Sample records for chain dendritic polyester

  1. Langmuir-Blodgett Films of Supported Polyester Dendrimers

    PubMed Central

    Redón, Rocío; Carreón-Castro, M. Pilar; Mendoza-Martínez, F. J.

    2012-01-01

    Amphiphiles with a dendritic structure are attractive materials as they combine the features of dendrimers with the self-assembling properties and interfacial behavior of water-air affinities. We have synthesized three generations of polyester dendrimers and studied their interfacial properties on the Langmuir films. The behavior obtained was, as a rule, the lowest generation dendrimers behaving like traditional amphiphiles and the larger molecules presenting complicated isotherms. The Langmuir films of these compounds have been characterized by their surface pressure versus molecular area (π/A) and Brewster angle microscopy (BAM) observations. PMID:24052855

  2. Observation of hairpin defects in a nematic main-chain polyester

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Brûlet, A.; Davidson, P.; Keller, P.; Cotton, J. P.

    1993-04-01

    The conformation of a main-chain liquid crystalline polyester in its oriented nematic phase has been determined by small-angle neutron scattering. The data are fitted by a model of rigid cylinder with orientational fluctuations. For a low degree of polymerization (~9) the chain is almost completely elongated in the direction of the nematic field. For a polymer 3 times longer, the existence of two hairpins is shown at high temperature; this number decreases with decreasing temperature.

  3. Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery.

    PubMed

    Wang, Wei; Ding, Jianxun; Xiao, Chunsheng; Tang, Zhaohui; Li, Di; Chen, Jie; Zhuang, Xiuli; Chen, Xuesi

    2011-07-11

    Novel amphiphilic alternating polyesters, poly((N-phthaloyl-l-glutamic anhydride)-co-(2-(2-(2-methoxyethoxy)ethoxy)methyl)oxirane) (P(PGA-co-ME(2)MO)), were synthesized by alternating copolymerization of PGA and ME(2)MO. The structures of the synthesized polyesters were characterized by (1)H NMR, (13)C NMR, FT-IR, and GPC analyses. Because of the presence of oligo(ethylene glycol) (OEG) side chains, the polyesters could self-assemble into thermosensitive micelles. Dynamic light scattering (DLS) showed that these micelles underwent thermoinduced size decrease without intermicellar aggregation. In vitro methyl thiazolyl tetrazolium (MTT) assay demonstrated that the polyesters were biocompatible to Henrietta Lacks (HeLa) cells, rendering their potential for drug delivery applications. Two hydrophobic drugs, rifampin and doxorubicin (DOX), were loaded into the polyester micelles and observed to be released in a zero-order sustained manner. The sustained release could be accelerated in lower pH or in the presence of proteinase K, due to the degradation of the polyester under these conditions. Remarkably, in vitro cell experiments showed that the polyester micelles accomplished fast release of DOX inside cells and higher anticancer efficacy as compared with the free DOX. With enhanced stability during circulation condition and accelerated drug release at the target sites (e.g., low pH or enzyme presence), these novel polyesters with amphiphilic structures are promising to be used in sustained release drug delivery systems.

  4. Synthesis of lipase-catalysed silicone-polyesters and silicone-polyamides at elevated temperatures.

    PubMed

    Frampton, Mark B; Zelisko, Paul M

    2013-10-18

    More and more enzymes are being explored as alternatives to conventional catalysts in chemical reactions. To utilize these biocatalysts to their fullest, it is incumbent on researchers to gain a complete understanding of the reaction conditions that particular enzymes will tolerate. To this end siloxane-containing polyesters and polyamides have been produced via N435-mediated catalysis at temperatures well above the normal denaturation temperature for free CalB. Low molecular weight disiloxane-based acceptors release the enzyme from its acylated state with equal proficiency while longer chain siloxanes favours polyester synthesis. The thermal tolerance of the enzyme catalyst is increased using longer chain diesters and generally more hydrophobic substrates.

  5. Synthesis of silver nanoparticles in melts of amphiphilic polyesters

    NASA Astrophysics Data System (ADS)

    Vasylyev, S.; Damm, C.; Segets, D.; Hanisch, M.; Taccardi, N.; Wasserscheid, P.; Peukert, W.

    2013-03-01

    The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens’ reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion.

