterion is applicable at a wider range of temperatures. In this study, we performed sixteen experiments at 311-500 °C and 3.0 kbar using natural ground peridotite. Our results demonstrate that the H 2 /CH 4 ratios strongly depend on temperature. At 311 °C and 3.0 kbar, the H 2 /CH 4 ratios ranged from 58 to 2,120, much greater than the critical value of 40. By contrast, at 400-500 °C, the H 2 /CH 4 ratios were much lower, ranging from 0.1 to 8.2. The results of this study suggest that the H 2 /CH 4 ratios cannot reliably discriminate abiotic from biotic methane.
Molecular diodes and ultra-thin organic rectifying junctions: Au-S-CnH2n-Q3CNQ and TCNQ derivatives.
Ashwell, Geoffrey J; Moczko, Katarzyna; Sujka, Marta; Chwialkowska, Anna; Hermann High, L R; Sandman, Daniel J
2007-02-28
Attempts to obtain derivatives of the molecular diode, 2-{4-[1-cyano-2-(1-(omega-acetylsulfanylalkyl)-1H-quinolin-4-ylidene)-ethylidene]-cyclohexa-2,5-dienylidene}-malonitrile [1, CH(3)CO-S-C(n)H(2n)-Q3CNQ], from either 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-p-quinodimethane (TCNQF(4)) or 2,3,5,6-tetramethyl-7,7,8,8-tetracyano-p-quinodimethane (TMTCNQ) result in ring closure via the cyano group of the pi-bridge and yield di-substituted analogues: 2-{2,3,5,6-tetrafluoro-4-[6-(10-acetylsulfanyldecyl)-3-(1-(10-acetylsulfanyldecyl)-1H-quinolin-4-ylidenemethyl)-6H-benzo[f][1,7]naphthyridin-2-ylidene]-cyclohexa-2,5-dienylidene}-malonitrile (2a) and the 2,3,5,6-tetramethyl derivative (2b). Self-assembled monolayers (SAMs) of these donor-(pi-bridge)-acceptor molecular diodes exhibit asymmetric current-voltage characteristics with electron flow at forward bias from the top contact to surface C(CN)(2) groups. Comparison is made with I-V curves from ultra-thin films of an organic rectifying junction in which TCNQ(-) is electron-donating and a donor-(sigma-bridge)-acceptor diode in which TCNQ degrees is electron-accepting.
Crystal structures of three lead(II) acetate-bridged di-amino-benzene coordination polymers.
Geiger, David K; Parsons, Dylan E; Zick, Patricia L
2014-12-01
Poly[tris-(acetato-κ(2) O,O')(μ2-acetato-κ(3) O,O':O)tetra-kis-(μ3-acetato-κ(4) O,O':O:O')bis-(benzene-1,2-di-amine-κN)tetra-lead(II)], [Pb4(CH3COO)8(C6H8N2)2] n , (I), poly[(acetato-κ(2) O,O')(μ3-acetato-κ(4) O,O':O:O')(4-chloro-benzene-1,2-diamine-κN)lead(II)], [Pb(CH3COO)2(C6H7ClN2)] n , (II), and poly[(κ(2) O,O')(μ3-acetato-κ(4) O,O':O:O')(3,4-di-amino-benzo-nitrile-κN)lead(II)], [Pb(CH3COO)2(C7H7N3)] n , (III), have polymeric structures in which monomeric units are joined by bridging acetate ligands. All of the Pb(II) ions exhibit hemidirected coordination. The repeating unit in (I) is composed of four Pb(II) ions having O6, O6N, O7 and O6N coordination spheres, respectively, where N represents a monodentate benzene-1,2-di-amine ligand and O acetate O atoms. Chains along [010] are joined by bridging acetate ligands to form planes parallel to (10-1). (II) and (III) are isotypic and have one Pb(II) ion in the asymmetric unit that has an O6N coordination sphere. Pb2O2 units result from a symmetry-imposed inversion center. Polymeric chains parallel to [100] exhibit hydrogen bonding between the amine and acetate ligands. In (III), additional hydrogen bonds between cyano groups and non-coordinating amines join the chains by forming R 2 (2)(14) rings.
[Quantitative spectrum analysis of characteristic gases of spontaneous combustion coal].
Liang, Yun-Tao; Tang, Xiao-Jun; Luo, Hai-Zhu; Sun, Yong
2011-09-01
Aimed at the characteristics of spontaneous combustion gas such as a variety of gases, lou limit of detection, and critical requirement of safety, Fourier transform infrared (FTIR) spectral analysis is presented to analyze characteristic gases of spontaneous combustion In this paper, analysis method is introduced at first by combing characteristics of absorption spectra of analyte and analysis requirement. Parameter setting method, sample preparation, feature variable abstract and analysis model building are taken into consideration. The methods of sample preparation, feature abstraction and analysis model are introduced in detail. And then, eleven kinds of gases were tested with Tensor 27 spectrometer. CH4, C2H6, C3H8, iC4H10, nC4H10, C2 H4, C3 H6, C3 H2, SF6, CO and CO2 were included. The optical path length was 10 cm while the spectra resolution was set as 1 cm(-1). The testing results show that the detection limit of all analytes is less than 2 x 10(-6). All the detection limits fit the measurement requirement of spontaneous combustion gas, which means that FTIR may be an ideal instrument and the analysis method used in this paper is competent for spontaneous combustion gas measurement on line.
Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern
2012-03-28
Irradiation at 239 ± 20 nm of a p-H(2) matrix containing methoxysulfinyl chloride, CH(3)OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to ν(1), CH(2) antisymmetric stretching), 2999.5 (ν(2), CH(3) antisymmetric stretching), 2950.4 (ν(3), CH(3) symmetric stretching), 1465.2 (ν(4), CH(2) scissoring), 1452.0 (ν(5), CH(3) deformation), 1417.8 (ν(6), CH(3) umbrella), 1165.2 (ν(7), CH(3) wagging), 1152.1 (ν(8), S=O stretching mixed with CH(3) rocking), 1147.8 (ν(9), S=O stretching mixed with CH(3) wagging), 989.7 (ν(10), C-O stretching), and 714.5 cm(-1) (ν(11), S-O stretching) modes of syn-CH(3)OSO. When CD(3)OS(O)Cl in a p-H(2) matrix was used, lines at 2275.9 (ν(1)), 2251.9 (ν(2)), 2083.3 (ν(3)), 1070.3 (ν(4)), 1056.0 (ν(5)), 1085.5 (ν(6)), 1159.7 (ν(7)), 920.1 (ν(8)), 889.0 (ν(9)), 976.9 (ν(10)), and 688.9 (ν(11)) cm(-1) appeared and are assigned to syn-CD(3)OSO; the mode numbers correspond to those used for syn-CH(3)OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86∕aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH(3)OSO near 2991, 2956, 1152, and 994 cm(-1) to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD(3)OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H(2) such that the Cl atom, produced via UV photodissociation of CH(3)OS(O)Cl in situ, might escape from the original cage to yield isolated CH(3)OSO radicals.
Scandium complexes with the tetraphenylethylene and anthracene dianions.
Ellis, John E; Minyaev, Mikhail E; Nifant'ev, Ilya E; Churakov, Andrei V
2018-06-01
The structural study of Sc complexes containing dianions of anthracene and tetraphenylethylene should shed some light on the nature of rare-earth metal-carbon bonding. The crystal structures of (18-crown-6)bis(tetrahydrofuran-κO)sodium bis(η 6 -1,1,2,2-tetraphenylethenediyl)scandium(III) tetrahydrofuran disolvate, [Na(C 4 H 8 O) 2 (C 12 H 24 O 6 )][Sc(C 26 H 20 ) 2 ]·2C 4 H 8 O or [Na(18-crown-6)(THF) 2 ][Sc(η 6 -C 2 Ph 4 ) 2 ]·2(THF), (1b), (η 5 -1,3-diphenylcyclopentadienyl)(tetrahydrofuran-κO)(η 6 -1,1,2,2-tetraphenylethenediyl)scandium(III) toluene hemisolvate, [Sc(C 17 H 13 )(C 26 H 20 )(C 4 H 8 O)]·0.5C 7 H 8 or [(η 5 -1,3-Ph 2 C 5 H 3 )Sc(η 6 -C 2 Ph 4 )(THF)]·0.5(toluene), (5b), poly[[(μ 2 -η 3 :η 3 -anthracenediyl)bis(η 6 -anthracenediyl)bis(η 5 -1,3-diphenylcyclopentadienyl)tetrakis(tetrahydrofuran)dipotassiumdiscandium(III)] tetrahydrofuran monosolvate], {[K 2 Sc 2 (C 14 H 10 ) 3 (C 17 H 13 ) 2 (C 4 H 8 O) 4 ]·C 4 H 8 O} n or [K(THF) 2 ] 2 [(1,3-Ph 2 C 5 H 3 ) 2 Sc 2 (C 14 H 10 ) 3 ]·THF, (6), and 1,4-diphenylcyclopenta-1,3-diene, C 17 H 14 , (3a), have been established. The [Sc(η 6 -C 2 Ph 4 ) 2 ] - complex anion in (1b) contains the tetraphenylethylene dianion in a symmetrical bis-η 3 -allyl coordination mode. The complex homoleptic [Sc(η 6 -C 2 Ph 4 ) 2 ] - anion retains its structure in THF solution, displaying hindered rotation of the coordinated phenyl rings. The 1D 1 H and 13 C{ 1 H}, and 2D COSY 1 H- 1 H and 13 C- 1 H NMR data are presented for M[Sc(Ph 4 C 2 ) 2 ]·xTHF [M = Na and x = 4 for (1a); M = K and x = 3.5 for (2a)] in THF-d 8 media. Complex (5b) exhibits an unsymmetrical bis-η 3 -allyl coordination mode of the dianion, but this changes to a η 4 coordination mode for (1,3-Ph 2 C 5 H 3 )Sc(Ph 4 C 2 )(THF) 2 , (5a), in THF-d 8 solution. A 45 Sc NMR study of (2a) and UV-Vis studies of (1a), (2a) and (5a) indicate a significant covalent contribution to the Sc-Ph 4 C 2 bond character. The unique Sc ate complex, (6), contains three anthracenide dianions demonstrating both a η 6 -coordination mode for two bent ligands and a μ 2 -η 3 :η 3 -bridging mode of a flat ligand. Each [(1,3-Ph 2 C 5 H 3 ) 2 Sc 2 (C 14 H 10 ) 3 ] 2- dianionic unit is connected to four neighbouring units via short contacts with [K(THF) 2 ] + cations, forming a two-dimensional coordination polymer framework parallel to (001).
Dudle, Balz; Rajesh, Kunjanpillai; Blacque, Olivier; Berke, Heinz
2011-06-01
The reaction of [ReBr(2)(MeCN)(NO)(P∩P)] (P∩P = 1,1'-bisdiphenylphosphinoferrocene (dppfc) (1a), 1,1'-bisdiisopropylphosphinopherrocene (diprpfc) (1b), 2,2'-bis(diphenylphosphino)diphenyl ether (dpephos) (1c), 10,11-dihydro-4,5-bis(diphenylphosphino)dibenzo[b,f]oxepine (homoxantphos) (1d) and 4,6-bis(diphenylphosphino)-10,10-dimethylphenoxasilin (Sixantphos) (1e)) led in the presence of HSiEt(3) and ethylene to formation of the ethylene hydride complexes [ReBrH(η(2)-C(2)H(4))(NO)(P∩P)] (3a,b,d), the MeCN ethyl complex [ReBr(Et)(MeCN)(NO)(dpephos)] (5c) and two ortho-metalated stereoisomers of [ReBr(η(2)-C(2)H(4))(NO)(η(3)-o-C(6)H(4)-Sixantphos)] 8e(up) and 8e(down). The complexes 3a,b,d, and 5c and the isomers of 8e showed high catalytic activity (TOFs ranging from 22 to 4870 h(-1), TONs up to 24000) in the hydrogenation of monosubstituted olefins. For 8e(down) and 8e(up) a remarkable functional group tolerance and catalyst stability were noticed. Kinetic experiments revealed k(obs) to be first order in c(cat) and c(H(2)) and zeroth order in c(olefin). Mechanistic studies and DFT calculations suggest the catalysis to proceed along an Osborn-type catalytic cycle with olefin before H(2) addition. The unsaturated key intermediates [ReBrH(NO)(P∩P)] (2a-e) could be intercepted with MeCN as [ReBrH(MeCN)(NO)(P∩P)] (10a-d) complexes or isolated as dimeric μ(2)-(H)(2) complexes [{ReBr(μ(2)-H)(NO)(P∩P)}(2)] (9b and 9e). Variation of the bidentate ligand demonstrated a crucial influence of the (large)-bite-angle on the catalytic performance and reactivity of 3a,b,d, 5c, and 8e. © 2011 American Chemical Society
Ferrocenyl-cymantrenyl hetero-bimetallic chalcones: Synthesis, structure and biological properties
NASA Astrophysics Data System (ADS)
Mishra, Sasmita; Tirkey, Vijaylakshmi; Ghosh, Avishek; Dash, Hirak R.; Das, Surajit; Shukla, Madhulata; Saha, Satyen; Mobin, Sheikh M.; Chatterjee, Saurav
2015-04-01
Two new ferrocenyl-cymantrenyl bimetallic chalcones, [(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)Fe(η5-C5H5)] (1) and [{(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)}2Fe] (2) have been synthesized. Their reactivity study with triphenylphosphine and bis-(diphenylphosphino)ferrocene led to the isolation of phosphine substituted bimetallic chalcones (3-6). Single crystal X-ray structural characterization for 1 and its phosphine analogue (3) reveals their different conformational identity with anti-conformation for 1, while syn-conformation for 3. Investigation of antimalarial and antibacterial activities was carried out for compounds 1 and 2 against two strains of Plasmodium falciparum (3D7, K1) and four bacterial strains. TD-DFT calculation was performed for compound 1 and electrochemical properties were studied for bimetallic chalcone compounds by cyclic voltammetric technique.
NASA Technical Reports Server (NTRS)
Hsu, K.-J.; DeMore, W. B.
1995-01-01
Rate constants of 15 OH reactions with halogen-substituted alkanes, C1 to C3, were studied using a relative rate technique in the temperature range 283-403 K. Compounds studied were CHF2Cl (22), CHF2Br (22B), CH3F (41), CH2F2 (32), CHF3 (23), CHClFCCl2F (122a), CHCl2CF3 (123), CHClFCF3 (124), CH3CF3 (143a), CH3CH2F (161), CF3CHFCF3 (227ea), CF3CH2CF3 (236fa), CF3CHFCHF2 (236ea), and CHF2CF2CH2F (245ca). Using CH4, CH3CCl3, CF3CF2H, and C2H6 as primary reference standards (JPL 92-20 rate constants), absolute rate constants are derived. Results are in good agreement with previous experimental results for six of the compounds studied, including CHF2Cl, CHF2Br, CH2F2, CH3CF3, CHFClCFCl2, and CF3CHFCF3. For the remainder the relative rate constants are lower than those derived from experiments in which OH loss was used to measure the reaction rate. Comparisons of the derived Arrhenius A factors with previous literature transition-state calculations show order of magnitude agreement in most cases. However, the experimental A factors show a much closer proportionality to the number of H atoms in the molecule than is evident from the transition state calculations. For most of the compounds studied, an A factor of (8 +/- 3)E-13 cm(exp 3)/(molecule s) per C-H bond is observed. A new measurement of the ratio k(CH3CCl3)/k(CH4) is reported that is in good agreement with previous data.
NASA Astrophysics Data System (ADS)
Hibbitts, David; Neurock, Matthew
2016-08-01
Electronegative coadsorbates such as atomic oxygen (O*) and hydroxide (OH*) can act as Brønsted bases when bound to Group 11 as well as particular Group 8-10 metal surfaces and aid in the activation of X-H bonds. First-principle density functional theory calculations were carried out to systematically explore the reactivity of the C-H bonds of methane and surface methyl intermediates as well as the O-H bond of methanol directly and with the assistance of coadsorbed O* and OH* intermediates over Group 11 (Cu, Ag, and Au) and Group 8-10 transition metal (Ru, Rh, Pd, Os, Ir, and Pt) surfaces. C-H as well as O-H bond activation over the metal proceeds via a classic oxidative addition type mechanism involving the insertion of the metal center into the C-H or O-H bond. O* and OH* assist C-H and O-H activation over particular Group 11 and Group 8-10 metal surfaces via a σ-bond metathesis type mechanism involving the oxidative addition of the C-H or O-H bond to the metal along with a reductive deprotonation of the acidic C-H and O-H bond over the M-O* or M-OH* site pair. The O*- and OH*-assisted C-H activation paths are energetically preferred over the direct metal catalyzed C-H scission for all Group 11 metals (Cu, Ag, and Au) with barriers that are 0.4-1.5 eV lower than those for the unassisted routes. The barriers for O*- and OH*-assisted C-H activation of CH4 on the Group 8-10 transition metals, however, are higher than those over the bare transition metal surfaces by as much as 1.4 eV. The C-H activation of adsorbed methyl species show very similar trends to those for CH4 despite the differences in structure between the weakly bound methane and the covalently adsorbed methyl intermediates. The activation of the O-H bond of methanol is significantly promoted by O* as well as OH* intermediates over both the Group 11 metals (Cu, Ag, and Au) as well as on all Group 8-10 metals studied (Ru, Rh, Pd, Os, Ir, and Pt). The O*- and OH*-assisted CH3O-H barriers are 0.6 to 2.0 eV lower than unassisted barriers, with the largest differences occurring on Group 11 metals. The higher degree of O*- and OH*-promotion in activating methanol over that in methane and methyl is due to the stronger interaction between the basic O* and OH* sites and the acidic proton in the O-H bond of methanol versus the non-acidic H in the C-H bond of methane. A detailed analysis of the binding energies and the charges for O* and OH* on different metal surfaces indicates that the marked differences in the properties and reactivity of O* and OH* between the Group 11 and Group 8-10 metals is due to the increased negative charge on the O-atoms (in O* as well as OH*) bound to Group 11 metals. The promotional effects of O* and OH* are consistent with a proton-coupled electron transfer and the cooperative role of the metal-O* or metal-OH* pair in carrying out the oxidative addition and reductive deprotonation of the acidic C-H and O-H bonds. Ultimately, the ability of O* or OH* to act as a Brønsted base depends upon its charge, its binding energy on the metal surface (due to shifts in its position during X-H activation), and the acidity of the H-atom being abstracted.
Microwave Spectrum and Structure of the Methane-Propane Complex
NASA Astrophysics Data System (ADS)
Peterson, Karen I.; Lin, Wei; Arsenault, Eric A.; Choi, Yoon Jeong; Novick, Stewart E.
2017-06-01
Methane is exceptional in its solid-phase orientational disorder that persists down to 24 K. Only below that temperature does the structure become partially ordered, and full crystallinity requires even lower temperatures and high pressures. Not surprisingly, methane appears to freely rotate in most van der Waals complexes, although two notable exceptions are CH_4-HF and CH_4-C_5H_5N. Of interest to us is how alkane interactions affect the methane rotation. Except for CH_4-CH_4, rotationally-resolved spectra of alkane-alkane complexes have not been studied. To fill this void, we present the microwave spectrum of CH_4-C_3H_8 which is the smallest alkane complex with a practical dipole moment. The microwave spectrum of CH_4-C_3H_8 was measured using the Fourier Transform microwave spectrometer at Wesleyan University. In the region between 7100 and 25300 MHz, we observed approximately 70 transitions that could plausibly be attributed to the CH_4-C_3H_8 complex (requiring high power and the proper mixture of gases). Of these, 16 were assigned to the A-state (lowest internal rotor state of methane) and four to the F-state. The A-state transitions were fitted with a Watson Hamiltonian using nine spectroscopic constants of which A = 7553.8144(97) MHz, B = 2483.9183(35) MHz, and C = 2041.8630(21) MHz. The A rotational constant is only 1.5 MHz higher than that of Ar-C_3H_8 and, since the a-axis of the complex passes approximately through the centers of mass of the subunits, this indicates a similar relative orientation. Thus, we find that the CH_4 is located above the plane of the propane. The center-of-mass separation of the subunits in CH_4-C_3H_8 is calculated to be 3.993 Å, 0.16 Å longer than the Ar-C_3H_8 distance of 3.825 Å, a reasonable difference considering the larger van der Waals radius of CH_4. The four F-state lines, which were about twice as strong as the A-state lines, could be fitted to A, B, and C rotational constants, and further analysis is in progress.
NASA Astrophysics Data System (ADS)
Hempel, F.; Davies, P. B.; Loffhagen, D.; Mechold, L.; Röpcke, J.
2003-11-01
Tunable infrared diode laser absorption spectroscopy has been used to detect the methyl radical and nine stable molecules, CH4, CH3OH, C2H2, C2H4, C2H6, NH3, HCN, CH2O and C2N2, in H2-Ar-N2 microwave plasmas containing up to 7% of methane or methanol, under both flowing and static conditions. The degree of dissociation of the hydrocarbon precursor molecules varied between 20% and 97%. The methyl radical concentration was found to be in the range 1012-1013 molecules cm-3. By analysing the temporal development of the molecular concentrations under static conditions it was found that HCN and NH3 are the final products of plasma chemical conversion. The fragmentation rates of methane and methanol (RF(CH4) = (2-7) × 1015 molecules J-1, RF(CH3OH) = (6-9) × 1015 molecules J-1) and the respective conversion rates to methane, hydrogen cyanide and ammonia (RCmax(CH4) = 1.2 × 1015 molecules J-1, RCmax(HCN) = 1.3 × 1015 molecules J-1, RCmax(NH3) = 1 × 1014 molecules J-1) have been determined for different hydrogen to nitrogen concentration ratios. An extensive model of the chemical reactions involved in the H2-N2-Ar-CH4 plasma has been developed. Model calculations were performed by including 22 species, 145 chemical reactions and appropriate electron impact dissociation rate coefficients. The results of the model calculations showed satisfactory agreement between calculated and measured concentrations. The most likely main chemical pathways involved in these plasmas are discussed and an appropriate reaction scheme is proposed.
Theoretical survey of the reaction between osmium and acetaldehyde
NASA Astrophysics Data System (ADS)
Dai, Guo-Liang; Wang, Chuan-Feng
2012-05-01
The mechanism of the reaction of osmium atom with acetaldehyde has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/ sdd/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, C-O, and methyl C-H activation. These reactions can lead to four different products (HOsCH3 + CO, OsCO + CH4, OsCOCH3 + H, and OsO + C2H4). The minimum energy reaction path is found to involve the spin inversion in the initial reaction step. This potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.
NASA Astrophysics Data System (ADS)
Sanchez, Nancy P.; Zheng, Chuantao; Ye, Weilin; Czader, Beata; Cohan, Daniel S.; Tittel, Frank K.; Griffin, Robert J.
2018-03-01
The extensive use of natural gas (NG) in urban areas for heating and cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH4 leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CH4 enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH4 emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 μm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH4 and ethane (C2H6) monitoring during a period of over 14 days, corresponding to ∼ 90 h of effective data collection during summer 2016. The sampling campaign covered ∼250 exclusive road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH4 concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH4 and C2H6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH4 concentration episodes. The volumetric fraction of C2H6 in the sources associated with the thermogenic CH4 spikes varied between 2.7 and 5.9%, concurring with the C2H6 content in NG distributed in the GHA. Isolated CH4 peak events with significantly higher C2H6 enhancements (∼11%) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston's thermogenic CH4 sources.
Tanase, Tomoaki; Ukaji, Hirokazu; Igoshi, Toshiaki; Yamamoto, Yasuhiro
1996-07-03
Reactions of the linear triplatinum complex [Pt(3)(&mgr;-dpmp)(2)(XylNC)(2)](2+) (3) with small organic molecules led to formation of asymmetrical A-frame triplatinum complexes with an additional bridge across one of the metal-metal bonds, where dpmp is bis((diphenylphosphino)methyl)phenylphosphine. Reaction of complex 3 with electron deficient alkynes (R(1)C&tbd1;CR(2): R(1) = R(2) = CO(2)Me; R(1) = H, R(2) = CO(2)Me; R(1) = R(2) = CO(2)Et) afforded a new series of triplatinum clusters formulated as [Pt(3)(&mgr;-dpmp)(2)(&mgr;-R(1)CCR(2))(XylNC)(2)](PF(6))(2) (5a, R(1) = R(2) = CO(2)Me; 5b, R(1) = H, R(2) = CO(2)Me; 5c, R(1) = R(2) = CO(2)Et) in good yields. The complex cation of 5b was characterized by X-ray crystallography to have an asymmetrical A-frame structure comprising three Pt atoms bridged by two dpmp ligands, in which an acetylene molecule was inserted into one of the Pt-Pt bonds (triclinic, P&onemacr;, a = 19.507(3) Å, b = 20.327(4) Å, c = 14.499(4) Å, alpha = 107.69(2) degrees, beta = 102.08(2) degrees, gamma = 71.30(1) degrees, V = 5148 Å(3), Z = 2, R = 0.070, and R(w) = 0.084). The Pt-Pt bond length is 2.718(1) Å and the Pt.Pt nonbonded distance is 3.582(1) Å. Treatment of 3 with an excess of HBF(4).Et(2)O gave the asymmetrical cluster [Pt(3)(&mgr;-dpmp)(2)(&mgr;-H)(XylNC)(2)](BF(4))(3).CH(2)Cl(2) (6.CH(2)Cl(2)), in 61% yield, and a similar reaction with p-NO(2)C(6)H(4)NC led to the formation of [Pt(3)(&mgr;-dpmp)(2)(&mgr;-R(3)NC)(XylNC)(2)](PF(6))(2).CH(2)Cl(2) (7.CH(2)Cl(2)) in 94% yield (R(3) = p-NO(2)C(6)H(4)). Complexes 6 and 7 are assumed to have a single atom-bridged, asymmetrical A-frame structures. Reaction of the complex syn-[Pt(2)(&mgr;-dpmp)(2)(XylNC)(2)](2+) (1) with [MCl(2)(cod)] (M = Pt, Pd) gave the dimer-monomer combined trinuclear cluster [Pt(2)MCl(2)(&mgr;-dpmp)(2)(XylNC)(2)](PF(6))(2) (8a, M = Pt, 89%; 8b, M = Pd, 55%). The structure of 8a was determined by X-ray crystallography to be comprised of a metal-metal-bonded diplatinum core and a monomeric platinum center bridged by two dpmp ligands with a face-to-face arrangement (triclinic, P&onemacr;, a = 18.082(7) Å, b = 19.765(6) Å, c = 15.662(4) Å, alpha = 98.51(2) degrees, beta = 94.24(3) degrees, gamma = 109.82(2) degrees, V = 5161 Å(3), Z = 2, R = 0.069, and R(w) = 0.080). The Pt-Pt bond length is 2.681(2) Å and the Pt.Pt nonbonded distance is 3.219(2) Å. The heteronuclear complex 8b was transformed to an A-frame trinuclear cluster, [Pt(2)PdCl(&mgr;-Cl)(&mgr;-dpmp)(2)(XylNC)](PF(6))(2) (9), which was characterized by X-ray crystallography (monoclinic, C2/c, a = 33.750(9) Å, b = 28.289(9) Å, c = 23.845(8) Å, beta = 118.19(4) degrees, V = 20066 Å(3), Z = 8, R = 0.082, and R(w) = 0.077). The diplatinum unit (Pt-Pt = 2.606(2) Å) is connected to the mononuclear Pd center by a chloride bridge (Pt.Pd = 3.103(3) Å, Pt-Cl-Pd = 79.6(3) degrees ).
Wang, Dongmei; Zhao, Tingting; Cao, Yu; Yao, Shuo; Li, Guanghua; Huo, Qisheng; Liu, Yunling
2014-08-14
Two novel MMOFs, JLU-Liu5 and JLU-Liu6, are based on ternary building units and exhibit high adsorption selectivity for CO2, C2H6 and C3H8 over CH4, which is attributed to steric effects and host-guest interactions. These MMOFs are promising materials for gas adsorption and natural gas purification.
Chemistry and spectroscopy of the Jovian atmosphere
NASA Technical Reports Server (NTRS)
Prinn, R. G.; Owen, T.
1976-01-01
A comprehensive review is given of the chemistry and spectroscopic studies of the Jovian atmosphere. Thermochemical equilibrium models for determining atmospheric composition are considered along with possible disequilibrating processes, and studies of the photochemistry of H2, CH4, NH3, H2S, and PH3 using the modeling methods are summarized. It is shown that photodissociation and advection are the major disequilibrating processes in Jupiter's atmosphere, that lightning and charged-particle bombardment are relatively minor factors in the planet's bulk chemistry, and that the existence of living organisms on the planet is highly improbable. Spectroscopic investigations of Jupiter are discussed, emphasizing recent observations of absorption bands due to CH4, NH3, H2, He, and D. Spectroscopic abundance determinations are examined for H2, HD, CH4, CH3D, NH3, C2H6, C2H2, and PH3. Upper limits are given for the abundances of several unobserved gases in the visible atmosphere, including H2S, HCl, SiH4, benzene, purines, pyrimidines, and their derivatives.
NASA Astrophysics Data System (ADS)
Mondal, Suraj; Hazra, Susanta; Sarkar, Sohini; Sasmal, Sujit; Mohanta, Sasankasekhar
2011-10-01
The work in the present investigation reports the syntheses, crystal structures and supramolecular topologies of 11 copper(II)-main group metal ion complexes [Cu IILNa I(NO 3)(H 2O)]·2CH 3CN ( 1), [Cu IILNa I(N 3)(CH 3OH)]·CH 3OH ( 2), [Cu IILNa I(ClO 4)(CH 3CN)]·0.5CH 3CN ( 3), [Cu IILNa I(BF 4)(CH 3OH)]·H 2O ( 4), [{Cu IILNa I(H 2O)} 2(Cu IIL)](BPh 4) 2 ( 5), [Cu IILK I(ClO 4)(CH 3COCH 3)] ( 6), [Cu IILCa II(ClO 4) 2(H 2O)] ( 7), [{Cu IILCa II(NO 3)(μ-NO 3)(H 2O)}(Cu IIL)]·H 2O·CH 3COCH 3 ( 8), [(Cu IIL) 2Ba II(NO 3) 2]·CH 3OH ( 9), [Cu IILPb II(NO 3) 2]·CH 3OH ( 10) and [Cu IILBi III(NO 3) 3]·CH 3COCH 3 ( 11), where H 2L = N, N'- o-phenylenebis(3-ethoxysalicylaldimine). Among these, eight ( 1-4, 6, 7, 10 and 11) are dinuclear compounds, one ( 9) is trinuclear double-decker sandwich compound, one ( 8) is a [2 × 1 + 1 × 1] trimetallic cocrystal of a dinuclear and a mononuclear units and the remaining ( 5) is a [2 × 2 + 1 × 1] pentametallic cocrystal of two dinuclear and one mononuclear units. All the 11 compounds 1-11 contain one or more deprotonated ligand, L 2-, the salen type N 2O 2 compartment of each of which is occupied by a Cu II ion to result in the formation of a [Cu IIL] moiety. On the other hand, the larger and open O(phenoxo) 2O(ethoxy) 2 compartment of the ligand in one or more [Cu IIL] moieties interact (s) with the metal ions Na I ( 1-5)/K I ( 6)/Ca II ( 7 and 8)/Ba II ( 9)/Pb II ( 10)/Bi III ( 11) to produce the title compounds. It has been observed that the neighbouring di/trinuclear units in 1/ 3/ 4/ 6/ 9/ 10/ 11 are self-assembled to one-/two-dimensional topologies as a result of one or more C sbnd H⋯O/O sbnd H⋯O hydrogen bonding interaction (s). Following self-assemblies are observed: one-dimensional in 4, one-dimensional helical in 1, one-dimensional double-chain (ladder) in 3, 6 and 10, two-dimensional in 9 and 11.
NASA Astrophysics Data System (ADS)
Fackler, Keith Boyd, Jr.
The goal of this research is to identify how nitrogen oxide (NO x) emissions and flame stability (blowout) are impacted by the use of fuels that are alternatives to typical pipeline natural gas. The research focuses on lean, premixed combustors that are typically used in state-of-the-art natural gas fueled systems. An idealized laboratory lean premixed combustor, specifically the jet-stirred reactor, is used for experimental data. A series of models, including those featuring detailed fluid dynamics and those focusing on detailed chemistry, are used to interpret the data and understand the underlying chemical kinetic reasons for differences in emissions between the various fuel blends. An ultimate goal is to use these data and interpretive tools to develop a way to predict the emission and stability impacts of changing fuels within practical combustors. All experimental results are obtained from a high intensity, single-jet stirred reactor (JSR). Five fuel categories are studied: (1) pure H 2, (2) process and refinery gas, including combinations of H2, CH4, C2H6, and C3H8, (3) oxygen blown gasified coal/petcoke composed of H2, CO, and CO2, (4) landfill and digester gas composed of CH4, CO2, and N2, and (5) liquified natural gas (LNG)/shale/associated gases composed of CH4, C2H6, and C3 H8. NOx measurements are taken at a nominal combustion temperature of 1800 K, atmospheric pressure, and a reactor residence time of 3 ms. This is done to focus the results on differences caused by fuel chemistry by comparing all fuels at a common temperature, pressure, and residence time. This is one of the few studies in the literature that attempts to remove these effects when studying fuels varying in composition. Additionally, the effects of changing temperature and residence time are investigated for selected fuels. At the nominal temperature and residence time, the experimental and modeling results show the following trends for NOx emissions as a function of fuel type: 1.) NOx emissions decrease with increasing H2 fuel fraction for combustion of CH4/H2 blends. This appears to be caused by a reduction in the amount of NO made by the prompt pathway involving the reaction of N2 with hydrocarbon radicals as the CH4 is replaced by H2. 2.) For category 2 (the process and refinery blend) and category 5 (the LNG, shale, and associated gases), NOx emissions increase with the addition of C2 and C3 hydrocarbons. This could be due to an increased production of free radicals resulting from increasing CO production when higher molecular weight hydrocarbons are broken down. 3.) For category 3 (the O2 blown gasified coal/petcoke), NOx emissions increase with increasing CO fuel fraction. The reason for this is attributed to CO producing more radicals per unit heat release than H2. When CO replaces H2, an increase in NOx emissions is seen due to an increase in the productivity of the N2O, NNH, and Zeldovich pathways. 4.) For category 4 (the landfill gas) the addition of diluents such as CO2 and N2 at constant air flow produces more NOx per kg of CH4 consumed, and N2 is more effective than CO 2 in increasing the NOx emission index. The increase in emission index appears to be due to an enhancement of the prompt NOx pathway as the diluents are added and the mixture moves towards stoichiometric. In addition, the presence of CO2 as a diluent catalyzes the loss of flame radicals, leading to less NOx formation than when an equivalent amount of N2 is used as a diluent. For a selected set of fuels, detailed spacial reactor probing is carried out. At the nominal temperature and residence time, the experimental results show the following trends for flame structure as a function of fuel type: 1.) Pure H2 is far more reactive in comparison to CH4 and all other pure alkane fuels. This results in relatively flat NO x and temperature profiles; whereas, the alkane fuels drop in both temperature and NOx production in the jet, where more fresh reactor feed gases are present. 2.) For category 2 (the Process and Refinery blends), H 2 addition increases reactivity in the jet while decreasing overall NOx emissions. The increased reactivity is especially evident in the CO profiles where the fuels blended with C2H6 and H2 have CO peaks on jet centerline and CO emissions for pure CH 4 peaks slightly off centerline. 3.) For category 3 (the O2 blown gasified coal/petcoke), the temperature profiles for the gasification blend and pure H2 are nearly identical, which is likely due to the high reactivity of H2 dominating the relatively low reactivity of CO. Despite a small temperature difference, the addition of CO causes an increase in NOx production. 4.) For category 4 (the landfill gas), the temperature profiles are virtually indistinguishable. However, the addition of diluent decreases reactivity and spreads out the reaction zone with the CO concentration peaking at 2 mm off of centerline instead of 1 mm. Diluent addition increases NOx production in comparison to pure CH4 for reasons explained above. 5.) For category 5 (the LNG, shale, and associated gases), the temperature profiles are all very similar. The increased reactivity of C2H6 is evident from looking at the CO profiles. Increased C2H6 promotes CO production on jet centerline which is indicative of the hydrocarbon material breaking down earlier in the jet. At temperatures and residence times other than the nominal conditions, the experimental results show the following trends: 1.) The NOx emissions from LPM combustion of pure CH4, H2, C 2H6, and C3H8 are shown to vary linearly with residence time and in an Arrhenius fashion with temperature. This occurs because (1) more reaction time leads to more NOx formation, and (2) NOx formation is a strong, non-linear function of temperature. 2.) The addition of both H2 and C2H6 to a LPM CH4 flame is effective at extending its lean blowout limit. The results of both two and three dimensional CFD simulations are presented to illustrate the general flow, temperature, and species structure within the reactor. Since the two dimensional model is far more computationally efficient, it is employed to study various fuel mixtures with more sophisticated chemical mechanisms. The CFD results from the LPM combustion of H2, H2/CO, and CH4 with NOx formation are presented. A three dimensional CFD simulation is run for LPM CH4 combustion that uses a global CH4 oxidation mechanism. While this model does not predict intermediate radicals and NOx, the CO contours and flow field can be used as guidelines to develop a chemical reactor network (CRN), which can incorporate detailed chemistry. In addition, this model runs quickly enough that it is a good way to initialize the temperature and flow field for simulations that do incorporate more complex chemistry. The two dimensional model is used to illustrate the difference in combustion behavior between the various fuels tested. In particular, it illustrates the geometric locations of the super-equilibrium radical fields and shows where and through which pathways NOx is formed. The pathway breakdowns show good agreement with the CRN modeling results. The main goal of the CFD modeling is to use the results of each model to develop Chemical Reactor Networks, CRNs, that are customized for a particular burner. The CRN can then be used to estimate the impacts due to fuel variation.
