Spin Chains with Dynamical Lattice Supersymmetry
NASA Astrophysics Data System (ADS)
Hagendorf, Christian
2013-02-01
Spin chains with exact supersymmetry on finite one-dimensional lattices are considered. The supercharges are nilpotent operators on the lattice of dynamical nature: they change the number of sites. A local criterion for the nilpotency on periodic lattices is formulated. Any of its solutions leads to a supersymmetric spin chain. It is shown that a class of special solutions at arbitrary spin gives the lattice equivalents of the {N}=(2,2) superconformal minimal models. The case of spin one is investigated in detail: in particular, it is shown that the Fateev-Zamolodchikov chain and its off-critical extension possess a lattice supersymmetry for all its coupling constants. Its supersymmetry singlets are thoroughly analysed, and a relation between their components and the weighted enumeration of alternating sign matrices is conjectured.
Delta wing flutter based on doublet lattice method in NASTRAN
NASA Technical Reports Server (NTRS)
Jew, H.
1975-01-01
The subsonic doublet-lattice method (DLM) aeroelastic analysis in NASTRAN was successfully applied to produce subsonic flutter boundary data in parameter space for a large delta wing configuration. Computed flow velocity and flutter frequency values as functions of air density ratio, flow Mach number, and reduced frequency are tabulated. The relevance and the meaning of the calculated results are discussed. Several input-deck problems encountered and overcome are cited with the hope that they may be helpful to NASTRAN Rigid Format 45 users.
Ferrimagnetism in delta chain with anisotropic ferromagnetic and antiferromagnetic interactions
NASA Astrophysics Data System (ADS)
Dmitriev, D. V.; Krivnov, V. Ya
2016-12-01
We consider analytically and numerically an anisotropic spin-\\frac{1}{2} delta-chain (sawtooth chain) in which exchange interactions between apical and basal spins are ferromagnetic and those between basal spins are antiferromagnetic. In the limit of strong anisotropy of exchange interactions this model can be considered as the Ising delta chain with macroscopic degenerate ground state perturbed by transverse quantum fluctuations. These perturbations lift the ground state degeneracy and the model reduces to the basal XXZ spin chain in the magnetic field induced by static apical spins. We show that the ground state of such a model is ferrimagnetic. The excitations of the model are formed by ferrimagnetic domains separated by domain walls with a finite energy. At low temperatures the system is effectively divided into two independent subsystems, the apical subsystem described by the Ising spin-\\frac{1}{2} chain and the basal subsystem described by the XXZ chain with infinite zz interactions.
Ferrimagnetism in delta chain with anisotropic ferromagnetic and antiferromagnetic interactions.
Dmitriev, D V; Ya Krivnov, V
2016-12-21
We consider analytically and numerically an anisotropic spin-[Formula: see text] delta-chain (sawtooth chain) in which exchange interactions between apical and basal spins are ferromagnetic and those between basal spins are antiferromagnetic. In the limit of strong anisotropy of exchange interactions this model can be considered as the Ising delta chain with macroscopic degenerate ground state perturbed by transverse quantum fluctuations. These perturbations lift the ground state degeneracy and the model reduces to the basal XXZ spin chain in the magnetic field induced by static apical spins. We show that the ground state of such a model is ferrimagnetic. The excitations of the model are formed by ferrimagnetic domains separated by domain walls with a finite energy. At low temperatures the system is effectively divided into two independent subsystems, the apical subsystem described by the Ising spin-[Formula: see text] chain and the basal subsystem described by the XXZ chain with infinite zz interactions.
Detection of a T cell receptor delta chain with an anti-TCR alpha chain serum.
Leca, G; Bories, J C; Davi, F; Bensussan, A
1990-04-01
Two types of T cell antigen-specific receptors have been described. Most peripheral blood T lymphocytes express, at their surface, an antigen receptor consisting of alpha and beta subunits, while a small subset of thymocytes and a minority of mature T lymphocytes express a heterodimeric receptor termed gamma delta. Whereas the gene segments localization corresponding to the TCR gamma and beta chains are separate, genes encoding the joining and the constant regions of TCR delta chain are located between the TCR V alpha region and the J alpha-C alpha gene cluster. To determine whether V alpha gene segments are used by delta chains, immunoprecipitations from human TCR gamma delta expressing cell clones were performed with an anti-alpha serum. The results show that a rabbit antiserum raised against the purified REX TCR alpha subunit immunoprecipitates a TCR delta chain from the cell surface of only one human T cell clone termed SO1. However, since no SO1 RNA hybridization is observed with REX TCR V alpha probe and SO1 cloned cells do react with an anti-V delta 2 monoclonal antibody, we conclude that TCR delta and alpha chains expressed a limited structural homology and that REX TCR V alpha gene do not seem to be frequently used in a functional delta chain.
Hart, W E; Istrail, S
1997-01-01
This paper considers the protein energy minimization problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. We consider two side chain models: a lattice model that generalizes the HP model (Dill, 1985) to explicitly represent side chains on the cubic lattice and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. We describe algorithms with mathematically guaranteed error bounds for both of these models. In particular, we describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 86% of optimal in a face-centered cubic lattice, and we demonstrate how this provides a better than 70% performance guarantee for the HP-TSSC model. Our analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Ngo et al. (1994) concerning the complexity of protein folding models that include side chains.
Conformation switching of clathrin light chain regulates clathrin lattice assembly.
Wilbur, Jeremy D; Hwang, Peter K; Ybe, Joel A; Lane, Michael; Sellers, Benjamin D; Jacobson, Matthew P; Fletterick, Robert J; Brodsky, Frances M
2010-05-18
Clathrin-coated vesicle formation is responsible for membrane traffic to and from the endocytic pathway during receptor-mediated endocytosis and organelle biogenesis, influencing how cells relate to their environment. Generating these vesicles involves self-assembly of clathrin molecules into a latticed coat on membranes that recruits receptors and organizes protein machinery necessary for budding. Here we define a molecular mechanism regulating clathrin lattice formation by obtaining structural information from co-crystals of clathrin subunits. Low resolution X-ray diffraction data (7.9-9.0 A) was analyzed using a combination of molecular replacement with an energy-minimized model and noncrystallographic symmetry averaging. Resulting topological information revealed two conformations of the regulatory clathrin light chain bound to clathrin heavy chain. Based on protein domain positions, mutagenesis, and biochemical assays, we identify an electrostatic interaction between the clathrin subunits that allows the observed conformational variation in clathrin light chains to alter the conformation of the clathrin heavy chain and thereby regulates assembly. Copyright 2010 Elsevier Inc. All rights reserved.
Hart, W.E.; Istrail, S.
1996-08-09
This paper considers the protein structure prediction problem for lattice and off-lattice protein folding models that explicitly represent side chains. Lattice models of proteins have proven extremely useful tools for reasoning about protein folding in unrestricted continuous space through analogy. This paper provides the first illustration of how rigorous algorithmic analyses of lattice models can lead to rigorous algorithmic analyses of off-lattice models. The authors consider two side chain models: a lattice model that generalizes the HP model (Dill 85) to explicitly represent side chains on the cubic lattice, and a new off-lattice model, the HP Tangent Spheres Side Chain model (HP-TSSC), that generalizes this model further by representing the backbone and side chains of proteins with tangent spheres. They describe algorithms for both of these models with mathematically guaranteed error bounds. In particular, the authors describe a linear time performance guaranteed approximation algorithm for the HP side chain model that constructs conformations whose energy is better than 865 of optimal in a face centered cubic lattice, and they demonstrate how this provides a 70% performance guarantee for the HP-TSSC model. This is the first algorithm in the literature for off-lattice protein structure prediction that has a rigorous performance guarantee. The analysis of the HP-TSSC model builds off of the work of Dancik and Hannenhalli who have developed a 16/30 approximation algorithm for the HP model on the hexagonal close packed lattice. Further, the analysis provides a mathematical methodology for transferring performance guarantees on lattices to off-lattice models. These results partially answer the open question of Karplus et al. concerning the complexity of protein folding models that include side chains.
Factors Governing Fibrillogenesis of Polypeptide Chains Revealed by Lattice Models
NASA Astrophysics Data System (ADS)
Li, Mai Suan; Co, Nguyen Truong; Reddy, Govardhan; Hu, Chin-Kun; Straub, J. E.; Thirumalai, D.
2010-11-01
Using lattice models we explore the factors that determine the tendencies of polypeptide chains to aggregate by exhaustively sampling the sequence and conformational space. The morphologies of the fibril-like structures and the time scales (τfib) for their formation depend on a balance between hydrophobic and Coulomb interactions. The extent of population of an ensemble of N* structures, which are fibril-prone structures in the spectrum of conformations of an isolated protein, is the major determinant of τfib. This observation is used to determine the aggregating sequences by exhaustively exploring the sequence space, thus providing a basis for genome wide search of fragments that are aggregation prone.
Fiber-lattice accumulator design considerations for optical sigma delta analog-to-digital converters
NASA Astrophysics Data System (ADS)
Pace, Phillip E.; Bewley, S. A.; Powers, John P.
2000-06-01
Integrated optical sigma-delta ((Sigma) (Delta) ) analog-to- digital converters (ADCs) use a pulsed laser to oversample an input signal at two Mach-Zehnder interferometers. A fiber-lattice accumulator is embedded within a feedback loop around a single-bit quantizer to spectrally shape the quantization noise to fall outside the signal band of interest. Decimation filtering is applied to the quantizer output to construct the input signal with high resolution. Applications of integrated optical (Sigma) (Delta) ADCs include digitizing wideband radio-frequency signals directly at an antenna (digital antenna). In this paper, a novel fiber- lattice accumulator design is presented, and a coherent simulation of an integrated optical first-order, single-bit (Sigma) (Delta) ADC is reported. The accumulator leakage resulting from a mismatch in the optical circuit parameters is quantified. A time-domain analysis is presented, and the simulation results from an all-electronic (Sigma) (Delta) ADC are presented for comparison. A frequency-domain analysis of a ten times oversampling (n equals 4 bits) simulation is used to compare the dynamic performance parameters, including the spurious-free dynamic range, signal-to-noise-plus-distortion ratio, and effective number of bits. The formation of image frequencies when the accumulator is overloaded (i.e., the optical amplifier gain is too large) is also investigated.
Nucleon, $$\\Delta$$ and $$\\Omega$$ excited states in $$N_f=2+1$$ lattice QCD
John Bulava; Edwards, Robert G.; Engelson, Eric; ...
2010-07-22
The energies of the excited states of the Nucleon,more » $$\\Delta$$ and $$\\Omega$$ are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses $$m_{\\pi}$$ = 392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we find reasonable agreement in the pattern of states. In addition, the need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified.« less
NASA Technical Reports Server (NTRS)
Levin, D.
1981-01-01
A nonsteady vortex-lattice method is introduced for predicting the dynamic stability derivatives of a delta wing undergoing an oscillatory motion. The analysis is applied to several types of small oscillations in pitch. The angle of attack varied between + or - 1 deg, with the mean held at 0 deg when the flow was assumed to be attached and between + or - 1 deg and the mean held at 15 deg when both leading-edge separation and wake roll-up were included. The computed results for damping in pitch are compared with several other methods and with experiments, and are found to be consistent and in good agreement.
Xu, Wen-Sheng; Freed, Karl F.
2015-07-14
The lattice cluster theory (LCT) for the thermodynamics of polymer systems has recently been reformulated to treat strongly interacting self-assembling polymers composed of fully flexible linear telechelic chains [J. Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)]. Here, we further extend the LCT for linear telechelic polymer melts to include a description of chain semiflexibility, which is treated by introducing a bending energy penalty whenever a pair of consecutive bonds from a single chain lies along orthogonal directions. An analytical expression for the Helmholtz free energy is derived for the model of semiflexible linear telechelic polymer melts. The extension provides a theoretical tool for investigating the influence of chain stiffness on the thermodynamics of self-assembling telechelic polymers, and for further exploring the influence of self-assembly on glass formation in such systems.
Kaon to Two Pions decays from Lattice QCD: Delta I = 1/2 rule and CP violation
NASA Astrophysics Data System (ADS)
Liu, Qi
We report a direct lattice calculation of the K to pipi decay matrix elements for both the DeltaI=1/2 and 3/2 amplitudes A0 and A2 on a 2+1 flavor, domain wall fermion, 163x32x16 lattice ensemble and a 243x64x16 lattice ensemble. This is a complete calculation in which all contractions for the required ten, four-quark operators are evaluated, including the disconnected graphs in which no quark line connects the initial kaon and final two-pion states. These lattice operators are non-perturbatively renormalized using the Rome-Southampton method and the quadratic divergences are studied and removed. This is an important but notoriously difficult calculation, requiring high statistics on a large volume. In this work we take a major step towards the computation of the physicalK→pipi amplitudes by performing a complete calculation at unphysical kinematics with pions of mass 422 MeV and 329 MeV at rest in the kaon rest frame. With this simplification we are able to resolve Re(A0) from zero for the first time, with a 25% statistical error on the 163 lattice and 15% on the 243 lattice. The complex amplitude A2 is calculated with small statistical errors. We obtain the DeltaI=1/2 rule with an enhancement factor of 9.1(21) and 12.0(17) on these two ensembles. From the detailed analysis of the results we gain a deeper understanding of the origin of the DeltaI=1/2 rule. We also calculate the complex amplitude A0, a calculation central to understanding and testing the standard model of CP violation in the kaon system. The final result for the measure of direct CP violation, epsilon', calculated at unphysical kinematics has an order of 100% statistical error, so this only serves as an order of magnitude check.
Gamma-chain heterogeneity in Greek (delta beta)zero-thalassemia.
Georgiou, I; Seferiadis, K; Lolis, D; Tsolas, O; Bourantas, K L
1995-02-01
A molecular and biochemical population study of (delta beta)zero thalassemia in central Greece is described. The molecular study was focused on the type of the deletion and the status of G gamma-XmnI polymorphism, whereas the biochemical approach was centered on the G gamma/A gamma ratio as well as the frequency of the A gamma T chain in the fetal hemoglobin of 19 delta beta-thalassemia heterozygotes and 3 homozygotes. This study includes individuals from the mountainous district of Epirus (northwestern Greece) where the trait was found to be concentrated along the river Arachthos. The Sicilian (delta beta)zero thalassemia deletion was found in all subjects tested by direct PCR. The levels for the G gamma-chain presented values ranging from 29 to 83% of the total gamma-chain content. Thirteen heterozygotes had the adult G gamma/A gamma ratio (mean G gamma: 35% +/- 10) of whom 10 were XmnI-negative (- / -), 6 had the newborn ratio (mean G gamma: 70% +/- 9) and were XmnI-positive, while homozygotes had equal amounts of G gamma and A gamma. Five of the 19 heterozygotes were A gamma T-positive with low levels of this A gamma-chain variant, suggesting an in-trans to the delta beta-thalassemia determinant production.
Triangle, square and delta-chain based cobalt tetrazolate magnets.
Yao, Ru-Xin; Qin, Ying-Lian; Ji, Fang; Zhao, Yan-Fei; Zhang, Xian-Ming
2013-05-14
Three novel tetrazole-based frustrated magnets, namely, Co3(OH)2(3-ptz)2(SO4)(H2O)4 (1), Co2(OH)(tzba)(H2O)4 (2) and [Co(OH)(tta)] (3) (3-ptz = 5-(3-pyridyl) tetrazole, H2tzba = 4-(1H-tetrazol-5-yl) benzoic acid, Htta = 1H-tetrazole) were hydrothermal synthesized and magnetically characterized. Compound 1 is a 2D (4,4) layered structure assembled by sulfate capped triangular [Co3(μ3-OH)(μ3-SO4)] clusters and in situ synthesized μ3-3-ptz ligands. Compound 2 features Co3(μ3-OH) triangle based magnetic Δ-chains linked with in situ generated μ5-tzba ligands to form a 2D layer. Compound 3 is a uninodal eight-connected body-centered-cubic (bcu) 3D network with square Co4O4 clusters as nodes and μ4-tta ligands as linkers. Interestingly, spin frustration was observed in these complexes due to inherent spin competition in triangle, Δ-chain and square. Magnetic studies show that 1 behaves as antiferromagnet, while 2 and 3 exhibits spin canting and long-range magnetic ordering.
NASA Astrophysics Data System (ADS)
Wang, Ji-Guo; Yang, Shi-Jie
2017-05-01
We study a model to realize the long-distance correlated tunneling of ultracold bosons in a one-dimensional optical lattice chain. The model reveals the behavior of a quantum Newton's cradle, which is the perfect transfer between two macroscopic quantum states. Due to the Bose enhancement effect, we find that the resonantly tunneling through a Mott domain is greatly enhanced.
Treatment of disordered and ordered systems of polymer chains by lattice methods
Flory, Paul J.
1982-01-01
Classical lattice theories of systems of long-chain molecules provide estimates of the number Z of random configurations to the exclusion of ordered ones. The decrease of Z thus estimated to values [unk]1 with decrease in chain flexibility at high densities is genuine, but it does not take account of eligible ordered configurations; the latter are not a subset of the configurations whose numbers are estimated by classical lattice methods. Failure to recognize this fact and the fundamental distinction between disordered and ordered states has engendered misinterpretations and has cast doubt on the validity of lattice-statistical methods. In a system at equilibrium, the decline of Z (disordered) with decrease in chain flexibility must be arrested by a first order transition to an ordered state. The inference that approach of Z (disordered) to values <1 presages a thermodynamic transition of second order is tenable only if the array of ordered configurations, not comprehended by theories in which the mean field of unoccupied lattice sites is random, can be ignored. PMID:16593214
Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C.; Johnson, Jennifer L.; Entzminger, Kevin; Jain, Avni; Heaner, David P.; Morales, Ivan A.; Truskett, Thomas M.; Maynard, Jennifer A.; Lieberman, Raquel L.
2014-01-01
Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although non-complementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts. PMID:24615866
Kalyoncu, Sibel; Hyun, Jeongmin; Pai, Jennifer C; Johnson, Jennifer L; Entzminger, Kevin; Jain, Avni; Heaner, David P; Morales, Ivan A; Truskett, Thomas M; Maynard, Jennifer A; Lieberman, Raquel L
2014-09-01
Protein crystallization is dependent upon, and sensitive to, the intermolecular contacts that assist in ordering proteins into a three-dimensional lattice. Here we used protein engineering and mutagenesis to affect the crystallization of single chain antibody fragments (scFvs) that recognize the EE epitope (EYMPME) with high affinity. These hypercrystallizable scFvs are under development to assist difficult proteins, such as membrane proteins, in forming crystals, by acting as crystallization chaperones. Guided by analyses of intermolecular crystal lattice contacts, two second-generation anti-EE scFvs were produced, which bind to proteins with installed EE tags. Surprisingly, although noncomplementarity determining region (CDR) lattice residues from the parent scFv framework remained unchanged through the processes of protein engineering and rational design, crystal lattices of the derivative scFvs differ. Comparison of energy calculations and the experimentally-determined lattice interactions for this basis set provides insight into the complexity of the forces driving crystal lattice choice and demonstrates the availability of multiple well-ordered surface features in our scFvs capable of forming versatile crystal contacts.
Zhao Jianqing; Huang Jie; Chen Hui; Cui Lianxian; He Wei . E-mail: heweiimu@public.bta.net.cn
2006-01-06
Human MHC class I chain-related A (MICA) is a tumor-associated antigen that can be recognized by V{delta}1 subset of tumor-infiltrating {gamma}{delta} T cells. We previously reported that immobilized recombinant MICA protein could induce the proliferation of tumor-infiltrating V{delta}1 {gamma}{delta} T cells in vitro. But there has been no direct evidence showing the engagement of {gamma}{delta} T cell receptors (TCR) of the induced cells with MICA. In the current investigation, we show that MICA induces specific cytolytic activity of the expanded {gamma}{delta} T cells. We expressed the coupled V domains from the MICA-induced T cells as a single polypeptide chain V{delta}V{gamma} TCR ({gamma}{delta} scTCR). Such scTCR can specifically bind MICA of HeLa cells. Direct interaction of {gamma}{delta} scTCRs with in vitro expressed MICA was monitored using an IAsys biosensor. We found that the V{delta}1 scTCR can specifically bind to immobilized MICA molecule and MICA{alpha}1{alpha}2 domains are responsible for the binding reaction.
NASA Astrophysics Data System (ADS)
Kim, Changhoan
We report the results of a calculation of the K → pipi matrix elements of the DeltaI = 3/2 operators. Relying on the 3-flavor effective Hamiltonian, we calculate the low energy contribution to the matrix elements in quenched lattice QCD with the DBW2 action using domain wall fermions, while the high energy contribution is included in the Wilson coefficients. In order to generate interacting pipi states with non-zero relative momentum in lattice, we apply anti-periodic boundary conditions on pions. Since only the magnitude of the overlap of our interpolating operators with the initial and final state is determined, we can calculate only the magnitude of the matrix elements. From the comparison with the experimental result, however, we find some degree of discrepancy. This discrepancy might be ascribed to the unphysical kinematics we choose in this report.
Supercooling of the disordered vortex lattice in Bi(2)Sr(2)CaCu(2)O(8+delta)
van Der Beek CJ; Colson; Indenbom; Konczykowski
2000-05-01
Time-resolved local induction measurements near the vortex lattice order-disorder transition in optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta) crystals show that the high-field, disordered phase can be quenched to fields as low as half the transition field. Over an important range of fields, the electrodynamical behavior of the vortex system is governed by the coexistence of ordered and disordered vortex phases in the sample. We interpret the results as supercooling of the high-field phase and the possible first-order nature of the order-disorder transition at the "second magnetization peak."
Factors regulating benthic food chains in tropical river deltas and adjacent shelf areas
NASA Astrophysics Data System (ADS)
Alongi, D. M.; Robertson, A. I.
1995-09-01
Benthic food chains of the Amazon (Brazil) and Fly (Papua New Guinea) river deltas and adjacent shelves are compared. Abundance patterns of the major trophic groups (bacteria, meiofauna, and macroinfauna) are similar between regions, with very low densities, or the absence of benthos, within and near the deltas. For muds in the more quiescent areas, benthic abundance and productivity are highest, commonly coinciding with maximum pelagic primary production. Episodes of physical disturbance, erratic food supply, and dilution of river-derived, particulate organic matter foster the development of opportunistic benthic communities of variable diversity and low biomass, dominated by bacteria. These pioneering assemblages are the main food of penaeid shrimp, which dominate the demersal trawl fisheries of both fluvial-dominated regions.
Preliminary results of Delta I=1/2 and 3/2, K to pipi Decay Amplitudes from Lattice QCD
NASA Astrophysics Data System (ADS)
Liu, Q.
We report a direct lattice calculation of the $K$ to $\\pi\\pi$ decay matrix elements for both $\\Delta I=1/2$ and $3/2$ channels on 2+1 flavor, domain wall fermion, $16^3\\times32$ lattices with zero $\\pi\\pi$ relative momentum and $m_\\pi=420$ MeV. All $K^0$ to $\\pi\\pi$ contractions are carefully listed and calculated. The decay into the isospin zero $\\pi\\pi$ final state, which receives contributions from the disconnected graphs, is very difficult to calculate, but a clear signal in the similar disconnected $\\pi\\pi$ correlator can be seen. Preliminary results, some with large errors, will be presented for the various contributions to the renormalized weak matrix elements $A_0$ and $A_2$. We obtain Re$(A_0)$ with $25%$ error in the case of zero momentum on shell decay, and find a factor of 6 enhancement for the $\\Delta I=1/2$ rule in the $420$ MeV pion system.
Limited pattern of TCR delta chain gene rearrangement on the RNA level in multiple sclerosis.
Nowak, J; Januszkiewicz, D; Pernak, M; Hertmanowska, H; Nowicka-Kujawska, K; Rembowska, J; Lewandowski, K; Nowak, T; Wender, M
2001-01-01
Susceptibility to multiple sclerosis (MS) is most likely affected by a number of genes, including HLA and T-cell receptor (TCR) genes. T cells expressing gamma/delta receptors seem to contribute to autoagression in MS, as evidenced by their localization in the MS plaques in the brain. The aim of this study was to analyse the TCRdelta chain gene rearrangement at the RNA (cDNA) level and compare to the DNA pattern rearrangement. TCRdelta gene rearrangement was analysed in MS patients and healthy individuals with the use of primers specific for Vdelta1-6 and Jdelta1 genes (at the DNA level) and specific for Vdelta1-6 and Cdelta1 genes (at the cDNA level). The size of PCR products was analysed on agarose gel and by ALF-Express (Pharmacia). Additionally, the lymphocyte surface immunophenotype was studied with specific monoclonal antibodies. At the DNA level a restricted pattern of Vdelta3-Jdelta1 and Vdelta5-Jdelta1 was found only in MS patients. Contrary to DNA, mono-, oligoclonal RNA (cDNA) rearrangements were limited to Vdelta1-Cdelta1, Vdelta2-Cdelta1 and Vdelta3-Cdelta1 only in MS patients as well. Surface immunophenotype analysis revealed in MS a much higher frequency of activated gamma/delta T lymphocytes, i.e. expressing HLA-DR and CD25. An elevated level of CD56 positive cells in MS was recorded. Mono-oligoclonal pattern of TCRdelta gene rearrangement at the RNA level, along with increase in activated gamma/delta T cells, strongly argue for a significant role of gamma/delta T lymphocytes in the pathogenesis of MS.
Ward, W.C.; Swift, G.W. )
1993-11-01
In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.
Ward, W.C. ); Swift, G.W. )
1993-11-01
In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.
NASA Astrophysics Data System (ADS)
Jesudason, Christopher G.
2017-01-01
Two aspects of conductive heat are focused here (i) the nature of conductive heat, defined as that form of energy that is transferred as a result of a temperature difference and (ii) the nature of the intermolecular potentials that induces both thermal energy flow and the temperature profile at the steady state for a 1-D lattice chain. It is found that the standard presuppositions of people like Benofy and Quay (BQ) following Joseph Fourier do not obtain for at least a certain specified regime of intermolecular potential parameters related to harmonic (quadratic) potentials for nearest neighbor interactions. For these harmonic potentials, it appears from the simulation results that steady state solutions exist utilizing non-synthetic thermostats that couple not just the two particles at the extreme ends of the lattice chain, but to a control volume of N particles located at either ends of the chain that does not accord with the unique analytical solutions that obtains for single particle thermostatting at the ends of the lattice with a different thermostatting algorithm that utilizes coupling coefficients. If the method used here is considered a more "realistic" or feasible model of the physical reality, then a re-evaluation of some aspects of the standard theoretical methodology is warranted since the standard model solution profile does not accord with the simulation temperature profile determined here for this related model. We also note that the sinusoidal temperature profile generated suggests that thermal integrated circuits with several thermal P-N junctions may be constructed, opening a way to create more complex thermal transistor circuits. A stationary principle is proposed for regions that violate the Fourier principle Jq.∇T ≤ 0, where Jq is the heat current vector and T the temperature.
NASA Astrophysics Data System (ADS)
Gorbunov, A. A.; Skvortsov, A. M.; van Male, J.; Fleer, G. J.
2001-03-01
An ideal polymer chain anchored to a planar surface is considered by using both lattice and continuum model approaches. A general equation relating the lattice and continuum model adsorption interaction parameters is derived in a consistent way by substituting the exact continuum solution for the free chain end distribution function into the lattice model boundary condition. This equation is not mathematically exact but provides excellent results. With the use of this relation the quantitative equivalence between lattice and continuum results was demonstrated for chains of both infinite and finite length and for all three regimes corresponding to attractive, repulsive and adsorption-threshold energy of polymer-surface interaction. The obtained equations are used to discuss the distribution functions describing the tail of an anchored macromolecule and its adsorbed parts. For the tail-related properties the results are independent of the microscopic details of the polymer chain and the adsorbing surface. One interesting result obtained in the vicinity of adsorption threshold point is a bimodal tail length distribution function, which manifests chain populations with either tail or loop dominance. The properties related to the number of surface contacts contain, apart from universal scaling terms, also a nonuniversal factor depending on microscopic details of polymer-surface interaction. We derived an equation for calculating this nonuniversal factor for different lattice models and demonstrated excellent agreement between the lattice results and the continuum model.
Xu, Wen-Sheng; Freed, Karl F.
2015-07-14
The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chain stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.
Lattice Dynamics of the Binary Aperiodic Chains of Atoms I:. Fractal Dimension of Phonon Spectra
NASA Astrophysics Data System (ADS)
Salejda, Włodzimierz
The microscopic harmonic model of lattice dynamics of the binary chains of atoms is formulated and studied numerically. The dependence of spring constants of the nearest-neighbor (NN) interactions on the average distance between atoms are taken into account. The covering fractal dimensions Df{( c ; )} of the Cantor-set-like phonon spec-tra (PS) of generalized Fibonacci and non-Fibonaccian aperiodic chains containing of 16384≤N≤33461 atoms are determined numerically. The dependence of Df{( c ; )} on the strength Q of NN interactions and on R=mH/mL, where mH and mL denotes the mass of heavy and light atoms, respectively, are calculated for a wide range of Q and R. In particular we found: (1) The fractal dimension Df{( c ; )} of the PS for the so-called goldenmean, silver-mean, bronze-mean, dodecagonal and Severin chain shows a local maximum at increasing magnitude of Q and R>1 (2) At sufficiently large Q we observe power-like diminishing of Df{( c ; )} , i.e. Df{( c ; )} ( {R > 1, Q} ; ) = a ḑot Qα , where α=-0.14±0.02 and α=-0.10±0.02 for the above specified chains and so-called octagonal, copper-mean, nickel-mean, Thue-Morse, Rudin-Shapiro chain, respectively.
Dual effect of crowders on fibrillation kinetics of polypeptide chains revealed by lattice models
NASA Astrophysics Data System (ADS)
Co, Nguyen Truong; Hu, Chin-Kun; Li, Mai Suan
2013-05-01
We have developed the lattice model for describing polypeptide chains in the presence of crowders. The influence of crowding confinement on the fibrillation kinetics of polypeptide chains is studied using this model. We observed the non-trivial behavior of the fibril formation time τfib that it decreases with the concentration of crowders if crowder sizes are large enough, but the growth is observed for crowders of small sizes. This allows us to explain the recent experimental observation on the dual effect of crowding particles on fibril growth of proteins that for a fixed crowder concentration the fibrillation kinetics is fastest at intermediate values of total surface of crowders. It becomes slow at either small or large coverages of cosolutes. It is shown that due to competition between the energetics and entropic effects, the dependence of τfib on the size of confined space is described by a parabolic function.
NASA Astrophysics Data System (ADS)
Zhang, Jinfeng; Chen, Yu; Chen, Rong; Liang, Jie
2004-07-01
Side chains of amino acid residues are the determining factor that distinguishes proteins from other unstable chain polymers. In simple models they are often represented implicitly (e.g., by spin states) or simplified as one atom. Here we study side chain effects using two-dimensional square lattice and three-dimensional tetrahedral lattice models, with explicitly constructed side chains formed by two atoms of different chirality and flexibility. We distinguish effects due to chirality and effects due to side chain flexibilities, since residues in proteins are L residues, and their side chains adopt different rotameric states. For short chains, we enumerate exhaustively all possible conformations. For long chains, we sample effectively rare events such as compact conformations and obtain complete pictures of ensemble properties of conformations of these models at all compactness region. This is made possible by using sequential Monte Carlo techniques based on chain growth method. Our results show that both chirality and reduced side chain flexibility lower the folding entropy significantly for globally compact conformations, suggesting that they are important properties of residues to ensure fast folding and stable native structure. This corresponds well with our finding that natural amino acid residues have reduced effective flexibility, as evidenced by statistical analysis of rotamer libraries and side chain rotatable bonds. We further develop a method calculating the exact side chain entropy for a given backbone structure. We show that simple rotamer counting underestimates side chain entropy significantly for both extended and near maximally compact conformations. We find that side chain entropy does not always correlate well with main chain packing. With explicit side chains, extended backbones do not have the largest side chain entropy. Among compact backbones with maximum side chain entropy, helical structures emerge as the dominating configurations. Our
NASA Astrophysics Data System (ADS)
Goldbeck-Wood, Gerhard; Bliznyuk, Valery; Burlakov, Victor; Assender, Hazel; Briggs, Andrew; Tsukahara, Yusuke; Anderson, Kelly; Windle, Alan
2001-03-01
The understanding of the structural arrangement of polymer chains near surfaces impacts many technological areas. In this study we address surface features on the length scale of 1-100nm (i.e. covering many times the radius of gyration) for a series of polystyrenes with molecular weights Mn from 3*10^3 to 9*10^6. Surface images are generated by scanning probe microscopy in tapping mode. An autocorrelation function analysis of the height data provides information about the lateral correlations in the surface structure. We find that the correlation length converges towards the bulk value of the radius of gyration at larger molecular weights, but lies somewhat above at lower molecular weights. Alongside the experiment we carried out simulations using a face-centred cubic lattice chain model, parameterized for polystyrene. The autocorrelation lengths of the simulated surfaces follow the radius of gyration dependence with chain length. Simulation as well experimental results suggest that the height autocorrelation length converges towards the size and scaling of the radius of gyration for medium to high molecular weight. Further work is required before a conclusion can be reached for low molecular weights.
Suzuki, T; Kawasaki, Y; Arita, T; Nakamura, A
1996-01-01
The blood clam Barbatia lima subsp. from Amami-Oshima, Japan, expresses three types of haemoglobins in erythrocytes: a tetramer (alpha 2 beta 2), a homodimer (delta 2) and a polymer consisting of two kinds of chains, a 34 kDa two-domain (2D) globin and a delta chain. This is in sharp contrast to the congeneric clams B. reeveana (a North American species) and B. lima from Kochi, Japan, each containing a tetramer and a polymer consisting of the 2D globin, but not the delta chain. We have determined the cDNA-derived amino acid sequences of all four chains, alpha (163 residues), beta (155 residues), delta (152 residues) and 2D (308 residues) of B. lima (Amami-Oshima). The alpha chain has an extremely long N-terminal extension of 20 residues that may form a 'pre-A helix', and this makes the alpha chain the longest known globin. B. lima alpha and beta chains show about 50% sequence identity with the alpha and beta chains, respectively, of tetrameric haemoglobin from a related clam, Anadara trapezia. The B. lima homodimeric delta chain shows 71-74% identity with each of the two domains of the 2D chain, but only 39% identity with the homodimeric gamma chain of Anadara. In addition, the alignment of amino acid sequences of the delta chain and the two domains of the 2D chain revealed that the delta chain lacks one amino acid (Lys) at the C-terminus, suggesting that the C-terminal Lys (codon AAA or AAG) of the two domains of 2D chain could result from the stop codon TAA in the delta chain by nucleotide substitutions. These results, together with the fact that the delta and 2D chains form a polymeric haemoglobin, indicates that the delta chain is the ancestral single-domain globin for the 2D globin. The delta chain is expressed only in B. lima (Amami-Oshima), and appears to be a relic of molecular evolution. PMID:8573093
Spin-lattice relaxation within a dimerized Ising chain in a magnetic field
Erdem, Rıza E-mail: rerdem29@hotmail.com; Gülpınar, Gül; Yalçın, Orhan; Pawlak, Andrzej
2014-07-21
A qualitative study of the spin-lattice relaxation within a dimerized Ising chain in a magnetic field is presented. We have first determined the time dependence of the deviation of the lattice distortion parameter δΔ from the equilibrium state within framework of a technique combining the statistical equilibrium theory based on the transfer matrix method and the linear theory of irreversible thermodynamics. We have shown that the time dependence of the lattice distortion parameter is characterized by a single time constant (τ) which diverges around the critical point in both dimerized (Δ≠0) and uniform (Δ=0) phase regions. When the temperature and magnetic field are fixed to certain values, the time τ depends only on exchange coupling between the spins. It is a characteristic time associated with the long wavelength fluctuations of distortion. We have also taken into account the effects of spatial fluctuations on the relaxation time using the full Landau-Ginzburg free energy functional. We have found an explicit expression for the relaxation time as a function of temperature, coupling constant and wave vector (q) and shown that the critical mode corresponds to the case q=0. Finally, our results are found to be in good qualitative agreement with the results obtained in recent experimental study on synchrotron x-ray scattering and muon spin relaxation in diluted material Cu{sub 1−y}Mg{sub y}GeO{sub 3} where the composition y is very close to 0.0209. These results can be considered as natural extensions of some previous works on static aspects of the problem.
Spin-lattice relaxation within a dimerized Ising chain in a magnetic field
NASA Astrophysics Data System (ADS)
Erdem, Rıza; Gülpınar, Gül; Yalçın, Orhan; Pawlak, Andrzej
2014-07-01
A qualitative study of the spin-lattice relaxation within a dimerized Ising chain in a magnetic field is presented. We have first determined the time dependence of the deviation of the lattice distortion parameter δ Δ from the equilibrium state within framework of a technique combining the statistical equilibrium theory based on the transfer matrix method and the linear theory of irreversible thermodynamics. We have shown that the time dependence of the lattice distortion parameter is characterized by a single time constant ( τ) which diverges around the critical point in both dimerized ( Δ ≠ 0) and uniform ( Δ = 0) phase regions. When the temperature and magnetic field are fixed to certain values, the time τ depends only on exchange coupling between the spins. It is a characteristic time associated with the long wavelength fluctuations of distortion. We have also taken into account the effects of spatial fluctuations on the relaxation time using the full Landau-Ginzburg free energy functional. We have found an explicit expression for the relaxation time as a function of temperature, coupling constant and wave vector ( q) and shown that the critical mode corresponds to the case q = 0. Finally, our results are found to be in good qualitative agreement with the results obtained in recent experimental study on synchrotron x-ray scattering and muon spin relaxation in diluted material C u 1- y M g y G e O 3 where the composition y is very close to 0.0209. These results can be considered as natural extensions of some previous works on static aspects of the problem.
Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions
NASA Astrophysics Data System (ADS)
Hauke, P.; Marcos, D.; Dalmonte, M.; Zoller, P.
2013-10-01
We discuss how a lattice Schwinger model can be realized in a linear ion trap, allowing a detailed study of the physics of Abelian lattice gauge theories related to one-dimensional quantum electrodynamics. Relying on the rich quantum-simulation toolbox available in state-of-the-art trapped-ion experiments, we show how one can engineer an effectively gauge-invariant dynamics by imposing energetic constraints, provided by strong Ising-like interactions. Applying exact diagonalization to ground-state and time-dependent properties, we study the underlying microscopic model and discuss undesired interaction terms and other imperfections. As our analysis shows, the proposed scheme allows for the observation in realistic setups of spontaneous parity- and charge-symmetry breaking, as well as false-vacuum decay. Besides an implementation aimed at larger ion chains, we also discuss a minimal setting, consisting of only four ions in a simpler experimental setup, which enables us to probe basic physical phenomena related to the full many-body problem. The proposal opens a new route for analog quantum simulation of high-energy and condensed-matter models where gauge symmetries play a prominent role.
NASA Astrophysics Data System (ADS)
Maginnis, P. A.; West, M.; Dullerud, G. E.
2016-10-01
We propose an algorithm to accelerate Monte Carlo simulation for a broad class of stochastic processes. Specifically, the class of countable-state, discrete-time Markov chains driven by additive Poisson noise, or lattice discrete-time Markov chains. In particular, this class includes simulation of reaction networks via the tau-leaping algorithm. To produce the speedup, we simulate pairs of fair-draw trajectories that are negatively correlated. Thus, when averaged, these paths produce an unbiased Monte Carlo estimator that has reduced variance and, therefore, reduced error. Numerical results for three example systems included in this work demonstrate two to four orders of magnitude reduction of mean-square error. The numerical examples were chosen to illustrate different application areas and levels of system complexity. The areas are: gene expression (affine state-dependent rates), aerosol particle coagulation with emission and human immunodeficiency virus infection (both with nonlinear state-dependent rates). Our algorithm views the system dynamics as a ;black-box;, i.e., we only require control of pseudorandom number generator inputs. As a result, typical codes can be retrofitted with our algorithm using only minor changes. We prove several analytical results. Among these, we characterize the relationship of covariances between paths in the general nonlinear state-dependent intensity rates case, and we prove variance reduction of mean estimators in the special case of affine intensity rates.
Mirković, J; Savel'ev, S E; Sugahara, E; Kadowaki, K
2001-01-29
The vortex-lattice melting transition in Bi(2)Sr(2)CaCu(2)O(8 + delta) single crystals was studied using in-plane resistivity measurements in magnetic fields tilted away from the c axis to the ab plane. In order to avoid the surface barrier effect which hinders the melting transition in the conventional transport measurements, we used the Corbino geometry of electric contacts. The complete H(c) - H(ab) phase diagram of the melting transition in Bi(2)Sr(2)CaCu(2)O(8 + delta) is obtained for the first time. The c-axis melting field component H(c)(melt) exhibits the novel, stepwise dependence on the in-plane magnetic fields H(ab) which is discussed on the basis of the crossing vortex-lattice structure. The peculiar resistance behavior observed near the ab plane suggests the change of phase transition character from first to second order.
V-chain preference of gamma/delta T-cell receptors in peripheral blood during term labor.
Barakonyi, Aliz; Miko, Eva; Varga, Peter; Szekeres-Bartho, Julia
2008-03-01
An altered function of the maternal immune system creates a favorable environment for the developing fetus during pregnancy. At term, new regulatory mechanisms are activated, to initiate labor. Earlier we showed that in peripheral blood of pregnant women gamma/delta T cells of cytotoxic phenotype are replaced by those of a non-cytotoxic phenotype. Here we studied the Vgamma and Vdelta chain usage of peripheral gamma/delta T cells from women in labor. Vgamma and Vdelta chain expression on peripheral blood lymphocytes obtained at the 3rd trimester of pregnancy and during parturition were examined by immuncytochemistry and flow cytometry. Increased % of Vgamma9/Vdelta2 and decreased % of Vgamma4/Vdelta1 T cells were found in peripheral blood during labor, together with unaltered percentages of single Vgamma+ or Vdelta+ cells. The initially high Vgamma4/Vdelta1 to Vgamma9/Vdelta2 ratio decreased during labor. The initiation of labor is characterized by an altered V-chain usage of gamma/delta T cells.
Lin, Ming; Chen, Rong; Liang, Jie
2008-02-28
Proteins contain many voids, which are unfilled spaces enclosed in the interior. A few of them have shapes compatible to ligands and substrates and are important for protein functions. An important general question is how the need for maintaining functional voids is influenced by, and affects other aspects of proteins structures and properties (e.g., protein folding stability, kinetic accessibility, and evolution selection pressure). In this paper, we examine in detail the effects of maintaining voids of different shapes and sizes using two-dimensional lattice models. We study the propensity for conformations to form a void of specific shape, which is related to the entropic cost of void maintenance. We also study the location that voids of a specific shape and size tend to form, and the influence of compactness on the formation of such voids. As enumeration is infeasible for long chain polymer, a key development in this work is the design of a novel sequential Monte Carlo strategy for generating large number of sample conformations under very constraining restrictions. Our method is validated by comparing results obtained from sampling and from enumeration for short polymer chains. We succeeded in accurate estimation of entropic cost of void maintenance, with and without an increasing number of restrictive conditions, such as loops forming the wall of void with fixed length, with additionally fixed starting position in the sequence. Additionally, we have identified the key structural properties of voids that are important in determining the entropic cost of void formation. We have further developed a parametric model to predict quantitatively void entropy. Our model is highly effective, and these results indicate that voids representing functional sites can be used as an improved model for studying the evolution of protein functions and how protein function relates to protein stability.
NASA Astrophysics Data System (ADS)
Lin, Ming; Chen, Rong; Liang, Jie
2008-02-01
Proteins contain many voids, which are unfilled spaces enclosed in the interior. A few of them have shapes compatible to ligands and substrates and are important for protein functions. An important general question is how the need for maintaining functional voids is influenced by, and affects other aspects of proteins structures and properties (e.g., protein folding stability, kinetic accessibility, and evolution selection pressure). In this paper, we examine in detail the effects of maintaining voids of different shapes and sizes using two-dimensional lattice models. We study the propensity for conformations to form a void of specific shape, which is related to the entropic cost of void maintenance. We also study the location that voids of a specific shape and size tend to form, and the influence of compactness on the formation of such voids. As enumeration is infeasible for long chain polymer, a key development in this work is the design of a novel sequential Monte Carlo strategy for generating large number of sample conformations under very constraining restrictions. Our method is validated by comparing results obtained from sampling and from enumeration for short polymer chains. We succeeded in accurate estimation of entropic cost of void maintenance, with and without an increasing number of restrictive conditions, such as loops forming the wall of void with fixed length, with additionally fixed starting position in the sequence. Additionally, we have identified the key structural properties of voids that are important in determining the entropic cost of void formation. We have further developed a parametric model to predict quantitatively void entropy. Our model is highly effective, and these results indicate that voids representing functional sites can be used as an improved model for studying the evolution of protein functions and how protein function relates to protein stability.
NASA Astrophysics Data System (ADS)
Reith, Daniel; Virnau, Peter
2010-04-01
Bridging algorithms are global Monte Carlo moves which allow for an efficient sampling of single polymer chains. In this manuscript we discuss the adaptation of three bridging algorithms from lattice to continuum models, and give details on the corrections to the acceptance rules which are required to fulfill detailed balance. For the first time we are able to compare the efficiency of the moves by analyzing the occurrence of knots in globular states. For a flexible homopolymer chain of length N=1000, independent configurations can be generated up to two orders of magnitude faster than with slithering snake moves.
Bukhanko, F. N.