  6. Isohexide and Sorbitol-Derived, Enzymatically Synthesized Renewable Polyesters with Enhanced Tg.

    PubMed

    Gustini, Liliana; Lavilla, Cristina; de Ilarduya, Antxon Martínez; Muñoz-Guerra, Sebastián; Koning, Cor E

    2016-10-10

    Sugar-based polyesters derived from sorbitol and isohexides were obtained via solvent-free enzymatic catalysis. Pendant hydroxyl groups, coming from the sorbitol units, were present along the polyester backbone, whereas the two isohexides, namely, isomannide and isoidide dimethyl ester monomers, were selected to introduce rigidity into the polyester chains. The feasibility of incorporating isomannide as a diol compared to the isoidide dimethyl ester as acyl-donor via lipase-catalyzed polycondensation was investigated. The presence of bicyclic units resulted in enhanced T g with respect to the parent sorbitol-containing polyester lacking isohexides. The different capability of the two isohexides to boost the thermal properties confirmed the more flexible character provided by the isoidide diester derivative. Solvent-borne coatings were prepared by cross-linking the sugar-based polyester polyols with polyisocyanates. The increased rigidity of the obtained sugar-based polyester polyols led to an enhancement in hardness of the resulting coatings.

  7. Polystyrene/Hyperbranched Polyester Blends and Reactive Polystyrene/Hyperbranched Polyester Blends

    DTIC Science & Technology

    1999-01-01

    interfacial tension between the PE and polystyrene phases. This was brought about by the chemical interaction between the acidic anhydride groups in the...multiple 2,2 dimethylol propionic acid (C5H10O4) chain extenders or repeat units. 11 Core HO \\ HO’ /■ J OH V *OH Pentaerythritol Chain Extender...O 2,2 - Dimethylol propionic acid Figure 11. HBP Building Blocks. These materials were supplied in small quantities with little technical data. The

  8. Studies on thermo-mechanical properties of chemically treated jute-polyester composite

    NASA Astrophysics Data System (ADS)

    Chaudhari, Vikas; Chandekar, Harichandra; Saboo, Jayesh; Mascarenhas, Adlete

    2018-03-01

    The effect of chemical treatments on jute-polyester composites is studied in this paper. The jute fabrics are chemically treated with NaOH and benzoyl chloride and its tensile and visco-elastic properties are compared with untreated jute composite. The NaOH treated jute-polyester composite show superior tensile strength and modulus compared to other jute-polyester composites. The glass transition temperature obtained from DMA shift to higher temperature for composites in comparison to polyester resin, this is due to restriction of mobility in chains due to introduction of jute reinforcement. The DMA results also show favourable results towards NaOH treatment i.e. higher storage modulus and lower tan δ values relative to untreated jute-polyester composite. The benzoyl treated jute-polyester composite however do not show promising results which may be attributed to the fact that the adhesion properties associated with similar ester functional groups in the benzoyl treated jute fabric and polyester resin were not obtained.

  9. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells

    PubMed Central

    Francis, Brian R.

    2015-01-01

    Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and polypeptides is proposed. The cell consists of an iron-sulfide particle enclosed by tholin, a heterogeneous organic material that is produced by Miller-Urey type experiments that simulate conditions on the early Earth. As the synthesis of nucleic acids evolved from β-linked polyesters, the singlet coding system for replication evolved into a four nucleotide/four amino acid process (AMP = aspartic acid, GMP = glycine, UMP = valine, CMP = alanine) and then into the triplet ribosomal process that permitted multiple copies of protein to be synthesized independent of replication. This hypothesis reconciles the “genetics first” and “metabolism first” approaches to the origin of life and explains why there are four bases in the genetic alphabet. PMID:25679748

  10. A new polyester based on allyl α-hydroxy glutarate as shell for magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Feher, Ioana Coralia

    2017-12-01

    Allyl side-chain-functionalized lactide was synthesized from commercially available glutamic acid and polymerized by ring opening polymerization using 4-dimethylaminopyridine as an organocatalyst in the presence of magnetic nanoparticles. The resulting magnetic nanostructures coated with the allyl-containing polyester were then functionalized with cysteine by thiol-ene click reaction leading to highly functionalized magnetic nano-platforms of practical interest. The polyester precursors were characterized by nuclear magnetic resonance and mass spectrometry. The morphology of magnetic nanostructures based on the functionalized polyester was determined by transmission electron microscopy TEM, while the chemical structure was investigated by FT-IR. TGA investigations and the magnetic properties of the magnetic nanostructures are also described.