Radial Microchannel Reactor (RMR) used in Steam Reforming CH4
2013-05-13
process on land and at sea will reduce CO2 emission and enable cost reductions in the generation of energy in many small market economies. Peter R...size of GTL process on land and at sea will reduce CO2 emission and enable cost reductions in the generation of energy in many small market ...distribution of a 3.3:1 steam-methane mixture at 750 °C and 11 bar is: H2 45.8%, H2O 36.99%, CO 6.365%, CO2 6.681% and CH4 4.14% Barring any coking , this
NASA Astrophysics Data System (ADS)
Parandaman, A.; Sudhakar, G.; Rajakumar, B.
Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.
Hetemi, Dardan; Hazimeh, Hassan; Decorse, Philippe; Galtayries, Anouk; Combellas, Catherine; Kanoufi, Frédéric; Pinson, Jean; Podvorica, Fetah I
2015-05-19
The formation of partial perfluoroalkyl or alkyl radicals from partial perfluoroalkyl or alkyl iodides (ICH2CH2C6F13 and IC6H13) and their reaction with surfaces takes place at low driving force (∼-0.5 V/SCE) when the electrochemical reaction is performed in acetonitrile in the presence of diazonium salts (ArN2(+)), at a potential where the latter is reduced. By comparison to the direct grafting of ICH2CH2C6F13, this corresponds to a gain of ∼2.1 V in the case of 4-nitrobenzenediazonium. Such electrochemical reaction permits the modification of gold surfaces (and also carbon, iron, and copper) with mixed aryl-alkyl groups (Ar = 3-CH3-C6H4, 4-NO2-C6H4, and 4-Br-C6H4, R = C6H13 or (CH2)2-C6F13). These strongly bonded mixed layers are characterized by IRRAS, XPS, ToF-SIMS, ellipsometry, water contact angles, and cyclic voltammetry. The relative proportions of grafted aryl and alkyl groups can be varied along with the relative concentrations of diazonium and iodide components in the grafting solution. The formation of the films is assigned to the reaction of aryl and alkyl radicals on the surface and on the first grafted layer. The former is obtained from the electrochemical reduction of the diazonium salt; the latter results from the abstraction of an iodine atom by the aryl radical. The mechanism involved in the growth of the film provides an example of complex surface radical chemistry.
Kelly, Mark W; Richley, James C; Western, Colin M; Ashfold, Michael N R; Mankelevich, Yuri A
2012-09-27
Microwave (MW)-activated CH(4)/CO(2)/H(2) gas mixtures operating under conditions relevant to diamond chemical vapor deposition (i.e., X(C/Σ) = X(elem)(C)/(X(elem)(C) + X(elem)(O)) ≈ 0.5, H(2) mole fraction = 0.3, pressure, p = 150 Torr, and input power, P = 1 kW) have been explored in detail by a combination of spatially resolved absorption measurements (of CH, C(2)(a), and OH radicals and H(n = 2) atoms) within the hot plasma region and companion 2-dimensional modeling of the plasma. CO and H(2) are identified as the dominant species in the plasma core. The lower thermal conductivity of such a mixture (cf. the H(2)-rich plasmas used in most diamond chemical vapor deposition) accounts for the finding that CH(4)/CO(2)/H(2) plasmas can yield similar maximal gas temperatures and diamond growth rates at lower input powers than traditional CH(4)/H(2) plasmas. The plasma chemistry and composition is seen to switch upon changing from oxygen-rich (X(C/Σ) < 0.5) to carbon-rich (X(C/Σ) > 0.5) source gas mixtures and, by comparing CH(4)/CO(2)/H(2) (X(C/Σ) = 0.5) and CO/H(2) plasmas, to be sensitive to the choice of source gas (by virtue of the different prevailing gas activation mechanisms), in contrast to C/H process gas mixtures. CH(3) radicals are identified as the most abundant C(1)H(x) [x = 0-3] species near the growing diamond surface within the process window for successful diamond growth (X(C/Σ) ≈ 0.5-0.54) identified by Bachmann et al. (Diamond Relat. Mater.1991, 1, 1). This, and the findings of similar maximal gas temperatures (T(gas) ~2800-3000 K) and H atom mole fractions (X(H)~5-10%) to those found in MW-activated C/H plasmas, points to the prevalence of similar CH(3) radical based diamond growth mechanisms in both C/H and C/H/O plasmas.
Organic Polymers with Magneto-Dielectric Properties
2007-03-28
bromination and Suzuki coupling, S = I aminyl diradical 2 was cleanly obtained (Figure 6). The magnetic studies and EPR spectroscopy show S I ground state with...polybenzoxazines, derived from 3,4-dihydro-2H- 1,3- 4 benzoxazines, are thermosetting resins for polymer composites with superior mechanical, flame ... retardant , and superhydrophobic properties, including aerospace applications.) FR= CH:, or (cIH2)11cH3 Y. Z = selected combinations of H. alkyl, aryl R
NASA Astrophysics Data System (ADS)
Burruss, R. C.; Laughrey, C. D.
2006-05-01
The generation of abiogenic methane by serpentinization or by graphite-water reactions in high-grade metamorphic rocks is well documented by isotopic, fluid inclusion, and petrographic studies. However, geochemical evidence is equivocal for abiogenic generation of higher hydrocarbon gases (ethane through pentane) in economic resources. Thermogenic hydrocarbon gases, generated by thermal cracking of sedimentary organic matter of biological origin, are progressively enriched in 13C as a function of increasing number of carbon atoms in the molecule. The isotopic composition is controlled by the kinetic isotope effect (KIE) during carbon-carbon bond breaking with the largest KIE for methane. Published work on gases in Precambrian rocks in Canada and South Africa suggest that some were generated by abiogenic Fischer-Tropsch type reactions that produced gases with carbon isotopic compositions that are reversed from the thermogenic trend. We have documented reversed isotopic compositions in natural gas accumulations in lower Paleozoic reservoirs of the Appalachian basin regionally from West Virginia and eastern Ohio through Pennsylvania to central New York. The regional accumulation in lower Silurian age strata shows progressive enhancement of the isotopic reversal with increasing depth in the basin. Multivariate analysis of the molecular and isotopic data define an end-member in the deep basin with an approximate composition of 98 mol % CH4, 1-2 mol % C2H6, << 1 mol % C3H8, and δ13C (CH4) = -27 ‰, δ13C (C2H6) = -40 ‰, δ13C (C3H8) = - 41‰. The nominal similarity of isotopic reversals in the gases from Precambrian rocks to those in the lower Paleozoic rocks of the Appalachian basin suggests that abiogenic F-T reactions may have generated some fraction of the gases in the deep basin. Comparison of molecular and hydrogen isotopic compositions show that the gases of putative abiogenic F-T origin are significantly different from Appalachian basin gases. All the Precambrian gases have extremely light hydrogen isotopic compositions of CH4 (δ2H < -300‰) and are depleted in CH4 (Canada gases C1/C2+ < 10, S. Africa gases C1/C2+ < 60) compared to gases in lower Paleozoic reservoirs of the Appalachian basin (δ2H (CH4) > -150‰, C1/C2+ up to 220). New isotopic studies of gas accumulations, gases in fluid inclusions, and of sedimentary organic matter in the Appalachian basin are in progress to constrain the possible contribution of abiogenic hydrocarbon generation to gas accumulations in this basin.
Wu, Zhi-Chen; Guo, Qing-Hui; Wang, Mei-Xiang
2017-06-12
Corona[5]arenes, a novel type of macrocyclic compound that is composed of alternating heteroatoms and para-arylenes, were synthesized efficiently by two distinct methods. In a macrocycle-to-macrocycle transformation approach, S 6 -corona[3]arene[3]tetrazine underwent sequential S N Ar reactions with HS-C 6 H 4 -X-C 6 H 4 -SH (X=S, CH 2 , CMe 2 , SO 2 , and O) to produce the corresponding corona[3]arene[2]tetrazines. Different corona[3]arene[2]tetrazine compounds were also constructed in a straightforward manner by a one-pot three-component reaction of HS-C 6 H 4 -X-C 6 H 4 -SH (X=S, CH 2 , CMe 2 , SO 2 , and O) with diethyl 2,5-dimercaptoterephthalate and 2 equiv of 3,6-dichlorotetrazine under very mild conditions. All corona[5]arenes adopted 1,2,4-alternate conformational structures in the crystalline state yielding similar nearly regular pentagonal cavities. Both the cavity size and the electronic property of the acquired macrocycles were fine-tuned by the nature of the bridging element X. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangavelu, Sonia G.; Butcher, Ray J.; Cahill, Christopher L.
Thiophene 2,5-dicarboxylic acid (TDC) was reacted with uranyl acetate dihydrate and one (or none) of six N-donor chelating ligands (2,2'-bipyridine (BPY), 4,4'-dimethyl-2,2'-bipyridine (4-MeBPY), 5,5'-dimethyl-2,2'-bipyridine (5-MeBPY), 6,6'-dimethyl-2,2'-bipyridine (6-MeBPY), 4,4',6,6'-tetramethyl-2,2'-bipyridine (4,6-MeBPY), and tetrakis(2-pyridyl)pyrazine (TPPZ) to result in the crystallization of seven uranyl coordination polymers, which were characterized by their crystal structures and luminescence properties. The seven coordination polymers, Na2[(UO2)2(C6H2O4S)3]·4H2O (1), [(UO2)4(C6H2O4S)5(C10H8N2)2]·C10H10N2·3H2O (2), [(UO2)(C6H2O4S)(C12H12N3)] (3), [(UO2)(C6H2O4S)(C12H12N3)]·H2O (4), [(UO2)2(C6H2O4S)3]·(C12H14N2)·5H2O (5), [(UO2)3(CH3CO2)(C6H2O4S)4](C14H17N2)3·(C14H16N2)·H2O (6), and [(UO2)2(C6H2O4S)3](C24H18N6) (7), consist of either uranyl hexagonal bipyramidal or pentagonal bipyramidal coordination geometries. In all structures, structural variations in the local and global structures of 1–7 are influenced by the positionsmore » (or number) of methyl groups or pyridyl rings on the N-donor species, thus resulting in a wide diversity of structures ranging from single chains, double chains, or 2-D sheets. Direct coordination of N-donor ligands to uranyl centers is observed in the chain structures of 2–4 using BPY, 4-MeBPY, and 5-MeBPY, whereas the N-donor species participate as guests (as either neutral or charge balancing species) in the chain and sheet structures of 5–7 using 6-MeBPY, 4,6-MeBPY, and TPPZ, respectively. Compound 1 is the only structure that does not contain any N-donor ligands and thus crystallizes as a 2-D interpenetrating sheet. The luminescent properties of 1–7 are influenced by the direct coordination or noncoordination of N-donor species to uranyl centers. Compounds 2–4 exhibit typical UO22+ emission upon direct coordination of N-donors, but its absence is observed in 1, 5, 6, and 7, when N-donor species participate as guest molecules. These results suggest that direct coordination of N-donor ligands participate as chromophores, thus resulting in possible UO22+ sensitization. The lack of emission in 1, 5, 6, and 7 may be explained by the extended conjugation of the TDC ligands within their structures.« less
Stěpnička, Petr; Císařová, Ivana
2013-03-14
The reduction of ferrocene phosphino-aldehydes, R(2)PfcCHO (R = Ph, 2; Cy, 3; fc = ferrocene-1,1'-diyl, Cy = cyclohexyl) and (S(p))-[Fe(η(5)-C(5)H(3)-1-CHO-2-PPh(2))(η(5)-C(5)H(5))] ((S(p))-4), with BH(3)·THF or BH(3)·SMe(2) in THF at 0 °C selectively afforded the corresponding phosphinoalcohol-borane adducts, R(2)PfcCH(2)OH·BH(3) (R = Ph, 5; Cy, 6) and (S(p))-[Fe(η(5)-C(5)H(3)-1-CH(2)OH-2-PPh(2))(η(5)-C(5)H(5))]·BH(3) ((S(p))-7), in quantitative yields. In contrast, the reactions performed at elevated temperatures favoured the formation of methyl derivatives (e.g., Ph(2)PfcCH(3)·BH(3) (8)) resulting from overreduction (deoxygenation). The crystal structures of 3, 5, (S(p))-7, 8 and Cy(2)PfcBr (9) have been determined by single-crystal X-ray diffraction analysis. The crystal assemblies of adducts 5 and (S(p))-7 are built up by means of C-H...O contacts, O-H...HB dihydrogen bonds and other soft interactions but, surprisingly, not via the conventional O-H...O hydrogen bonds. Adduct 5 was smoothly deprotected to give the corresponding free phosphine, Ph(2)PfcCH(2)OH (1), and was further used for the preparation of a hybrid phosphinoether ligand, Ph(2)PfcCH(2)OMe (11). The latter compound was studied as a donor for Group 8-10 metal ions and for Cu(i), whereupon the following complexes were isolated and structurally characterised: [(η(6)-p-cymene)RuCl(2)(11-κP)] (12*), [(η(6)-p-cymene)RuCl(11-κP)(MeCN)][SbF(6)] (13*), [RhCl(cod)(11-κP)] (cod = η(2):η(2)-cycloocta-1,5-diene; 14), trans-[PdCl(2)(11-κP)(2)] (trans-15*), [PdCl(μ-Cl)(11-κP)](2) (16*), cis- and trans-[PtCl(2)(11-κP)(2)] (cis-17 and trans-17*), and [Cu(CF(3)SO(3)-κO)(11-κP)(H(2)O)] (18) (the asterisk indicates that the crystal structure was determined). In all these compounds, ligand 11 behaves as a P-monodentate donor while its ether group remains uncoordinated. This probably reflects structural flexibility of 11 resulting from the presence of the methylene linker and also distinguishes 11 from its known, non-spaced analogue Ph(2)PfcOMe.
NASA Astrophysics Data System (ADS)
Fan, Liming; Zhang, Yujuan; Wang, Jiang; Zhao, Li; Wang, Xiaoqing; Hu, Tuoping; Zhang, Xiutang
2018-04-01
Two 3D modular designed coordination polymers, namely, {[H2N(CH3)2]2[Mn(TPT)]}n (1), and {[Cd(TPT)0.5(bib)]·0.5H2O}n (2) (H4TPT = p-terphenyl-2,2″,5″,5‴-tetracarboxylate acid, and bib = 1,3-bis((imidazol-1-yl) benzene) have been synthesized and structural characterized by EA, IR, TG, PXRD. Single-crystal X-ray diffraction analyses reveal that complex 1 is a 3D 4-connected {42.63.8}-sra net with the tiling modular being [42.62.82] = [4a.4b.62.8a.8b] (transitivity is 2451). While complex 2 is a 3D (4,4)-connected {64.82}{66}2-bbf net with tiling modular is [6.82]+[63.8] = [6 c.8a.8b]+[6a.6b.6 c.8a] (transitivity is 2352). The variable-temperature susceptibility of 1 has been investigated. Besides, complex 2 exhibits highly sensitive sensing of FeIII ions in DMF solution.
Lee, Lucia M; Corless, Victoria B; Tran, Michael; Jenkins, Hilary; Britten, James F; Vargas-Baca, Ignacio
2016-02-28
Despite their versatility, the application of telluradiazoles as supramolecular building blocks is considerably constrained by their sensitivity to moisture. Albeit more robust, their selenium analogues form weaker supramolecular interactions. These, however, are enhanced when one nitrogen atom is bonded to an alkyl group. Here we investigate general methods for the synthesis of such derivatives. Methyl, iso-propyl and tert-butyl benzo-2,1,3-selenadiazolium cations were prepared by direct alkylation or cyclo-condensation of the alkyl-phenylenediamine with selenous acid. While the former reaction only proceeds with the primary and tertiary alkyl iodides, the latter is very efficient. Difficulties reported in earlier literature are attributable to the formation of adducts of benzoselenadiazole with its alkylated cations and side reactions initiated by aerobic oxidation of iodide. However, the cations themselves are resilient to oxidation and stable in acidic to neutral aqueous medium. X-ray crystallography was used in the identification and characterization of the following compounds: [C6H4N2(R)Se](+)X(-), (R = CH(CH3)2, C(CH3)3; X = I(-), I3(-)], [C6H4N2(CH3)Se](+)I(-), and [C6H4N2Se][C6H4N2(CH3)Se]2I2. Formation of SeN secondary bonding interactions (chalcogen bonds) was only observed in the last structure as anion binding to selenium is a strong competitor. The relative strengths of those forces and the structural preferences they enforce were assessed with DFT-D3 calculations supplemented by AIM analysis of the electron density.
Objective Cough Frequency, Airway Inflammation, and Disease Control in Asthma.
Marsden, Paul A; Satia, Imran; Ibrahim, Baharudin; Woodcock, Ashley; Yates, Lucy; Donnelly, Iona; Jolly, Lisa; Thomson, Neil C; Fowler, Stephen J; Smith, Jaclyn A
2016-06-01
Cough is recognized as an important troublesome symptom in the diagnosis and monitoring of asthma. Asthma control is thought to be determined by the degree of airway inflammation and hyperresponsiveness but how these factors relate to cough frequency is unclear. The goal of this study was to investigate the relationships between objective cough frequency, disease control, airflow obstruction, and airway inflammation in asthma. Participants with asthma underwent 24-h ambulatory cough monitoring and assessment of exhaled nitric oxide, spirometry, methacholine challenge, and sputum induction (cell counts and inflammatory mediator levels). Asthma control was assessed by using the Global Initiative for Asthma (GINA) classification and the Asthma Control Questionnaire (ACQ). The number of cough sounds was manually counted and expressed as coughs per hour (c/h). Eighty-nine subjects with asthma (mean ± SD age, 57 ± 12 years; 57% female) were recruited. According to GINA criteria, 18 (20.2%) patients were classified as controlled, 39 (43.8%) partly controlled, and 32 (36%) uncontrolled; the median ACQ score was 1 (range, 0.0-4.4). The 6-item ACQ correlated with 24-h cough frequency (r = 0.40; P < .001), and patients with uncontrolled asthma (per GINA criteria) had higher median 24-h cough frequency (4.2 c/h; range, 0.3-27.6) compared with partially controlled asthma (1.8 c/h; range, 0.2-25.3; P = .01) and controlled asthma (1.7 c/h; range, 0.3-6.7; P = .002). Measures of airway inflammation were not significantly different between GINA categories and were not correlated with ACQ. In multivariate analyses, increasing cough frequency and worsening FEV1 independently predicted measures of asthma control. Ambulatory cough frequency monitoring provides an objective assessment of asthma symptoms that correlates with standard measures of asthma control but not airflow obstruction or airway inflammation. Moreover, cough frequency and airflow obstruction represent independent dimensions of asthma control. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Calculation and synthesis of ZrC by CVD from ZrCl4-C3H6-H2-Ar system with high H2 percentage
NASA Astrophysics Data System (ADS)
Zhu, Yan; Cheng, Laifei; Ma, Baisheng; Gao, Shuang; Feng, Wei; Liu, Yongsheng; Zhang, Litong
2015-03-01
A thermodynamic calculation about the synthesis of ZrC from the ZrCl4-C3H6-H2-Ar system with high percentage of H2 was performed using the FactSage thermochemical software. According to the calculation, ZrC coating was synthesized on graphite substrates and carbon fibers by a low pressure chemical vapor deposition (LPCVD) process, and growth rate of the ZrC coating as a function of temperature was investigated. The surface diagrams of condensed-phases in this system were expressed as the functions of the deposition temperature, total pressure and reactant ratios of ZrCl4/(ZrCl4 + C3H6), H2/(ZrCl4 + C3H6), and the yield of the products was determined by the diagrams. A smooth and dense ZrC coating could be synthesized under the instruction of the calculated parameters. The morphologies of the ZrC coatings were significantly affected by temperature and gases flux. The deposition temperature is much lower than that from the ZrCl4-CH4-H2-Ar system.
NASA Astrophysics Data System (ADS)
Keane, Thomas Christopher
1995-01-01
The existence of hydrogen cyanide (HCN) in the highly reducing atmosphere of Jupiter was a surprising discovery (Tokunaga et al., 1981). Previous studies that tested the theoretical proposal of Kaye and Strobel (1983a) that the HCN observed on Jupiter is the result of NH _3 photolysis in the presence of C _2H_2 established that acetonitrile (CH_3CN) and acetaldazine (CH _3CH=NN=CHCH_3) are important intermediates in HCN formation (Ferris and Ishikawa, 1988). In this study the rates of formation of these compounds, and of other recently detected intermediates, have been determined in static photolysis experiments at 296 K and at temperatures which are closer to those found in the Jovian atmosphere. Experiments were also performed, using a photochemical flow reactor, that allowed for a better approximation of the mixing ratios of reactant gases (8 times 10^{ -4} for NH_3 and 1 times 10^{-5} for C_2H_2) and the process of advection in the Jovian atmosphere. An overall reaction pathway for HCN formation is proposed. Major intermediates and products found in these laboratory simulations that have not yet been observed on Jupiter are acetonitrile (CH_3CN), acetaldazine (CH_3CH=NN=CHCH _3), acetaldehyde hydrazone (CH_3 CH=NNH_2), N-ethylethylideneimine (CH_3CH=NC_2H _5), ethylamine (C_2H _5NH_2) and methylamine (CH _3NH_2). HCN is formed by the photolysis of NH_3/C _2H_2 mixtures (40:5 torr) at 296 K and at low temperature (208 K, 195 K and 180 K) with the highest quantum efficiency for HCN formation observed at 180 K. In static experiments using a high partial pressure of H_2 the quantum yield for HCN formation decreased three-fold relative to the 296 K photolyses when no H_2 was used. An additional ten-fold decrease in the quantum yield for HCN formation occurred when using the flow system. The quantum yields for acetaldazine and acetaldehyde hydrazone formation were found to vary inversely to that for HCN formation. For those static experiments which best simulate Jovian reaction conditions (H_2: NH_3 : C_2H_2 = 600: 7.5: 5 torr, 180 K) the following products and their quantum yields for formation were obtained: C_2H_4 (0.129), CH_3 CH=NN=CHCH_3 (0.079), CH _3CH=NNH_2 (0.049), C_2H_5NH_2 (0.038), CH_3NH_2 (0.003), CH_3CN (0.002), HCN (0.001) and CH_3CH=NC _2H_5 (0.001).
Mechanism of cyanoacetylene photochemistry at 185 and 254 nm
NASA Technical Reports Server (NTRS)
Clarke, D. W.; Ferris, J. P.
1996-01-01
The role of cyanoacetylene (HC3N) in the atmospheric photochemistry of Titan and its relevance to polymer formation are discussed. Investigation of the relative light absorption of HC3N, acetylene (C2H2), and diacetylene (C4H2) revealed that HC3N is an important absorber of UV light in the 205- to 225-nanometer wavelength region in Titan's polar regions. Laboratory studies established that photolysis of C2H2 initiates the polymerization of HC3N even though the HC3N is not absorbing the UV light. Quantum yield measurements establish that HC3N is 2-5 times as reactive as C2H2 for polymer formation. Photolysis of HC3N with 185-nanometer light in the presence of N2, H2, Ar, or CF4 results in a decrease in the yield of 1,3,5-tricyanobenzene (1,3,5-tcb), while photolysis in the presence of CH4, C2H6, or n-C4H10 results in an increase in 1,3,5-tcb. The rate of loss of HC3N is increased by all gases except H2, where it is unchanged. It was not possible to detect 1,3,5-tcb as a photoproduct when the partial pressure of HC3N was decreased to 1 torr. Photolysis of HC3N with 254-nanometer light in the presence of H2 or N2 results in the formation of 1,2,4-tcb, while photolysis in the presence of CH4, C2H6, or n-C4H10 results in the formation of increasing amounts of 1,3,5-tcb. Mechanisms for the formation of polymers are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: chaus@yandex.ru; Zakirova, R. M.
2016-03-15
Nitrilotris(methylenephosphonato)triaquanickel and tetrasodium nitrilotris(methylenephosphonato) aquanickelate undecahydrate were synthesized and characterized. The crystal of [Ni(H{sub 2}O){sub 3}N(CH{sub 2}PO{sub 3}H){sub 3}] is composed of linear coordination polymers and belongs to sp. gr. P2{sub 1}/c, Z = 4, a = 9.17120(10) Å, b = 16.05700(10) Å, c = 9.70890(10) Å, β = 115.830(2)°. The Ni atom is in an octahedral coordination formed by two oxygen atoms of one phosphonate ligand, one oxygen atom of another ligand molecule, and three water molecules in a meridional configuration. The crystal of Na{sub 4}[Ni(H{sub 2}O)N(CH{sub 2}PO{sub 3}){sub 3}] ∙ 11H{sub 2}O has an island dimeric chelate structuremore » and belongs to sp. gr. C2/c, Z = 8, a = 18.7152(2) Å, b = 12.05510(10) Å, c = 21.1266(2) Å, β = 104.4960(10)°. The Ni atom has a slightly distorted octahedral coordination involving one nitrogen atom and closes three five-membered N–C–P–O–Ni rings sharing the Ni–N bond.« less
1957-12-31
4 99 2 1 90"i• 2 86 4 4 123 These results can be explained as follows. In each of the cycles listed 30 g of monomer were used in 270 g of solvent. In...ol 0; .40 IN 4 - 1 0 ’’ (0 H - 4 ~-G Z2 P WN r- 4 2 ,W\\ I qO 0 1 . 1 1 ) ý2 I % -* H q, 4 - -H o0 0~- :C.) 0 0 o t! 0 0H 0np~ 4 )J~ C)H 4 -3C C C) u 8. *C...NITROGEN CO1POUNDSi A simplification of the present synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buragohain, Amlan; Couck, Sarah; Van Der Voort, Pascal
Four existing and three new functionalized chromium terephthalates having MIL-101 topology and denoted as Cr-MIL-101-X (existing ones with X=–F, 1-F; –Cl, 2-Cl; –Br, 3-Br; –CH{sub 3}, 4-CH{sub 3}; new ones with X=–C{sub 6}H{sub 4}, 5-C{sub 6}H{sub 4}; –F{sub 2}, 6-F{sub 2}, –(CH{sub 3}){sub 2}, 7-(CH{sub 3}){sub 2}) were synthesized under hydrothermal conditions. All the materials except 5-C{sub 6}H{sub 4} could be prepared by a general synthetic route, in which the mixtures of CrO{sub 3}, H{sub 2}BDC-X (BDC=1,4-benzenedicarboxylate) linkers, conc. HCl and water with a molar ratio of 1:1:3.9:222.2 were reacted at 180 °C for 144 h. Compared to the 144more » h of synthesis time, three of the compounds, namely 1-Cl, 2-Br and 5-C{sub 6}H{sub 4}, could be prepared in much shorter reaction times (12–18 h at 180–210 °C). The materials possess high thermal stability up to 270–300 °C in an air atmosphere. The activated compounds exhibit significant porosity (S{sub BET} range: 1273–2135 m{sup 2} g{sup −1}). At 0 °C and 1 bar, the CO{sub 2} adsorption capacities of the compounds fall in the 1.7–2.9 mmol g{sup −1} range. Compounds 1-F and 6-F{sub 2} showed enhanced CO{sub 2} uptake values compared to parent Cr-MIL-101. The benzene adsorption capacities of the compounds lie in the range of 66.2–139.5 molecules per unit cell at 50 °C and p/p{sub 0}=0.35. The increased benzene uptake value of 1-F compared to un-functionalized Cr-MIL-101 and 4-CH{sub 3} suggests that the fluorination has induced more hydrophobicity in Cr-MIL-101 as compared to the methylation. - Graphical abstract: Benzene adsorption by seven functionalized Cr-MIL-101-X metal-organic framework (MOF) materials Display Omitted - Highlights: • Seven functionalized Cr-MIL-101-X materials were synthesized solvothermally. • All Cr-MIL-101-X materials exhibited high thermal stability up to 270–300 °C in air. • All Cr-MIL-101-X compounds displayed considerable porosity towards N{sub 2}, CO{sub 2} and benzene. • Mono- and di-fluorinated Cr-MIL-101 materials showed enhanced CO{sub 2} adsorption capacities. • Cr-MIL-101-F adsorbed more benzene than non- and methyl-functionalized Cr-MIL-101.« less
Mechanism of pyranopterin ring formation in molybdenum cofactor biosynthesis
Hover, Bradley M.; Tonthat, Nam K.; Schumacher, Maria A.; ...
2015-05-04
The molybdenum cofactor (Moco) is essential for all kingdoms of life, plays central roles in various biological processes, and must be biosynthesized de novo. During Moco biosynthesis, the characteristic pyranopterin ring is constructed by a complex rearrangement of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin (cPMP) through the action of two enzymes, MoaA and MoaC (molybdenum cofactor biosynthesis protein A and C, respectively). Conventionally, MoaA was considered to catalyze the majority of this transformation, with MoaC playing little or no role in the pyranopterin formation. Recently, this view was challenged by the isolation of 3',8-cyclo-7,8-dihydro-guanosine 5'-triphosphate (3',8-cH 2GTP) as the productmore » of in vitro MoaA reactions. To elucidate the mechanism of formation of Moco pyranopterin backbone, in this paper we performed biochemical characterization of 3',8-cH 2GTP and functional and X-ray crystallographic characterizations of MoaC. These studies revealed that 3',8-cH 2GTP is the only product of MoaA that can be converted to cPMP by MoaC. Our structural studies captured the specific binding of 3',8-cH 2GTP in the active site of MoaC. These observations provided strong evidence that the physiological function of MoaA is the conversion of GTP to 3',8-cH 2GTP (GTP 3',8-cyclase), and that of MoaC is to catalyze the rearrangement of 3',8-cH 2GTP into cPMP (cPMP synthase). Furthermore, our structure-guided studies suggest that MoaC catalysis involves the dynamic motions of enzyme active-site loops as a way to control the timing of interaction between the reaction intermediates and catalytically essential amino acid residues. In conclusion, these results reveal the previously unidentified mechanism behind Moco biosynthesis and provide mechanistic and structural insights into how enzymes catalyze complex rearrangement reactions.« less
NASA Technical Reports Server (NTRS)
DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Mumma, M. J.
2012-01-01
Infrared spectra of Comet 2lP/Giacobini-Zinner (hereafter 2IP/GZ) were obtained using NIRSPEC at Keck II on UT 2005 June 03, approximately one month before perihelion, that simultaneously measured H2O, C2H6, and CH3OH. For H2O, the production rate of 3.8 x 10(exp 28) molecules / S was consistent with that measured during other apparitions of 21P/GZ retrieved from optical, infrared, and mm-wavelength observations. The water analysis also provided values for rotational temperature (T(sub rot) = 55(epx +3) /-.2 K) and the abundance ratio of ortho- and para-water (3.00 +/-0.15, implying a spin temperature exceeding 50 K). Six Q-branches in the V7 band of C2H6 provided a production rate (5.27 +/- 0.90 x 10(exp 25)/S) that corresponded to an abundance ratio of 0.139 +/- 0.024 % relative to H2O, confirming the previously reported strong depletion of C2H6 from IR observations during the 1998 apparition, and in qualitative agreement with the depletion in C2 known from optical studies. For CH30H, we applied our recently published ab initia model for the v3 band to obtain a rotational temperature (48(exp + 10) / -7 K) consistent with that obtained for H2O. In addition we applied a newly developed empirical model for the CH30H v2 band, and obtained a production rate consistent with that obtained from the v3 band. Combining results from both v2 and v3 bands provided a production rate (47.5 +/- 4.4 x 10(exp 25) / S) that corresponded to an abundance ratio of 1.25 +/- 0.12 % relative to H2O in 21P/GZ. Our study provides the first measure of primary volatile production rates for any Jupiter family comet over multiple apparitions using high resolution IR spectroscopy.
NASA Astrophysics Data System (ADS)
van den Berg, Klaas Jan; Ingemann, Steen; Nibbering, Nico M. M.
1994-06-01
The gas-phase reactions of the O- ion with ([eta]5-cyclopentadienyl)tricarbonylmanganese(I), CpMn(CO)3, and ([eta]5-methylcyclopentadienyl)tricarbonylmanganese(I), CH3CpMn(CO)3, have been studied with Fourier transform ion cyclotron resonance. The main reactions are (i) proton abstraction, (ii) loss of CO2, and (iii) expulsion of two or three CO molecules from the collision complex. Initial attack on a CO ligand is the main process as indicated by experiments with 18O- and the ion/molecule reactions of the product ions resulting from the loss of three CO molecules with water, aliphatic alcohols, methanethiol and SO2. The attack on a CO ligand followed by loss of three CO molecules is suggested to yield C5H5MnO- ions with a (cyclopentadienone)MnH- structure in the reaction with CpMn(CO)3 and (methylcyclopentadienone)MnH- ions if CH3CpMn(CO)3 is the substrate. A possible mechanism for the process leading to the indicated transformation of the Cp and CH3Cp ligands into C5H4O and CH3C5H3O ligands, respectively, is discussed together with the formation of (fulvene)Mn(OH)- ions following attack of O- on CH3CpMn(CO)3. The (cyclopentadienone)MnH- and (methylcyclopentadienone)MnH- ions react with N2O by oxygen atom abstraction to form C5H5MnO-2 and C6H7MnO-2 ions, respectively.
Anion exchange polymer electrolytes
Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo
2013-07-23
Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.