2013-04-15
The structural and magnetic phase transformations that occur in the system of self-doped La{sub 1-y}Pr{sub y}MnO{sub 3+{delta}} ({delta} Almost-Equal-To 0.1, 0 {<=} y {<=} 1) manganites in the temperature range 4.2-300 K are studied by X-ray diffraction and measuring the temperature and field dependences of dc magnetization. The low-temperature magnetic phase transformations induced by the substitution of Pr for La correlate well with the structural phase transformations at T = 300 K, which indicates a strong coupling of the electronic and magnetic subsystems of La{sub 1-y}Pr{sub y}MnO{sub 3+{delta}} manganites with the crystal lattice. The anomalies of the magnetic and structural properties detected in this work in the form of peaks and inflection points in the concentration dependences of the magnetization and lattice parameters of the pseudocubic phase of La{sub 1-y}Pr{sub y}MnO{sub 3+{delta}} (0.1 {<=} y {<=} 0.7) in the temperature range 4.2-300 K are explained in terms of the existing concepts of the effect of Fermi surface nesting on the renormalization of the density of states and the hole dispersion near E{sub F} in the presence of a strong coupling of holes with low-frequency optical phonons, which results in their transformation into quasiparticles. The narrow peak in the magnetization curve M(y) of La{sub 1-y}Pr{sub y}MnO{sub 3+{delta}} that is detected near y = 0.3 at T = 4.2 K is assumed to correspond to the peak of coherence of quasiparticles with a low energy of coupling with the crystal lattice near E{sub F}, which was found earlier in the photoelectron emission spectra of manganites. The disappearance of the narrow magnetization peak with increasing Pr concentration is explained by the transition of charge carriers from the mode of 'light' holes weakly coupled to one of the soft phonons to the mode of 'heavy' holes strongly coupled to several phonons. The transition between phases with strongly different effective quasiparticle masses proceeds
Wang, Lang; Wang, Zheng; Jiang, Run; Yin, Yuhua; Li, Baohui
2017-03-15
The thermodynamic behaviors of a strongly charged polyelectrolyte chain in a poor solvent are studied using replica-exchange Monte-Carlo simulations on a lattice model, focusing on the effects of finite chain length and the solvent quality on the chain conformation and conformation transitions. The neutralizing counterions and solvent molecules are considered explicitly. The thermodynamic quantities that vary continuously with temperature over a wide range are computed using the multiple histogram reweighting method. Our results suggest that the strength of the short-range hydrophobic interaction, the chain length, and the temperature of the system, characterized by ε, N, and T, respectively, are important parameters that control the conformations of a charged chain. When ε is moderate, the competition between the electrostatic energy and the short-range hydrophobic interaction leads to rich conformations and conformation transitions for a longer chain with a fixed length. Our results have unambiguously demonstrated the stability of the n-pearl-necklace structures, where n has a maximum value and decreases with decreasing temperature. The maximum n value increases with increasing chain length. Our results have also demonstrated the first-order nature of the conformation transitions between the m-pearl and the (m-1)-pearl necklaces. With the increase of ε, the transition temperature increases and the first-order feature becomes more pronounced. It is deduced that at the thermodynamic limit of infinitely long chain length, the conformational transitions between the m-pearl and the (m-1)-pearl necklaces may remain first order when ε > 0 and m = 2 or 3. Pearl-necklace conformations cannot be observed when either ε is too large or N is too small. To observe a pearl-necklace conformation, the T value needs to be carefully chosen for simulations performed at only a single temperature.
Poulin, R.; Poirier, D.; Merand, Y.; Theriault, C.; Belanger, A.; Labrie, F.
1989-06-05
Estrogen-sensitive human breast cancer cells (ZR-75-1) were incubated with the 3H-labeled adrenal C19-delta 5-steroids dehydroepiandrosterone (DHEA) and its fully estrogenic derivative, androst-5-ene-3 beta,17 beta-diol (delta 5-diol) for various time intervals. When fractionated by solvent partition, Sephadex LH-20 column chromatography and silica gel TLC, the labeled cell components were largely present (40-75%) in three highly nonpolar, lipoidal fractions. Mild alkaline hydrolysis of these lipoidal derivatives yielded either free 3H-labeled DHEA or delta 5-diol. The three lipoidal fractions cochromatographed with the synthetic DHEA 3 beta-esters, delta 5-diol 3 beta (or 17 beta)-monoesters and delta 5-diol 3 beta,17 beta-diesters of long-chain fatty acids. DHEA and delta 5-diol were mainly esterified to saturated and mono-unsaturated fatty acids. For delta 5-diol, the preferred site of esterification of the fatty acids is the 3 beta-position while some esterification also takes place at the 17 beta-position. Time course studies show that ZR-75-1 cells accumulate delta 5-diol mostly (greater than 95%) as fatty acid mono- and diesters while DHEA is converted to delta 5-diol essentially as the esterified form. Furthermore, while free C19-delta 5-steroids rapidly diffuse out of the cells after removal of the precursor (3H)delta 5-diol, the fatty acid ester derivatives are progressively hydrolyzed, and DHEA and delta 5-diol thus formed are then sulfurylated prior to their release into the culture medium. The latter process however is rate-limited, since new steady-state levels of free steroids and fatty acid esters are rapidly reached and maintained for extended periods of time after removal of precursor, thus maintaining minimal concentrations of intracellular steroids.
Transitions of tethered polymer chains: a simulation study with the bond fluctuation lattice model.
Luettmer-Strathmann, Jutta; Rampf, Federica; Paul, Wolfgang; Binder, Kurt
2008-02-14
A polymer chain tethered to a surface may be compact or extended, adsorbed or desorbed, depending on interactions with the surface and the surrounding solvent. This leads to a rich phase diagram with a variety of transitions. To investigate these transitions we have performed Monte Carlo simulations of a bond fluctuation model with Wang-Landau and umbrella sampling algorithms in a two-dimensional state space. The simulations' density-of-states results have been evaluated for interaction parameters spanning the range from good- to poor-solvent conditions and from repulsive to strongly attractive surfaces. In this work, we describe the simulation method and present results for the overall phase behavior and for some of the transitions. For adsorption in good solvent, we compare with Metropolis Monte Carlo data for the same model and find good agreement between the results. For the collapse transition, which occurs when the solvent quality changes from good to poor, we consider two situations corresponding to three-dimensional (hard surface) and two-dimensional (very attractive surface) chain conformations, respectively. For the hard surface, we compare tethered chains with free chains and find very similar behavior for both types of chains. For the very attractive surface, we find the two-dimensional chain collapse to be a two-step transition with the same sequence of transitions that is observed for three-dimensional chains: a coil-globule transition that changes the overall chain size is followed by a local rearrangement of chain segments.
NASA Astrophysics Data System (ADS)
Ghosh, Joydip
2014-12-01
Spin-1 systems, in comparison to spin-1/2 systems, offer a better security for encoding and transferring quantum information, primarily due to their larger Hilbert spaces. Superconducting artificial atoms possess multiple energy levels, thereby being capable of emulating higher-spin systems. Here I consider a one-dimensional lattice of nearest-neighbor-coupled superconducting transmon systems, and devise a scheme to transfer an arbitrary qutrit state (a state encoded in a three-level quantum system) across the chain. I assume adjustable couplings between adjacent transmons, derive an analytic constraint for the control pulse, and show how to satisfy the constraint to achieve a high-fidelity state transfer under current experimental conditions. My protocol thus enables enhanced quantum communication and information processing with promising superconducting qutrits.
NASA Astrophysics Data System (ADS)
Yumak, A.; Boubaker, K.; Petkova, P.; Yahsi, U.
2015-10-01
In is known that short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures of polychlorinated n-alkanes with single chlorine content. Due to their physical properties (viscosity, flame resistance) they are used in many different applications, such as lubricant additives, metal processing, leather fat-liquoring, plastics softening, PVC plasticizing and flame retardants in paints, adhesives and sealants. SCCPs are studied here in terms of processing-linked molecular structure stability, under Simha and Somcynsky-EOS theory calculations and elements from Simha-Somcynsky-related Lattice Compatibility Theory. Analyses were carried out on 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro 2-methylane, and 2-chloro 2-methylane as (SCCPs) universal representatives. This paper gives evidence to this stability and reviews the current state of knowledge and highlights the need for further research in order to improve future (SCCPs) monitoring efforts.
NASA Astrophysics Data System (ADS)
da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.
2016-12-01
We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.
Snyder, Chad R. Guttman, Charles M.; Di Marzio, Edmund A.
2014-01-21
We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.
Spin exchange dominated by charge fluctuations of the Wigner lattice in the chain cuprate Na5Cu3O6
NASA Astrophysics Data System (ADS)
Ali, Naveed Zafar; Sirker, Jesko; Nuss, Jürgen; Horsch, Peter; Jansen, Martin
2011-07-01
Na5Cu3O6, a new member of one-dimensional charge-ordered chain cuprates, was synthesized via the azide/nitrate route by reacting NaN3, NaNO3, and CuO. According to single-crystal x-ray analysis, one-dimensional ∞1CuO2n- chains built up from planar, edge-sharing CuO4 squares are a dominant feature of the crystal structure. From the analysis of the Cu-O bond lengths, we find that the system forms a Wigner lattice. The commensurate charge order allows the explicit assignment of the valence states of either +2 or +3 to each copper atom, resulting in a repetition according to Cu2+-Cu3+-Cu2+-Cu2+-Cu3+-Cu2+. Following the theoretical analysis of the previously synthesized compounds Na3Cu2O4 and Na8Cu5O10, the magnetic susceptibility was expected to show a large dimer gap. Surprisingly, this is not the case. To resolve this puzzle, we show that the magnetic couplings in this compound are strongly affected by excitations across the Wigner charge gap. By including these contributions, which are distinct from conventional superexchange in Mott-insulators, we obtain a quantitatively satisfying theoretical description of the magnetic susceptibility data.
NASA Astrophysics Data System (ADS)
Shen, Y.; Kevrekidis, P. G.; Sen, S.; Hoffman, A.
2014-08-01
Our aim in the present work is to develop approximations for the collisional dynamics of traveling waves in the context of granular chains in the presence of precompression. To that effect, we aim to quantify approximations of the relevant Hertzian FPU-type lattice through both the Korteweg-de Vries (KdV) equation and the Toda lattice. Using the availability in such settings of both one-soliton and two-soliton solutions in explicit analytical form, we initialize such coherent structures in the granular chain and observe the proximity of the resulting evolution to the underlying integrable (KdV or Toda) model. While the KdV offers the possibility to accurately capture collisions of solitary waves propagating in the same direction, the Toda lattice enables capturing both copropagating and counterpropagating soliton collisions. The error in the approximation is quantified numerically and connections to bounds established in the mathematical literature are also given.
Shen, Y; Kevrekidis, P G; Sen, S; Hoffman, A
2014-08-01
Our aim in the present work is to develop approximations for the collisional dynamics of traveling waves in the context of granular chains in the presence of precompression. To that effect, we aim to quantify approximations of the relevant Hertzian FPU-type lattice through both the Korteweg-de Vries (KdV) equation and the Toda lattice. Using the availability in such settings of both one-soliton and two-soliton solutions in explicit analytical form, we initialize such coherent structures in the granular chain and observe the proximity of the resulting evolution to the underlying integrable (KdV or Toda) model. While the KdV offers the possibility to accurately capture collisions of solitary waves propagating in the same direction, the Toda lattice enables capturing both copropagating and counterpropagating soliton collisions. The error in the approximation is quantified numerically and connections to bounds established in the mathematical literature are also given.
André, Sébastien; Kerfourn, Fabienne; Affaticati, Pierre; Guerci, Aline; Ravassard, Philippe; Fellah, Julien S
2007-06-01
Gammadelta T cells localize at mammalian epithelial surfaces to exert both protective and regulatory roles in response to infections. We have previously characterized the Mexican axolotl (Ambystoma mexicanum) T cell receptor delta (TRD) chain. In this study, TRD repertoires in spleen, liver, intestine and skin from larvae, pre-adult and adult axolotls were examined and compared to the thymic TRD repertoire. A TRDV transcript without N/D diversity, TRDV1S1-TRDJ1, dominates the TRD repertoires until sexual maturation. In adult tissues, this canonical transcript is replaced by another dominant TRDV1S1-TRDJ1 transcript. In the thymus, these two transcripts are detected early in development. Our results suggest that gammadelta T cells that express the canonical TRDV1S1-TRDJ1 transcript emerge from the thymus and colonize the peripheral tissues, where they are selectively expanded by recurrent ligands. This particular situation is probably related to the neotenic state and the slow development of the axolotl. In thymectomized axolotls, TRD repertoires appear different from those of normal axolotls, suggesting that extrathymic gammadelta T cell differentiation could occur. Gene expression analysis showed the importance of the gut in T cell development.
Temperature dependence of the NMR spin-lattice relaxation rate for spin-1/2 chains
NASA Astrophysics Data System (ADS)
Coira, E.; Barmettler, P.; Giamarchi, T.; Kollath, C.
2016-10-01
We use recent developments in the framework of a time-dependent matrix product state method to compute the nuclear magnetic resonance relaxation rate 1 /T1 for spin-1/2 chains under magnetic field and for different Hamiltonians (XXX, XXZ, isotropically dimerized). We compute numerically the temperature dependence of the 1 /T1 . We consider both gapped and gapless phases, and also the proximity of quantum critical points. At temperatures much lower than the typical exchange energy scale, our results are in excellent agreement with analytical results, such as the ones derived from the Tomonaga-Luttinger liquid (TLL) theory and bosonization, which are valid in this regime. We also cover the regime for which the temperature T is comparable to the exchange coupling. In this case analytical theories are not appropriate, but this regime is relevant for various new compounds with exchange couplings in the range of tens of Kelvin. For the gapped phases, either the fully polarized phase for spin chains or the low-magnetic-field phase for the dimerized systems, we find an exponential decrease in Δ /(kBT ) of the relaxation time and can compute the gap Δ . Close to the quantum critical point our results are in good agreement with the scaling behavior based on the existence of free excitations.
Nakajin, S; Takahashi, M; Shinoda, M; Hall, P F
1985-10-30
Conversion of progesterone to 17 alpha-hydroxyprogesterone plus androstenedione (17 alpha-hydroxylation) and to androstadienone (delta 16 synthetase activity) by microsomes from neonatal pig testis, were both inhibited by antibodies raised against homogeneous cytochrome P-450 C21 side-chain cleavage. Inhibition of the two activities showed the same relationship to the concentration of antibody added. Analogous results were obtained with pregnenolone as substrate. In a reconstituted enzyme system consisting of the homogeneous cytochrome P-450 C21 side-chain cleavage enzyme, P-450 reductase and NADPH, addition of cytochrome b5 resulted in the synthesis of the corresponding delta 16-C19-steroid from progesterone (androstadienone) and pregnenolone (androstadienol). The effect of cytochrome b5 was concentration-dependent and prevented by anti-cytochrome b5. It is concluded that the cytochrome P-450 C21 side-chain cleavage enzyme from pig testicular microsomes is also capable of synthesizing delta 16-C19-steroids and is, therefore, likely to be responsible for the large amounts of the pherormone androstadienone produced by male pigs.
Bissé, Emmanuel; Schaeffer, Christine; Hovasse, Agnès; Preisler-Adams, Sabine; Epting, Thomas; Baumstark, Manfred; Van Dorsselaer, Alain; Horst, Jürgen; Wieland, Heinrich
2008-08-01
A new delta-chain variant, delta143 (H21) His-->Tyr or Hb Noah Mehmet Oeztuerk, was discovered during the investigation of the cause of hemolytic anaemia in a 6-month-old infant of Turkish descent. It was detected by Cation exchange high-performance liquid chromatography (CE-HPLC) using PolyCAT A column. P(50) was 20.6+/-0.60 mmHg and 29.3+/-0.40 mmHg for the carrier and the wild-type, respectively. This suggests an increase in oxygen affinity. On routine CE-HPLC Hb A(2) was low (1.2%) and the variant was not detected. An extended family study revealed that the variant was not associated with the anaemia or with any other clinical abnormality.
Liu, Zhirong; Chan, Hue Sun
2008-04-14
We develop two classes of Monte Carlo moves for efficient sampling of wormlike DNA chains that can have significant degrees of supercoiling, a conformational feature that is key to many aspects of biological function including replication, transcription, and recombination. One class of moves entails reversing the coordinates of a segment of the chain along one, two, or three axes of an appropriately chosen local frame of reference. These transformations may be viewed as a generalization, to the continuum, of the Madras-Orlitsky-Shepp algorithm for cubic lattices. Another class of moves, termed T+/-2, allows for interconversions between chains with different lengths by adding or subtracting two beads (monomer units) to or from the chain. Length-changing moves are generally useful for conformational sampling with a given site juxtaposition, as has been shown in previous lattice studies. Here, the continuum T+/-2 moves are designed to enhance their acceptance rate in supercoiled conformations. We apply these moves to a wormlike model in which excluded volume is accounted for by a bond-bond repulsion term. The computed autocorrelation functions for the relaxation of bond length, bond angle, writhe, and branch number indicate that the new moves lead to significantly more efficient sampling than conventional bead displacements and crankshaft rotations. A close correspondence is found in the equilibrium ensemble between the map of writhe computed for pair of chain segments and the map of site juxtapositions or self-contacts. To evaluate the more coarse-grained freely jointed chain (random-flight) and cubic lattice models that are commonly used in DNA investigations, twisting (torsional) potentials are introduced into these models. Conformational properties for a given superhelical density sigma may then be sampled by computing the writhe and using White's formula to relate the degree of twisting to writhe and sigma. Extensive comparisons of contact patterns and knot
NASA Astrophysics Data System (ADS)
Streltsov, S. V.; Petrova, M. V.; Morozov, V. A.; Romanenko, G. V.; Anisimov, V. I.; Lukzen, N. N.
2013-01-01
The chain-polymer Cu(II) “breathing crystals” C21H19CuF12N4O6 were studied using the x-ray diffraction and ab initio band structure calculations. We show that the crystal structure modification at T=146 K, associated with the spin crossover transition, induces the changes of the orbital order in half of the Cu sites. This in turn results in the switch of the magnetic interaction sign in accordance with the Goodenough-Kanamori-Andersen theory of the coupling between the orbital and spin degrees of freedom.
Hiebeler, David E; Millett, Nicholas E
2011-06-21
We investigate a spatial lattice model of a population employing dispersal to nearest and second-nearest neighbors, as well as long-distance dispersal across the landscape. The model is studied via stochastic spatial simulations, ordinary pair approximation, and triplet approximation. The latter method, which uses the probabilities of state configurations of contiguous blocks of three sites as its state variables, is demonstrated to be greatly superior to pair approximations for estimating spatial correlation information at various scales. Correlations between pairs of sites separated by arbitrary distances are estimated by constructing spatial Markov processes using the information from both approximations. These correlations demonstrate why pair approximation misses basic qualitative features of the model, such as decreasing population density as a large proportion of offspring are dropped on second-nearest neighbors, and why triplet approximation is able to include them. Analytical and numerical results show that, excluding long-distance dispersal, the initial growth rate of an invading population is maximized and the equilibrium population density is also roughly maximized when the population spreads its offspring evenly over nearest and second-nearest neighboring sites.
Heikkilä, R; Ruud, E; Funderud, S; Godal, T
1985-01-01
Cytoplasmic free Ca2+ concentration and influx of 86Rb+ (K+ analogue) were determined during the first minutes after stimulation of neoplastic human B cells and B cell lines by antibodies to surface Ig. The Ca2+ concentration increased in the great majority of samples (41 of 48). All of four B cell lines also responded, providing formal evidence that accessory cells are not required for this early, surface Ig-mediated event. Antibodies to delta as well as mu, heavy chains (anti-delta and anti-mu) could induce both Ca2+ and 86Rb+ responses. 86Rb+ responders were found within the group of Ca2+ responders, but no quantitative relation was observed between the two responses. In cells expressing both sIgM and sIgD, antibodies to delta heavy chains were more potent than those to mu heavy chains in inducing Ca2+ responses, whereas the opposite pattern was seen with regard to 86Rb+ responses. These results demonstrate that sIgM and sIgD can deliver different biochemical signals to the cell. PMID:3921300
Cao, Aiqin; Li, Hai; Zhou, Yue; Wu, Minhao; Liu, Jingwen
2010-05-28
ACSL3 is a member of the long chain acyl-CoA synthetase (ACSL) family that plays key roles in fatty acid metabolism in various tissues in an isozyme-specific manner. Our previous studies showed that ACSL3 was transcriptionally up-regulated by the cytokine oncostatin M (OSM) in HepG2 cells, accompanied by reduced cellular triglyceride content and enhanced beta-oxidation. In this study, we investigated the molecular mechanism underlying the OSM-induced activation of ACSL3 gene transcription in HepG2 cells. We showed that OSM treatment resulted in a coordinated elevation of mRNA levels of ACSL3 and peroxisome proliferator-activated receptor delta (PPARdelta). The effect of OSM on ACSL3 mRNA expression was inhibited by cellular depletion of PPARdelta. By utilizing a PPARdelta agonist, L165041, we demonstrated that activation of PPARdelta led to increases in ACSL3 promoter activity, mRNA level, and protein level in HepG2 cells. Analysis of the ACSL3 promoter sequence identified two imperfect PPAR-responsive elements (PPRE) located in the ACSL3 promoter region -944 to -915, relative to the transcription start site. The up-regulation of ACSL3 promoter activity by PPARdelta was abolished by deletion of this PPRE-containing region or mutation to disrupt the binding sites. Direct interactions of PPARdelta with ACSL3-PPRE sequences were demonstrated by gel mobility shift and chromatin immunoprecipitation assays. Finally, we provided in vivo evidence showing that activation of PPARdelta by L165041 in hamsters increased ACSL3 mRNA and protein levels in the liver. These new findings define ACSL3 as a novel molecular target of PPARdelta in HepG2 cells and provide a regulatory mechanism for ACSL3 transcription in liver tissue.
Proton spin structure from lattice QCD
Fukugita, M.; Kuramashi, Y.; Okawa, M.; Ukawa, A. ||
1995-09-11
A lattice QCD calculation of the proton matrix element of the flavor singlet axial-vector current is reported. Both the connected and disconnected contributions are calculated, for the latter employing the variant method of wall source without gauge fixing. From simulations in quenched QCD with the Wilson quark action on a 16{sup 3}{times}20 lattice at {beta}=5.7 (the lattice spacing {ital a}{approx}0.14 fm), we find {Delta}{Sigma}={Delta}{ital u}+{Delta}{ital d}+{Delta}{ital s}=+0.638(54){minus}0.347(46){minus}0.109(30)=+0.18(10) with the disconnected contribution to {Delta}{ital u} and {Delta}{ital d} equal to {minus}0.119(44), which is reasonably consistent with the experiment.
Atmospheric Science Data Center
2013-04-15
article title: The Nile River Delta View Larger Image ... of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids ...
Atmospheric Science Data Center
2013-04-17
article title: Volga Delta and the Caspian Sea View ... appear reddish. A small cloud near the center of the delta separates into red, green, and blue components due to geometric parallax ... include several linear features located near the Volga Delta shoreline. These long, thin lines are artificially maintained shipping ...
Petrie, James R; Shrestha, Pushkar; Mansour, Maged P; Nichols, Peter D; Liu, Qing; Singh, Surinder P
2010-05-01
Long-chain (> or = C20) polyunsaturated fatty acids (LC-PUFA) EPA and DHA (20:5(Delta5,8,11,14,17) and 22:6(Delta4,7,10,13,16,19)) have well-documented health benefits against coronary heart disease, rheumatoid arthritis and other disorders. Currently, the predominant sources of these fatty acids are marine fish and algal oils, but research is being conducted to ensure that a sustainable, land-based production system can be developed. We here describe the metabolic engineering of an artificial pathway that produces 26% EPA in leaf triacylglycerol using a newly-identified Delta6-desaturase from the marine microalga Micromonas pusilla. We also demonstrate that this enzyme appears to function as an acyl-CoA desaturase that has preference for omega3 substrates both in planta and in yeast. Phylogenetic analysis indicates that this desaturase shares highly conserved motifs with previously described acyl-CoA Delta6-desaturases.
Lattices of processes in graphs with inputs
Shakhbazyan, K.V.
1995-09-01
This article is a continuation of others work, presenting a detailed analysis of finite lattices of processes in graphs with input nodes. Lattices of processes in such graphs are studied by representing the lattices in the form of an algebra of pairs. We define the algebra of pairs somewhat generalizing the definition. Let K and D be bounded distributive lattices. A sublattice {delta} {contained_in} K x D is called an algebra of pairs if for all K {element_of} K we have (K, 1{sub D}) {element_of} {delta} and for all d {element_of} D we have (O{sub K}).
Hadronic Resonances from Lattice QCD
John Bulava; Robert Edwards; George Fleming; K. Jimmy Juge; Adam C. Lichtl; Nilmani Mathur; Colin Morningstar; David Richards; Stephen J. Wallace
2007-06-16
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Hadronic Resonances from Lattice QCD
Lichtl, Adam C.; Bulava, John; Morningstar, Colin; Edwards, Robert; Mathur, Nilmani; Richards, David; Fleming, George; Juge, K. Jimmy; Wallace, Stephen J.
2007-10-26
The determination of the pattern of hadronic resonances as predicted by Quantum Chromodynamics requires the use of non-perturbative techniques. Lattice QCD has emerged as the dominant tool for such calculations, and has produced many QCD predictions which can be directly compared to experiment. The concepts underlying lattice QCD are outlined, methods for calculating excited states are discussed, and results from an exploratory Nucleon and Delta baryon spectrum study are presented.
Masui, T; Limonov, M; Uchiyama, H; Tajima, S; Yamanaka, A
2005-11-11
We found a strong X-Y anisotropy of the pair-breaking peak in the Raman scattering of heavily overdoped (Y, Ca)Ba2Cu3O(7-delta) (T(c) = 65 K). The pair-breaking peak is radically suppressed in the YY-polarized spectrum. We ascribe this anomaly to the effect of quantum interference between the Raman processes of the CuO-chain and the CuO2-plane electronic excitations that might take place as a result of the increase in the transfer matrix due to overdoping.
Ruiz-Ferrer, M; Barroso, N; Antiñolo, G; Aguilar-Reina, J
2004-07-01
Nowadays it is clear that chemokine-chemokine receptor interactions are important in chronic hepatitis C virus (HCV) infection. The objective of the present study was to elucidate the involvement of the CCR5-Delta 32 and CCR2-V64I polymorphisms in the response to the HCV infection, as well as in the histological damage and the outcome of the infection. A cohort of 139 patients with hepatitis C and 100 healthy blood donors were analysed for both polymorphisms using real-time polymerase chain reaction (PCR) and LightCycler technology. We have detected the CCR5-Delta 32 allele in 15 of 278 HCV chromosomes (5.4%) and 15 of 200 control chromosomes (7.5%). The CCR2-V64I allele was present in 24 of 278 HCV chromosomes (8.6%) and 19 of 200 control chromosomes (9.5%). Analysis of the histological parameters showed no statistical significance when comparing the patients carrying the variants vs the cases with the wild-type allele. Our results seem to indicate that the CCR5-Delta 32 and CCR2-V64I polymorphisms are not related to the response to HCV infection, histological damage and outcome of infection in our cohort of Spanish HCV patients.
Results and Frontiers in Lattice Baryon Spectroscopy
Bulava, John; Morningstar, Colin; Edwards, Robert; Richards, David; Fleming, George; Juge, K. Jimmy; Lichtl, Adam C.; Mathur, Nilmani; Wallace, Stephen J.
2007-10-26
The Lattice Hadron Physics Collaboration (LHPC) baryon spectroscopy effort is reviewed. To date the LHPC has performed exploratory Lattice QCD calculations of the low-lying spectrum of Nucleon and Delta baryons. These calculations demonstrate the effectiveness of our method by obtaining the masses of an unprecedented number of excited states with definite quantum numbers. Future work of the project is outlined.
Lattice gas methods for computational aeroacoustics
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.
1995-01-01
This paper presents the lattice gas solution to the category 1 problems of the ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics. The first and second problems were solved for Delta t = Delta x = 1, and additionally the second problem was solved for Delta t = 1/4 and Delta x = 1/2. The results are striking: even for these large time and space grids the lattice gas numerical solutions are almost indistinguishable from the analytical solutions. A simple bug in the Mathematica code was found in the solutions submitted for comparison, and the comparison plots shown at the end of this volume show the bug. An Appendix to the present paper shows an example lattice gas solution with and without the bug.
NASA Technical Reports Server (NTRS)
1990-01-01
The Delta II expendable launch vehicle with the ROSAT (Roentgen Satellite), cooperative space X-ray astronomy mission between NASA, Germany and United Kingdom, was launched from the Cape Canaveral Air Force Station on June 1, 1990.
Advances in Lattice Quantum Chromodynamics
NASA Astrophysics Data System (ADS)
McGlynn, Greg
In this thesis we make four contributions to the state of the art in numerical lattice simulations of quantum chromodynamics (QCD). First, we present the most detailed investigation yet of the autocorrelations of topological observations in hybrid Monte Carlo simulations of QCD and of the effects of the boundary conditions on these autocorrelations. This results in a numerical criterion for deciding when open boundary conditions are useful for reducing these autocorrelations, which are a major barrier to reliable calculations at fine lattice spacings. Second, we develop a dislocation-enhancing determinant, and demonstrate that it reduces the autocorrelation time of the topological charge. This alleviates problems with slow topological tunneling at fine lattice spacings, enabling simulations on fine lattices to be completed with much less computational effort. Third, we show how to apply the recently developed zMobius technique to hybrid Monte Carlo evolutions with domain wall fermions, achieving nearly a factor of two speedup in the light quark determinant, the single most expensive part of the calculation. The dislocation-enhancing determinant and the zMobius technique have enabled us to begin simulations of fine ensembles with four flavors of dynamical domain wall quarks. Finally, we show how to include the previously-neglected G1 operator in nonperturbative renormalization of the DeltaS = 1 effective weak Hamiltonian on the lattice. This removes an important systematic error in lattice calculations of weak matrix elements, in particular the important K → pipi decay.
Giraudat, J.; Dennis, M.; Heidmann, T.; Haumont, P.Y.; Lederer, F.; Changeux, J.P.
1987-05-05
The membrane-bound acetylcholine receptor from Torpedo marmorata was photolabeled by the noncompetitive channel blocker (/sup 3/H)chlorpromazine under equilibrium conditions in the presence of the agonist carbamoylcholine. The amount of radioactivity incorporated into all subunits was reduced by addition of phencyclidine, a specific ligand for the high-affinity site for noncompetitive blockers. The labeled ..beta.. chain was purified and digested with trypsin or CNBr, and the resulting fragments were fractionated by high-performance liquid chromatography. Sequence analysis resulted in the identification of Ser-254 and Leu-257 as residues labeled by (/sup 3/H)chlorpromazine in a phencyclidine-sensitive manner. These residues are located in the hydrophobic and potentially transmembrane segment M II of the ..beta.. chain, a region homologous to that containing the chlorpromazine-labeled Ser-262 in the delta chain. These results show that homologous regions of different receptor subunits contribute to the unique high-affinity site for noncompetitive blockers, a finding consistent with the location of this site on the axis of symmetry of the receptor molecule.
NASA Astrophysics Data System (ADS)
Abdel-Aal, Seham K.; Kocher-Oberlehner, Gudrun; Ionov, Andrei; Mozhchil, R. N.
2017-08-01
Diammonium series of Cu hybrid perovskites of the formula [(NH3)(CH2) n (NH3)]CuCl4, n = 6-9 are prepared from an ethanolic solution in stoichiometric ratio 1:1 (organic/inorganic). Formation of the desired material was confirmed and characterizes by microchemical analysis, FTIR, XRD and XPS spectra. The structure consists of corner-shared octahedron [CuCl4]2- anion alternative by organic [(NH3)(CH2) n (NH3)]2+ cations. The organic and inorganic layers form infinite 2D sheet that are connected via NH···Cl hydrogen bond. The calculated lattice potential energy U pot (kJ/mol) and lattice enthalpy Δ H L (kJ/mol) are inversely proportional to the molecular volume V m (nm3) and organic chain length. Optical properties show strong absorption peak at UV-visible range. The band gap energy calculated using Kubelka-Munk equation shows the decrease of the energy gap as organic chain length increases. The introduction of bromide ion to [(NH3)(CH2) n (NH3)]CuCl2Br2 denoted 2C7CuCB hybrid has shifted the energy gap to lower values from 2.6 to 2.18 eV for 2C7CuCl (yellow) and 2C7CuCB (brown), respectively, at the same organic chain length. All elements of [(NH3)(CH2)9(NH3)]CuCl4 and [(NH3)(CH2)7(NH3)]CuCl2Br2 were found in XPS spectra, as well as valence band spectra.
Bornyakov, V.G.
2005-06-01
Possibilities that are provided by a lattice regularization of QCD for studying nonperturbative properties of QCD are discussed. A review of some recent results obtained from computer calculations in lattice QCD is given. In particular, the results for the QCD vacuum structure, the hadron mass spectrum, and the strong coupling constant are considered.
Johnston, Steve; Monney, Claude; Bisogni, Valentina; ...
2016-02-17
Strongly correlated insulators are broadly divided into two classes: Mott–Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li2CuO2, where Δ hasmore » a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li2CuO2.« less
Johnston, Steve; Monney, Claude; Bisogni, Valentina; Zhou, Ke-Jin; Kraus, Roberto; Behr, Günter; Strocov, Vladimir N.; Málek, Jiři; Drechsler, Stefan-Ludwig; Geck, Jochen; Schmitt, Thorsten; van den Brink, Jeroen
2016-02-17
Strongly correlated insulators are broadly divided into two classes: Mott–Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li_{2}CuO_{2}, where Δ has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li_{2}CuO_{2}.
Johnston, Steve; Monney, Claude; Bisogni, Valentina; Zhou, Ke-Jin; Kraus, Roberto; Behr, Günter; Strocov, Vladimir N.; Málek, Jiři; Drechsler, Stefan-Ludwig; Geck, Jochen; Schmitt, Thorsten; van den Brink, Jeroen
2016-01-01
Strongly correlated insulators are broadly divided into two classes: Mott–Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li2CuO2, where Δ has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li2CuO2. PMID:26884151
Nonlinear dust-lattice waves: a modified Toda lattice
Cramer, N. F.
2008-09-07
Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.
Wang, Yan; Li, Jun; Cheng, Zhineng; Li, Qilu; Pan, Xiaohui; Zhang, Ruijie; Liu, Di; Luo, Chunling; Liu, Xiang; Katsoyiannis, Athanasios; Zhang, Gan
2013-03-19
Research on the environmental fate of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in highly industrialized subtropical areas is still scarce. Air, soil, and atmospheric deposition process in the Pearl River Delta of South China were investigated, and the average SCCP and MCCP concentrations were 5.2 μg/sampler (17.69 ng/m(3)) and 4.1 μg/sampler for passive air samples, 18.3 and 59.3 ng/g for soil samples, and 5.0 and 5.3 μg/(m(2)d) for deposition samples, respectively. Influenced by primary sources and the properties of chlorinated paraffins (CPs), a gradient trend of concentrations and a fractionation of composition from more to less industrialized areas were discovered. Intense seasonal variations with high levels in summer air and winter deposition samples indicated that the air and deposition CP levels were controlled mainly by the vapor and particle phase, respectively. Complex environmental processes like volatilization and fractionation resulted in different CP profiles in different environment matrixes and sampling locations, with C(10-11) C(l6-7) and C(14) C(l6-7), C(10-12) C(l6-7) and C(14) C(l6-8), and C(11-12) C(l6-8) and C(14) C(l7-8) dominating in air, soil, and atmospheric deposition, respectively. Shorter-chain and less chlorinated congeners were enriched in air in the less industrialized areas, while longer-chain and higher chlorinated congeners were concentrated in soil in the more industrialized areas. This is suggesting that the gaseous transport of CPs is the dominant mechanism responsible for the higher concentrations of lighter and likely more mobile CPs in the rural areas.
Lattice gaugefixing and other optics in lattice gauge theory
Yee, Ken.
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Dias, W S; Bertrand, D; Lyra, M L
2017-06-01
Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d>4.
NASA Astrophysics Data System (ADS)
Dias, W. S.; Bertrand, D.; Lyra, M. L.
2017-06-01
Recent experimental progress on the realization of quantum systems with highly controllable long-range interactions has impelled the study of quantum phase transitions in low-dimensional systems with power-law couplings. Long-range couplings mimic higher-dimensional effects in several physical contexts. Here, we provide the exact relation between the spectral dimension d at the band bottom and the exponent α that tunes the range of power-law hoppings of a one-dimensional ideal lattice Bose gas. We also develop a finite-size scaling analysis to obtain some relevant critical exponents and the critical temperature of the BEC transition. In particular, an irrelevant dangerous scaling field has to be taken into account when the hopping range is sufficiently large to make the effective dimensionality d >4 .
Kondo length in bosonic lattices
NASA Astrophysics Data System (ADS)
Giuliano, Domenico; Sodano, Pasquale; Trombettoni, Andrea
2017-09-01
Motivated by the fact that the low-energy properties of the Kondo model can be effectively simulated in spin chains, we study the realization of the effect with bond impurities in ultracold bosonic lattices at half filling. After presenting a discussion of the effective theory and of the mapping of the bosonic chain onto a lattice spin Hamiltonian, we provide estimates for the Kondo length as a function of the parameters of the bosonic model. We point out that the Kondo length can be extracted from the integrated real-space correlation functions, which are experimentally accessible quantities in experiments with cold atoms.
NASA Technical Reports Server (NTRS)
2002-01-01
The streamers of clouds draped over the Gulf of Mexico in this true-color MODIS image from February 27, 2002, suggest that a cold, dry wind was blowing southward over the United States and began to pick up moisture over the Gulf, causing these strips of clouds. That the clouds didn't pick up until some distance from the coastline allowed MODIS to get a perfect view of the dynamic Gulf Coast environment spanning (left to right) Texas, Louisiana, Mississippi, Alabama, and Florida's Western Panhandle. The Mississippi River runs roughly down the center of the image, and is joined in Louisiana by the Red River coming in from the northwest. Over the past 7000 years, the actual delta, where the main river channel empties into the Gulf, has wandered around what we now think of as the Louisiana coast. Considering all the sediment visible in this image, it's not hard to imagine that the river carries about 2.4 billion kilograms of sediment into the Gulf each year. Deposition of some of this sediment has been building up the current delta, called the Birdfoot Delta, for obvious reasons, for about 700 years. The coastal waters are alive with microscopic organisms called phytoplankton, which contain colorful pigments, including chlorophyll, for harvesting sunlight. Beyond the sediment plume off Louisiana, the waters are very dark, which could indicate that a large amount of chlorophyll is present, absorbing lots of sunlight and causing the water to appear dark. Farther south, the waters appear bright blue, which could be a signature of coccolithophores, which use highly reflective calcium carbonate to build scaly coverings for themselves. The brighter offshore waters could also be caused by a blue-green algae called Trichodesmium, an organism that can not only harness carbon dioxide for photosynthesis, but can also take nitrogen from the air and turn it into a form that can be used by living organisms. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
NASA Technical Reports Server (NTRS)
2002-01-01
The streamers of clouds draped over the Gulf of Mexico in this true-color MODIS image from February 27, 2002, suggest that a cold, dry wind was blowing southward over the United States and began to pick up moisture over the Gulf, causing these strips of clouds. That the clouds didn't pick up until some distance from the coastline allowed MODIS to get a perfect view of the dynamic Gulf Coast environment spanning (left to right) Texas, Louisiana, Mississippi, Alabama, and Florida's Western Panhandle. The Mississippi River runs roughly down the center of the image, and is joined in Louisiana by the Red River coming in from the northwest. Over the past 7000 years, the actual delta, where the main river channel empties into the Gulf, has wandered around what we now think of as the Louisiana coast. Considering all the sediment visible in this image, it's not hard to imagine that the river carries about 2.4 billion kilograms of sediment into the Gulf each year. Deposition of some of this sediment has been building up the current delta, called the Birdfoot Delta, for obvious reasons, for about 700 years. The coastal waters are alive with microscopic organisms called phytoplankton, which contain colorful pigments, including chlorophyll, for harvesting sunlight. Beyond the sediment plume off Louisiana, the waters are very dark, which could indicate that a large amount of chlorophyll is present, absorbing lots of sunlight and causing the water to appear dark. Farther south, the waters appear bright blue, which could be a signature of coccolithophores, which use highly reflective calcium carbonate to build scaly coverings for themselves. The brighter offshore waters could also be caused by a blue-green algae called Trichodesmium, an organism that can not only harness carbon dioxide for photosynthesis, but can also take nitrogen from the air and turn it into a form that can be used by living organisms. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
Soft Phonons in (delta)-Phase Plutonium Near the (delta)-(alpha)' Transition
Xu, R; Wong, J; Zshack, P; Hong, H; Chiang, T
2007-09-13
Plutonium and its alloys exhibit complex phase diagrams that imply anomalous lattice dynamics near phase stability boundaries. Specifically, the TA [111] phonon branch in Ga-stabilized {delta}-Pu at room temperature shows a pronounced soft mode at the zone boundary, which suggests a possible connection to the martensitic transformation from the fcc {delta}-phase to the monoclinic {alpha}{prime}-phase at low temperatures. This work is a study of the lattice dynamics of this system by x-ray thermal diffuse scattering. The results reveal little temperature dependence of the phonon frequencies, thus indicating that kinetic phonon softening is not responsible for this phase transition.
Creutz, M.
1984-01-01
After reviewing some recent developments in supercomputer access, the author discusses a few areas where perturbation theory and lattice gauge simulations make contact. The author concludes with a brief discussion of a deterministic dynamics for the Ising model. This may be useful for numerical studies of nonequilibrium phenomena. 13 references.
Electromagnetic excitation of the Delta(1232) resonance
V. Pascalutsa; M. Vanderhaeghen; Shin Nan Yang
2006-09-05
We review the description of the lowest-energy nucleon excitation--the Delta(1232)-resonance. Much of the recent effort has been focused on the precision measurements of the nucleon to Delta transition by means of electromagnetic probes. We review the results of those measurements and confront them with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, and QCD-inspired models. Some of the theoretical approaches are reviewed in detail. In particular, we describe the chiral EFT of QCD in the energy domain of the Delta-resonance, and its applications to the electromagnetic nucleon-to-Delta transition (gamma N Delta). We also describe the recent dynamical and unitary-isobar models of pion electroproduction which are extensively used in the extraction of the gamma* N Delta form factors from experiment. Furthermore, we discuss the link of the gamma* N Delta form factors to generalized parton distributions (GPDs), as well as the predictions of perturbative QCD for these transition form factors. The present status of understanding the Delta-resonance properties and the nature of its excitation is summarized.
Synthesis and structural chemistry of Au(III)-substituted Ba2YCu3O(7-delta)
NASA Technical Reports Server (NTRS)
Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Banerjea, A.; Hambourger, P. D.
1988-01-01
Gold-substituted superconductors, Ba2Y(Au(x)Cu(1-x))3O(7-delta) (x = 0-0.1) were synthesized. For x = 0.1, there was no change in the a and b lattice parameters (a = 3.826 A and b = 3.889 A) but a 0.06 A c axis expansion to 11.75 A was observed. Substituted gold is found to be trivalent by XPS. Replacing Cu(1) in the copper oxide chain with a slight reordering of oxygen is consistent with c axis expansion. The formal charge of the site remains trivalent; remaining Cu in the chains may be reduced resulting in an oxygen stoichiometry is less than or equal to 7. A small effect on T(sub c)(89 K for x = 0.10) is observed upon gold substitution.
NASA Technical Reports Server (NTRS)
2002-01-01
The Mississippi River delta teems with sediment deposited by the river as it flows into the Gulf of Mexico in this true-color image captured by MODIS on October 15, 2001. The sediment, which is marked by brown swirls in the Gulf, provides nutrients for the bloom of phytoplankton visible as blue-green swirls off the coastline. In the high-resolution image the city of Memphis can be seen in the southwest corner of Tennessee, which is just to left of center at the top of the image. The brown coloration that encompasses Memphis and either side of the river, as flows north to south along the left side of the image, is the river's flood plain. Also visible, in the upper-right hand corner of the image is the southern end of the Appalachian Mountains.
NASA Technical Reports Server (NTRS)
Wilczek, Frank
1987-01-01
A simple heuristic proof of the Nielsen-Ninomaya theorem is given. A method is proposed whereby the multiplication of fermion species on a lattice is reduced to the minimal doubling, in any dimension, with retention of appropriate chiral symmetries. Also, it is suggested that use of spatially thinned fermion fields is likely to be a useful and appropriate approximation in QCD - in any case, it is a self-checking one.
NASA Astrophysics Data System (ADS)
Rezayat, Mohammad; Mirzadeh, Hamed; Namdar, Masih; Parsa, Mohammad Habibi
2016-02-01
Considering the detrimental effects of delta ferrite stringers in austenitic stainless steels and the industrial considerations regarding energy consumption, investigating, and optimizing the kinetics of delta ferrite removal is of vital importance. In the current study, a model alloy prone to the formation of austenite/delta ferrite dual phase microstructure was subjected to thermomechanical treatment using the wedge rolling test aiming to dissolve delta ferrite. The effect of introducing lattice defects and occurrence of dynamic recrystallization (DRX) were investigated. It was revealed that pipe diffusion is responsible for delta ferrite removal during thermomechanical process, whereas when the DRX is dominant, the kinetics of delta ferrite dissolution tends toward that of the static homogenization treatment for delta ferrite removal that is based on the lattice diffusion of Cr and Ni in austenite. It was concluded that the optimum condition for dissolution of delta ferrite can be defined by the highest rolling temperature and strain in which DRX is not pronounced.
Assoud, Abdeljalil; Cui Yanjie; Thomas, Stephanie; Sutherland, Brodie; Kleinke, Holger
2008-08-15
The new materials BaCu{sub {delta}}Ag{sub 2-{delta}}Te{sub 2} (0{<=}{delta}{<=}2) were prepared from the elements at 800 deg. C in evacuated silica tubes. BaAg{sub 2}Te{sub 2} crystallizes in the {alpha}-BaCu{sub 2}S{sub 2} type, space group Pnma, with lattice parameters a=10.8897(3) A, b=4.6084(1) A, c=11.8134(3) A (Z=4). The structure consists of a three-dimensional network of vertex- and edge-condensed AgTe{sub 4} tetrahedra, which includes the Ba{sup 2+} cations in linear channels running along the short b-axis. Half of the Ag atoms participate in an Ag atom zigzag chain extended parallel to the channels. BaAg{sub 2}Te{sub 2} is a p-type semiconductor with large Seebeck coefficient. Within the series BaCu{sub {delta}}Ag{sub 2-{delta}}Te{sub 2}, the electrical conductivity increases and the Seebeck coefficient decreases strongly with increasing Cu content. - Graphical abstract: The tellurides BaCu{sub {delta}}Ag{sub 2-{delta}}Te{sub 2} all crystallize in the {alpha}-BaCu{sub 2}S{sub 2} type. The Ag atoms prefer the M2 sites with short M-M bonds (solid lines). The materials are (degenerate) p-type semiconductors. Higher Ag content reflects itself in higher Seebeck coefficient and lower electrical conductivity.