  11. Stabilized unsaturated polyesters

    NASA Technical Reports Server (NTRS)

    Vogl, O.; Borsig, E. (Inventor)

    1985-01-01

    An unsaturated polyester, such as propylene glycolmaleic acid phthalic acid prepolymer dissolved in styrene is interpolymerized with an ultraviolet absorber and/or an antioxidant. The unsaturated chain may be filled with H or lower alkyl such as methyl and tertiary alkyl such as tertiary butyl. A polymer stable to exposure to the outdoors without degradation by ultraviolet radiation, thermal and/or photooxidation is formed.

  12. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with a conserved cysteine residue as catalytic nucleophile. This review provides a survey of the known biochemical features of these unique enzymes and their proposed catalytic mechanism. PMID:12954080

  13. Precision Aliphatic Polyesters with Alternating Microstructures via Cross-Metathesis Polymerization: An Event of Sequence Control.

    PubMed

    Li, Zi-Long; Zeng, Fu-Rong; Ma, Ji-Mei; Sun, Lin-Hao; Zeng, Zhen; Jiang, Hong

    2017-06-01

    Sequence-regulated polymerization is realized upon sequential cross-metathesis polymerization (CMP) and exhaustive hydrogenation to afford precision aliphatic polyesters with alternating sequences. This strategy is particularly suitable for the arrangement of well-known monomer units including glycolic acid, lactic acid, and caprolactic acid on polymer chain in a predetermined sequence. First of all, structurally asymmetric monomers bearing acrylate and α-olefin terminuses are generated in an efficient and straightforward fashion. Subsequently, cross-metathesis (co)polymerization of M1 and M2 using the Hoveyda-Grubbs second-generation catalyst (HG-II) furnishes P1-P3, respectively. Finally, hydrogenation yields the desired saturated polyesters HP1-HP3. It is noteworthy that the ε-caprolactone-derived unit is generated in situ rather than introduced to tailor-made monomers prior to CMP. NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results verify the microstructural periodicity of these precision polyesters. Differential scanning calorimetry (DSC) results reflect that polyesters without methyl side groups exhibit crystallinity, and unsaturated polyester samples show higher glass transition temperatures than their hydrogenated counterparts owing to structural rigidity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recent advances in aliphatic polyesters for drug delivery applications.

    PubMed

    Washington, Katherine E; Kularatne, Ruvanthi N; Karmegam, Vasanthy; Biewer, Michael C; Stefan, Mihaela C

    2017-07-01

    The use of aliphatic polyesters in drug delivery applications has been a field of significant interest spanning decades. Drug delivery strategies have made abundant use of polyesters in their structures owing to their biocompatibility and biodegradability. The properties afforded from these materials provide many avenues for the tunability of drug delivery systems to suit individual needs of diverse applications. Polyesters can be formed in several different ways, but the most prevalent is the ring-opening polymerization of cyclic esters. When used to form amphiphilic block copolymers, these materials can be utilized to form various drug carriers such as nanoparticles, micelles, and polymersomes. These drug delivery systems can be tailored through the addition of targeting moieties and the addition of stimuli-responsive groups into the polymer chains. There are also different types of polyesters that can be used to modify the degradation rates or mechanical properties. Here, we discuss the reasons that polyesters have become so popular, the current research focuses, and what the future holds for these materials in drug delivery applications. WIREs Nanomed Nanobiotechnol 2017, 9:e1446. doi: 10.1002/wnan.1446 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  15. Adsorption of poly(ethylene succinate) chain onto graphene nanosheets: A molecular simulation.