Transition metal-free olefin polymerization catalyst
Sen, Ayusman; Wojcinski, II, Louis M.; Liu, Shengsheng
2001-01-01
Ethylene and/or propylene are polymerized to form high molecular weight, linear polymers by contacting ethylene and/or propylene monomer, in the presence of an inert reaction medium, with a catalyst system which consists essentially of (1) an aluminum alkyl component, such as trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-octylaluminum and diethylaluminum hydride and (2) a Lewis acid or Lewis acid derivative component, such as B (C.sub.6 F.sub.5).sub.3, [(CH.sub.3).sub.2 N (H) (C.sub.6 H.sub.5)].sup.+ [B (C.sub.6 F.sub.5)4].sup.-, [(C.sub.2 H.sub.5).sub.3 NH].sup.+ [B C.sub.6 F.sub.5).sub.4 ],.sup.-, [C(C.sub.6 F.sub.5).sub.3 ].sup.+ [B(C.sub.6 F.sub.5).sub.4 ].sup.-, (C.sub.2 H.sub.5).sub.2 Al(OCH.sub.3), (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butyl-4-methylphenoxide), (C.sub.2 H.sub.5)Al(2,6 -di-t-butylphenoxide).sub.2, (C.sub.2 H.sub.5).sub.2 Al(2,6-di-t-butylphonoxide) , 2,6 -di-t-butylphenol.multidot.methylaluminoxane or an alkylaluminoxane, and which may be completely free any transition metal component(s).
INFRARED STUDY OF UV/EUV IRRADIATION OF NAPHTHALENE IN
NASA Astrophysics Data System (ADS)
Chen, Y.-J.; Nuevo, M.; Yeh, F.-C.; Yih, T.-S.; Sun, W.-H.; Ip, W.-H.; Fung, H.-S.; Lee, Y.-Y.; Wu, C.-Y. R.
We have carried out photon irradiation study of naphthalene (C10H8), the smallest polycyclic aromatic hydrocarbon (PAH) in water and ammonia ice mixtures. Photons provided by a synchrotron radiation light source in two broad-band energy ranges in the ultraviolet/near extreme ultraviolet (4-20 eV) and the extreme ultraviolet (13-45 eV) ranges were used for the irradiation of H2O+NH3+C10H8 = 1:1:1 ice mixtures at 15K. We could identify several photo-products, namely CH4, C2H6, C3H8, CO, CO2, HNCO, OCN-, and probably quinoline (C9H7N) and phenanthridine (C13H9N). We found that the light hydrocarbons are preferably produced for the ice mixture subjected to 4-20 eV photons. However, the production yields of CO, CO2, and OCN- species seem to be higher for the mixture subjected to EUV photons (13-45 eV). Therefore, naphthalene and its photo-products appear to be more efficiently destroyed when high energy photons (E > 20 eV) are used. This has important consequences on the photochemical evolution of PAHs in astrophysical environments.
NASA Technical Reports Server (NTRS)
Bartlett, Karen B.; Sachse, Glen W.; Slate, Thomas; Harward, Charles; Blake, Donald R.
2003-01-01
Methane (CH4) mixing ratios in the northern Pacific Basin were sampled from two aircraft during the TRACE-P mission (Transport and Chemical Evolution over the Pacific) from late February through early April 2001 using a tunable diode laser system. Described in more detail by Jacob et al., the mission was designed to characterize Asian outflow to the Pacific, determine its chemical evolution, and assess changes to the atmosphere resulting from the rapid industrialization and increased energy usage on the Asian continent. The high-resolution, high-precision data set of roughly 13,800 CH4 measurements ranged between 1602 ppbv in stratospherically influenced air and 2149 ppbv in highly polluted air. Overall, CH4 mixing ratios were highly correlated with a variety of other trace gases characteristic of a mix of anthropogenic industrial and combustion sources and were strikingly correlated with ethane (C2H6) in particular. Averages with latitude in the near-surface (0-2 km) show that CH4 was elevated well above background levels north of 15 deg N close to the Asian continent. In the central and eastern Pacific, levels of CH4 were lower as continental inputs were mixed horizontally and vertically during transport. Overall, the correlation between CH4 and other hydrocarbons such as ethane (C2H6), ethyne (C2H2), and propane (C3H8) as well as the urban/industrial tracer perchloroethene (C2Cl4), suggests that for CH4 colocated sources such as landfills, wastewater treatment, and fossil fuel use associated with urban areas dominate regional inputs at this time. Comparisons between measurements made during TRACE-P and those of PEM-West B, flown during roughly the same time of year and under a similar meteorological setting 7 years earlier, suggest that although the TRACE-P CH4 observations are higher, the changes are not significantly greater than the increases seen in background air over this time interval.
Stíbal, David; Süss-Fink, Georg; Therrien, Bruno
2015-10-01
The mol-ecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pr (i) )2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related Ru(II) atoms are bridged by two 4-meth-oxy-α-toluene-thiol-ato [(4-meth-oxy-phen-yl)methane-thiol-ato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the Ru(II) atom. In the crystal, the CH moiety of the chloro-form mol-ecule inter-acts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent inter-acts more weakly with the methyl group of the bridging 4-meth-oxy-α-toluene-thiol-ato unit. This assembly leads to the formation of supra-molecular chains extending parallel to [021].
NASA Astrophysics Data System (ADS)
Bohinc, R.; Žitnik, M.; Bučar, K.; Kavčič, M.; Carniato, S.; Journel, L.; Guillemin, R.; Marchenko, T.; Kawerk, E.; Simon, M.; Cao, W.
2016-04-01
We present a theoretical and experimental study of resonant inelastic x-ray scattering on a large group of chlorinated hydrocarbons: CH3Cl, CH2Cl2, CHCl3, CCl4, CH3CH2Cl, ClCH2CH2Cl, CH3CHCl2, CH3CCl3, C2H2Cl2-iso, C2H2Cl2-cis, C2H2Cl2-trans, and C6H5Cl. Differences in structural and dynamical properties of the molecules generated by diverse chemical environments are observed in the measured Cl(Kα) spectral maps as well as in the Cl(K) total fluorescence yield spectra. The energy position, relative intensity, and the width of the Franck-Condon distribution of low-lying σ∗ and π∗ resonances are extracted by a fitting procedure taking into account the experimental broadening. The theoretical values obtained with the transition potential and Δ Kohn-Sham methods are in good agreement with the experimental parameters indicating subtle differences due to variations in the molecular structure.
Bohinc, R; Žitnik, M; Bučar, K; Kavčič, M; Carniato, S; Journel, L; Guillemin, R; Marchenko, T; Kawerk, E; Simon, M; Cao, W
2016-04-07
We present a theoretical and experimental study of resonant inelastic x-ray scattering on a large group of chlorinated hydrocarbons: CH3Cl, CH2Cl2, CHCl3, CCl4, CH3CH2Cl, ClCH2CH2Cl, CH3CHCl2, CH3CCl3, C2H2Cl2-iso, C2H2Cl2-cis, C2H2Cl2-trans, and C6H5Cl. Differences in structural and dynamical properties of the molecules generated by diverse chemical environments are observed in the measured Cl(K(α)) spectral maps as well as in the Cl(K) total fluorescence yield spectra. The energy position, relative intensity, and the width of the Franck-Condon distribution of low-lying σ* and π* resonances are extracted by a fitting procedure taking into account the experimental broadening. The theoretical values obtained with the transition potential and Δ Kohn-Sham methods are in good agreement with the experimental parameters indicating subtle differences due to variations in the molecular structure.
Ge, Yingbin; Jiang, Hao; Kato, Russell; Gummagatta, Prasuna
2016-12-01
This research focuses on optimizing transition metal nanocatalyst immobilization and activity to enhance ethane dehydrogenation. Ethane dehydrogenation, catalyzed by thermally stable Ir n (n = 8, 12, 18) atomic clusters that exhibit a cuboid structure, was studied using the B3LYP method with triple-ζ basis sets. Relativistic effects and dispersion corrections were included in the calculations. In the dehydrogenation reaction Ir n + C 2 H 6 → H-Ir n -C 2 H 5 → (H) 2 -Ir n -C 2 H 4 , the first H-elimination is the rate-limiting step, primarily because the reaction releases sufficient heat to facilitate the second H-elimination. The catalytic activity of the Ir clusters strongly depends on the Ir cluster size and the specific catalytic site. Cubic Ir 8 is the least reactive toward H-elimination in ethane: Ir 8 + C 2 H 6 → H-Ir 8 -C 2 H 5 has a large (65 kJ/mol) energy barrier, whereas Ir 12 (3 × 2 × 2 cuboid) and Ir 18 (3 × 3 × 2 cuboid) lower this energy barrier to 22 and 3 kJ/mol, respectively. The site dependence is as prominent as the size effect. For example, the energy barrier for the Ir 18 + C 2 H 6 → H-Ir 18 -C 2 H 5 reaction is 3, 48, and 71 kJ/mol at the corner, edge, or face-center sites of the Ir 18 cuboid, respectively. Energy release due to Ir cluster insertion into an ethane C-H bond facilitates hydrogen migration on the Ir cluster surface, and the second H-elimination of ethane. In an oxygen-rich environment, oxygen molecules may be absorbed on the Ir cluster surface. The oxygen atoms bonded to the Ir cluster surface may slightly increase the energy barrier for H-elimination in ethane. However, the adsorption of oxygen and its reaction with H atoms on the Ir cluster releases sufficient heat to yield an overall thermodynamically favored reaction: Ir n + C 2 H 6 + 1 / 2 O 2 → Ir n + C 2 H 4 + H 2 O. These results will be useful toward reducing the energy cost of ethane dehydrogenation in industry.
NASA Astrophysics Data System (ADS)
Nixon, C. A.; Jennings, D. E.; Romani, P. N.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.
2010-04-01
Measurements of the 12C/13C and D/H isotopic ratios in Titan's methane show intriguing differences from the values recorded in the giant planets. This implies that either (1) the atmosphere was differently endowed with material at the time of formation, or (2) evolutionary processes are at work in the moon's atmosphere - or some combination of the two. The Huygens Gas Chromatograph Mass Spectrometer Instrument (GCMS) found 12CH4/13CH4 = 82 +/- 1 (Niemann et al. 2005), some 7% lower than the giant planets' value of 88 +/- 7 (Sada et al. 1996), which closely matches the terrestrial inorganic standard of 89. The Cassini Composite Infrared Spectrometer (CIRS) has previously reported 12CH4/13CH4 of 77 +/-3 based on nadir sounding, which we now revise upwards to 80 +/- 4 based on more accurate limb sounding. The CIRS and GCMS results are therefore in agreement about an overall enrichment in 13CH4 of ~10%. The value of D/H in Titan's CH4 has long been controversial: historical measurements have ranged from about 8-15 x 10-5 (e.g. Coustenis et al. 1989, Coustenis et al. 2003). A recent measurement based on CIRS limb data by Bezard et al. (2007) puts the D/H in CH4 at (13 +/- 1) x 10-5, very much greater than in Jupiter and Saturn, ~2 x 10-5 (Mahaffy et al. 1998, Fletcher et al. 2009). To add complexity, the 12C/13C and D/H vary among molecules in Titan atmosphere, typically showing enhancement in D but depletion in 13C in the daughter species (H2, C2H2, C2H6), relative to the photochemical progenitor, methane. Jennings et al. (2009) have sought to interpret the variance in carbon isotopes as a Kinetic Isotope Effect (KIE), whilst an explanation for the D/H in all molecules remains elusive (Cordier et al. 2008). In this presentation we argue that evolution of isotopic ratios in Titan's methane over time forms a ticking 'clock', somewhat analogous to isotopic ratios in geochronology. Under plausible assumptions about the initial values and subsequent replenishment, various ages for atmosphere may be inferred, constraining Titan's possible histories.
Zhang, Xian-Man; Fry, Albert J.; Bordwell, Frederick G.
1996-06-14
Equilibrium acidities (pK(HA)) of six P-(para-substituted benzyl)triphenylphosphonium (p-GC(6)H(4)CH(2)PPh(3)(+)) cations, P-allyltriphenylphosphonium cation, P-cinnamyltriphenylphosphonium cation, and As-(p-cyanobenzyl)triphenylarsonium cation, together with the oxidation potentials [E(ox)(A(-))] of their conjugate anions (ylides) have been measured in dimethyl sulfoxide (DMSO) solution. The acidifying effects of the alpha-triphenylphosphonium groups on the acidic C-H bonds in toluene and propene were found to be ca 25 pK(HA) units (34 kcal/mol). Introduction of an electron-withdrawing group such as 4-NO(2), 4-CN, or 4-Br into the para position of the benzyl ring in p-GC(6)H(4)CH(2)PPh(3)(+) cations resulted in an additional acidity increase, but introduction of the 4-OEt electron-donating group decreases the acidity. The equilibrium acidities of p-GC(6)H(4)CH(2)PPh(3)(+) cations were nicely linearly correlated with the Hammett sigma(-) constants of the substituents (G) with a slope of 4.78 pK(HA) units (R(2) = 0.992) (Figure 1). Reversible oxidation potentials of the P-(para-substituted benzyl)triphenylphosphonium ylides were obtained by fast scan cyclic voltammetry. The homolytic bond dissociation enthalpies (BDEs) of the acidic C-H bonds in these cations, estimated by combining their equilibrium acidities with the oxidation potentials of their corresponding conjugate anions, showed that the alpha-Ph(3)P(+) groups have negligible stabilizing or destabilizing effects on the adjacent radicals. The equilibrium acidity of As-(p-cyanobenzyl)triphenylarsonium cation is 4 pK(HA) units weaker than that of P-(p-cyanobenzyl)triphenylphosphonium cation, but the BDE of the acidic C-H bond in As-(p-cyanobenzyl)triphenylarsonium cation is ca 2 kcal/mol higher than that in P-(p-cyanobenzyl)triphenylphosphonium cation.
The H2/CH4 ratio during serpentinization cannot reliably identify biological signatures
Huang, Ruifang; Sun, Weidong; Liu, Jinzhong; Ding, Xing; Peng, Shaobang; Zhan, Wenhuan
2016-01-01
Serpentinization potentially contributes to the origin and evolution of life during early history of the Earth. Serpentinization produces molecular hydrogen (H2) that can be utilized by microorganisms to gain metabolic energy. Methane can be formed through reactions between molecular hydrogen and oxidized carbon (e.g., carbon dioxide) or through biotic processes. A simple criterion, the H2/CH4 ratio, has been proposed to differentiate abiotic from biotic methane, with values approximately larger than 40 for abiotic methane and values of <40 for biotic methane. The definition of the criterion was based on two serpentinization experiments at 200 °C and 0.3 kbar. However, it is not clear whether the criterion is applicable at a wider range of temperatures. In this study, we performed sixteen experiments at 311–500 °C and 3.0 kbar using natural ground peridotite. Our results demonstrate that the H2/CH4 ratios strongly depend on temperature. At 311 °C and 3.0 kbar, the H2/CH4 ratios ranged from 58 to 2,120, much greater than the critical value of 40. By contrast, at 400–500 °C, the H2/CH4 ratios were much lower, ranging from 0.1 to 8.2. The results of this study suggest that the H2/CH4 ratios cannot reliably discriminate abiotic from biotic methane. PMID:27666288
Li, Qinghai; Zhou, Shuangliu; Wang, Shaowu; Zhu, Xiancui; Zhang, Lijun; Feng, Zhijun; Guo, Liping; Wang, Fenhua; Wei, Yun
2013-02-28
The dehydrogenation of pyrrolyl-functionalized secondary amines initiated by rare-earth metal amides was systematically studied. Reactions of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with pyrrolyl-functionalized secondary amines 2-(t)BuNHCH(2)-5-R-C(4)H(2)NH (R = H (1), R = (t)Bu (2)) led to dehydrogenation of the secondary amines with isolation of imino-functionalized pyrrolyl rare-earth metal complexes [2-(t)BuN=CH-5-R-C(4)H(2)N](2)REN(SiMe(3))(2) (R = H, RE = Y (3a), Dy (3b), Yb (3c), Eu (3d); R = (t)Bu, RE = Y (4a), Dy (4b), Er (4c)). The mixed ligands erbium complex [2-(t)BuNCH(2)-5-(t)Bu-C(4)H(2)N]Er[2-(t)BuN=CH-5-(t)BuC(4)H(2)N](2)ClLi(2)(THF) (4c') was isolated in a short reaction time for the synthesis of complex 4c. Reaction of the deuterated pyrrolyl-functionalized secondary amine 2-((t)BuNHCHD)C(4)H(3)NH with yttrium amide [(Me(3)Si)(2)N](3)Y(μ-Cl)Li(THF)(3) further proved that pyrrolyl-amino ligands were transferred to pyrrolyl-imino ligands. Treatment of 2-((t)BuNHCH(2))C(4)H(3)NH (1) with excess (Me(3)Si)(2)NLi gave the only pyrrole deprotonated product {[η(5):η(2):η(1)-2-((t)BuNHCH(2))C(4)H(3)N]Li(2)N(SiMe(3))(2)}(2) (5), indicating that LiN(SiMe(3))(2) could not dehydrogenate the secondary amines to imines and rare-earth metal ions had a decisive effect on the dehydrogenation. The reaction of the rare-earth metal amides [(Me(3)Si)(2)N](3)RE(μ-Cl)Li(THF)(3) with 1 equiv. of more bulky pyrrolyl-functionalized secondary amine 2-[(2,6-(i)Pr(2)C(6)H(3))NHCH(2)](C(4)H(3)NH) (6) in toluene afforded the only amine and pyrrole deprotonated dinuclear rare-earth metal amido complexes {(μ-η(5):η(1)):η(1)-2-[(2,6-(i)Pr(2)C(6)H(3))NCH(2)]C(4)H(3)N]LnN(SiMe(3))(2)}(2) (RE = Nd (7a), Sm (7b), Er (7c)), no dehydrogenation of secondary amine to imine products were observed. On the basis of experimental results, a plausible mechanism for the dehydrogenation of secondary amines to imines was proposed.
Djedovič, Natasha; Ferdani, Riccardo; Harder, Egan; Pajewska, Jolanta; Pajewski, Robert; Weber, Michelle E.; Schlesinger, Paul H.; Gokel, George W.
2008-01-01
The synthetic peptide, R2N-COCH2OCH2CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR’, was shown to be selective for Cl- over K+ when R is n-octadecyl and R’ is benzyl. Nineteen heptapeptides have now been prepared in which the N-terminal and C-terminal residues have been varied. All of the N-terminal residues are dialkyl but the C-terminal chains are esters, 2° amides, or 3° amides. The compounds having varied N-terminal anchors and C-terminal benzyl groups are as follows: 1, R = n-propyl; 2, R = n-hexyl; 3, R = n-octyl; 4, R = n-decyl; 5, R = n-dodecyl; 6, R = n-tetradecyl; 7, R = n-hexadecyl; 8, R = n-octadecyl. Compounds 9-19 have R = n-octadecyl and C-terminal residues as follows: 9, OR’ = OCH2CH3; 10, OR’ = OCH(CH3)2; 11, OR’ = O(CH2)6CH3; 12, OR’ = OCH2-c-C6H11; 13, OR’ = O(CH2)9CH3; 14, OR’ = O (CH2)17CH3; 15, NR’2 = N[(CH2)6CH3]2; 16, NHR’ = NH(CH2)9CH3; 17, NR’2 = N[(CH2)9CH3]2; 18, NHR’ = NH(CH2)17CH3; 19, NR’2 = N[(CH2)17CH3]2. The highest anion transport activities were observed as follows. For the benzyl esters whose N-terminal residues were varied, i.e. 1-8, compound 3 was most active. For the C18 anchored esters 10-14, n-heptyl ester 11 was most active. For the C18 anchored, C-terminal amides 15-19, di-n-decylamide 17 was most active. It was concluded that both the C- and N-terminal anchors were important for channel function in the bilayer but that activity was lost unless only one of the two anchoring groups was dominant. PMID:19633728
Pugh, David; Marchand, Peter; Parkin, Ivan P; Carmalt, Claire J
2012-06-04
Bis(β-ketoimine) ligands, [R{N(H)C(Me)-CHC(Me)═O}(2)] (L(1)H(2), R = (CH(2))(2); L(2)H(2), R = (CH(2))(3)), linked by ethylene (L(1)) and propylene (L(2)) bridges have been used to form aluminum, gallium, and indium chloride complexes [Al(L(1))Cl] (3), [Ga(L(n))Cl] (4, n = 1; 6, n = 2) and [In(L(n))Cl] (5, n = 1; 7, n = 2). Ligand L(1) has also been used to form a gallium hydride derivative [Ga(L(1))H] (8), but indium analogues could not be made. β-ketoimine ligands, [Me(2)N(CH(2))(3)N(H)C(R')-CHC(R')═O] (L(3)H, R' = Me; L(4)H, R' = Ph), with a donor-functionalized Lewis base have also been synthesized and used to form gallium and indium alkyl complexes, [Ga(L(3))Me(2)] (9) and [In(L(3))Me(2)] (10), which were isolated as oils. The related gallium hydride complexes, [Ga(L(n))H(2)] (11, n = 3; 12, n = 4), were also prepared, but again no indium hydride species could be made. The complexes were characterized mainly by NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction. The β-ketoiminate gallium hydride compounds (8 and 11) have been used as single-source precursors for the deposition of Ga(2)O(3) by aerosol-assisted (AA)CVD with toluene as the solvent. The quality of the films varied according to the precursor used, with the complex [Ga(L(1))H] (8) giving by far the best quality films. Although the films were amorphous as deposited, they could be annealed at 1000 °C to form crystalline Ga(2)O(3). The films were analyzed by powder XRD, SEM, and EDX.
Infrared absorption of 2-hydroxyethyl (HOCH2CH2) in solid Ar
NASA Astrophysics Data System (ADS)
Kuo, Yu-Ping; Wann, Gwo-Huei; Lee, Yuan-Pern
1993-09-01
An argon matrix containing C2H4 and H2O2 was irradiated at 12 K with the 248 nm emission of a KrF excimer laser; IR spectra were recorded after various periods of photolysis. In addition to lines ascribed to ethylene oxide, acetaldehyde, and vinyl alcohol, absorptions at 2991.0, 2842.7, 1355.4, 1172.5, and 1040.1 cm-1 have been assigned to HOCH2CH2; weaker lines at 3625.8, 2922.4, and 873.9 cm-1 may also be due to HOCH2CH2. Corresponding lines at 2970.6, 2829.3, 1346.5, 1171.3, and 1020.5 (and probably 3625.8, 2915.1, and 860.7) cm-1 were observed for HO13CH2 13CH2. The results are consistent with ab initio calculations.
Interaction of tertiary phosphines with lignin-type, alpha,beta-unsaturated aldehydes in water.
Moiseev, Dmitry V; Patrick, Brian O; James, Brian R; Hu, Thomas Q
2007-10-29
To learn more about the bleaching action of pulps by (hydroxymethyl)phosphines, lignin chromophores, such as the alpha,beta-unsaturated aromatic aldehydes, sinapaldehyde, coniferylaldehyde, and coumaraldehyde, were reacted with the tertiary phosphines R2R'P [R = R' = Me, Et, (CH2)3OH, iPr, cyclo-C6H11, (CH2)2CN; R = Me or Et, R' = Ph; R = Ph, R' = Me, m-NaSO3-C6H4] in water at room temperature under argon. In all cases, initial nucleophilic attack of the phosphine occurs at the activated C=C bond to form a zwitterionic monophosphonium species. With the phosphines PR3 [R = Me, Et, (CH2)3OH] and with R2R'P (R = Me or Et, R' = Ph), the zwitterion undergoes self-condensation to give a bisphosphonium zwitterion that can react with aqueous HCl to form the corresponding dichloride salts (as a mixture of R,R- and S,S-enantiomers); X-ray structures are presented for the bisphosphonium chlorides synthesized from the Et3P and Me3P reactions with sinapaldehyde. With the more bulky phosphines, iPr3P, MePPh2, (cyclo-C6H11)3P, and Na[Ph2P(m-SO3-C6H4)], only an equilibrium of the monophosphonium zwitterion with the reactant aldehyde is observed. The weakly nucleophilic [NC(CH2)2]3P does not react with sinapaldehyde. An analysis of some exceptional 1H NMR data within the prochiral phosphorus centers of the bisphosphonium chlorides is also presented.
Cobalt-Catalyzed C(sp(2))-H Borylation: Mechanistic Insights Inspire Catalyst Design.
Obligacion, Jennifer V; Semproni, Scott P; Pappas, Iraklis; Chirik, Paul J
2016-08-24
A comprehensive study into the mechanism of bis(phosphino)pyridine (PNP) cobalt-catalyzed C-H borylation of 2,6-lutidine using B2Pin2 (Pin = pinacolate) has been conducted. The experimentally observed rate law, deuterium kinetic isotope effects, and identification of the catalyst resting state support turnover limiting C-H activation from a fully characterized cobalt(I) boryl intermediate. Monitoring the catalytic reaction as a function of time revealed that borylation of the 4-position of the pincer in the cobalt catalyst was faster than arene borylation. Cyclic voltammetry established the electron withdrawing influence of 4-BPin, which slows the rate of C-H oxidative addition and hence overall catalytic turnover. This mechanistic insight inspired the next generation of 4-substituted PNP cobalt catalysts with electron donating and sterically blocking methyl and pyrrolidinyl substituents that exhibited increased activity for the C-H borylation of unactivated arenes. The rationally designed catalysts promote effective turnover with stoichiometric quantities of arene substrate and B2Pin2. Kinetic studies on the improved catalyst, 4-(H)2BPin, established a change in turnover limiting step from C-H oxidative addition to C-B reductive elimination. The iridium congener of the optimized cobalt catalyst, 6-(H)2BPin, was prepared and crystallographically characterized and proved inactive for C-H borylation, a result of the high kinetic barrier for reductive elimination from octahedral Ir(III) complexes.
C-O and O-H Bond Activation of Methanole by Lanthanum
NASA Astrophysics Data System (ADS)
Silva, Ruchira; Hewage, Dilrukshi; Yang, Dong-Sheng
2012-06-01
The interaction between methanol (CH_3OH) molecules and laser-vaporized La atoms resulted in the cleavage of C-O and O-H bonds and the formation of three major products, LaH_2O_2, LaCH_4O_2 and LaC_2H_6O_2, in a supersonic molecular beam. These products were identified by time-of-flight mass spectrometry, and their electronic spectra were obtained using mass-analyzed threshold ionization (MATI) spectroscopy. From the MATI spectra, adiabatic ionization energies of the three complexes were measured to be 40136 (5), 39366 (5) and 38685 (5) cm-1 for LaH_2O_2, LaCH_4O_2 and LaC_2H_6O_2, respectively. The ionization energies of these complexes decrease as the size of the coordinated organic fragments increases. The most active vibrational transitions of all three complexes were observed to be the M-O stretches in the ionic state. A metal-ligand bending mode with a frequency of 127 cm-1 was also observed for [LaH_2O_2]^+. However, the spectra of the other two complexes were less resolved, due to the existence of a large number of low frequency modes, which could be thermally excited even in the supersonic molecular beams, and of multiple rotational isomers formed by the free rotation of the methyl group in these systems. The electronic transitions responsible for the observed spectra were identified as ^1A_1 (C2v) ← ^2A_1 (C2v) for LaH_2O_2 and ^1A (C_1) ← ^2A (C_1) for LaCH_4O_2 and LaC_2H_6O_2.
Masel, Richard I.; Rosen, Brian A.
2017-02-14
Catalysts that include at least one catalytically active element and one helper catalyst can be used to increase the rate or lower the overpotential of chemical reactions. The helper catalyst can simultaneously act as a director molecule, suppressing undesired reactions and thus increasing selectivity toward the desired reaction. These catalysts can be useful for a variety of chemical reactions including, in particular, the electrochemical conversion of CO.sub.2 or formic acid. The catalysts can also suppress H.sub.2 evolution, permitting electrochemical cell operation at potentials below RHE. Chemical processes and devices using the catalysts are also disclosed, including processes to produce CO, OH.sup.-, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, O.sub.2, H.sub.2, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.
Oligonucleofide Imprinting in Aqueous Environment
2002-04-05
C j (Scheme 1) [8]. The coupling of individually protected nucleotides H 0 1 using a phosphoramidite linkage yields phosphite 2. This linkage is later...4 2As, As` Telrazole OBz •- DMTrOJ-O- " DMT P- OBzOR 70% OR 6 R = CH2 CH2CN 7 8 Phosphite 8 was then oxidized using 12 to yield phosphate 9[ 10]. The...Monomer Monomer(s) Yields P1 P10 1""’k% ,,"" Q 95/573 S~95/5 P1i P10 -XH MeOH/H 20 P2 P20 J.ýN.y 95/5 40 %P2 P20 H20/MeOH P3 P30 >.N. MeOH/H20 60 % P4* P40
NASA Technical Reports Server (NTRS)
DiSanti, M. A.; Bonev, B. P.; Villanueva, G. L.; Paganini, L.; Mumma, M. J.; Charnley, S. B.; Keane, J. V.; Meech, K. J.; Blake, G. A.; Boehnhardt, H.;
2012-01-01
Comets retain relatively primitive icy material remaining from the epoch of Solar System for111ation, however the extent to which their ices are modified remains a key question in cometary science. One way to address this is to measure the relative abundances of primary (parent) volatiles in comets (i.e., those ices native to the nucleus). High-resolution (lambda/delta lambda greater than 10(exp 4)) infrared spectroscopy is a powerful tool for measuring parent volatiles in comets through their vibrational emissions in the 3-5 micrometer region. With modern instrumentation on worldclass telescopes, we can quantify a multitude of species (e.g., H2O, C2H2, CH4, C2H6 CO, H2CO, CH3OH, HCN, NH3), even in comets with modest gas production. In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6 and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules and their variability among comets contributes to understanding the synthesis of the more complex prebiotic compounds.
NASA Technical Reports Server (NTRS)
DiSanti, M. A.; Bonev, B. P.; Villaneueva, G. L.; Paganini, L.; Mumma, M. J.; Charnley, S. B.; Keane, J. V.; Blake, G. A.; Boehnhardt, H.; Lippi, M.
2012-01-01
Comets retain relatively primitive icy material remaining from the epoch of Solar System formation, however the extent to which their ices are modified remains a key question in cometary science. One way to address this is to measure the relative abundances of primary (parent) volatiles in comets (i.e., those ices native to the nucleus). High-resolution (lambda/delta lambda greater than 10(exp 4)) infrared spectroscopy is a powerful tool for measuring parent volatiles in comets through their vibrational emissions in the approximately 3-5 micrometer region. With modern instrumentation on world-class telescopes, we can quantify a multitude of species (e.g., H2O, C2H2, CH4, C2H6, CO, H2CO, CH3OH, HCN, NH3), even in comets with modest gas production. In space environments, compounds of keen interest to astrobiology could originate from HCN and NH3 (leading to amino acids), H2CO (leading to sugars), or C2H6, and CH4 (suggested precursors of ethyl- and methylamine). Measuring the abundances of these precursor molecules and their variability among comets contributes to understanding the synthesis of the more complex prebiotic compounds.
NASA Astrophysics Data System (ADS)
Kawashima, Yoshiyuki; Katsuragi, Ryusuke; Hirota, Eizi
2017-05-01
The ground-state rotational spectra of the whisky lactone (WL) : 5-butyl-4-methyl tetrahydrofuran-2-one were observed and analyzed by molecular beam Fourier transform microwave spectroscopy combined with quantum chemical calculations. We have detected three stereo-isomers: the trans-TTT form with a methyl CH3 group attached to C(4) in an equatorial position (eq) and a butyl C4H9 group to C(5) in an eq position, for which 110 b-type and 113 a-type transitions were assigned, the cis-TTT form with a CH3 to C(4) in an axial position (ax) and a C4H9 to C(5) in eq, for which 96 a-type, 101 b-type, and 45 c-type transitions were observed, and the cis-GTT form with a CH3 to C(4) in ax and a C4H9 to C(5) in eq, for which 158 a-type, 52 b-type, and 17 c-type transitions were observed, where TTT and GTT denote the conformations about the C(6)sbnd C(5), C(7)sbnd C(6), and C(8)sbnd C(7) bonds, with T and G designating trans and gauche, respectively. The rotational constants thus derived agree with the predictions made by quantum chemical calculations, MP2/6-311++G(d, p) within 1.2%. The trans-TTT form was calculated to be the most stable. The splittings due to internal rotation of the terminal methyl in the butyl group were observed for all the three stereo-isomers and were analyzed by the XIAM program to determine the threefold potential barrier V3 to be 966.4 (25), 978.8 (11), and 1098.7 (48) in cm-1 for the trans-TTT (eq, eq), the cis-TTT (ax, eq), and the cis-GTT (ax, eq) forms, respectively, to be compared with quantum chemically calculated values: 1055, 1055, and 1053 in cm-1.
NASA Astrophysics Data System (ADS)
Sathiyaraj, E.; Thirumaran, S.; Selvanayagam, S.; Sridhar, B.; Ciattini, Samuele
2018-05-01
New bis(N-benzyl-N-substituted benzyldithiocarbamato-S,S‧)nickel(II) (1-3) and (N-benzyl-N-substituted benzyldithiocarbamato-S,S‧)(isothiocyanato-N)- (triphenylphosphane)nickel(II) (4-6) [where substituted benzyl = 2-HOsbnd C6H4sbnd CH2sbnd (1,4), 3-HOsbnd C6H4sbnd CH2sbnd (2,5), 4-Fsbnd C6H4sbnd CH2sbnd (3,6)] were synthesized and characterized using IR, electronic, and NMR (1H and 13C) spectra. X-ray structural analysis of homoleptic complex (1) and heteroleptic complexes (5 and 6) confirmed the presence of four coordinated nickel in a distorted square planar arrangement with NiS4 and NiS2PN chromophores, respectively. The νC-S stretching vibrations are observed around 990 cm-1 without any splitting supporting the bidentate coordination of the dithiocarbamate ligand. Electronic spectral studies of all the complexes (1-6) indicate that the geometry of the nickel atom is probably square planar. NMR spectra of all homoleptic and heteroleptic complexes (1-6) reveal a weak signal associated with the backbone carbon (N13CS2) in the region 204.0-210.0 ppm with a weak intensity characteristic of the quaternary carbon signals. The greater trans influence of triphenylphosphine in complexes 5 and 6 is supported by the long Nisbnd S distance compared to other Nisbnd S distance which is opposite to the NCS- ligand. In the structure of complex 5, C-H⋯π(chelate) interactions results in polymeric chain. Both structures show intramolecular Ni⋯H interactions but that on 6 is the strongest. C-H⋯π interactions are also found in 1, 5 and 6. Hirshfeld surface analysis and the associated 2D fingerprint plots of 1, 5 and 6 have been studied to evaluate intermolecular interactions. The molecular geometries of complexes 1, 5 and 6 have been optimized by abinitio HF method using LANL2DZ program.
On the sources of methane to the Los Angeles atmosphere.
Wennberg, Paul O; Mui, Wilton; Wunch, Debra; Kort, Eric A; Blake, Donald R; Atlas, Elliot L; Santoni, Gregory W; Wofsy, Steven C; Diskin, Glenn S; Jeong, Seongeun; Fischer, Marc L
2012-09-04
We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH(4)) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH(4) emissions are 0.44 ± 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH(4)), ethane (C(2)H(6)), and carbon monoxide (CO), together with measured C(2)H(6) to CH(4) enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C(2)H(6) to CH(4) ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C(2)H(6) is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 ± 0.15 Tg yr(-1)) of the excess CH(4) in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C(2)H(6) in the region. In particular, emissions of C(2)H(6) (and CH(4)) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH(4) emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.