Delta III—an evolutionary delta growth
NASA Astrophysics Data System (ADS)
Arvesen, R. J.; Simpson, J. S.
1996-03-01
In order to remain competitive in the future and expand the McDonnell Douglas Aerospace market share, MDA has developed an expendable launch system strategy that devices cost-effective launch systems from the Delta II with a growth vehicle configuration called Delta III. The Delta III evolves from the Delta II launch system through development of a larger payload fairing (4-meter diameter), new cryogenically propelled upper stage, new first stage fuel tank, and larger strap-on solid rocket motors. We are developing the Delta III using Integrated Product Development Teams that capitalize on the experience base that has led us to a world record breaking mission success of 49 consecutive Delta II missions. The Delta III first-launch capability is currently planned for the spring of 1998 in support of our first spacecraft customer, Hughes Space and Communications International.
Manciu, M.; Sen, S.; Hurd, A.J.
1999-04-12
The authors consider a chain of elastic (Hertzian) grains that repel upon contact according to the potential V = a{delta}{sup u}, u > 2, where {delta} is the overlap between the grains. They present numerical and analytical results to show that an impulse initiated at an end of a chain of Hertzian grains in contact eventually propagates as a soliton for all n > 2 and that no solitons are possible for n {le} 2. Unlike continuous, they find that colliding solitons in discrete media initiative multiple weak solitons at the point of crossing.
One-dimensional magnetic fluctuations in the spin-2 triangular lattice alpha-NaMnO2.
Stock, C; Chapon, L C; Adamopoulos, O; Lappas, A; Giot, M; Taylor, J W; Green, M A; Brown, C M; Radaelli, P G
2009-08-14
The S=2 anisotropic triangular lattice alpha-NaMnO2 is studied by neutron inelastic scattering. Antiferromagnetic order occurs at T< or =45 K with opening of a spin gap. The spectral weight of the magnetic dynamics above the gap (Delta approximately equal to 7.5 meV) has been analyzed by the single-mode approximation. Excellent agreement with the experiment is achieved when a dominant exchange interaction (|J|/k(B) approximately 73 K), along the monoclinic b axis and a sizable easy-axis magnetic anisotropy (|D|/k(B) approximately 3 K) are considered. Despite earlier suggestions for two-dimensional spin interactions, the dynamics illustrate strongly coupled antiferromagnetic S=2 chains and cancellation of the interchain exchange due to the lattice topology. alpha-NaMnO2 therefore represents a model system where the geometric frustration is resolved through the lowering of the dimensionality of the spin interactions.
Casimir effect for Dirac lattices
NASA Astrophysics Data System (ADS)
Bordag, M.; Pirozhenko, I. G.
2017-03-01
We consider polarizable sheets, which recently received some attention, especially in the context of the dispersion interaction of thin sheets like graphene. These sheets are modeled by a collection of delta function potentials and resemble zero-range potentials, which are known in quantum mechanics. We develop a theoretical description and apply the so-called TGTG formula to calculate the interaction of two such lattices. Thereby, we make use of the formulation of the scattering of waves off such sheets provided earlier. We consider all limiting cases, providing a link to earlier results. Also, we discuss the relation to the pairwise summation method.
NASA Astrophysics Data System (ADS)
Ousley, Gilbert W., Sr.
1991-12-01
The utilization of the Delta 2 as the vehicle for launching Aristoteles into its near Sun synchronous orbit is addressed. Delta is NASA's most reliable launch vehicle and is well suited for placing the present Aristoteles spacecraft into a 400 m circular orbit. A summary of some of the Delta 2 flight parameters is presented. Diagrams of a typical Delta 2 two stage separation are included along with statistics on delta reliability and launch plans.
A new approach for Delta form factors
C. Aubin, K. Orginos
2011-10-01
We discuss a new approach to reducing excited state contributions from two- and three-point correlation functions in lattice simulations. For the purposes of this talk, we focus on the Delta(1232) resonance and discuss how this new method reduces excited state contamination from two-point functions and mention how this will be applied to three-point functions to extract hadronic form factors.
Growth Of Delta-Doped Layer On Silicon CCD
NASA Technical Reports Server (NTRS)
Hoenk, Michael E.; Grunthaner, Paula J.; Grunthaner, Frank J.; Terhune, Robert W.; Hecht, Michael H.
1995-01-01
Response to ultraviolet light enhanced. Back-side-illuminated silicon charge-coupled device fabricated exhibiting nearly 100 percent internal quantum efficiency in near ultraviolet, by using molecular beam epitaxy to grow thin crystalline-silicon layer containing high concentration of boron (p-type dopant). By confining dopant atoms to one or few atomic layers in silicon lattice, concentration-vs.-depth profile made to resemble Dirac delta function, and resulting silicon layer said to be "delta-doped."
delta-Hexachlorocyclohexane (delta-HCH)
Integrated Risk Information System (IRIS)
delta - Hexachlorocyclohexane ( delta - HCH ) ; CASRN 319 - 86 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Ass
Quantum transport in d-dimensional lattices
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-04-28
We show that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. Lastly, we then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour ofmore » uniform spin lattices is a consequence of the interaction between different excitations.« less
Holographic superconductor on Q-lattice
NASA Astrophysics Data System (ADS)
Ling, Yi; Liu, Peng; Niu, Chao; Wu, Jian-Pin; Xian, Zhuo-Yu
2015-02-01
We construct the simplest gravitational dual model of a superconductor on Q-lattices. We analyze the condition for the existence of a critical temperature at which the charged scalar field will condense. In contrast to the holographic superconductor on ionic lattices, the presence of Q-lattices will suppress the condensate of the scalar field and lower the critical temperature. In particular, when the Q-lattice background is dual to a deep insulating phase, the condensation would never occur for some small charges. Furthermore, we numerically compute the optical conductivity in the superconducting regime. It turns out that the presence of Q-lattice does not remove the pole in the imaginary part of the conductivity, ensuring the appearance of a delta function in the real part. We also evaluate the gap which in general depends on the charge of the scalar field as well as the Q-lattice parameters. Nevertheless, when the charge of the scalar field is relatively large and approaches the probe limit, the gap becomes universal with ω g ≃ 9 T c which is consistent with the result for conventional holographic superconductors.
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; ...
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less
Excited state baryon spectroscopy from lattice QCD
Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.
2011-10-31
Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including $J = 7/2$, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of $SU(6) Ⓧ O(3)$ representations and a counting of levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.
Delta + 27 homozygosis in a Sicilian family.
Renda, M; Piazza, T; Ciaccio, C; Maggio, A
1992-01-01
During a screening program to identify at risk couples for beta-thalassemia first-trimester prenatal diagnosis, we were able to detect, by polymerase chain reaction (PCR) and direct genomic sequencing of the PCR product, a homozygosis for the G-T substitution at the first nucleotide of codon 27 of the delta-globin gene in a pregnant Sicilian woman. The possibility of showing an interaction between delta and beta thalassemia is relevant for a thalassemia prevention program because it may hide a beta-thal carrier state.
Renormalization transformation of periodic and aperiodic lattices
Macia, Enrique; Rodriguez-Oliveros, Rogelio
2006-10-01
In this work we introduce a similarity transformation acting on transfer matrices describing the propagation of elementary excitations through either periodic or Fibonacci lattices. The proposed transformation can act at two different scale lengths. At the atomic scale the transformation allows one to express the systems' global transfer matrix in terms of an equivalent on-site model one. Correlation effects among different hopping terms are described by a series of local phase factors in that case. When acting on larger scale lengths, corresponding to short segments of the original lattice, the similarity transformation can be properly regarded as describing an effective renormalization of the chain. The nature of the resulting renormalized lattice significantly depends on the kind of order (i.e., periodic or quasiperiodic) of the original lattice, expressing a delicate balance between chemical complexity and topological order as a consequence of the renormalization process.
Palmer, R.B.
1987-05-01
This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.
NASA Astrophysics Data System (ADS)
Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.
2016-12-01
Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.
Nelson, E.A.; Christensen, E.J.; Mackey, H.E.; Sharitz, R.R.; Jensen, J.R.; Hodgson, M.E.
1984-02-01
Since 1954, cooling water discharges from K Reactor ({anti X} = 370 cfs {at} 59 C) to Pen Branch have altered vegetation and deposited sediment in the Savannah River Swamp forming the Pen Branch delta. Currently, the delta covers over 300 acres and continues to expand at a rate of about 16 acres/yr. Examination of delta expansion can provide important information on environmental impacts to wetlands exposed to elevated temperature and flow conditions. To assess the current status and predict future expansion of the Pen Branch delta, historic aerial photographs were analyzed using both basic photo interpretation and computer techniques to provide the following information: (1) past and current expansion rates; (2) location and changes of impacted areas; (3) total acreage presently affected. Delta acreage changes were then compared to historic reactor discharge temperature and flow data to see if expansion rate variations could be related to reactor operations.
Recombinative events of the T cell antigen receptor delta gene in peripheral T cell lymphomas.
Kanavaros, P; Farcet, J P; Gaulard, P; Haioun, C; Divine, M; Le Couedic, J P; Lefranc, M P; Reyes, F
1991-01-01
Recombinative events of the T cell antigen receptor (TCR) delta-chain gene were studied in 37 cases of peripheral T cell lymphoma (PTCL) and related to their clinical presentation and the expression of the alpha beta or gamma delta heterodimers as determined by immunostaining of frozen tissue samples. There were 22 cases of alpha beta, 5 cases of gamma delta, and 10 cases of silent TCR expressing neither the alpha beta nor gamma delta TCR. 5 different probes were used to examine the delta locus. The 22 cases of alpha beta PTCL displayed biallelic and monoallelic deletions; a monoallelic V delta 1 J delta 1 rearrangement was observed in 1 case and a monoallelic germ line configuration in 7 cases. The 5 cases of gamma delta PTCL displayed biallelic rearrangements: the productive rearrangements could be ascribed to V delta 1J delta 1 joining in 3 cases and VJ delta 1 joining in 2 cases according to the combined pattern of DNA hybridization with the appropriate probes and of cell reactivity with the TCR delta-1, delta TCS-1, and anti-V delta 2 monoclonal antibodies. In the VJ delta 1 joining, the rearranged V segments were located between V delta 1 and V delta 2. Interestingly, in the third group of 10 cases of silent PTCL, 5 cases were found to have a TCR gene configuration identical to that in the TCR alpha beta PTCL, as demonstrated by biallelic delta gene deletion. These 5 cases were CD3 positive. The 5 remaining cases showed a monoallelic delta gene rearrangement with a monoallelic germ line configuration in 4 and a monoallelic deletion in 1. Four of these cases were CD3 negative, which was consistent with an immature genotype the TCR commitent of which could not be ascertained. Finally, TCR gamma delta PTCL consisted of a distinct clinical morphological and molecular entity whereas TCR alpha beta and silent PTCL had a similar presentation. Images PMID:1991851
Sinniah, M; Dimitrakakis, M; Tan, D S
1986-06-01
Sera from one hundred and fifty nine Malaysian individuals were screened for the prevalence of delta markers. These included 15 HBsAg positive homosexuals, 16 acute hepatitis B cases, 9 chronic hepatitis B patients, 13 healthy HBsAg carriers and 106 intravenous (i.v.) drug abusers, of whom 27 were positive for HBsAg only and the rest were anti-HBc IgG positive but HBsAg negative. The prevalence of delta markers in the homosexuals was found to be 6.7%, in the HBsAg positive drug abusers 17.8%, in acute hepatitis B cases 12.5%. No evidence of delta infection was detected in healthy HBsAg carriers, chronic hepatitis B cases and HBsAg negative i.v. drug abusers. With reference to i.v. drug abusers, the prevalence of delta markers was higher in Malays (23%) than in Chinese (7%) although the latter had a higher HBsAg carrier rate. Although the HBsAg carrier rate in the homosexuals was high, their delta prevalence rate was low as compared to drug abusers. In Malaysia, as in other non-endemic regions, hepatitis delta virus transmission appeared to occur mainly via the parenteral and sexual routes. This is the first time in Malaysia that a reservoir of delta infection has been demonstrated in certain groups of the population at high risk for hepatitis B.
NASA Technical Reports Server (NTRS)
Guzik, J. A.
1998-01-01
The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one's understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying (delta) Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for (delta) Scuti stars, using FG Vir, (delta) Scuti, and CD-24(degree) 7599 as examples.
Guzik, J.A.
1998-03-01
The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one`s understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying {delta} Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for {delta} Scuti stars, using FG Vir, {delta} Scuti, and CD-24{degree} 7599 as examples.
NASA Technical Reports Server (NTRS)
1984-01-01
The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.
NASA Technical Reports Server (NTRS)
1982-01-01
The Nile Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population of 57 million. The capital city of Cairo is at the apex of the delta in the middle of the scene. Across the river from Cairo can be seen the three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.
NASA Technical Reports Server (NTRS)
1984-01-01
The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.
NASA Technical Reports Server (NTRS)
Guzik, J. A.
1998-01-01
The purpose of asteroseismology is not only to derive the internal structure of individual stars from their observed oscillation frequencies, but also to test and extend one's understanding of the physics of matter under the extremes of temperature, density, and pressure found in stellar interiors. In this review, the author hopes to point out what one can learn about the Sun by studying (delta) Scuti stars, as well as what one can learn about stars more massive or evolved than the Sun. He discusses some of the difficulties in theoretical approaches to asteroseismology for (delta) Scuti stars, using FG Vir, (delta) Scuti, and CD-24(degree) 7599 as examples.
Modeling river delta formation
Seybold, Hansjörg; Andrade, José S.; Herrmann, Hans J.
2007-01-01
A model to simulate the time evolution of river delta formation process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/erosion law. Different delta types are reproduced by using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore, our model is capable of simulating the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi River. PMID:17940031
1984-10-13
The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.
Doping of Semiconducting Atomic Chains
NASA Technical Reports Server (NTRS)
Toshishige, Yamada; Kutler, Paul (Technical Monitor)
1997-01-01
Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.
... this page: //medlineplus.gov/ency/article/000216.htm Hepatitis D (Delta agent) To use the sharing features on this page, please enable JavaScript. Hepatitis D is a viral infection caused by the ...
2011-02-18
This unnamed crater in northern Terra Cimmeria has a small channel that created a delta feature. Such features are important indicators of liquid water in Mars past as shown in this image from NASA Mars Odyssey.
Janse Van Rensburg, E.J.
1996-12-31
The geometry of polygonal knots in the cubic lattice may be used to define some knot invariants. One such invariant is the minimal edge number, which is the minimum number of edges necessary (and sufficient) to construct a lattice knot of given type. In addition, one may also define the minimal (unfolded) surface number, and the minimal (unfolded) boundary number; these are the minimum number of 2-cells necessary to construct an unfolded lattice Seifert surface of a given knot type in the lattice, and the minimum number of edges necessary in a lattice knot to guarantee the existence of an unfolded lattice Seifert surface. In addition, I derive some relations amongst these invariants. 8 refs., 5 figs., 2 tabs.
Links with small lattice stick numbers
NASA Astrophysics Data System (ADS)
Hong, Kyungpyo; No, Sungjong; Oh, Seungsang
2014-04-01
Knots and links have been considered to be useful models for structural analysis of molecular chains such as DNA and proteins. One quantity that we are interested in for molecular links is the minimum number of monomers necessary for realizing them. In this paper we consider every link in the cubic lattice. The lattice stick number sL(L) of a link L is defined to be the minimum number of sticks required to construct a polygonal representation of the link in the cubic lattice. Huh and Oh found all knots whose lattice stick numbers are at most 14. They proved that only the trefoil knot 31 and the figure-eight knot 41 have lattice stick numbers of 12 and 14, respectively. In this paper we find all links with more than one component whose lattice stick numbers are at most 14. Indeed we prove combinatorically that s_L(2^2_1)=8, s_L(2^2_1 \\sharp 2^2_1)=s_L(6^3_2)=s_L(6^3_3)=12, s_L(4^2_1)=13, s_L(5^2_1)=14 and any other non-split links have stick numbers of at least 15.
NASA Astrophysics Data System (ADS)
Berg, J. Scott
2008-02-01
EMMA is a 10 to 20 MeV electron ring designed to test our understanding of beam dynamics in a relativistic linear non-scaling fixed field alternating gradient accelerator (FFAG). I will give a basic review of the EMMA lattice parameters. Then I will review the different lattice configurations that we would like to have for EMMA. Finally, I will briefly discuss the process of commissioning each lattice configuration.
Brozik, J.A.; Scott, B.L.; Swanson, B.I.
1999-12-02
The unique linear chain compound [Pt(en){sub 2}I{sub 2}][Pt(CN){sub 4}] {l{underscore}brace}where en = ethylenediamine{r{underscore}brace} has been synthesized through a standard method. The results of a structural analysis by X-ray crystallography reveal this new MX compound to be quasi-one-dimensional with complete chain-to-chain registry to give a completely ordered structure. The results of resonance Raman, IR, diffuse reflectance, and X-ray crystallography reveal that the Pt centers are highly charge disproportionated with a large commensurate distortion of the iodide sublattice about the Pt center of higher charge. These results reveal that this material is the strongest CDW MX compound, containing iodide bridges, reported to date. Resonance Raman experiments have shown that five A{sub g} (C{sub 2h} site symmetry) Raman bands are strongly enhanced. These correspond to three in-chain Pt-I modes and two (chain perpendicular) CN stretches and are interpreted in terms of strong phonon coupling to the IVCT band.
ERIC Educational Resources Information Center
Reeder, Richard J.; Calhoun, Samuel D.
2002-01-01
The Lower Mississippi Delta region, especially the rural Delta, faces many economic challenges. The rural Delta has received much federal aid in basic income support and funding for human resource development, but less for community resource programs, which are important for economic development. Federal aid to the Delta is analyzed in terms of…
TCR gene segments from at least one third of V alpha subfamilies rearrange at the delta locus.
Genevée, C; Chung, V; Diu, A; Hercend, T; Triebel, F
1994-02-01
Using PCR and an experimentally validated V alpha subfamily-specific oligonucleotide panel (V alpha 1-w29), we have investigated whether the TCR delta chain may increase its combinatorial diversity by using V genes considered as alpha chain-specific. We show that at least 10 distinct human V alpha segments rearrange at the J delta locus, leading to scrambling of the two V gene repertoires. Fifty-five per cent of the V alpha/J delta transcripts characterized here were in frame. The 17 V alpha/C delta chains analysed included an extended CDR3 region with up to 18 aa encoded by the junctional region. In addition, a new J delta segment (J delta 4) has been characterized. Together, these findings demonstrate that combinatorial diversity in the human delta locus is larger than previously thought.
Nonlinear beam deflection in photonic lattices with negative defects
Wang Jiandong; Ye Zhuoyi; Lou Cibo; Miller, Alexandra; Zhang Peng; Hu Yi; Chen Zhigang; Yang Jianke
2011-03-15
We demonstrate both theoretically and experimentally that a nonlinear beam can be reflected by a negative defect in a photonic lattice if the incident angle is below a threshold value. Above this threshold angle, the beam simply passes through the defect. This phenomenon occurs in both one- and two-dimensional photonic lattices, and it provides a way to use the incident angle to control beam propagation in a lattice network. If the defect is absent or positive, no evident transition from reflection to transmission occurs. These nonlinear phenomena are also compared with linear nondiffracting-beam propagation in a photonic lattice with a defect, and both similarities and differences are observed. In addition, some important features in linear and nonlinear beam propagations are explained analytically by using a linear model with a delta-function defect.
Structural chemistry of Au(III)-substituted Ba2YCu3O(7-delta)
NASA Technical Reports Server (NTRS)
Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.
1988-01-01
A series of gold-substituted perovskite superconductors Ba2Y(Cu/1-x/Aux)3O(7-delta)(x = 0-0.1) was synthesized. For x = 0.1, there was no change in the a and b lattice parameters (a = 3.826 A and b = 3.889 A), but a 0.06 A c-axis expansion to 11.75 A was observed. Substituted gold was found to be trivalent by X-ray photoelectron spectroscopy. Replacing Cu(1) in the copper oxide chain with a slight reordering of oxygen is consistent with c-axis expansion. The formal charge of the site remains trivalent, while remaining Cu in the chains is reduced to Cu(I), resulting in an oxygen stoichiometry of less than 7. Finally, no large effect on Tc is observed (Tc = 89 K for x = 0.10), in contrast to the effect of a number of other metal ion dopants. These results are discussed relative to the chemistry of Au(III) and to the use of the metal in structures containing gold and ceramic superconductors.
Structural chemistry of Au(III)-substituted Ba2YCu3O(7-delta)
NASA Technical Reports Server (NTRS)
Hepp, A. F.; Gaier, J. R.; Pouch, J. J.; Hambourger, P. D.
1988-01-01
A series of gold-substituted perovskite superconductors Ba2Y(Cu/1-x/Aux)3O(7-delta)(x = 0-0.1) was synthesized. For x = 0.1, there was no change in the a and b lattice parameters (a = 3.826 A and b = 3.889 A), but a 0.06 A c-axis expansion to 11.75 A was observed. Substituted gold was found to be trivalent by X-ray photoelectron spectroscopy. Replacing Cu(1) in the copper oxide chain with a slight reordering of oxygen is consistent with c-axis expansion. The formal charge of the site remains trivalent, while remaining Cu in the chains is reduced to Cu(I), resulting in an oxygen stoichiometry of less than 7. Finally, no large effect on Tc is observed (Tc = 89 K for x = 0.10), in contrast to the effect of a number of other metal ion dopants. These results are discussed relative to the chemistry of Au(III) and to the use of the metal in structures containing gold and ceramic superconductors.
Dissipative photonic lattice solitons.
Ultanir, Erdem A; Stegeman, George I; Christodoulides, Demetrios N
2004-04-15
We show that discrete dissipative optical lattice solitons are possible in waveguide array configurations that involve periodically patterned semiconductor optical amplifiers and saturable absorbers. The characteristics of these low-power soliton states are investigated, and their propagation constant eigenvalues are mapped on Floquet-Bloch band diagrams. The prospect of observing such low-power dissipative lattice solitons is discussed in detail.
2002-06-11
As the Mississippi River enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad stripe running northwest to southeast. This image was acquired on May 24, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03497
Turbulent heat exchanger {Delta}T and {Delta}P
Steinmeyer, D.
1996-12-31
Optimum pressure drop ({Delta}P) and temperature difference ({Delta}T) in turbulent flow heat exchangers are presented in three frameworks: as quantitatively defined by fluid properties, the value of energy and the cost of heat exchange surface (with a little help from a relationship between [power/mass] and heat transfer); as the energy cost for heat recovery (with the {Delta}T cost being about equal to the heat exchanger cost and the {Delta}P cost being about 1/3 as great); and as the second law lost work inherent in heat exchange (with the {Delta}T loss being {approximately}3 times the {Delta}T loss).
Musumeci, S; Romeo, M A; Pizzarelli, G; Schilirò, G; Russo, G
1983-01-01
A case of double heterozygosity for A gamma delta beta-thalassaemia and A gamma G gamma delta beta-thalassaemia was found during a screening programme in Sicily. The proband, a 4-year-old girl, showed a clinical picture of thalassaemia intermedia. Hb F (85.12% by the Singer method) was G gamma A gamma type. The parents and the brother were delta beta-thalassaemia carriers. Structural analysis of Hb F showed both G gamma and A gamma chains in the father, but only A gamma chains in the mother. Images PMID:6188831
NASA Technical Reports Server (NTRS)
2002-01-01
The Ganges River forms an extensive delta where it empties into the Bay of Bengal. The delta is largely covered with a swamp forest known as the Sunderbans, which is home to the Royal Bengal Tiger. It is also home to most of Bangladesh, one of the world's most densely populated countries. Roughly 120 million people live on the Ganges Delta under threat of repeated catastrophic floods due to heavy runoff of meltwater from the Himalayas, and due to the intense rainfall during the monsoon season. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on February 28, 2000. This is a false-color composite image made using green, infrared, and blue wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch
2013-08-29
It drains a watershed that spans eight countries and nearly 1.6 million square kilometers 600,000 square miles. The Zambezi also Zambeze is the fourth largest river in Africa, and the largest east-flowing waterway. The Operational Land Imager on the Landsat 8 satellite acquired this natural-color image of the Zambezi Delta on August 29, 2013. Sandbars and barrier spits stretch across the mouths of the delta, and suspended sediment extends tens of kilometers out into the sea. The sandy outflow turns the coastal waters to a milky blue-green compared to the deep blue of open water in the Indian Ocean. The Zambezi Delta includes 230 kilometers of coastline fronting 18,000 square kilometers (7,00 square miles) of swamps, floodplains, and even savannahs (inland). The area has long been prized by subsistence fishermen and farmers, who find fertile ground for crops like sugar and fertile waters for prawns and fish. Two species of endangered cranes and one of the largest concentration of buffalo in Africa -- among many other species of wildlife -- have found a haven in this internationally recognized wetland. However, the past six decades have brought great changes to the Zambezi Delta, which used to pour more water and sediment off of the continent. Hydropower dams upstream-most prominently, the Kariba and the Cahora Bassa-greatly reduce river flows during the wet season; they also trap sediments that would otherwise flow downstream. The result has been less water reaching the delta and the floodplains, which rely on pulses of nutrients and sediments from annual (and mostly benign) natural flooding. The change in the flow of the river affects freshwater availability and quality in the delta. Strong flows push fresh water further out into the sea and naturally keep most of a delta full of fresh (or mostly fresh) water. When that fresh flow eases, the wetlands become drier and more prone to fire. Salt water from the Indian Ocean also can penetrate further into the marsh
NASA Technical Reports Server (NTRS)
2002-01-01
This pair of true- and false-color images from the Moderate Resolution Imaging Spectroradiometer was acquired on June 3, 2002. The fertile land along the Nile River supports lush green vegetation, amid the desert landscape. At its delta at the Mediterranean Sea, the Nile broadens into a large fan-shaped delta. All of Egypt's large cities fall along the Nile, which sustains life in a region of scant rainfall. At the point where the river widens into the delta, a grayish cluster of pixels marks the location of Cairo. To the east is the Sinai Peninsula, whose impermanent water courses create silvery streaks on the pale brown, arid landscape. At lower right is the Red Sea. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC
Nonlinear, unsteady aerodynamic loads on rectangular and delta wings
NASA Technical Reports Server (NTRS)
Atta, E. H.; Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.
1977-01-01
Nonlinear unsteady aerodynamic loads on rectangular and delta wings in an incompressible flow are calculated by using an unsteady vortex-lattice model. Examples include flows past fixed wings in unsteady uniform streams and flows past wings undergoing unsteady motions. The unsteadiness may be due to gusty winds or pitching oscillations. The present technique establishes a reliable approach which can be utilized in the analysis of problems associated with the dynamics and aeroelasticity of wings within a wide range of angles of attack.
NASA Technical Reports Server (NTRS)
1998-01-01
Final preparations for lift off of the DELTA II Mars Pathfinder Rocket are shown. Activities include loading the liquid oxygen, completing the construction of the Rover, and placing the Rover into the Lander. After the countdown, important visual events include the launch of the Delta Rocket, burnout and separation of the three Solid Rocket Boosters, and the main engine cutoff. The cutoff of the main engine marks the beginning of the second stage engine. After the completion of the second stage, the third stage engine ignites and then cuts off. Once the third stage engine cuts off spacecraft separation occurs.
Quasicrystallography from Bn lattices
NASA Astrophysics Data System (ADS)
Koca, M.; Koca, N. O.; Al-Mukhaini, A.; Al-Qanabi, A.
2014-11-01
We present a group theoretical analysis of the hypercubic lattice described by the affine Coxeter-Weyl group Wa (Bn). An h-fold symmetric quasicrystal structure follows from the hyperqubic lattice whose point group is described by the Coxeter-Weyl group W (Bn) with the Coxeter number h=2n. Higher dimensional cubic lattices are explicitly constructed for n = 4,5,6 by identifying their rank-3 Coxeter subgroups and maximal dihedral subgroups. Decomposition of their Voronoi cells under the respective rank-3 subgroups W (A3), W (H2)×W (A1) and W (H3)lead to the rhombic dodecahedron, rhombic icosahedron and rhombic triacontahedron respectively. Projection of the lattice B4 describes a quasicrystal structure with 8-fold symmetry. The B5 lattice leads to quasicrystals with both 5fold and 10 fold symmetries. The lattice B6 projects on a 12-fold symmetric quasicrystal as well as a 3D icosahedral quasicrystal depending on the choice of subspace of projections. The projected sets of lattice points are compatible with the available experimental data.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Whittenberger, J. D.; Nathal, M. V.; Hebsur, M. G.; Kraus, D. L.
2003-01-01
In their simplest form, lattice block panels are produced by direct casting and result in lightweight, fully triangulated truss-like configurations which provide strength and stiffness [2]. The earliest realizations of lattice block were made from A1 and steels, primarily under funding from the US Navy [3]. This work also showed that the mechanical efficiency (eg., specific stiffness) of lattice block structures approached that of honeycomb structures [2]. The lattice architectures are also less anisotropic, and the investment casting route should provide a large advantage in cost and temperature capability over honeycombs which are limited to alloys that can be processed into foils. Based on this early work, a program was initiated to determine the feasibility of extending the high temperature superalloy lattice block [3]. The objective of this effort was to provide an alternative to intermetallics and composites in achieving a lightweight high temperature structure without sacrificing the damage tolerance and moderate cost inherent in superalloys. To establish the feasibility of the superalloy lattice block concept, work was performed in conjunction with JAMCORP, Inc. Billerica, MA, to produce a number of lattice block panels from both IN71 8 and Mar-M247.
Courant, E.D.; Garren, A.A.
1985-10-01
A realistic, distributed interaction region (IR) lattice has been designed that includes new components discussed in the June 1985 lattice workshop. Unlike the test lattices, the lattice presented here includes utility straights and the mechanism for crossing the beams in the experimental straights. Moreover, both the phase trombones and the dispersion suppressors contain the same bending as the normal cells. Vertically separated beams and 6 Tesla, 1-in-1 magnets are assumed. Since the cells are 200 meters long, and have 60 degree phase advance, this lattice has been named RLD1, in analogy with the corresponding test lattice, TLD1. The quadrupole gradient is 136 tesla/meter in the cells, and has similar values in other quadrupoles except in those in the IR`s, where the maximum gradient is 245 tesla/meter. RLD1 has distributed IR`s; however, clustered realistic lattices can easily be assembled from the same components, as was recently done in a version that utilizes the same type of experimental and utility straights as those of RLD1.
Jammed lattice sphere packings
NASA Astrophysics Data System (ADS)
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Comparison of aquatic food chains using nitrogen isotopes.
Cabana, G; Rasmussen, J B
1996-10-01
Recent studies have shown the utility of delta(15)N to model trophic structure and contaminant bioaccumulation in aquatic food webs. However, cross-system comparisons in delta(15)N can be complicated by differences in delta(15)N at the base of the food chain. Such baseline variation in delta(15)N is difficult to resolve using plankton because of the large temporal variability in the delta(15)N of small organisms that have fast nitrogen turnover. Comparisons using large primary consumers, which have stable tissue isotopic signatures because of their slower nitrogen turnover, show that delta(15)N increases markedly with the human population density in the lake watershed. This shift in delta(15)N likely reflects the high delta(15)N of human sewage. Correcting for this baseline variation in delta(15)N, we report that, contrary to expectations based on previous food-web analysis, the food chains leading up to fish varied by about only one trophic level among the 40 lakes studied. Our results also suggest that the delta(15)N signatures of nitrogen at the base of the food chain will provide a useful tool in the assessment of anthropogenic nutrient inputs.
Comparison of aquatic food chains using nitrogen isotopes.
Cabana, G; Rasmussen, J B
1996-01-01
Recent studies have shown the utility of delta(15)N to model trophic structure and contaminant bioaccumulation in aquatic food webs. However, cross-system comparisons in delta(15)N can be complicated by differences in delta(15)N at the base of the food chain. Such baseline variation in delta(15)N is difficult to resolve using plankton because of the large temporal variability in the delta(15)N of small organisms that have fast nitrogen turnover. Comparisons using large primary consumers, which have stable tissue isotopic signatures because of their slower nitrogen turnover, show that delta(15)N increases markedly with the human population density in the lake watershed. This shift in delta(15)N likely reflects the high delta(15)N of human sewage. Correcting for this baseline variation in delta(15)N, we report that, contrary to expectations based on previous food-web analysis, the food chains leading up to fish varied by about only one trophic level among the 40 lakes studied. Our results also suggest that the delta(15)N signatures of nitrogen at the base of the food chain will provide a useful tool in the assessment of anthropogenic nutrient inputs. Images Fig. 4 PMID:8855268
ERIC Educational Resources Information Center
Maranto, Robert; Shuls, James V.
2011-01-01
KIPP Delta succeeds at its stated mission, probably because of its careful attention to culture building. What distinguishes this KIPP school is thoughtful work linking the daily processes of schooling to the goals of schooling, in this case success in college. Day to day tactics reflect broader themes: having a clear mission and hiring staff who…
Cramer, E.M.; Ellinger, F.H.; Land. C.C.
1960-03-22
Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.
NASA Technical Reports Server (NTRS)
Whitehead, J.
1981-01-01
A LOFT program was developed as part of the DC-9 training program which serves as a prototype for much of Delta's other aircraft training programs. The LOFT used differs little from the ideology presented in the Advisory Circular. Difficulty and experienced concerns regarding the effectiveness of LOFT as a complete training vehicle are explored.
Collider lattice position changes from the ``blue book`` to the 10F lattice
Ketcham, L.; Syphers, M.
1992-01-01
GREV4 was the lattice used by RTK to generate the numbers that appear in the ``blue book`` which is the basis for the present footprint. The 1000 foot wide band allows for inevitable design iterations. The first iteration, GREV5 was the lattice used for the baseline costs and descriptions. If the west utility region (at which point the Collider is tied to the injector chain) is held fixed, the coordinates of the GREV4 and GREV5 rings differ by several tens of meters in some places. This is all within the footprint defined in the ``blue book.``
Collider lattice position changes from the blue book'' to the 10F lattice
Ketcham, L.; Syphers, M.
1992-01-01
GREV4 was the lattice used by RTK to generate the numbers that appear in the blue book'' which is the basis for the present footprint. The 1000 foot wide band allows for inevitable design iterations. The first iteration, GREV5 was the lattice used for the baseline costs and descriptions. If the west utility region (at which point the Collider is tied to the injector chain) is held fixed, the coordinates of the GREV4 and GREV5 rings differ by several tens of meters in some places. This is all within the footprint defined in the blue book.''
Planar Arrays on Lattices and Their FFT Steering, a Primer
2011-04-29
by a tall B, so we cannot properly term it the inverse of B. A different terminology is called for. The Moore - Penrose pseudoinverse of any matrix B...lattice and using terminated guard elements at the array periphery. The second is multi-beam phase-shift steering of such arrays using generalized Cooley...FFT realization of the general multidimensional DFT for beam steering is developed using nested sublattice chains. The needed lattice basics are
Hemoglobinopathies in the Dogon Country: presence of beta S, beta C, and delta A' genes.
Ducrocq, R; Bennani, M; Bellis, G; Baby, M; Traore, K; Nagel, R L; Krishnamoorthy, R; Chaventre, A
1994-07-01
The population of the Dogon, located in Mali, is divided in an endogamic Noble class and two endogamic servant castes (Tanners and Blacksmiths). We find that the polymorphic frequencies of beta c, beta S, and, unexpectedly, a mutation of the delta-chain (delta A'), are geographically (valley vs. plateau) as well as social status dependent.
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
Root lattices and quasicrystals
NASA Astrophysics Data System (ADS)
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.
Root lattices and quasicrystals
NASA Astrophysics Data System (ADS)
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown how root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All non-periodic symmetries observed so far are covered in minimal embedding with maximal symmetry.
Superalloy Lattice Block Structures
NASA Technical Reports Server (NTRS)
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
NASA Astrophysics Data System (ADS)
Yan, Weigen; Zhang, Zuhe
2009-04-01
The energy of a simple graph G arising in chemical physics, denoted by E(G), is defined as the sum of the absolute values of eigenvalues of G. As the dimer problem and spanning trees problem in statistical physics, in this paper we propose the energy per vertex problem for lattice systems. In general for a type of lattice in statistical physics, to compute the entropy constant with toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions are different tasks with different hardness and may have different solutions. We show that the energy per vertex of plane lattices is independent of the toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions. In particular, the asymptotic formulae of energies of the triangular, 33.42, and hexagonal lattices with toroidal, cylindrical, Mobius-band, Klein-bottle, and free boundary conditions are obtained explicitly.
Quantum transport in d-dimensional lattices
Manzano, Daniel; Chuang, Chern; Cao, Jianshu
2016-04-28
We show that both fermionic and bosonic uniform d-dimensional lattices can be reduced to a set of independent one-dimensional chains. This reduction leads to the expression for ballistic energy fluxes in uniform fermionic and bosonic lattices. By the use of the Jordan–Wigner transformation we can extend our analysis to spin lattices, proving the coexistence of both ballistic and non-ballistic subspaces in any dimension and for any system size. Lastly, we then relate the nature of transport to the number of excitations in the homogeneous spin lattice, indicating that a single excitation always propagates ballistically and that the non-ballistic behaviour of uniform spin lattices is a consequence of the interaction between different excitations.
Yurdaydin, Cihan; Idilman, Ramazan
2015-01-01
Delta hepatitis is the less frequently encountered but most severe form of viral hepatitis. Acute delta hepatitis, as a result of coinfection with hepatitis B and hepatitis delta, is rare, but may lead to fulminant hepatitis, and no therapy exists for this form. Chronic delta hepatitis (CDH) mostly develops as a result of superinfection of a hepatitis B surface antigen (HBsAg) carrier with hepatitis delta virus (HDV). In general, HDV is the dominant virus. However, a dynamic shift of the dominant virus may occur with time in rare instances, and hepatitis B virus (HBV) may become the dominant virus, at which time nucleos(t)ide analog therapy may be indicated. Otherwise, the only established management of CDH consists of conventional or pegylated interferon therapy, which has to be administered at doses used for hepatitis B for a duration of at least 1 year. Posttreatment week-24 virologic response is the most widely used surrogate marker of treatment efficacy, but it does not represent a sustained virologic response, and late relapse can occur. As an easy-to-use simple serological test, anti-HDV-immunoglobulin M (IgM) correlates with histological inflammatory activity and clinical long-term outcome; however, it is not as sensitive as HDV RNA in assessing treatment response. No evidence-based rules for treating CDH exist, and treatment duration needs to be individualized based on virologic response at end of treatment or end of follow-up. Effective treatment may decrease liver-related complications, such as decompensation or liver-related mortality. In patients with decompensated cirrhosis, interferons are contraindicated and liver transplantation has to be considered. Alternative treatment options are an urgent need in CDH. New treatment strategies targeting different steps of the HDV life cycle, such as hepatocyte entry inhibitors or prenylation inhibitors, are emerging and provide hope for the future. PMID:26253093
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Castle, Toen; Sussman, Daniel M; Tanis, Michael; Kamien, Randall D
2016-09-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes.
Castle, Toen; Sussman, Daniel M.; Tanis, Michael; Kamien, Randall D.
2016-01-01
Kirigami uses bending, folding, cutting, and pasting to create complex three-dimensional (3D) structures from a flat sheet. In the case of lattice kirigami, this cutting and rejoining introduces defects into an underlying 2D lattice in the form of points of nonzero Gaussian curvature. A set of simple rules was previously used to generate a wide variety of stepped structures; we now pare back these rules to their minimum. This allows us to describe a set of techniques that unify a wide variety of cut-and-paste actions under the rubric of lattice kirigami, including adding new material and rejoining material across arbitrary cuts in the sheet. We also explore the use of more complex lattices and the different structures that consequently arise. Regardless of the choice of lattice, creating complex structures may require multiple overlapping kirigami cuts, where subsequent cuts are not performed on a locally flat lattice. Our additive kirigami method describes such cuts, providing a simple methodology and a set of techniques to build a huge variety of complex 3D shapes. PMID:27679822
Legless locomotion in lattices
NASA Astrophysics Data System (ADS)
Schiebel, Perrin; Dai, Jin; Gong, Chaohui; Serrano, Miguel M.; Mendelson, Joseph R., III; Choset, Howie; Goldman, Daniel I.
2015-03-01
By propagating waves from head to tail, limbless organisms like snakes can traverse terrain composed of rocks, foliage, soil and sand. Previous research elucidated how rigid obstacles influence snake locomotion by studying a model terrain-symmetric lattices of pegs placed in hard ground. We want to understand how different substrate-body interaction modes affect performance in desert-adapted snakes during transit of substrates composed of both rigid obstacles and granular media (GM). We tested Chionactis occipitalis, the Mojave shovel-nosed snake, in two laboratory treatments: lattices of 0 . 64 cm diameter obstacles arrayed on both a hard, slick substrate and in a GM of ~ 0 . 3 mm diameter glass particles. For all lattice spacings, d, speed through the hard ground lattices was less than that in GM lattices. However, maximal undulation efficiencies ηu (number of body lengths advanced per undulation cycle) in both treatments were comparable when d was intermediate. For other d, ηu was lower than this maximum in hard ground lattices, while on GM, ηu was insensitive to d. To systematically explore such locomotion, we tested a physical robot model of the snake; performance depended sensitively on base substrate, d and body wave parameters.
ERIC Educational Resources Information Center
Luyben, William L.
2007-01-01
Students frequently confuse and incorrectly apply the several "deltas" that are used in chemical engineering. The deltas come in three different flavors: "out minus in", "big minus little" and "now versus then." The first applies to a change in a stream property as the stream flows through a process. For example, the "[delta]H" in an energy…
ERIC Educational Resources Information Center
Luyben, William L.
2007-01-01
Students frequently confuse and incorrectly apply the several "deltas" that are used in chemical engineering. The deltas come in three different flavors: "out minus in", "big minus little" and "now versus then." The first applies to a change in a stream property as the stream flows through a process. For example, the "[delta]H" in an energy…
Melting of the Abrikosov flux lattice in anisotropic superconductors
NASA Technical Reports Server (NTRS)
Beck, R. G.; Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.; Kogan, V. G.
1992-01-01
It has been proposed that the Abrikosov flux lattice in high-Tc superconductors is melted over a significant fraction of the phase diagram. A thermodynamic argument is provided which establishes that the angular dependence of the melting temperature is controlled by the superconducting mass anisotropy. Using a low-frequency torsional-oscillator technique, this relationship has been tested in untwinned single-crystal YBa2Cu3O(7-delta). The results offer decisive support for the melting proposal.
Solitons in spiraling Vogel lattices.
Kartashov, Yaroslav V; Vysloukh, Victor A; Torner, Lluis
2013-01-15
We address light propagation in Vogel optical lattices and show that such lattices support a variety of stable soliton solutions in both self-focusing and self-defocusing media, whose propagation constants belong to domains resembling gaps in the spectrum of a truly periodic lattice. The azimuthally rich structure of Vogel lattices allows generation of spiraling soliton motion.
A LOW GAMMA_T INJECTION LATTICE FOR POLARIZED PROTONS IN RHIC
MONTAG,C.
2007-06-25
Polarized protons are injected into the Relativistic Heavy Jon Collider (RHIC) just above transition energy. When installation of a cold partial Siberian snake in the AGS required lowering the injection energy by {Delta}{gamma} = 0.56, the transition energy in RHIC had to be lowered accordingly to ensure proper longitudinal matching. This paper presents lattice modifications implemented to lower the transition energy by {Delta}{gamma}{sub t} = 0.8.
Chorin, Alexandre J.
2007-12-12
A sampling method for spin systems is presented. The spin lattice is written as the union of a nested sequence of sublattices, all but the last with conditionally independent spins, which are sampled in succession using their marginals. The marginals are computed concurrently by a fast algorithm; errors in the evaluation of the marginals are offset by weights. There are no Markov chains and each sample is independent of the previous ones; the cost of a sample is proportional to the number of spins (but the number of samples needed for good statistics may grow with array size). The examples include the Edwards-Anderson spin glass in three dimensions.
DELTAS: A new Global Delta Sustainability Initiative (Invited)
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.