    PubMed

    Kelich, Payam; Asadinezhad, Ahmad

    2016-09-01

    Understanding the interaction between single polymer chain and graphene nanosheets at local and global length scales is essential for it underlies the mesoscopic properties of polymer nanocomposites. A computational attempt was then performed using atomistic molecular dynamics simulation to gain physical insights into behavior of a model aliphatic polyester, poly(ethylene succinate), single chain near graphene nanosheets, where the effects of the polymer chain length, graphene functionalization, and temperature on conformational properties of the polymer were studied comparatively. Graphene functionalization was carried out through extending the parameters set of an all-atom force field. The results showed a significant conformational transition of the polymer chain from three-dimensional statistical coil, in initial state, to two-dimensional fold, in final state, during adsorption on graphene. The conformational order, overall shape, end-to-end separation statistics, and mobility of the polymer chain were found to be influenced by the graphene functionalization, temperature, and polymer chain length. Furthermore, the polymer chain dynamics mode during adsorption on graphene was observed to transit from normal diffusive to slow subdiffusive mode. The findings from this computational study could shed light on the physics of the early stages of aliphatic polyester chain organization induced by graphene. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The Effect of Structural Modifications on Ionic Conductivity in Newly-Designed Polyester Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Jung, Yuki; Coates, Geoff; Balsara, Nitash

    2015-03-01

    Gaining a fundamental understanding of the relationship between molecular structure and ionic conductivity of polymer electrolytes is an essential step toward designing next generation materials for battery applications. In this study, we use a systematic set of newly-designed polyesters with varying side-chain lengths and oxygen functional groups to elucidate the effects of structural modifications on the conductive properties of the corresponding electrolytes. Mixtures of polyesters and lithium bis(trifluromethanesulfonyl)imide (LiTFSI) were characterized using ac impedance spectroscopy to measure the ionic conductivity at various temperatures and salt concentrations. The relative conductivities of these electrolytes in the dilute limit are directly comparable to results of molecular dynamics simulations performed using the same polymers. The simulations correspond well with the experimental results, and provide molecular level insight about the solvation environment of the lithium ions and how the ions transport through these polyesters.

  17. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour.

    PubMed

    Unger, Florian; Wittmar, Matthias; Morell, Frank; Kissel, Thomas

    2008-05-01

    Branched polyesters of the general structure poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide) have shown potential for nano- and micro-scale drug delivery systems. Here the in vitro degradation behaviour with a special emphasis on elucidating structure-property relationships is reported. Effects of type and degree of amine substitution as well as PLGA side chain length were considered. In a first set of experiment, the weight loss of solvent cast films of defined size from 19 polymers was measured as a function of incubation in phosphate buffer (pH 7.4) at 37 degrees C over a time of 21 days. A second study was initiated focusing on three selected polymers in a similar set up, but with additional observation of pH influences (pH 2 and pH 9) and determination of water uptake (swelling) and molecular weights during degradation. Scanning electron micrographs have been recorded at selected time points to characterize film specimens morphologically after degradation. Our investigations revealed the potential to influence the degradation of this polymer class by the degree of amine substitution, higher degrees leading to faster erosion. The erosion rate could further be influenced by the type of amine functionality, DEAPA-modified polyesters degrading as fast as or slightly faster than DMAPA-modified polyesters and these degrading faster than DEAEA-PVA-g-PLGA. As a third option the degradation rate could be modified by the PLGA side chain length, shorter side chains leading to faster erosion. As compared to linear PLGA, remarkably shorter degradation times could be achieved by grafting short PLGA side chains onto amine-modified PVA backbones. Erosion times from less than 5 days to more than 4 weeks could be realized by selecting the type of amine functionality, the degree of amine substitution and the PLGA side chain length at the time of synthesis. In addition, the pathway of hydrolytic degradation can be tuned to be either mainly bulk or surface erosion.

  18. Spark Plasma Sintering for Nanostructured Smart Materials

    DTIC Science & Technology

    2009-03-02

    polyester) with excess isocyanate to form a prepolymer , followed by the addition of a short chain diol that acts as a chain extender to link the... prepolymers together. Due to the thermodynamic imicisibility of segments of PU, phase separation into a flexible soft segment (long chain diol) and a...other reactions of the isocyanate groups with the other functional groups in the chain. [Hepburn, 1992] However, during the initial prepolymer

  19. Highly efficient one-pot/one-step synthesis of multiblock copolymers from three-component polymerization of carbon dioxide, epoxide and lactone.

    PubMed

    Li, Yang; Hong, Jiali; Wei, Renjian; Zhang, Yingying; Tong, Zaizai; Zhang, Xinghong; Du, Binyang; Xu, Junting; Fan, Zhiqiang

    2015-02-01

    It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO 2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures ( i.e. , polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO 2 and improved mechanical properties of the resultant MBC.