On the Sources of Methane to the Los Angeles Atmosphere
NASA Technical Reports Server (NTRS)
Wennberg, Paul O.; Mui, Wilton; Fischer, Marc L.; Wunch, Debra; Kort, Eric A.; Blake, Donald R.; Atlas, Elliot L.; Santoni, Gregory W.; Wofsy, Steven C.; Diskin, Glenn S.;
2012-01-01
We use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH4) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH4 emissions are 0.44 +/- 0.15 Tg each year. To investigate the possible contribution of fossil fuel emissions, we use ambient air observations of methane (CH4), ethane (C2H6), and carbon monoxide (CO), together with measured C2H6 to CH4 enhancement ratios in the Los Angeles natural gas supply. The observed atmospheric C2H6 to CH4 ratio during the ARCTAS (2008) and CalNex (2010) aircraft campaigns is similar to the ratio of these gases in the natural gas supplied to the basin during both these campaigns. Thus, at the upper limit (assuming that the only major source of atmospheric C2H6 is fugitive emissions from the natural gas infrastructure) these data are consistent with the attribution of most (0.39 +/- 0.15 Tg yr-1) of the excess CH4 in the basin to uncombusted losses from the natural gas system (approximately 2.5-6% of natural gas delivered to basin customers). However, there are other sources of C2H6 in the region. In particular, emissions of C2H6 (and CH4) from natural gas seeps as well as those associated with petroleum production, both of which are poorly known, will reduce the inferred contribution of the natural gas infrastructure to the total CH4 emissions, potentially significantly. This study highlights both the value and challenges associated with the use of ethane as a tracer for fugitive emissions from the natural gas production and distribution system.
Organo-Nitrogen Reactions on Jupiter
NASA Astrophysics Data System (ADS)
Lamothe, V. L.; Moses, J. I.
2000-10-01
Because the altitude regions for CH4 and NH3 photodissociation are physically separated from each other in the Jovian atmosphere, the possibility of forming organo-nitrogen compounds on Jupiter has been an uncertain problem [1,2,3,4,5]. Carbon- and nitrogen-bearing species do not interact significantly in laboratory experiments involving ultraviolet irradiation of CH4-NH3-H2 mixtures [6,7]. However, HCN and a variety of complex organo-nitrogen molecules are produced when methane in the above experiments is replaced by unsaturated hydrocarbons such as C2H2 or CH3C2H [8,9]. To determine the formation efficiency of organo-nitrogen compounds on Jupiter, we have added the reaction schemes proposed by [3,8,9] to a photochemical model of the Jovian troposphere and stratosphere. We find that HCN does not form in observable quantities unless a large tropospheric source of C2H2 exists (e.g., via lightning-induced chemistry, see [10]). Organo-nitrogen reactions are unlikely to be important on Jupiter --- chromophores are most likely due to inorganic compounds. References: [1] Strobel, D. F. (1973), J. Atmos. Sci. 30, 1205; [2] Kaye, J. A., and D. F. Strobel (1983a), Icarus\\ 55, 399; [3] Kaye, J. A., and D. F. Strobel (1983b), Icarus\\ 54, 417; [4] Tokunaga, A. T. et al./ (1981), Icarus\\ 48, 283; [5] Bézard, B. et al./ (1995), Icarus\\ 118, 384; [6] Raulin, F. et al. (1979), Icarus\\ 38, 358; [7] Ferris, J. P., and J. Y. Morimoto (1981), Icarus\\ 48, 118; [8] Ferris, J. P., and Y. Ishikawa (1988), J. Am. Chem. Soc. 110, 4306; [9] Ferris, J. et\\ al. (1992), Icarus\\ 95, 54; [10] Bétremieux, Y., and R. V. Yelle (1999), BAAS\\ 31, 1180.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, SG; Zong, ZW; Zhou, SJ
2015-08-01
SAPO-34 membranes were synthesized by several routes towards N-2/CH4 separation. Membrane synthesis parameters including water content in the gel, crystallization time, support pore size, and aluminum source were investigated. High performance N-2-selective membranes were obtained on 100-nm-pore alumina tubes by using Al(i-C3H7O)(3) as aluminum source with a crystallization time of 6 h. These membranes separated N-2 from CH, with N-2 permeance as high as 500 GPU with separation selectivity of 8 at 24 degrees C. for a 50/50 N-2/CH4 mixture. Nitrogen and CH, adsorption isotherms were measured on SAPO-34 crystals. The N-2 and CH, heats of adsorption were 11 andmore » 15 kJ/mol, respectively, which lead to a preferential adsorption of CE-H-4 over N-2 in the N-2/CH4 mixture. Despite this, the SAPO-34 membranes were selective for N-2 over CH4 in the mixture because N-2 diffuses much faster than CH4 and differences in diffusivity played a more critical role than the competitive adsorption. Preliminary economic evaluation indicates that the required N-2/CH4 selectivity would be 15 in order to maintain a CH4 loss below 10%. For small nitrogen-contaminated gas wells, our current SAPO-34 membranes have potential to compete with the benchmark technology cryogenic distillation for N-2 rejection. (C) 2015 Elsevier B.V. All rights reserved,« less
NASA Astrophysics Data System (ADS)
Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi
2017-06-01
Carbon chains in the warm carbon chain chemistry (WCCC) region has been searched in the 42-44 GHz region by using Green Bank 100 m telescope. Long carbon chains C_{7}H, C_{6}H, CH_{3}CCCCH, and linear-C_{6}H_{2} and cyclic species C_{3}H and C_{3}H_{2}O have been detected in the low-mass star forming region L1527, performing the WCCC. C_{7}H was detected for the first time in molecular clouds. The column density of C_{7}H is derived to be 6.2 × 10^{10} cm^{-2} by using the detected J = 24.5-23.5 and 25.5-24.5 rotational lines. The ^{2}Π_{1/2} electronic state of C_{6}H, locating 21.6 K above the ^{2}Π_{3/2} electronic ground state, and the K_a = 0 line of the para species of linear-C_{6}H_{2} were also detected firstly in molecular clouds. The column densities of the ^{2}Π_{1/2} and ^{2}Π_{3/2} states of C_{6}H in L1527 were derived to be 1.6 × 10^{11} and 1.1 × 10^{12} cm^{-2}, respectively. The total column density of linear-C_{6}H_{2} is obtained to be 1.86 × 10^{11} cm^{-2}. While the abundance ratios of carbon chains in between L1527 and the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) have a trend of decrease by extension of carbon-chain length, column densities of CH_{3}CCCCH and C_{6}H are on the trend. However, the column densities of linear-C_{6}H_{2}, and C_{7}H are as abundant as those of TMC-1 CP in spite of long carbon chain, i.e., they are not on the trend. The abundances of linear-C_{6}H_{2} and C_{7}H show that L1527 is rich for long carbon chains as well as TMC-1 CP.
Phosphine and diphosphine complexes of silicon(IV) halides.
Levason, William; Pugh, David; Reid, Gillian
2013-05-06
The reaction of SiX4 (X = Cl or Br) with PMe3 in anhydrous CH2Cl2 forms trans-[SiX4(PMe3)2], while the diphosphines, Me2P(CH2)2PMe2, Et2P(CH2)2PEt2, and o-C6H4(PMe2)2 form cis-[SiX4(diphosphine)], all containing six-coordinate silicon centers. With Me2PCH2PMe2 the product was trans-[SiCl4(κ(1)-Me2PCH2PMe2)2]. The complexes have been characterized by X-ray crystallography, microanalysis, IR, and multinuclear ((1)H, (13)C{(1)H}, and (31)P{(1)H}) NMR spectroscopies. The complexes are stable solids and not significantly dissociated in nondonor solvents, although they are very moisture and oxygen sensitive. This stability conflicts with the predictions of recent density functional theory (DFT) calculations (Wilson et al. Inorg. Chem. 2012, 51, 7657-7668) which suggested six-coordinate silicon phosphines would be unstable, and also contrasts with the failure to isolate complexes with SiF4 (George et al. Dalton Trans. 2011, 40, 1584-1593). No reaction occurred between phosphines and SiI4, or with SiX4 and arsine ligands including AsMe3 and o-C6H4(AsMe2)2. Attempts to make five-coordinate [SiX4(PR3)] using the sterically bulky phosphines, P(t)Bu3, P(i)Pr3, or PCy3 failed, with no apparent reaction occurring, consistent with predictions (Wilson et al. Inorg. Chem. 2012, 51, 7657-7668) that such compounds would be very endothermic, while the large cone angles of the phosphines presumably preclude formation of six-coordination at the small silicon center. The reaction of Si2Cl6 with PMe3 or the diphosphines in CH2Cl2 results in instant disproportionation to the SiCl4 adducts and polychlorosilanes, but from hexane solution very unstable white [Si2Cl6(PMe3)2] and [Si2Cl6(diphosphine)] (diphosphine = Me2P(CH2)2PMe2 or o-C6H4(PMe2)2) precipitate. The reactions of SiHCl3 with PMe3 and Me2P(CH2)2PMe2 also produce the SiCl4 adducts, but using Et2P(CH2)2PEt2, colorless [SiHCl3{Et2P(CH2)2PEt2}] was isolated, which was characterized by an X-ray structure which showed a pseudo-octahedral complex with the Si-H trans to P. Attempts to reduce the silicon(IV) phosphine complexes to silicon(II) were unsuccessful, contrasting with the isolation of stable N-heterocyclic carbene adducts of Si(II).
Organic Molecules in Oxygen-Rich Circumstellar Envelopes: Methanol and Hydrocarbons
NASA Technical Reports Server (NTRS)
Charnley, S. B.; Tielens, A. G. G. M.; Kress, M. E.
1995-01-01
The existence of anomalously high abundances of gaseous CH4 has been invoked to explain the unexpectedly high abundances of the carbon-bearing molecules HCN and H2CO in the outflows from O-rich red giants. We have modelled the chemistry that proceeds in the outer envelope when CH4 is injected from the inner envelope. We find that photolysis by the interstellar radiation field drives an ion-neutral chemistry which produces several organic molecules. The calculated abundances of CH3OH, C2H and C2 can be comparable to those calculated for H2CO and HCN. Species such as C2H4, C2H2 and CH3CN can also be abundant. A search for CH3OH and C2H in several O-rich outflows known to exhibit strong HCN emission is needed. As it derives entirely from the CH4 photochain, is insensitive to the envelope temperature distribution, and has accessible transitions at millimetre wavelengths, the detection of the C2H radical would provide further indirect support for the presence of the hypothesized methane.
VERTICAL DISTRIBUTION OF C{sub 3}-HYDROCARBONS IN THE STRATOSPHERE OF TITAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Cheng; Gao, Peter; Yung, Yuk
2015-04-20
Motivated by the recent detection of propene (C{sub 3}H{sub 6}) in the atmosphere of Titan, we use a one-dimensional Titan photochemical model with an updated eddy diffusion profile to systematically study the vertical profiles of the stable species in the C{sub 3}-hydrocarbon family. We find that the stratospheric volume mixing ratio of propene (C{sub 3}H{sub 6}) peaks at 150 km with a value of 5 × 10{sup −9}, which is in good agreement with recent observations by the Composite Infrared Spectrometer on the Cassini spacecraft. Another important species that is currently missing from the hydrocarbon family in Titan's stratosphere ismore » allene (CH{sub 2}CCH{sub 2}), an isomer of methylacetylene (CH{sub 3}C{sub 2}H). We predict that its mixing ratio in the stratosphere is about 10{sup −9}, which is on the margin of the detection limit. CH{sub 2}CCH{sub 2} and CH{sub 3}C{sub 2}H equilibrate at a constant ratio in the stratosphere by hydrogen-exchanging reactions. Thus, by precisely measuring the ratio of CH{sub 2}CCH{sub 2} to CH{sub 3}C{sub 2}H, the abundance of atomic hydrogen in the atmosphere can be inferred. No direct yield for the production of cyclopropane (c-C{sub 3}H{sub 6}) is available. From the discharge experiments of Navarro-González and Ramírez, the abundance of cyclopropane is estimated to be 100 times less than that of C{sub 3}H{sub 6}.« less
NASA Technical Reports Server (NTRS)
Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil
2013-01-01
We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.
Computational Screening of MOFs for Acetylene Separation
NASA Astrophysics Data System (ADS)
Nemati Vesali Azar, Ayda; Keskin, Seda
2018-02-01
Efficient separation of acetylene (C2H2) from CO2 and CH4 is important to meet the requirement of high-purity acetylene in various industrial applications. Metal organic frameworks (MOFs) are great candidates for adsorption-based C2H2/CO2 and C2H2/CH4 separations due to their unique properties such as wide range of pore sizes and tunable chemistries. Experimental studies on the limited number of MOFs revealed that MOFs offer remarkable C2H2/CO2 and C2H2/CH4 selectivities based on single-component adsorption data. We performed the first large-scale molecular simulation study to investigate separation performances of 174 different MOF structures for C2H2/CO2 and C2H2/CH4 mixtures. Using the results of molecular simulations, several adsorbent performance evaluation metrics, such as selectivity, working capacity, adsorbent performance score, sorbent selection parameter and regenerability were computed for each MOF. Based on these metrics, the best adsorbent candidates were identified for both separations. Results showed that the top three most promising MOF adsorbents exhibit C2H2/CO2 selectivities of 49, 47, 24 and C2H2/CH4 selectivities of 824, 684, 638 at 1 bar, 298 K and these are the highest C2H2 selectivities reported to date in the literature. Structure-performance analysis revealed that the best MOF adsorbents have pore sizes between 4-11 Å, surface areas in the range of 600-1,200 m2/g and porosities between 0.4-0.6 for selective separation of C2H2 from CO2 and CH4. These results will guide the future studies for the design of new MOFs with high C2H2 separation potentials.
Grubel, Katarzyna; Fuller, Amy L.; Chambers, Bonnie M.; Arif, Atta M.; Berreau, Lisa M.
2010-01-01
A mononuclear Ni(II) complex having an acireductone type ligand, and supported by the bnpapa (N,N-bis((6-neopentylamino-2-pyridyl)methyl-N-((2-pyridyl)methyl)amine ligand, [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14), has been prepared and characterized by elemental analysis, 1H NMR, FTIR, and UV-vis. To gain insight into the 1H NMR features of 14, the air stable analog complexes [(bnpapa)Ni(CH3C(O)CHC(O)CH3)]ClO4 (16) and [(bnpapa)Ni(ONHC(O)CH3)]ClO4 (17) were prepared and characterized by X-ray crystallography, 1H NMR, FTIR, UV-vis, mass spectrometry, and solution conductivity measurements. Compounds 16 and 17 are 1:1 electrolyte species in CH3CN. 1H and 2H NMR studies of 14, 16, and 17 and deuterated analogs revealed that the complexes having six-membered chelate rings for the exogenous ligand (14 and 16) do not have a plane of symmetry within the solvated cation and thus exhibit more complicated 1H NMR spectra. Compound 17, as well as other simple Ni(II) complexes of the bnpapa ligand (e.g. [(bnpapa)Ni(ClO4)(CH3CN)]ClO4 (18) and [(bnpapaNi)2(μ-Cl)2](ClO4)2 (19)), exhibit 1H NMR spectra consistent with the presence of a plane of symmetry within the cation. Treatment of [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14) with O2 results in aliphatic carbon-carbon bond cleavage within the acireductone-type ligand and the formation of [(bnpapa)Ni(O2CPh)]ClO4 (9), benzoic acid, benzil, and CO. Use of 18O2 in the reaction gives high levels of incorporation (>80%) of one labeled oxygen atom into 9 and benzoic acid. The product mixture and level of 18O incorporation in this reaction is different than that exhibited by the analog supported the hydrophobic 6-Ph2TPA ligand, [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2). We propose that this difference is due to variations in the reactivity of bnpapa- and 6-Ph2TPA-ligated Ni(II) complexes with triketone and/or peroxide species produced in the reaction pathway. PMID:20039645
NASA Technical Reports Server (NTRS)
Oremland, R. S.; Des Marais, D. J.
1983-01-01
The study of the distribution and isotopic composition of low molecular weight hydrocarbon gases at the Big Soda Lake, Nevada, has shown that while neither ethylene nor propylene were found in the lake, ethane, propane, isobutane and n-butane concentrations all increased with water column depth. It is concluded that methane has a biogenic origin in both the sediments and the anoxic water column, and that C2-C4 alkanes have biogenic origins in the monimolimnion water and shallow sediments. The changes observed in delta C-13/CH4/ and CH4/(C2H6 + C3H8) with depth in the water column and sedimeents are probably due to bacterial processes, which may include anaerobic methane oxidation and different rates of methanogenesis, and C2-to-C4 alkane production by microorganisms.
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Pendleton, Y.; Sellgren, K.
1991-01-01
The composition and history of dust in the diffuse ISM was studied using 3600-2700/cm absorption spectra of objects which have widely varying amounts of visual extinctions along different lines of sight. The 3300/cm and 2950/cm features are attributed to O-H and C-H stretching vibrations, respectively. The O-H feature in OH 32.8-0.3 is suggestive of circumstellar water ice and is probably not due to material in the diffuse ISM. The features in the 3100-2700/cm region are attributed either to C-H vibrations or to M stars. The spectra of the latter show a series of narrow features in this region that are identified with photospheric OH. Objects in which these bands are seen include OH 01-477, T629-5, and the Galactic center source IRS 7. The C-H stretch feature of diffuse ISM dust has subpeaks which fall within 5/cm of C-H stretching vibrations in the -CH2- and -CH3 groups of saturated aliphatic hydrocarbons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso
2015-05-15
Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively.more » Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of reagents. • Dimensionality and crystalline structure is a function of the zinc environments. • New coordination modes for 2-carboxyethylphosphonic acid are reported. • 3D-compound presents three different coordination environments for the zinc atoms. • Fluorescence properties are related to the structural dimensionality.« less
Aqueous Phase Non Enzymatic Chemistry of Cyanide, Formaldehyde and RNH2
NASA Technical Reports Server (NTRS)
Lerner, Narcinda R.; Chang, Sherwood (Technical Monitor)
1994-01-01
It is postulated that amino acids were produced on the early earth from dilute aqueous solution of cyanide, carbonyls and ammonia (the Strecker synthesis RNH2 + R"R""C=O + KCN yields H-N(R)-C(R")(R"")-CO2H. We have studied the products obtained from dilute aqueous solutions of cyanide, formaldehyde (R"=R""=H), ammonia (R=H) and amino acids. Solutions in the pH range from 8 to 10. at room temperature and at reactant concentrations from 0.001 M to 0.3 M have been studied. With R= H product yields were low (less than 3%). Only with R"=R""=H and R represented by the following: CH2CO2H (glycine); CH(CH3)CO2H (alanine); CH(CH2CH3)CO2H (a-amino n=butyric acids); C(CH3)2(CO2H) (a-aminoisobutyric acid); CH(CH(CH3)2)CO2H (valine); and CH(CH2CO2H)CO2H (aspartic acid), were product yields high (greater than 10%). The yields of glycine were larger with R not equal to H. The prebiotic implications of these findings will be discussed.
2006-08-01
cleared for public release by the Air Force Research Laboratory Wright Site (AFRL/WS) Public Affairs Office and is available to the general public...7.60%; MW =901; IR: (KBr, thin film ) 2,099 cm-I v(pt-C=C), IH NMR (CDCh): 8 0.96 (m, 18H, CH3), 1.47 (m, 12H, CHz), 1.60 (m, 12H, CHz), 2.17 (m, 12H...MA: found C, 67.68; H, 6.90%. CS6HnP2Ptrequires C, 67.11; H, 7.24%; MW =1001; IR: (KBr, thin film ) 2096 cm-Iv(Pt- C=C), IH NMR (CDCh): 3 0.99 (m, 18H
Olivo, Giorgio; Farinelli, Giulio; Barbieri, Alessia; Lanzalunga, Osvaldo; Di Stefano, Stefano; Costas, Miquel
2017-12-18
Site-selective C-H functionalization of aliphatic alkyl chains is a longstanding challenge in oxidation catalysis, given the comparable relative reactivity of the different methylenes. A supramolecular, bioinspired approach is described to address this challenge. A Mn complex able to catalyze C(sp 3 )-H hydroxylation with H 2 O 2 is equipped with 18-benzocrown-6 ether receptors that bind ammonium substrates via hydrogen bonding. Reversible pre-association of protonated primary aliphatic amines with the crown ether selectively exposes remote positions (C8 and C9) to the oxidizing unit, resulting in a site-selective oxidation. Remarkably, such control of selectivity retains its efficiency for a whole series of linear amines, overriding the intrinsic reactivity of C-H bonds, no matter the chain length. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sanchez, Nancy P.; Zheng, Chuantao; Ye, Weilin; ...
2018-01-04
Here, the extensive use of natural gas (NG) in urban areas for heating, cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH 4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH 4 leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CHmore » 4 enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH 4 emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 μm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH 4 and ethane (C 2H 6) monitoring during a period of over 14 days, corresponding to ~ 90 hours of effective data collection during summer 2016. The sampling campaign covered ~ 250 road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH 4 concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH 4 and C 2H 6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH 4 concentration episodes. The volumetric fraction of C 2H 6 in the sources associated with the thermogenic CH 4 spikes varied between 2.7 and 5.9%, concurring with the C 2H 6 content in NG distributed in the GHA. Isolated CH 4 peak events with significantly higher C 2H 6 enhancements (~11 %) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston’s thermogenic CH 4 sources.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Nancy P.; Zheng, Chuantao; Ye, Weilin
Here, the extensive use of natural gas (NG) in urban areas for heating, cooking and as a vehicular fuel is associated with potentially significant emissions of methane (CH 4) to the atmosphere. Methane, a potent greenhouse gas that influences the chemistry of the atmosphere, can be emitted from different sources including leakage from NG infrastructure, transportation activities, end-use uncombusted NG, landfills and livestock. Although significant CH 4 leakage associated with aging local NG distribution systems in the U.S. has been reported, further investigation is required to study the role of this infrastructure component and other NG-related sources in atmospheric CHmore » 4 enhancements in urban centers. In this study, neighborhood-scale mobile-based monitoring of potential CH 4 emissions associated with NG in the Greater Houston area (GHA) is reported. A novel dual-gas 3.337 μm interband cascade laser-based sensor system was developed and mobile-mode deployed for simultaneous CH 4 and ethane (C 2H 6) monitoring during a period of over 14 days, corresponding to ~ 90 hours of effective data collection during summer 2016. The sampling campaign covered ~ 250 road miles and was primarily concentrated on eight residential zones with distinct infrastructure age and NG usage levels. A moderate number of elevated CH 4 concentration events (37 episodes) with mixing ratios not exceeding 3.60 ppmv and associated with atmospheric background enhancements below 1.21 ppmv were observed during the field campaign. Source discrimination analyses based on the covariance between CH 4 and C 2H 6 levels indicated the predominance of thermogenic sources (e.g., NG) in the elevated CH 4 concentration episodes. The volumetric fraction of C 2H 6 in the sources associated with the thermogenic CH 4 spikes varied between 2.7 and 5.9%, concurring with the C 2H 6 content in NG distributed in the GHA. Isolated CH 4 peak events with significantly higher C 2H 6 enhancements (~11 %) were observed at industrial areas and locations with high density of petroleum and gas pipelines in the GHA, indicating potential variability in Houston’s thermogenic CH 4 sources.« less
Synthesis of the active form of loxoprofen by using allylic substitutions in two steps.
Hyodo, Tomonori; Kiyotsuka, Yohei; Kobayashi, Yuichi
2009-03-05
High regioselectivity for allylic substitution of the cyclopentenyl picolinate 5 with benzylcopper reagent was attained with ZnBr(2), and the finding was applied to the p-BrC(6)H(4)CH(2) reagent. The cyclopentene moiety in the product was reduced to the cyclopentane, and the p-BrC(6)H(4) was converted to the "Cu"C(6)H(4) for the second allylic substitution with picolinate 8 to furnish the title compound after oxidative cleavage of the resulting olefin moiety.
Hydrogen production by conversion of ethanol injected into a microwave plasma
NASA Astrophysics Data System (ADS)
Czylkowski, Dariusz; Hrycak, Bartosz; Jasiński, Mariusz; Dors, Mirosław; Mizeraczyk, Jerzy
2017-12-01
Reforming of gaseous and liquid hydrocarbon compounds into hydrogen is of high interest. In this paper we present a microwave (2.45 GHz) plasma-based method for hydrogen production by conversion of ethanol (C2H5OH) in the thermal reforming process in nitrogen plasma. In contrast to our earlier investigations, in which C2H5OH vapour was supplied into the microwave plasma region either in the form of a swirl or axial flow, in this experiment we injected C2H5OH vapour directly into the nitrogen microwave plasma flame, behind the microwave plasma generation region. The experimental results were as follows. At an absorbed microwave power of 5 kW, N2 (plasma-generating gas) swirl flow rate of 2700 NL(N2)/h and C2H5OH mass flow rate of 2.7 kg(C2H5OH)/h the hydrogen production rate was 1016 NL(H2)/h, which corresponds to the energy yield of hydrogen production 203 NL(H2)/kWh. After the C2H5OH conversion the outlet gas contained 27.6% (vol.) H2, 10.2% CO, 0.2% CO2, 4.8% CH4, 4.3% C2H2, 3.7% C2H4 and 3.7% C2H6. These results are comparable to those obtained in our earlier investigations, in which different methods of C2H5OH vapour supply to the microwave plasma generation region were employed. Contribution to the Topical Issue: "Advances in Plasma Chemistry", edited by Slobodan Milošević, Nikša Krstulović, and Holger Kersten.
NASA Astrophysics Data System (ADS)
DiSanti, Michael A.; Bonev, Boncho P.; Dello Russo, Neil; Vervack, Ronald J., Jr.; Gibb, Erika L.; Roth, Nathan X.; McKay, Adam J.; Kawakita, Hideyo; Feaga, Lori M.; Weaver, Harold A.
2017-12-01
We used the new high spectral resolution cross-dispersed facility spectrograph, iSHELL, at the NASA Infrared Telescope Facility on Maunakea, HI, to observe Jupiter-family comet (JFC) 45P/Honda-Mrkos-Pajdušáková. We report water production rates, as well as production rates and abundance ratios relative to H2O, for eight trace parent molecules (native ices), CO, CH4, H2CO, CH3OH, HCN, NH3, C2H2, and C2H6, on 2 days spanning UT 2017 January 6/7 and 7/8, shortly following perihelion. Trace species were measured simultaneously with H2O and/or OH prompt emission, a proxy for H2O production, thereby providing a robust and consistent means of establishing the native ice composition of 45P. Its favorable geocentric radial velocity (approximately -35 km s-1) permitted sensitive measures of the “hypervolatiles” CO and CH4, which are substantially undercharacterized in JFCs. Our results represent the most precise ground-based measures of CO and CH4 to date in a JFC, providing a foundation for building meaningful statistics regarding their abundances. The abundance ratio for CH4 in 45P (0.79% ± 0.06% relative to H2O) was consistent with its median value as measured among Oort Cloud comets, whereas CO (0.60% ± 0.04%) was strongly depleted. Compared with all measured comets, HCN (0.049% ± 0.012%) was strongly depleted, CH3OH (3.6% ± 0.3%) was enriched, and the remaining species were consistent with their respective median abundances. The volatile composition measured for 45P could indicate processing of ices prior to their incorporation into its nucleus. Spatial analysis of emissions suggests enhanced release of more volatile species into the sunward-facing hemisphere of the coma.
Parent volatiles in comet 9P/Tempel 1: before and after impact
NASA Technical Reports Server (NTRS)
Mumma, Michael J.; DiSanti, Michael A.; Magee-Sauer, Karen; Bonev, Boncho P.; Villanueva, Geronimo L.; Kawakita, Hideyo; Dello Russo, Neil; Gibb, Erika L.; Blake, Geoffrey A.; Lyke, James E.;
2005-01-01
We quantified eight parent volatiles (H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4) in the Jupiter-family comet Tempel 1 using high-dispersion infrared spectroscopy in the wavelength range 2.8 to 5.0 micrometers. The abundance ratio for ethane was significantly higher after impact, whereas those for methanol and hydrogen cyanide were unchanged. The abundance ratios in the ejecta are similar to those for most Oort cloud comets, but methanol and acetylene are lower in Tempel 1 by a factor of about 2. These results suggest that the volatile ices in Tempel 1 and in most Oort cloud comets originated in a common region of the protoplanetary disk.
NASA Astrophysics Data System (ADS)
Barakat, Assem; Soliman, Saied M.; Al-Majid, Abdullah Mohammed; Lotfy, Gehad; Ghabbour, Hazem A.; Fun, Hoong-Kun; Yousuf, Sammer; Choudhary, M. Iqbal; Wadood, Abdul
2015-10-01
Synthesis of (±)-1,3-dimethyl-5-(1-(3-nitrophenyl)-3-oxo-3-phenylpropyl)pyrimidine-2,4,6(1H,3H,5H)-trione (3) is reported. The structure of compound 3 was deduced by using spectroscopic methods, X-ray crystallography, and DFT calculations. The calculated geometric parameters were found to be in good agreement with the experimental data obtained from the X-ray structure. The NBO calculations were performed to predict the natural atomic charges at the different atomic sites and to study the different intramolecular charge transfer (ICT) interactions. The high LP(3)O6 →z BD*(2)O5-N3 ICT interaction energy (165.36 kcal/mol) indicated very strong n → π* electron delocalization while the small LP(2)O → BD*(1)C-H ICT interaction energies indicated that the C-H … O intramolecular interactions are weak. The 1H and 13C NMR chemical shifts calculated using GIAO method showed good agreement with the experimental data. The calculated electronic spectra of the studied compound using TD-DFT method showed intense electronic transition band at 243.9 nm (f = 0.2319) and a shoulder at 260.2 nm (f = 0.1483) which were due to H-4/H-2/H-1/H → L+2 and H-5 → L electronic excitations, respectively. Compound 3 (IC50 = 305 ± 3.8 μM) was identified as a potent inhibitor of α-glucosidase in vitro and showed several fold more inhibition than the standard drug acarbose (IC50 = 841 ± 1.73 μM). Molecular docking of the synthesized compound was discussed.
Abnormal carbene-silicon halide complexes.
Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; Schaefer, Henry F; Robinson, Gregory H
2016-04-14
Reaction of the anionic N-heterocyclic dicarbene (NHDC), [:C{[N(2,6-Pr(i)2C6H3)]2CHCLi}]n (1), with SiCl4 gives the trichlorosilyl-substituted (at the C4 carbon) N-heterocyclic carbene complex (7). Abnormal carbene-SiCl4 complex (8) may be conveniently synthesized by combining 7 with HCl·NEt3. In addition, 7 may react with CH2Cl2 in warm hexane, giving the abnormal carbene-complexed SiCl3(+) cation (9). The nature of the bonding in 9 was probed with complementary DFT computations.
Summary of Research/Publications
NASA Technical Reports Server (NTRS)
1997-01-01
Summary of research/publications include:(1) Comment on broadening of water microwave lines by collisions with helium atoms; (2) Calculations of ion-molecule deuterium fractionation reactions involving HD; (3) Ab initio predictions on the rotational spectra of carbon-chain carbene molecules; (4) Theoretical IR spectra of ionized naphthalene; (5) Improved collisional excitation rates for interstellar water; (6) Calculations on the competition between association and reaction for C3H+ + H2; (7) Theoretical infrared spectra of some model polycyclic aromatic hydrocarbons: effect of ionization; (8) Calculations concerning interstellar isomeric abundance ratios for C3H and C3H2; (9) New calculations on the ion-molecule processes C2H2+ + H2 C2H3+ + H and C2H2+ + H2 C2H4+; (10) Anisotropic rigid rotor potential energy function for H2O-H2; (11) A correlated ab initio study of linear carbon-chain radicals CnH (n=2-7); (12) Ab initio characterization of MgCCH, MgCCH+, and MgC2 and pathways to their formation in the interstellar medium; (13) Why HOC+ is detectable in interstellar clouds: The rate of the reaction between HOC+ and H2; (14) A correlated ab initio study of the X 2A 1 and A 2E states of MgCH3; (15) On the stability of interstellar carbon clusters: The rate of the reaction between C3 and O; and (16) The rate of the reaction between CN and C2H2 at interstellar temperatures.
Structural versus electrical properties of an organic-inorganic hybrid material based on sulfate
NASA Astrophysics Data System (ADS)
Ben Rached, Asma; Guionneau, Philippe; Lebraud, Eric; Mhiri, Tahar; Elaoud, Zakaria
2017-01-01
A new organo-sulfate compound is obtained by slow evaporation at room temperature and is characterized by powder and single-crystal X-ray diffraction (XRD) at variable temperatures. The benzylammonium monohydrogenosulfate of formula C6H5CH2NH3+. HSO4-, denoted (BAS), crystallizes in the monoclinic system P21/c space group with the following parameters at room temperature: a=5.623(5)Å, b=20.239(5) Å, c=8.188(5)Å, β=94.104(5)°. The crystal structure consists of infinite parallel two-dimensional planes built by HSO4- anions and C6H5CH2NH3+ cations interconnected by strong O-H….. O and N-H….. O hydrogen bonds. A phase transition is detected at 350 K by differential scanning calorimetry (DSC) and confirmed by powder XRD. Conductivity measurements using the impedance spectroscopy technique allow to determine the conductivity relaxation parameters associated with the H+ conduction from an analysis of the M"/M"max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to an H+ ion hopping mechanism.
Minyaev, Mikhail E; Nifant'ev, Ilya E; Shlyakhtin, Andrey V; Ivchenko, Pavel V; Lyssenko, Konstantin A
2018-05-01
A new packing polymorph of bis(2,6-di-tert-butyl-4-methylphenolato-κO)bis(tetrahydrofuran-κO)magnesium, [Mg(C 15 H 23 O) 2 (C 4 H 8 O) 2 ] or Mg(BHT) 2 (THF) 2 , (BHT is the 2,6-di-tert-butyl-4-methylphenoxide anion and THF is tetrahydrofuran), (1), has the same space group (P2 1 ) as the previously reported modification [Nifant'ev et al. (2017d). Dalton Trans. 46, 12132-12146], but contains three crystallographically independent molecules instead of one. The structure of (1) exhibits rotational disorder of the tert-butyl groups and positional disorder of a THF ligand. The complex of bis(2,6-di-tert-butyl-4-methylphenolato-κO)bis(μ 2 -ethyl glycolato-κ 2 O,O':κO)dimethyldialuminium, [Al 2 (CH 3 ) 2 (C 4 H 7 O 3 ) 2 (C 15 H 23 O) 2 ] or [(BHT)AlMe(OCH 2 COOEt)] 2 , (2), is a dimer located on an inversion centre and has an Al 2 O 2 rhomboid core. The 2-ethoxy-2-oxoethanolate ligand (OCH 2 COOEt) displays a μ 2 -κ 2 O,O':κO semi-bridging coordination mode, forming a five-membered heteronuclear Al-O-C-C-O ring. The same ligand exhibits positional disorder of the terminal methyl group. The redetermined structure of the heptanuclear complex octakis(μ 3 -benzyloxo-κO:κO:κO)hexaethylheptazinc, [Zn 7 (C 2 H 5 ) 6 (C 7 H 7 O) 8 ] or [Zn 7 (OCH 2 Ph) 8 Et 6 ], (3), possesses a bicubic Zn 7 O 8 core located at an inversion centre and demonstrates positional disorder of one crystallographically independent phenyl group. Cambridge Structural Database surveys are given for complexes structurally analogous to (2) and (3). Complexes (2) and (3), as well as derivatives of (1), are of interest as catalysts for the ring-opening polymerization of ℇ-caprolactone, and polymerization results are reported.
Formation of a 1,4-diamino-2,3-disila-1,3-butadiene derivative.
Mondal, Kartik Chandra; Roesky, Herbert W; Dittrich, Birger; Holzmann, Nicole; Hermann, Markus; Frenking, Gernot; Meents, Alke
2013-10-30
A 1,4-diamino-2,3-disila-1,3-butadiene derivative of composition (Me2-cAAC)2(Si2Cl2) (Me2-cAAC = :C(CMe2)2(CH2)N-2,6-iPr2C6H3) was synthesized by reduction of the Me2-cAAC:SiCl4 adduct with KC8. This compound is stable at 0 °C for 3 months in an inert atmosphere. Theoretical studies reveal that the silicon atoms exhibit pyramidal coordination, where the Cl-Si-Si-Cl dihedral angle is twisted by 43.3° (calcd 45.9°). The two silicon-carbon bonds are intermediates between single and double Si-C bonds due to twisting of the C-Si-Si-C dihedral angle (163.6°).