2013-12-01
Deltas are economic and environmental hotspots, food baskets for many nations, home to a large part of the world population, and hosts of exceptional biodiversity and rich ecosystems. Deltas, being at the land-water interface, are international, regional, and local transport hubs, thus providing the basis for intense economic activities. Yet, deltas are deteriorating at an alarming rate as 'victims' of human actions (e.g. water and sediment reduction due to upstream basin development), climatic impacts (e.g. sea level rise and flooding from rivers and intense tropical storms), and local exploration (e.g. sand or aggregates, groundwater and hydrocarbon extraction). Although many efforts exist on individual deltas around the world, a comprehensive global delta sustainability initiative that promotes awareness, science integration, data and knowledge sharing, and development of decision support tools for an effective dialogue between scientists, managers and policy makers is lacking. Recently, the international scientific community proposed to establish the International Year of Deltas (IYD) to serve as the beginning of such a Global Delta Sustainability Initiative. The IYD was proposed as a year to: (1) increase awareness and attention to the value and vulnerability of deltas worldwide; (2) promote and enhance international and regional cooperation at the scientific, policy, and stakeholder level; and (3) serve as a launching pad for a 10-year committed effort to understand deltas as complex socio-ecological systems and ensure preparedness in protecting and restoring them in a rapidly changing environment. In this talk, the vision for such an international coordinated effort on delta sustainability will be presented as developed by a large number of international experts and recently funded through the Belmont Forum International Opportunities Fund. Participating countries include: U.S., France, Germany, U.K., India, Japan, Netherlands, Norway, Brazil, Bangladesh
RNA folding on the 3D triangular lattice
2009-01-01
Background Difficult problems in structural bioinformatics are often studied in simple exact models to gain insights and to derive general principles. Protein folding, for example, has long been studied in the lattice model. Recently, researchers have also begun to apply the lattice model to the study of RNA folding. Results We present a novel method for predicting RNA secondary structures with pseudoknots: first simulate the folding dynamics of the RNA sequence on the 3D triangular lattice, next extract and select a set of disjoint base pairs from the best lattice conformation found by the folding simulation. Experiments on sequences from PseudoBase show that our prediction method outperforms the HotKnot algorithm of Ren, Rastegari, Condon and Hoos, a leading method for RNA pseudoknot prediction. Our method for RNA secondary structure prediction can be adapted into an efficient reconstruction method that, given an RNA sequence and an associated secondary structure, finds a conformation of the sequence on the 3D triangular lattice that realizes the base pairs in the secondary structure. We implemented a suite of computer programs for the simulation and visualization of RNA folding on the 3D triangular lattice. These programs come with detailed documentation and are accessible from the companion website of this paper at http://www.cs.usu.edu/~mjiang/rna/DeltaIS/. Conclusion Folding simulation on the 3D triangular lattice is effective method for RNA secondary structure prediction and lattice conformation reconstruction. The visualization software for the lattice conformations of RNA structures is a valuable tool for the study of RNA folding and is a great pedagogic device. PMID:19891777
Extension of a vortex-lattice method to include the effects of leading-edge separation
NASA Technical Reports Server (NTRS)
Mook, D. T.; Maddox, S. A.
1974-01-01
Vortex-lattice methods have been used successfully to obtain the aerodynamic coefficients of lifting surfaces without leading-edge separation. It is shown how an existing vortex-lattice method can be modified to include the effects of leading-edge separation. The modified version is then used to calculate the aerodynamic loads on a highly swept delta wing. The results are compared with Peckham's (1958) experimental data.
Experimental evidence for flux-lattice melting. [in high-Tc superconductors
NASA Technical Reports Server (NTRS)
Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.
1991-01-01
A low-frequency torsional oscillator has been used to search for flux-lattice melting in an untwinned single crystal of YBa2Cu3O(7-delta). The damping of the oscillator was measured as a function of temperature, for applied magnetic fields in the range H = 0.1-2.3 T. A remarkably sharp damping peak has been located. It is suggested that the temperature of the peak corresponds to the melting point of the Abrikosov flux lattice.
Experimental evidence for flux-lattice melting. [in high-Tc superconductors
NASA Technical Reports Server (NTRS)
Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.
1991-01-01
A low-frequency torsional oscillator has been used to search for flux-lattice melting in an untwinned single crystal of YBa2Cu3O(7-delta). The damping of the oscillator was measured as a function of temperature, for applied magnetic fields in the range H = 0.1-2.3 T. A remarkably sharp damping peak has been located. It is suggested that the temperature of the peak corresponds to the melting point of the Abrikosov flux lattice.
Extension of a vortex-lattice method to include the effects of leading-edge separation
NASA Technical Reports Server (NTRS)
Mook, D. T.; Maddox, S. A.
1974-01-01
Vortex-lattice methods have been used successfully to obtain the aerodynamic coefficients of lifting surfaces without leading-edge separation. It is shown how an existing vortex-lattice method can be modified to include the effects of leading-edge separation. The modified version is then used to calculate the aerodynamic loads on a highly swept delta wing. The results are compared with Peckham's (1958) experimental data.
An improved method for extracting matrix elements from lattice three-point functions
C. Aubin, K. Orginos
2011-12-01
The extraction of matrix elements from baryon three-point functions is complicated by the fact that the signal-to-noise drops rapidly as a function of time. Using a previously discussed method to improve the signal-to-noise for lattice two-point functions, we use this technique to do so for lattice three-point functions, using electromagnetic form factors for the nucleon and Delta as an example.
Understanding pesticides in California's Delta
Kuivila, Kathryn; Orlando, James L.
2012-01-01
The Sacramento-San Joaquin River Delta (Delta) is the hub of California’s water system and also an important habitat for imperiled fish and wildlife. Aquatic organisms are exposed to mixtures of pesticides that flow through the maze of Delta water channels from sources including agricultural, landscape, and urban pest-control applications. While we do not know all of the effects pesticides have on the ecosystem, there is evidence that they cause some damage to organisms in the Delta. Decades of USGS research have provided a good understanding of when, where, and how pesticides enter the Delta. However, pesticide use is continually changing. New field studies and methods are needed so that scientists can analyze which pesticides are present in the Delta, and at what concentrations, enabling them to estimate exposure and ultimate effects on organisms. Continuing research will provide resource managers and stakeholders with crucial information to manage the Delta wisely.
Martian deltas: Morphology and distribution
NASA Technical Reports Server (NTRS)
Rice, J. W., Jr.; Scott, D. H.
1993-01-01
Recent detailed mapping has revealed numerous examples of Martian deltas. The location and morphology of these deltas are described. Factors that contribute to delta morphology are river regime, coastal processes, structural stability, and climate. The largest delta systems on Mars are located near the mouths of Maja, Maumee, Vedra, Ma'adim, Kasei, and Brazos Valles. There are also several smaller-scale deltas emplaced near channel mouths situated in Ismenius Lacus, Memnonia, and Arabia. Delta morphology was used to reconstruct type, quantity, and sediment load size transported by the debouching channel systems. Methods initially developed for terrestrial systems were used to gain information on the relationships between Martian delta morphology, river regime, and coastal processes.
Lattice Monte Carlo simulations of polymer melts
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping
2014-12-01
We use Monte Carlo simulations to study polymer melts consisting of fully flexible and moderately stiff chains in the bond fluctuation model at a volume fraction 0.5. In order to reduce the local density fluctuations, we test a pre-packing process for the preparation of the initial configurations of the polymer melts, before the excluded volume interaction is switched on completely. This process leads to a significantly faster decrease of the number of overlapping monomers on the lattice. This is useful for simulating very large systems, where the statistical properties of the model with a marginally incomplete elimination of excluded volume violations are the same as those of the model with strictly excluded volume. We find that the internal mean square end-to-end distance for moderately stiff chains in a melt can be very well described by a freely rotating chain model with a precise estimate of the bond-bond orientational correlation between two successive bond vectors in equilibrium. The plot of the probability distributions of the reduced end-to-end distance of chains of different stiffness also shows that the data collapse is excellent and described very well by the Gaussian distribution for ideal chains. However, while our results confirm the systematic deviations between Gaussian statistics for the chain structure factor Sc(q) [minimum in the Kratky-plot] found by Wittmer et al. [EPL 77, 56003 (2007)] for fully flexible chains in a melt, we show that for the available chain length these deviations are no longer visible, when the chain stiffness is included. The mean square bond length and the compressibility estimated from collective structure factors depend slightly on the stiffness of the chains.
Delta-doping of Semiconductors
NASA Astrophysics Data System (ADS)
Schubert, E. F.
2005-08-01
Part I: 1. Introduction E. F. Schubert; Part II: 2. Electronic structure of delta-doped semiconductors C. R. Proetto; Part III: 3. Recent progress in delta-like confinement of impurities in GaAs K. H. Ploog; 4. Flow-rate modulation epitaxy (FME) of III-V semiconductors T. Makimoto and Y. Horikoshi; 5. Gas source molecular beam epitaxy (MBE) of delta-doped III-V semiconductors D. Ritter; 6. Solid phase epitaxy for delta-doping in silicon I. Eisele; 7. Low temperature MBE of silicon H.-J. Gossmann; Part IV: 8. Secondary ion mass spectrometry of delta-doped semiconductors H. S. Luftmann; 9. Capacitance-voltage profiling E. F. Schubert; 10. Redistribution of impurities in III-V semiconductors E. F. Schubert; 11. Dopant diffusion and segregation in delta-doped silicon films H.-J. Gossmann; 12. Characterisation of silicon and delta-doped structures in GaAs R. C. Newman; 13. The DX-center in silicon delta-doped GaAs and AlxGa1-xAs P. M. Koenraad; Part V: 14. Luminescence and ellipsometry spectroscopy H. Yao and E. F. Schubert; 15. Photoluminescence and Raman spectroscopy of single delta-doped III-V semiconductor heterostructures J. Wagner and D. Richards; 16. Electron transport in delta-doped quantum wells W. T. Masselink; 17. Electron mobility in delta-doped layers P. M. Koenraad; 18. Hot electrons in delta-doped GaAs M. Asche; 19. Ordered delta-doping R. L. Headrick, L. C. Feldman and B. E. Weir; Part IV: 20. Delta-doped channel III-V field effect transistors (FETs) W.-P. Hong; 21. Selectively doped heterostructure devices E. F. Schubert; 22. Silicon atomic layer doping FET K. Nakagawa and K. Yamaguchi; 23. Planar doped barrier devices R. J. Malik; 24. Silicon interband and intersubband photodetectors I. Eisele; 25. Doping superlattice devices E. F. Schubert.
Monte Carlo simulations of lattice models for single polymer systems
Hsu, Hsiao-Ping
2014-10-28
Single linear polymer chains in dilute solutions under good solvent conditions are studied by Monte Carlo simulations with the pruned-enriched Rosenbluth method up to the chain length N∼O(10{sup 4}). Based on the standard simple cubic lattice model (SCLM) with fixed bond length and the bond fluctuation model (BFM) with bond lengths in a range between 2 and √(10), we investigate the conformations of polymer chains described by self-avoiding walks on the simple cubic lattice, and by random walks and non-reversible random walks in the absence of excluded volume interactions. In addition to flexible chains, we also extend our study to semiflexible chains for different stiffness controlled by a bending potential. The persistence lengths of chains extracted from the orientational correlations are estimated for all cases. We show that chains based on the BFM are more flexible than those based on the SCLM for a fixed bending energy. The microscopic differences between these two lattice models are discussed and the theoretical predictions of scaling laws given in the literature are checked and verified. Our simulations clarify that a different mapping ratio between the coarse-grained models and the atomistically realistic description of polymers is required in a coarse-graining approach due to the different crossovers to the asymptotic behavior.
NASA Astrophysics Data System (ADS)
Knuth, Kevin H.
2009-12-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.
NASA Technical Reports Server (NTRS)
2002-01-01
As the Mississippi River enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad stripe running northwest to southeast.
This image was acquired on May 24, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.
ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.
The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping
Renormalization of aperiodic model lattices: spectral properties
NASA Astrophysics Data System (ADS)
Kroon, Lars; Riklund, Rolf
2003-04-01
Many of the published results for one-dimensional deterministic aperiodic systems treat rather simplified electron models with either a constant site energy or a constant hopping integral. Here we present some rigorous results for more realistic mixed tight-binding systems with both the site energies and the hopping integrals having an aperiodic spatial variation. It is shown that the mixed Thue-Morse, period-doubling and Rudin-Shapiro lattices can be transformed to on-site models on renormalized lattices maintaining the individual order between the site energies. The character of the energy spectra for these mixed models is therefore the same as for the corresponding on-site models. Furthermore, since the study of electrons on a lattice governed by the Schrödinger tight-binding equation maps onto the study of elastic vibrations on a harmonic chain, we have proved that the vibrational spectra of aperiodic harmonic chains with distributions of masses determined by the Thue-Morse sequence and the period-doubling sequence are purely singular continuous.
David Richards
2004-10-01
This talk describes progress at understanding the properties of the nucleon and its excitations from lattice QCD. I begin with a review of recent lattice results for the lowest-lying states of the excited baryon spectrum. The need to approach physical values of the light quark masses is emphasized, enabling the effects of the pion cloud to be revealed. I then outline the development of techniques that will enable the extraction of the masses of the higher resonances, and describe how such calculations provide insight into the structure of the hadrons. Finally, I discuss direct probes of the quark and gluon structure of baryons through the lattice measurement of the moments of quark distributions and of Generalized Parton Distributions.
Crossing on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Gu, Hang; Ziff, Robert M.
2012-05-01
We divide the circular boundary of a hyperbolic lattice into four equal intervals and study the probability of a percolation crossing between an opposite pair as a function of the bond occupation probability p. We consider the {7,3} (heptagonal), enhanced or extended binary tree (EBT), the EBT-dual, and the {5,5} (pentagonal) lattices. We find that the crossing probability increases gradually from 0 to 1 as p increases from the lower pl to the upper pu critical values. We find bounds and estimates for the values of pl and pu for these lattices and identify the self-duality point p* corresponding to where the crossing probability equals 1/2. Comparison is made with recent numerical and theoretical results.
NASA Astrophysics Data System (ADS)
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
Lattice Boltzmann Stokesian dynamics.
Ding, E J
2015-11-01
Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.
Topological states in engineered atomic lattices
NASA Astrophysics Data System (ADS)
Drost, Robert; Ojanen, Teemu; Harju, Ari; Liljeroth, Peter
2017-07-01
Topological materials exhibit protected edge modes that have been proposed for applications in, for example, spintronics and quantum computation. Although a number of such systems exist, it would be desirable to be able to test theoretical proposals in an artificial system that allows precise control over the key parameters of the model. The essential physics of several topological systems can be captured by tight-binding models, which can also be implemented in artificial lattices. Here, we show that this method can be realized in a vacancy lattice in a chlorine monolayer on a Cu(100) surface. We use low-temperature scanning tunnelling microscopy (STM) to fabricate such lattices with atomic precision and probe the resulting local density of states (LDOS) with scanning tunnelling spectroscopy (STS). We create analogues of two tight-binding models of fundamental importance: the polyacetylene (dimer) chain with topological domain-wall states, and the Lieb lattice with a flat electron band. These results provide an important step forward in the ongoing effort to realize designer quantum materials with tailored properties.
Collapsing lattice animals and lattice trees in two dimensions
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Grassberger, Peter
2005-06-01
We present high statistics simulations of weighted lattice bond animals and lattice trees on the square lattice, with fugacities for each non-bonded contact and for each bond between two neighbouring monomers. The simulations are performed using a newly developed sequential sampling method with resampling, very similar to the pruned-enriched Rosenbluth method (PERM) used for linear chain polymers. We determine with high precision the line of second-order transitions from an extended to a collapsed phase in the resulting two-dimensional phase diagram. This line includes critical bond percolation as a multicritical point, and we verify that this point divides the line into different universality classes. One of them corresponds to the collapse driven by contacts and includes the collapse of (weakly embeddable) trees. There is some evidence that the other is subdivided again into two parts with different universality classes. One of these (at the far side from collapsing trees) is bond driven and is represented by the Derrida-Herrmann model of animals having bonds only (no contacts). Between the critical percolation point and this bond-driven collapse seems to be an intermediate regime, whose other end point is a multicritical point P* where a transition line between two collapsed phases (one bond driven and the other contact driven) sparks off. This point P* seems to be attractive (in the renormalization group sense) from the side of the intermediate regime, so there are four universality classes on the transition line (collapsing trees, critical percolation, intermediate regime, and Derrida-Herrmann). We obtain very precise estimates for all critical exponents for collapsing trees. It is already harder to estimate the critical exponents for the intermediate regime. Finally, it is very difficult to obtain with our method good estimates of the critical parameters of the Derrida-Herrmann universality class. As regards the bond-driven to contact-driven transition in the
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
NASA Astrophysics Data System (ADS)
Oates, Chris
2012-06-01
Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths << 1 Hz). To suppress the effects of atomic motion/recoil, the atoms in the sample (˜10^4 atoms) are confined tightly in the potential wells of an optical standing wave (lattice). The wavelength of the lattice light is tuned to its ``magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates
NASA Astrophysics Data System (ADS)
Wong, Chun Wa; Yasui, Kosuke
2006-06-01
The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.
Goncalves, A.P.; Santos, I.C.; Lopes, E.B.; Henriques, R.T.; Almeida, M.; Figueiredo, M.O.
1988-05-01
The oxides with composition Y/sub 1/..sqrt../sub x/Pr/sub x/Ba/sub 2/(Cu/sub 3/O/sub 7/..sqrt../sub delta/)(0less than or equal toxless than or equal to1) 7-delta (0less than or equal toxless than or equal to1) are characterized by x-ray diffraction, resistivity (rho) and thermoelectric power (S) measurements. X-ray diffraction shows an orthorhombically distorted perovskite structure for all compositions, the pseudotetragonality increasing with x. The substitution of the tetravalent Pr for the trivalent Y atom increases the band filling in these materials. As a consequence, the superconducting transition temperature is progressively decreased with increasing x, and S significantly increases. Thermopower and resistivity measurements indicate that these oxides have relatively narrow bands and that the electronic correlations dominate their properties
Natural processes in delta restoration: application to the Mississippi Delta.
Paola, Chris; Twilley, Robert R; Edmonds, Douglas A; Kim, Wonsuck; Mohrig, David; Parker, Gary; Viparelli, Enrica; Voller, Vaughan R
2011-01-01
Restoration of river deltas involves diverting sediment and water from major channels into adjoining drowned areas, where the sediment can build new land and provide a platform for regenerating wetland ecosystems. Except for local engineered structures at the points of diversion, restoration mainly relies on natural delta-building processes. Present understanding of such processes is sufficient to provide a basis for determining the feasibility of restoration projects through quantitative estimates of land-building rates and sustainable wetland area under different scenarios of sediment supply, subsidence, and sea-level rise. We are not yet to the point of being able to predict the evolution of a restored delta in detail. Predictions of delta evolution are based on field studies of active deltas, deltas in mine-tailings ponds, experimental deltas, and countless natural experiments contained in the stratigraphic record. These studies provide input for a variety of mechanistic delta models, ranging from radially averaged formulations to more detailed models that can resolve channels, topography, and ecosystem processes. Especially exciting areas for future research include understanding the mechanisms by which deltaic channel networks self-organize, grow, and distribute sediment and nutrients over the delta surface and coupling these to ecosystem processes, especially the interplay of topography, network geometry, and ecosystem dynamics.
NASA Technical Reports Server (NTRS)
2006-01-01
This HiRISE image covers a portion of a delta that partially fills Eberswalde crater in Margaritifer Sinus. The delta was first recognized and mapped using MOC images that revealed various features whose presence required sustained flow and deposition into a lake that once occupied the crater. The HiRISE image resolves meter-scale features that record the migration of channels and delta distributaries as the delta grew over time. Differences in grain-size of sediments within the environments on the delta enable differential erosion of the deposits. As a result, coarser channel deposits are slightly more resistant and stand in relief relative to finer-grained over-bank and more easily eroded distal delta deposits. Close examination of the relict channel deposits confirms the presence of some meter-size blocks that were likely too coarse to have been transported by water flowing within the channels. These blocks may be formed of the sand and gravel that more likely moved along the channels that was lithified and eroded. Numerous meter-scale polygonal structures are common on many surfaces, but mostly those associated with more quiescent depositional environments removed from the channels. The polygons could be the result of deposition of fine-grained sediments that were either exposed and desiccated (dried out), rich in clays that shrunk when the water was removed, turned into rock and then fractured and eroded, or some combination of these processes.
Image PSP_001336_1560 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 8, 2006. The complete image is centered at -23.8 degrees latitude, 326.4 degrees East longitude. The range to the target site was 256.3 km (160.2 miles). At this distance the image scale is 25.6 cm/pixel (with 1 x 1 binning) so objects 77 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel and north is up. The image was
NASA Technical Reports Server (NTRS)
2006-01-01
This HiRISE image covers a portion of a delta that partially fills Eberswalde crater in Margaritifer Sinus. The delta was first recognized and mapped using MOC images that revealed various features whose presence required sustained flow and deposition into a lake that once occupied the crater. The HiRISE image resolves meter-scale features that record the migration of channels and delta distributaries as the delta grew over time. Differences in grain-size of sediments within the environments on the delta enable differential erosion of the deposits. As a result, coarser channel deposits are slightly more resistant and stand in relief relative to finer-grained over-bank and more easily eroded distal delta deposits. Close examination of the relict channel deposits confirms the presence of some meter-size blocks that were likely too coarse to have been transported by water flowing within the channels. These blocks may be formed of the sand and gravel that more likely moved along the channels that was lithified and eroded. Numerous meter-scale polygonal structures are common on many surfaces, but mostly those associated with more quiescent depositional environments removed from the channels. The polygons could be the result of deposition of fine-grained sediments that were either exposed and desiccated (dried out), rich in clays that shrunk when the water was removed, turned into rock and then fractured and eroded, or some combination of these processes.
Image PSP_001336_1560 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 8, 2006. The complete image is centered at -23.8 degrees latitude, 326.4 degrees East longitude. The range to the target site was 256.3 km (160.2 miles). At this distance the image scale is 25.6 cm/pixel (with 1 x 1 binning) so objects 77 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel and north is up. The image was
Pioneer Launch on Delta Vehicle
NASA Technical Reports Server (NTRS)
1969-01-01
NASA launches the last in the series of interplanetary Pioneer spacecraft, Pioneer 10 from Cape Kennedy, Florida. The long-tank Delta launch vehicle placed the spacecraft in a solar orbit along the path of Earth's orbit. The spacecraft then passed inside and outside Earth's orbit, alternately speeding up and slowing down relative to Earth. The Delta launch vehicle family started development in 1959. The Delta was composed of parts from the Thor, an intermediate-range ballistic missile, as its first stage, and the Vanguard as its second. The first Delta was launched from Cape Canaveral on May 13, 1960 and was powerful enough to deliver a 100-pound spacecraft into geostationary transfer orbit. Delta has been used to launch civil, commercial, and military satellites into orbit. For more information about Delta, please see Chapter 3 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.
2001-10-22
The western-most part of the Ganges Delta is seen in this 54.5 by 60 km ASTER sub-scene acquired on January 6, 2005. The Hugli River branches off from the Ganges River 300 km to the north, and flows by the city of Calcutta before emptying into the Bay of Bengal. High sediment load is evident by the light tan colors in the water, particularly downstream from off-shore islands. The deep green colors of some of these islands are mangrove swamps. The image is centered at 21.9 degrees north latitude, 88 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA11158
NASA Astrophysics Data System (ADS)
Schaich, David
2016-03-01
Lattice field theory provides a non-perturbative regularization of strongly interacting systems, which has proven crucial to the study of quantum chromodynamics among many other theories. Supersymmetry plays prominent roles in the study of physics beyond the standard model, both as an ingredient in model building and as a tool to improve our understanding of quantum field theory. Attempts to apply lattice techniques to supersymmetric field theories have a long history, but until recently these efforts have generally encountered insurmountable difficulties related to the interplay of supersymmetry with the lattice discretization of spacetime. In recent years these difficulties have been overcome for a class of theories that includes the particularly interesting case of maximally supersymmetric Yang-Mills (N = 4 SYM) in four dimensions, which is a cornerstone of AdS/CFT duality. In combination with computational advances this progress enables practical numerical investigations of N = 4 SYM on the lattice, which can address questions that are difficult or impossible to handle through perturbation theory, AdS/CFT duality, or the conformal bootstrap program. I will briefly review some of the new ideas underlying this recent progress, and present some results from ongoing large-scale numerical calculations, including comparisons with analytic predictions.
NASA Astrophysics Data System (ADS)
Singh, Kevin; Geiger, Zachary; Senaratne, Ruwan; Rajagopal, Shankari; Fujiwara, Kurt; Weld, David; Weld Group Team
2015-05-01
Quasiperiodicity is intimately involved in quantum phenomena from localization to the quantum Hall effect. Recent experimental investigation of quasiperiodic quantum effects in photonic and electronic systems have revealed intriguing connections to topological phenomena. However, such experiments have been limited by the absence of techniques for creating tunable quasiperiodic structures. We propose a new type of quasiperiodic optical lattice, constructed by intersecting a Gaussian beam with a 2D square lattice at an angle with an irrational tangent. The resulting potential, a generalization of the Fibonacci lattice, is a physical realization of the mathematical ``cut-and-project'' construction which underlies all quasiperiodic structures. Calculation of the energies and wavefunctions of atoms loaded into the proposed quasiperiodic lattice demonstrate a fractal energy spectrum and the existence of edge states. We acknowledge support from the ONR (award N00014-14-1-0805), the ARO and the PECASE program (award W911NF-14-1-0154), the AFOSR (award FA9550-12-1-0305), and the Alfred P. Sloan foundation (grant BR2013-110).
Generalizing Word Lattice Translation
2008-02-01
demonstrate substantial gains for Chinese -English and Arabic -English translation. Keywords: word lattice translation, phrase-based and hierarchical...introduce in reordering models. Our experiments evaluating the approach demonstrate substantial gains for Chinese -English and Arabic -English translation. 15...Section 4 presents two applications of the noisier channel paradigm, demonstrating substantial performance gains in Arabic -English and Chinese -English
Moving embedded lattice solitons.
Malomed, B A; Fujioka, J; Espinosa-Cerón, A; Rodríguez, R F; González, S
2006-03-01
It was recently proved that solitons embedded in the spectrum of linear waves may exist in discrete systems, and explicit solutions for isolated unstable embedded lattice solitons (ELS) of a differential-difference version of a higher-order nonlinear Schrodinger equation were found [Gonzalez-Perez-Sandi, Fujioka, and Malomed, Physica D 197, 86 (2004)]. The discovery of these ELS gives rise to relevant questions such as the following: (1) Are there continuous families of ELS? (2) Can ELS be stable? (3) Is it possible for ELS to move along the lattice? (4) How do ELS interact? The present work addresses these questions by showing that a novel equation (a discrete version of a complex modified Korteweg-de Vries equation that includes next-nearest-neighbor couplings) has a two-parameter continuous family of exact ELS. These solitons can move with arbitrary velocities across the lattice, and the numerical simulations demonstrate that these ELS are completely stable. Moreover, the numerical tests show that these ELS are robust enough to withstand collisions, and the result of a collision is only a shift in the positions of the solitons. The model may apply to the description of a Bose-Einstein condensate with dipole-dipole interactions between the atoms, trapped in a deep optical-lattice potential.
ERIC Educational Resources Information Center
Dory, Fran
1975-01-01
The first part of this report discusses the career lattice concept in the Career Opportunities Program (COP), a concept which represents the marriage of two career development ideas--upward mobility and task differentiation at separate levels. It explains that by combining task differentiation and upward mobility, a system can effectively reduce a…
ERIC Educational Resources Information Center
Scott, Paul
2006-01-01
A "convex" polygon is one with no re-entrant angles. Alternatively one can use the standard convexity definition, asserting that for any two points of the convex polygon, the line segment joining them is contained completely within the polygon. In this article, the author provides a solution to a problem involving convex lattice polygons.
Andreas S. Kronfeld
2002-09-30
After reviewing some of the mathematical foundations and numerical difficulties facing lattice QCD, I review the status of several calculations relevant to experimental high-energy physics. The topics considered are moments of structure functions, which may prove relevant to search for new phenomena at the LHC, and several aspects of flavor physics, which are relevant to understanding CP and flavor violation.
Feng Haidong; Siegel, Warren
2006-08-15
We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.
Phenomenology Using Lattice QCD
NASA Astrophysics Data System (ADS)
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
Phenomenology Using Lattice QCD
NASA Astrophysics Data System (ADS)
Gupta, R.
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
NASA Technical Reports Server (NTRS)
Savelyev, V. A.
1979-01-01
The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.
Coupled map lattice model of jet breakup
Minich, R W; Schwartz, A J; Baker, E L
2001-01-25
An alternative approach is described to evaluate the statistical nature of the breakup of shaped charge liners. Experimental data from ductile and brittle copper jets are analyzed in terms of velocity gradient, deviation of {Delta}V from linearity, R/S analysis, and the Hurst exponent within the coupled map lattice model. One-dimensional simulations containing 600 zones of equal mass and using distinctly different force-displacement curves are generated to simulate ductile and brittle behavior. A particle separates from the stretching jet when an element of material reaches the failure criterion. A simple model of a stretching rod using brittle, semi-brittle, and ductile force-displacement curves is in agreement with the experimental results for the Hurst exponent and the phase portraits and indicates that breakup is a correlated phenomenon.
Thresholds of surface codes on the general lattice structures suffering biased error and loss
Tokunaga, Yuuki; Fujii, Keisuke
2014-12-04
A family of surface codes with general lattice structures is proposed. We can control the error tolerances against bit and phase errors asymmetrically by changing the underlying lattice geometries. The surface codes on various lattices are found to be efficient in the sense that their threshold values universally approach the quantum Gilbert-Varshamov bound. We find that the error tolerance of the surface codes depends on the connectivity of the underlying lattices; the error chains on a lattice of lower connectivity are easier to correct. On the other hand, the loss tolerance of the surface codes exhibits an opposite behavior; the logical information on a lattice of higher connectivity has more robustness against qubit loss. As a result, we come upon a fundamental trade-off between error and loss tolerances in the family of surface codes with different lattice geometries.
Thresholds of surface codes on the general lattice structures suffering biased error and loss
NASA Astrophysics Data System (ADS)
Tokunaga, Yuuki; Fujii, Keisuke
2014-12-01
A family of surface codes with general lattice structures is proposed. We can control the error tolerances against bit and phase errors asymmetrically by changing the underlying lattice geometries. The surface codes on various lattices are found to be efficient in the sense that their threshold values universally approach the quantum Gilbert-Varshamov bound. We find that the error tolerance of the surface codes depends on the connectivity of the underlying lattices; the error chains on a lattice of lower connectivity are easier to correct. On the other hand, the loss tolerance of the surface codes exhibits an opposite behavior; the logical information on a lattice of higher connectivity has more robustness against qubit loss. As a result, we come upon a fundamental trade-off between error and loss tolerances in the family of surface codes with different lattice geometries.
[Delta-9-tetrahydrocannabinol pharmacokinetics].
Goullé, J-P; Saussereau, E; Lacroix, C
2008-08-01
Delta-9-tetrahydrocannabinol (Delta-9-THC) is the main psychoactive ingredient of cannabis. Smoking is currently most common use of cannabis. The present review focuses on the pharmacokinetics of THC. The variability of THC in plant material which has significantly increased in recent years leads to variability in tissue THC levels from smoking, which is, in itself, a highly individual process. This variability of THC content has an important impact on drug pharmacokinetics and pharmacology. After smoking THC bioavailability averages 30%. With a 3.55% THC cigarette, a peak plasma level near 160 ng/mL occurs approximately 10 min after inhalation. THC is eliminated quickly from plasma in a multiphasic manner and is widely distributed to tissues, which is responsible for its pharmacologic effects. Body fat then serves as a long-term storage site. This particular pharmacokinetics explains the noncorrelation between THC blood level and clinical effects as is observed for ethanol. A major active 11-hydroxy metabolite is formed after both inhalation and oral dosing (20 and 100% of parent, respectively). The elimination of THC and its many metabolites, mainly THC-COOH, occurs via the feces and urine for several weeks. Thus, to confirm abstinence, urine THC-COOH analysis would be a useful tool. A positive result could be checked by gas chromatography-mass spectrometry THC blood analysis, indicative of a recent cannabis exposure.
Localization oscillation in antidot lattices
NASA Astrophysics Data System (ADS)
Uryu, S.; Ando, T.
1998-06-01
The Anderson localization in square and hexagonal antidot lattices is numerically studied with the use of a Thouless number method. It is revealed that localization is very sensitive to the aspect ratio between the antidot diameter and the lattice constant. In a hexagonal lattice, both the Thouless number and the localization length oscillate with the period equal to the Al’tshuler-Aronov-Spivak oscillation. The oscillation is quite weak in a square lattice.
Assembling Fibonacci anyons from a Z3 parafermion lattice model
NASA Astrophysics Data System (ADS)
Stoudenmire, E. M.; Clarke, David J.; Mong, Roger S. K.; Alicea, Jason
2015-06-01
Recent concrete proposals suggest it is possible to engineer a two-dimensional bulk phase supporting non-Abelian Fibonacci anyons out of Abelian fractional quantum Hall systems. The low-energy degrees of freedom of such setups can be modeled as Z3 parafermions "hopping" on a two-dimensional lattice. We use the density matrix renormalization group to study a model of this type interpolating between the decoupled-chain, triangular-lattice, and square-lattice limits. The results show clear evidence of the Fibonacci phase over a wide region of the phase diagram, most notably including the isotropic triangular-lattice point. We also study the broader phase diagram of this model and show that elsewhere it supports an Abelian state with semionic excitations.
The Bond Fluctuation Model and Other Lattice Models
NASA Astrophysics Data System (ADS)
Müller, Marcus
Lattice models constitute a class of coarse-grained representations of polymeric materials. They have enjoyed a longstanding tradition for investigating the universal behavior of long chain molecules by computer simulations and enumeration techniques. A coarse-grained representation is often necessary to investigate properties on large time- and length scales. First, some justification for using lattice models will be given and the benefits and limitations will be discussed. Then, the bond fluctuation model by Carmesin and Kremer [1] is placed into the context of other lattice models and compared to continuum models. Some specific techniques for measuring the pressure in lattice models will be described. The bond fluctuation model has been employed in more than 100 simulation studies in the last decade and only few selected applications can be mentioned.
The immunoglobulin heavy chain locus in the reptile Anolis carolinensis.
Gambón Deza, Francisco; Sánchez Espinel, Christian; Magadán Mompó, Susana
2009-05-01
We describe the entire immunoglobulin heavy chain (IgH) locus from the reptile Anolis carolinensis. The heavy chain constant (C(H)) region includes C mu, C delta and C upsilon genes. This is the first description of a C upsilon gene in the reptilian class. Variable (V(H)), diversity (D(H)) and joining (J(H)) genes are located 5' from the constant (C(H)) chain complex locus. The C mu and C upsilon genes encode antibodies with four immunoglobulin domains. The C delta gene encoded an 11 domain delta heavy chain as in Eublepharis macularius. Seventy V(H) genes, belonging to 28 families, were identified, and they can be sorted into five broader groups. The similarity of the organization of the reptilian genes with those of amphibians and mammals suggests the existence of a process of heavy chain genomic reorganization before the radiation of tetrapod vertebrates.
Kondo lattice without Nozieres exhaustion effect.
Kikoin, K.; Kiselev, M. N.; Materials Science Division; Ben-Gurion Univ. of the Negev; Ludwig-Maximilians Univ.
2006-01-01
We discuss the properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in the z direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozieres exhaustion problem does not occur. The high-temperature perturbational description is matched to exact low-T Bethe-ansatz solution. The excitation spectrum of the model is gapless both in charge and spin sectors. The disordered phases and possible experimental realizations of the model are briefly discussed.
Fluctuating pancake vortices revealed by dissipation of Josephson vortex lattice.
Koshelev, A. E.; Buzdin, A. I.; Kakeya, I.; Yamamoto, T.; Kadowaki, K.
2011-06-01
In strongly anisotropic layered superconductors in tilted magnetic fields, the Josephson vortex lattice coexists with the lattice of pancake vortices. Due to the interaction between them, the dissipation of the Josephson vortex lattice is very sensitive to the presence of the pancake vortices. If the c-axis magnetic field is smaller than the corresponding lower critical field, the pancake stacks are not formed but the individual pancakes may exist in the fluctuational regime either near the surface in large-size samples or in the central region for small-size mesas. We calculate the contribution of such fluctuating pancake vortices to the c-axis conductivity of the Josephson vortex lattice and compare the theoretical results with measurements on small mesas fabricated out of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} crystals. A fingerprint of fluctuating pancakes is a characteristic exponential dependence of the c-axis conductivity observed experimentally. Our results provide strong evidence of the existence of the fluctuating pancakes and their influence on the Josephson vortex lattice dissipation.
Cattle Grazing in Delta Forests
Robert L. Johnson
1960-01-01
What effects do grazing cattle have on the hardwood forests of the Mississippi Delta? What is the value of the forage to the cattle? To answer such questions, grazing studies were conducted in 1957 on the Delta Experimental Forest, near Stoneville.
NASA Astrophysics Data System (ADS)
Alber, Mark S.; Kiskowski, Maria; Jiang, Yi; Newman, Stuart
Modelling pattern formation and morphogenesis are fundamental problems in biology. One useful approach is lattice gas cellular automata (LGCA) model. This paper reviews several stochastic lattice gas models for pattern formation in myxobacteria fruiting body morphogenesis and vertebrate limb skeletogenesis. The fruiting body formation in myxobacteria is a complex morphological process that requires the organized, collective effort of tens of thousands of cells. It provides new insight into collective microbial behavior since myxobacteria morphogenic pattern formation is governed by cell-cell interactions rather than chemotaxis. We describe LGCA models for the aggregation stage of the fruiting body formation. Limb bud precartilage mesenchymal cells in micromass culture undergo chondrogenic pattern formation, which results in the formation of regularly-spaced "islands" of cartilage analogous to the cartilage primordia of the developing limb skeleton. An LGCA model, based on reaction-diffusion coupling and cell-matrix adhesion, is described for this process.
NASA Astrophysics Data System (ADS)
Hsu, Hsiao-Ping; Nadler, Walder; Grassberger, Peter
2005-07-01
The scaling behavior of randomly branched polymers in a good solvent is studied in two to nine dimensions, modeled by lattice animals on simple hypercubic lattices. For the simulations, we use a biased sequential sampling algorithm with re-sampling, similar to the pruned-enriched Rosenbluth method (PERM) used extensively for linear polymers. We obtain high statistics of animals with up to several thousand sites in all dimension 2⩽d⩽9. The partition sum (number of different animals) and gyration radii are estimated. In all dimensions we verify the Parisi-Sourlas prediction, and we verify all exactly known critical exponents in dimensions 2, 3, 4, and ⩾8. In addition, we present the hitherto most precise estimates for growth constants in d⩾3. For clusters with one site attached to an attractive surface, we verify the superuniversality of the cross-over exponent at the adsorption transition predicted by Janssen and Lyssy.
Parametric lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Shim, Jae Wan
2017-06-01
The discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete velocities as parameters. New isothermal and thermal compressible models are proposed for flows of the level of the isothermal and thermal compressible Navier-Stokes equations. Thermal compressible shock tube flows are simulated by only five on-lattice discrete velocities. Two-dimensional isothermal and thermal vortices provoked by the Kelvin-Helmholtz instability are simulated by the parametric models.
Fractional lattice charge transport
Flach, Sergej; Khomeriki, Ramaz
2017-01-01
We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
Renormalization of oscillator lattices with disorder.
Ostborn, Per
2009-05-01
A real-space renormalization transformation is constructed for lattices of nonidentical oscillators with dynamics of the general form dvarphi_{k}/dt=omega_{k}+g summation operator_{l}f_{lk}(varphi_{l},varphi_{k}) . The transformation acts on ensembles of such lattices. Critical properties corresponding to a second-order phase transition toward macroscopic synchronization are deduced. The analysis is potentially exact but relies in part on unproven assumptions. Numerically, second-order phase transitions with the predicted properties are observed as g increases in two structurally different two-dimensional oscillator models. One model has smooth coupling f_{lk}(varphi_{l},varphi_{k})=phi(varphi_{l}-varphi_{k}) , where phi(x) is nonodd. The other model is pulse coupled, with f_{lk}(varphi_{l},varphi_{k})=delta(varphi_{l})phi(varphi_{k}) . Lower bounds for the critical dimensions for different types of coupling are obtained. For nonodd coupling, macroscopic synchronization cannot be ruled out for any dimension D> or =1 , whereas in the case of odd coupling, the well-known result that it can be ruled out for D<3 is regained.
NASA Astrophysics Data System (ADS)
Fucito, F.; Solomon, S.
By modifying the lattice action of spin and gauge models we insure that the system cannot tunnel between topological sectors by local Monte Carlo (MC) steps. We insure the correct weight of the topological sectors in the statistical sum by considering global MC steps. This strategy permits us to study the effects of topological objects in ϑ-vacua, < Q2> scaling and chiral symmetry breaking in a straightforward way.
Jozef Dudek
2007-08-05
Charmonium is an attractive system for the application of lattice QCD methods. While the sub-threshold spectrum has been considered in some detail in previous works, it is only very recently that excited and higher-spin states and further properties such as radiative transitions and two-photon decays have come to be calculated. I report on this recent progress with reference to work done at Jefferson Lab.
Multipole plasmonic lattice solitons
Kou Yao; Ye Fangwei; Chen Xianfeng
2011-09-15
We theoretically demonstrate a variety of multipole plasmonic lattice solitons, including dipoles, quadrupoles, and necklaces, in two-dimensional metallic nanowire arrays with Kerr-type nonlinearities. Such solitons feature complex internal structures with an ultracompact mode size approaching or smaller than one wavelength. Their mode sizes and the stability characteristics are studied in detail within the framework of coupled mode theory. The conditions to form and stabilize these highly confined solitons are within the experimentally achievable range.
NASA Technical Reports Server (NTRS)
2007-01-01
The Mackenzie River in the Northwest Territories, Canada, with its headstreams the Peace and Finley, is the longest river in North America at 4241 km, and drains an area of 1,805,000 square km. The large marshy delta provides habitat for migrating Snow Geese, Tundra Swans, Brant, and other waterfowl. The estuary is a calving area for Beluga whales. The Mackenzie (previously the Disappointment River) was named after Alexander Mackenzie who travelled the river while trying to reach the Pacific in 1789.
The image was acquired on August 4, 2005, covers an area of 55.8 x 55.8 km, and is located at 68.6 degrees north latitude, 134.7 degrees west longitude.
The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.
NASA Technical Reports Server (NTRS)
2008-01-01
The Colorado River ends its 2330 km journey in the Gulf of Mexico in Baja California. The heavy use of the river as an irrigation source for the Imperial Valley has dessicated the lower course of the river in Mexico such that it no longer consistently reaches the sea. Prior to the mid 20th century, the Colorado River Delta provided a rich estuarine marshland that is now essentially desiccated, but nonetheless is an important ecological resource.
The image was acquired May 29, 2006, covers an area of 44.3 x 57.5 km, and is located at 32.1 degrees north latitude, 115.1 degrees west longitude.
The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.
NASA Technical Reports Server (NTRS)
2008-01-01
The Colorado River ends its 2330 km journey in the Gulf of Mexico in Baja California. The heavy use of the river as an irrigation source for the Imperial Valley has dessicated the lower course of the river in Mexico such that it no longer consistently reaches the sea. Prior to the mid 20th century, the Colorado River Delta provided a rich estuarine marshland that is now essentially desiccated, but nonetheless is an important ecological resource.
The image was acquired May 29, 2006, covers an area of 44.3 x 57.5 km, and is located at 32.1 degrees north latitude, 115.1 degrees west longitude.
The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.
NASA Technical Reports Server (NTRS)
2007-01-01
The Mackenzie River in the Northwest Territories, Canada, with its headstreams the Peace and Finley, is the longest river in North America at 4241 km, and drains an area of 1,805,000 square km. The large marshy delta provides habitat for migrating Snow Geese, Tundra Swans, Brant, and other waterfowl. The estuary is a calving area for Beluga whales. The Mackenzie (previously the Disappointment River) was named after Alexander Mackenzie who travelled the river while trying to reach the Pacific in 1789.
The image was acquired on August 4, 2005, covers an area of 55.8 x 55.8 km, and is located at 68.6 degrees north latitude, 134.7 degrees west longitude.
The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.
Wehinger, Björn; Bosak, Alexeï; Chumakov, Aleksandr; Mirone, Alessandro; Winkler, Björn; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Brazhkin, Vadim; Dyuzheva, Tatiana; Krisch, Michael
2013-07-10
The lattice dynamics of coesite has been studied by a combination of diffuse x-ray scattering, inelastic x-ray scattering and ab initio lattice dynamics calculations. The combined technique gives access to the full lattice dynamics in the harmonic description and thus eventually provides detailed information on the elastic properties, the stability and metastability of crystalline systems. The experimentally validated calculation was used for the investigation of the eigenvectors, mode character and their contribution to the density of vibrational states. High-symmetry sections of the reciprocal space distribution of diffuse scattering and inelastic x-ray scattering spectra as well as the density of vibrational states and the dispersion relation are reported and compared to the calculation. A critical point at the zone boundary is found to contribute strongly to the main peak of the low-energy part in the density of vibrational states. Comparison with the most abundant SiO2 polymorph--α-quartz--reveals similarities and distinct differences in the low-energy vibrational properties.
Digital lattice gauge theories
NASA Astrophysics Data System (ADS)
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
Crystallographic Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-06-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows.
NASA Astrophysics Data System (ADS)
Bietenholz, W.; Gerber, U.; Pepe, M.; Wiese, U.-J.
2010-12-01
We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility {χ_t} = {{{left< {{Q^2}} rightrangle }} left/ {V} right.} is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.
Hadroquarkonium from lattice QCD
NASA Astrophysics Data System (ADS)
Alberti, Maurizio; Bali, Gunnar S.; Collins, Sara; Knechtli, Francesco; Moir, Graham; Söldner, Wolfgang
2017-04-01
The hadroquarkonium picture [S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008), 10.1016/j.physletb.2008.07.086] provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by the LHCb Collaboration, as well as for some of the charmoniumlike "X , Y , Z " states. In this picture, a heavy quarkonium core resides within a light hadron giving rise to four- or five-quark/antiquark bound states. We test this scenario in the heavy quark limit by investigating the modification of the potential between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are performed on a Coordinated Lattice Simulations (CLS) ensemble with Nf=2 +1 flavors of nonperturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about a =0.0854 fm . We study the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons. In all these cases, the resulting configurations are favored energetically. The associated binding energies between the quarkonium in the heavy quark limit and the light hadron are found to be smaller than a few MeV, similar in strength to deuterium binding. It needs to be seen if the small attraction survives in the infinite volume limit and supports bound states or resonances.
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
FitzGerald, D.M.; Kulp, M.; Penland, S.; Flocks, J.; Kindinger, J.