  20. Suberin: the biopolyester at the frontier of plants

    NASA Astrophysics Data System (ADS)

    Graça, José

    2015-10-01

    Suberin is a lipophilic macromolecule found in specialized plant cell walls, wherever insulation or protection towards the surroundings is needed. Suberized cells form the periderm, the tissue that envelops secondary stems as part of the bark, and develop as the sealing tissue after wounding or leaf abscission. Suberin is a complex polyester built from poly-functional long-chain fatty acids (suberin acids) and glycerol. The suberin acids composition of a number of plant tissues and species is now established, but how the polyester macromolecule is assembled within the suberized cell walls is not known. In the last years contributions from several areas have however significantly enriched our understanding of suberin. The primary structure of the polyester, i.e. how the suberin acids and glycerol are sequentially linked was revealed, together with the stereochemistry of the mid-chain functional groups some suberin acids have; solid-state NMR studies showed the presence of methylene chains spatially separated and with different molecular mobility; biophysical studies showed the membrane behaviour of suberin acids derivatives, allowing new insights on structure-properties relationships; and a number of candidate genes were conclusively related to suberin biosynthesis. The comprehension of suberin as a macromolecule will be essential to understand its vital protective roles in plants and how they will deal with eventual environmental changes. Suberin is also expected to be a source for high-performing bio-based chemicals, taking advantage of the structural uniqueness of their constituent suberin acids.

  1. CYP86B1 Is Required for Very Long Chain ω-Hydroxyacid and α,ω-Dicarboxylic Acid Synthesis in Root and Seed Suberin Polyester1[W][OA

    PubMed Central

    Compagnon, Vincent; Diehl, Patrik; Benveniste, Irène; Meyer, Denise; Schaller, Hubert; Schreiber, Lukas; Franke, Rochus; Pinot, Franck

    2009-01-01

    Suberin composition of various plants including Arabidopsis (Arabidopsis thaliana) has shown the presence of very long chain fatty acid derivatives C20 in addition to the C16 and C18 series. Phylogenetic studies and plant genome mining have led to the identification of putative aliphatic hydroxylases belonging to the CYP86B subfamily of cytochrome P450 monooxygenases. In Arabidopsis, this subfamily is represented by CYP86B1 and CYP86B2, which share about 45% identity with CYP86A1, a fatty acid ω-hydroxylase implicated in root suberin monomer synthesis. Here, we show that CYP86B1 is located to the endoplasmic reticulum and is highly expressed in roots. Indeed, CYP86B1 promoter-driven β-glucuronidase expression indicated strong reporter activities at known sites of suberin production such as the endodermis. These observations, together with the fact that proteins of the CYP86B type are widespread among plant species, suggested a role of CYP86B1 in suberin biogenesis. To investigate the involvement of CYP86B1 in suberin biogenesis, we characterized an allelic series of cyp86B1 mutants of which two strong alleles were knockouts and two weak ones were RNA interference-silenced lines. These root aliphatic plant hydroxylase lines had a root and a seed coat aliphatic polyester composition in which C22- and C24-hydroxyacids and α,ω-dicarboxylic acids were strongly reduced. However, these changes did not affect seed coat permeability and ion content in leaves. The presumed precursors, C22 and C24 fatty acids, accumulated in the suberin polyester. These results demonstrate that CYP86B1 is a very long chain fatty acid hydroxylase specifically involved in polyester monomer biosynthesis during the course of plant development. PMID:19525321

  2. Soil-release behaviour of polyester fabrics after chemical modification with polyethylene glycol

    NASA Astrophysics Data System (ADS)

    Miranda, T. M. R.; Santos, J.; Soares, G. M. B.