UV-light promoted C-H bond activation of benzene and fluorobenzenes by an iridium(i) pincer complex.
Hauser, Simone A; Emerson-King, Jack; Habershon, Scott; Chaplin, Adrian B
2017-03-28
Iridium(i) carbonyl complex [Ir(2,6-(P t Bu 2 CH 2 ) 2 C 6 H 3 )(CO)] undergoes reversible C-H bond activation of benzene and a series of fluorobenzenes on UV irradiation. Exclusive ortho-selectivity is observed in reactions of fluorobenzene and 1,2-difluorobenzene.
Maulitz, Andreas H.; Lightstone, Felice C.; Zheng, Ya-Jun; Bruice, Thomas C.
1997-01-01
The SN2 displacements of chloride ion from CH3Cl, C2H5Cl, and C2H4Cl2 by acetate and hydroxide ions have been investigated, using ab initio molecular orbital theory at the HF/6–31+G(d), MP2/6–31+G(d), and MP4/6–31+G(d) levels of theory. The central barriers (calculated from the initial ion–molecule complex) of the reactions, the differences of the overall reaction energies, and the geometries of the transition states are compared. Essential stereochemical changes before and after the displacement reactions are described for selected cases. The gas phase reactions of hydroxide with CH3Cl, C2H5Cl, and C2H4Cl2 have no overall barrier, but there is a small overall barrier for the reactions of acetate with CH3Cl, C2H5Cl, and C2H4Cl2. A self-consistent reaction field solvation model was used to examine the SN2 reactions between methyl chloride and hydroxide ion and between 1,2-dichloroethane and acetate in solution. As expected, the reactions in polar solvent have a large barrier. However, the transition state structures determined by ab initio calculations change only slightly in the presence of a highly polar solvent as compared with the gas phase. We also calibrated the PM3 method for future study of an enzymatic SN2 displacement of halogen. PMID:9192609
Secondary organic aerosol formation from propylene irradiations in a chamber study
NASA Astrophysics Data System (ADS)
Ge, Shuangshuang; Xu, Yongfu; Jia, Long
2017-05-01
Some studies have shown that low-molecular-weight VOCs such as ethylene and acetylene can form SOA. However, so far propylene (C3H6) has not been studied. The current work systematically investigates irradiations of propylene in the presence of NOx (x = 1, 2) in a self-made indoor chamber. Only a small amount of secondary organic aerosols (SOA) was formed under 5% and 80% RH conditions without sodium chloride (NaCl) seed particles or in the presence of solid NaCl. When NaCl was in the form of droplets, liquid water content (LWC) increased from 34.5 to 169.8 μg m-3 under different initial NaCl concentrations, and correspondingly the amount of SOA linearly increased from 5.9 to 29.8 μg m-3 (SOA = 0.0164 × LWC+1.137, R2 = 0.97) at the C3H6/NOx ratio of 32.2-44.9 (ppbC/ppb). The initial C3H6/NOx concentration ratio considerably impacted the formation of SOA, in which the amount of SOA increased from 12.1 to 47.9 μg m-3 exponentially as the ratio decreased from 46.5 to 6.3 with an important point of the ratio value of 11. At the ratio of less than 11 in the regime under the control of C3H6, SOA concentrations decreased considerably with increasing ratio, whereas at the ratio value of larger than 11 in the NOx controlled regime, SOA slightly decreased with increasing ratio. From combination of the analysis of different functional groups of particles by IR spectra and ESI-Exactive-Orbitrap mass spectrometer, the constituents of SOA were identified to be hydroperoxides (e.g. HOCH2CCl(CH3)OOH), esters (e.g. CH2ClC(O)OCHClCHO), organic nitrates (e.g. HO2CH(CH2Cl)C(O)OCCl(CH2Cl)C(O)OCHClCH2ONO2), etc. Furthermore, a liquid-phase mechanism of SOA formation has been proposed in this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, R.D.; Belinski, J.A.; Yamamoto, J.H.
1992-10-01
When heated to 97{degrees}C, the complex Ru{sub 4}(CO){sub 12}[{mu}-SCH{sub 2}CMe{sub 2}CH{sub 2}]2 (1) was transformed into two new hexaruthenium cluster complexes, Ru{sub 6}(CO){sub 13}({mu}{sub 3}-SCH{sub 2}CMe{sub 2}CH{sub 2}){sub 4} (2) and Ru{sub 6}(CO){sub 12}({mu}-SCH{sub 2}CMe{sub 2}CH{sub 2})({mu}{sub 3}-SCH{sub 2}CMe{sub 2}CH{sub 2}){sub 3}[{mu}{sub 3}-SCH{sub 2}C(Me)(CH{sub 2})CH{sub 2}] ({mu}-H) (3), that contain four and five ring-opened 3,3-dimethylthietane (3,3-DMT) ligands, respectively. In compound 3 one of the ring-opened DMT ligands has also undergone a CH activation on one of the methyl groups. Compound 2 reacts with additional 3,3-DMT at 97{degrees}C to form 3 in 18% yield. When treated with CO at 95{degrees}C (500more » psi), compound 2 yielded 4,4-dimethylthiobutyrolactone and Ru{sub 3}(CO){sub 12}. It was also found that the complex Os{sub 3}(CO){sub 11-}(SCH{sub 2}CMe{sub 2}CH{sub 2}C{double_bond}O) (4) yields 4,4-dimethylthiobutyrolactone when treated with CO at 120{degrees}C (1200 psi). Crystal data for 2: space group P2{sub 1}/n, {alpha} = 22.652 (7) A, {beta} = 11.712 (2) A, c = 19.965 (6) A, {Beta} = 115.75 (2){degrees} Z = 4, 3665 reflections, R = 0.021. Crystal data for 3: space group P2{sub 1}/c, {alpha} = 17.332 (8) A, {Beta} = 14.668 (9) A, c = 19.823 (9) A, {Beta} = 91.27 (4){degrees}, Z = 4, 1875 reflections, R = 0.050. 13 refs., 2 figs., 13 refs.« less
NASA Astrophysics Data System (ADS)
Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker
We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.
Cibian, Mihaela; Bessette, André; O'Connor, Andrew; Ferreira, Janaina G; Hanan, Garry S
2015-02-01
The crystal structures of fac-(acetonitrile-κN)(2-{[3,5-bis(4-methoxyphenyl)-2H-pyrrol-2-ylidene-κN(1)]amino}-3,5-bis(4-methoxyphenyl)-1H-pyrrol-1-ido-κN(1))tricarbonylrhenium(I)-hexane-acetonitrile (2/1/2), [Re(C36H30N3O4)(CH3CN)(CO)3]·0.5C6H14·CH3CN, (2), and fac-(2-{[3,5-bis(4-methoxyphenyl)-2H-pyrrol-2-ylidene-κN(1)]amino}-3,5-bis(4-methoxyphenyl)-1H-pyrrol-1-ido-κN(1))tricarbonyl(dimethyl sulfoxide-κO)rhenium(I), [Re(C36H30N3O4)(C2H6OS)(CO)3], (3), at 150 K are reported. Both complexes display a distorted octahedral geometry, with a fac-Re(CO)3 arrangement and one azadipyrromethene (ADPM) chelating ligand in the equatorial position. One solvent molecule completes the coordination sphere of the Re(I) centre in the remaining axial position. The ADPM ligand shows high flexibility upon coordination, while retaining its π-delocalized nature. Bond length and angle analyses indicate that the differences in the geometry around the Re(I) centre in (2) and (3), and those found in three reported fac-Re(CO)3-ADPM complexes, are dictated mainly by steric factors and crystal packing. Both structures display intramolecular C-H...N hydrogen bonding. Intermolecular interactions of the Csp(2)-H...π and Csp(2)-H...O(carbonyl) types link the discrete monomers into extended chains.
NASA Astrophysics Data System (ADS)
Wiersberg, T.; Erzinger, J.; Zimmer, M.; Schicks, J.; Dahms, E.; Mallik Working Group
2003-04-01
We present real-time mud gas monitoring data as well as results of noble gas and isotope investigations from the Mallik 2002 Production Research Well Program, an international research project on Gas Hydrates in the Northwest Territories of Canada. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. Mud gas monitoring (extraction of gas dissolved in the drill mud followed by real-time analysis) revealed more or less complete gas depth profiles of Mallik 4L-38 and Mallik 5L-38 wells for N_2, O_2, Ar, He, CO_2, H_2, CH_4, C_2H_6, C_3H_8, C_4H10, and 222Rn; both wells are approx. 1150 m deep. Based on the molecular and and isotopic composition, hydrocarbons occurring at shallow depth (down to ˜400 m) are mostly of microbial origin. Below 400 m, the gas wetness parameter (CH_4/(C_2H_6 + C_3H_8)) and isotopes indicate mixing with thermogenic gas. Gas accumulation at the base of permafrost (˜650 m) as well as δ13C and helium isotopic data implies that the permafrost inhibits gas flux from below. Gas hydrate occurrence at Mallik is known in a depth between ˜890 m and 1100 m. The upper section of the hydrate bearing zone (890 m--920 m) consists predominantly of methane bearing gas hydrates. Between 920 m and 1050 m, concentration of C_2H_6, C_3H_8, and C_4H10 increases due to the occurrence of organic rich sediment layers. Below that interval, the gas composition is similar to the upper section of the hydrate zone. At the base of the hydrate bearing zone (˜1100 m), elevated helium and methane concentrations and their isotopic composition leads to the assumption that gas hydrates act as a barrier for gas migration from below. In mud gas samples from the hydrate zone, the concentrations of all noble gases are lower than in air. Using Ne as a tracer for air contamination, the air-normalized abundances of Ar, Ke and Xe in those samples increase with their mass. Non-atmospheric elemental ratios of the heavier noble gases are most possible the result of elemental fractionation during hydrate formation.
Baratta, Walter; Ballico, Maurizio; Esposito, Gennaro; Rigo, Pierluigi
2008-01-01
The reaction of [RuCl(CNN)(dppb)] (1; HCNN=6-(4-methylphenyl)-2-pyridylmethylamine) with NaOiPr in 2-propanol/C6D6 affords the alcohol adduct alkoxide [Ru(OiPr)(CNN)(dppb)].n iPrOH (5), containing the Ru-NH2 linkage. The alkoxide [Ru(OiPr)(CNN)(dppb)] (4) is formed by treatment of the hydride [Ru(H)(CNN)(dppb)] (2) with acetone in C6D6. Complex 5 in 2-propanol/C6D6 equilibrates quickly with hydride 2 and acetone with an exchange rate of (5.4+/-0.2) s(-1) at 25 degrees C, higher than that found between 4 and 2 ((2.9+/-0.4) s(-1)). This fast process, involving a beta-hydrogen elimination versus ketone insertion into the Ru-H bond, occurs within a hydrogen-bonding network favored by the Ru-NH2 motif. The cationic alcohol complex [Ru(CNN)(dppb)(iPrOH)](BAr(f)4) (6; Ar(f)=3,5-C6H3(CF3)2), obtained from 1, Na[BAr(f)4], and 2-propanol, reacts with NaOiPr to afford 5. Complex 5 reacts with either 4,4'-difluorobenzophenone through hydride 2 or with 4,4'-difluorobenzhydrol through protonation, affording the alkoxide [Ru(OCH(4-C6H4F)2)(CNN)(dppb)] (7) in 90 and 85 % yield of the isolated product. The chiral CNN-ruthenium compound [RuCl(CNN)((S,S)-Skewphos)] (8), obtained by the reaction of [RuCl2(PPh3)3] with (S,S)-Skewphos and orthometalation of HCNN in the presence of NEt3, is a highly active catalyst for the enantioselective transfer hydrogenation of methylaryl ketones (turnover frequencies (TOFs) of up to 1.4 x 10(6) h(-1) at reflux were obtained) with up to 89% ee. Also the ketone CF3CO(4-C6H4F), containing the strong electron-withdrawing CF3 group, is reduced to the R alcohol with 64% ee and a TOF of 1.5 x 10(4) h(-1). The chiral alkoxide [Ru(OiPr)(CNN)((S,S)-Skewphos)]n iPrOH (9), obtained from 8 and NaOiPr in the presence of 2-propanol, reacts with CF3CO(4-C6H4F) to afford a mixture of the diastereomer alkoxides [Ru(OCH(CF3)(4-C6H4F))(CNN)((S,S)-Skewphos)] (10/11; 74% yield) with 67% de. This value is very close to the enantiomeric excess of the alcohol (R)-CF3CH(OH)(4-C6H4F) formed in catalysis, thus suggesting that diastereoisomeric alkoxides with the Ru-NH2 linkage are key species in the catalytic asymmetric transfer hydrogenation reaction.
Synthesis of carbon nanoparticles from commercially available liquified petroleum gas
NASA Astrophysics Data System (ADS)
Nandiyanto, A. B. D.; Fadhlulloh, M. A.; Rahman, T.; Mudzakir, A.
2016-04-01
The aim of this study was to synthesize carbon nanoparticles (CNPs) from commercially available liquefied petroleum gas (LPG). In the research procedure, LPG was reacted with air to construct CNPs. To confirm the successful synthesis of CNPs, we conducted several sample analyses: Gas Chromatography-Mass Spectrometry (GC-MS), Transmission Electron Microscope (TEM), X-ray Diffraction (XRD), and Infrared Spectra (FTIR). We also varied LPG and oxygen mole ratios at 0.8; 2.4; 4.8; and 7.2. The GC-MS results indicated the composition of LPG was propane (58.90%), isobutane (18.35%), butane (22.26%), and butane, 2-methyl (0.48%). The TEM results showed that the particles were spheres with sizes of between 25 and 35 nm. The sizes of particles were controllable, depending on the mole ratio. The XRD results showed mole ratios of LPG and oxygen of 0.80 and 2.40 were natural graphite, whereas the mole ratios of 4.80 and 7.20 were hexagonal graphite. FT-IR results showed CNPs have absorption peaks at wave number (i) 752 (C-H bend sp2); (ii) 835 (C=C); (iii) 1274 (C-O-C vibration); (iv) 1400 and 1600 (C-C stretch aromatic); (v) 2800 (C-H sp2); (vi) 2900 (CH sp3); (vii) 3100 (C-H aromatic); and (viii) 3400 cm-1 (O-H). From the FTIR analysis results, the sample contained allotrope graphite due to detection of peaks at 1400 and 1600 cm-1 (C-C stretch aromatic) and 3100 cm-1 (C-H aromatic).
Thioether coordination to divalent selenium halide acceptors--synthesis, properties and structures.
Jolleys, Andrew; Levason, William; Reid, Gillian
2013-02-28
The tetravalent SeCl(4) and SeBr(4) are reduced in the presence of thioether ligands L (SMe(2), tht) or L-L (MeS(CH(2))(n)SMe (n = 2 or 3), o-C(6)H(4)(SMe)(2)) in MeCN solution at 0 °C, forming Se(II) thioether complexes, including the crystallographically characterised halo-bridged chain polymers [SeX(2)(SMe(2))] (X = Cl or Br), molecular trans-[SeX(2)(tht)(2)], cis-[SeBr(2){MeS(CH(2))(2)SMe}] and the thioether-bridged polymer [SeBr(2){MeS(CH(2))(3)SMe}], as the main products, together with halogenated ligand. The [SeX(2)(L)(2)] and [SeX(2)(L-L)] complexes are all based upon distorted square planar coordination, with two Se-based lone pairs assumed to occupy the (vacant) axial sites, and Se-S bond distances of ca. 2.4-2.6 Å. The 1:1 species [SeX(2)(SMe(2))] are T-shaped with trans X groups and weak intermolecular SeX contacts. The SeCl(2)-thioether complexes are less stable than the bromides, both in solution in CH(2)Cl(2) and as solids at ambient temperature. Reaction of SeBr(4) with o-C(6)H(4)(SMe(2))(2) leads to the red complex cis-[SeBr(2){κ(1)-o-C(6)H(4)(SMe)(2)}(2)] as the major product; together with a minor (yellow) product formed via bromination of the aromatic ring, [SeBr(2){4-Br-1,2-(SMe)(2)-C(6)H(3)}(2)]. The crystal structure confirms a V-shaped SeBr(2) unit with long (weak) κ(1)-interactions to one S donor (meta to the Br) from two brominated ligands--an extremely rare coordination mode for an o-phenylene dithioether. Similar reaction of o-C(6)H(4)(SMe(2))(2) with SeCl(4) leads to several species, including monosulfonium cation, [1](+) formed by coupling of one thioether group to the C4-position of the phenylene backbone in an adjacent molecule, confirmed crystallographically. Carbon-sulfur coupling is also evident in the reaction of SeX(4) with o-C(6)H(4)(CH(2)SMe)(2), leading to two related cyclic sulfonium species, [2](+) and [3](+), which were structurally characterised as [SeBr(4)](2-) and [Se(2)Cl(6)](2-) salts respectively. Reaction of SeX(4) with SeMe(2) leads to halogenation of the ligand to form Me(2)SeX(2) and reduction of the SeX(4) to elemental selenium.
Ung VÂ, V&acaron;n Ân; Cargill Thompson, Alexander M. W.; Bardwell, David A.; Gatteschi, Dante; Jeffery, John C.; McCleverty, Jon A.; Totti, Federico; Ward, Michael D.
1997-07-30
The magnetic properties of two series of dinuclear complexes, and one trinuclear complex, have been examined as a function of the bridging pathway between the metal centers. The first series of dinuclear complexes is [{Mo(V)(O)(Tp)Cl}(2)(&mgr;-OO)], where "OO" is [1,4-O(C(6)H(4))(n)O](2)(-) (n = 1, 1; n = 2, 3), [4,4'-O(C(6)H(3)-2-Me)(2)O](2)(-) (4), or [1,3-OC(6)H(4)O](2)(-) (2) [Tp = tris(3,5-dimethylpyrazolyl)hydroborate]. The second series of dinuclear complexes is [{Mo(I)(NO)(Tp)Cl}(2)(&mgr;-NN)], where "NN" is 4,4'-bipyridyl (5), 3,3'-dimethyl-4,4'-bipyridine (6), 3,8-phenanthroline (7), or 2,7-diazapyrene (8). The trinuclear complex is [{Mo(V)(O)(Tp)Cl}(3)(1,3,5-C(6)H(3)O(3))] (9), whose crystal structure was determined [9.5CH(2)Cl(2): C(56)H(81)B(3)Cl(13)Mo(3)N(18)O(6); monoclinic, P2(1)/n; a = 13.443, b = 41.46(2), c = 14.314(6) Å; beta = 93.21(3) degrees; V = 7995(5) Å(3); Z = 4; R(1) = 0.106]. In these complexes, the sign and magnitude of the exchange coupling constant J is clearly related to both the topology and the conformation of the bridging ligand [where J is derived from H = -JS(1)().S(2)() for 1-8 and H = -J(S(1)().S(2)() + S(2)().S(3)() + S(1)().S(3)()) for 9]. The values are as follows: 1, -80 cm(-)(1); 2, +9.8 cm(-)(1); 3, -13.2 cm(-)(1); 4, -2.8 cm(-)(1); 5, -33 cm(-)(1); 6, -3.5 cm(-)(1); 7, -35.6 cm(-)(1); 8, -35.0 cm(-)(1); 9, +14.4 cm(-)(1). In particular the following holds: (1) J is negative (antiferromagnetic exchange) across the para-substituted bridges ligands of 1 and 3-8 but positive (ferromagnetic exchange) across the meta-substituted bridging ligands of 2 and 9. (2) J decreases in magnitude dramatically as the bridging ligand conformation changes from planar to twisted (compare 3 and 4, or 6 and 8). These observations are consistent with a spin-polarization mechanism for the exchange interaction, propagated across the pi-system of the bridging ligand by via overlap of bridging ligand p(pi) orbitals with the d(pi) magnetic orbitals of the metals. The EPR spectrum of 9 is characteristic of a quartet species and shows weak Deltam(s) = 2 and Deltam(s) = 3 transitions at one-half and one-third, respectively, of the field strength of the principal Deltam(s) = 1 component.
NASA Astrophysics Data System (ADS)
Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei
2016-05-01
By using K3[M(C2O4)3]·3H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)3]·2H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.
Albert, Joan; Bosque, Ramon; Crespo, Margarita; Granell, Jaume; López, Concepción; Martín, Raquel; González, Asensio; Jayaraman, Anusha; Quirante, Josefina; Calvis, Carme; Badía, Josefa; Baldomà, Laura; Font-Bardia, Mercè; Cascante, Marta; Messeguer, Ramon
2015-08-14
The synthesis and preliminary biological evaluation of neutral and cationic platinum derivatives of chiral 1-(1-naphthyl)ethylamine are reported, namely cycloplatinated neutral complexes [PtCl{(R or S)-NH(2)CH(CH(3))C(10)H(6)}(L)] [L = SOMe(2) ( 1-R or 1-S ), L = PPh(3) (2-R or 2-S), L = P(4-FC(6)H(4))(3) (3-R), L = P(CH(2))(3)N(3)(CH(2))(3) (4-R)], cycloplatinated cationic complexes [Pt{(R)-NH(2)CH(CH(3))C(10)H(6)}{L}]Cl [L = Ph(2)PCH(2)CH(2)PPh(2) (5-R), L = (C(6)F(5))(2)PCH(2)CH(2)P(C(6)F(5))(2) (6-R)] and the Pt(ii) coordination compound trans-[PtCl(2){(R)-NH(2)CH(CH(3))C(10)H(6)}(2)] (7-R). The X-ray molecular structure of 7-R is reported. The cytotoxic activity against a panel of human adenocarcinoma cell lines (A-549 lung, MDA-MB-231 and MCF-7 breast, and HCT-116 colon), cell cycle arrest and apoptosis, DNA interaction, topoisomerase I and cathepsin B inhibition, and Pt cell uptake of the studied compounds are presented. Remarkable cytotoxicity was observed for most of the synthesized Pt(ii) compounds regardless of (i) the absolute configuration R or S, and (ii) the coordinated/cyclometallated (neutral or cationic) nature of the complexes. The most potent compound 2-R (IC(50) = 270 nM) showed a 148-fold increase in potency with regard to cisplatin in HCT-116 colon cancer cells. Preliminary biological results point out to different biomolecular targets for the investigated compounds. Neutral cyclometallated complexes 1-R and 2-R, modify the DNA migration as cisplatin, cationic platinacycle 5-R was able to inhibit topoisomerase I-promoted DNA supercoiling, and Pt(ii) coordination compound 7-R turned out to be the most potent inhibitor of cathepsin B. Induction of G-1 phase ( 2-R and 5-R ), and S and G-2 phases (6-R) arrests are related to the antiproliferative activity of some representative compounds upon A-549 cells. Induction of apoptosis is also observed for 2-R and 6-R.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xueguang, E-mail: xue.g.ren@ptb.de; Pflüger, Thomas; Weyland, Marvin
We study the low-energy (E{sub 0} = 26 eV) electron-impact induced ionization and fragmentation of tetrahydrofuran using a reaction microscope. All three final-state charged particles, i.e., two outgoing electrons and one fragment ion, are detected in triple coincidence such that the momentum vectors and, consequently, the kinetic energies for charged reaction products are determined. The ionic fragments are clearly identified in the experiment with a mass resolution of 1 amu. The fragmentation pathways of tetrahydrofuran are investigated by measuring the ion kinetic energy spectra and the binding energy spectra where an energy resolution of 1.5 eV has been achieved usingmore » the recently developed photoemission electron source. Here, we will discuss the fragmentation reactions for the cations C{sub 4}H{sub 8}O{sup +}, C{sub 4}H{sub 7}O{sup +}, C{sub 2}H{sub 3}O{sup +}, C{sub 3}H{sub 6}{sup +}, C{sub 3}H{sub 5}{sup +}, C{sub 3}H{sub 3}{sup +}, CH{sub 3}O{sup +}, CHO{sup +}, and C{sub 2}H{sub 3}{sup +}.« less
Mikherdov, Alexander S; Novikov, Alexander S; Kinzhalov, Mikhail A; Boyarskiy, Vadim P; Starova, Galina L; Ivanov, Alexander Yu; Kukushkin, Vadim Yu
2018-03-19
The reaction of cis-[PdCl 2 (CNCy) 2 ] (1) with thiazol-2-amines (2-10) leads to the C,N-chelated diaminocarbene-like complexes [PdCl{ C(N(H)4,5-R 2 -thiazol-2-yl)NHCy}(CNCy)] (11-14; 82-91%) in the case of 4,5-R 2 -thiazol-2-amines (R, R = H, H (2), Me, Me (3), -(CH 2 ) 4 - (4)) and benzothiazol-2-amine (5) or gives the diaminocarbene species cis-[PdCl 2 {C(N(H)Cy)N(H)4-R-thiazol-2-yl}(CNCy)] (15-19; 73-93%) for the reaction with 4-aryl-substituted thiazol-2-amines (R = Ph (6), 4-MeC 6 H 4 (7), 4-FC 6 H 4 (8), 4-ClC 6 H 4 (9), 3,4-F 2 C 6 H 3 (10)). Inspection of the single-crystal X-ray diffraction data for 15-17 and 19 suggests that the structures of all these species exhibit previously unrecognized bifurcated chalcogen-hydrogen bonding μ (S,N-H) Cl and also Pd II ···Pd II metallophilic interactions. These noncovalent interactions collectively connect two symmetrically located molecules of 15-17 and 19, resulting in their solid-state dimerization. The existence of the μ (S,N-H) Cl system and its strength (6-9 kcal/mol) were additionally verified/estimated by a Hirshfeld surface analysis and DFT calculations combined with a topological analysis of the electron density distribution within the formalism of Bader's theory (AIM method) and NBO analysis. The observed noncovalent interactions are jointly responsible for the dimerization of 15-19 not only in the solid phase but also in CHCl 3 solutions, as predicted theoretically by DFT calculations and confirmed experimentally by FTIR, HRESI-MS, 1 H NMR, and diffusion coefficient NMR measurements. Available CCDC data were processed under the new moiety angle, and the observed μ (S,E-H) Cl systems were classified accordingly to E (E = N, O, C) type atoms.
NASA Astrophysics Data System (ADS)
Somov, N. V.; Chausov, F. F.; Zakirov, R. M.
2017-07-01
3D coordination polymers cesium nitrilotris(methylenephosphonate) and dicesium nitrilotris( methylenephosphonate) are synthesized and their crystal structure is determined. In the crystal of [Cs-μ6-NH(CH2PO3)3H4] (space group P, Z = 2), cesium atoms occupy two crystallographically inequivalent positions with c.n. = 10 and c.n. = 14. The phosphonate ligand plays the bridging function; its denticity is nine. The crystal packing consists of alternating layers of Cs atoms in different environments with layers of ligand molecules between them. A ligand is bound to three Cs atoms of one layer and three Cs atoms of another layer. In the crystal of [Cs2-μ10-NH(CH2PO3H)3] · H2O (space group P, Z = 2), the complex has a dimeric structure: the bridging phosphonate ligand coordinates Cs to form a three-dimensional Cs4O6 cluster. The denticity of the ligand is equal to nine; the coordination numbers of cesium atoms are seven and nine. Two-dimensional corrugated layers of Cs4O6 clusters lie in the (002) plane, and layers of ligand molecules are located between them. Each ligand molecule coordinates eight Cs atoms of one layer and two Cs atoms of the neighboring layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasilatou, K.; Michaud, J. M.; Baykusheva, D.
2014-08-14
The cyclopropene radical cation (c-C{sub 3}H{sub 4}{sup +}) is an important but poorly characterized three-membered-ring hydrocarbon. We report on a measurement of the high-resolution photoelectron and photoionization spectra of cyclopropene and several deuterated isotopomers, from which we have determined the rovibrational energy level structure of the X{sup ~+} {sup 2}B{sub 2} ground electronic state of c-C{sub 3}H{sub 4}{sup +} at low energies for the first time. The synthesis of the partially deuterated isotopomers always resulted in mixtures of several isotopomers, differing in their number of D atoms and in the location of these atoms, so that the photoelectron spectra ofmore » deuterated samples are superpositions of the spectra of several isotopomers. The rotationally resolved spectra indicate a C{sub 2v}-symmetric R{sub 0} structure for the ground electronic state of c-C{sub 3}H{sub 4}{sup +}. Two vibrational modes of c-C{sub 3}H{sub 4}{sup +} are found to have vibrational wave numbers below 300 cm{sup −1}, which is surprising for such a small cyclic hydrocarbon. The analysis of the isotopic shifts of the vibrational levels enabled the assignment of the lowest-frequency mode (fundamental wave number of ≈110 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to the CH{sub 2} torsional mode (ν{sub 8}{sup +}, A{sub 2} symmetry) and of the second-lowest-frequency mode (≈210 cm{sup −1} in c-C{sub 3}H{sub 4}{sup +}) to a mode combining a CH out-of-plane with a CH{sub 2} rocking motion (ν{sub 15}{sup +}, B{sub 2} symmetry). The potential energy along the CH{sub 2} torsional coordinate is flat near the equilibrium structure and leads to a pronounced anharmonicity.« less
Phosphines bearing alkyne substituents: synthesis and hydrophosphination polymerization.
Greenberg, Sharonna; Stephan, Douglas W
2009-09-07
A synthetic route is described for a series of phosphines bearing pendant alkyne substituents, from the conversion of BrC(6)H(2)R(2)C[triple bond]CR' (R = Me, i-Pr; R' = Ph, SiMe(3)) to [(mu-Br)Cu(Et(2)N)(2)PC(6)H(2)R(2)C[triple bond]CR'](2) and subsequently to Cl(2)PC(6)H(2)R(2)C[triple bond]CR' and H(2)PC(6)H(2)R(2)C[triple bond]CR'. Lithiation and subsequent alkylation yield the secondary phosphines R(H)PC(6)H(2)(i-Pr)(2)C[triple bond]CPh (R = CH(2)i-Pr, CH(2)Ph). Intermolecular hydrophosphination-polymerization is used to prepare the polymeric species [RPC(6)H(2)(i-Pr)(2)CH=CPh](n), which can then be sulfurized to give [RP(S)C(6)H(2)(i-Pr)(2)CH=CPh](n). The polymeric products were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and gel permeation chromatography. These data indicate a degree of polymerization (DP(n)) of up to 60. Discussion of the mechanism is augmented with gas-phase density functional theory calculations.
Crystal structure of 1-methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habibi, A., E-mail: habibi@khu.ac.ir; Ghorbani, H. S.; Bruno, G.
2013-12-15
The crystal structure of 1-Methyl-3-([2,2-dimethyl-4,6-dioxo-1,3-dioxane-5-ylidene]methyl)urea (C{sub 9}H{sub 12}N{sub 2}O{sub 5}) has been determined by single crystal X-ray diffraction analysis. The crystals are monoclinic, a = 5.3179(2), b = 18.6394(6), c =10.8124(3) Å, β = 100.015(2)°, Z = 4, sp. gr. P2{sub 1}/c, R = 0.0381 for 2537 reflections with I > 2σ(I). Except for C(CH{sub 3}){sub 2} group, the molecule is planar. The structure is stabilized by inter- and intramolecular N-H...O hydrogen bonds and weak C-H...O interactions.
Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?
NASA Astrophysics Data System (ADS)
Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan
2016-07-01
There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.
Tokuda, K; Okamoto, K; Konno, T
2000-01-24
The reaction of an S-bridged Co2(III)Ag3(I) pentanuclear complex, [Ag3[Co(aet)3]2][BF4]3 (aet = NH2CH2CH2S-), with paraformaldehyde in basic acetonitrile, followed by adding aqueous ammonia, produced an aza-capped Co2(III)-Ag3(I) complex, [Ag3[Co(L)]2]3+ ([1]3+) (L = N(CH2NHCH2CH2S-)3). The crystal structure of [1]3+ was determined by X-ray crystallography. [1][PF6]3 x H2O, empirical formula C18H44Ag3Co2F18N8OP3S6, crystallizes in the tetragonal space group 142m with a = 13.012(1) A, c = 24.707(2) A, and Z = 4. In [1]3+ the two aza-capped [Co(L)] units are linked by three Ag(I) atoms, such that the two Co(III) atoms are encapsulated in a macrobicyclic metallocage, [Ag3(I)(L)2]3-. [1]3+ was converted to an aza-capped Co4(III)Zn4(II) octanuclear complex, [Zn4O[Co(L)]4]6+ ([2]6+), by reaction with I- in the presence of Zn2+ and ZnO in water. The crystal structure of [2]6+ was also determined by X-ray crystallography. [2][PF6]6 x 8H2O, empirical formula C36H100Co4F36N16O9P6S12Zn4, crystallizes in the monoclinic space group P2(1/n) with a = 14.33(7) A, b = 25.67(10) A, c = 24.83(6) A, beta = 101.3(3) degrees , and Z = 4. In [2]6+ each of four [Co(L)] units is bound to each trigonal Zn3(II) face of the tetrahedral [Zn4(II)O]6+ core, such that each Co(III) atom is encapsulated in a macrobicyclic [Zn4(II)O(L)] fragment. Treatment of [2]6+ with a basic aqueous solution resulted in a cleavage of the Zn-S bonds to produce an aza-capped Co(III) mononuclear complex, [Co(L)] ([3]), from which [1]3+ is readily reproduced by the reaction with Ag+ in water. All the reactions were found to proceed with retention of the absolute configuration (delta or lambda) of the Co(III) chiral centers; deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and A-[3] were derived from deltadelta-[Ag3[Co(aet)3]2]3+. The contributions to circular dichroism (CD) from the triple helicity in [1]3+, besides from the asymmetric N and S donor atoms and the Co(III) chiral centers in [1]3+ and [2]6+, were estimated by comparing the CD spectra of deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and delta-[3].
1975-03-01
Quarterly Evaluation Report [ CH -54A] . . . S. TI. Eighth (8th) Quarterly CH -53 Readiness Report . . .. S-79 *.hrc.e parInation sequences are used In this...Total & Subsystem R Growth Parameters Table 2 CJF-46 Total Aircraft R~ Growth Statiatics Table 5 C7O-46 Subsystem R Growth Statistics Table 5 CH -46...UH-1 Navy. H-2 Navy, *-3 Navy# e OH-6 Army, H-19 Navy, H-19 Army, H-21 Air Force, H-21 Army. H-34 Army, H-34 Navy, H-37 Navy. H-37 Army, H-46 Navy, CH
Schicks, J M; Luzi, M; Beeskow-Strauch, B
2011-11-24
Microscopy, confocal Raman spectroscopy and powder X-ray diffraction (PXRD) were used for in situ investigations of the CO(2)-hydrocarbon exchange process in gas hydrates and its driving forces. The study comprises the exposure of simple structure I CH(4) hydrate and mixed structure II CH(4)-C(2)H(6) and CH(4)-C(3)H(8) hydrates to gaseous CO(2) as well as the reverse reaction, i.e., the conversion of CO(2)-rich structure I hydrate into structure II mixed hydrate. In the case of CH(4)-C(3)H(8) hydrates, a conversion in the presence of gaseous CO(2) from a supposedly more stable structure II hydrate to a less stable structure I CO(2)-rich hydrate was observed. PXRD data show that the reverse process requires longer initiation times, and structural changes seem to be less complete. Generally, the exchange process can be described as a decomposition and reformation process, in terms of a rearrangement of molecules, and is primarily induced by the chemical potential gradient between hydrate phase and the provided gas phase. The results show furthermore the dependency of the conversion rate on the surface area of the hydrate phase, the thermodynamic stability of the original and resulting hydrate phase, as well as the mobility of guest molecules and formation kinetics of the resulting hydrate phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lichtscheidl, Alejandro G.; Janicke, Michael T.; Scott, Brian L.