2004-01-01
grows in dimensions, the proximal and distal tidal delta facies prograde seawards. Owing to the relatively low gradient of the inner continental shelf, the ebb-tidal delta lithosome is presently no more than 5 m thick and is generally only 2-3 m in thickness. The ebb delta sediment is sourced from deepening of the inlet and the associated channels and from the longshore sediment transport system. The final stage in the model envisages erosion and segmentation of the barrier chain, leading to a decrease in tidal discharge through the former major inlets. This process ultimately results in fine-grained sedimentation seaward of the inlets and the encasement of the ebb-tidal delta lithosome in mud. The ebb-tidal deltas along the Barataria coast are distinguished from most other ebb deltas along sand-rich coasts by their muddy content and lack of large-scale stratification produced by channel cut-and-fills and bar migration. ?? 2004 International Association of Sedimentologists.
Predominance of T cell receptor V delta 3 in small bowel biopsies from coeliac disease patients.
Falk, M C; NG, G; Zhang, G Y; Fanning, G C; Kamath, K R; Knight, J F
1994-01-01
Increased numbers of T cells bearing the gamma delta antigen receptor (gamma delta T cells) have been reported in small bowel biopsies of patients with latent, active or treated coeliac disease. We have studied jejunal biopsies from seven children with coeliac disease and 10 children with normal gut histology to characterize gamma delta T cell receptor (TCR) variable region gene subfamily expression in resident gamma delta T cells and compared the results with the findings in peripheral blood mononuclear cells (PBMC) obtained on the same day as the gut biopsy. Molecular analysis of RNA extracted from PBMC and biopsies was performed by reverse transcription and amplification with the polymerase chain reaction using primers specific for six TCR V delta families and four TCR V gamma families. We report, first, that a significantly increased number of gamma delta T cells expressing the TCR V delta 3 subfamily (P = 0.008) was observed in jejunal biopsies from children with coeliac disease, and second, that gamma delta T cell V region subfamily populations in gut differed from those seen in PBMC for both control and coeliac patients. Significantly reduced numbers of TCR V delta 2, V delta 3, V delta 5 (P < 0.01) and V gamma 2, V gamma 4 (P < 0.01) T cells were found in gut compared with PBMC. The difference in gamma delta T cell repertoire observed between gut and blood may reflect differences in the nature of the antigens usually encountered in these two compartments. The over-representation of TCR V delta 3 in patients with coeliac disease suggests a specific role for these cells in the induction or maintenance of the jejunal abnormality associated with this disease. PMID:7923889
Improved models of dense anharmonic lattices
NASA Astrophysics Data System (ADS)
Rosenau, P.; Zilburg, A.
2017-01-01
We present two improved quasi-continuous models of dense, strictly anharmonic chains. The direct expansion which includes the leading effect due to lattice dispersion, results in a Boussinesq-type PDE with a compacton as its basic solitary mode. Without increasing its complexity we improve the model by including additional terms in the expanded interparticle potential with the resulting compacton having a milder singularity at its edges. A particular care is applied to the Hertz potential due to its non-analyticity. Since, however, the PDEs of both the basic and the improved model are ill posed, they are unsuitable for a study of chains dynamics. Using the bond length as a state variable we manipulate its dispersion and derive a well posed fourth order PDE.
Molecular mobility with respect to accessible volume in Monte Carlo lattice model for polymers
NASA Astrophysics Data System (ADS)
Diani, J.; Gilormini, P.
2017-02-01
A three-dimensional cubic Monte Carlo lattice model is considered to test the impact of volume on the molecular mobility of amorphous polymers. Assuming classic polymer chain dynamics, the concept of locked volume limiting the accessible volume around the polymer chains is introduced. The polymer mobility is assessed by its ability to explore the entire lattice thanks to reptation motions. When recording the polymer mobility with respect to the lattice accessible volume, a sharp mobility transition is observed as witnessed during glass transition. The model ability to reproduce known actual trends in terms of glass transition with respect to material parameters, is also tested.
Spatial localization and thermal rectification in inhomogeneously deformed lattices
NASA Astrophysics Data System (ADS)
Savin, Alexander V.; Kivshar, Yuri S.
2017-08-01
We reveal that inhomogeneous deformations (stretching, compression, twisting, or bending) of anharmonic lattices can lead to a local change of the coupling coefficients and induce the energy localization of high-frequency phonon modes. We consider a linear chain of particles interacting via the Lennard-Jones potentials under the action of a constant external force, and demonstrate that high-frequency oscillations can be localized at the edge of the inhomogeneously deformed chain. We also show stable propagation of an acoustic soliton in such chains that only changes its velocity due to the deformations. Additionally, we demonstrate that this mechanism is responsible for the formation of spatially localized phonon states in twisted graphene nanoribbons and the topological Möbius-like graphene structures through stretching of the valent bonds between carbon atoms. We argue that these anharmonic effects can be employed for rectification and control of heat flows in stretched lattices at the nanoscale.
Erosion Between Two Delta Fronts, the Mekong Delta Case
NASA Astrophysics Data System (ADS)
Unverricht, D.; Heinrich, C.; Nguyen, T. C.; Szczucinski, W.; Schwarzer, K.; Stattegger, K.
2013-12-01
Human activities, like embanking, sand mining, groundwater extraction and deforestation lead to strong changes of the deltaic environment. Especially, mangrove cutting influences strongly the coastal erosion along large areas of the southern Mekong delta coast. However, all currently published data document erosion from subaerial areas excluding the subaqueous Mekong delta. Our study fills this gap along the subaqueous Mekong Delta between the Bassac River mouth and the Gulf of Thailand. Hydroacoustic profiles and sediment coring were carried out during two cruises in 2007 and 2008. Analyses of ADCP measurements provide valuable information of current direction and velocity during the inter-monsoon season. Fine sediment dynamics including SPM were analyzed applying laser in situ scattering and Transmissiometry (LISST) at vertical profiles. Two delta fronts were found more than 200 km apart, one in front of the main Mekong river distributaries and the other around Ca Mau Cape, the south-western most spit of the Mekong River Delta. Although the delta front around Ca Mau Cape is not directly supplied by the main distributaries of the Mekong River, it is the fastest prograding region of the subaqueous Mekong delta. Alongshore sediment transport takes place from the north-eastern main distributaries towards south-west (Ca Mau Cape). Between both delta fronts, a large scale alternating sand-ridge-system, at least 120 km long and 6 to 10 km wide (ridge crest distance), has developed where erosional channels separate two sand-ridge bodies. The origin of the sand-ridge system is situated at the delta slope off Ganh Hao around water depths between 10 and 18 m. Here, the delta slope consists mainly of fine sand in the upper layer (up to 20 cm thickness) and is separated by an erosional hiatus from the lower muddy layer. The mangroves and sandy beaches at the coast in this region are also under erosion. It is assumed that the eroded beach sand feeds the sand-ridge-system. The
Graphene, Lattice Field Theory and Symmetries
Drissi, L. B.; Bousmina, M.; Saidi, E. H.
2011-02-15
Borrowing ideas from tight binding model, we propose a board class of lattice field models that are classified by non simply laced Lie algebras. In the case of A{sub N-1{approx_equal}}su(N) series, we show that the couplings between the quantum states living at the first nearest neighbor sites of the lattice L{sub suN} are governed by the complex fundamental representations N-bar and N of su(N) and the second nearest neighbor interactions are described by its adjoint N-bar x N. The lattice models associated with the leading su(2), su(3), and su(4) cases are explicitly studied and their fermionic field realizations are given. It is also shown that the su(2) and su(3) models describe the electronic properties of the acetylene chain and the graphene, respectively. It is established as well that the energy dispersion of the first nearest neighbor couplings is completely determined by the A{sub N} roots {alpha} through the typical dependence N/2+{Sigma}{sub roots} cos(k.{alpha} with k the wave vector.Other features such as the SO(2N) extension and other applications are also discussed.
NASA Astrophysics Data System (ADS)
Fermi, Enrico; Leverett, Miles C.
This Patent focuses mainly on the description of an automatic system for the control rods in a nuclear reactor (in the present case made of natural uranium and graphite) reporting, aside from several related theoretical points (already considered in previous Patents), a detailed description of it. Since the reproduction ratio of a lattice structure is reduced by the presence of neutron absorbing impurities, such impurities can be introduced in the lattice in the form of control rods, made of a material such as boron or cadmium, which will absorb large amounts of neutrons. The control procedure is based on the fact that the depth to which the control rod penetrates into the lattice will determine the value of the neutron density in the system. This relatively simple task faces the fact that the reproduction ratio of the structure can change due to changes in temperature and pressure in the system. So, a connection of the control rods with an ionization chamber, measuring neutron density, can give an automatic control of the stability of the chain reaction. Moreover, an emergency circuit for operating the safety rods is illustrated in this Patent, and, in case of failure of both the control and emergency circuits, a third automatic circuit is depicted which causes the dump of a portion of the lattice structure for interrupting the neutron density rise. In a system of the type considered, about 92 percent of the total heat generated originates in the uranium toward the center of the lattice, about 6 percent originates in the graphite used as slowing medium, and the remaining 2 percent is generated in the structures surrounding the pile. Accordingly, the permissible power output of the reactor is limited by the rate of heat removal, so that, to prevent the accumulation of heat in the chain reaction pile, a coolant into contact with the uranium must be employed. However, the corrosive effect on uranium of the possible coolants has to be taken into account, because the
Hofstadter butterfly evolution in the space of two-dimensional Bravais lattices
NASA Astrophysics Data System (ADS)
Yılmaz, F.; Oktel, M. Ö.
2017-06-01
The self-similar energy spectrum of a particle in a periodic potential under a magnetic field, known as the Hofstadter butterfly, is determined by the lattice geometry as well as the external field. Recent realizations of artificial gauge fields and adjustable optical lattices in cold-atom experiments necessitate the consideration of these self-similar spectra for the most general two-dimensional lattice. In a previous work [F. Yılmaz et al., Phys. Rev. A 91, 063628 (2015), 10.1103/PhysRevA.91.063628], we investigated the evolution of the spectrum for an experimentally realized lattice which was tuned by changing the unit-cell structure but keeping the square Bravais lattice fixed. We now consider all possible Bravais lattices in two dimensions and investigate the structure of the Hofstadter butterfly as the lattice is deformed between lattices with different point-symmetry groups. We model the optical lattice with a sinusoidal real-space potential and obtain the tight-binding model for any lattice geometry by calculating the Wannier functions. We introduce the magnetic field via Peierls substitution and numerically calculate the energy spectrum. The transition between the two most symmetric lattices, i.e., the triangular and the square lattices, displays the importance of bipartite symmetry featuring deformation as well as closing of some of the major energy gaps. The transitions from the square to rectangular lattice and from the triangular to centered rectangular lattices are analyzed in terms of coupling of one-dimensional chains. We calculate the Chern numbers of the major gaps and Chern number transfer between bands during the transitions. We use gap Chern numbers to identify distinct topological regions in the space of Bravais lattices.
Lattice-induced nonadiabatic frequency shifts in optical lattice clocks
Beloy, K.
2010-09-15
We consider the frequency shift in optical lattice clocks which arises from the coupling of the electronic motion to the atomic motion within the lattice. For the simplest of three-dimensional lattice geometries this coupling is shown to affect only clocks based on blue-detuned lattices. We have estimated the size of this shift for the prospective strontium lattice clock operating at the 390-nm blue-detuned magic wavelength. The resulting fractional frequency shift is found to be on the order of 10{sup -18} and is largely overshadowed by the electric quadrupole shift. For lattice clocks based on more complex geometries or other atomic systems, this shift could potentially be a limiting factor in clock accuracy.
Lattice topology dictates photon statistics.
Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-08-21
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.
NASA Astrophysics Data System (ADS)
Mikeš, Daniel
2010-05-01
A deltaic sedimentary system has a point source; sediment is carried over the delta plain by distributary channels away from the point source and deposited at the delta front by distributary mouth bars. The established methods to describe such a sedimentary system are "bedding analysis", "facies analysis", and "basin analysis". We shall call the ambient conditions "input" and the rock record "output". There exist a number of methods to deduce input from output, e.g. "Sequence stratigraphy" (a.o. Vail et al. 1977, Catuneanu et al. 2009), "Shoreline trajectory" (a.o. Helland-Hansen & Martinsen 1996, Helland-Hansen & Hampson 2009) on the one hand and the complex use of established techniques on the other (a.o. Miall & Miall 2001, Miall & Miall 2002). None of these deductive methods seems to be sufficient. I claim that the common errors in all these attempts are the following: (1) a sedimentary system is four-dimensional (3+1) and a lesser dimensional analysis is insufficient; (2) a sedimentary system is complex and any empirical/deductive analysis is non-unique. The proper approach to the problem is therefore the theoretical/inductive analysis. To that end we performed six scenarios of a scaled version of a passive margin delta in a flume tank. The scenarios have identical stepwise tectonic subsidence and semi-cyclic sealevel, but different supply curves, i.e. supply is: constant, highly-frequent, proportional to sealevel, inversely proportional to sealevel, lagging to sealevel, ahead of sealevel. The preliminary results are indicative. Lobe-switching occurs frequently and hence locally sedimentation occurs shortly and hiatuses are substantial; therefore events in 2D (+1) cross-sections don't correlate temporally. The number of sedimentary cycles disequals the number of sealevel cycles. Lobe-switching and stepwise tectonic subsidence cause onlap/transgression. Erosional unconformities are local diachronous events, whereas maximum flooding surfaces are regional
Single identities for lattice theory and for weakly associative lattices
McCune, W.; Padmanabhan, R.
1995-03-13
We present a single identity for the variety of all lattices that is much simpler than those previously known to us. We also show that the variety of weakly associative lattices is one-based, and we present a generalized one-based theorem for subvarieties of weakly associative lattices that can be defined with absorption laws. The automated theorem-proving program OTTER was used in substantial way to obtain the results.
Crystallography of the Delta to Alpha Martensitic Transformation in Plutonium Alloys
Jin, Y; Wang, Y; Khachaturyan, A; Krenn, C; Schwartz, A
2004-07-15
A new stress-accommodating crystallographic mechanism of the {delta} {yields} {alpha} martensitic transformation in plutonium alloys is proposed. According to this mechanism, an orientation variant of the {alpha} phase is produced by a combination of a homogeneous strain and shuffling of the alternating close-packed (111){sub {delta}} planes. It is shown that the formation of stable transformation-induced twins whose twin plane orientations and twin shear directions do not depend on the small variations of the crystal lattice parameters is the preferred stress-accommodating mode. Only these stable twins have dislocation-free twin boundaries while the twin boundaries of all others are decorated by ultra-dense distribution of partial dislocations. The theory predicts a crystal lattice rearrangement mechanism involving the (205){sub {alpha}} ((01{bar 1}){sub {delta}}) stable twins. The corresponding Invariant Plane Strain solutions, with special emphasis on two simplest shuffling modes, the single and double elementary modes, are presented and compared with the existing experimental observations. It is shown that the habit plane orientation is highly sensitive to the input values of the crystal lattice parameters and especially to the accuracy of the measured volume change in the {delta}{yields}{alpha} transformation. An analysis of these effects on the habit plane orientation and orientation relations is also presented.
NASA Astrophysics Data System (ADS)
Kevrekidis, P. G.; Weinstein, M. I.
2000-08-01
We consider a class of Hamiltonian nonlinear wave equations governing a field defined on a spatially discrete one-dimensional lattice, with discreteness parameter, d= h-1, where h>0 is the lattice spacing. The specific cases we consider in detail are the discrete sine-Gordon (SG) and discrete φ4 models. For finite d and in the continuum limit ( d→∞) these equations have static kink-like (heteroclinic) states which are stable. In contrast to the continuum case, due to the breaking of Lorentz invariance, discrete kinks cannot be “Lorentz boosted” to obtain traveling discrete kinks. Peyrard and Kruskal pioneered the study of how a kink, initially propagating in the lattice, dynamically adjusts in the absence of an available family of traveling kinks. We study in detail the final stages of the discrete kink’s evolution during which it is pinned to a specified lattice site (equilibrium position in the Peierls-Nabarro barrier). We find the following: For d sufficiently large (sufficiently small lattice spacing), the state of the system approaches an asymptotically stable ground state static kink (centered between lattice sites). For d sufficiently small, d< d*, the static kink bifurcates to one or more time-periodic states. For the discrete φ4 we have wobbling kinks which have the same spatial symmetry as the static kink as well as “ g-wobblers” and “ e-wobblers”, which have different spatial symmetry. In the discrete SG case, the “ e-wobbler” has the spatial symmetry of the kink, whereas the “ g-wobbler” has the opposite one. These time-periodic states may be regarded as a class of discrete breather/topological defect states; they are spatially localized and time-periodic oscillations mounted on a static kink background. The large time limit of solutions with initial data near a kink is marked by damped oscillation about one of these two types of asymptotic states. In case (1) we compute the characteristics of the damped oscillation
Thermodynamics of the Relationship between Lattice Energy and Lattice Enthalpy
NASA Astrophysics Data System (ADS)
Jenkins, H. Donald B.
2005-06-01
Incorporation of lattice potential energy, U POT , within a Born Fajans Haber thermochemical cycle based on enthalpy changes necessitates correction of the energy of the lattice to an enthalpy term, Δ H L . For a lattice containing p i ions of type i in the formula unit, the lattice enthalpy is given by Δ H L = U POT + ∑ s i [( c i /2) - 2] RT where R is the gas constant (= 8.314 J K -1 mol -1 ), T is the absolute temperature, and c i is defined according as to whether the ion i is monatomic ( c i = 3), linear polyatomic ( c i = 5), or polyatomic ( c i = 6), respectively.
On delocalization effects in multidimensional lattices
NASA Astrophysics Data System (ADS)
Bystrik, Anna
A cubic lattice with random parameters is: reduced to a linear chain by the means of the projection technique. The continued fraction expansion (c.f.e.) approach is herein applied to the density of states. Coefficients of the c.f.e. are obtained numerically by the recursion procedure. Properties of the non-stationary second moments (correlations and dispersions) of their distribution are studied in a connection with the other evidences of transport in a one-dimensional Mori chain. The second moments and the spectral density are computed for the various degrees of disorder in the prototype lattice. The possible directions of the further development are outlined. The physical problem that is addressed in the dissertation is the possibility of the existence of a non-Anderson disorder of a specific type. More precisely, this type of a disorder in the one-dimensional case would result in a positive localization threshold. A specific type of such non-Anderson disorder was obtained by adopting a transformation procedure which assigns to the matrix expressing the physics of the multidimensional crystal a tridiagonal Hamiltonian. This Hamiltonian is then assigned to an equivalent one-dimensional tight-binding model. One of the benefits of this approach is that we are guaranteed to obtain a linear crystal with a positive localization threshold. The reason for this is the existence of a threshold in a prototype sample. The resulting linear model is found to be characterized by a correlated and a nonstationary disorder. The existence of such special disorder is associated with the absence of Anderson localization in specially constructed one-dimensional lattices, when the noise intensity is below the non-zero critical value. This work is an important step towards isolating the general properties of a non-Anderson noise. This gives a basis for understanding of the insulator to metal transition in a linear crystal with a subcritical noise.
NASA Astrophysics Data System (ADS)
Beane, Silas
2016-09-01
Over the last several decades, theoretical nuclear physics has been evolving from a very-successful phenomenology of the properties of nuclei, to a first-principles derivation of the properties of visible matter in the Universe from the known underlying theories of Quantum Chromodynamics (QCD) and Electrodynamics. Many nuclear properties have now been calculated using lattice QCD, a method for treating QCD numerically with large computers. In this talk, some of the most recent results in this frontier area of nuclear theory will be reviewed.
Matsuoka, H.
1985-01-01
The thermodynamic consequences of QCD are explored in the framework of lattice gauge theory. Attention is focused upon the nature of the chiral symmetry restoration transition at finite temperature and at finite baryon density, and possible strategies for identifying relevant thermodynamic phases are discussed. Some numerical results are presented on the chiral symmetry restoration in the SU(2) gauge theory at high baryon density. The results suggest that with T approx. = 110 MeV there is a second order restoration transition at the critical baryon density n/sub B//sup c/ approx. = 0.62 fm/sup -3/.
LocalMove: computing on-lattice fits for biopolymers
Ponty, Y.; Istrate, R.; Porcelli, E.; Clote, P.
2008-01-01
Given an input Protein Data Bank file (PDB) for a protein or RNA molecule, LocalMove is a web server that determines an on-lattice representation for the input biomolecule. The web server implements a Markov Chain Monte-Carlo algorithm with simulated annealing to compute an approximate fit for either the coarse-grain model or backbone model on either the cubic or face-centered cubic lattice. LocalMove returns a PDB file as output, as well as dynamic movie of 3D images of intermediate conformations during the computation. The LocalMove server is publicly available at http://bioinformatics.bc.edu/clotelab/localmove/. PMID:18556754
Few-photon scattering on Bose-Hubbard lattices
NASA Astrophysics Data System (ADS)
Pedersen, Kim G. L.; Pletyukhov, Mikhail
2017-08-01
We theoretically investigate the scattering of few-photon light on Bose-Hubbard lattices using diagrammatic scattering theory. We explicitly derive general analytical expressions for the lowest-order photonic correlation functions, which we apply numerically to several different lattices. We focus specifically on nonlinear effects visible in the intensity-intensity correlation function and explain bunching and antibunching effects in dimers, chains, rings, and planes. The numerical implementation can be applied to arbitrary Bose-Hubbard graphs, and we provide it as an attachment to this publication.
A vortex-lattice method for general, unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Konstadinopoulos, P.; Thrasher, D. F.; Mook, D. T.; Nayfeh, A. H.; Watson, L.
1985-01-01
A general method of calculating unsteady, incompressible, inviscid, three-dimensional flows around arbitrary planforms has been developed. The method is an extension of the vortex-lattice technique. It is not limited by aspect ratio, camber, or angle of attack, as long as vortex breakdown does not occur above the surface of the wing and separation occurs only along sharp edges. As the wing performs arbitrary maneuvers, the position of the wake and the distribution of circulation on the wing and in the wake are obtained as functions of time. One desirable feature of the present method is its ability to treat steady lifting flows very efficiently. Several examples of steady and unsteady flows are presented. These include rectangular wings, with and without flaps, delta, and cropped delta wings.
Dynamic Matching of Vortex Lattice in Superconducting Multilayers
Gurevich, A.; Kadyrov, E.; Larbalestier, D.C.
1996-11-01
We observed oscillations of a nonlinear flux flow resistivity {ital R}({ital j},{ital H}) as a function of a parallel magnetic field 6{lt}{ital H}{lt}9 T in Nb-Ti/Cu multilayers. We show that the oscillations in {ital R}({ital H}), which have the field period {Delta}{ital H}{approx_equal}0.1 T independent of temperature and current, indicate a long-range order in the rapidly moving vortex structure. The critical current {ital I}{sub {ital c}}({ital H}) exhibits no oscillations characteristic of {ital R}({ital H}). We propose an explanation of the effect in terms of dynamic matching of the moving vortex lattice with periodic microstructure and show that both {Delta}{ital H} and the amplitude of the oscillations of {ital R}({ital H}) are inversely proportional to the sample thickness. {copyright} {ital 1996 The American Physical Society.}
A vortex-lattice method for general, unsteady aerodynamics
NASA Technical Reports Server (NTRS)
Konstadinopoulos, P.; Thrasher, D. F.; Mook, D. T.; Nayfeh, A. H.; Watson, L.
1985-01-01
A general method of calculating unsteady, incompressible, inviscid, three-dimensional flows around arbitrary planforms has been developed. The method is an extension of the vortex-lattice technique. It is not limited by aspect ratio, camber, or angle of attack, as long as vortex breakdown does not occur above the surface of the wing and separation occurs only along sharp edges. As the wing performs arbitrary maneuvers, the position of the wake and the distribution of circulation on the wing and in the wake are obtained as functions of time. One desirable feature of the present method is its ability to treat steady lifting flows very efficiently. Several examples of steady and unsteady flows are presented. These include rectangular wings, with and without flaps, delta, and cropped delta wings.
Statistical thermodynamics of amphiphile chains in micelles
Ben-Shaul, A.; Szleifer, I.; Gelbart, W. M.
1984-01-01
The probability distribution of amphiphile chain conformations in micelles of different geometries is derived through maximization of their packing entropy. A lattice model, first suggested by Dill and Flory, is used to represent the possible chain conformations in the micellar core. The polar heads of the chains are assumed to be anchored to the micellar surface, with the other chain segments occupying all lattice sites in the interior of the micelle. This “volume-filling” requirement, the connectivity of the chains, and the geometry of the micelle define constraints on the possible probability distributions of chain conformations. The actual distribution is derived by maximizing the chain's entropy subject to these constraints; “reversals” of the chains back towards the micellar surface are explicitly included. Results are presented for amphiphiles organized in planar bilayers and in cylindrical and spherical micelles of different sizes. It is found that, for all three geometries, the bond order parameters decrease as a function of the bond distance from the polar head, in accordance with recent experimental data. The entropy differences associated with geometrical changes are shown to be significant, suggesting thereby the need to include curvature (environmental)-dependent “tail” contributions in statistical thermodynamic treatments of micellization. PMID:16593492
... be used to help diagnose a condition called porphyria . Normal Results Normal value range for adults is ... of urinary delta-ALA may indicate: Lead poisoning Porphyria (several types) A decreased level may occur with ...
Lattice harmonics expansion revisited
NASA Astrophysics Data System (ADS)
Kontrym-Sznajd, G.; Holas, A.
2017-04-01
The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.
Lattice Transparency of Graphene.
Chae, Sieun; Jang, Seunghun; Choi, Won Jin; Kim, Youn Sang; Chang, Hyunju; Lee, Tae Il; Lee, Jeong-O
2017-03-08
Here, we demonstrated the transparency of graphene to the atomic arrangement of a substrate surface, i.e., the "lattice transparency" of graphene, by using hydrothermally grown ZnO nanorods as a model system. The growth behaviors of ZnO nanocrystals on graphene-coated and uncoated substrates with various crystal structures were investigated. The atomic arrangements of the nucleating ZnO nanocrystals exhibited a close match with those of the respective substrates despite the substrates being bound to the other side of the graphene. By using first-principles calculations based on density functional theory, we confirmed the energetic favorability of the nucleating phase following the atomic arrangement of the substrate even with the graphene layer present in between. In addition to transmitting information about the atomic lattice of the substrate, graphene also protected its surface. This dual role enabled the hydrothermal growth of ZnO nanorods on a Cu substrate, which otherwise dissolved in the reaction conditions when graphene was absent.
Exponentially Fragile PT Symmetry in Lattices with Localized Eigenmodes
Bendix, Oliver; Fleischmann, Ragnar; Kottos, Tsampikos; Shapiro, Boris
2009-07-17
We study the effect of localized modes in lattices of size N with parity-time (PT) symmetry. Such modes are arranged in pairs of quasidegenerate levels with splitting deltaapproxexp{sup -N/x}i where xi is their localization length. The level 'evolution' with respect to the PT breaking parameter gamma shows a cascade of bifurcations during which a pair of real levels becomes complex. The spontaneous PT symmetry breaking occurs at gamma{sub PT}approxmin(delta), thus resulting in an exponentially narrow exact PT phase. As N/xi decreases, it becomes more robust with gamma{sub PT}approx1/N{sup 2} and the distribution P(gamma{sub PT}) changes from log-normal to semi-Gaussian. Our theory can be tested in the frame of optical lattices.
The 3-D lattice theory of Flower Constellations
NASA Astrophysics Data System (ADS)
Davis, Jeremy J.; Avendaño, Martín E.; Mortari, Daniele
2013-08-01
Flower Constellations (FCs) have been extensively studied for use in optimal constellation design. The Harmonic FCs (HFCs) subset, representing the symmetric configurations, have recently been reformulated into 2-D Lattice Flower Constellations (2D-LFCs), encompassing the complete set of HFCs. Elliptic orbits are generally avoided due to the deleterious effects of Earth's oblateness on the constellation, but here we present a novel concept for avoiding this problem and enabling more effective global coverage utilizing elliptic orbits. This new 3D Lattice Flower Constellations (3D-LFCs) framework generalizes the 2D-LFCs, Walker constellations, elliptical Walker constellations, and many of Draim's global coverage constellations. Previous studies have shown FCs can provide improved performance in global navigation over existing Global Navigation Satellite Systems (GNSS). We found a 3D-LFC design that improved the average positioning accuracy by 3.5 % while reducing launch \\varDelta v requirements when compared to the existing Galileo GNSS constellation.
Orthocomplemented complete lattices and graphs
NASA Astrophysics Data System (ADS)
Ollech, Astrid
1995-08-01
The problem I consider originates from Dörfler, who found a construction to assign an Orthocomplemented lattice H(G) to a graph G. By Dörfler it is known that for every finite Orthocomplemented lattice L there exists a graph G such that H(G)=L. Unfortunately, we can find more than one graph G with this property, i.e., orthocomplemented lattices which belong to different graphs can be isomorphic. I show some conditions under which two graphs have the same orthocomplemented lattice.
Extreme lattices: symmetries and decorrelation
NASA Astrophysics Data System (ADS)
Andreanov, A.; Scardicchio, A.; Torquato, S.
2016-11-01
We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.
More on lattice BRST invariance
NASA Astrophysics Data System (ADS)
Bock, Wolfgang; Golterman, Maarten F. L.; Shamir, Yigal
1998-11-01
In the gauge-fixing approach to (chiral) lattice gauge theories, the action in the U(1) case implicitly contains a free ghost term, in accordance with the continuum Abelian theory. On the lattice there is no BRST symmetry and, without fermions, the partition function is strictly positive. Recently, Neuberger pointed out, Phys. Rev. D 58, 057502 (1998), that a different choice of the ghost term would lead to a BRST-invariant lattice model, which is ill defined nonperturbatively. We show that such a lattice model is inconsistent already in perturbation theory, and clearly different from the gauge-fixing approach.
Nuclear Physics and Lattice QCD
Beane, Silas
2003-11-01
Impressive progress is currently being made in computing properties and interac- tions of the low-lying hadrons using lattice QCD. However, cost limitations will, for the foreseeable future, necessitate the use of quark masses, Mq, that are signif- icantly larger than those of nature, lattice spacings, a, that are not significantly smaller than the physical scale of interest, and lattice sizes, L, that are not sig- nificantly larger than the physical scale of interest. Extrapolations in the quark masses, lattice spacing and lattice volume are therefore required. The hierarchy of mass scales is: L 1 j Mq j â ºC j a 1 . The appropriate EFT for incorporating the light quark masses, the finite lattice spacing and the lattice size into hadronic observables is C-PT, which provides systematic expansions in the small parame- ters e m L, 1/ Lâ ºC, p/â ºC, Mq/â ºC and aâ ºC . The lattice introduces other unphysical scales as well. Lattice QCD quarks will increasingly be artificially separated
S.R. Beane; P.F.Bedaque; A. Parreno; M.J. Savage
2004-04-01
The two-nucleon sector is near an infrared fixed point of QCD and as a result the S-wave scattering lengths are unnaturally large compared to the effective ranges and shape parameters. It is usually assumed that a lattice QCD simulation of the two-nucleon sector will require a lattice that is much larger than the scattering lengths in order to extract quantitative information. In this paper we point out that this does not have to be the case: lattice QCD simulations on much smaller lattices will produce rigorous results for nuclear physics.
Ganges River Delta, Bangladesh, India
1994-11-14
The Ganges River Delta is the largest inter-tidal delta in the world. With its extensive mangrove mud flats, swamp vegetation and sand dunes, it is characteristic of many tropical and subtropical coasts. As seen in this photograph, the tributaries and distributaries of the Ganges and Brahmaputra Rivers deposit huge amounts of silt and clay that create a shifting maze of waterways and islands in the Bay of Bengal.
Supersonic aerodynamics of delta wings
NASA Technical Reports Server (NTRS)
Wood, Richard M.
1988-01-01
Through the empirical correlation of experimental data and theoretical analysis, a set of graphs has been developed which summarize the inviscid aerodynamics of delta wings at supersonic speeds. The various graphs which detail the aerodynamic performance of delta wings at both zero-lift and lifting conditions were then employed to define a preliminary wing design approach in which both the low-lift and high-lift design criteria were combined to define a feasible design space.
Ganges River Delta, Bangladesh, India
NASA Technical Reports Server (NTRS)
1994-01-01
The Ganges River Delta is the largest inter-tidal delta in the world. With its extensive mangrove mud flats, swamp vegetation and sand dunes, it is characteristic of many tropical and subtropical coasts. As seen in this photograph, the tributaries and distributaries of the Ganges and Brahmaputra Rivers deposit huge amounts of silt and clay that create a shifting maze of waterways and islands in the Bay of Bengal.
Delta-doping in diffusion studies
NASA Astrophysics Data System (ADS)
Bénière, François; Chaplain, René; Gauneau, Marcel; Reddy, Viswanatha; Régrény, André
1993-12-01
The δ-doping where the dopant is confined on the length-scale of the lattice constant provides perfectly ideal conditions to study the atomic transport processes. We have studied MBE-grown GaAs samples δ-doped with Si and Al layers. Long time diffusion anneals have been performed in the temperature range 550 800 °C. The distribution profiles are examined by SIMS-profiling. We obtain Si diffusion coefficients in good agreement with the other recent studies using different techniques (rapid thermal annealing, capacitance-voltage profiling, sandwiched diffusion source). This contrasts with the earlier measurements based on diffusion of implanted dopants which were much more widely spread. We conclude that the more accurate data allowed with the δ-doping show that the diffusion coefficient is an intrinsic parameter provided that the amount of dopant and the dislocation density are kept sufficiently small. Le dopage-delta, où le dopant est confiné à l'échelle du paramètre du réseau, fournit les conditions parfaitement idéales pour étudier les processus de transport atomique. Nous avons étudié des échantillons de GaAs obtenus par épitaxie par jet moléculaire dopés par des couches-delta de Si et Al. Des traitements de diffusion de longue durée ont été réalisés dans l'intervalle de température 550 à 800°C. Les profils de distribution sont examinés par spectrométrie d'émission d'ions secondaires. Nous obtenons des coefficients de diffusion de Si en bon accord avec les autres études récentes utilisant des techniques différentes (traitement thermique ultrarapide, profil de distribution par la méthode capacité-voltage, diffusion d'une couche “ sandwich ”). Ceci diffère des mesures antérieures qui, basées sur la diffusion de dopants implantés, étaient beaucoup plus dispersées. Nous concluons que les données plus précises rendues possibles par le dopage-delta montrent que le coefficient de diffusion est un paramètre intrinsèque
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Electric Polarizability of Neutral Hadrons from Lattice QCD
Joe Christensen; Walter Wilcox; Frank X. Lee; Leming Zhou
2004-08-01
By simulating a uniform electric field on a lattice and measuring the change in the rest mass, we calculate the electric polarizability of neutral mesons and baryons using the methods of quenched lattice QCD. Specifically, we measure the electric polarizability coefficient from the quadratic response to the electric field for 10 particles: the vector mesons {rho}{sup 0} and K{sup *0}; the octet baryons n, {Sigma}{sup 0}, {Lambda}{sub o}{sup 0}, {Lambda}{sub s}{sup 0}, and {Xi}{sup 0}; and the decouplet baryons {Delta}{sup 0}, {Sigma}{sup 0}, and {Xi}{sup 0}. Independent calculations using two fermion actions were done for consistency and comparison purposes. One calculation uses Wilson fermions with a lattice spacing of a = 0.10 fm. The other uses tadpole improved Luesher-Weiss gauge fields and clover quark action with a lattice spacing a = 0.17 fm. Our results for neutron electric polarizability are compared to experiment.
Delta and Omega masses in a three-quark covariant Faddeev approach
Sanchis-Alepuz, Helios; Villalba-Chavez, Selym; Alkofer, Reinhard; Eichmann, Gernot
2011-11-01
We present the solution of the Poincare-covariant Faddeev equation for the {Delta}(1232) and {Omega}(1672) baryons. The covariant structure of the corresponding baryon amplitudes and their decomposition in terms of internal spin and orbital angular momentum is explicitly derived. The interaction kernel is truncated to a rainbow-ladder dressed-gluon exchange such that chiral symmetry and its dynamical breaking are correctly implemented. The resulting physical masses agree reasonably with experiment and their evolution with the pion mass compares favorably with lattice calculations. Evidence for the nonsphericity of the {Delta} resonance is discussed as well.
How proteins squeeze through polymer networks: a Cartesian lattice study.
Wedemeier, Annika; Merlitz, Holger; Wu, Chen-Xu; Langowski, Jörg
2009-08-14
In this paper a lattice model for the diffusional transport of particles in the interphase cell nucleus is proposed. The dynamical behavior of single chains on the lattice is investigated and Rouse scaling is verified. Dynamical dense networks are created by a combined version of the bond fluctuation method and a Metropolis Monte Carlo algorithm. Semidilute behavior of the dense chain networks is shown. By comparing diffusion of particles in a static and a dynamical chain network, we demonstrate that chain diffusion does not alter the diffusion process of small particles. However, we prove that a dynamical network facilitates the transport of large particles. By weighting the mean square displacement trajectories of particles in the static chain, network data from the dynamical network can be reconstructed. Additionally, it is shown that subdiffusive behavior of particles on short time scales results from trapping processes in the crowded environment of the chain network. In the presented model a protein with 30 nm diameter has an effective diffusion coefficient of 1.24 x 10(-11) m2/s in a chromatin fiber network.
elSohly, M A; Little, T L; Stanford, D F
1992-01-01
GC/MS analysis of biological specimens is believed to be the most forensically accepted method for confirming the presence of abused drugs. 11-Nor-delta 9-tetrahydrocannabinol-9-carboxylic acid (delta 9-THC-COOH) is the major metabolite of delta 9-tetrahydrocannabinol (delta 9-THC) for which testing (including GC/MS) is directed as an indication of marijuana use. The currently available internal standard for delta 9-THC-COOH is d3-delta 9-THC-COOH, which has the deuterium atoms located on the side chain. In addition to the high cost of this compound, it suffers from a limited dynamic range of analysis, especially when the methyl derivative is used. This is because of a contribution to one of the internal standard ions (m/z 316) from a fragmentation of the natural drug which involves loss of the side chain. The new internal standard, d6-11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid (d6-delta 9-THC-COOH), avoids these disadvantages. The six deuterium atoms are located on the two methyl groups of Carbon 6 in the dibenzopyran structure. The dynamic range of analysis with the new internal standard was tested between 6.25 to 1,000 ng/mL with a correlation coefficient of 0.998. Analysis of several urine specimens for delta 9-THC metabolite using both d3- and d6-internal standards showed a correlation coefficient of 0.9987.
Optical Abelian lattice gauge theories
Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M.
2013-03-15
We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.
STM Studies of Near-Optimal Doped Bi_2Sr_2CaCu_2O_8 delta
Kapitulnik, Aharon
2010-04-05
In this paper we summarize our STM studies of the density of electronic states in nearly optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8 + {delta}} in zero field. We report on the inhomogeneity of the gap structure, density of states modulations with four-lattice constant period, and coherence peak modulation.
Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks
Huey-Wen Lin; Shigemi Ohta
2006-07-23
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is about 1.7 GeV and the spatial volume is about (1.9 fm){sup 3}. Despite the small volume, the ratio of the isovector vector and axial charges g{sub A}/g{sub V} and that of structure function moments
NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS.
LIN H.-W.; OHTA, S.
2006-10-02
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a{sup -1} {approx} 1.7GeV and the spatial volume is about (1.9fm){sup 3}. Despite the small volume, the ratio of the isovector vector and axial charges g{sub A}/g{sub V} and that of structure function moments
NASA Astrophysics Data System (ADS)
Kevrekidis, P. G.; Weinstein, M. I.
2000-03-01
In this paper we consider two models of soliton dynamics (the sine Gordon and the \\phi^4 equations) on a 1-dimensional lattice. We are interested in particular in the behavior of their kink-like solutions inside the Peierls- Nabarro barrier and its variation as a function of the discreteness parameter. We find explicitly the asymptotic states of the system for any value of the discreteness parameter and the rates of decay of the initial data to these asymptotic states. We show that genuinely periodic solutions are possible and we identify the regimes of the discreteness parameter for which they are expected to persist. We also prove that quasiperiodic solutions cannot exist. Our results are verified by numerical simulations.
Berg,J.S.
2008-02-21
I give a brief introduction to the purpose and goals of the EMMA experiment and describe how they will impact the design of the main EMMA ring. I then describe the mathematical model that is used to describe the EMMA lattice. Finally, I show how the different lattice configurations were obtained and list their parameters.
Buckling modes in pantographic lattices
NASA Astrophysics Data System (ADS)
Giorgio, Ivan; Della Corte, Alessandro; dell'Isola, Francesco; Steigmann, David J.
2016-07-01
We study buckling patterns in pantographic sheets, regarded as two-dimensional continua consisting of lattices of continuously distributed fibers. The fibers are modeled as beams endowed with elastic resistance to stretching, shearing, bending and twist. Included in the theory is a non-standard elasticity due to geodesic bending of the fibers relative to the lattice surface. xml:lang="fr"
Introduction to lattice gauge theory
NASA Astrophysics Data System (ADS)
Gupta, R.
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.
Branes and integrable lattice models
NASA Astrophysics Data System (ADS)
Yagi, Junya
2017-01-01
This is a brief review of my work on the correspondence between four-dimensional 𝒩 = 1 supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.
Recent progress in lattice QCD
Sharpe, S.R.
1992-12-01
A brief overview of the status of lattice QCD is given, with emphasis on topics relevant to phenomenology. The calculation of the light quark spectrum, the lattice prediction of {alpha} {sub {ovr MS}} (M {sub Z}), and the calculation of f{sub B} are discussed. 3 figs., 3 tabs., 40 refs.
Study of lattice defect vibration
NASA Technical Reports Server (NTRS)
Elliott, R. J.
1969-01-01
Report on the vibrations of defects in crystals relates how defects, well localized in a crystal but interacting strongly with the other atoms, change the properties of a perfect crystal. The methods used to solve defect problems relate the properties of an imperfect lattice to the properties of a perfect lattice.
Variational calculation of transport coefficients in diffusive lattice gases
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone
2017-03-01
A diffusive lattice gas is characterized by the diffusion coefficient depending only on the density. The Green-Kubo formula for diffusivity can be represented as a variational formula, but even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient can be computed only in the exceptional situation when the lattice gas is gradient. In the general case, minimization over an infinite-dimensional space is required. We propose an approximation scheme based on minimizing over finite-dimensional subspaces of functions. The procedure is demonstrated for one-dimensional generalized exclusion processes in which each site can accommodate at most two particles. Our analytical predictions provide upper bounds for the diffusivity that are very close to simulation results throughout the entire density range. We also analyze nonequilibrium density profiles for finite chains coupled to reservoirs. The predictions for the profiles are in excellent agreement with simulations.
Direct Tunneling Delay Time Measurement in an Optical Lattice
NASA Astrophysics Data System (ADS)
Fortun, A.; Cabrera-Gutiérrez, C.; Condon, G.; Michon, E.; Billy, J.; Guéry-Odelin, D.
2016-07-01
We report on the measurement of the time required for a wave packet to tunnel through the potential barriers of an optical lattice. The experiment is carried out by loading adiabatically a Bose-Einstein condensate into a 1D optical lattice. A sudden displacement of the lattice by a few tens of nanometers excites the micromotion of the dipole mode. We then directly observe in momentum space the splitting of the wave packet at the turning points and measure the delay between the reflected and the tunneled packets for various initial displacements. Using this atomic beam splitter twice, we realize a chain of coherent micron-size Mach-Zehnder interferometers at the exit of which we get essentially a wave packet with a negative momentum, a result opposite to the prediction of classical physics.
1972-08-01
35609 Advanced Techniques Branch Plans and Programs Analysis Division Directorate for Product Assurance U. S. Army Missile Command Redstone Arsenal...Ray Heathcock Advanced Techniques Branch Plans and Programs Analysis Division Directorate for Product Assurance U. S. Army Missile Command...for Product Assurance has established a rather unique computer program for handling a variety of chain sampling schemes and is available for
Anisotropic lattice models of electrolytes
NASA Astrophysics Data System (ADS)
Kobelev, Vladimir; Kolomeisky, Anatoly B.
2002-11-01
Systems of charged particles on anisotropic three-dimensional lattices are investigated theoretically using Debye-Huckel theory. It is found that the thermodynamics of these systems strongly depends on the degree of anisotropy. For weakly anisotropic simple cubic lattices, the results indicate the existence of order-disorder phase transitions and a tricritical point, while the possibility of low-density gas-liquid coexistence is suppressed. For strongly anisotropic lattices this picture changes dramatically: The low-density gas-liquid phase separation reappears and the phase diagram exhibits critical, tricritical, and triple points. For body-centered lattices, the low-density gas-liquid phase coexistence is suppressed for all degrees of anisotropy. These results show that the effect of anisotropy in lattice models of electrolytes amounts to reduction of spatial dimensionality.
Lattice models of ionic systems
NASA Astrophysics Data System (ADS)
Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.
2002-05-01
A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.
Shaping solitons by lattice defects
Dong Liangwei; Ye Fangwei
2010-11-15
We demonstrate the existence of shape-preserving self-localized nonlinear modes in a two-dimensional photonic lattice with a flat-topped defect that covers several lattice sites. The balance of diffraction, defocusing nonlinearity, and optical potential induced by lattices with various forms of defects results in novel families of solitons featuring salient properties. We show that the soliton shape can be controlled by varying the shape of lattice defects. The existence domains of fundamental and vortex solitons in the semi-infinite gap expand with the defect amplitude. Vortex solitons in the semi-infinite gap with rectangular intensity distributions will break into dipole solitons when the propagation constant exceeds a critical value. In the semi-infinite and first-finite gaps, we find that lattices with rectangular defects can support stable vortex solitons which exhibit noncanonical phase structure.
The DELTA Synchrotron Light Interferometer
Berges, U.