    2017-10-01

    The fibres cleanability depends, among other characteristics, on their hydrophilicity. Hydrophilic fibres are easy-wash materials but hydrophobic fibres are difficult to clean due to their higher water-repellent surfaces. This type of surfaces, like polyester (PET), produce an accumulation of electrostatic charges, which favors adsorption and retention of dirt. Thus, the polyester soil-release properties can be increased by finishing processes that improve fiber hydrophilicity. In present study, PET fabric modification was described by using poly(ethylene glycol) (PEG) and N,N´-dimethylol-4,5-dihydroxyethylene urea (DMDHEU) chemically modified resin. Briefly, the modification process was carried out in two steps, one to hydrolyse the polyester and create hydroxyl and carboxylic acid groups on the surface and other to crosslink the PEG chains. The resulting materials were characterized by contact angle, DSC and FTIR-ATR methods. Additionally, the soil release behavior and the mechanical properties of modified PET were evaluated. For the best process conditions, the treated PET presented 0° contact angle, grade 5 stain release and acceptable mechanical performance.

  3. Synthesis of a fluorine-free polymeric water-repellent agent for creation of superhydrophobic fabrics

    NASA Astrophysics Data System (ADS)

    Shen, Keke; Yu, Miao; Li, Qianqian; Sun, Wei; Zhang, Xiting; Quan, Miao; Liu, Zhengtang; Shi, Suqing; Gong, Yongkuan

    2017-12-01

    A non-fluorinated polymeric alkylsilane, poly(isobutyl methacrylate-co-3-methacryloxypropyltrimethoxysilane) (PIT), is designed and synthesized to replace the commercial long-chain perfluoroalkylsilane (FAS) water-repellent agent. The superhydrophobic polyester fabrics are prepared by anchoring sol-gel derived silica nanoparticles onto alkali-treated polyester fabric surfaces and subsequently hydrophobilizing with PIT, using FAS as control. The surface chemical composition, surface morphology, wetting behavior and durability of the modified polyester fabrics are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrophotometer (XPS) and video-based contact angle goniometer, respectively. The results show that a porous silica layer could be successfully fabricated onto the surface of polyester fabric through base-catalyzed sol-gel process with tetraethoxysilane (TEOS) as precursor, incorporating additional nanostructured roughness essential for superhydrophobicity. At the same time, such a silica primer layer could provide both secondary reactive moieties (-Si - OH) for the subsequent surface hydrophobization and acceptable adhesion at the silica-polyester fabric interface. When silica modified polyester fabric (SiO2@ fabric) is hydrophobized by PIT solution (10 mg/mL), excellent water-repellency could be obtained. The water contact angle is up to 154° and the sliding angle is about 5°. Compared with small molecule water-repellent agent FAS, PIT modified SiO2@ fabric exhibits greatly improved solvent resistance under ultra-sonication, abrasion and simulated laundering durability. The anti-stain property of PIT-modified SiO2@ fabric is also evaluated by using different aqueous colored solutions.

  4. Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure-Property Relationships.

    PubMed

    Longo, Julie M; Sanford, Maria J; Coates, Geoffrey W

    2016-12-28

    Polyesters synthesized through the alternating copolymerization of epoxides and cyclic anhydrides compose a growing class of polymers that exhibit an impressive array of chemical and physical properties. Because they are synthesized through the chain-growth polymerization of two variable monomers, their syntheses can be controlled by discrete metal complexes, and the resulting materials vary widely in their functionality and physical properties. This polymer-focused review gives a perspective on the current state of the field of epoxide/anhydride copolymerization mediated by discrete catalysts and the relationships between the structures and properties of these polyesters.

  5. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    PubMed Central

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  6. Chemical and enzymatic catalytic routes to polyesters and oligopeptides biobased materials