The synthesis and full characterization, including Nuclear Magnetic Resonance (NMR) data ( 1H, 13C{ 1H} and 119Sn{ 1H}), for a series of Me 3SnX (X = O-2,6-tBu 2C 6H 3 (1), (Me 3Sn)N(2,6- iPr 2C 6H 3) (3), NH-2,4,6- tBu 3C 6H 2 (4), N(SiMe 3) 2 (5), NEt 2, C 5Me 5 (6), Cl, Br, I, and SnMe 3) compounds in benzene-d 6, toluene-d 8, dichloromethane-d 2, chloroform-d 1, acetonitrile-d 3, and tetrahydrofuran-d 8 are reported. The X-ray crystal structures of Me 3Sn(O-2,6- tBu 2C 6H 3) (1), Me 3Sn(O-2,6- iPr 2C 6H 3) (2), and (Me 3Sn)(NH-2,4,6- tBumore » 3C 6H 2) (4) are also presented. As a result, these compiled data complement existing literature data and ease the characterization of these compounds by routine NMR experiments.« less
Shen, Su-Mei
2009-01-01
In the title compound, {[Mn(C8H4O4)(C10H8N2)(H2O)]·H2O}n, the MnII centre is octahedrally coordinated by three O atoms from two 5-methoxyisophthalate (CH3O-ip) ligands, a fourth from a coordinated water molecule and two N atoms from one chelating 2,2′-bipyridine (2,2-bipy) ligand. Each pair of adjacent MnII atoms is bridged by a CH3O-ip ligand, forming a helical chain running along a crystallographic 21 axis in the c-axis direction. These chains are decorated with 2,2′-bipy ligands on alternating sides. O—H⋯O hydrogen bonding involving the water molecules stabilizes the crystal structure. PMID:21577709
Pietzsch, H J; Gupta, A; Reisgys, M; Drews, A; Seifert, S; Syhre, R; Spies, H; Alberto, R; Abram, U; Schubiger, P A; Johannsen, B
2000-01-01
The organometallic precursor (NEt(4))(2)[ReBr(3)(CO)(3)] was reacted with bidendate dithioethers (L) of the general formula H(3)C-S-CH(2)CH(2)-S-R (R = -CH(2)CH(2)COOH, CH(2)-C&tbd1;CH) and R'-S-CH(2)CH(2)-S-R' (R' = CH(3)CH(2)-, CH(3)CH(2)-OH, and CH(2)COOH) in methanol to form stable rhenium(I) tricarbonyl complexes of the general composition [ReBr(CO)(3)L]. Under these conditions, the functional groups do not participate in the coordination. As a prototypic representative of this type of Re compounds, the propargylic group bearing complex [ReBr(CO(3))(H(3)C-S-CH(2)CH(2)-S-CH(2)C&tbd1;CH)] Re2 was studied by X-ray diffraction analysis. Its molecular structure exhibits a slightly distorted octahedron with facial coordination of the carbonyl ligands. The potentially tetradentate ligand HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH was reacted with the trinitrato precursor [Re(NO(3))(3)(CO)(3)](2-) to yield a cationic complex [Re(CO)(3)(HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH)]NO(3) Re8 which shows the coordination of one hydroxy group. Re8 has been characterized by correct elemental analysis, infrared spectroscopy, capillary electrophoresis, and X-ray diffraction analysis. Ligand exchange reaction of the carboxylic group bearing ligands H(3)C-S-CH(2)CH(2)-S-CH(2)CH(2)-COOH and HOOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH with (NEt(4))(2)[ReBr(3)(CO)(3)] in water and with equimolar amounts of NaOH led to complexes in which the bromide is replaced by the carboxylic group. The X-ray structure analysis of the complex [Re(CO)(3)(OOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH)] Re6 shows the second carboxylic group noncoordinated offering an ideal site for functionalization or coupling a biomolecule. The no-carrier-added preparation of the analogous (99m)Tc(I) carbonyl thioether complexes could be performed using the precursor fac-[(99m)Tc(H(2)O)(3)(CO)(3)](+), with yields up to 90%. The behavior of the chlorine containing (99m)Tc complex [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 in aqueous solution at physiological pH value was investigated. In saline, the chromatographically separated compound was stable for at least 120 min. However, in chloride-free aqueous solution, a water-coordinated cationic species Tc1a of the proposed composition [(99m)Tc(H(2)O)(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))](+) occurred. The cationic charge of the conversion product was confirmed by capillary electrophoresis. By the introduction of a carboxylic group into the thioether ligand as a third donor group, the conversion could be suppressed and thus the neutrality of the complex preserved. Biodistribution studies in the rat demonstrated for the neutral complexes [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 and [(99m)TcCl(CO)(3)(CH(2)-S-CH(2)CH(2)-S-CH(2)-C&tbd1;CH)] Tc2 a significant initial brain uptake (1.03 +/- 0.25% and 0.78 +/- 0.08% ID/organ at 5 min. p.i.). Challenge experiments with glutathione clearly indicated that no transchelation reaction occurs in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yu-Fang; Kong, Lin-Jun; Lee, Yuan-Pern
Irradiation at 239 {+-} 20 nm of a p-H{sub 2} matrix containing methoxysulfinyl chloride, CH{sub 3}OS(O)Cl, at 3.2 K with filtered light from a medium-pressure mercury lamp produced infrared (IR) absorption lines at 3028.4 (attributable to {nu}{sub 1}, CH{sub 2} antisymmetric stretching), 2999.5 ({nu}{sub 2}, CH{sub 3} antisymmetric stretching), 2950.4 ({nu}{sub 3}, CH{sub 3} symmetric stretching), 1465.2 ({nu}{sub 4}, CH{sub 2} scissoring), 1452.0 ({nu}{sub 5}, CH{sub 3} deformation), 1417.8 ({nu}{sub 6}, CH{sub 3} umbrella), 1165.2 ({nu}{sub 7}, CH{sub 3} wagging), 1152.1 ({nu}{sub 8}, S=O stretching mixed with CH{sub 3} rocking), 1147.8 ({nu}{sub 9}, S=O stretching mixed with CH{sub 3} wagging),more » 989.7 ({nu}{sub 10}, C-O stretching), and 714.5 cm{sup -1} ({nu}{sub 11}, S-O stretching) modes of syn-CH{sub 3}OSO. When CD{sub 3}OS(O)Cl in a p-H{sub 2} matrix was used, lines at 2275.9 ({nu}{sub 1}), 2251.9 ({nu}{sub 2}), 2083.3 ({nu}{sub 3}), 1070.3 ({nu}{sub 4}), 1056.0 ({nu}{sub 5}), 1085.5 ({nu}{sub 6}), 1159.7 ({nu}{sub 7}), 920.1 ({nu}{sub 8}), 889.0 ({nu}{sub 9}), 976.9 ({nu}{sub 10}), and 688.9 ({nu}{sub 11}) cm{sup -1} appeared and are assigned to syn-CD{sub 3}OSO; the mode numbers correspond to those used for syn-CH{sub 3}OSO. The assignments are based on the photolytic behavior and a comparison of observed vibrational wavenumbers, infrared intensities, and deuterium isotopic shifts with those predicted with the B3P86/aug-cc-pVTZ method. Our results extend the previously reported four transient IR absorption bands of gaseous syn-CH{sub 3}OSO near 2991, 2956, 1152, and 994 cm{sup -1} to 11 lines, including those associated with C-O, O-S, and S=O stretching modes. Vibrational wavenumbers of syn-CD{sub 3}OSO are new. These results demonstrate the advantage of a diminished cage effect of solid p-H{sub 2} such that the Cl atom, produced via UV photodissociation of CH{sub 3}OS(O)Cl in situ, might escape from the original cage to yield isolated CH{sub 3}OSO radicals.« less
From iron coordination compounds to metal oxide nanoparticles.
Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria
2016-01-01
Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.
From iron coordination compounds to metal oxide nanoparticles
Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel
2016-01-01
Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2 IIIFeIIO(CH3COO)6(H2O)3]·2H2O (FeAc1), μ3-oxo trinuclear iron(III) acetate, [Fe3O(CH3COO)6(H2O)3]NO3∙4H2O (FeAc2), iron furoate, [Fe3O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeF), iron chromium furoate, FeCr2O(C4H3OCOO)6(CH3OH)3]NO3∙2CH3OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles. PMID:28144555
NASA Astrophysics Data System (ADS)
Picconatto, Carl A.; Srivastava, Abneesh; Valentini, James J.
2001-03-01
The rovibrational state distributions for the H2 product of the H+n-C5H12/n-C6H14→H2+C5H11/C6H13 reactions at 1.6 eV collision energy are reported. The results are compared to measurements made on the kinematically and energetically similar H+RH→H2+R (RH=CH4, C2H6, and C3H8) reactions as well as the atom-diatom reactions H+HX→H2+X(HX=HCl, HBr). For the title reactions, as for all the comparison reactions, the product appears in few of the energetically accessible states. This is interpreted as the result of a kinematic constraint on the product translational energy. Characteristic of the H+RH reactions we have previously studied, the title reactions show increasing rotational excitation of the H2 product with increasing vibrational excitation of it, a correlation that gets stronger as the size of the alkane increases. Trends and variations in the product energy disposal are analyzed and explained by a localized reaction model. This model predicates a truncation of the opacity function due to competing reactive sites in the polyatomic alkane reactant, and a relaxation of the otherwise tight coupling of energy and angular momentum conservation, because the polyatomic alkyl radical product is a sink for angular momentum.
NASA Astrophysics Data System (ADS)
Lee, Shih-Huang; Huang, Wen-Jian; Chen, Wei-Kan
2007-10-01
We measured time-of-flight (TOF) spectra of products from the reaction O( 3P/ 1D) + C 2H 4 at collision energy 6.4 kcal mol -1 using a quadrupole mass filter and tunable vacuum-ultraviolet light for ionization. All carbon-containing products from five exit channels - CH 2CHO + H, CH 2CO + H 2, CH 3 + HCO, CH 2 + HCHO, and CH 2CO + 2H - were identified. Product channels CH 2CHO + H and CH 2CO + 2H associate with 3P and 1D atomic oxygen reactants, respectively. Both 3P and 1D oxygen reactants might be responsible for the other reactions. The ionization threshold of nascent vinoxy radicals is 9.3 ± 0.1 eV.
NASA Astrophysics Data System (ADS)
Zayed, M. A.; Hawash, M. F.; Fahmey, M. A.; El-Habeeb, Abeer A.
2007-11-01
Sertraline (C 17H 17Cl 2N) as an antidepressant drug was investigated using thermal analysis (TA) measurements (TG/DTG and DTA) in comparison with electron impact (EI) mass spectral (MS) fragmentation at 70 eV. Semi-empirical MO-calculations, using PM3 procedure, has been carried out on neutral molecule and positively charged species. These calculations included bond length, bond order, bond strain, partial charge distribution and heats of formation (Δ Hf). Also, in the present work sertraline-iodine product was prepared and its structure was investigated using elemental analyses, IR, 1H NMR, 13C NMR, MS and TA. It was also subjected to molecular orbital calculations (MOC) in order to confirm its fragmentation behavior by both MS and TA in comparison with the sertraline parent drug. In MS of sertraline the initial rupture occurred was CH 3NH 2+ fragment ion via H-rearrangement while in sertraline-iodine product the initial rupture was due to the loss of I + and/or HI + fragment ions followed by CH 2dbnd NH + fragment ion loss. In thermal analyses (TA) the initial rupture in sertraline is due to the loss of C 6H 3Cl 2 followed by the loss of CH 3-NH forming tetraline molecule which thermally decomposed to give C 4H 8, C 6H 6 or the loss of H 2 forming naphthalene molecule which thermally sublimated. In sertraline-iodine product as a daughter the initial thermal rupture is due to successive loss of HI and CH 3NH followed by the loss of C 6H 5HI and HCl. Sertraline biological activity increases with the introduction of iodine into its skeleton. The activities of the drug and its daughter are mainly depend upon their fragmentation to give their metabolites in vivo systems, which are very similar to the identified fragments in both MS and TA. The importance of the present work is also due to the decision of the possible mechanism of fragmentation of the drug and its daughter and its confirmation by MOC.
Hützler, Wilhelm Maximilian; Egert, Ernst
2015-03-01
The results of seven cocrystallization experiments of the antithyroid drug 6-methyl-2-thiouracil (MTU), C(5)H(6)N(2)OS, with 2,4-diaminopyrimidine, 2,4,6-triaminopyrimidine and 6-amino-3H-isocytosine (viz. 2,6-diamino-3H-pyrimidin-4-one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen-bonding site, while the three coformers show complementary DAD hydrogen-bonding sites and therefore should be capable of forming an ADA/DAD N-H...O/N-H...N/N-H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6-methyl-2-thiouracil-2,4-diaminopyrimidine-1-methylpyrrolidin-2-one (1/1/2), C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(5)H(9)NO, (I), 6-methyl-2-thiouracil-2,4-diaminopyrimidine (1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4), (II), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylacetamide (2/1/2), 2C(5)H(6)N(2)OS·C(4)H(6)N(4)·2C(4)H(9)NO, (III), 6-methyl-2-thiouracil-2,4-diaminopyrimidine-N,N-dimethylformamide (2/1/2), C(5)H(6)N(2)OS·0.5C(4)H(6)N(4)·C(3)H(7)NO, (IV), 2,4,6-triaminopyrimidinium 6-methyl-2-thiouracilate-6-methyl-2-thiouracil-N,N-dimethylformamide (1/1/2), C(4)H(8)N(5)(+)·C(5)H(5)N(2)OS(-)·C(5)H(6)N(2)OS·2C(3)H(7)NO, (V), 6-methyl-2-thiouracil-6-amino-3H-isocytosine-N,N-dimethylformamide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(3)H(7)NO, (VI), and 6-methyl-2-thiouracil-6-amino-3H-isocytosine-dimethyl sulfoxide (1/1/1), C(5)H(6)N(2)OS·C(4)H(6)N(4)O·C(2)H(6)OS, (VII). Whereas in cocrystal (I) an R(2)(2)(8) interaction similar to the Watson-Crick adenine/uracil base pair is formed and a two-dimensional hydrogen-bonding network is observed, the cocrystals (II)-(VII) contain the triply hydrogen-bonded ADA/DAD N-H...O/N-H...N/N-H...S synthon and show a one-dimensional hydrogen-bonding network. Although 2,4-diaminopyrimidine possesses only one DAD hydrogen-bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).
Révész, K. M.; Breen, K.J.; Baldassare, A.J.; Burruss, R.C.
2010-01-01
The origin of the combustible gases in groundwater from glacial-outwash and fractured-bedrock aquifers was investigated in northern Tioga County, Pennsylvania. Thermogenic methane (CH4) and ethane (C2H6) and microbial CH4 were found. Microbial CH4 is from natural in situ processes in the shale bedrock and occurs chiefly in the bedrock aquifer. The δ13C values of CH4 and C2H6 for the majority of thermogenic gases from water wells either matched or were between values for the samples of non-native storage-field gas from injection wells and the samples of gas from storage-field observation wells. Traces of C2H6 with microbial CH4 and a range of C and H isotopic compositions of CH4 indicate gases of different origins are mixing in sub-surface pathways; gas mixtures are present in groundwater. Pathways for gas migration and a specific source of the gases were not identified. Processes responsible for the presence of microbial gases in groundwater could be elucidated with further geochemical study.
C/2013 R1 (Lovejoy) at IR wavelengths and the variability of CO abundances among Oort Cloud comets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paganini, L.; Mumma, M. J.; Villanueva, G. L.
2014-08-20
We report production rates, rotational temperatures, and related parameters for gases in C/2013 R1 (Lovejoy) using the Near InfraRed SPECtrometer at the Keck Observatory, on six UT dates spanning heliocentric distances (R{sub h} ) that decreased from 1.35 AU to 1.16 AU (pre-perihelion). We quantified nine gaseous species (H{sub 2}O, OH*, CO, CH{sub 4}, HCN, C{sub 2}H{sub 6}, CH{sub 3}OH, NH{sub 3}, and NH{sub 2}) and obtained upper limits for two others (C{sub 2}H{sub 2} and H{sub 2}CO). Compared with organics-normal comets, our results reveal highly enriched CO, (at most) slightly enriched CH{sub 3}OH, C{sub 2}H{sub 6}, and HCN, andmore » CH{sub 4} consistent with {sup n}ormal{sup ,} yet depleted, NH{sub 3}, C{sub 2}H{sub 2}, and H{sub 2}CO. Rotational temperatures increased from ∼50 K to ∼70 K with decreasing R{sub h} , following a power law in R{sub h} of –2.0 ± 0.2, while the water production rate increased from 1.0 to 3.9 × 10{sup 28} molecules s{sup –1}, following a power law in R{sub h} of –4.7 ± 0.9. The ortho-para ratio for H{sub 2}O was 3.01 ± 0.49, corresponding to spin temperatures (T {sub spin}) ≥ 29 K (at the 1σ level). The observed spatial profiles for these emissions showed complex structures, possibly tied to nucleus rotation, although the cadence of our observations limits any definitive conclusions. The retrieved CO abundance in Lovejoy is more than twice the median value for comets in our IR survey, suggesting this comet is enriched in CO. We discuss the enriched value for CO in comet C/2013 R1 in terms of the variability of CO among Oort Cloud comets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feakes, D.A.; Shelly, K.; Hawthorne, M.F.
1995-02-28
The nido-carborane species K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] has been synthesized for use as an addend for the bilayer membrane of liposomes. Small unilamellar vesicles, composed of distearoylphosphatidylcholine/cholesterol, 1:1, and incorporating K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] in the bilayer, have been investigated in vivo. The time-course biodistribution of boron delivered by these liposomes was determined by inductively coupled plasma-atomic emission spectroscopy analyses after the injection of liposomal suspensions in BALB/c mice bearing EMT6 mammary adenocarcinomas. At the low injected doses normally used ({approx}5-10 mg of boron per kg of body weight), peak tumor boron concentrations ofmore » {approx}35 {mu}g of boron per g of tissue and tumor/blood boron ratios of {approx}8 were achieved. These values are sufficiently high for the successful application of boron neutron capture therapy. The bilayer-embedded boron compound may provide the sole boron source or, alternatively, a concentrated aqueous solution of a hydrophilic boron compound may also be encapsulated within the liposomes to provide a dose enhancement. Thus, the incorporation of both K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] and the hydrophilic species, Na{sub 3}[1-(2{prime}-B{sub 10}H{sub 9})-2-NH{sub 3}B{sub 10}H{sub 8}], within the same liposomes demonstrated significantly enhanced biodistribution characteristics, exemplified by maximum tumor boron concentrations of {approx} 50 {mu}g of boron per g of tissue and tumor/blood boron ratios of {approx} 6. 18 refs., 1 fig.« less
Simulating Titan’s atmospheric chemistry at low temperature (200K)
NASA Astrophysics Data System (ADS)
Sciamma-O'Brien, Ella; Upton, Kathleen T.; Beauchamp, Jesse L.; Salama, Farid
2016-06-01
We present our latest results on the Titan Haze Simulation (THS) experiment developed on the COSmIC simulation chamber at NASA Ames Research Center. In Titan’s atmosphere, a complex organic chemistry induced by UV radiation and electron bombardment occurs between N2 and CH4 and leads to the production of larger molecules and solid aerosols. In the THS, the chemistry is simulated by pulsed plasma in the stream of a supersonic expansion, at Titan-like temperature (150 K). The residence time of the gas in the pulsed plasma discharge is on the order of 3 µs, hence the chemistry is truncated allowing us to probe the first and intermediate steps of the chemistry by adding heavier precursors into the initial N2-CH4 gas mixture.Two complementary studies of the gas phase and solid phase products have been performed in 4 different gas mixtures: N2-CH4, N2-CH4-C2H2, N2-CH4-C6H6 and N2-CH4-C2H2-C6H6 using a combination of in situ and ex situ diagnostics. The mass spectrometry analysis of the gas phase was the first to demonstrate that the THS is a unique tool to monitor the different steps of the N2-CH4 chemistry (Sciamma-O’Brien et al. 2014). The results of the solid phase study are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates that form in the gas phase were jet deposited on various substrates then collected for ex situ analysis. Scanning Electron Microscopy images have shown that more complex mixtures produce larger aggregates (100-500 nm in N2-CH4, up to 5 µm in N2-CH4-C2H2-C6H6). Moreover, the morphology of the grains seems to depend on the precursors, which could have a large impact for Titan’s models. We will present the latest results of the X-ray Absorption Near Edge Structure measurements, that show the different functional groups present in our samples and give the C/N ratio; as well as the Direct Analysis in Real Time Mass Spectrometry coupled with Collision Induced Dissociation analyses that have been performed on all four mixtures and give insight on the specific chemical pathways associated with the presence of acetylene and benzene.Reference: Sciamma-O’Brien et al., 2014, Icarus 243, 325.Acknowledgements: The authors acknowledge the support of NASA SMD.
Paddon-Row, Michael N; Longshaw, Alistair I; Willis, Anthony C; Sherburn, Michael S
2009-01-05
Intramolecular Diels-Alder (IMDA) transition structures (TSs) and energies have been computed at the B3LYP/6-31+G(d) and CBS-QB3 levels of theory for a series of 1,3,8-nonatrienes, H(2)C=CH-CH=CH-CH(2)-X-Z-CH=CH(2) [-X-Z- = -CH(2)-CH(2)- (1); -O-C(=O)- (2); -CH(2)-C(=O)- (3); -O-CH(2)- (4); -NH-C(=O)- (5); -S-C(=O)- (6); -O-C(=S)- (7); -NH-C(=S)- (8); -S-C(=S)- (9)]. For each system studied (1-9), cis- and trans-TS isomers, corresponding, respectively, to endo- and exo-positioning of the -C-X-Z- tether with respect to the diene, have been located and their relative energies (E(rel) (TS)) employed to predict the cis/trans IMDA product ratio. Although the E(rel) (TS) values are modest (typically <3 kJ mol(-1)), they follow a clear and systematic trend. Specifically, as the electronegativity of the tether group X is reduced (X=O --> NH or S), the IMDA cis stereoselectivity diminishes. The predicted stereochemical reaction preferences are explained in terms of two opposing effects operating in the cis-TS, namely (1) unfavorable torsional (eclipsing) strain about the C4-C5 bond, that is caused by the -C-X-C(=Y)- group's strong tendency to maintain local planarity; and (2) attractive electrostatic and secondary orbital interactions between the endo-(thio)carbonyl group, C=Y, and the diene. The former interaction predominates when X is weakly electronegative (X=N, S), while the latter is dominant when X is more strongly electronegative (X=O), or a methylene group (X=CH(2)) which increases tether flexibility. These predictions hold up to experimental scrutiny, with synthetic IMDA reactions of 1, 2, 3, and 4 (published work) and 5, 6, and 8 (this work) delivering ratios close to those calculated. The reactions of thiolacrylate 5 and thioamide 8 represent the first examples of IMDA reactions with tethers of these types. Our results point to strategies for designing tethers, which lead to improved cis/trans-selectivities in IMDAs that are normally only weakly selective. Experimental verification of the validity of this claim comes in the form of fumaramide 14, which undergoes a more trans-selective IMDA reaction than the corresponding ester tethered precursor 13.
Utilization of useless pesticides in a plasma reactor
NASA Astrophysics Data System (ADS)
Lozhechnik, A. V.; Mossé, A. L.; Savchin, V. V.; Skomorokhov, D. S.; Khvedchin, I. V.
2011-09-01
Investigations on destruction of isophene C14H18O7N2 and the butyl ether of 2,4-dichlorophenoxyacetic acid (Cl2C6H3OCH2COOCH2CH(CH3)2) are performed. The plasma treatment of toxic waste is implemented in a plasma reactor with a three-jet mixing chamber. Air is used as the plasma-forming gas.
Novák, Miroslav; Dostál, Libor; Alonso, Mercedes; De Proft, Frank; Růžička, Aleš; Lyčka, Antonín; Jambor, Roman
2014-02-24
Our attempts to synthesize the N→Si intramolecularly coordinated organosilanes Ph2 L(1) SiH (1 a), PhL(1) SiH2 (2 a), Ph2 L(2) SiH (3 a), and PhL(2) SiH2 (4 a) containing a CH=N imine group (in which L(1) is the C,N-chelating ligand {2-[CH=N(C6 H3 -2,6-iPr2)]C6 H4}(-) and L(2) is {2-[CH=N(tBu)]C6 H4}(-)) yielded 1-[2,6-bis(diisopropyl)phenyl]-2,2-diphenyl-1-aza-silole (1), 1-[2,6-bis(diisopropyl)phenyl]-2-phenyl-2-hydrido-1-aza-silole (2), 1-tert-butyl-2,2-diphenyl-1-aza-silole (3), and 1-tert-butyl-2-phenyl-2-hydrido-1-aza-silole (4), respectively. Isolated organosilicon amides 1-4 are an outcome of the spontaneous hydrosilylation of the CH=N imine moiety induced by N→Si intramolecular coordination. Compounds 1-4 were characterized by NMR spectroscopy and X-ray diffraction analysis. The geometries of organosilanes 1 a-4 a and their corresponding hydrosilylated products 1-4 were optimized and fully characterized at the B3LYP/6-31++G(d,p) level of theory. The molecular structure determination of 1-3 suggested the presence of a Si-N double bond. Natural bond orbital (NBO) analysis, however, shows a very strong donor-acceptor interaction between the lone pair of the nitrogen atom and the formal empty p orbital on the silicon and therefore, the calculations show that the Si-N bond is highly polarized pointing to a predominantly zwitterionic Si(+) N(-) bond in 1-4. Since compounds 1-4 are hydrosilylated products of 1 a-4 a, the free energies (ΔG298), enthalpies (ΔH298), and entropies (ΔH298) were computed for the hydrosilylation reaction of 1 a-4 a with both B3LYP and B3LYP-D methods. On the basis of the very negative ΔG298 values, the hydrosilylation reaction is highly exergonic and compounds 1 a-4 a are spontaneously transformed into 1-4 in the absence of a catalyst. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tang, Ben Z.; Lam, Jacky W. Y.; Lai, Lo M.; Xie, Zhiliang; Kwok, Hoi S.
2003-12-01
A series of new disubstituted liquid crystalline polyacetylenes (LCPAs) with general molecular structures of -{(R)C=C[(CH2)m-Mes]}n- and -[(C6H13)C=C(C6H4-Mes)]n- (R = CH3, C6H5, m = 3, 4, 9, Mes = mesogen) have been designed and synthesized. All the LCPAs are thermally stable and do not loss their weights when heated to a temperature as high as 400 deg.C. While a few polymers exhibit nematicity, most of them form enantiotropic SA phase of monolayer structure. Upon photoexcitation, the polymers emit intense UV and blue lights with quantum yield up to 81%. Multilayer light-emitting diodes with a device configuration of ITO/PVK/PA/LiF/Al are constructed, which emits blue light with maximum luminance and external quantum efficiency of 119 cd/m2 and 0.12%, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Songchen; Manna, Kuntal; Ellern, Arkady
In order to facilitate oxidative addition chemistry of fac-coordinated rhodium(I) and iridium(I) compounds, carbene–bis(oxazolinyl)phenylborate proligands have been synthesized and reacted with organometallic precursors. Two proligands, PhB(OxMe2)2(ImtBuH) (H[1]; OxMe2 = 4,4-dimethyl-2-oxazoline; ImtBuH = 1-tert-butylimidazole) and PhB(OxMe2)2(ImMesH) (H[2]; ImMesH = 1-mesitylimidazole), are deprotonated with potassium benzyl to generate K[1] and K[2], and these potassium compounds serve as reagents for the synthesis of a series of rhodium and iridium complexes. Cyclooctadiene and dicarbonyl compounds {PhB(OxMe2)2ImtBu}Rh(η4-C8H12) (3), {PhB(OxMe2)2ImMes}Rh(η4-C8H12) (4), {PhB(OxMe2)2ImMes}Rh(CO)2 (5), {PhB(OxMe2)2ImMes}Ir(η4-C8H12) (6), and {PhB(OxMe2)2ImMes}Ir(CO)2 (7) are synthesized along with ToMM(η4-C8H12) (M = Rh (8); M = Ir (9); ToM = tris(4,4-dimethyl-2-oxazolinyl)phenylborate). The spectroscopicmore » and structural properties and reactivity of this series of compounds show electronic and steric effects of substituents on the imidazole (tert-butyl vs mesityl), effects of replacing an oxazoline in ToM with a carbene donor, and the influence of the donor ligand (CO vs C8H12). The reactions of K[2] and [M(μ-Cl)(η2-C8H14)2]2 (M = Rh, Ir) provide {κ4-PhB(OxMe2)2ImMes'CH2}Rh(μ-H)(μ-Cl)Rh(η2-C8H14)2 (10) and {PhB(OxMe2)2ImMes}IrH(η3-C8H13) (11). In the former compound, a spontaneous oxidative addition of a mesityl ortho-methyl to give a mixed-valent dirhodium species is observed, while the iridium compound forms a monometallic allyl hydride. Photochemical reactions of dicarbonyl compounds 5 and 7 result in C–H bond oxidative addition providing the compounds {κ4-PhB(OxMe2)2ImMes'CH2}RhH(CO) (12) and {PhB(OxMe2)2ImMes}IrH(Ph)CO (13). In 12, oxidative addition results in cyclometalation of the mesityl ortho-methyl similar to 10, whereas the iridium compound reacts with the benzene solvent to give a rare crystallographically characterized cis-[Ir](H)(Ph) complex. Alternatively, the rhodium carbonyl 5 or iridium isocyanide {PhB(OxMe2)2ImMes}Ir(CO)CNtBu (15) reacts with PhSiH3 in the dark to form the silyl compound {PhB(OxMe2)2ImMes}RhH(SiH2Ph)CO (14) or {PhB(OxMe2)2ImMes}IrH(SiH2Ph)CNtBu (17). These examples demonstrate the enhanced thermal reactivity of {PhB(OxMe2)2ImMes}-supported iridium and rhodium carbonyl compounds in comparison to tris(oxazolinyl)borate, tris(pyrazolyl)borate, and cyclopentadienyl-supported compounds.« less
Bond strengths of toluenes, anilines, and phenols: to hammett or not.
Pratt, Derek A; DiLabio, Gino A; Mulder, Peter; Ingold, K U
2004-05-01
The Hammett equation correlates the effects of Y on many different chemical properties of YC(6)H(4)ZX families of compounds. One of the most surprising is that the Z-X bond dissociation enthalpy (BDE), a homolytic property, can be correlated for some 4-YC(6)H(4)ZX families with electrophilic substituent constants, sigma(p)(+)(Y), which were largely derived from the rates of the heterolytic S(N)1 solvolyses of para-substituted cumyl chlorides. Although there is no Hammett correlation of the C-X BDEs in 4-YC(6)H(4)CH(2)X (X = H, halide, OPh) families, there are good correlations of N-X BDEs with sigma(p)(+)(Y) in 4-YC(6)H(4)NHX (X = H, CH(3), OH, F) and excellent correlations of O-X BDEs with sigma(p)(+)(Y) in 4-YC(6)H(4)OX (X = H, CH(3), CH(2)Ph) families. The reasons for this varied behavior are discussed.
NASA Astrophysics Data System (ADS)
Liszt, Harvey; Gerin, Maryvonne; Beasley, Anthony; Pety, Jerome
2018-04-01
We present Jansky Very Large Array observations of 20–37 GHz absorption lines from nearby Galactic diffuse molecular gas seen against four cosmologically distant compact radio continuum sources. The main new observational results are that l-C3H and CH3CN are ubiqitous in the local diffuse molecular interstellar medium at {\\text{}}{A}{{V}} ≲ 1, while HC3N was seen only toward B0415 at {\\text{}}{A}{{V}} > 4 mag. The linear/cyclic ratio is much larger in C3H than in C3H2 and the ratio CH3CN/HCN is enhanced compared to TMC-1, although not as much as toward the Horsehead Nebula. More consequentially, this work completes a long-term program assessing the abundances of small hydrocarbons (CH, C2H, linear and cyclic C3H and C3 {{{H}}}2, and C4H and C4H‑) and the CN-bearing species (CN, HCN, HNC, HC3N, HC5N, and CH3CN): their systematics in diffuse molecular gas are presented in detail here. We also observed but did not strongly constrain the abundances of a few oxygen-bearing species, most prominently HNCO. We set limits on the column density of CH2CN, such that the anion CH2CN‑ is only viable as a carrier of diffuse interstellar bands if the N(CH2CN)/N(CH2CN‑) abundance ratio is much smaller in this species than in any others for which the anion has been observed. We argue that complex organic molecules (COMS) are not present in clouds meeting a reasonable definition of diffuse molecular gas, i.e., {\\text{}}{A}{{V}} ≲ 1 mag. Based on observations obtained with the NRAO Jansky Very Large Array (VLA).
Lichtscheidl, Alejandro G.; Janicke, Michael T.; Scott, Brian L.; ...
2015-08-21
The synthesis and full characterization, including Nuclear Magnetic Resonance (NMR) data ( 1H, 13C{ 1H} and 119Sn{ 1H}), for a series of Me 3SnX (X = O-2,6-tBu 2C 6H 3 (1), (Me 3Sn)N(2,6- iPr 2C 6H 3) (3), NH-2,4,6- tBu 3C 6H 2 (4), N(SiMe 3) 2 (5), NEt 2, C 5Me 5 (6), Cl, Br, I, and SnMe 3) compounds in benzene-d 6, toluene-d 8, dichloromethane-d 2, chloroform-d 1, acetonitrile-d 3, and tetrahydrofuran-d 8 are reported. The X-ray crystal structures of Me 3Sn(O-2,6- tBu 2C 6H 3) (1), Me 3Sn(O-2,6- iPr 2C 6H 3) (2), and (Me 3Sn)(NH-2,4,6- tBumore » 3C 6H 2) (4) are also presented. As a result, these compiled data complement existing literature data and ease the characterization of these compounds by routine NMR experiments.« less
Koristkova, B; Grundmann, M; Suchy, D; Perinova, I; Brozmanova, H; Mayer, O
2011-05-01
The aim of the present study was to validate the limited sampling strategies (LSS:s) for prediction of AUC of cyclosporine A (CsA) after the first dose in rheumatologic patients. 22 patients suffering from rheumathoid arthritis, systemic lupus erythematodus, ankylosing spondylitis dermato(poly)myositis or seronegative spondylarthritis were treated with Neoral® (female/male: 11/3, mean ± SD: age 49 ± 14 y, body weight 75 ± 12 kg, height 166 ± 7 cm, dose 71 ± 25 mg, dose per kg 1.0 ± 0.3 mg/kg), or Consupren® (7/1, 78 ± 36, 175 ± 8, 82 ± 22, 1.1 ± 0.3). Two patients whose C12h were missing were excluded from the AUC0-12 calculation. Whole blood levels of CsA were analyzed with HPLC. Blood samples were collected at 0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, and 12 hours after taking the first dose. Altogether 115 LSS:s obtained from the literature were validated. A linear trapezoidal rule was used as a reference method. Mean percentage prediction error (%PE) < ± 15% and maximal one value of absolute %PE > 30% were considered to be acceptable. The root mean squared error (RMSE) was evaluated for equations that passed the criteria. The best performance with all values of the absolute %PE < 30% was found in three LSS:s for AUC0-12 and two for AUC0-8: AUC0-12 = 123.792 + 1.165 × C1h + 3.021 × C3h + 7.33 × C8h; 97.6 + 1.27 × C1h + 3.14 × C3h + 4.06 × C6h; or 124.3 + 1.34 × C1h - 0.16 × C2h + 3.27 × C3h + 3.96 × C6h; AUC0-8 = -19.8 + 1.99 × C2h + 2.38 × C4h + 3.15 × C6h or -22.4 + 2.51 × C2h + 5.49 × C6h. Validation criteria were further fulfilled in AUC0-12 = 24 + 3.66 × C0h + 2.11 × C1.5h + 4.54 × C4h or 0.2 + 2 × C2h + 10.2 × C6h; AUC0-8 = 55.37 + 2.89 × C0h + 1.08 × C1 + 0.9 × C2h + 2.23 × C3h; and AUC0-4 = -41 + 1.17 × C1h + 1.85 × C2h. Only one equation proposed for AUC0-6 did not pass the validation criteria. Equations validated for prediction of AUC0-12, AUC0-8 and AUC0-4 might be used for LSS:s of CsA independently of the length of treatment, indication, dosage or galenic formulation.