2004-05-12
Synchrotron radiation sources like DELTA, the Dortmund Electron Accelerator, a third generation synchrotron light source, need an optical monitoring system to measure the beam size at different points of the ring with high resolution and accuracy. These measurements also allow an investigation of the emittance of the storage ring, an important working parameter for the efficiency of working beamlines with experiments using the synchrotron radiation. The resolution limits of the different types of optical synchrotron light monitors at DELTA are investigated. The minimum measurable beamsize with the normal synchrotron light monitor using visible light at DELTA is about 80 {mu}m. Due to this a synchrotron light interferometer was built up and tested at DELTA. The interferometer uses the same beamline in the visible range. The minimum measurable beamsize is with about 8 {mu}m one order of magnitude smaller. This resolution is sufficient for the expected small vertical beamsizes at DELTA. The electron beamsize and emittance were measured with both systems at different electron beam energies of the storage ring. The theoretical values of the present optics are smaller than the measured emittance. So possible reasons for beam movements are investigated.
Geologic maps of the Sacramento-San Joaquin Delta, California
Atwater, Brian F.
1982-01-01
The Sacramento-San Joaquin Delta, the arm of the San Francisco Bay estuary that reaches into the Central Valley of California, differs from typical coastal-plain deltas in three important respects. First, rather than meeting the ocean individually and directly, all major waterways of this delta discharge via a single constricted outlet into a chain of estuarine bays and straits. Second, in the most common vertical sequence of deposits, peat and mud deposited in tidal marshes and swamps (tidal wetlands) directly overlie alluvium or eolian sand, a sequence recording a landward spread of tidal environments rather than the seaward migration of fluvial environments that is typical of coastal-plain deltas (Cosby, 1941, p. 43; Thompson, 1957, p. 12; Shlemon and Begg, 1975, p. 259; Atwater and Belknap, 1980). Finally, intensive human use has led to a peculiar set of conflicts involving rights to water and responsibilities for flood-control levees (Kockelman and other, 1982).
Avner, R; Laufer, N; Safran, A; Kerem, B S; Friedmann, A; Mitrani-Rosenbaum, S
1994-09-01
W1282X (W) and delta F508 (delta) are the two most common mutations of the cystic fibrosis Israeli population. Patients who are homozygotes (WW and delta delta) as well as compound heterozygotes (W delta) present a severe phenotype of the disease. In the present study, we have developed a polymerase chain reaction (PCR)-based method for the detection of both mutations simultaneously in a single blastomere. Unfertilized human oocytes and single polyspermic blastomeres were subjected to a two-round PCR amplification: a first round of multiplex PCR followed by a second round of nested PCR, done separately at each locus. Clear signals at both loci were obtained in 51% (47/65) of oocytes and 69% (24/35) of blastomeres. The genotype of the single cell analysed was determined by endonuclease digestion of the W products and by heteroduplex formation of the delta F products. This diagnostic system will allow the identification of affected embryos (WW, delta delta, W delta) as well as phenotypically normal carriers (W+, +delta), and therefore may be used for cystic fibrosis preimplantation diagnosis in families who carry either or both mutations.
Defect modes of a Bose-Einstein condensate in an optical lattice with a localized impurity
Brazhnyi, Valeriy A.; Konotop, Vladimir V.; Perez-Garcia, Victor M.
2006-08-15
We study defect modes of a Bose-Einstein condensate in an optical lattice with a localized defect within the framework of the one-dimensional Gross-Pitaevskii equation. It is shown that for a significant range of parameters the defect modes can be accurately described by an expansion over Wannier functions, whose envelope is governed by the coupled nonlinear Schroedinger equations with a {delta} impurity. The stability of the defect modes is verified by direct numerical simulations of the underlying Gross-Pitaevskii equation with a periodic and defect potentials. We also discuss possibilities of driving defect modes through the lattice and suggest ideas for their experimental generation.
A study of the N to Delta transition form factors in full QCD
Constantia Alexandrou; Robert Edwards; Giannis Koutsou; Theodoros Leontiou; Hartmut Neff; John W. Negele; Wolfram Schroers; Antonios Tsapalis
2005-07-01
The N to Delta transition form factors GM1, GE2 and GC2 are evaluated using dynamical MILC configurations and valence domain wall fermions at three values of quark mass corresponding to pion mass 606 MeV, 502 MeV and 364 MeV on lattices of spatial size 20{sup 3} and 28{sup 3}. The unquenched results are compared to those obtained at similar pion mass in the quenched theory.
NASA Technical Reports Server (NTRS)
2006-01-01
6 August 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a chain of clustered and battered craters. These were formed by secondary impact. That is, somewhere to the south (beyond the bottom of this image), a large impact crater formed. When this occurred, material ejected from the crater was thrown tens to hundreds of kilometers away. This material then impacted the martian surface, forming clusters and chains of smaller craters.
Location near: 15.8oN, 35.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Spring
Side-chain entropy and packing in proteins.
Bromberg, S.; Dill, K. A.
1994-01-01
What role does side-chain packing play in protein stability and structure? To address this question, we compare a lattice model with side chains (SCM) to a linear lattice model without side chains (LCM). Self-avoiding configurations are enumerated in 2 and 3 dimensions exhaustively for short chains and by Monte Carlo sampling for chains up to 50 main-chain monomers long. This comparison shows that (1) side-chain degrees of freedom increase the entropy of open conformations, but side-chain steric exclusion decreases the entropy of compact conformations, thus producing a substantial entropy that opposes folding; (2) there is side-chain "freezing" or ordering, i.e., a sharp decrease in entropy, near maximum compactness; and (3) the different types of contacts among side chains (s) and main-chain elements (m) have different frequencies, and the frequencies have different dependencies on compactness. mm contacts contribute significantly only at high densities, suggesting that main-chain hydrogen bonding in proteins may be promoted by compactness. The distributions of mm, ms, and ss contacts in compact SCM configurations are similar to the distributions in protein structures in the Brookhaven Protein Data Bank. We propose that packing in proteins is more like the packing of nuts and bolts in a jar than like the pairwise matching of jigsaw puzzle pieces. PMID:7920265
NASA Technical Reports Server (NTRS)
Schutt, R. L.
1991-01-01
Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.
NASA Astrophysics Data System (ADS)
Podgorski, J. E.; Kgotlhang, L.; Ngwisanyi, T.; Ploug, C.; Auken, E.; Kinzelbach, W. K.; Green, A. G.
2010-12-01
The Okavango Delta within the Kalahari Desert of northwestern Botswana is one of the world's largest inland deltas and the largest wetland in southern Africa. An annual flood originating from the Okavango River in the northwest passes through the upper panhandle region of the delta before inundating the 150 km x 150 km fan where most water is lost to evapotranspiration. The fan occupies an active graben at the southwestern end of the East Africa rift zone. The focus of faulting is along the fan’s southeastern end where the Kunyere-Thamalakane faults show 200-300 m of dip-slip offset, forming a backstop to the movement of water and sediments. An airborne TEM survey was flown over the entire delta in 2007 with 2 km line spacing. A preliminary inversion of the entire data set has been undertaken using a quasi-2D inversion scheme that includes resistivity, layer thickness, and transmitter height as parameters. Tests with a many-layer model indicate that a four-layer model explains the data. Inversion results are corroborated by limited borehole data. The TEM model includes significant lateral and vertical variations in electrical resistivity. In the central region of the fan, a near-surface high resistivity layer is underlain sequentially by a more conductive layer (about 100 m depth) and a more resistive half-space (about 160 m depth), the latter of which could be a fresh water aquifer. This resistive feature has a fan-like form. A plausible evolutionary scenario that explains the TEM data includes a proto-Okavango Delta (highly resistive half-space ) and a lake (intermediate-depth conductive layer). During a climatic episode similar to today’s, a proto-Okavango Delta sequence would have been deposited against a fault, much as the Kunyere-Thamalakane faults today delineate the southeastern margin of the present Okavango Delta. This region would have then been flooded by a Pleistocene lake system that inundated much of northern Botswana and was the source of
Lattice QCD: Status and Prospect
Ukawa, Akira
2006-02-08
A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years.
Localized structures in Kagome lattices
Saxena, Avadh B; Bishop, Alan R; Law, K J H; Kevrekidis, P G
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
NASA Astrophysics Data System (ADS)
Dias, Mirabeau; Chaba, A. N.
1983-01-01
Recently Medeiros e Silva and Mokross proposed the screened Wigner-lattice model which consists of negative point charges on a Bravais lattice interacting through the screened Coulomb potential -Qexp(-λr)r and the positive charge background with the density (QΩ)exp(-λr). We point out the drawbacks of this model and show that by modifying the background charge density to (Qλ24π)Στ-->exp(-λ|r-->-τ-->|)|r-->-τ-->| the screened Coloumb form of the potential emerges naturally as a consequence. Further, this modified screened Wigner-lattice model is free from the defects of the other model.
Kilcup, G.W.
1986-01-01
The author studies the physics of fermions in lattice regularized QCD, both abstractly and numerically. The author presents four papers, in the first showing how one can in principle extract the ..pi../sup +/-..pi../sup 0/ mass difference, in the second using a Monte Carlo simulation to compute the hadron spectrum and certain matrix elements on a small lattice, and in the third analyzing the symmetries of the staggered formulation of lattice fermions. Finally, the author presents preliminary results for the spectrum from a relatively large scale Monte Carlo simulation.
Yang, Yi-feng; Fisk, Zachary; Lee, Han-Oh; Thompson, J D; Pines, David
2008-07-31
The origin of magnetic order in metals has two extremes: an instability in a liquid of local magnetic moments interacting through conduction electrons, and a spin-density wave instability in a Fermi liquid of itinerant electrons. This dichotomy between 'local-moment' magnetism and 'itinerant-electron' magnetism is reminiscent of the valence bond/molecular orbital dichotomy present in studies of chemical bonding. The class of heavy-electron intermetallic compounds of cerium, ytterbium and various 5f elements bridges the extremes, with itinerant-electron magnetic characteristics at low temperatures that grow out of a high-temperature local-moment state. Describing this transition quantitatively has proved difficult, and one of the main unsolved problems is finding what determines the temperature scale for the evolution of this behaviour. Here we present a simple, semi-quantitative solution to this problem that provides a basic framework for interpreting the physics of heavy-electron materials and offers the prospect of a quantitative determination of the physical origin of their magnetic ordering and superconductivity. It also reveals the difference between the temperature scales that distinguish the conduction electrons' response to a single magnetic impurity and their response to a lattice of local moments, and provides an updated version of the well-known Doniach diagram.
Lattice function measurement with TBT BPM data
Yang, M.J.
1995-06-01
At Fermilab Main Ring some of the Beam Position Monitors (BPM) are instrumented with Turn-By-Turn (TBT) capability to record up to 1,024 consecutive turns of BPM data for each given trigger. For example, there are 9 horizontal plane and 8 vertical plane BPM`s in the sector D3 and D4. The BPM data, which records the betatron oscillation, is fitted to obtain beam parameters x, x{prime}, y, y{prime}, and {Delta}p/p, using the calculated beam line transfer matrix. The resulted TBT beam parameters (x, x{prime}) or (y, y{prime}) are fitted to ellipses to obtain the lattice function {beta}, {alpha}, and the emittance associated with the betatron oscillation. The tune of the machine can be calculated from the phase space angles of the successive turns, in the normalized phase space. The beam parameters can also be used to extract transfer matrix to be used for local and global coupling analysis. The process of fitting the BPM data produces information that can be used to diagnose problems such as calibration, noise level and polarity. Being available at every turn and at changing beam position the information carries a lot of statistical power. Since most of the BPM`s are located at high beta location only the x and y beam position information is not simultaneously available. The BPM data fitting processing essentially bridged the gap.
Chemical thermodynamic equilibria and conductivity of nonstoichiometric YB2Cu3O7-(delta): A review
NASA Astrophysics Data System (ADS)
Thorn, R. J.
To synthesize a comprehensive understanding of the nonstoichiometric phase, YBa2Cu3O2(7-delta), the following topics are discussed: (1) The chemical equilibria involved in nonstoichiometric YBa2Cu3O(7-delta) derived principally from photoelectron spectroscopic observations. (2) Nonstoichiometry: Experimental values of the variation of the partial pressure of oxygen with temperature and composition are rationalized quantitatively in terms of nearest neighbor lattice statistics. Energies of interaction between oxygens in the basal plane are obtained. (3) The structures of the variation of conductivity with temperature and composition are interpreted quantitatively in terms of a model with a narrow conduction band and a small gap, thermally activated valence band. (4) Optical conductivity derived from reflectance; structures of (sigma T, omega). The quantitative studies of these topics lead to the conclusion that small polarons exist in YBa2Cu3O(7-delta) and are the source of the conductivity. This conclusion implies that the superconducting state is bipolaronic.
Some low-speed flutter characteristics of simple low-aspect-ratio delta wing models
NASA Technical Reports Server (NTRS)
Doggett, Robert V., Jr.; Soistmann, David L.
1989-01-01
Some results from a combined experimental and analytical study of the low-speed flutter characteristics of low-aspect-ratio delta wings are presented. Data are presented which show the effects of sweep angle on the flutter characteristics of some simple plate models of constant planform area. The range of sweep angles studied was from 30 to 72 degrees. In addition, flutter results are presented for two 30 deg-sweep clipped-delta wing models. Further, results are presented that show the effects of root clamping (percentage length of the root chord that is cantilevered) for a 45 deg-sweep delta wing. The experimental data are compared with analytical results obtained by using kernel function and doublet lattice subsonic unsteady lifting surface theories.
LATTICE QCD AT FINITE TEMPERATURE.
PETRECZKY, P.
2005-03-12
I review recent progress in lattice QCD at finite temperature. Results on the transition temperature will be summarized. Recent progress in understanding in-medium modifications of interquark forces and quarkonia spectral functions at finite temperatures is discussed.
Counting Lattice-Gas Invariants
2007-11-02
Dominique d’Humières, Brosl Hasslacher, Pierre Lallemand, Yves Pomeau, and Jean-Pierre Rivet . Lattice gas hydrodynamics in two and three dimensions...177. Springer -Verlag, Februrary 1989. Proceedings of the Winter School, Les Houches, France. 6
Lattice Multiplication: Old and New.
ERIC Educational Resources Information Center
Givan, Betty; Karr, Rosemary
1988-01-01
The author presents two examples of lattice multiplication followed by a computer algorithm to perform this multiplication. The algorithm is given in psuedocode but could easily be given in Pascal. (PK)
Andreas S. Kronfeld
2003-11-05
This paper is a review of heavy quarks in lattice gauge theory, focusing on methodology. It includes a status report on some of the calculations that are relevant to heavy-quark spectroscopy and to flavor physics.
The E3 ubiquitin ligase WWP1 regulates {Delta}Np63-dependent transcription through Lys63 linkages
Peschiaroli, Angelo; Scialpi, Flavia; Bernassola, Francesca; Sherbini, El Said El; Melino, Gerry
2010-11-12
Research highlights: {yields} WWP1 ubiquitylates {Delta}Np63 through conjugation of Lys63-linked poly-ubiquitin chains. {yields} WWP1 does not control {Delta}Np63 protein stability. {yields} WWP1 regulates {Delta}Np63-dependent transcription. -- Abstract: The transcription factor p63, a member of the p53 family, plays a crucial role in epithelial development and tumorigenesis through the regulation of epithelial progenitor cell proliferation, differentiation and apoptosis. Similarly to p53, p63 activity is regulated by post-translational modifications, including ubiquitylation. Here, we report that the WWP1 E3 ubiquitin ligase binds specifically to {Delta}Np63 isoform but it does not trigger {Delta}Np63 proteasome-dependent degradation. Accordingly, we found that WWP1-dependent ubiquitylation of {Delta}Np63 occurs through the formation of Lys63-linked poly-ubiquitin chains. Importantly, we found that WWP1 is able to increase {Delta}Np63-dependent transcription and depletion of WWP1 in human primary keratinocytes induces cell cycle arrest. All together these results indicate that WWP1 regulates {Delta}Np63 transcriptional activity, acting thus as a potential regulator of the proliferation and survival of epithelial-derived cells.
Generating SU(Nc) pure gauge lattice QCD configurations on GPUs with CUDA
NASA Astrophysics Data System (ADS)
Cardoso, Nuno; Bicudo, Pedro
2013-03-01
The starting point of any lattice QCD computation is the generation of a Markov chain of gauge field configurations. Due to the large number of lattice links and due to the matrix multiplications, generating SU(Nc) lattice QCD configurations is a highly demanding computational task, requiring advanced computer parallel architectures such as clusters of several Central Processing Units (CPUs) or Graphics Processing Units (GPUs). In this paper we present and explore the performance of CUDA codes for NVIDIA GPUs to generate SU(Nc) lattice QCD pure gauge configurations. Our implementation in one GPU uses CUDA and in multiple GPUs uses OpenMP and CUDA. We present optimized CUDA codes for SU(2), SU(3) and SU(4). We also show a generic SU(Nc) code for Nc≥4 and compare it with the optimized version of SU(4). Our codes are publicly available for free use by the lattice QCD community.
Delta Scuti variables. Lecture 6
Cox, A.N.
1983-01-01
The class of variables near or on the upper main sequence, the delta Scuti variables, are not only the usual ones about the masses, radii, and luminosities, but also the age, rotation, element diffusion to change the surface layer composition, the occurance of convection and the presence of radial and nonradial pulsation modes. (GHT)
Revisiting double Dirac delta potential
NASA Astrophysics Data System (ADS)
Ahmed, Zafar; Kumar, Sachin; Sharma, Mayank; Sharma, Vibhu
2016-07-01
We study a general double Dirac delta potential to show that this is the simplest yet still versatile solvable potential to introduce double wells, avoided crossings, resonances and perfect transmission (T = 1). Perfect transmission energies turn out to be the critical property of symmetric and anti-symmetric cases wherein these discrete energies are found to correspond to the eigenvalues of a Dirac delta potential placed symmetrically between two rigid walls. For well(s) or barrier(s), perfect transmission (or zero reflectivity, R(E)) at energy E=0 is non-intuitive. However, this has been found earlier and called the ‘threshold anomaly’. Here we show that it is a critical phenomenon and we can have 0≤slant R(0)\\lt 1 when the parameters of the double delta potential satisfy an interesting condition. We also invoke a zero-energy and zero curvature eigenstate (\\psi (x)={Ax}+B) of the delta well between two symmetric rigid walls for R(0)=0. We resolve that the resonant energies and the perfect transmission energies are different and they arise differently.
Graczyk, Krzysztof M.
2011-11-23
A short review of the Rein-Sehgal and isobar models is presented. The attention is focused on the nucleon-{Delta}(1232) weak transition form-factors. The results of the recent re-analyses of the ANL and BNL bubble chamber neutrino-deuteron scattering data are discussed.
Spongeplant Spreading in the Delta
USDA-ARS?s Scientific Manuscript database
Invasive, exotic aquatic plants impact a range of important economic and ecological functions in the Sacramento-San Joaquin Delta of California, and the state now spends over $5 million to control water hyacinth and Brazilian waterweed. In 2007, a new exotic floating plant South American Spongeplan...
Phytoplankton fuels Delta food web
Jassby, Alan D.; Cloern, James E.; Muller-Solger, A. B.
2003-01-01
Populations of certain fishes and invertebrates in the Sacramento-San Joaquin Delta have declined in abundance in recent decades and there is evidence that food supply is partly responsible. While many sources of organic matter in the Delta could be supporting fish populations indirectly through the food web (including aquatic vegetation and decaying organic matter from agricultural drainage), a careful accounting shows that phytoplankton is the dominant food source. Phytoplankton, communities of microscopic free-floating algae, are the most important food source on a Delta-wide scale when both food quantity and quality are taken into account. These microscopic algae have declined since the late 1960s. Fertilizer and pesticide runoff do not appear to be playing a direct role in long-term phytoplankton changes; rather, species invasions, increasing water transparency and fluctuations in water transport are responsible. Although the potential toxicity of herbicides and pesticides to plank- ton in the Delta is well documented, the ecological significance remains speculative. Nutrient inputs from agricultural runoff at current levels, in combination with increasing transparency, could result in harmful al- gal blooms.
Lattice Studies of Hyperon Spectroscopy
Richards, David G.
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
Lattice QCD in rotating frames.
Yamamoto, Arata; Hirono, Yuji
2013-08-23
We formulate lattice QCD in rotating frames to study the physics of QCD matter under rotation. We construct the lattice QCD action with the rotational metric and apply it to the Monte Carlo simulation. As the first application, we calculate the angular momenta of gluons and quarks in the rotating QCD vacuum. This new framework is useful to analyze various rotation-related phenomena in QCD.
Yamamoto, Arata
2016-07-29
We propose the lattice QCD calculation of the Berry phase, which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
Lattice QCD: A Brief Introduction
NASA Astrophysics Data System (ADS)
Meyer, H. B.
A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.
NASA Astrophysics Data System (ADS)
Berg, J. Scott
2008-11-01
The EMMA experiment will study beam dynamics in a linear non-scaling fixed-field alternating gradient (FFAG) accelerator. I give a brief introduction to the purpose and goals of the EMMA experiment and describe how they will impact the design of the main EMMA ring. I then describe the mathematical model that is used to describe the EMMA lattice. Finally, I show how the different lattice configurations were obtained and list their parameters.
DeGrand, T.
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Mello Koch, Robert de; Mashile, Grant; Park, Nicholas
2010-05-15
In this article the anomalous dimension of a class of operators with a bare dimension of O(N) is studied. The operators considered are dual to excited states of a two giant graviton system. In the Yang-Mills theory they are described by restricted Schur polynomials, labeled with Young diagrams that have at most two columns. In a certain limit the dilatation operator looks like a lattice version of a second derivative, with the lattice emerging from the Young diagram itself.
Kaon matrix elements and CP violation from quenched lattice QCD
NASA Astrophysics Data System (ADS)
Cristian, Calin-Radu
We report the results of a calculation of the K → pipi matrix elements relevant for the DeltaI = 1/2 rule and epsilon '/epsilon in quenched lattice QCD using domain wall fermions at a fixed lattice spacing of a-1 ˜ 2 GeV. Working in the three-quark effective theory, where only the u, d and s quarks enter and which is known perturbatively to next-to-leading order; we calculate the lattice K → pi and K → |0> matrix elements of dimension six, four-fermion operators. Through lowest order chiral perturbation theory these yield K → pipi matrix elements, which we then normalize to continuum values through a non-perturbative renormalization technique. For the Delta I = 1/2 rule we find a value of 25.3 +/- 1.8 (statistical error only) compared to the experimental value of 22.2, with individual isospin amplitudes 10--20% below the experimental values. For epsilon '/epsilon; using known central values for standard model parameters, we calculate (-4.0 +/- 2.3) x 10-4 (statistical error only) compared to the current experimental average of (17.2 +/- 1.8) x 10-4. Because we find a large cancellation between the I = 0 and I = 2 contributions to epsilon'/epsilon, the result may be very sensitive to the approximations employed. Among these are the use of: quenched QCD, lowest order chiral perturbation theory and continuum perturbation theory below 1.3 GeV. We have also calculated the kaon B parameter, BK and find BK(2 GeV) = 0.532(11). Although currently unable to give a reliable systematic error; we have control over statistical errors and more simulations will yield information about the effects of the approximations on this first-principles determination of these important quantities.
Delta launch vehicle inertial guidance system (DIGS)
NASA Technical Reports Server (NTRS)
Duck, K. I.
1973-01-01
The Delta inertial guidance system, part of the Delta launch vehicle improvement effort, has been flown on three launches and was found to perform as expected for a variety of mission profiles and vehicle configurations.
Hydrological and Climatic Significance of Martian Deltas
NASA Astrophysics Data System (ADS)
Di Achille, G.; Vaz, D. A.
2017-10-01
We a) review the geomorphology, sedimentology, and mineralogy of the martian deltas record and b) present the results of a quantitative study of the hydrology and sedimentology of martian deltas using modified version of terrestrial model Sedflux.
Multiple Deltas Built Out Over Time
2014-12-08
This diagram depicts a vertical cross section through geological layers deposited by rivers, deltas and lakes. Deposits from a series of successive deltas build out increasingly high in elevation as they migrate toward the center of the basin.
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describingmore » the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.« less
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.
Optimal lattice-structured materials
Messner, Mark C.
2016-07-09
This paper describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.
Optimal lattice-structured materials
NASA Astrophysics Data System (ADS)
Messner, Mark C.
2016-11-01
This work describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.
Lattice design for head-on beam-beam compensation at RHIC
Montag, C.
2011-03-28
Electron lenses for head-on beam-beam compensation will be installed in IP 10 at RHIC. Compensation of the beam-beam effect experienced at IP 8 requires betatron phase advances of {Delta}{psi} = k {center_dot} {pi} between the proton-proton interaction point at IP 8, and the electron lens at IP 10. This paper describes the lattice solutions for both the BLUE and the YELLOW ring to achieve this goal.
Maximum-likelihood approach to topological charge fluctuations in lattice gauge theory
NASA Astrophysics Data System (ADS)
Brower, R. C.; Cheng, M.; Fleming, G. T.; Lin, M. F.; Neil, E. T.; Osborn, J. C.; Rebbi, C.; Rinaldi, E.; Schaich, D.; Schroeder, C.; Voronov, G.; Vranas, P.; Weinberg, E.; Witzel, O.
2014-07-01
We present a novel technique for the determination of the topological susceptibility (related to the variance of the distribution of global topological charge) from lattice gauge theory simulations, based on maximum-likelihood analysis of the Markov-chain Monte Carlo time series. This technique is expected to be particularly useful in situations where relatively few tunneling events are observed. Restriction to a lattice subvolume on which topological charge is not quantized is explored, and may lead to further improvement when the global topology is poorly sampled. We test our proposed method on a set of lattice data, and compare it to traditional methods.
Lattice architecture effect on the cooperativity of spin transition coordination polymers
Chiruta, Daniel; Jureschi, Catalin-Maricel; Rotaru, Aurelian E-mail: rotaru@eed.usv.ro; Linares, Jorge E-mail: rotaru@eed.usv.ro; Garcia, Yann
2014-02-07
We have investigated in the framework of the Ising-like model, by means of Monte Carlo Metropolis method with open boundary condition, the architecture effect on the cooperativity of spin transition coordination polymers. We have analyzed the influence of several physical parameters (size, pressure, and edge effects) on different lattice architectures which were in good agreement with reported experimental data. We show that the cooperativity of a spin crossover system, characterized by the same number of molecules and the same short- and long-range interaction parameters, is progressively enhanced when going from a 1D chain to a 1D ladder type lattice and to a 2D square lattice.
Lattice architecture effect on the cooperativity of spin transition coordination polymers
NASA Astrophysics Data System (ADS)
Chiruta, Daniel; Jureschi, Catalin-Maricel; Linares, Jorge; Garcia, Yann; Rotaru, Aurelian
2014-02-01
We have investigated in the framework of the Ising-like model, by means of Monte Carlo Metropolis method with open boundary condition, the architecture effect on the cooperativity of spin transition coordination polymers. We have analyzed the influence of several physical parameters (size, pressure, and edge effects) on different lattice architectures which were in good agreement with reported experimental data. We show that the cooperativity of a spin crossover system, characterized by the same number of molecules and the same short- and long-range interaction parameters, is progressively enhanced when going from a 1D chain to a 1D ladder type lattice and to a 2D square lattice.
Synthesis and oxygen content dependent properties of hexagonal DyMnO[subscript 3+delta
Remsen, S.; Dabrowski, B.; Chmaissem, O.; Mais, J.; Szewczyk, A.
2011-10-28
Oxygen deficient polycrystalline samples of hexagonal P6{sub 3}cm (space group No.185) DyMnO{sub 3+{delta}} ({delta} < 0) were synthesized in Ar by intentional decomposition of its perovskite phase obtained in air. The relative stability of these phases is in accord with our previous studies of the temperature and oxygen vacancy dependent tolerance factor. Thermogravimetric measurements have shown that hexagonal samples of DyMnO{sub 3+{delta}} (0 {le} {delta} {le} 0.4) exhibit unusually large excess oxygen content, which readily incorporates on heating near 300 C in various partial-pressures of oxygen atmospheres. Neutron and synchrotron diffraction data show the presence of two new structural phases at {delta} {approx} 0.25 (Hex{sub 2}) and {delta} {approx} 0.40 (Hex{sub 3}). Rietveld refinements of the Hex{sub 2} phase strongly suggest it is well modeled by the R3 space group (No.146). These phases were observed to transform back to P6{sub 3}cm above {approx} 350 C when material becomes stoichiometric in oxygen content ({delta} = 0). Chemical expansion of the crystal lattice corresponding to these large changes of oxygen was found to be 3.48 x 10{sup -2} mol{sup -1}. Thermal expansion of stoichiometric phases were determined to be 11.6 x 10{sup -6} and 2.1 x 10{sup -6} K{sup -1} for the P6{sub 3}cm and Hex{sub 2} phases, respectively. Our measurements also indicate that the oxygen non-stoichiometry of hexagonal RMnO{sub 3+{delta}} materials may have important influence on their multiferroic properties.
Performance Evaluation of Photonic Sigma Delta ADCs
2010-12-01
65 APPENDIX B. MATLAB CODE FOR PHOTONIC SIGMA DELTA ADC.................67 APPENDIX C. SUBROUTINE FUNCTIONS...PHOTONIC SIGMA DELTA ADC FLOW CHART 66 THIS PAGE INTENTIONALLY LEFT BLANK 67 APPENDIX B. MATLAB CODE FOR PHOTONIC SIGMA DELTA ADC Program File...addition, a MATLAB simulation designed previously was used to simulate the behavior of the photonic sigma delta ADC. It was modified to speed up the
Maintenance of large deltas through channelization
NASA Astrophysics Data System (ADS)
Giosan, L.; Constatinescu, S.; Filip, F.
2013-12-01
A new paradigm for delta restoration is currently taking shape using primarily Mississippi delta examples. Here we propose an alternative for delta maintenance primarily envisioned for wave-influenced deltas based on Danube delta experiences. Over the last half century, while the total sediment load of the Danube dramatically decreased due to dam construction on tributaries and its mainstem, a grand experiment was inadvertently run in the Danube delta: the construction of a dense network of canals, which almost tripled the water discharge toward the interior of the delta plain. We use core-based and chart-based sedimentation rates and patterns to explore the delta transition from the natural to an anthropogenic regime, to understand the effects of far-field damming and near-field channelization, and to construct a conceptual model for delta development as a function sediment partition between the delta plain and the delta coastal fringe. We show that sediment fluxes increased to the delta plain due to channelization, counteracting sea level rise. In turn, the delta coastal fringe was most impacted by the Danube's sediment load collapse. Furthermore, we show that morphodynamic feedbacks at the river mouth are crucial in trapping sediment near the coast and constructing wave-dominated deltas or lobes or delaying their destruction. As a general conclusion, we suggest that increased channelization that mimics and enhances natural processes may provide a simple solution for keeping delta plains above sea level and that abandonment of wave-dominated lobes may be the most long term efficient solution for protecting the internal fluvial regions of deltas and provide new coastal growth downcoast.
Phyllotaxis of flux lattices in layered superconductors
Levitov, L.S. )
1991-01-14
The geometry of a flux lattice pinned by superconducting layers is studied. Under variation of magnetic field the lattice undergoes an infinite sequence of continuous transitions corresponding to different ways of selection of shortest distances. All possible lattices form a hierarchical structure identified as the hierarchy of Farey numbers. It is shown that dynamically accessible lattices are characterized by pairs of consecutive Fibonacci numbers.
Limited junctional diversity of V delta 5-J delta 1 rearrangement in multiple sclerosis patients.
Nowak, J S; Michałowska-Wender, G; Januszkiewicz, D; Wender, M
1997-01-01
T-cell receptor (TCR) delta gene repertoire, as assessed by V delta-J delta rearrangements, has been analyzed in nine multiple sclerosis (MS) cases and in 30 healthy individuals by seminested PCR technique. Among the V delta-J delta junctional diversities studied, the most striking result has been observed in V delta 5-J delta 1 rearrangement. The detection of repeated V delta 5-J delta 1 nucleotide sequences in all analyzed clones from seven out of nine patients studied proved the monoclonal nature of gamma delta T-cells with V delta 5-J delta 1 rearrangement. The clonal nature of this rearrangement proved by PAGE and sequencing analysis may suggest an antigen-driven expansion of gamma delta T cells and argues for a significant role of gamma delta T-cells with V delta 5-J delta 1 rearrangement in MS pathogenesis. However, it cannot be excluded that clonal expansion of these lymphocytes may represent secondary change to central nervous system damage.
Frequency of the delta ccr5 deletion allele in the urban Brazilian population.
Passos, G A; Picanço, V P
1998-04-01
Studies on screening genes conferring resistance to HIV-1 and AIDS onset have shown a direct relationship between a 32 base pair (bp) deletion in the CCR5 beta-chemokine receptor gene (delta ccr5 mutant allele) and long survival of HIV-1 infected individuals bearing this mutation. These findings led to an interest in studies of delta ccr5 allele distribution in human populations. In the present study, polymerase chain reactions (PCR) in genomic DNA samples, using specific CCR5 oligonucleotide primers surrounding the breakpoint deletion, detected a 193-bp product from the normal CCR5 allele and a 161-bp product from the 32-bp deletion allele. In an investigation of the urban Brazilian population we detected a 93% frequency of normal CCR5/CCR5 homozygous individuals and a 7% frequency of CCR5/delta ccr5 heterozygous individuals. The frequency of the delta ccr5 mutant allele in this population is 0.035; however, no homozygous delta ccr5 individual has been detected thus far. This is the first evidence for the contribution of the delta ccr5 allele to the genetic background of the urban Brazilian population, which is characterized by intense ethnic admixture. These findings open perspectives for further studies on the relationship between delta ccr5 allele frequency and AIDS onset in high-risk HIV-1 exposures individuals.
Topological Charge Evolution in the Markov-Chain of QCD
Derek Leinweber; Anthony Williams; Jian-bo Zhang; Frank Lee
2004-04-01
The topological charge is studied on lattices of large physical volume and fine lattice spacing. We illustrate how a parity transformation on the SU(3) link-variables of lattice gauge configurations reverses the sign of the topological charge and leaves the action invariant. Random applications of the parity transformation are proposed to traverse from one topological charge sign to the other. The transformation provides an improved unbiased estimator of the ensemble average and is essential in improving the ergodicity of the Markov chain process.
Hur, G.; Creffield, C.E.; Jones, P.H.; Monteiro, T.S.
2005-07-15
Recently, cesium atoms in optical lattices subjected to cycles of unequally spaced pulses have been found to show interesting behavior: they represent an experimental demonstration of a Hamiltonian ratchet mechanism, and they show strong variability of the dynamical localization lengths as a function of initial momentum. The behavior differs qualitatively from corresponding atomic systems pulsed with equal periods, which are a textbook implementation of a well-studied quantum chaos paradigm, the quantum {delta}-kicked rotor ({delta}-QKR). We investigate here the properties of the corresponding eigenstates (Floquet states) in the parameter regime of the recent experiments and compare them with those of the eigenstates of the {delta}-QKR at similar kicking strengths. We show that by studying the properties of the Floquet states we can shed light on the form of the observed ratchet current, as well as variations in the dynamical localization length.
Front propagation in a vortex lattice: dependence on boundary conditions and vortex depth.
Beauvier, E; Bodea, S; Pocheau, A
2016-11-04
We experimentally address the propagation of reaction-diffusion fronts in vortex lattices by combining, in a Hele-Shaw cell and at low Reynolds number, forced electroconvective flows and an autocatalytic reaction in solution. We consider both vortex chains and vortex arrays, the former referring to mixed free/rigid boundary conditions for vortices and the latter to free boundary conditions. Varying the depth of the fluid layer, we observe no variation of the mean front velocities for vortex arrays and a noticeable variation for vortex chains. This questions the two-dimensional character of front propagation in low Reynolds number vortex lattices, as well as the mechanisms of this dependence.
Homozygous delta 32 deletion of the CCR-5 chemokine receptor gene in an HIV-1-infected patient.
Balotta, C; Bagnarelli, P; Violin, M; Ridolfo, A L; Zhou, D; Berlusconi, A; Corvasce, S; Corbellino, M; Clementi, M; Clerici, M; Moroni, M; Galli, M
1997-08-01
Recent research has found that entry of non-syncytium-inducing (NSI), monocyte-macrophage-tropic HIV-1 isolates requires binding to both CD4 and CCR5 receptors, and that delta 32/delta 32 homozygous individuals are protected against infection. To analyse the polymorphism of CCR-5 gene in HIV-1-infected and uninfected subjects. CCR-5 sequences were amplified by polymerase chain reaction (PCR) from DNA of peripheral blood mononuclear cells. Samples from 152 HIV-1-infected subjects and 122 uninfected controls were tested for the detection of the 32 base-pair deletion. HIV-1 phenotype was determined by viral isolation and MT-2 evaluation. The wild-type/delta 32 heterozygous and delta 32/delta 32 homozygous conditions were represented in 10.7 and 0.8% of healthy controls and in 9.8 and 0.7% of HIV-1-infected subjects, respectively. Of note, the delta 32/delta 32 deletion of the CCR-5 gene was detected by PCR and sequencing confirmed in a patient with progressive infection harbouring a clade B virus with SI phenotype. delta 32/delta 32 homozygosity for the CCR-5 gene does not confer absolute protection against HIV-1 infection, suggesting that either macrophage-tropic viral strains could use coreceptors other than CCR-5 or infect independently of the presence of a functional CCR-5 coreceptor. Alternatively, primary infection sustained by T-cell-tropic isolates, although exceptional, may occur.
Lattice vertex algebras on general even, self-dual lattices
NASA Astrophysics Data System (ADS)
Kleinschmidt, Axel
2003-07-01
In this note we analyse the Lie algebras of physical states stemming from lattice constructions on general even, self-dual lattices Gammap,q with p geq q. It is known that if the lattice is at most lorentzian, the resulting Lie algebra is of generalized Kac-Moody type (or has a quotient that is). We show that this is not true as soon as q geq 1. By studying a certain sublattice in the case q > 1 we obtain results that lead to the conclusion that the resulting non-GKM Lie algebra cannot be described conveniently in terms of generators and relations and belongs to a new and qualitatively different class of Lie algebras.
Doping Scheme of Semiconducting Atomic Chains
NASA Technical Reports Server (NTRS)
Toshishige, Yamada; Saini, Subhash (Technical Monitor)
1998-01-01
Atomic chains, precise structures of atomic scale created on an atomically regulated substrate surface, are candidates for future electronics. A doping scheme for intrinsic semiconducting Mg chains is considered. In order to suppress the unwanted Anderson localization and minimize the deformation of the original band shape, atomic modulation doping is considered, which is to place dopant atoms beside the chain periodically. Group I atoms are donors, and group VI or VII atoms are acceptors. As long as the lattice constant is long so that the s-p band crossing has not occurred, whether dopant atoms behave as donors or acceptors is closely related to the energy level alignment of isolated atomic levels. Band structures are calculated for Br-doped (p-type) and Cs-doped (n-type) Mg chains using the tight-binding theory with universal parameters, and it is shown that the band deformation is minimized and only the Fermi energy position is modified.
Parallel Markov chain Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Ren, Ruichao; Orkoulas, G.
2007-06-01
With strict detailed balance, parallel Monte Carlo simulation through domain decomposition cannot be validated with conventional Markov chain theory, which describes an intrinsically serial stochastic process. In this work, the parallel version of Markov chain theory and its role in accelerating Monte Carlo simulations via cluster computing is explored. It is shown that sequential updating is the key to improving efficiency in parallel simulations through domain decomposition. A parallel scheme is proposed to reduce interprocessor communication or synchronization, which slows down parallel simulation with increasing number of processors. Parallel simulation results for the two-dimensional lattice gas model show substantial reduction of simulation time for systems of moderate and large size.
Parallel Markov chain Monte Carlo simulations.
Ren, Ruichao; Orkoulas, G
2007-06-07
With strict detailed balance, parallel Monte Carlo simulation through domain decomposition cannot be validated with conventional Markov chain theory, which describes an intrinsically serial stochastic process. In this work, the parallel version of Markov chain theory and its role in accelerating Monte Carlo simulations via cluster computing is explored. It is shown that sequential updating is the key to improving efficiency in parallel simulations through domain decomposition. A parallel scheme is proposed to reduce interprocessor communication or synchronization, which slows down parallel simulation with increasing number of processors. Parallel simulation results for the two-dimensional lattice gas model show substantial reduction of simulation time for systems of moderate and large size.
Love, S.P.; Scott, B.; Worl, L.A.; Huckett, S.C.; Saxena, A.; Huang, X.Z.; Bishop, A.R.; Swanson, B.I.
1993-01-01
Resonance Raman techniques, together with lattice-dynamics and Peierls-Hubbard modelling, are used to explore the electronic and vibrational dynamics of the quasi-one-dimensional metal-halogen chain solids [Pt(en)[sub 2
Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains
Mendl, Christian B.; Spohn, Herbert
2016-10-04
The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. Here, we analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t1/3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains
Mendl, Christian B.; Spohn, Herbert
2016-10-04
The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. Here, we analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t^{1/3} and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains
NASA Astrophysics Data System (ADS)
Mendl, Christian B.; Spohn, Herbert
2017-02-01
The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. We analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t^{1/3} and have a Tracy-Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains
NASA Astrophysics Data System (ADS)
Mendl, Christian B.; Spohn, Herbert
2016-10-01
The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. We analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t^{1/3} and have a Tracy-Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
Hamiltonian tomography of photonic lattices
NASA Astrophysics Data System (ADS)
Ma, Ruichao; Owens, Clai; LaChapelle, Aman; Schuster, David I.; Simon, Jonathan
2017-06-01
In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites α and β may be obtained directly from Sα β(ω ) , the (suitably normalized) two-port measurement between sites α and β at frequency ω . This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in between.
Delta excitations in compressed finite nuclei
Hasan, M.A. ); Vary, J.P. Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 )
1994-07-01
We treat [sup 16]O, [sup 40]Ca, and [sup 56]Ni as systems of baryons which can exist in either the ground (nucleon) state or first excited (delta) state and follow their behavior under static comrpession using constrained spherical Hartree-Fock approximation (SHF). We use realistic effective nucleon-nucleon interactions with meson-exchange-based nucleon-delta transition potentials and delta-delta interactions and we make phenomenological adjustments to obtain SHF equilibrium properties in agreement with experiment. We then show how physical properties are affected by delta excitation under compression. We find that a significant fraction of the increase in energy of these nuclei under compression is stored in the form of [Delta]-mass creation. This, in turn, may have implications for an enhanced role for nuclear compression in subthreshold pion production in nucleus-nucleus collisions. In addition, including the deltas leads to a lower compressibility of each of these nuclei.
Discharge Asymmetry in Delta Bifurcations
NASA Astrophysics Data System (ADS)
Salter, G.; Paola, C.; Voller, V. R.
2015-12-01
Distributary networks are formed by channels which bifurcate downstream in a river delta. Sediment and water fluxes are often split unequally in delta bifurcations. Understanding flux asymmetry in distributary networks is important for predicting how a delta will respond to sea-level rise. We present results of a quasi-1D model of a delta bifurcation. Consistent with previous results, in the absence of deposition, stable bifurcations may be either symmetric or asymmetric, depending on flow conditions. However, in a depositional setting, a stable asymmetric flow partitioning is no longer possible, as the dominant branch becomes less and less steep relative to the other branch. This feedback eventually causes the second branch to become favored. For the depositional case, we identify three regimes of bifurcation behavior: 1) stable symmetric bifurcation, 2) "soft" avulsions where the dominant branch switches without complete abandonment of the previous channel, and 3) complete avulsions where one branch is completely abandoned. In each case, the bifurcation is symmetric in the long-term average, but the latter two allow for short-term asymmetry. We find that keeping upstream sediment and water discharges fixed, as downstream channel length increases the regime shifts from symmetric to soft avulsions to complete avulsions. In the two avulsion regimes we examine the effect of upstream sediment and water discharges and downstream channel length on avulsion period and maximum discharge ratio. Finally, we compare numerical modeling results to a fixed-wall bifurcation experiment. As in the numerical model, the presence or absence of a downstream sink exerts a strong control on system behavior. If a sink is present, a bifurcation may be asymmetric indefinitely. Conversely, without a sink the system is depositional, and the feedback between sediment discharge asymmetry and slope causes the bifurcation to remain symmetric in the long-term average.
Astrometric Observation of Delta Cepheus
NASA Astrophysics Data System (ADS)
Warren, Naomi; Wilson, Betsie; Estrada, Chris; Crisafi, Kim; King, Jackie; Jones, Stephany; Salam, Akash; Warren, Glenn; Collins, S. Jananne; Genet, Russell
2012-04-01
Members of a Cuesta College astronomy research seminar used a manually-controlled 10-inch Newtonian Reflector telescope to determine the separation and position angle of the binary star Delta Cepheus. It was observed on the night of Saturday, October 29, 2011, at Star Hill in Santa Margarita, California. Their values of 40.2 arc seconds and 192.4 degrees were similar to those reported in the WDS (1910).
The kaon B-parameter from unquenched mixed action lattice QCD
Aubin, Christopher A.; Laiho, Jack; Van de Water, Ruth S.
2007-10-01
We present a preliminary calculation of B{sub K} using domain-wall valence quarks and 2+1 flavors of improved staggered sea quarks. Both the size of the residual quark mass, which measures the amount of chiral symmetry breaking, and of the mixed meson splitting Delta{sub mix}, a measure of taste-symmetry breaking, show that discretization effects are under control in our mixed action lattice simulations. We show preliminary data for pseudoscalar meson masses, decay constants and B{sub K}. We discuss general issues associated with the chiral extrapolation of lattice data, and, as an example, present a preliminary chiral and continuum extrapolation of f{sub pi}. The quality of our data shows that the good chiral properties of domain-wall quarks, in combination with the light sea quark masses and multiple lattice spacings available with the MILC staggered configurations, will allow for a precise determination of B{sub K}.
Torsional random walk statistics on lattices using convolution on crystallographic motion groups.
Skliros, Aris; Chirikjian, Gregory S.