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhui

    My Ph.D research focuses on the synthesis and property studies of different biobased materials, including polyesters, polyurethanes and oligopeptides. The first study describes the synthesis, crystal structure and physico-mechanical properties of a bio-based polyester prepared from 2,5-furandicarboxylic acid (FDCA) and 1,4-butanediol. Melt-polycondensation experiments were conducted by a two-stage polymerization using titanium tetraisopropoxide (Ti[OiPr] 4) as catalyst. Polymerization conditions (catalyst concentration, reaction time and 2nd stage reaction temperature) were varied to optimize poly(butylene furan dicarboxylate), PBF, molecular weight. A series of PBFs with different Mw were characterized by Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Dynamic Mechanical Thermal Analysis (DMTA), X-Ray diffraction and tensile testing. Influence of molecular weight and melting/crystallization enthalpy on PBF material tensile properties was explored. Cold-drawing tensile tests at room temperature for PBF with Mw 16K to 27K showed a brittle-to-ductile transition. When Mw reaches 38K, the Young's Modulus of PBF remains above 900 MPa, and the elongation at break increases to above 1000%. The mechanical properties, thermal properties and crystal structures of PBF were similar to petroleum derived poly(butylenes terephthalate), PBT. Fiber diagrams of uniaxially stretched PBF films were collected, indexed, and the unit cell was determined as triclinic (a=4.78(3) A, b=6.03(5) A, c=12.3(1) A, alpha=110.1(2)°, beta=121.1(3)°, gamma=100.6(2)°). A crystal structure was derived from this data and final atomic coordinates are reported. We concluded that there is a close similarity of the PBF structure to PBT alpha- and beta-forms. In the second study, a biobased long chain polyester polyol (PC14-OH) was synthesized from o-hydroxytetradecanoic acid (o-HOC14) and 1,4-butanediol. The first section about polyester polyurethanes describes the synthesis and physico-mechanical properties for two series of linear polyurethane elastomers built from polyol polyesters which contain bio-based o-hydroxytetradecanoic acid (o-HOC14) repeat units. Varied quantities of o-HOC14 was converted by a condensation polymerization catalyzed by titanium tetraisopropoxide (Ti[OiPr]4) to polyester polyol with Mn around 2K. By end-cap the polyols with excess amount of 1,4-butanediol, low number of carbonyl end group can be achieved so that the polyols can be further used as soft segment of thermoplastic polyurethanes (TPU). We have studied the thermo-mechanical properties of two-series polyurethanes with different polyester polyols or polyester polyols mixtures. With increasing amount of o-HOC14 content in the soft segment polyols of polyurethanes, tensile strength of the polyurethanes kept increasing from 30MPa to 470MPa while at the same time their elongation ratio decreased from 900% to 300%. Their mechanical behavior shifted from elastomer to semi-crystalline plastic. In the second section about polyether polyurethanes, PC14-OH and poly(tetrahydrofuran) mixtures were used as soft segment in linear polyurethane elastomer synthesis. Similar thermal and mechanical property changing trends were observed with increasing amount of PC14-OH up to 30 wt% of total soft segments. In this study, the functions of PC14-OH in thermoplastic polyurethane elastomers were identified, and there are several benefits of incorporating this long chain fatty acid. In the third study, seven amphiphilic alternating oligopeptides were synthesized via chemo-enzymatic routes. Four proteases (papain, bromelain, alpha-chymotrypsin, and trypsin) were evaluated to determine their efficiency in synthesizing alternating peptides. The first series is hydrophobic-anionic alternating oligopeptides targeting for self assembly smart material design. So far, beta-sheet secondary structure of the anionic alternating oligopeptides was not observed very clearly at low pH comparing to the cationic alternating oligopeptides (KL)x, which is probably due to the short chain length of the oligopeptides. Combination of cationic and anionic alternating oligopeptides has been tested by (KL)x and (LD)x mixtures at 1:1 weight ratio, beta-sheet secondary structure started to appear at neutral pH. The preliminary CD results of the mixtures have shown the potential to manipulate self assembly behavior at different pHs. The second series is alternating oligo(Lys-Trp) targeting for antimicrobial agent design. The alternating (KW)x was successfully synthesized by alpha-chymotrypsin in mixed solvent medium. Chain length of (KW)x can be varied when using different mixed solvent medium. In order to increase the solubility of (KW)x-OEt, C-terminal ethyl ester moiety was modified by reaction with ethylene diamine. Antimicrobial activities of (KW)x with different chain lengths have been tested against E.coli and S. aureus. Our work utilizes a simplified synthetic method to prepare alternating peptides at the cost of chain length uniformity. However, (KW)x-OEt (n=3--6) alternating peptide mixtures still possesses quite good antimicrobial activity while the preparation method is much more easier and greener, which means this method is more economical and environmental friendly. Moreover, the adjustment of reaction conditions and proteases can successfully enhance the control over KW alternating peptide chain length to better achieve more antimicrobial active products. (Abstract shortened by UMI.).

  7. Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy.

    PubMed

    Deshmukh, Ashish P; Simpson, André J; Hatcher, Patrick G

    2003-11-01

    Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking.