Computational Screening of MOFs for Acetylene Separation
Nemati Vesali Azar, Ayda; Keskin, Seda
2018-01-01
Efficient separation of acetylene (C2H2) from CO2 and CH4 is important to meet the requirement of high-purity acetylene in various industrial applications. Metal organic frameworks (MOFs) are great candidates for adsorption-based C2H2/CO2 and C2H2/CH4 separations due to their unique properties such as wide range of pore sizes and tunable chemistries. Experimental studies on the limited number of MOFs revealed that MOFs offer remarkable C2H2/CO2 and C2H2/CH4 selectivities based on single-component adsorption data. We performed the first large-scale molecular simulation study to investigate separation performances of 174 different MOF structures for C2H2/CO2 and C2H2/CH4 mixtures. Using the results of molecular simulations, several adsorbent performance evaluation metrics, such as selectivity, working capacity, adsorbent performance score, sorbent selection parameter, and regenerability were computed for each MOF. Based on these metrics, the best adsorbent candidates were identified for both separations. Results showed that the top three most promising MOF adsorbents exhibit C2H2/CO2 selectivities of 49, 47, 24 and C2H2/CH4 selectivities of 824, 684, 638 at 1 bar, 298 K and these are the highest C2H2 selectivities reported to date in the literature. Structure-performance analysis revealed that the best MOF adsorbents have pore sizes between 4 and 11 Å, surface areas in the range of 600–1,200 m2/g and porosities between 0.4 and 0.6 for selective separation of C2H2 from CO2 and CH4. These results will guide the future studies for the design of new MOFs with high C2H2 separation potentials. PMID:29536004
Dubey, Pooja; Gupta, Sonu; Singh, Ajai K
2018-03-12
The condensation of anthracene-9-carbaldehyde with 2-(phenylthio/seleno)ethylamine results in Schiff bases [PhS(CH 2 ) 2 C[double bond, length as m-dash]N-9-C 14 H 9 ](L1) and [PhSe(CH 2 ) 2 C[double bond, length as m-dash]N-9-C 14 H 9 ] (L2). On their reaction with [(η 5 -Cp*)IrCl(μ-Cl)] 2 and CH 3 COONa at 50 °C followed by treatment with NH 4 PF 6 , iridacycles, [(η 5 -Cp*)Ir(L-H)][PF 6 ] (1: L = L1; 2: L = L2), result. The same reaction in the absence of CH 3 COONa gives complexes [(η 5 -Cp*)Ir(L)Cl][PF 6 ] (3-4) in which L = L1(3)/L2(4) ligates in a bidentate mode. The ligands and complexes were authenticated with HR-MS and NMR spectra [ 1 H, 13 C{ 1 H} and 77 Se{ 1 H} (in the case of L2 and its complexes only)]. Single crystal structures of L2 and half sandwich complexes 1-4 were established with X-ray crystallography. Three coordination sites of Ir in each complex are covered with η 5 -Cp* and on the remaining three, donor atoms present are: N, S/Se and C - /Cl - , resulting in a piano-stool structure. The moisture and air insensitive 1-4 act as efficient catalysts under mild conditions for base free N-alkylation of amines with benzyl alcohols and transfer hydrogenation (TH) of aldehydes/ketones. The optimum loading of 1-4 as a catalyst is 0.1-0.5 mol% for both the activations. The best reaction temperature is 80 °C for transfer hydrogenation and 100 °C for N-alkylation. The mercury poisoning test supports a homogeneous pathway for both the reactions catalyzed by 1-4. The two catalytic processes are most efficient with 3 followed by 4 > 1 > 2. The mechanism proposed on the basis of HR-MS of the reaction mixtures of the two catalytic processes taken after 1-2 h involves the formation of an alkoxy and hydrido species. The real catalytic species proposed in the case of iridacycles results due to the loss of the Cp* ring.
Laser Ionization Studies of Hydrocarbon Flames.
NASA Astrophysics Data System (ADS)
Bernstein, Jeffrey Scott
Resonance-enhanced multiphoton ionization (REMPI) and laser induced fluorescence (LIF) are applied as laser based flame diagnostics for studies of hydrocarbon combustion chemistry. rm CH_4/O_2, C _2H_4/O_2, and rm C_2H_6/O_2 low pressure ( ~20 Torr), stoichiometric burner stabilized flat flames are studied. Density profiles of intermediate flame species, existing at ppm concentrations, are mapped out as a function of distance from the burner head. Profiles resulting from REMPI and LIF detection are obtained for HCO, CH_3, H, O, OH, CH, and CO flame radicals. The above flame systems are computer modeled against currently accepted combustion mechanisms using the Chemkin and Premix flame codes developed at Sandia National Laboratories. The modeled profile densities show good agreement with the experimental results of the CH_4/O_2 flame system, thus confirming the current C1 kinetic flame mechanism. Discrepancies between experimental and modeled results are found with the C2 flames. These discrepancies are partially amended by modifying the rate constant of the rm C_2H_3+rm O_2 to H_2CO + HCO reaction. The modeled results computed with the modified rate constant strongly suggest that the kinetics of several or possibly many reactions in the C2 mechanism need refinement.
NASA Astrophysics Data System (ADS)
Pradeesh, K.; Nageswara Rao, K.; Vijaya Prakash, G.
2013-02-01
Wide varieties of naturally self-assembled two-dimensional inorganic-organic (IO) hybrid semiconductors, (4-ClC6H4NH3)2PbI4, (C6H9C2H4NH3)2PbI4, (CnH2n+1NH3)2PbI4 (where n = 12, 16, 18), (CnH2n-1NH3)2PbI4 (where n = 3, 4, 5), (C6H5C2H4NH3)2PbI4, NH3(CH2)12NH3PbI4, and (C4H3SC2H4NH3)2PbI4, were fabricated by intercalating structurally diverse organic guest moieties into lead iodide perovskite structure. The crystal packing of all these fabricated IO-hybrids comprises of well-ordered organic and inorganic layers, stacked-up alternately along c-axis. Almost all these hybrids are thermally stable upto 200 °C and show strong room-temperature exciton absorption and photoluminescence features. These strongly confined optical excitons are highly influenced by structural deformation of PbI matrix due to the conformation of organic moiety. A systematic correlation of optical exciton behavior of IO-hybrids with the organic/inorganic layer thicknesses, intercalating organic moieties, and various structural disorders were discussed. This systematic study clearly suggests that the PbI layer crumpling is directly responsible for the tunability of optical exciton energy.
NASA Astrophysics Data System (ADS)
Zhou, Tian
Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the (iPr4 PCP)Ir fragment. The key step for this mechanism is a Ir(III) vinyl hydride complex undergoing addition of a styrenyl ortho C-H bond to give an Ir(III) metalloindene plus H2.
Modeling the neutral gas and dust coma of Comet 1P/Halley
NASA Astrophysics Data System (ADS)
Rubin, Martin; Tenishev, Valeriy M.; Combi, Michael R.; Hansen, Kenneth C.; Gombosi, Tamas I.; Altwegg, Kathrin; Balsiger, Hans
2010-05-01
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer (NMS) and the Dust Impact Detection System (DIDSY) onboard the Giotto spacecraft which flew-by at comet 1P/Halley in 1986. We further show that our model is in good agreement to measurements obtained by the International Ultraviolet Explorer (IUE), sounding rocket experiments, and the International Halley Watch (IHW). The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique [Tenishev et al. (2008, Astrophys. J., 685, 659-677)] by tracking trajectories of gas molecules and dust grains under the influence of the comet's weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO). This work has been supported by JPL subcontract 1266313 under NASA grant NMO710889, NASA planetary atmospheres program grant NNX09AB59G, grant AST-0707283 from the NSF Planetary Astronomy program, and the Swiss National Science Foundation.
Extremely organic-rich coma of comet C/2010 G2 (Hill) during its outburst in 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakita, Hideyo; Kobayashi, Hitomi; Russo, Neil Dello
2014-06-20
We performed high-dispersion near-infrared spectroscopic observations of comet C/2010 G2 (Hill) at 2.5 AU from the Sun using NIRSPEC (R ≈ 25,000) at the Keck II Telescope on UT 2012 January 9 and 10, about a week after an outburst had occurred. Over the two nights of our observations, prominent emission lines of CH{sub 4} and C{sub 2}H{sub 6}, along with weaker emission lines of H{sub 2}O, HCN, CH{sub 3}OH, and CO were detected. The gas production rate of CO was comparable to that of H{sub 2}O during the outburst. The mixing ratios of CO, HCN, CH{sub 4}, C{sub 2}H{submore » 6}, and CH{sub 3}OH with respect to H{sub 2}O were higher than those for normal comets by a factor of five or more. The enrichment of CO and CH{sub 4} in comet Hill suggests that the sublimation of these hypervolatiles sustained the outburst of the comet. Some fraction of water in the inner coma might exist as icy grains that were likely ejected from nucleus by the sublimation of hypervolatiles. Mixing ratios of volatiles in comet Hill are indicative of the interstellar heritage without significant alteration in the solar nebula.« less
Semiconductivity in Organoarsenic Materials.
1977-12-01
element halide with ferrocene in an organic solvent; the structure of one of the products, [Fe(95-C5H5)21 8iC14, determined by X-ray crystallography...homoatomic catenates from primary alkyl phosphines , arsines and stibines . From CH3PH2, CH3AsH2 and C2H5AsH2, the products are Hg 0 and the
NASA Astrophysics Data System (ADS)
Agusto, M.; Tassi, F.; Caselli, A. T.; Vaselli, O.; Rouwet, D.; Capaccioni, B.; Caliro, S.; Chiodini, G.; Darrah, T.
2013-05-01
Copahue volcano is part of the Caviahue-Copahue Volcanic Complex (CCVC), which is located in the southwestern sector of the Caviahue volcano-tectonic depression (Argentina-Chile). This depression is a pull-apart basin accommodating stresses between the southern Liquiñe-Ofqui strike slip and the northern Copahue-Antiñir compressive fault systems, in a back-arc setting with respect to the Southern Andean Volcanic Zone. In this study, we present chemical (inorganic and organic) and isotope compositions (δ13C-CO2, δ15N, 3He/4He, 40Ar/36Ar, δ13C-CH4, δD-CH4, and δD-H2O and δ18O-H2O) of fumaroles and bubbling gases of thermal springs located at the foot of Copahue volcano sampled in 2006, 2007 and 2012. Helium isotope ratios, the highest observed for a Southern American volcano (R/Ra up to 7.94), indicate a non-classic arc-like setting, but rather an extensional regime subdued to asthenospheric thinning. δ13C-CO2 values (from - 8.8‰ to - 6.8‰ vs. V-PDB), δ15N values (+ 5.3‰ to + 5.5‰ vs. Air) and CO2/3He ratios (from 1.4 to 8.8 × 109) suggest that the magmatic source is significantly affected by contamination of subducted sediments. Gases discharged from the northern sector of the CCVC show contribution of 3He-poor fluids likely permeating through local fault systems. Despite the clear mantle isotope signature in the CCVC gases, the acidic gas species have suffered scrubbing processes by a hydrothermal system mainly recharged by meteoric water. Gas geothermometry in the H2O-CO2-CH4-CO-H2 system suggests that CO and H2 re-equilibrate in a separated vapor phase at 200°-220 °C. On the contrary, rock-fluid interactions controlling CO2, CH4 production from Sabatier reaction and C3H8 dehydrogenation seem to occur within the hydrothermal reservoir at temperatures ranging from 250° to 300 °C. Fumarole gases sampled in 2006-2007 show relatively low N2/He and N2/Ar ratios and high R/Ra values with respect to those measured in 2012. Such compositional and isotope variations were likely related to injection of mafic magma that likely triggered the 2000 eruption. Therefore, changes affecting the magmatic system had a delayed effect on the chemistry of the CCVC gases due to the presence of the hydrothermal reservoir. However, geochemical monitoring activities mainly focused on the behavior of inert gas compounds (N2 and He), should be increased to investigate the mechanism at the origin of the unrest started in 2011.
NASA Astrophysics Data System (ADS)
Franco, B.; Mahieu, E.; Emmons, L. K.; Tzompa-Sosa, Z. A.; Fischer, E. V.; Sudo, K.; Bovy, B.; Conway, S.; Griffin, D.; Hannigan, J. W.; Strong, K.; Walker, K. A.
2016-04-01
Sharp rises in the atmospheric abundance of ethane (C2H6) have been detected from 2009 onwards in the Northern Hemisphere as a result of the unprecedented growth in the exploitation of shale gas and tight oil reservoirs in North America. Using time series of C2H6 total columns derived from ground-based Fourier transform infrared (FTIR) observations made at five selected Network for the Detection of Atmospheric Composition Change sites, we characterize the recent C2H6 evolution and determine growth rates of ˜5% yr-1 at mid-latitudes and of ˜3% yr-1 at remote sites. Results from CAM-chem simulations with the Hemispheric Transport of Air Pollutants, Phase II bottom-up inventory for anthropogenic emissions are found to greatly underestimate the current C2H6 abundances. Doubling global emissions is required to reconcile the simulations and the observations prior to 2009. We further estimate that North American anthropogenic C2H6 emissions have increased from 1.6 Tg yr-1 in 2008 to 2.8 Tg yr-1 in 2014, i.e. by 75% over these six years. We also completed a second simulation with new top-down emissions of C2H6 from North American oil and gas activities, biofuel consumption and biomass burning, inferred from space-borne observations of methane (CH4) from Greenhouse Gases Observing SATellite. In this simulation, GEOS-Chem is able to reproduce FTIR measurements at the mid-latitudinal sites, underscoring the impact of the North American oil and gas development on the current C2H6 abundance. Finally we estimate that the North American oil and gas emissions of CH4, a major greenhouse gas, grew from 20 to 35 Tg yr-1 over the period 2008-2014, in association with the recent C2H6 rise.
Experimental ion mobility measurements in Xe-C2H6
NASA Astrophysics Data System (ADS)
Perdigoto, J. M. C.; Cortez, A. F. V.; Veenhof, R.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.
2017-10-01
In this paper we present the results of the ion mobility measurements made in gaseous mixtures of xenon (Xe) with ethane (C2H6) for pressures ranging from 6 to 10 Torr (8-10.6 mbar) and for low reduced electric fields in the 10 Td to 25 Td range (2.4-6.1 kVṡcm-1ṡ bar-1), at room temperature. The time of arrival spectra revealed two peaks throughout the entire range studied which were attributed to ion species with 3-carbons (C3H5+, C3H6+ C3H8+ and C3H9+) and with 4-carbons (C4H7+, C4H9+ and C4H10+). Besides these, and for Xe concentrations above 70%, a bump starts to appear at the right side of the main peak for reduced electric fields higher than 20 Td, which was attributed to the resonant charge transfer of C2H6+ to C2H6 that affects the mobility of its ion products (C3H8+ and C3H9+). The time of arrival spectra for Xe concentrations of 20%, 50%, 70% and 90% are presented, together with the reduced mobilities as a function of the Xe concentration calculated from the peaks observed for the low reduced electric fields and pressures studied.
Whited, Matthew T; Grubbs, Robert H
2009-10-20
Unactivated C(sp(3))-H bonds are ubiquitous in organic chemicals and hydrocarbon feedstocks. However, these resources remain largely untapped, and the development of efficient homogeneous methods for hydrocarbon functionalization by C-H activation is an attractive and unresolved challenge for synthetic chemists. Transition-metal catalysis offers an attractive possible means for achieving selective, catalytic C-H functionalization given the thermodynamically favorable nature of many desirable partial oxidation schemes and the propensity of transition-metal complexes to cleave C-H bonds. Selective C-H activation, typically by a single cleavage event to produce M-C(sp(3)) products, is possible through myriad reported transition-metal species. In contrast, several recent reports have shown that late transition metals may react with certain substrates to perform multiple C-H activations, generating M=C(sp(2)) complexes for further elaboration. In light of the rich reactivity of metal-bound carbenes, such a route could open a new manifold of reactivity for catalytic C-H functionalization, and we have targeted this strategy in our studies. In this Account, we highlight several early examples of late transition-metal complexes that have been shown to generate metal-bound carbenes by multiple C-H activations and briefly examine factors leading to the selective generation of metal carbenes through this route. Using these reports as a backdrop, we focus on the double C-H activation of ethers and amines at iridium complexes supported by Ozerov's amidophosphine PNP ligand (PNP = [N(2-P(i)Pr(2)-4-Me-C(6)H(3))(2)](-)), allowing isolation of unusual square-planar iridium(I) carbenes. These species exhibit reactivity that is distinct from the archetypal Fischer and Schrock designations. We present experimental and theoretical studies showing that, like the classical square-planar iridium(I) organometallics, these complexes are best described as nucleophilic at iridium. We discuss the classification of this reactivity in the context of a scheme originally delineated by Roper. These "Roper-type" carbenes perform a number of multiple-bond metatheses leading to atom and group transfer from electrophilic heterocumulene (e.g., CO(2), CS(2), PhNCS) and diazo (e.g., N(2)O, AdN(3)) reagents. In one instance, we have extended this methodology to a process for catalytic C-H functionalization by a double C-H activation-group transfer process. Although the scope of these reactions is currently limited, these new pathways may find broader utility as the reactivity of late-metal carbenes continues to be explored. Examination of alternative transition metals and supporting ligand sets will certainly be important. Nonetheless, our findings show that carbene generation by double C-H activation is a viable strategy for C-H functionalization, leading to products not accessible through traditional C(sp(3))-H activation pathways.
Photoionization and ion cyclotron resonance studies of the ion chemistry of ethylene oxide
NASA Technical Reports Server (NTRS)
Corderman, R. R.; Williamson, A. D.; Lebreton, P. R.; Buttrill, S. E., Jr.; Beauchamp, J. L.
1976-01-01
The formation of the ethylene oxide molecular ion and its subsequent ion-molecule reactions leading to the products C2H5O(+) and C3H5O(+) have been studied using time-resolved photoionization mass spectroscopy, ion cyclotron resonance spectroscopy, and photoelectron spectroscopy. An examination of the effects of internal energy on reactivity shows that the ratio of C3H5O(+) to C2H5O(+) increases by an order of magnitude with a single quantum of vibrational energy. The formation of (C2H4O/+/)-asterisk in a collision-induced isomerization is found which yields a ring-opened structure by C-C bond cleavage. The relaxed ring-opened C2H4O(+) ion reacts with neutral ethylene oxide by CH2(+) transfer to yield an intermediate product ion C3H6O(+) which gives C3H5O(+) by loss of H.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Takao; Watanabe, Yusuke; Kanya, Reika
2016-01-14
Decomposition of cyclohexane cations induced by intense femtosecond laser fields at the wavelength of 800 nm is investigated by ion-trap time-of-flight mass spectrometry in which cyclohexane cations C{sub 6}H{sub 12}{sup +} stored in an ion trap are irradiated with intense femtosecond laser pulses and the generated fragment ions are recorded by time-of-flight mass spectrometry. The various fragment ion species, C{sub 5}H{sub n}{sup +} (n = 7, 9), C{sub 4}H{sub n}{sup +} (n = 5–8), C{sub 3}H{sub n}{sup +} (n = 3–7), C{sub 2}H{sub n}{sup +} (n = 2–6), and CH{sub 3}{sup +}, identified in the mass spectra show that decompositionmore » of C{sub 6}H{sub 12}{sup +} proceeds efficiently by the photo-irradiation. From the laser intensity dependences of the yields of the fragment ion species, the numbers of photons required for producing the respective fragment ions are estimated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybakov, V. B., E-mail: Rybakov20021@yandex.ru; Babaev, E. V.; Paronikyan, E. G., E-mail: Ervand.paronikyan@mail.ru
Seven new, previously unknown, bicyclic and tricyclic heterocycles based on derivatives of 3-cyanopyrid-2-ones are obtained: 2-oxo-2,5,6,7,8,9-hexahydro-1H-cyclohepta[b]pyridine-3-carbonitrile, C{sub 11}H{sub 12}N{sub 2}O (1a); 2-[2-(4-chlorophenyl)-2-oxoethoxy]-6,7,8,9-tetrahydro-5H-cyclohepta[b] pyridine-3-carbonitrile, C{sub 19}H{sub 17}ClN{sub 2}O{sub 2} (2a); (3-amino-6,7,8,9-tetrahydro-5H-cyclohepta[b]furo[3,2-e]pyridin-2-yl)(4- chlorophenyl)methanone, C{sub 19}H{sub 17}ClN{sub 2}O{sub 2} (3); 2-oxo-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carboxamide, C{sub 12}H{sub 16}N{sub 2}O{sub 2} (4); 2-[2-(4-chorophenyl)-2-oxoethoxy]-5,6,7,8,9,10 -hexahydrocycloocta[b]pyridine-3-carboxamide, C{sub 20}H{sub 21}ClN{sub 2}O{sub 3} (5a); 1-[2-(4-chlorophenyl)-2-oxoethyl]-2-oxo-1,2,5,6,7,8,9,10 -octahydrocycloocta[b]pyridine-3-carboxamide, C{sub 20}H{sub 21}ClN{sub 2}O{sub 3} (5b); and 2-[2-(4-chlorophenyl)-2-oxoethoxy]-5,6,7,8,9,10-hexahydrocycloocta[b] pyridine-3-carbonitrile, C{sub 20}H{sub 19}ClN{sub 2}O{sub 2}, (6). All compounds are characterized by {sup 1}H NMR spectroscopy, and their crystal structures are determined by X-ray diffraction.
Penthala, Narsimha Reddy; Bommagani, Shobanbabu; Janganati, Venumadhav; Parkin, Sean; Crooks, Peter A
2014-10-01
The title compound, C33H35NO6 [systematic name: (Z)-3-(4-{(E)-[(E)-1a,5-dimethyl-9-oxo-2,3,7,7a-tetra-hydro-oxireno[2',3':9,10]cyclo-deca-[1,2-b]furan-8(1aH,6H,9H,10aH,10bH)-yl-idene]meth-yl}phen-yl)-2-(3,4,5-tri-meth-oxy-phen-yl)acrylo-ni-trile methanol hemisolvate], C33H35NO6·0.5CH3OH, was prepared by the reaction of (Z)-3-(4-iodo-phen-yl)-2-(3,4,5-tri-meth-oxy-phen-yl)acrylo-nitrile with parthenolide [systematic name: (E)-1a,5-dimethyl-8-methyl-ene-2,3,6,7,7a,8,10a,10b-octa-hy-dro-oxireno[2',3':9,10]cyclo-deca-[1,2-b]furan-9(1aH)-one] under Heck reaction conditions. The mol-ecule is built up from fused ten-, five- (lactone) and three-membered (epoxide) rings with a {4-[(Z)-2-cyano-2-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]phen-yl}methyl-idene group as a substituent. The 4-[(Z)-2-cyano-2-(3,4,5-tri-meth-oxy-phen-yl)ethen-yl]phenyl group on the parthenolide exocyclic double bond is oriented in a trans position to the lactone ring to form the E isomer. The dihedral angle between the benzene ring of the phenyl moiety and the lactone ring mean plane is 21.93 (4)°.
Wang, Xiaohong; Dong, Fugui; Miao, Caihong; Li, Wei; Wang, Min; Gao, Mingzhang; Zheng, Qi-Huang; Xu, Zhidong
2018-06-01
Carbon-11-labeled serotonin (5-hydroxytryptamine) 6 receptor (5-HT 6 R) antagonists, 1-[(2-bromophenyl)sulfonyl]-5-[ 11 C]methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole (O-[ 11 C]2a) and 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-[ 11 C]methyl-1-piperazinyl)methyl]-1H-indole (N-[ 11 C]2a), 5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (O-[ 11 C]2b) and 5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1-(phenylsulfonyl)-1H-indole (N-[ 11 C]2b), 1-((4-isopropylphenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2c) and 1-((4-isopropylphenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2c), 1-((4-fluorophenyl)sulfonyl)-5-[ 11 C]methoxy-3-((4-methylpiperazin-1-yl)methyl)-1H-indole (O-[ 11 C]2d) and 1-((4-fluorophenyl)sulfonyl)-5-methoxy-3-((4-[ 11 C]methylpiperazin-1-yl)methyl)-1H-indole (N-[ 11 C]2d), were prepared from their O- or N-desmethylated precursors with [ 11 C]CH 3 OTf through O- or N-[ 11 C]methylation and isolated by HPLC combined with SPE in 40-50% radiochemical yield, based on [ 11 C]CO 2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (MA) at EOB was 370-740 GBq/μmol with a total synthesis time of ∼40-min from EOB. Copyright © 2018 Elsevier Ltd. All rights reserved.
Synthesis of C13- and N15-Labeled DNAN
2014-07-24
Multiplicities are described as singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of doublet of doublets ( ddd ), multiplet...dd, 4.8Hz, 2.6Hz, 1H), 8.40 ( ddd , 8.8Hz, 2.6Hz, 1.8Hz, 1H), and 7.81 (d, 8.8Hz, 1H) ppm. 13C NMR (CDCl3): δ 147.8 (dd, 18Hz, 3Hz), 146.3 (dd, 17Hz...Dinitroanisole mp: 86-88 °C 1H NMR (CDCl3): δ 8.77 (m, 4.8Hz, 2.6Hz, 1H), 8.46 ( ddd , 9.2Hz, 2.6Hz, 1.8Hz, 1H), 7.23 (d, 9.2Hz, 1H), and 4.10 (s, 3H
Characterization and Modeling Of Microbial Carbon Metabolism In Thawing Permafrost
NASA Astrophysics Data System (ADS)
Graham, D. E.; Phelps, T. J.; Xu, X.; Carroll, S.; Jagadamma, S.; Shakya, M.; Thornton, P. E.; Elias, D. A.
2012-12-01
Increased annual temperatures in the Arctic are warming the surface and subsurface, resulting in thawing permafrost. Thawing exposes large pools of buried organic carbon to microbial degradation, increasing greenhouse gas generation and emission. Most global-scale land-surface models lack depth-dependent representations of carbon conversion and GHG transport; therefore they do not adequately describe permafrost thawing or microbial mineralization processes. The current work was performed to determine how permafrost thawing at moderately elevated temperatures and anoxic conditions would affect CO2 and CH4 generation, while parameterizing depth-dependent GHG production processes with respect to temperature and pH in biogeochemical models. These enhancements will improve the accuracy of GHG emission predictions and identify key biochemical and geochemical processes for further refinement. Three core samples were obtained from discontinuous permafrost terrain in Fairbanks, AK with a mean annual temperature of -3.3 °C. Each core was sectioned into surface/near surface (0-0.8 m), active layer (0.8-1.6 m), and permafrost (1.6-2.2 m) horizons, which were homogenized for physico-chemical characterization and microcosm construction. Surface samples had low pH values (6.0), low water content (18% by weight), low organic carbon (0.8%), and high C:N ratio (43). Active layer samples had higher pH values (6.4), higher water content (34%), more organic carbon (1.4%) and a lower C:N ratio (24). Permafrost samples had the highest pH (6.5), highest water content (46%), high organic carbon (2.5%) and the lowest C:N ratio (19). Most organic carbon was quantified as labile or intermediate pool versus stable pool in each sample, and all samples had low amounts of carbonate. Surface layer microcosms, containing 20 g sediment in septum-sealed vials, were incubated under oxic conditions, while similar active and permafrost layer samples were anoxic. These microcosms were incubated at -2, +3, or +5 °C for 6 months. The pH decreased in all samples (5.5 to 5.9). The proportions of carbon in labile and intermediate turnover pools from permafrost samples decreased during incubation, while microbial biomass carbon increased in all cases. Microcosm samples and original core material were analyzed by 16S rDNA pyrosequencing and showed increased populations of bacteria that ferment simple and complex carbohydrates, as well as acidophilic bacteria. Microbial diversity declined in permafrost samples. Concentrations of CO2 and CH4 were measured monthly by gas chromatography. CO2 production was highest in the surface/near surface incubations (4-14%) while CH4 was undetectable. Active layer sediments produced considerably less CO2 (0.2-0.7%) but CH4 was detected up to 0.25%. Concentrations of CO2 found in the deep permafrost incubations were comparable to those in the active layer, while CH4 was considerably higher ranging from 0.2-0.6%. Overall, the CO2 generation rate (0.02-0.12 μmol/g/month) was roughly 50 times that of methanogenesis (0.002-0.007 μmol/g/month). GHG levels peaked after 4 months, and the decreasing pH suggested that organic acid accumulation could control GHG biogenesis. Surprisingly, increasing temperature and water content did not necessarily increase GHG emission rates or proportions of CO2 and CH4.
Deb, Tapash; Anderson, Caitlin M; Chattopadhyay, Swarup; Ma, Huaibo; Young, Victor G; Jensen, Michael P
2014-12-14
Synthesis and characterization of several new pseudotetrahedral arylthiolate complexes [(Tp(Ph,Me))Ni-SAr] (Tp(Ph,Me) = hydrotris{3-phenyl-5-methyl-1-pyrazolyl}borate; Ar = Ph, 2,4,6-(i)Pr3C6H2, C6H4-4-Cl, C6H4-4-Me, C6H4-4-OMe) are reported, including X-ray crystal structures of the first two complexes. With prior results, two series of complexes are spanned, [(Tp(Ph,Me))Ni-S-2,4,6-RC6H2] (R'' = H, Me, (i)Pr) plus the xylyl analogue [(Tp(Ph,Me))Ni-S-2,6-Me2C6H3], as well as [(Tp(Ph,Me))Ni-S-C6H4-4-Y] (Y = Cl, H, Me, OMe), intended to elucidate steric and/or electronic effects on arylthiolate coordination. In contrast to [(Tp(Me,Me))Ni-SAr] analogues that adopt a sawhorse conformation, the ortho-disubstituted complexes show enhanced trigonal and Ni-S-Ar bending, reflecting the size of the 3-pyrazole substituents. Moreover, weakened scorpionate ligation is implied by spectroscopic data. Little spectroscopic effect is observed in the series of para-substituted complexes, suggesting the observed effects are primarily steric in origin. The relatively electron-rich and encumbered complex [(Tp(Ph,Me))Ni-S-2,4,6-(i)Pr3C6H2] behaves uniquely when dissolved in CH3CN, forming a square planar solvent adduct with a bidentate scorpionate ligand, [(κ(2)-Tp(Ph,Me))Ni(NCMe)(S-2,4,6-(i)Pr3C6H2)]. This adduct was isolated and characterized by X-ray crystallography. Single-point DFT and TD-DFT calculations on a simplified [(κ(2)-Tp)Ni(NCMe)(SPh)] model were used to clarify the electronic spectrum of the adduct, and to elucidate differences between Ni-SAr bonding and spectroscopy between pseudotetrahedral and square planar geometries.
Clegg, William; Conway, Ben; Hevia, Eva; McCall, Matthew D; Russo, Luca; Mulvey, Robert E
2009-02-18
The new dialkyl(aryl) lithium zincates [(THF)(2)Li(C(6)H(4)-OMe)MeZnMe] (4), [(TMEDA)Li(C(6)H(4)-OMe)MeZnMe] (6), [(THF)(3)Li(C(6)H(4)-OMe)(t)BuZn(t)Bu] (7), and [(PMDETA)Li(C(6)H(4)-OMe)(t)BuZn(t)Bu] (8) have been prepared by co-complexation reactions of lithiated anisole with the relevant dialkylzinc compound and the relevant Lewis base. These new heterobimetallic compounds have been characterized in solution using (1)H, (13)C{H}, and (7)Li NMR spectroscopy, and the molecular structures of 6 and 8 have been elucidated by X-ray crystallography. In 6 the distinct metals are connected through the anisole ligand which binds in an ambidentate fashion (through carbon-zinc and oxygen-lithium contacts) and also through one of the methyl groups, to close a [LiOCCZnC] six-membered ring; whereas 8 displays an open structure where anisole connects the two metals (in the same mode as in 6) but with the tert-butyl groups exclusively bonded terminally to zinc. Reactivity studies of zincates 4 and 7 with the amine TMP(H) supply experimental evidence that these heterobimetallic compounds are intermediates in the two-step deprotonation reaction of anisole by TMP-dialkyl zincates and show the relevance of the alkyl groups in the efficiency of TMP-dialkyl zincate bases. In addition, important solvent effects have also been evaluated. When hexane is added to THF solutions of compounds 4 or 7, the homoleptic tetraorganozincate [(THF)(2)Li(2)Zn(C(6)H(4)-OMe)(4)] (5) is obtained as the result of a disproportionation process. This lithium-rich zincate has also been spectroscopically and crystallographically characterized.
Smiderle, Fhernanda R; Sassaki, Guilherme L; van Arkel, Jeroen; Iacomini, Marcello; Wichers, Harry J; Van Griensven, Leo J L D
2010-08-25
An alpha-glucan was isolated from the culinary medicinal mushroom A. bisporus by hot water extraction, ethanol precipitation and DEAE-cellulose chromatography. The resulting material showed a single HMW peak excluded from a Sephadex G50 column that could completely be degraded by alpha-amylase treatment. After heating in 1% SDS a small additional peak of low MW eluted from the G50 column. The monosaccharide composition of the main peak was evaluated by HPLC, and was found to consist of a majority of glucose (97.6%), and a minor proportion of galactose (2.4%). Methylation analysis and degradation by alpha-amylase indicated the presence of an alpha-glucan with a main chain consisting of (1(R)4)-linked units, substituted at O-6 by alpha-D-glucopyranose single-units in the relation 1:8. Mono- (13C-, 1H-NMR) and bidimensional [1H (obs.),13C-HSQC] spectroscopy analysis confirmed the alpha-configuration of the Glcp residues by low frequency resonances of C-1 at delta 100.6, 100.2, and 98.8 ppm and H-1 high field ones at delta 5.06, 5.11, and 4.74 ppm. The DEPT-13C-NMR allowed assigning the non-substituted and O-substituted -CH(2) signals at delta 60.3/60.8 and 66.2 ppm, respectively. Other assignments were attributed to C-2, C-3, C-4, C-5 and C-6 of the non-reducing ends at delta 71.8; 72.8; 70.0; 71.3 and 60.3/60.8 ppm, respectively. The minor proportion of galactose that was demonstrated was probably derived from a complex between the alpha-glucan and a low molecular weight galactan.
Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.