2007-01-01
This paper presents a new algorithm for generating the conformational statistics of lattice polymer models. The inputs to the algorithm are the distributions of poses (positions and orientations) of reference frames attached to sequentially proximal bonds in the chain as it undergoes all possible torsional motions in the lattice. If z denotes the number of discrete torsional motions allowable around each of the n bonds, our method generates the probability distribution in end-to-end pose corresponding to all of the zn independent lattice conformations in O(nD+1) arithmetic operations for lattices in D-dimensional space. This is achieved by dividing the chain into short segments and performing multiple generalized convolutions of the pose distribution functions for each segment. The convolution is performed with respect to the crystallographic space group for the lattice on which the chain is defined. The formulation is modified to include the effects of obstacles (excluded volumes), and to calculate the frequency of the occurrence of each conformation when the effects of pairwise conformational energy are included. In the latter case (which is for 3 dimensional lattices only) the computational cost is O(z4n4). This polynomial complexity is a vast improvement over the O(zn) exponential complexity associated with the brute force enumeration of all conformations. The distribution of end-to-end distances and average radius of gyration are calculated easily once the pose distribution for the full chain is found. The method is demonstrated with square, hexagonal, cubic and tetrahedral lattices. PMID:17898862
Quantum state control and characterization in an optical lattice
NASA Astrophysics Data System (ADS)
Myrskog, Stefan Henrik
In this dissertation I present experimental work on the measurement and manipulation of the center-of-mass motion of laser-cooled atoms. The first experiment described demonstrates cooling of an atom cloud by 'delta-kick cooling'. A thermal cloud of atoms in a vacuum expands ballistically, generating correlations between position and momentum. An appropriate momentum kick, proportional to position, results in slowing down all the atoms in the cloud. Through this technique a cloud of atoms can be cooled by greater than a factor of 10, preserving phase-space density, but decreasing the number density of atoms. By using laser-cooled atoms, it is also possible to confine atoms in potentials created by the AC-Stark shift of the atomic energy levels. Using interfering lasers to create the Stark shift, atoms are confined in a sinusoidal potential called an optical lattice. After preparing atoms in the lowest-energy band of the lattice, a spatial displacement can create coherent superpositions of many states of the potential. A combination of time delays and secondary displacements allows the measurement of the Q (Husimi) and W (Wigner) quasi-probability distributions, each of which completely characterizes the motional state of the atoms. Alternatively, a shallow lattice that only support two long-lived states can be used. The two-state system may be characterized with far fewer measurements, and furthermore, can be used as a model system for a qubit, a quantum representation of a single bit of information, useful for quantum computation. We demonstrate reconstruction of the density matrix in the 2-state system. The two-state system has be further used to characterize the physical action of an operation. By preparing a complete set of input density matrices we perform quantum process tomography for the intrinsic decoherence of the lattice, and two operations that correspond to single qubit rotations.
Framework for improved lattice calculations of epsilion'/epsilon
NASA Astrophysics Data System (ADS)
Laiho, Jack
In this thesis we show that it is possible to construct epsilon '/epsilon to NLO using both full and partially quenched chiral perturbation theory (PQChPT) from amplitudes that are computable using numerical lattice gauge theory. We find that the electro-weak penguin (Delta I = 3/2 and 1/2) contributions to epsilon'/epsilon in PQChPT can be determined to NLO using only degenerate (mK = mpi) K → pi computations without momentum insertion. All one-loop formulas needed to extract the necessary NLO constants from the lattice are presented in this work. Issues pertaining to power divergent contributions, originating from mixing with lower dimensional operators in a lattice regularization, are addressed. In embedding the QCD penguin left-right operator onto PQChPT an ambiguity arises when the number of light sea quarks is not the physical value of three, as first emphasized by Golterman and Pallante. In the quenched theory they have pointed out that there are additional effective operators that appear in the quenched chiral perturbation theory needed to make contact with K → pipi amplitudes at physical kinematics. They have also proposed a method for determining the leading order low-energy constant, aNSq , associated with the new operators. We show that their method has difficulties due to power divergent contributions and propose a new method to obtain this constant from the lattice which does not suffer from this problem. Using this alternative method, we obtain aNSq , and show that our value implies a large ambiguity in the quenched contribution of Q6 to epsilon'/epsilon.
Quantum lattice model solver HΦ
NASA Astrophysics Data System (ADS)
Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki
2017-08-01
HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).
Algebraic Lattices in QFT Renormalization
NASA Astrophysics Data System (ADS)
Borinsky, Michael
2016-07-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Dias, M.; Chaba, A.N.
1983-01-15
Recently Medeiros e Silva and Mokross proposed the screened Wigner-lattice model which consists of negative point charges on a Bravais lattice interacting through the screened Coulomb potential -Q exp(-lambdar)/r and the positive charge background with the density (Q/..cap omega..) exp(-lambdar). We point out the drawbacks of this model and show that by modifying the background charge density to (Qlambda/sup 2//4..pi..) summation/sub tau-arrow-right/ exp(-lambdaVertical Barr-tau-arrow-rightVertical Bar)/Vertical Barr-tau-arrow-rightVertical Bar the screened Coloumb form of the potential emerges naturally as a consequence. Further, this modified screened Wigner-lattice model is free from the defects of the other model.
Lattice QCD Beyond Ground States
Huey-Wen Lin; Saul D. Cohen
2007-09-11
In this work, we apply black box methods (methods not requiring input) to find excited-state energies. A variety of such methods for lattice QCD were introduced at the 3rd iteration of the numerical workshop series. We first review a selection of approaches that have been used in lattice calculations to determine multiple energy states: multiple correlator fits, the variational method and Bayesian fitting. In the second half, we will focus on a black box method, the multi-effective mass. We demonstrate the approach on a toy model, as well as on real lattice data, extracting multiple states from single correlators. Without complicated operator construction or specialized fitting programs, the black box method shows good consistency with the traditional approaches.
Subwavelength lattice optics by evolutionary design.
Huntington, Mark D; Lauhon, Lincoln J; Odom, Teri W
2014-12-10
This paper describes a new class of structured optical materials--lattice opto-materials--that can manipulate the flow of visible light into a wide range of three-dimensional profiles using evolutionary design principles. Lattice opto-materials are based on the discretization of a surface into a two-dimensional (2D) subwavelength lattice whose individual lattice sites can be controlled to achieve a programmed optical response. To access a desired optical property, we designed a lattice evolutionary algorithm that includes and optimizes contributions from every element in the lattice. Lattice opto-materials can exhibit simple properties, such as on- and off-axis focusing, and can also concentrate light into multiple, discrete spots. We expanded the unit cell shapes of the lattice to achieve distinct, polarization-dependent optical responses from the same 2D patterned substrate. Finally, these lattice opto-materials can also be combined into architectures that resemble a new type of compound flat lens.
Clathrin heavy chain, light chain interactions.
Winkler, F K; Stanley, K K
1983-01-01
Purified pig brain clathrin can be reversibly dissociated and separated into heavy chain trimers and light chains in the presence of non-denaturing concentrations of the chaotrope thiocyanate. The isolated heavy chain trimers reassemble into regular polygonal cage structures in the absence of light chains. The light chain fraction can be further resolved into its two components L alpha and L beta which give different one-dimensional peptide maps. Radiolabelled light chains bind with high affinity (KD < 10(-10) M) to heavy chain trimers, to heavy chain cages and to a 110,000 mol. wt. tryptic fragment of the heavy chain. Both light chains compete with each other and with light chains from other sources for the same binding sites on heavy chains and c.d. spectroscopy shows that the two pig brain light chains possess very similar structures. We conclude that light chains from different sources, despite some heterogeneity, have a highly conserved, high affinity binding site on the heavy chain but are not essential for the formation of regular cage structures. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 8. PMID:10872336
Davodeau, F; Peyrat, M A; Hallet, M M; Gaschet, J; Houde, I; Vivien, R; Vie, H; Bonneville, M
1993-08-01
Recent studies have demonstrated that a large fraction of human gamma delta PBL recognize Ag of prokaryotic and eukaryotic origins, respectively found in hydrosoluble mycobacterial extracts and on the Daudi Burkitt's lymphoma cells. The structural basis of the recognition of these Ag have been presently studied in detail, through analysis of a large panel of thymus- and peripheral blood-derived gamma delta T-cell clones. Our results suggest that Daudi and mycobacteria-reactive gamma delta subsets are strictly overlapping and hence that gamma delta T-cell responses against these two Ag are closely related. Daudi cells and mycobacteria were recognized by V gamma 9+V delta 2+, but not by V gamma 9+V delta 2-, V gamma 9-V delta 2+, or V gamma 9-V delta 2- PBL clones. However, not all V gamma 9+V delta 2+ clones were reactive and, in particular: 1) the proportion of Ag-reactive lymphocytes was much lower among thymus- than PBL-derived clones (respectively 24/36 vs 72/73); 2) none of the V gamma 9+V delta 2+ clones expressing a V9J2C2 gamma chain (n = 4) were reactive to Daudi or mycobacteria, indicating that expression of a disulfide-linked TCR is probably a prerequisite for recognition of these Ag; and 3) among V gamma 9+V delta 2+ clones bearing disulfide-linked TCR, almost all (50/53) clones expressing a V9JPC1 gamma chain were reactive, whereas a large fraction (6/10) of those expressing a V9J1C1 gamma chain were weakly or nonreactive. Together, these observations suggest that germline residues specific to V gamma 9, V delta 2, and J gamma P elements directly contribute to recognition of Daudi and mycobacterial Ag. Furthermore, these findings may provide an explanation for coordinate use of these gene elements by a large fraction of gamma delta PBL, through peripheral selection events mediated by ligands identical or structurally related to the above Ag.
Deformation characteristics of {delta} phase in the delta-processed Inconel 718 alloy
Zhang, H.Y.; Zhang, S.H.; Cheng, M.; Li, Z.X.
2010-01-15
The hot working characteristics of {delta} phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s{sup -1}, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like {delta} phase and the precipitation of spherical {delta} phase particles coexisted during the deformation, and the content of {delta} phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like {delta} phase was spheroidized and transferred to spherical {delta} phase particles. In the center with largest strain, the plate-like {delta} phase disappeared and spherical {delta} phase appeared in the interior of grains and grain boundaries.
Tetraquark states from lattice QCD
Mathur, Nilmani
2011-10-24
Recently there have been considerable interests in studying hadronic states beyond the usual two and three quark configurations. With the renewed experimental interests in {sigma}(600) and the inability of quark model to incorporate too many light scalar mesons, it is quite appropriate to study hadronic states with four quark configurations. Moreover, some of the newly observed charmed hadrons may well be described by four quark configurations. Lattice QCD is perhaps the most desirable tool to adjudicate the theoretical controversy of the scalar mesons and to interpret the structures of the newly observed charmed states. Here we briefly reviewed the lattice studies of four-quark hadrons.
Lattice QCD and Nuclear Physics
Konstantinos Orginos
2007-03-01
A steady stream of developments in Lattice QCD have made it possible today to begin to address the question of how nuclear physics emerges from the underlying theory of strong interactions. Central role in this understanding play both the effective field theory description of nuclear forces and the ability to perform accurate non-perturbative calculations in lo w energy QCD. Here I present some recent results that attempt to extract important low energy constants of the effective field theory of nuclear forces from lattice QCD.
Nuclear Physics from Lattice QCD
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Continuous Lattices and Mathematical Morphology
1998-06-01
ARMY RESEARCH LABORATORY Continuous Lattices and Mathematical Morphology by Dennis W. McGuire ARL-TR-1548 ^»»».■■SiSIIIBRHH^ June 1998...Research Laboratory Adelphi, MD 20783-1197 ARL-TR-1548 June 1998 Continuous Lattices and Mathematical Morphology Dennis W. McGuire Sensors and...Washington DC 20301-7100 AMCOM MRDEC Atta AMSMI-RD W C McCorkle Redstone Arsenal AL 35898-5240 Army RsrchPhysics Div Atta AMXRO-EMCS Assoc Dir Math
Nucleon Structure from Lattice QCD
Haegler, Philipp
2011-10-24
Hadron structure calculations in lattice QCD have seen substantial progress during recent years. We illustrate the achievements that have been made by discussing latest lattice results for a limited number of important observables related to nucleon form factors and generalized parton distributions. A particular focus is placed on the decomposition of the nucleon spin 1/2 in terms of quark spin and orbital angular momentum contributions. Results and limitations of the necessary chiral extrapolations based on ChPT will be briefly discussed.
Negative-viscosity lattice gases
Rothman, D.H. )
1989-08-01
A new irreversible collision rule is introduced for lattice-gas automata. The rule maximizes the flux of momentum in the direction of the local momentum gradient, yielding a negative shear viscosity. Numerically results in 2D show that the negative viscosity leads to the spontaneous ordering of the velocity field, with vorticity resolvable down to one lattice-link length. The new rule may be used in conjunction with previously proposed collision rules to yield a positive shear viscosity lower than the previous rules provide. In particular, Poiseuille flow tests demonstrate a decrease in viscosity by more than a factor of 2.
Chiral symmetry on the lattice
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Lattice Green's Function for the Body-Centered Cubic Lattice
NASA Astrophysics Data System (ADS)
Sakaji, A. J.
2002-05-01
An expression for the Green's function (GF) of Body-Centered Cubic (BCC) lat tice is evaluated analytically and numerically for a single impurity lattice. Th e density of states (DOS), phase shift, and scattering cross section are express ed in terms of complete elliptic integrals of the first kind.
Migration in Deltas: An Integrated Analysis
NASA Astrophysics Data System (ADS)
Nicholls, Robert J.; Hutton, Craig W.; Lazar, Attila; Adger, W. Neil; Allan, Andrew; Arto, Inaki; Vincent, Katharine; Rahman, Munsur; Salehin, Mashfiqus; Sugata, Hazra; Ghosh, Tuhin; Codjoe, Sam; Appeaning-Addo, Kwasi
2017-04-01
Deltas and low-lying coastal regions have long been perceived as vulnerable to global sea-level rise, with the potential for mass displacement of exposed populations. The assumption of mass displacement of populations in deltas requires a comprehensive reassessment in the light of present and future migration in deltas, including the potential role of adaptation to influence these decisions. At present, deltas are subject to multiple drivers of environmental change and often have high population densities as they are accessible and productive ecosystems. Climate change, catchment management, subsidence and land cover change drive environmental change across all deltas. Populations in deltas are also highly mobile, with significant urbanization trends and the growth of large cities and mega-cities within or adjacent to deltas across Asia and Africa. Such migration is driven primarily by economic opportunity, yet environmental change in general, and climate change in particular, are likely to play an increasing direct and indirect role in future migration trends. The policy challenges centre on the role of migration within regional adaptation strategies to climate change; the protection of vulnerable populations; and the future of urban settlements within deltas. This paper reviews current knowledge on migration and adaptation to environmental change to discern specific issues pertinent to delta regions. It develops a new integrated methodology to assess present and future migration in deltas using the Volta delta in Ghana, Mahanadi delta in India and Ganges-Brahmaputra-Meghna delta across India and Bangladesh. The integrated method focuses on: biophysical changes and spatial distribution of vulnerability; demographic changes and migration decision-making using multiple methods and data; macro-economic trends and scenarios in the deltas; and the policies and governance structures that constrain and enable adaptation. The analysis is facilitated by a range of
Thermal diffusion of supersonic solitons in an anharmonic chain of atoms.
Arévalo, Edward; Mertens, Franz G; Gaididei, Yuri; Bishop, A R
2003-01-01
We study the nonequilibrium diffusion dynamics of supersonic lattice solitons in a classical chain of atoms with nearest-neighbor interactions coupled to a heat bath. As a specific example we choose an interaction with cubic anharmonicity. The coupling between the system and a thermal bath with a given temperature is made by adding noise, delta correlated in time and space, and damping to the set of discrete equations of motion. Working in the continuum limit and changing to the sound velocity frame we derive a Korteweg-de Vries equation with noise and damping. We apply a collective coordinate approach which yields two stochastic ODEs which are solved approximately by a perturbation analysis. This finally yields analytical expressions for the variances of the soliton position and velocity. We perform Langevin dynamics simulations for the original discrete system which confirm the predictions of our analytical calculations, namely, noise-induced superdiffusive behavior which scales with the temperature and depends strongly on the initial soliton velocity. A normal diffusion behavior is observed for solitons with very low energy, where the noise-induced phonons also make a significant contribution to the soliton diffusion.
T (sub c)-delta relations in YBa2Cu3O(7-delta) thin films: Effects of oxygen pressure during growth
NASA Astrophysics Data System (ADS)
Feenstra, R.; Norton, D. P.; Budai, J. D.; Christen, D. K.; Lowndes, D. H.; Matijasevic, V. C.; Eom, C. B.; Geballe, T. H.; Hellman, E. S.; Hartford, E. H.
1992-04-01
The (Tc) dependence on oxygen content was measured for YBa2Cu3O(7-delta) films grown with a variety of techniques (solid phase epitaxy, laser ablation, off-axis sputtering, co-evaporation) at oxygen pressures p(O2) ranging from 1.0 atm to 0.1 mTorr. Dissimilar dependences resulted for each film type, with (Tc) either increasing or decreasing for small increments in delta from maximum oxygen occupancy. Varying systematically with p(O2) during growth, the deviations are attributed to competing effects from hole-doping lattice defects (most likely on the Y-site) on the carrier density of the CuO2 planes and basal plane oxygen capacity, respectively, giving rise to overdoping or underdoping after low temperature oxidation in 1.0 atm of oxygen.
Delta deposition influenced by diapiric uplifts
Kindinger, J.L.
1988-01-01
The continental shelf in the northern Gulf of Mexico is overlain by many superimposed deltas. One late Wisconsinan delta, here informally named the lagniappe, is located east of the Mississippi River bird-foot delta and extends from mid-shelf to the continental slope. The lagniappe delta is adjacent to, but not genetically associated with, the Mississippi River delta complex. The lagniappe delta is a shelf-margin delta formed in part by stream erosion of the exposed inner and outer shelf during the late Wisconsinan lowstand. On the basis of its overall pattern and direction of accretion, the delta's fluvial source was most probably the ancient Pearl or Mobile River farther east. The progradational deposits, as seen in the high-resolution seismic reflection profile, are characterized by foreset and bottomset bedding. Areal distribution and sediment thickness were partially controlled by two diapirs active before and during deltaic sedimentation. The diapirs were a barrier to seaward progradation. As the delta prograded seaward, sediment ponded in an area between and shoreward of both uplifted diapirs. The basic geometry of the lagniappe delta was effectively changed during deposition by the presence of these diapirs.
Warczok, Piotr; Chumak, Igor
2009-04-15
The title compound Hf{sub 1.5+{delta}}Nb{sub 1.5-{delta}}As was characterized by means of single crystal X-ray diffraction. It represents a new structure type of intermetallic compounds (space group Pnma; lattice parameters a=7.142(2) A, b=3.583(2) A, c=11.640(2) A) and shows a small homogeneity range corresponding to (0.1<delta<0.25) at 1400 deg. C. The crystal structure may be visualized by a combination of As-centred trigonal prisms of the metal atoms and bcc-like fragments formed by metal atoms. Structural relations with various binary arsenides are discussed. The structure of Hf{sub 1.5+{delta}}Nb{sub 1.5-{delta}}As shows significant preferred site occupation of Hf and Nb at the three independent metal positions (differential fractional site occupancy). Structure-composition relations in the section Hf{sub 3}As-Nb{sub 3}As which also contains the new phase Hf{sub 2+{delta}}Nb{sub 1-{delta}}As with Ti{sub 3}P-type structure (space group P4{sub 2}/n) are discussed. Ground state energies of various ordered compounds with Hf{sub 1.5+{delta}}Nb{sub 1.5-{delta}}As-, Ti{sub 3}P- and Ta{sub 3}As-type structures were calculated from ab initio density functional theory. These energies were used for thermodynamic calculations employing the compound energy formalism (CEF) with the aim to model the experimentally observed site fraction data for both ternary compounds as well as Gibbs energies at the temperature of equilibration (1400 deg. C). - Graphical abstract: Hf{sub 1.5+{delta}}Nb{sub 1.5-{delta}}As with a new structure type (space group Pnma; lattice parameters a=7.142(2) A, b=3.583(2) A, c=11.640(2)A) was synthesized. Phase relations, energies and partial ordering in the section Hf{sub 3}As-Nb{sub 3}As were studied by first principle DFT calculations and thermodynamic modelling.
Offshore Deterioration in the Mekong Delta, Vietnam
NASA Astrophysics Data System (ADS)
Stattegger, K.; Unverricht, D.; Heinrich, C.
2016-02-01
The interplay of river, tide and wave forcing controls shape and sedimentation at the front of the Mekong Delta. Specific hydro- and morphodynamic conditions in the western subaqueous part of the asymmetric Mekong Delta generate a sand ridge - channel system (SRCS) which is unique in subaqueous delta formation. This large-scale morphological element extends 130 km along the delta front consisting of two sand ridges and two erosional channels. Three different zones within SRCS can be distinguished. The eastern initial zone stretches along delta slope and inner shelf platform southwest of the Bassac river mouth, the largest and westernmost distributary of the Mekong Delta. In the central zone SRCS covers the outer part of the subaqueous delta platform with a pronounced sand-ridge and erosional channel morphology. Cross-sections of the SRCS reveal an asymmetric shape including steeper ridge flanks facing into offshore direction. Channels incise down to 18.2 m water depth (wd) and 10.5 down the ridge top at the outer subaqueous delta platform, respectively. Towards the west the sand ridges pinch out while the two channels merge into one and form a giant erosional scour of up to 33 m wd within the subaqueous delta platform. In the western zone, the channel gets shallower and vanishes along the south-western edge of the subaqueous delta platform around Ca Mau Cape. Sediment transport from the Mekong River nourishes the sand ridges. In contrast, tide and wind-driven currents cut the erosional channels, which act also as fine-sediment conveyor from eroding headlands to the distal part of the delta front that is 200 km apart of the Bassac river mouth. SRCS in the subaqueous Mekong Delta is a relevant indicator of delta-front instability and erosion.
Fisher, Jonathan P.H.; Yan, Mengyong; Heuijerjens, Jennifer; Carter, Lisa; Abolhassani, Ayda; Frosch, Jennifer; Wallace, Rebecca; Flutter, Barry; Capsomidis, Anna; Hubank, Mike; Klein, Nigel; Callard, Robin; Gustafsson, Kenth; Anderson, John
2015-01-01
Purpose The majority of circulating human γδT lymphocytes are of the Vγ9Vδ2 lineage, and have TCR specificity for non-peptide phosphoantigens. Previous attempts to stimulate and expand these cells have therefore focussed on stimulation using ligands of the Vγ9Vδ2 receptor, whilst relatively little is known about variant blood γδT subsets and their potential role in cancer immunotherapy. Experimental Design To expand the full repertoire of γδT without bias towards specific T cell receptors, we made use of artificial antigen presenting cells loaded with an anti gamma delta T cell receptor antibody that promoted unbiased expansion of the γδT repertoire. Expanded cells from adult blood donors were sorted into 3 populations expressing respectively Vδ2 TCR chains (Vδ2+), Vδ1 chains (Vδ1+) and TCR of other delta chain subtypes (Vδ1negVδ2neg) Results Both freshly isolated and expanded cells showed heterogeneity of differentiation markers, with a less differentiated phenotype in the Vδ1 and Vδ1negVδ2neg populations. Expanded cells were largely of an effector memory phenotype although there were higher numbers of less differentiated cells in the Vδ1+ and Vδ1negVδ2neg populations. Using neuroblastoma tumor cells and the anti-GD2 therapeutic monoclonal antibody ch14.18 as a model system, all three populations showed clinically relevant cytotoxicity. Whilst killing by expanded Vδ2 cells was predominantly antibody dependent and proportionate to upregulated CD16, Vδ1 cells killed by antibody independent mechanisms. Conclusions In conclusion we have demonstrated that polyclonal expanded populations of γδT cells are capable of both antibody dependent and independent effector functions in neuroblastoma. PMID:24893631
NASA Astrophysics Data System (ADS)
Stouthamer, E.; van Asselen, S.
2015-11-01
Deltas are increasingly under pressure from human impact and climate change. To deal with these pressures that threat future delta functioning, we need to understand interactions between physical, biological, chemical and social processes in deltas. This requires an integrated approach, in which knowledge on natural system functioning is combined with knowledge on spatial planning, land and water governance and legislative frameworks. In the research focus area Future Deltas of Utrecht University an interdisciplinary team from different research groups therefore works together. This allows developing integrated sustainable and resilient delta management strategies, which is urgently needed to prevent loss of vital delta services.
Stress Wave Propagation in Two-dimensional Buckyball Lattice
Xu, Jun; Zheng, Bowen
2016-01-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices. PMID:27892963
Stress Wave Propagation in Two-dimensional Buckyball Lattice
NASA Astrophysics Data System (ADS)
Xu, Jun; Zheng, Bowen
2016-11-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.
Many-body lattice wave functions from conformal blocks
NASA Astrophysics Data System (ADS)
Montes, Sebastián; Rodríguez-Laguna, Javier; Tu, Hong-Hao; Sierra, Germán
2017-02-01
We introduce a general framework to construct many-body lattice wave functions starting from the conformal blocks (CBs) of rational conformal field theories (RCFTs). We discuss the different ways of encoding the physical degrees of freedom of the lattice system using both the internal symmetries of the theory and the fusion channels of the CBs. We illustrate this construction both by revisiting the known Haldane-Shastry model and by providing a novel implementation for the Ising RCFT. In the latter case, we find a connection to the Ising transverse field (ITF) spin chain via the Kramers-Wannier duality and the Temperley-Lieb-Jones algebra. We also find evidence that the ground state of the finite-size critical ITF Hamiltonian corresponds exactly to the wave function obtained from CBs of spin fields.
Lattice continuum and diffusional creep
NASA Astrophysics Data System (ADS)
Mesarovic, Sinisa Dj.
2016-04-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
Hadronic Interactions from Lattice QCD
Konstantinos Orginos
2006-03-19
In this talk I discuss a few recent results on lattice calculations of scattering lengths in hadronic processes. In particular, I present the scattering length of the pion-pion scattering in the I=2 channel and the nucleon-nucleon {sup 1}S{sub 0} channel and {sup 3}S{sub 1}-{sup 3}D{sub 1} coupled channels.
On Some Periodic Toda Lattices
Kac, M.; Van Moerbeke, Pierre
1975-01-01
A discrete version of Floquet's theory is developed and applied to a system of non-linear differential equations related to the periodic Toda lattice. A special solution previously found by Toda is thus seen to fit into the formalism of inverse scattering problems. PMID:16592244
Subwavelength vortical plasmonic lattice solitons.
Ye, Fangwei; Mihalache, Dumitru; Hu, Bambi; Panoiu, Nicolae C
2011-04-01
We present a theoretical study of vortical plasmonic lattice solitons, which form in two-dimensional arrays of metallic nanowires embedded into nonlinear media with both focusing and defocusing Kerr nonlinearities. Their existence, stability, and subwavelength spatial confinement are investigated in detail.
Lattice continuum and diffusional creep
2016-01-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate. PMID:27274696
Lattice continuum and diffusional creep.
Mesarovic, Sinisa Dj
2016-04-01
Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.
Triangles in a Lattice Parabola.
ERIC Educational Resources Information Center
Sastry, K. R. S.
1991-01-01
Discussed are properties possessed by polygons inscribed in the lattice parabola y=x, including the area of a triangle, triangles of minimum area, conditions for right triangles, triangles whose area is the cube of an integer, and implications of Pick's Theorem. Further directions to pursue are suggested. (MDH)
Decompressive craniectomy with lattice duraplasty.
Mitchell, P; Tseng, M; Mendelow, A D
2004-02-01
A method of opening dura for decompressive craniectomies is described. Numerous cuts intersecting in a lattice pattern allow the dura to expand in a gradual and controlled manner minimising the chances of cortical laceration or venous kinking on the craniectomy edge.
Lattice QCD in Background Fields
William Detmold, Brian Tiburzi, Andre Walker-Loud
2009-06-01
Electromagnetic properties of hadrons can be computed by lattice simulations of QCD in background fields. We demonstrate new techniques for the investigation of charged hadron properties in electric fields. Our current calculations employ large electric fields, motivating us to analyze chiral dynamics in strong QED backgrounds, and subsequently uncover surprising non-perturbative effects present at finite volume.
Confinement and lattice gauge theory
Creutz, M
1980-06-01
The motivation for formulating gauge theories on a lattice to study non-perturbative phenomena is reviewed, and recent progress supporting the compatibility of asymptotic freedom and quark confinement in the standard SU(3) Yang-Mills theory of the strong interaction is discussed.
Evolving deltas: Conceptualising coevolution with engineered interventions
NASA Astrophysics Data System (ADS)
Welch, Amy; Nicholls, Robert; Lazar, Attila
2017-04-01
Mid to low latitude deltas have been populated for thousands of years due to their fertile soil and coastal location. This has led to an alteration in the land cover of deltas to primary agriculture and dense rural settlements and more recently, major cities and megacities have developed on or adjacent to many deltas. Deltas may be prosperous in terms of their outputs and services; however, they are also susceptible to many hazards due to their location and low-lying nature. Hazards include storm surges, fluvial flooding and erosion of both coastal and riverine areas, as well as subsidence, relative sea-level rise and pollution. This can have severe impacts on the delta, its population and its services. Therefore engineered interventions have been used for some time to protect the population and the valuable land from the consequences of hazards. Coevolution can be described as a feedback loop between nature and humans: each has an effect on how the other behaves and hence this inter-dependence interaction continues. Therefore the natural evolution of the delta interacts with engineered interventions, such as promoting accelerated subsidence over time, necessitating further adaptation. The deltaic landscape and associated livelihoods are thus the result of this co-evolution process between natural delta processes and engineered interventions. This presentation will identify and discuss various drivers and consequences of large scale engineered interventions, comparing and contrasting the management approaches taken in five populated deltas (Ganges-Brahmaputra-Meghna, Yangtze, Rhine-Meuse-Scheldt, Mekong and Nile). The type of engineered intervention and management approaches had a direct effect on the coevolution of deltas, with each of the deltas being at different stages in terms of extent of coevolution. A qualitative timeline of the typical steps of coevolution between the human system and the delta system of the studied deltas was produced. The major
Chang, Tina; Ke, Ying; Ly, Kevin; McDonald, Fiona J.
2011-08-05
Highlights: {yields} The COMM domain of COMMD1 mediates binding to {delta}ENaC. {yields} COMMD1 reduces the cell surface population of {delta}ENaC. {yields} COMMD1 increases the population of {delta}ENaC-ubiquitin. {yields} Both endogenous and transfected {delta}ENaC localize with COMMD1 and transferrin suggesting they are located in early/recycling endosomes. -- Abstract: The delta subunit of the epithelial sodium channel ({delta}ENaC) is a member of the ENaC/degenerin family of ion channels. {delta}ENaC is distinct from the related {alpha}-, {beta}- and {gamma}ENaC subunits, known for their role in sodium homeostasis and blood pressure control, as {delta}ENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1 domain 1) was previously found to associate with and downregulate {delta}ENaC activity. Here, we show that COMMD1 interacts with {delta}ENaC through its COMM domain. Co-expression of {delta}ENaC with COMMD1 significantly reduced {delta}ENaC surface expression, and led to an increase in {delta}ENaC ubiquitination. Immunocytochemical and confocal microscopy studies show that COMMD1 promoted localization of {delta}ENaC to the early/recycling endosomal pool where the two proteins were localized together. These results suggest that COMMD1 downregulates {delta}ENaC activity by reducing {delta}ENaC surface expression through promoting internalization of surface {delta}ENaC to an intracellular recycling pool, possibly via enhanced ubiquitination.
Single chain Fab (scFab) fragment.
Hust, Michael; Jostock, Thomas; Menzel, Christian; Voedisch, Bernd; Mohr, Anja; Brenneis, Mariam; Kirsch, Martina I; Meier, Doris; Dübel, Stefan
2007-03-08
The connection of the variable part of the heavy chain (VH) and and the variable part of the light chain (VL) by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv) was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv) fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab) with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display. Here, we demonstrate that the introduction of a polypeptide linker between the fragment difficult (Fd) and the light chain (LC), resulting in the formation of a single chain Fab fragment (scFab), can lead to improved production of functional molecules. We tested the impact of various linker designs and modifications of the constant regions on both phage display efficiency and the yield of soluble antibody fragments. A scFab variant without cysteins (scFabDeltaC) connecting the constant part 1 of the heavy chain (CH1) and the constant part of the light chain (CL) were best suited for phage display and production of soluble antibody fragments. Beside the expression system E. coli, the new antibody format was also expressed in Pichia pastoris. Monovalent and divalent fragments (DiFabodies) as well as multimers were characterised. A new antibody design offers the generation of bivalent Fab derivates for antibody phage display and production of soluble antibody fragments. This antibody format is of particular value for high throughput proteome binder generation projects, due to the avidity effect and the possible use of common standard sera for detection.
Discrete-to-continuum modeling of weakly interacting incommensurate chains
NASA Astrophysics Data System (ADS)
Español, Malena I.; Golovaty, Dmitry; Wilber, J. Patrick
2017-09-01
In this paper we use a formal discrete-to-continuum procedure to derive a continuum variational model for two chains of atoms with slightly incommensurate lattices. The chains represent a cross section of a three-dimensional system consisting of a graphene sheet suspended over a substrate. The continuum model recovers both qualitatively and quantitatively the behavior observed in the corresponding discrete model. The numerical solutions for both models demonstrate the presence of large commensurate regions separated by localized incommensurate domain walls.
Event-chain Monte Carlo for classical continuous spin models
NASA Astrophysics Data System (ADS)
Michel, Manon; Mayer, Johannes; Krauth, Werner
2015-10-01
We apply the event-chain Monte Carlo algorithm to classical continuum spin models on a lattice and clarify the condition for its validity. In the two-dimensional XY model, it outperforms the local Monte Carlo algorithm by two orders of magnitude, although it remains slower than the Wolff cluster algorithm. In the three-dimensional XY spin glass model at low temperature, the event-chain algorithm is far superior to the other algorithms.
Alarcón, B; Ley, S C; Sánchez-Madrid, F; Blumberg, R S; Ju, S T; Fresno, M; Terhorst, C
1991-01-01
The T cell receptor for antigen (TCR) consists of two glycoproteins containing variable regions (TCR-alpha/beta or TCR-gamma/delta) which are expressed on the cell surface in association with at least four invariant proteins (CD3-gamma, -delta, -epsilon and -zeta). CD3-gamma and CD3-delta chains are highly homologous, especially in the cytoplasmic domain. The similarity observed in their genomic organization and their proximity in the chromosome indicate that both genes arose from duplication of a single gene. Here, we provide several lines of evidence which indicate that in human and murine T cells which expressed both the CD3-gamma and CD3-delta chains on their surface, the TCR/CD3 complex consisted of a mixture of alpha beta gamma epsilon zeta and alpha beta delta epsilon zeta complexes rather than a single alpha beta gamma delta epsilon zeta complex. First, a CD3-gamma specific antibody failed to co-immunoprecipitate CD3-delta and conversely, several CD3-delta specific antibodies did not coprecipitate CD3-gamma. Secondly, analysis of a panel of human and murine T cell lines demonstrated that CD3-gamma and CD3-delta were expressed at highly variable ratios on their surface. This suggested that these chains were not expressed as a single complex. Thirdly, CD3-gamma and CD3-delta competed for binding to CD3-epsilon in transfected COS cells, suggesting that CD3-gamma and CD3-delta formed mutually exclusive complexes. The existence of these two forms of TCR/CD3 complexes could have important implications in the understanding of T cell receptor function and its role in T cell development. Images PMID:1826255
Moments of Isovector Quark Distributions in Lattice QCD
W. Detmold; Wally Melnitchouk; A.W. Thomas
2002-06-01
We investigate the connection of lattice calculations of moments of isovector parton distributions to the physical regime through extrapolations in the quark mass. We consider the one pion loop renormalization of the nucleon matrix elements of the corresponding operators and thereby develop formulae with which to extrapolate the moments of the unpolarized, helicity and transversity distributions. There formulae are consistent with chiral perturbation theory in the chiral limit and incorporate the correct heavy quark limits. In the polarized cases, the inclusion of intermediate states involving the Delta isobar is found to be very important. The results of our extrapolations are in general agreement with the phenomenological values of these moments where they are known, and for the first time we perform an extrapolation of the low moments of the isovector transversity distribution which is consistent with chiral symmetry.
Spin-3/2 baryons in lattice QCD
J.M. Zanotti; S. Choe; D.B. Leinweber; W. Melnitchouk; A.G. Williams; J.B. Zhang
2002-06-01
We present first results for masses of spin-3/2 baryons in lattice QCD, using a novel fat-link clover fermion action in which only the irrelevant operators are constructed using fat links. In the isospin-1/2 sector, we observe, after appropriate spin and parity projection, a strong signal for the J{sup P} = 3/2{sup -} state, and find good agreement between the 1/2{sup +} mass and earlier nucleon mass simulations with a spin-1/2 interpolating field. For the isospin-3/2 Delta states, clear mass splittings are observed between the various 1/2{sup +/-} and the 3/2{sup +/-} channels, with the calculated level orderings in good agreement with those observed empirically.
K-->pipi amplitudes from lattice QCD with a light charm quark.
Giusti, L; Hernández, P; Laine, M; Pena, C; Wennekers, J; Wittig, H
2007-02-23
We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light. They are extracted by comparing the predictions of finite-volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm-quark mass in K-->pipi amplitudes. The use of fermions with an exact chiral symmetry is an essential ingredient in our computation.
Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.
2016-01-01
Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful
Delta Clipper - Design for supportability
NASA Astrophysics Data System (ADS)
Smiljanic, Ray R.; Conrad, Charles; Spaulding, Ed; Gisburne, Don
1993-07-01
The 'Delta Clipper' Single Stage Rocket Technology (SSRT) currently under development in the DC-X program will implement reliability-centered maintenance and support, involving on-equipment/off-equipment two-level maintenance, a logistics and spares pipeline, and a minimization of 'blue suit' skill-level personnel. Attention is given to the range of SSRT features that are to be validated via the DC-X test program; these prominently involve LRUs replaceability and accessibility, standardization and interchangeability, and 'aircraft-like' automated data collection.
Chiral four-dimensional heterotic covariant lattices
NASA Astrophysics Data System (ADS)
Beye, Florian
2014-11-01
In the covariant lattice formalism, chiral four-dimensional heterotic string vacua are obtained from certain even self-dual lattices which completely decompose into a left-mover and a right-mover lattice. The main purpose of this work is to classify all right-mover lattices that can appear in such a chiral model, and to study the corresponding left-mover lattices using the theory of lattice genera. In particular, the Smith-Minkowski-Siegel mass formula is employed to calculate a lower bound on the number of left-mover lattices. Also, the known relationship between asymmetric orbifolds and covariant lattices is considered in the context of our classification.
Donoghue, J.F. . Geology Dept.); White, N.M. . Dept. of Anthropology)
1993-03-01
Late Holocene environmental changes in the lower Apalachicola River region of the northwest Florida appear to be related to deltaic lobe-shifting and sea level change. Sedimentologic, archaeologic and seismic evidence all indicate a major shift in deltaic deposition approximately 2,000 years ago. The effect is observed in the mid-region of the modern Apalachicola Delta as a pronounced change from estuarine to freshwater conditions. On the barrier island chain flanking the delta the result was a change in depositional patterns with a shift in the sediment supply.
NASA Astrophysics Data System (ADS)
Cecile, D. J.
In Quantum Chromodynamics (QCD), the pions are the lightest bound states. Current lattice QCD calculations are not able to study pions at realistic masses due to algorithmic difficulties. Instead, lattice studies are limited to unphysically large pion masses, and Chiral Perturbation Theory (ChPT) is often relied upon to extrapolate lattice results to the phenomenological regime and to the chiral limit, where quarks are massless. One of the outstanding problems in the field is to determine the range of quark masses where ChPT is valid and to understand the nonperturbative physics that may cause ChPT to break down. Given the difficulty of studying QCD, it is interesting and useful to construct a lattice field theory model of pions, which would allow a direct lattice calculation without the need for chiral extrapolations. This model can be used to evaluate the reliability of chiral extrapolations as applied to lattice data in the context of a lattice field theory that is exactly solvable numerically even at small quark masses and in the chiral limit. In this light, to create a model of pions of two-flavor Quantum Chromodynamics (QCD), a lattice field theory involving two flavors of staggered quarks interacting strongly with Abelian gauge fields is constructed. In the chiral limit, this theory exhibits a SUL(2) x SU R(2) x UA(1) symmetry. The UA(1) symmetry can be broken by introducing a four-fermion term into the action, thereby incorporating the physics of the QCD anomaly. To qualify as a meaningful model of QCD, this lattice model must exhibit spontaneous chiral symmetry breaking and confinement and must have a continuum limit. An interesting mechanism is introduced to address the continuum limit. In particular, an extra dimension allows one to tune a fictitious temperature in order to access a phase of broken symmetry and to find a range where the pion decay constant is much smaller than the lattice cutoff, i.e. Fpi ≪1a . Unlike lattice QCD, a major advantage of
Delta Clipper vehicle design for supportability
NASA Astrophysics Data System (ADS)
Smiljanic, Ray R.; Klevatt, Paul L.; Steinmeyer, Donald A.
1993-02-01
The paper describes the Single Stage Rocket Technology (SSRT) Delta Clipper vehicle design. As a means of reducing vehicle processing and turnaround times, the SSRT Delta Clipper design, contrary to past practices, incorporates support ability engineering features into its initial set of design requirements. The engineering process used to 'design-in' supportability into the Delta Clipper vehicle is described in detail and is illustrated using diagrams.
Mission Stream Analysis - Delta Analytic Model. Revision
2014-09-01
demonstrating mission effectiveness. The second tool is the ( Delta ) Analytic Model, which provides an approach for identifying disparate...requirements into a system’s technical performance and operator workload requirements; and help minimize the “ delta ” between domains across the system’s...mission and system capability requirements into a system’s technical performance and operator workload requirements; and help minimize the “ delta
Antiresonance induced by symmetry-broken contacts in quasi-one-dimensional lattices
NASA Astrophysics Data System (ADS)
Ryu, Jung-Wan; Myoung, Nojoon; Park, Hee Chul
2017-09-01
We report the effect of symmetry-broken contacts on quantum transport in quasi-one-dimensional lattices. In contrast to one-dimensional (1D) chains, transport in quasi-one-dimensional lattices, which are made up of a finite number of 1D chain layers, is strongly influenced by contacts. Contact symmetry depends on whether the contacts maintain or break the parity symmetry between the layers. With balanced on-site potential, a flatband can be detected by asymmetric contacts, but not by symmetric contacts. In the case of asymmetric contacts with imbalanced on-site potential, transmission is suppressed at certain energies. We elucidate these energies of transmission suppression related to antiresonance using reduced lattice models and Feynman paths. These results provide a nondestructive measurement of flatband energy, which is difficult to detect.
Neutral B meson mixing in unquenched lattice QCD
Gamiz, Elvira; Davies, Christine T. H.; Lepage, G. Peter; Shigemitsu, Junko; Wingate, Matthew
2009-07-01
We study B{sub d} and B{sub s} mixing in unquenched lattice QCD employing the MILC Collaboration gauge configurations that include u, d, and s sea quarks based on the improved staggered quark (AsqTad) action and a highly improved gluon action. We implement the valence light quarks also with the AsqTad action and use the nonrelativistic NRQCD action for the valence b quark. We calculate hadronic matrix elements necessary for extracting Cabibbo-Kobayashi-Maskawa matrix elements from experimental measurements of mass differences {delta}M{sub d} and {delta}M{sub s}. We find {xi}{identical_to}f{sub B{sub s}}{radical}(B-circumflex{sub B{sub s}})/f{sub B{sub d}}{radical}(B-circumflex{sub B{sub d}})=1.258(33), f{sub B{sub d}}{radical}(B-circumflex{sub B{sub d}})=216(15) MeV, and f{sub B{sub s}}{radical}(B-circumflex{sub B{sub s}})=266(18) MeV. We also update previous results for decay constants and obtain f{sub B{sub d}}=190(13) MeV, f{sub B{sub s}}=231(15) MeV, and f{sub B{sub s}}/f{sub B{sub d}}=1.226(26). The new lattice results lead to updated values for the ratio of Cabibbo-Kobayashi-Maskawa matrix elements |V{sub td}|/|V{sub ts}| and for the standard model prediction for Br(B{sub s}{yields}{mu}{sup +}{mu}{sup -}) with reduced errors. We determine |V{sub td}|/|V{sub ts}|=0.214(1)(5) and Br(B{sub s}{yields}{mu}{sup +}{mu}{sup -})=3.19(19)x10{sup -9}.
a Matrix Model Representation of the Integrable Xxz Heisenberg Chain on Random Surfaces
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Sedrakyan, A.
2013-11-01
We consider integrable models, i.e. models defined by R-matrices, on random Manhattan lattices (RML). The set of random Manhattan lattices is defined as the set dual to the lattice random surfaces embedded on a regular d-dimensional lattice. As an example we formulate a random matrix model where the partition function reproduces annealed average of the XXZ Heisenberg chain over all RML. A technique is presented which reduces the random matrix integration in partition function to an integration over their eigenvalues.
{Delta} isobars and (p,p') reactions
Sammarruca, F.; Stephenson, E. J.
2001-09-01
We explore the role of coupling to {Delta} isobars (in both the N{Delta} and {Delta}{Delta} channels) in medium modifications of the effective NN interaction that drives 200-MeV proton inelastic scattering. A comparison of the predictions to natural-parity (p,p') cross section and analyzing power data show that isobar degrees of freedom in the medium generate overly repulsive effective interactions. Furthermore, this model extension is unable to resolve difficulties observed earlier describing polarization transfer measurements in some high-spin, unnatural-parity (p,p') transitions.
Navigational Use of Cassini Delta V Telemetry
NASA Technical Reports Server (NTRS)
Roth, Duane C.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Goodson, Troy; Ionasescu, Rodica; Jones, Jeremy B.; Parcher, Daniel W.; Pelletier, Frederic J.; Thompson, Paul F.; Vaughan, Andrew T.
2008-01-01
Telemetry data are used to improve navigation of the Saturn orbiting Cassini spacecraft. Thrust induced delta V's are computed on-board the spacecraft, recorded in telemetry, and downlinked to Earth. This paper discusses how and why the Cassini Navigation team utilizes spacecraft delta V telemetry. Operational changes making this information attractive to the Navigation Team will be briefly discussed, as will spacecraft hardware and software algorithms responsible for the on-board computation. An analysis of past delta V telemetry, providing calibrations and accuracies that can be applied to the estimation of future delta V activity, is described.
From Natural to Design River Deltas
NASA Astrophysics Data System (ADS)
Giosan, Liviu
2016-04-01
Productive and biologically diverse, deltaic lowlands attracted humans since prehistory and may have spurred the emergence of the first urban civilizations. Deltas continued to be an important nexus for economic development across the world and are currently home for over half a billion people. But recently, under the double whammy of sea level rise and inland sediment capture behind dams, they have become the most threatened coastal landscape. Here I will address several deceptively simple questions to sketch some unexpected answers using example deltas from across the world from the Arctic to the Tropics, from the Danube to the Indus, Mississippi to Godavari and Krishna, Mackenzie to Yukon. What is a river delta? What is natural and what is not in a river delta? Are the geological and human histories of a delta important for its current management? Is maintaining a delta the same to building a new one? Can we design better deltas than Nature? These answers help us see clearly that survival of deltas in the next century depends on human intervention and is neither assured nor simple to address or universally applicable. Empirical observations on the hydrology, geology, biology and biochemistry of deltas are significantly lagging behind modeling capabilities endangering the applicability of numerical-based reconstruction solutions and need to be ramped up significantly and rapidly across the world.
Navigational Use of Cassini Delta V Telemetry
NASA Technical Reports Server (NTRS)
Roth, Duane C.; Antreasian, Peter G.; Ardalan, Shadan M.; Criddle, Kevin E.; Goodson, Troy; Ionasescu, Rodica; Jones, Jeremy B.; Parcher, Daniel W.; Pelletier, Frederic J.; Thompson, Paul F.;
2008-01-01
Telemetry data are used to improve navigation of the Saturn orbiting Cassini spacecraft. Thrust induced delta V's are computed on-board the spacecraft, recorded in telemetry, and downlinked to Earth. This paper discusses how and why the Cassini Navigation team utilizes spacecraft delta V telemetry. Operational changes making this information attractive to the Navigation Team will be briefly discussed, as will spacecraft hardware and software algorithms responsible for the on-board computation. An analysis of past delta V telemetry, providing calibrations and accuracies that can be applied to the estimation of future delta V activity, is described.
Lattice dynamics and lattice thermal conductivity of thorium dicarbide
NASA Astrophysics Data System (ADS)
Liao, Zongmeng; Huai, Ping; Qiu, Wujie; Ke, Xuezhi; Zhang, Wenqing; Zhu, Zhiyuan
2014-11-01
The elastic and thermodynamic properties of ThC2 with a monoclinic symmetry have been studied by means of density functional theory and direct force-constant method. The calculated properties including the thermal expansion, the heat capacity and the elastic constants are in a good agreement with experiment. Our results show that the vibrational property of the C2 dimer in ThC2 is similar to that of a free standing C2 dimer. This indicates that the C2 dimer in ThC2 is not strongly bonded to Th atoms. The lattice thermal conductivity for ThC2 was calculated by means of the Debye-Callaway model. As a comparison, the conductivity of ThC was also calculated. Our results show that the ThC and ThC2 contributions of the lattice thermal conductivity to the total conductivity are 29% and 17%, respectively.
Lattice Boltzmann solver of Rossler equation
NASA Astrophysics Data System (ADS)
Yan, Guangwu; Ruan, Li
2000-06-01
We proposed a lattice Boltzmann model for the Rossler equation. Using a method of multiscales in the lattice Boltzmann model, we get the diffusion reaction as a special case. If the diffusion effect disappeared, we can obtain the lattice Boltzmann solution of the Rossler equation on the mesescopic scale. The numerical results show the method can be used to simulate Rossler equation.
The CKM Matrix from Lattice QCD
Mackenzie, Paul B.; /Fermilab
2009-07-01
Lattice QCD plays an essential role in testing and determining the parameters of the CKM theory of flavor mixing and CP violation. Very high precisions are required for lattice calculations analyzing CKM data; I discuss the prospects for achieving them. Lattice calculations will also play a role in investigating flavor mixing and CP violation beyond the Standard Model.
Long-Range Lattice-Gas Algorithm
2007-11-02
lattice-gases, and therefore inherits exact computabil- ity on a discrete spacetime lattice. Our contribution is the use of nonlocal interactions that...gases, and therefore inherits exact computability on a discrete spacetime lattice. Our contribution is the use of nonlocal interactions that allow us to
Exact and numerical results for a dimerized coupled spin- 1/2 chain
Martins; Nienhuis
2000-12-04
We establish exact results for coupled spin-1/2 chains for special values of the four-spin interaction V and dimerization parameter delta. The first exact result is at delta = 1/2 and V = -2. Because we find a very small but finite gap in this dimerized chain, this can serve as a very strong test case for numerical and approximate analytical techniques. The second result is for the homogeneous chain with V = -4 and gives evidence that the system has a spontaneously dimerized ground state. Numerical diagonalization and bosonization techniques indicate that the interplay between dimerization and interaction could result in gapless phases in the regime 0
Doping Scheme in Atomic Chain Electronics
NASA Technical Reports Server (NTRS)
Toshishige, Yamada
1997-01-01
Due to the dramatic reduction in MOS size, there appear many unwanted effects. In these small devices, the number of dopant atoms in the channel is not macroscopic and electrons may suffer significantly different scattering from device to device since the spatial distribution of dopant atoms is no longer regarded as continuous. This prohibits integration, while it is impossible to control such dopant positions within atomic scale. A fundamental solution is to create electronics with simple but atomically precise structures, which could be fabricated with recent atom manipulation technology. All the constituent atoms are placed as planned, and then the device characteristics are deviation-free, which is mandatory for integration. Atomic chain electronics belongs to this category. Foreign atom chains or arrays form devices, and they are placed on the atomically flat substrate surface. We can design the band structure and the resultant Fermi energy of these structures by manipulating the lattice constant. Using the tight-binding theory with universal parameters, it has been predicted that isolated Si chains and arrays are metallic, Mg chains are insulating, and Mg arrays have metallic and insulating phases [1]. The transport properties along a metallic chain have been studied, emphasizing the role of the contact to electrodes [2]. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along die chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome
Comments on the slip factor and the relation Delta phi = -h Delta theta
Ng, K.Y.; /Fermilab
2009-09-01
The definition of the slip factor can be obtained from the phase equation. However, a derivation using the relation {Delta}{phi} = -h{Delta}{theta} leads to a different slip-factor definition. This apparent paradox is examined in detail and resolved. Here {Delta}{phi} is the rf phase difference and {Delta}{theta} is the azimuthal phase difference around the accelerator ring between an off-momentum particle and the synchronous particle, while h is the rf harmonic.
Developing a Truly Global Delta Database to Assess Delta Morphology and Morphodynamics
NASA Astrophysics Data System (ADS)
Caldwell, R. L.; Edmonds, D. A.; Baumgardner, S. E.; Whaling, A.
2015-12-01
Delta morphology reflects the interplay of various environmental parameters, though these relationships have only been tested on small datasets with 30-50 deltas. These datasets are biased toward the largest deltas, which typically have compound morphologies, form on passive margins, and may not be representative of the full breadth in delta morphology. With the goal of building more robust predictions of delta morphology to enhance hazard mitigation and resiliency planning, we have developed a truly global delta database including every delta on the world's marine coastlines. Using Google Earth imagery, we first identified all fluvial river mouths (≥ 50 m wide) connected to an upstream catchment. Deltas are defined geomorphically as river mouths that split into two or more active or relict distributary channels, end in a depositional protrusion from the shoreline, or do both. In our database we identified 5,801 river mouths, and 1,426 of those coastal rivers (~25%) have a geomorphic delta. ~75% of deltas exhibit an active or relict distributary network, while the remaining ~25% are single channel deltas with a basinward protrusion. Preliminary morphometric analysis (ratio of shore-parallel width, W, to shore-perpendicular length, L) on a subset of 159 deltas suggests W:L values range from 0.52 (elongate) to 23.6 (broad/cuspate). The median W:L value is 2.68, suggesting the majority of deltas are roughly semi-circular (W:L = 2), and the distribution is heavily skewed to the broad/cuspate deltas (~28% are >4 times wider than they are long). Preliminary comparison to downstream significant wave height data shows that the 'wider' deltas relate to higher wave heights (R2 = 0.42), though the data are scattered. Ultimately, the database will include additional measured morphometrics, including number of channel mouths and delta area, and morphodynamic data derived from serial Landsat imagery.
Partial lattice participation in the spin-lattice relaxation of potassium chromium alum
NASA Astrophysics Data System (ADS)
Overweg, J. A.; Flokstra, J.; ter Brake, H. J. M.; Gerritsma, G. J.
1981-08-01
We developed a SQUID-based frequency sweeping system for a.c. susceptibility measurements. Using this instrument we found that in Potassium Chromium Alum only a part of the lattice system is involved in the spin-lattice relaxation process. This partial lattice participation amounts 60-75% of the total lattice specific heat.
Compounds of paired electrons and lattice solitons moving with supersonic velocity
NASA Astrophysics Data System (ADS)
Hennig, D.; Velarde, M. G.; Ebeling, W.; Chetverikov, A.
2008-12-01
We study the time evolution of two correlated electrons of opposite spin in an anharmonic lattice chain. The electrons are described quantum mechanically by the Hubbard model while the lattice is treated classically. The lattice units are coupled via Morse-Toda potentials. Interaction between the lattice and the electrons arises due to the dependence of the electron transfer-matrix element on the distance between neighboring lattice units. Localized configurations comprising a paired electron and a pair of lattice deformation solitons are constructed such that an associated energy functional is minimized. We investigate long-lived, stable pairing features. It is demonstrated that traveling pairs of lattice solitons serve as carriers for the paired electrons realizing coherent transport of the two correlated electrons. We also observe dynamical narrowing of the states, that is, starting from an initial double-peak profile of the electron probability distribution, a single-peak profile is adopted going along with enhancement of localization of the paired electrons. Interestingly, a parameter regime is identified for which supersonic transport of paired electrons is achieved.
Error and loss tolerances of surface codes with general lattice structures
NASA Astrophysics Data System (ADS)
Fujii, Keisuke; Tokunaga, Yuuki
2012-08-01
We propose a family of surface codes with general lattice structures, where the error tolerances against bit and phase errors can be controlled asymmetrically by changing the underlying lattice geometries. The surface codes on various lattices are found to be efficient in the sense that their threshold values universally approach the quantum Gilbert-Varshamov bound. We find that the error tolerance of the surface codes depends on the connectivity of the underlying lattices; the error chains on a lattice of lower connectivity are easier to correct. On the other hand, the loss tolerance of the surface codes exhibits an opposite behavior; the logical information on a lattice of higher connectivity has more robustness against qubit loss. As a result, we come upon a fundamental trade-off between error and loss tolerances in the family of surface codes with different lattice geometries. We also provide the physical aspects of the present results from the viewpoint of statistical physics, which leads to an equality that captures well both the error and loss tolerances of these surface codes.
Belopolski, Ilya; Xu, Su-Yang; Koirala, Nikesh; Liu, Chang; Bian, Guang; Strocov, Vladimir N.; Chang, Guoqing; Neupane, Madhab; Alidoust, Nasser; Sanchez, Daniel; Zheng, Hao; Brahlek, Matthew; Rogalev, Victor; Kim, Timur; Plumb, Nicholas C.; Chen, Chaoyu; Bertran, François; Le Fèvre, Patrick; Taleb-Ibrahimi, Amina; Asensio, Maria-Carmen; Shi, Ming; Lin, Hsin; Hoesch, Moritz; Oh, Seongshik; Hasan, M. Zahid
2017-01-01
Engineered lattices in condensed matter physics, such as cold-atom optical lattices or photonic crystals, can have properties that are fundamentally different from those of naturally occurring electronic crystals. We report a novel type of artificial quantum matter lattice. Our lattice is a multilayer heterostructure built from alternating thin films of topological and trivial insulators. Each interface within the heterostructure hosts a set of topologically protected interface states, and by making the layers sufficiently thin, we demonstrate for the first time a hybridization of interface states across layers. In this way, our heterostructure forms an emergent atomic chain, where the interfaces act as lattice sites and the interface states act as atomic orbitals, as seen from our measurements by angle-resolved photoemission spectroscopy. By changing the composition of the heterostructure, we can directly control hopping between lattice sites. We realize a topological and a trivial phase in our superlattice band structure. We argue that the superlattice may be characterized in a significant way by a one-dimensional topological invariant, closely related to the invariant of the Su-Schrieffer-Heeger model. Our topological insulator heterostructure demonstrates a novel experimental platform where we can engineer band structures by directly controlling how electrons hop between lattice sites. PMID:28378013
Vikingstad, E.; Saetersdal, H.
1980-10-01
The change in partial molal volume (DELTA VM) and compressibility (DELTA KSM) during micelle formation was determined at 25 C for the homologous series of sodium alkylmalonates. CH/sub 3/(CH/sub 2/) 7 CH CH - (CoO-Na+)2 to CH/sub 3/(CH/sub 2/) 11CH(COD-Na/sub +/)/sub 2/. DELTA VM and DELTA KSM were determined from density measurements and ultrasound measurements, respectively. Both these quantities increase with increasing surfactant chain length. The fraction of associated counterions to the micelles was determined by EMF measurements, and it was found that this quantity increases slightly with increasing surfactant chain length.
gamma/delta and other unconventional T lymphocytes: what do they see and what do they do?
Kaufmann, S H
1996-01-01
T lymphocytes recognize specific ligands by clonally distributed T-cell receptors (TCR). In humans and most animals, the vast majority of T cells express a TCR composed of an alpha chain and a beta chain, whereas a minor T-cell population is characterized by the TCR gamma/delta. Almost all of our knowledge about T cells stems from alpha/beta T cells and only now are we beginning to understand gamma/delta T cells. In contrast to conventional alpha/beta T cells, which are specific for antigenic peptides presented by gene products of the major histocompatibility complex, gamma/delta T cells directly recognize proteins and even nonproteinacious phospholigands. These findings reveal that gamma/delta T cells and alpha/beta T cells recognize antigen in a fundamentally different way and hence mitigate the dogma of exclusive peptide-major histocompatibility complex recognition by T cells. A role for gamma/delta T cells in antimicrobial immunity has been firmly established. Although some gamma/delta T cells perform effector functions, regulation of the professional and the nonprofessional immune system seems to be of at least equal importance. The prominent residence of gamma/delta T cells in epithelial tissues and the rapid mobilization of gamma/delta T cells in response to infection are consistent with such regulatory activities under physiological and pathologic conditions. Thus, although gamma/delta T cells are a minor fraction of all T cells, they are not just uninfluential kin of alpha/beta T cells but have their unique raison d'être. Images Fig. 1 Fig. 2 PMID:8637862
Marriage of exact enumeration and 1/d expansion methods: Lattice model of dilute polymers
NASA Astrophysics Data System (ADS)
Nemirovsky, A. M.; Freed, Karl F.; Ishinabe, Takao; Douglas, Jack F.
1992-06-01
We consider the properties of a self-avoiding polymer chain with nearestneighbor contact energy ɛ on a d-dimensional hypercubic lattice. General theoretical arguments enable us to prescribe the exact analytic form of the n-segment chain partition function C n ,and unknown coefficients for chains of up to 11 segments are determined using exact enumeration data in d=2-6. This exact form provides the main ingredient to produce a large- n expansion in d -1of the chain free energy through fifth order with the full dependence on the contact energy retained. The ɛ-dependent chain connectivity constant and free energy amplitude are evaluated within the d -1expansion to O(d -5). Our general formulation includes for the first time self-avoiding walks, neighboravoiding walks, theta, and collapsed chains as particular limiting cases.
Kinetic Relations for a Lattice Model of Phase Transitions
NASA Astrophysics Data System (ADS)
Schwetlick, Hartmut; Zimmer, Johannes
2012-11-01
The aim of this article is to analyse travelling waves for a lattice model of phase transitions, specifically the Fermi-Pasta-Ulam chain with piecewise quadratic interaction potential. First, for fixed, sufficiently large subsonic wave speeds, we rigorously prove the existence of a family of travelling wave solutions. Second, it is shown that this family of solutions gives rise to a kinetic relation which depends on the jump in the oscillatory energy in the solution tails. Third, our constructive approach provides a very good approximate travelling wave solution.
Heuristic algorithm for off-lattice protein folding problem*
Chen, Mao; Huang, Wen-qi
2006-01-01
Enlightened by the law of interactions among objects in the physical world, we propose a heuristic algorithm for solving the three-dimensional (3D) off-lattice protein folding problem. Based on a physical model, the problem is converted from a nonlinear constraint-satisfied problem to an unconstrained optimization problem which can be solved by the well-known gradient method. To improve the efficiency of our algorithm, a strategy was introduced to generate initial configuration. Computational results showed that this algorithm could find states with lower energy than previously proposed ground states obtained by nPERM algorithm for all chains with length ranging from 13 to 55. PMID:16365919
Competing interactions in artificial spin chains
NASA Astrophysics Data System (ADS)
Nguyen, V.-D.; Perrin, Y.; Le Denmat, S.; Canals, B.; Rougemaille, N.
2017-07-01
The low-energy magnetic configurations of artificial, frustrated classical spin chains are investigated using magnetic force microscopy and micromagnetic simulations. Contrary to most studies on two-dimensional artificial spin systems in which frustration arises from the lattice geometry, here magnetic frustration originates from competing interactions between neighboring spins. By tuning continuously the strength and sign of these interactions, we show that different magnetic phases can be stabilized. Comparison between our experimental findings and predictions from the one-dimensional anisotropic next-nearest-neighbor Ising model reveals that artificial frustrated spin chains have a richer phase diagram than initially expected. In addition to the observation of several magnetic orders and the potential extension of this work to highly degenerated artificial spin chains, our results suggest that the micromagnetic nature of the individual magnetic elements allows for the observation of metastable spin configurations.
Studies of iron impurities in YxPr1-xBa2Cu3O7-delta
NASA Technical Reports Server (NTRS)
Swartzendruber, L. J.; Bennett, L. H.; Ritter, J.; Rubinstein, M.; Harford, M. Z.
1990-01-01
Pr is the only rare earth which, when substituted for Y in YBa2Cu3O7, significantly alters the superconducting transition temperature T(sub c) without changing the crystal structure. For YxPr1-xBa2Cu3O7-delta with delta approx. equal to 0, T(sub c) is reduced rapidly as x is increased, reaching zero for x about 0.5. For x above 0.5 the compound is antiferromagnetic with a Neel temperature that increases with increasing x, rising to above room temperature for x near 1. A similar behavior is observed when the oxygen deficit delta is increased from zero to 1 with x=0. For the case of Pr substitution, the drop in T(sub c) is believed due to magnetic interactions. For the case of varying delta with x=0, the drop can be attributed to a combination of magnetic interactions, band filling, and changes in crystal structure. To study these effects, the Mossbauer effect of 57 Fe atoms substituted for the Cu atoms has been observed as a function of delta, x, and temperature. The observed spectra are all well described by a two quadrupole-split pairs, a central singlet, and a six-line magnetic hyperfine field pattern. For several Pr compositions both delta and temperature were varied, and the results support the hypothesis that a magnetic interaction exists between the Fe in the Cu lattice and the substitutional Pr atoms.
Limiting vibration in space lattices
Midturi, S.
1997-12-01
Using finite-element analysis and other methods, engineers are evaluating ways to control the vibrations and extend the use of flexible, deployable structures in space. The exploration of the universe by the United States has led to many technological innovations for space travel. Among them are lightweight lattice structures and booms, which have been used on the Voyager probes to the outer planets, the Hubble space telescope,m and many other missions. Typical applications of lattice structures in space include instrument booms, antennae, and solar-array deployers and supports. Booms are designed for automatic deployment to a controlled length and retraction into a very compact stowage volume. Deployable solar booms are often subjected to severe vibration while in orbit, and vibration must be limited or completely eliminated for safe and satisfactory performance.
Dru Renner
2012-04-01
Precision computation of hadronic physics with lattice QCD is becoming feasible. The last decade has seen precent-level calculations of many simple properties of mesons, and the last few years have seen calculations of baryon masses, including the nucleon mass, accurate to a few percent. As computational power increases and algorithms advance, the precise calculation of a variety of more demanding hadronic properties will become realistic. With this in mind, I discuss the current lattice QCD calculations of generalized parton distributions with an emphasis on the prospects for well-controlled calculations for these observables as well. I will do this by way of several examples: the pion and nucleon form factors and moments of the nucleon parton and generalized-parton distributions.
Lattice QCD on nonorientable manifolds
NASA Astrophysics Data System (ADS)
Mages, Simon; Tóth, Bálint C.; Borsányi, Szabolcs; Fodor, Zoltán; Katz, Sándor D.; Szabó, Kálmán K.
2017-05-01
A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a nonorientable manifold and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is that translational invariance is preserved up to exponentially small corrections. A Dirac fermion on a nonorientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem.
Innovations in Lattice QCD Algorithms
Konstantinos Orginos
2006-06-25
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.
The Fermilab lattice supercomputer project
NASA Astrophysics Data System (ADS)
Fischler, Mark; Atac, R.; Cook, A.; Deppe, J.; Gaines, I.; Husby, D.; Nash, T.; Pham, T.; Zmuda, T.; Hockney, George; Eichten, E.; Mackenzie, P.; Thacker, H. B.; Toussaint, D.
1989-06-01
The ACPMAPS system is a highly cost effective, local memory MIMD computer targeted at algorithm development and production running for gauge theory on the lattice. The machine consists of a compound hypercube of crates, each of which is a full crossbar switch containing several processors. The processing nodes are single board array processors based on the Weitek XL chip set, each with a peak power of 20 MFLOPS and supported by 8MBytes of data memory. The system currently being assembled has a peak power of 5 GFLOPS, delivering performance at approximately $250/MFLOP. The system is programmable in C and Fortran. An underpinning of software routines (CANOPY) provides an easy and natural way of coding lattice problems, such that the details of parallelism, and communication and system architecture are transparent to the user. CANOPY can easily be ported to any single CPU or MIMD system which supports C, and allows the coding of typical applications with very little effort.
Tracking the SSC test lattices
Leemann, B.T.; Douglas, D.R.; Forest, E.
1990-01-01
The dynamic aperture and its determination emerged from the SSC reference design study as the single most important accelerator physics issue pertinent to the SSC. Beside the fundamental need of a finite dynamic aperture for any accelerator, it was considered to be a useful criterion for the magnet selection. An aperture workshop organized in November 1984 at LBL served the purpose to identify the various aspects of the aperture question and to organize the aperture task force accordingly. It was recognized that numerical models had to play an important role and the qualifications of several tracking codes were investigated. None of the existing codes could meet all of the criteria for an ideal tracking code and substantial program development became unavoidable. It was therefore decided to begin tracking SSC test lattices, which were provided by the aperture task force's lattice group and are described in an other paper to this conference, with existing tracking programs. 6 refs., 5 figs., 2 tabs.
Fluctuating multicomponent lattice Boltzmann model.
Belardinelli, D; Sbragaglia, M; Biferale, L; Gross, M; Varnik, F
2015-02-01
Current implementations of fluctuating lattice Boltzmann equations (FLBEs) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem directly at the kinetic level. Crucial for our analysis is the projection of the Boltzmann equation onto the orthonormal Hermite basis. By integrating in space and time the fluctuating Boltzmann equation with a discrete number of velocities, the FLBE is obtained for both ideal and nonideal multicomponent fluids. Numerical simulations are specialized to the case where mean-field interactions are introduced on the lattice, indicating a proper thermalization of the system.
A transportable optical lattice clock
NASA Astrophysics Data System (ADS)
Vogt, Stefan; Häfner, Sebastian; Grotti, Jacopo; Koller, Silvio; Al-Masoudi, Ali; Sterr, Uwe; Lisdat, Christian
2016-06-01
We present the experimental setup and first results of PTB's transportable 87Sr clock. It consists of a physics package, several compact laser breadboards, and a transportable high finesse cavity for the clock laser. A comparison of the transportable system with our stationary optical lattice clock yields an instability of 2.2 x 10-15 √s/τ for the transportable clock. The current fractional uncertainty of 1 × 10-15 is still limited by the not yet fully evaluated light shift from the free running optical lattice laser operated near the magic wavelength. We are currently improving our transportable system to reach an uncertainty at or below the 10-17 level, which will finaly be limited by the uncertainty in blackbody radiation shift correction.
LATTICE QCD AT FINITE DENSITY.
SCHMIDT, C.
2006-07-23
I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.
Scattering in Quantum Lattice Gases
NASA Astrophysics Data System (ADS)
O'Hara, Andrew; Love, Peter
2009-03-01
Quantum Lattice Gas Automata (QLGA) are of interest for their use in simulating quantum mechanics on both classical and quantum computers. QLGAs are an extension of classical Lattice Gas Automata where the constraint of unitary evolution is added. In the late 1990s, David A. Meyer as well as Bruce Boghosian and Washington Taylor produced similar models of QLGAs. We start by presenting a unified version of these models and study them from the point of view of the physics of wave-packet scattering. We show that the Meyer and Boghosian-Taylor models are actually the same basic model with slightly different parameterizations and limits. We then implement these models computationally using the Python programming language and show that QLGAs are able to replicate the analytic results of quantum mechanics (for example reflected and transmitted amplitudes for step potentials and the Klein paradox).
Lattice Simulations and Infrared Conformality
Appelquist, Thomas; Fleming, George T.; Lin, Meifeng; ...
2011-09-01
We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m which is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that itmore » does work well for another theory expected to be infrared conformal.« less
Apiary B Factory Lattice Design
Donald, M.H.R.; Garren, A.A.
1991-05-03
The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper presents the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent.
Apiary B Factory lattice design
Donald, M.H.R. ); Garren, A.A. )
1991-04-01
The Apiary B Factory is a proposed high-intensity electron-positron collider. This paper will present the lattice design for this facility, which envisions two rings with unequal energies in the PEP tunnel. The design has many interesting optical and geometrical features due to the needs to conform to the existing tunnel, and to achieve the necessary emittances, damping times and vacuum. Existing hardware is used to a maximum extent. 8 figs. 1 tab.
Hadron physics from lattice QCD
NASA Astrophysics Data System (ADS)
Bietenholz, Wolfgang
2016-07-01
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last, we address two outstanding issues: topological freezing and the sign problem.
Scanning phononic lattices with ultrasound
Vines, R.E.; Wolfe, J.P.; Every, A.V.
1999-11-01
A method for probing the elastic properties of newly developed periodic structures using acoustic waves is introduced. Highly anisotropic transmission of surface acoustic waves is observed by continuously scanning the wave vector angle. Preliminary models of wave propagation through multilayers and two-dimensional lattices explain some of the experimental features, while other features can be attributed to the resonant excitation of interface waves. {copyright} {ital 1999} {ital The American Physical Society}
Fuzzy lattice neurocomputing (FLN) models.
Kaburlasos, V G; Petridis, V
2000-12-01
In this work it is shown how fuzzy lattice neurocomputing (FLN) emerges as a connectionist paradigm in the framework of fuzzy lattices (FL-framework) whose advantages include the capacity to deal rigorously with: disparate types of data such as numeric and linguistic data, intervals of values, 'missing' and 'don't care' data. A novel notation for the FL-framework is introduced here in order to simplify mathematical expressions without losing content. Two concrete FLN models are presented, namely 'sigma-FLN' for competitive clustering, and 'FLN with tightest fits (FLNtf)' for supervised clustering. Learning by the sigma-FLN, is rapid as it requires a single pass through the data, whereas learning by the FLNtf, is incremental, data order independent, polynomial theta(n3), and it guarantees maximization of the degree of inclusion of an input in a learned class as explained in the text. Convenient geometric interpretations are provided. The sigma-FLN is presented here as fuzzy-ART's extension in the FL-framework such that sigma-FLN widens fuzzy-ART's domain of application to (mathematical) lattices by augmenting the scope of both of fuzzy-ART's choice (Weber) and match functions, and by enhancing fuzzy-ART's complement coding technique. The FLNtf neural model is applied to four benchmark data sets of various sizes for pattern recognition and rule extraction. The benchmark data sets in question involve jointly numeric and nominal data with 'missing' and/or 'don't care' attribute values, whereas the lattices involved include the unit-hypercube, a probability space, and a Boolean algebra. The potential of the FL-framework in computing is also delineated.
NASA Astrophysics Data System (ADS)
Ossandon, Jorge G.
Magnetically aligned samples of sintered YBa _2Cu_3O_ {7-delta} were used to test the effects of oxygen-deficiency delta (with 0<=qdelta<=q 0.2) on the superconductive magnetization M, critical current density J_{c}, irreversibility field B_{irr }, upper critical field H_{ rm c2}, coherence length xi , condensation energy F_{c}, London penetration depth lambda and related properties as functions of temperature T and applied magnetic field H | c. In selected cases, studies were also made with H | ab. The open porosity and granularity of the material allowed rapid and homogeneous oxygenation. The oxygen content was monitored in situ by Thermo-Gravimetric Analysis. We found no significant enhancement of intragrain J_{c} with chain -site O-defects. With few exceptions, maximum J _{c} occurred at full oxygenation. This implies that chain-site O-defects are not strong or effective pinning centers over most of the field-temperature regime investigated. Except for T _{c}, which was practically independent of delta within the interval 0<=qdelta<=q 0.11 (so called "T_{c} -plateau"), most properties such as J_{ c}, F_{c}, H_{c2} , B_{irr}(T), lambda and xi were strongly and continuously influenced by the oxygen deficiency. The observed abnormal magnetization ("fishtail" or "bowtie" effect) with H | c was weak at low T but became more pronounced as T and delta increased. No abnormal magnetization was detected with H | ab. As oxygen was removed, B_{irr }(T) and H_{c2}(T) separated and both lines shifted to lower T and lower H. Moreover, B_{irr} was strongly correlated with J _{c} at low temperature. Determination of the thermodynamic critical field H_{ c} yielded condensation energies F _{c}(delta) that suffered a strong reduction with increasing delta. As predicted by a simple, single-site pinning model, a good correlation was found between J _{c}(delta) and the product F_{c}xi _{ab} (where xi_{ab} is the coherence length in the a-b plane). This correlation was corroborated by
Spectral Properties of Unimodular Lattice Triangulations
NASA Astrophysics Data System (ADS)
Krüger, Benedikt; Schmidt, Ella M.; Mecke, Klaus
2016-05-01
Random unimodular lattice triangulations have been recently used as an embedded random graph model, which exhibit a crossover behavior between an ordered, large-world and a disordered, small-world behavior. Using the ergodic Pachner flips that transform such triangulations into another and an energy functional that corresponds to the degree distribution variance, Markov chain Monte Carlo simulations can be applied to study these graphs. Here, we consider the spectra of the adjacency and the Laplacian matrix as well as the algebraic connectivity and the spectral radius. Power law dependencies on the system size can clearly be identified and compared to analytical solutions for periodic ground states. For random triangulations we find a qualitative agreement of the spectral properties with well-known random graph models. In the microcanonical ensemble analytical approximations agree with numerical simulations. In the canonical ensemble a crossover behavior can be found for the algebraic connectivity and the spectral radius, thus combining large-world and small-world behavior in one model. The considered spectral properties can be applied to transport problems on triangulation graphs and the crossover behavior allows a tuning of important transport quantities.
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculationsmore » of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.« less
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-01-13
In this study, one of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.
Quantised vortices in polariton lattices
NASA Astrophysics Data System (ADS)
Berloff, Natalia
2015-11-01
The first comprehensive treatment of quantised vorticity in the light of research on vortices in modern fluid mechanics appeared in Russell Donnelly seminal research papers and summarized in his 1991 book ``Quantized Vortices in Helium II''. Recently quantized vortices have been studied in polariton condensates. Polaritons are the mixed light-matter quasi-particles that are formed in the strong exciton-photon coupling regime. Under non-resonant optical excitation rapid relaxation of carriers and bosonic stimulation result in the formation of a non-equilibrium polariton condensate characterized by a single many-body wave-function, therefore, naturally possessing quantized vortices. Polariton condensates can be imprinted into any two-dimensional lattice by spatial modulation of the pumping laser and form vortices via interacting outfows from the pumping sites. Optically pumped polariton condensates can be injected in lattice configurations with arbitrary density profiles offering the possibility to control the kinetics of the condensate and therefore the number and location of vortices. I will present some new developments in theoretical and experimental studies of quantized vortices in polariton condensates and discuss possible practical implementations of polariton lattices.
NASA Astrophysics Data System (ADS)
Bordovskii, G. A.; Terukov, E. I.; Marchenko, A. V.; Seregin, P. P.; Shaldenkova, A. V.
2017-04-01
The absolute charges of atoms in all sites of the YBa2Cu3O7 lattice were determined using Mössbauer data for 67Cu(67Zn) and 67Ga(67Zn) isotopes, NMR/NQR data for 17O and 137Ba isotopes, and calculations of the lattice electric-field gradient. The obtained charge distributions correspond to a hole occurring predominantly in the sublattice of chain oxygen.
Ectopic A-lattice seams destabilize microtubules.
Katsuki, Miho; Drummond, Douglas R; Cross, Robert A
2014-01-01
Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by >20-fold. Dynamic microtubules nucleated by seeds containing extra A-lattice seams have growth rates similar to microtubules nucleated by B-lattice seeds, yet have increased catastrophe frequencies at both ends. Furthermore, binding B-lattice GDP microtubules to a rigor kinesin surface stabilizes them against shrinkage, whereas microtubules with extra A-lattice seams are stabilized only slightly. Our data suggest that introducing extra A-lattice seams into dynamic microtubules destabilizes them by destabilizing their GTP caps. On this basis, we propose that the single A-lattice seam of natural B-lattice MTs may act as a trigger point, and potentially a regulation point, for catastrophe.
Ectopic A-lattice seams destabilize microtubules
Katsuki, Miho; Drummond, Douglas R.; Cross, Robert A.
2014-01-01
Natural microtubules typically include one A-lattice seam within an otherwise helically symmetric B-lattice tube. It is currently unclear how A-lattice seams influence microtubule dynamic instability. Here we find that including extra A-lattice seams in GMPCPP microtubules, structural analogues of the GTP caps of dynamic microtubules, destabilizes them, enhancing their median shrinkage rate by >20-fold. Dynamic microtubules nucleated by seeds containing extra A-lattice seams have growth rates similar to microtubules nucleated by B-lattice seeds, yet have increased catastrophe frequencies at both ends. Furthermore, binding B-lattice GDP microtubules to a rigor kinesin surface stabilizes them against shrinkage, whereas microtubules with extra A-lattice seams are stabilized only slightly. Our data suggest that introducing extra A-lattice seams into dynamic microtubules destabilizes them by destabilizing their GTP caps. On this basis, we propose that the single A-lattice seam of natural B-lattice MTs may act as a trigger point, and potentially a regulation point, for catastrophe. PMID:24463734
The Mechanics of River Avulsions on Deltas
NASA Astrophysics Data System (ADS)
Ganti, Vamsi; Chadwick, Austin; Hassenruck-Gudipati, Hima; Lamb, Michael
2017-04-01
River deltas are highly dynamic, often fan-shaped depositional systems that form when rivers drain into a standing body of water. They host over a half billion people worldwide and are currently under threat of drowning and destruction by relative sea-level rise, subsidence, and anthropogenic interference. Many river deltas develop planform fan shapes through avulsions, whereby major river channel shifts occur via "channel jumping" about a persistent spatial node, thus determining their fundamental length scale. Emerging theories suggest that the size of deltas is set by backwater hydrodynamics; however, these ideas are difficult to test on natural deltas, which evolve on centennial to millennial timescales. Here, using physical experiments coupled with observations of the dynamics of modern deltaic evolution, we show that deltas grow through successive deposition of lobes that maintain a constant size that scales with backwater hydrodynamics. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. Moreover, because the backwater hydrodynamics are controlled by the downstream boundary condition of constant sea level, the backwater-mediated avulsion sites translate seaward in step with shoreline progradation. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars.
Revision of the Delta Nursing Scales.
ERIC Educational Resources Information Center
Wilson, Barry J.; Packwood, Gene
An item analysis was performed on two rating scales, the Delta Survey of Nurses and the Delta Nursing Survey, developed for evaluating the preparation and job performance of nursing graduates. Resulting data supported the basic design of the instruments. The revised instruments consist of seven fewer items; two subtests were deleted, and a number…
The delta opioid receptor tool box.
Vicente-Sanchez, Ana; Segura, Laura; Pradhan, Amynah A
2016-12-03
In recent years, the delta opioid receptor has attracted increasing interest as a target for the treatment of chronic pain and emotional disorders. Due to their therapeutic potential, numerous tools have been developed to study the delta opioid receptor from both a molecular and a functional perspective. This review summarizes the most commonly available tools, with an emphasis on their use and limitations. Here, we describe (1) the cell-based assays used to study the delta opioid receptor. (2) The features of several delta opioid receptor ligands, including peptide and non-peptide drugs. (3) The existing approaches to detect delta opioid receptors in fixed tissue, and debates that surround these techniques. (4) Behavioral assays used to study the in vivo effects of delta opioid receptor agonists; including locomotor stimulation and convulsions that are induced by some ligands, but not others. (5) The characterization of genetically modified mice used specifically to study the delta opioid receptor. Overall, this review aims to provide a guideline for the use of these tools with the final goal of increasing our understanding of delta opioid receptor physiology.
Delta Blues Scholarship and Imperialist Nostalgia.
ERIC Educational Resources Information Center
Nye, William P.
When Delta blues are considered to be "folk music," the genre is inextricably tied to the neocolonial, sharecropping system of cotton production characteristic of the Mississippi Delta region between the Civil War and World War II. "Imperialist nostalgia," then, arises in accounts which pay primary and positive tribute to blues…
Wave-angle control of delta evolution
NASA Astrophysics Data System (ADS)
Ashton, Andrew D.; Giosan, Liviu
2011-07-01
Wave-influenced deltas, with large-scale arcuate shapes and demarcated beach ridge complexes, often display an asymmetrical form about their river channel. Here, we use a numerical model to demonstrate that the angles from which waves approach a delta can have a first-order influence upon its plan-view morphologic evolution and sedimentary architecture. The directional spread of incoming waves plays a dominant role over fluvial sediment discharge in controlling the width of an active delta lobe, which in turn affects the characteristic rates of delta progradation. Oblique wave approach (and a consequent net alongshore sediment transport) can lead to the development of morphologic asymmetry about the river in a delta's plan-view form. This plan-form asymmetry can include the development of discrete breaks in shoreline orientation and the appearance of self-organized features arising from shoreline instability along the downdrift delta flank, such as spits and migrating shoreline sand waves—features observed on natural deltas. Somewhat surprisingly, waves approaching preferentially from one direction tend to increase sediment deposition updrift of the river. This ‘morphodynamic groin effect’ occurs when the delta's plan-form aspect ratio is sufficiently large such that the orientation of the shoreline on the downdrift flank is rotated past the angle of maximum alongshore sediment transport, resulting in preferential redirection of fluvial sediment updrift of the river mouth.
SF Bay Delta TMDL Progress Assessment
EPA assessed the progress 14 TMDLs in the SF Bay Delta Estuary (SF Bay Delta) to determine if the actions called for in the TMDL were being accomplished and water quality was improving. Status and water quality reports can be found here.
Lattice Truss Structural Response Using Energy Methods
NASA Technical Reports Server (NTRS)
Kenner, Winfred Scottson
1996-01-01
A deterministic methodology is presented for developing closed-form deflection equations for two-dimensional and three-dimensional lattice structures. Four types of lattice structures are studied: beams, plates, shells and soft lattices. Castigliano's second theorem, which entails the total strain energy of a structure, is utilized to generate highly accurate results. Derived deflection equations provide new insight into the bending and shear behavior of the four types of lattices, in contrast to classic solutions of similar structures. Lattice derivations utilizing kinetic energy are also presented, and used to examine the free vibration response of simple lattice structures. Derivations utilizing finite element theory for unique lattice behavior are also presented and validated using the finite element analysis code EAL.
Finite temperature mechanical instability in disordered lattices
NASA Astrophysics Data System (ADS)
Zhang, Leyou; Mao, Xiaoming
Mechanical instability takes different forms in various ordered and disordered systems, and little is known about how thermal fluctuations affect different classes of mechanical instabilities. We develop an analytic theory involving renormalization of rigidity and coherent potential approximation that can be used to understand finite-temperature mechanical stabilities in various disordered systems. We used this theory to study two disordered lattices: randomly diluted triangular lattice and randomly braced square lattice. These two lattices belong to two different universality classes as they approach mechanical instability at T = 0 . We show that thermal fluctuations stabilize both lattices. In particular, the triangular lattice displays a critical regime in which the shear modulus scales as G ~T 1 / 2 , whereas the square lattice shows G ~T 2 / 3 . We discuss generic scaling laws for finite T mechanical instabilities and relate to experimental systems including jamming and glass transitions.
Oxygen-disorder effects on the electronic structure of YBa sub 2 Cu sub 3 O sub 6+. delta
Modak, S. ); Moran-Lopez, J.L. )
1989-11-01
The electronic structure of YBa{sub 2}Cu{sub 3}O{sub 6+{delta}} is calculated in the framework of the tight-binding Hamiltonian. The effects of the oxygen concentration {delta} and its spatial ordering in the basal plane are studied by means of the Bethe-lattice method. The local density of states at the various Cu and O sites are calculated as a function of {delta} and of the degree of oxygen ordering. Special attention is given to the number of holes {ital h} in both the ordered and disordered systems for various concentrations. We find that the electronic structure at the CuO{sub 2} planes is almost insensitive to the degree of order, in contrast to the local density of states of sites located in the basal plane.
Zank, T K; Zähringer, U; Lerchl, J; Heinz, E
2000-12-01
In order to elucidate the biosynthesis of long-chain polyunsaturated fatty acids (PUFAs) in plants we searched for a cDNA encoding a Delta(6)-specific PUFA elongase from Physcomitrella patens, which is known to contain high proportions of arachidonic acid (20:4 Delta(5,8,11,14)). An EST clone from P. patens was identified by its low homology to the yeast gene ELO1, which is required for the elongation of medium-chain fatty acids. We functionally characterized this cDNA by heterologous expression in Saccharomyces cerevisiae grown in the presence of several fatty acids. Analysis of the fatty acid profile of the transgenic yeast revealed that the cDNA encodes a protein that leads to the elongation of the C(18) Delta(6)-polyunsaturated fatty acids gamma-linolenic acid (18:3 Delta(6,9,12)) and stearidonic acid (18:4 Delta(6,9,12,15)), which were recovered to 45-51% as their elongation products. In contrast, linoleic and alpha-linolenic acids were hardly elongated and we could not measure any elongation of saturated and mono-unsaturated fatty acids (including 18:1 Delta(6)), indicating that the elongase is highly specific for the polyunsaturated nature of the fatty acid acting as substrate.
Iida, T; Tamura, T; Matsumoto, T
1980-03-01
Proton nuclear magnetic resonance (1H-NMR) spectra at 90 MHz were measured for a number of side chain isomers of phytosterols (sterols with a C8H17 side chain, and delta 24-, 24-methylene, delta 22-, 24-ethylidene, 24-methly, 24-ethyl, 24-methyl-delta 22-, 24-ethyl delta 22-, and 24-ethyl-delta 22,25(27)-sterols) with or without a lanthanide shift reagent, tris[1,1,1,2,2,3,3 - heptafluoro - 7,7 - dimethyloctane - 4,6 - dionato]ytterbium, Yb(fod)3, and the effect of Yb(fod)3 on the side chain methyl protons is discussed. The change of the chemical shifts induced Yb(fod)3 for the side chain methyls was expressed in terms of the induced shift ratios (ISR values), i.e., the ratios of the induced chemical shifts of the respective side chain methyls to that of the fastest moving side chain methyl. The ISR values were sentitive to minor structural and stereochemical differences, but almost independent of ring structures and of substrate concentrations, thus providing confirmatory evidence for the side chain structures. Also, the Yb(fod)3-induced spectral patterns observed in the high-field methyl region bore the fingerprints of the side chain structures. Several isomeric pairs of sterols, which differ only in the geometry of double bonds or the absolute configuration at C-24 in the side chain, i.e., cis- and trans-isomers of delta 22-and 24-ethylidene sterols, 24R/alpha- and 24S/beta-methyl sterols, 24R/alpha- and 24S/beta-ethyl sterols, and 24S/alpha- and 24R/beta-ethyl-delta 22-sterols, could be differentiated from each other under the influence of Yb(fod)3, even though they were measured at 90 MHz.
2003-08-24
The mobile service tower is rolled back at Launch Pad 17-B, Cape Canaveral Air Force Station, to reveal NASA's Space Infrared Telescope Facility (SIRTF) ready for launch aboard a Delta II Heavy launch vehicle. Liftoff is scheduled for Aug. 25 at 1:35:39 a.m. EDT. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Consisting of a 0.85-meter telescope and three cryogenically cooled science instruments, SIRTF will be the largest infrared telescope ever launched into space. It is the fourth and final element in NASA’s family of orbiting “Great Observatories.” Its highly sensitive instruments will give a unique view of the Universe and peer into regions of space that are hidden from optical telescopes.
Delta connected resonant snubber circuit
Lai, J.S.; Peng, F.Z.; Young, R.W. Sr.; Ott, G.W. Jr.
1998-01-20
A delta connected, resonant snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the dc supply voltage through the main inverter switches and the auxiliary switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter. 36 figs.