Nguyen, Tran B; Tyndall, Geoffrey S; Crounse, John D; Teng, Alexander P; Bates, Kelvin H; Schwantes, Rebecca H; Coggon, Matthew M; Zhang, Li; Feiner, Philip; Milller, David O; Skog, Kate M; Rivera-Rios, Jean C; Dorris, Matthew; Olson, Kevin F; Koss, Abigail; Wild, Robert J; Brown, Steven S; Goldstein, Allen H; de Gouw, Joost A; Brune, William H; Keutsch, Frank N; Seinfeld, John H; Wennberg, Paul O
2016-04-21
We use a large laboratory, modeling, and field dataset to investigate the isoprene + O3 reaction, with the goal of better understanding the fates of the C1 and C4 Criegee intermediates in the atmosphere. Although ozonolysis can produce several distinct Criegee intermediates, the C1 stabilized Criegee (CH2OO, 61 ± 9%) is the only one observed to react bimolecularly. We suggest that the C4 Criegees have a low stabilization fraction and propose pathways for their decomposition. Both prompt and non-prompt reactions are important in the production of OH (28% ± 5%) and formaldehyde (81% ± 16%). The yields of unimolecular products (OH, formaldehyde, methacrolein (42 ± 6%) and methyl vinyl ketone (18 ± 6%)) are fairly insensitive to water, i.e., changes in yields in response to water vapor (≤4% absolute) are within the error of the analysis. We propose a comprehensive reaction mechanism that can be incorporated into atmospheric models, which reproduces laboratory data over a wide range of relative humidities. The mechanism proposes that CH2OO + H2O (k(H2O)∼ 1 × 10(-15) cm(3) molec(-1) s(-1)) yields 73% hydroxymethyl hydroperoxide (HMHP), 6% formaldehyde + H2O2, and 21% formic acid + H2O; and CH2OO + (H2O)2 (k(H2O)2∼ 1 × 10(-12) cm(3) molec(-1) s(-1)) yields 40% HMHP, 6% formaldehyde + H2O2, and 54% formic acid + H2O. Competitive rate determinations (kSO2/k(H2O)n=1,2∼ 2.2 (±0.3) × 10(4)) and field observations suggest that water vapor is a sink for greater than 98% of CH2OO in a Southeastern US forest, even during pollution episodes ([SO2] ∼ 10 ppb). The importance of the CH2OO + (H2O)n reaction is demonstrated by high HMHP mixing ratios observed over the forest canopy. We find that CH2OO does not substantially affect the lifetime of SO2 or HCOOH in the Southeast US, e.g., CH2OO + SO2 reaction is a minor contribution (<6%) to sulfate formation. Extrapolating, these results imply that sulfate production by stabilized Criegees is likely unimportant in regions dominated by the reactivity of ozone with isoprene. In contrast, hydroperoxide, organic acid, and formaldehyde formation from isoprene ozonolysis in those areas may be significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, D.E.; Jordan, R.F.; Rogers, R.D.
1995-08-01
The amine elimination reaction of C{sub 2}B{sub 9}H{sub 13} and Zr(NEt{sub 2}){sub 4} yields the mono-dicarbollide complex ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(NHEt{sub 2}), (1), which has been shown to adopt a three-legged piano stool structure by X-ray crystallography. Crystal data for 1: space group P2{sub 1}/c, a = 10.704(4) A, b = 11.066(3) A, c = 20.382(8) A, {beta} = 99.20(3){degree}, V = 2383(1) A{sup 3}, Z = 4. Complex 1 undergoes facile ligand substitution by THF and 4-picoline, yielding ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}-(THF) (2) and ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(4-picoline){sub 2} (3).more » Compound 3 exists as the four-coordinate species ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Zr(NEt{sub 2}){sub 2}(4-picoline) in CH{sub 2}Cl{sub 2} solution. Complex 1 reacts selectively with 2 equiv of [NH{sub 2}ET{sub 2}]Cl, yielding ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})ZrCl{sub 2}(NHEt{sub 2}){sub 2} (4). Similarly, the reaction of C{sub 2}B{sub 9}H{sub 13} and Ti(NR{sub 2}){sub 4} yields ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})Ti(NR{sub 2}){sub 2}(NHR{sub 2}) (5, R = Me; 6, R = Et). Compounds 1-6 are potential precursors to group 4 metal ({eta}{sup 5}-C{sub 2}B{sub 9}H{sub 11})MR{sub 2}L{sub n} alkyl species. 25 refs., 3 figs., 3 tabs.« less
Raman spectrum of methane in nitrogen, carbon dioxide, hydrogen, ethane, and propane environments
NASA Astrophysics Data System (ADS)
Petrov, D. V.
2018-02-01
Using binary CH4 - mixtures with varied concentrations of H2, N2, CO2, C2H6 and C3H8 and a fixed ambient pressure of 25 bar, the influence of the environment on spectral characteristics (Raman shift, half-width, peak intensity) of Q-branches of the ν1, ν2, ν3, and 2ν4 methane Raman bands are investigated. It is found that depending on the environment these bands demonstrate different changes in their Raman shifts and half-widths. It is shown that the ratios of peak intensities I(ν2)/I(ν1), I(ν3)/I(ν1) and I(2ν4)/I(ν1) are very sensitive to the environment. The Raman shifts and half-widths of CH4 bands are assumed to depend on the absolute concentration of molecules in the analyzed medium. The data obtained would be useful in Raman diagnostics of natural gas.
Revised Space Groups for Three Molybdenum(V) Phosphate Compounds
NASA Astrophysics Data System (ADS)
Leclaire, A.; Borel, M. M.; Guesdon, A.; Marsh, Richard E.
2001-06-01
The space groups of three previously described Mo(V) phosphate structures are revised. (1) δ-KMo2P3O13, originally reported as triclinic, Poverline1, is revised to monoclinic, C2/c; it is identical to the compound previously identified as K4Mo8P12O52. (2) The compound formulated as [Mo12CdP8O50(OH)12]Cd [N(CH3)4]2(H3O)6·5H2O, originally described as monoclinic, Pn, is revised to P21/n (also monoclinic). (3) Rb3O2(MoO)4(PO4)4, originally reported as orthorhombic, C2221, is revised to tetragonal, P43212. The general descriptions of the structures are unchanged; however, for compound 2 the revision involves the addition of a center of symmetry and, as a result, there are significant changes in the interatomic distances and angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X. J.; Zhong, J. X.; Glaser, R.
The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have recently been ascribed to mixed aromatic/aliphatic organic nanoparticles. More recently, an upper limit of <9% was placed on the aliphatic fraction (i.e., the fraction of carbon atoms in aliphatic form) of the UIE carriers based on the observed intensities of the 3.4 μm and 3.3 μm emission features by attributing them to aliphatic and aromatic C-H stretching modes, respectively, and assuming A{sub 3.4}/A{sub 3.3} ≈ 0.68 derived from a small set of aliphatic and aromatic compounds, wheremore » A{sub 3.4} and A{sub 3.3} are, respectively, the band strengths of the 3.4 μm aliphatic and 3.3 μm aromatic C-H bonds. To improve the estimate of the aliphatic fraction of the UIE carriers, here we analyze 35 UIE sources exhibiting both the 3.3 μm and 3.4 μm C-H features and determine I{sub 3.4}/I{sub 3.3}, the ratio of the power emitted from the 3.4 μm feature to that from the 3.3 μm feature. We derive the median ratio to be (I{sub 3.4}/I{sub 3.3}) ≈ 0.12. We employ density functional theory to compute A{sub 3.4}/A{sub 3.3} for a range of methyl-substituted PAHs. The resulting A{sub 3.4}/A{sub 3.3} ratio well exceeds ∼1.4, with an average ratio of A{sub 3.4}/A{sub 3.3} ≈ 1.76. By attributing the 3.4 μm feature exclusively to aliphatic C-H stretch (i.e., neglecting anharmonicity and superhydrogenation), we derive the fraction of C atoms in aliphatic form from I{sub 3.4}/I{sub 3.3} ≈ 0.12 and A{sub 3.4}/A{sub 3.3} ≈ 1.76 to be ∼2%. We therefore conclude that the UIE emitters are predominantly aromatic.« less
Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.
NASA Astrophysics Data System (ADS)
Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.
Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)
Pöppler, Ann Christin; Corlett, Emily K; Pearce, Harriet; Seymour, Mark P; Reid, Matthew; Montgomery, Mark G; Brown, Steven P
2017-03-01
A single-crystal X-ray diffraction structure of a 1:1 cocrystal of two fungicides, namely dithianon (DI) and pyrimethanil (PM), is reported [systematic name: 5,10-dioxo-5H,10H-naphtho[2,3-b][1,4]dithiine-2,3-dicarbonitrile-4,6-dimethyl-N-phenylpyrimidin-2-amine (1/1), C 14 H 4 N 2 O 2 S 2 ·C 12 H 13 N 2 ]. Following an NMR crystallography approach, experimental solid-state magic angle spinning (MAS) NMR spectra are presented together with GIPAW (gauge-including projector augmented wave) calculations of NMR chemical shieldings. Specifically, experimental 1 H and 13 C chemical shifts are determined from two-dimensional 1 H- 13 C MAS NMR correlation spectra recorded with short and longer contact times so as to probe one-bond C-H connectivities and longer-range C...H proximities, whereas H...H proximities are identified in a 1 H double-quantum (DQ) MAS NMR spectrum. The performing of separate GIPAW calculations for the full periodic crystal structure and for isolated molecules allows the determination of the change in chemical shift upon going from an isolated molecule to the full crystal structure. For the 1 H NMR chemical shifts, changes of 3.6 and 2.0 ppm correspond to intermolecular N-H...O and C-H...O hydrogen bonding, while changes of -2.7 and -1.5 ppm are due to ring current effects associated with C-H...π interactions. Even though there is a close intermolecular S...O distance of 3.10 Å, it is of note that the molecule-to-crystal chemical shifts for the involved sulfur or oxygen nuclei are small.
Large fractionations of C and H isotopes related to methane oxidation in Arctic lakes
NASA Astrophysics Data System (ADS)
Cadieux, Sarah B.; White, Jeffrey R.; Sauer, Peter E.; Peng, Yongbo; Goldman, Amy E.; Pratt, Lisa M.
2016-08-01
Microbial oxidation of methane (CH4) plays a central role in carbon cycling in Arctic lakes, reducing potential CH4 emissions associated with warming. Isotopic signatures of CH4 (δ13C and δ2H) are indicators of microbial oxidation, wherein the process strongly enriches 13C and 2H in residual CH4. We present δ13C and δ2H measurements obtained from sampling the water column and sediment for dissolved CH4 from three, small Arctic lakes in western Greenland under both open-water and ice-covered conditions from 2013 to 2014. Despite substantial variations in aquatic chemistry among the lakes, δ13C and δ2H of CH4 suggested that CH4 was produced predominantly by acetoclastic methanogenesis in the littoral sediments and hydrogenotrophic methanogenesis in the profundal sediments in all of the lakes. Surprisingly large variations for both δ13C and δ2H of CH4 were observed, with δ13C extending from -72‰ to +7.4‰ and δ2H from -390‰ to +250‰. The CH4 isotopic values reported here were significantly more enriched (p < 0.0001) in both 13C and 2H than values reported from other Arctic freshwater environments. As is characteristic of methanotrophy, the enrichment in 13C and 2H was associated with low CH4 concentrations. We suggest that the CH4 most enriched in 13C and 2H may reflect unusually efficient methanotrophic communities in Arctic ice-margin lakes. This study provides the first measurement of δ2H for CH4 in an Arctic freshwater environment at concentrations <10 μM. The extreme enrichment of 13C and 2H of CH4 from Arctic methanotrophy has significant implications for interpreting sources and sinks of CH4. Without knowledge of local geology, stable isotope values of CH4 higher than -30‰ for δ13C and -150‰ for δ2H could be misinterpreted as thermogenic, geothermal, or abiogenic origins. Given crystalline bedrock and the strong positive correlation between δ13C and δ2H throughout the water columns in three Arctic lakes confirms that CH4 heavily enriched in 13C and 2H is the result of methanotrophy.
Cabrera, K D; Rowland, A T; Szarko, J M; Diaconescu, P L; Bezpalko, M W; Kassel, W S; Nataro, C
2017-05-02
The ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf) is commonly employed in a variety of catalytic systems. There are a variety of coordination modes known for dppf, the least studied being the κ 3 coordination mode, in which both phosphorus atoms and the iron atom of dppf interact with another metal center. One such compound is the previously reported [Pd(κ 3 -dppf)(PPh 3 )] 2+ . A series of related compounds, [Pd(κ 3 -dppf)(P(p-C 6 H 4 R) 3 )] 2+ (R = OCH 3 , CH 3 , F and CF 3 ), has been synthesized and characterized. The X-ray crystal structure of [Pd(dppf)(P(p-C 6 H 4 F) 3 )][BF 4 ] 2 was determined. Electrochemical and computational studies indicate that the electron donor ability of the P(p-C 6 H 4 R) 3 ligands influences the properties of these compounds. Substitution reactions of the P(p-C 6 H 4 R) 3 ligands have been examined, and, in general, the more electron donating P(p-C 6 H 4 R) 3 ligands completely replace the less electron donating ones. The kinetics of the reaction of [Pd(κ 3 -dppf)(P(p-C 6 H 4 F) 3 )] 2+ with P(p-C 6 H 4 OCH 3 ) 3 indicate that the reaction proceeds through a dissociative mechanism, contrary to the associative substitutions prevalent in square planar palladium(ii) chemistry.
NASA Astrophysics Data System (ADS)
Zhou, Yangliu
The most commonly used proton conductive membrane in polymer electrolyte membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC) studies to date is DuPont's NafionRTM, which is a perfluorinated copolymer of tetrafluoroethylene (TFE) and perfluorovinyl ether with a pendant sulfonic acid group. A focus of this work is to find ways to improve the performance of NafionRTM membranes. Crosslinking the TFE chains of fluorinated ionomeric copolymers to improve their thermal and mechanical stability is a proven route to this goal. A straightforward synthetic route to perfluorinated divinyl ethers of the formula CF2=CFO(CF 2)3[OCF(CF3)CF2]mOCF=CF 2 (m = 0-1) has been demonstrated. The compounds CF2=CFO(CF 2)3OCF=CF2 and CF2=CFO(CF2) 3OCF(CF3)CF2OCF=CF2 were prepared and characterized by GC-MS, 13C and 19F NMR, and gas-IR spectroscopy. Synthetic routes to fluorosulfato-tetrafluoropropionyl fluoride [FSO3CF2CF2C(O)F] and difluoromalonyl difluoride [F(O)CCF2C(O)F] with improved yields were found. The second focus of the dissertation was the development of fluorous triarylphosphines for use as new doping materials for the modification of NafionRTM membranes and for use as ligands in catalysts for biphasic catalysis. The synthesis and characterization of a series of new polyhexafluoropropylene oxide derivatives for preparation of fluorous triarylphosphines and phosphonium salts was studied, such as F[CF(CF3)CF2O] 4CF(CF3)CH2CH2I, F[CF(CF3)CF 2O]4CF(CF3)CH=CH2, F[CF(CF3)CF 2O]4CF(CF3) CH2CH2C6H5, and F[CF(CF 3)CF2O]4CF(CF3)CH2CH 2C6H4Br. In a separate study, the photochlorination of 2,2,3,3-tetrafluoro-1-propanol (HCF2CF2CH2OH) and 2,2,3,3-tetrafluoropropyl 2,2,3,3-tetrafluoropropionate [HCF2CF2C(O)OCH2 CF2CF2H] with super diazo blue light (lambda max = 420 nm) were investigated. The photochemical products are different from those obtained under mercury light (lambda = 253.7nm). A new compound ClCF2CF2C(O)OC(H)ClCF2CF2Cl was prepared and characterized by GC-MS, elemental analysis, 1H, 13C and 19F NMR, and gas-IR spectroscopy.
Bimetallo-radical carbon-hydrogen bond activation of methanol and methane.
Cui, Weihong; Zhang, X Peter; Wayland, Bradford B
2003-04-30
Carbon-hydrogen bond cleavage reactions of CH3OH and CH4 by a dirhodium(II) diporphyrin complex with a m-xylyl tether (.Rh(m-xylyl)Rh.(1)) are reported. Kinetic-mechanistic studies show that the substrate reactions are bimolecular and occur through the use of two Rh(II) centers in the molecular unit of 1. Second-order rate constants (T = 296 K) for the reactions of 1 with methanol (k(CH3OH) = 1.45 x 10-2 M-1 s-1) and methane (k(CH4) = 0.105 M-1 s-1) show a clear kinetic preference for the methane activation process. The methanol and methane reactions with 1 have large kinetic isotope effects (k(CH3OH)/k(CD3OD) = 9.7 +/- 0.8, k(CH4)/k(CD4) = 10.8 +/- 1.0, T = 296 K), consistent with a rate-limiting step of C-H bond homolysis through a linear transition state. Activation parameters for reaction of 1 with methanol (DeltaH = 15.6 +/- 1.0 kcal mol-1; DeltaS = -14 +/- 5 cal K-1 mol-1) and methane (DeltaH = 9.8 +/- 0.5 kcal mol-1; DeltaS = -30 +/- 3 cal K-1 mol-1) are reported.
Chen, Qiang; Zhang, Wenjuan; Solan, Gregory A; Liang, Tongling; Sun, Wen-Hua
2018-05-01
Four examples of phenol-substituted methylene-bridged bis(imino)pyridines, CH(C6H4-4-OH){2'-(4-C6H2-2,6-R22N[double bond, length as m-dash]CMe)-6'-(2'',6''-R12C6H3N[double bond, length as m-dash]CMe)C5H3N}2 [R1 = R2 = Me L1, R1 = R2 = Et L2, R1 = Et, R2 = Me L3, R1 = iPr, R2 = Me L4], have been synthesized and fully characterized. Treatment of L1-L4 with two equivalents of cobaltous chloride affords the bimetallic complexes, [(L)Co2Cl4] (L = L1Co1, L2Co2, L3Co3, L4Co4), in good yield. The molecular structure of Co1 shows the two metal centers to be separated by a distance of 13.339 Å with each cobalt displaying a distorted trigonal bipyramidal geometry. On activation with either MAO or MMAO, Co1-Co4 exhibited high activities for ethylene polymerization (up to 1.46 × 107 g(PE) mol-1(Co) h-1 at 50 °C) with their relative values influenced by the steric properties of the N-aryl groups: Co1 > Co3 > Co4 > Co2. Highly linear polyethylenes incorporating high degrees of vinyl end-groups are a feature of all the materials produced with the molecular weights of the MAO-promoted systems (Mw range = 2-8 kg mol-1) generally higher than seen with MMAO (Mw range = 1-3 kg mol-1), while the distributions using MMAO are narrower (PDI < 2.0).
Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures.
Altintas, Cigdem; Keskin, Seda
2017-11-11
Metal organic framework (MOF) membranes have been widely investigated for gas separation applications. Several MOFs have been recently examined for selective separation of C 2 H 6 . Considering the large number of available MOFs, it is not possible to fabricate and test the C 2 H 6 separation performance of every single MOF membrane using purely experimental methods. In this study, we used molecular simulations to assess the membrane-based C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 separation performances of 175 different MOF structures. This is the largest number of MOF membranes studied to date for C 2 H 6 separation. We computed adsorption selectivity, diffusion selectivity, membrane selectivity and gas permeability of MOFs for C 2 H 6 /C 2 H 4 and C 2 H 6 /CH 4 mixtures. Our results show that a significant number of MOF membranes are C 2 H 6 selective for C 2 H 6 /C 2 H 4 separation in contrast to traditional nanoporous materials. Selectivity and permeability of MOF membranes were compared with other membrane materials, such as polymers, zeolites, and carbon molecular sieves. Several MOFs were identified to exceed the upper bound established for polymeric membranes and many MOF membranes exhibited higher gas permeabilities than zeolites and carbon molecular sieves. Examining the structure-performance relations of MOF membranes revealed that MOFs with cavity diameters between 6 and 9 Å, porosities lower than 0.50, and surface areas between 500-1000 m 2 g -1 have high C 2 H 6 selectivities. The results of this study will be useful to guide the experiments to the most promising MOF membranes for efficient separation of C 2 H 6 and to accelerate the development of new MOFs with high C 2 H 6 selectivities.
Interactions between Nitrogen Fixation and Methane Cycling in Northern Minnesota Peat Bogs
NASA Astrophysics Data System (ADS)
Warren, M. J.; Gaby, J. C.; Lin, X.; Morton, P. L.; Kostka, J. E.; Glass, J. B.
2014-12-01
Peatlands cover only 3% of the Earth's surface, yet store a third of soil carbon. Increasing global temperatures have the potential to change peatlands from a net sink to a net source of atmospheric carbon. N is a limiting nutrient in oligotrophic Sphagnum-dominated peatlands and biological N2 fixation likely supplies a significant but unknown fraction of N inputs. Moreover, environmental controls on diazotrophic community composition in N-limited peatlands are poorly constrained. Thus, improved understanding of feedbacks between the CH4 and N cycles is critical for predicting future changes to CH4 flux from peat bogs. We coupled measurements of N2 fixation activity measured by the acetylene (C2H2) reduction assay (ARA) with molecular analyses of expression and diversity of nifH genes encoding the molybdenum (Mo)-containing nitrogenase from two peat bogs in the Marcell Experimental Forest, Minnesota, USA. The top 10 cm of peat was sampled from the high CH4 flux S1 bog and the low CH4 flux Zim bog in April and June 2014. Despite similar N concentrations in the top 10 cm of both bogs (0.5-1.0 μM NO2-+NO3- and 2-3 μM NH4+), the S1 bog displayed variable ARA activity (1-100 nmol C2H4 h-1 g-1) whereas the Zim bog had consistently low ARA activity (<1 nmol C2H4 h-1 g-1). Highest ARA activity was measured in June from S1 bog hollows with higher moisture content incubated without O2 in the light (20-100 nmol C2H4 h-1 g-1). Dissolved Fe (1-25 μM) was higher in hollow vs. hummock samples, and at S1 vs. Zim bog, while dissolved V (4-14 nM) was consistently higher than Mo (1-4 nM), suggesting that alternative V or Fe-containing nitrogenases might be present in these bogs. In contrast, Cu, an essential micronutrient for aerobic methanotrophs, was higher in hummocks (25-48 nM) than hollows (6-17 nM). The facultative methanotroph Methylocella was the dominant diazotroph in the S1 bog based on high throughput next generation sequencing of nifH cDNA amplicons. Given previous reports of C2H2 inhibition of methanotrophy, we measured CH4 consumption in the presence or absence of 1% C2H2. Preliminary results suggest minimal effect of C2H2 on CH4 oxidation. Future measurements of 15N2 incorporation coupled to molecular analysis will elucidate whether methanotroph diazotrophy was suppressed by C2H2 in ARA incubations.
Koppaka, Anjaneyulu; Captain, Burjor
2016-03-21
The complex Pt(IPr)(SnBu(t)3)(H) (1) was obtained from the reaction of Pt(COD)2 with Bu(t)3SnH and IPr [IPr = N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Complex 1 undergoes exchange reactions with deuterated solvents (C6D6, toluene-d8, and CD2Cl2), where the hydride ligand and the methyl hydrogen atoms on the isopropyl group of the IPr ligand have been replaced by deuterium atoms. Complex 1 reacts with H2 gas reversibly at room temperature to yield the complex Pt(IPr)(SnBu(t)3)(H)3 (2). Complex 2 also undergoes exchange reactions with deuterated solvents as in 1 to deuterate the hydride ligands and the methyl hydrogen atoms on the isopropyl group of the IPr ligand. Complex 1 catalyzes the hydrogenation of styrene to ethylbenzene at room temperature. The reaction of 1 with 1 equiv of styrene at -20 °C yields the η(2)-coordinated product Pt(IPr)(SnBu(t)3)(η(2)-CH2CHPh)(H) (3), and with 2 equiv of styrene, it forms Pt(IPr)(η(2)-CH2CHPh)2 (4).
Man, Wai-Lun; Lam, William W Y; Kwong, Hoi-Ki; Peng, Shie-Ming; Wong, Wing-Tak; Lau, Tai-Chu
2010-01-04
The reaction of [Ru(VI)(N)(L)(MeOH)](PF(6)) [1; L = N,N'-bis(salicylidene)-o-cyclohexyldiamine dianion] with a stoichiometric amount of RSH in CH(3)CN gives the corresponding (salen)ruthenium(IV) sulfilamido species [Ru(IV){N(H)SR}(L)(NCCH(3))](PF(6)) (2a, R = (t)Bu; 2b, R = Ph). Metathesis of 2a with NaN(3) in methanol affords [Ru(IV){N(H)S(t)Bu}(L)(N(3))] (2c). 2a undergoes further reaction with 1 equiv of RSH to afford a (salen)ruthenium(III) sulfilamine species, [Ru(III){N(H)(2)S(t)Bu}(L)(NCCH(3))](PF(6)) (3). On the other hand, 2b reacts with 2 equiv of PhSH to give a (salen)ruthenium(III) ammine species [Ru(III)(NH(3))(L)(NCCH(3))](PF(6)) (4); this species can also be prepared by treatment of 1 with 3 equiv of PhSH. The X-ray structures of 2c and 4 have been determined. Kinetic studies of the reaction of 1 with excess RSH indicate the following schemes: 1 --> 2a --> 3 (R = (t)Bu), 1 --> 2b --> 4 (R = Ph). The conversion of 1 to 2 probably involves nucleophilic attack of RSH at the nitrido ligand, followed by a proton shift. The conversions of 2a to 3 and 2b to 4 are proposed to involve rate-limiting H-atom abstraction from RSH by 2a or 2b. 2a and 2b are also able to abstract H atoms from hydrocarbons with weak C-H bonds. These reactions occur with large deuterium isotope effects; the kinetic isotope effect values for the oxidation of 9,10-dihydroanthracene, 1,4-cyclohexadiene, and fluorene by 2a are 51, 56, and 11, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodius, D.; Smetana, V.; Steinberg, S.
A family of bis(trifluoromethanesulfonyl)amide-based ionic liquids of composition [RE 5(C 2H 5-C 3H 3N 2-CH 2COO) 16(H 2O) 8](Tf 2N) 15 (RE = Er, Ho, Tm; C 3H 3N 2 ≡ imidazolium moiety) featuring the cationic, record quindecim {15+} charged pentanuclear rare earth (RE)-containing ion [RE 5(C 2H 5-C 3H 3N 2-CH 2COO) 16(H 2O) 8] 15+ has been synthesized and characterized. In addition, due to the presence of rare earth ions, these ionic liquids show a response to magnetic fields with the highest effective magnetic moment observed so far for an ionic liquid and are rare examples of ionicmore » liquids showing luminescence in the near-infrared. As a result, these ionic liquids also were successfully employed in a three-component synthesis of 2-pyrrolo-3'-yloxindole with an extremely low (<0.035 mol%) catalyst loading rate.« less
Singh, Vinod P
2008-11-01
This paper describes the preparation of [Cu(bh)2(H2O)2](NO3)2], [Cu(ibh)2(NO3)2], [Cu(ibh)2(H2O)2](NO3)2 and [Cu(iinh)2(NO3)2] (bh = benzoyl hydrazine (C6H5CONHNH2); ibh = isonicotinoyl hydrazine (NC5H4CONHNH2); ibh = isopropanone benzoyl hydrazone (C6H5CONHN=C(CH3)2; iinh = isopropanone isonicotinoyl hydrazone (NC5H4CONHN=C(CH3)2). These copper(II) complexes are characterized by elemental analyses, molar conductances, dehydration studies, ESR, IR and electronic spectral studies. The electronic and ESR spectra indicate that each complex exhibits a six-coordinate tetragonally distorted octahedral geometry in the solid state and in DMSO solution. The ESR spectra of most of the complexes are typically isotropic type at room temperature (300 K) in solid state as well as in DMSO solution. However, all the complexes exhibit invariably axial signals at 77 K in DMSO solution. The trend g(||) > g(perpendicular) > g(e,) observed in all the complexes suggests the presence of an unpaired electron in the d x2-y2 orbital of the Cu(II). The bh and inh ligands bond to Cu(II) through the >C=O and -NH2 groups whereas, ibh and iinh bond through >C=O and >C=N- groups. The IR spectra of bh and ibh complexes also show H-O-H stretching and bending modes of coordinated water.
Ab initio and density functional study on the mechanism of the C2H2++methanol reaction
NASA Astrophysics Data System (ADS)
Irle, Stephan; Morokuma, Keiji
1999-09-01
High level ab initio (G2MS and CASSCF) and density functional (B3LYP) calculations were carried out to study the mechanism of the ion-molecule reaction C2H2++CH3OH for four reaction channels: hydride abstraction from methanol (HA), proton transfer from acetylene cation (PT), charge transfer (CT), and covalent complex formation (CC) channel. For the CT channel, two pathways have been found: a usual nonadiabatic pathway via A'/A″ seam of crossing, and a low-energy adiabatic pathway through an initial intermediate; the latter may be the dominant process with favorable energies and a large impact parameter. The HA process involves a low-energy direct intermediate and a very low barrier to form C2H3+CH2OH+ and is also energetically favorable. The PT processes require passage over a high-energy transition state (TS) and are not important. One of the experimentally unobserved CC channels, formation of the COCC skeleton, is energetically favorable and there is no energetic reason for it not to take place; a "dynamic bottleneck" argument may have to be invoked to explain the experiment. The increase in reaction efficiency with the C-C stretch excitation may be justified by considering the TSs for two CT pathways, where the C-C distance changed substantially from that in the reactant C2H2+. Very qualitatively, the C2H2++CH3OH potential energy surface looks more like that of the C2H2++NH3 system than the C2H2++CH4 system, because of the differences in the ionization potentials: NH3˜CH3OH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: chaus@uni.udm.ru
2015-03-15
Nitrilotris methylene phosphonate triaqua copper and octasodium bis(nitrilotris methylene phosphonate cuprate(II)) nonadecahydrate have been synthesized and investigated. [CuN(CH{sub 2}PO{sub 3}){sub 3}(H{sub 2}O){sub 3}] is crystallized in the sp. gr. P2{sub 1}/c, Z = 4, a = 9.2506(2) Å, b = 15.9815(2) Å, c = 9.5474(2) Å, β = 113.697(2)°. The copper atom is coordinated by oxygen atoms in the configuration of elongated octahedron; the ligand (of bridge type) links neighboring copper atoms. Na{sub 8}[CuN(CH{sub 2}PO{sub 3}){sub 3}]{sub 2} · 19H{sub 2}O is crystallized in the sp. gr. P2{sub 1}/c, Z = 2, a = 11.24550(10) Å, b = 17.38980(10) Å,more » c = 13.5852(2) Å, β = 127.8120(10)°. This complex is chelating; the copper atom closes three five-membered N-C-P-O-Cu cycles with a shared Cu-N bond. Copper is coordinated in a distorted trigonal-bipyramidal configuration.« less
Novel thiophene-based cycloruthenated compounds: synthesis, characterization, and reactivity.
Cuesta, Luciano; Maluenda, Irene; Soler, Tatiana; Navarro, Rafael; Urriolabeitia, Esteban P
2011-01-03
The reactions between a series of thiophene-based imines with [(η(6)-C(6)H(6))RuCl(μ-Cl)](2), in a basic medium, and in MeCN give a family of ruthenacycles of stoichiometry [Ru(C^N)(NCMe)(4)]PF(6) (C^N = orthometalated thiopheneimine). In these species, the C-H activation process is produced in most cases at the thiophene ring. When two C-H bonds are competing (thiophene vs aryl), the cyclometalation can be driven regioselectively to the thiophene unit or to the aryl ring as a function of the location of the iminic C=N bond. Cyclometalation can also be oriented to positions 2 or 3 of the thiophene depending on the situation of the imine in the heterocycle (3 or 2, respectively). In all studied cases, the η(6)-C(6)H(6) ligand was substituted by acetonitrile. The X-ray structures of two representative complexes have been determined. These thiophene-based metallacycles react with iodine under very mild conditions affording, after hydrolysis, substituted 3-iodo-2-formyl(benzo)thiophenes or substituted 2-iodo-3-formyl(benzo)thiophenes, as a function of the organometallic precursor.
Clot, Eric; Mégret, Claire; Eisenstein, Odile; Perutz, Robin N
2009-06-10
DFT calculations are reported of the energetics of C-H oxidative addition of benzene and fluorinated benzenes, Ar(F)H (Ar(F) = C(6)F(n)H(5-n), n = 0-5) at ZrCp(2) (Cp = eta(5)-C(5)H(5)), TaCp(2)H, TaCp(2)Cl, WCp(2), ReCp(CO)(2), ReCp(CO)(PH(3)), ReCp(PH(3))(2), RhCp(PH(3)), RhCp(CO), IrCp(PH(3)), IrCp(CO), Ni(H(2)PCH(2)CH(2)PH(2)), Pt(H(2)PCH(2)CH(2)PH(2)). The change in M-C bond energy of the products fits a linear function of the number of fluorine substituents, with different coefficients corresponding to ortho-, meta-, and para-fluorine. The values of the ortho-coefficient range from 20 to 32 kJ mol(-1), greatly exceeding the values for the meta- and para-coefficients (2.0-4.5 kJ mol(-1)). Similarly, the H-C bond energies of Ar(F)H yield ortho- and para-coefficients of 10.4 and 3.4 kJ mol(-1), respectively, and a negligible meta-coefficient. These results indicate a large increase in the M-C bond energy with ortho-fluorine substitution on the aryl ring. Plots of D(M-C) vs D(H-C) yield slopes R(M-C/H-C) that vary from 1.93 to 3.05 with metal fragment, all in excess of values of 1.1-1.3 reported with other hydrocarbyl groups. Replacement of PH(3) by CO decreases R(M-C/H-C) significantly. For a given ligand set and metals in the same group of the periodic table, the value of R(M-C/H-C) does not increase with the strength of the M-C bond. Calculations of the charge on the aryl ring show that variations in ionicity of the M-C bonds correlate with variations in M-C bond energy. This strengthening of metal-aryl bonds accounts for numerous experimental results that indicate a preference for ortho-fluorine substituents.
Thermal Decomposition of Potential Ester Biofuels. Part I: Methyl Acetate and Methyl Butanoate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko
2017-06-09
Two methyl esters have been examined as models for the pyrolysis of biofuels. Dilute samples (0.06 - 0.13%) of methyl acetate (CH 3COOCH 3) and methyl butanoate (CH 3CH 2CH 2COOCH 3) were entrained in (He, Ar) carrier gas and decomposed in a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from the methyl esters were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures in the pulsed micro-reactor were roughly 20 Torr and residence times through the reactors were approximately 25 - 150 µs. Reactor temperatures ofmore » 300 – 1600 K were explored. Decomposition of CH 3COOCH 3 commences at 1000 K and the initial products are (CH 2=C=O and CH 3OH). As the micro-reactor is heated to 1300 K, a mixture of (CH 2=C=O and CH 3OH, CH 3, CH 2=O, H, CO, CO 2) appears. The thermal cracking of CH 3CH 2CH 2COOCH 3 begins at 800 K with the formation of (CH 3CH 2CH=C=O, CH 3OH). By 1300 K, the pyrolysis of methyl butanoate yields a complex mixture of (CH 3CH 2CH=C=O, CH 3OH, CH 3, CH 2=O, CO, CO 2, CH 3CH=CH 2, CH 2CHCH 2, CH 2=C=CH 2, HCCCH 2, CH 2=C=C=O, CH 2=CH 2, HCΞCH, CH 2=C=O). Based on the results from the thermal cracking of methyl acetate and methyl butanoate, we predict several important decomposition channels for the pyrolysis of fatty acid methyl esters, R CH 2-COOCH 3. The lowest energy fragmentation will be a 4-center elimination of methanol to form the ketene, RCH=C=O. At higher temperatures, concerted fragmentation to radicals will ensue to produce a mixture of species: (RCH 2 + CO 2 + CH 3) and (RCH 2 + CO + CH 2=O + H). Thermal cracking of the β C-C bond of the methyl ester will generate the radicals (R and H) as well as CH 2=C=O + CH 2=O. The thermochemistry of methyl acetate and its fragmentation products have been obtained via the Active Thermochemical Tables (ATcT) approach, resulting in Δ fH 298(CH 3COOCH 3) = -98.7 ± 0.2 kcal mol -1, Δ fH 298(CH 3CO 2) = -45.7 ± 0.3 kcal mol -1, and Δ fH 298(COOCH 3) = -38.3 ± 0.4 kcal mol -1.« less