  8. Enzymatic Synthesis of Amino Acids Endcapped Polycaprolactone: A Green Route Towards Functional Polyesters.

    PubMed

    Duchiron, Stéphane W; Pollet, Eric; Givry, Sébastien; Avérous, Luc

    2018-01-30

    ε-caprolactone (CL) has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine) as (co-)initiators and immobilized lipase B of Candida antarctica (CALB) as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL) homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-)initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.

  9. Well-defined block copolymers for gene delivery to dendritic cells: probing the effect of polycation chain-length.

    PubMed

    Tang, Rupei; Palumbo, R Noelle; Nagarajan, Lakshmi; Krogstad, Emily; Wang, Chun

    2010-03-03

    The development of safe and efficient polymer carriers for DNA vaccine delivery requires mechanistic understanding of structure-function relationship of the polymer carriers and their interaction with antigen-presenting cells. Here we have synthesized a series of diblock copolymers with well-defined chain-length using atom transfer radical polymerization and characterized the influence of polycation chain-length on the physico-chemical properties of the polymer/DNA complexes as well as the interaction with dendritic cells. The copolymers consist of a hydrophilic poly(ethylene glycol) block and a cationic poly(aminoethyl methacrylate) (PAEM) block. The average degree of polymerization (DP) of the PAEM block was varied among 19, 39, and 75, with nearly uniform distribution. With increasing PAEM chain-length, polyplexes formed by the diblock copolymers and plasmid DNA had smaller average particle size and showed higher stability against electrostatic destabilization by salt and heparin. The polymers were not toxic to mouse dendritic cells (DCs) and only displayed chain-length-dependent toxicity at a high concentration (1mg/mL). In vitro gene transfection efficiency and polyplex uptake in DCs were also found to correlate with chain-length of the PAEM block with the longer polymer chain favoring transfection and cellular uptake. The polyplexes induced a modest up-regulation of surface markers for DC maturation that was not significantly dependent on PAEM chain-length. Finally, the polyplex prepared from the longest PAEM block (DP of 75) achieved an average of 20% enhancement over non-condensed anionic dextran in terms of uptake by DCs in the draining lymph nodes 24h after subcutaneous injection into mice. Insights gained from studying such structurally well-defined polymer carriers and their interaction with dendritic cells may contribute to improved design of practically useful DNA vaccine delivery systems. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Thy-1+ dendritic epidermal cells express T3 antigen and the T-cell receptor gamma chain.

    PubMed Central

    Stingl, G; Koning, F; Yamada, H; Yokoyama, W M; Tschachler, E; Bluestone, J A; Steiner, G; Samelson, L E; Lew, A M; Coligan, J E

    1987-01-01

    The murine epidermis is a heterogeneous epithelium composed of keratinocytes, melanocytes, Langerhans cells, and a recently described subpopulation (2-3%) of bone-marrow-derived leukocytes with a dendritic morphology and the cell surface phenotype Thy-1+, L3T4-, Lyt-2-. Previous studies have demonstrated that cell lines derived from freshly explanted Thy-1+ dendritic epidermal cells (DEC) have abundant mRNA for rearranged T-cell receptor (TCR) gamma-chain genes. Analysis of Thy-1+ DEC in situ, freshly isolated cell suspensions of Thy-1+ DEC, and long-term Thy-1+ DEC lines demonstrated that 100% of the Thy-1+ DEC reacted with a monoclonal antibody to the epsilon chain of the murine T3 complex and that 40-60% of resident Thy-1+ DEC were also reactive with an antiserum to the TCR gamma chain. Two Thy-1+ DEC lines expressed a disulfide-linked 70-kDa molecule that could be precipitated with an anti-gamma-chain antiserum and could be coprecipitated with an antiserum to the T3 delta chain; the molecule appeared as a single 34-kDa band under reducing conditions. The phenotype of Thy-1+ DEC (T3+, L3T4-, Lyt-2-, TCR gamma chain+) thus resembles that of the recently described subpopulation of murine and human lymphocytes that have been identified in the thymus, peripheral blood, and fetal blood. Images PMID:2885839

  11. Antibacterial activity of liamocins oil from Aureobasidium pullulans is specific for species of Streptococcus

    USDA-ARS?s Scientific Manuscript database

    Liamocins are a heterogeneous mixture of denser-than-water oils produced by the fungus Aureobasidium pullulans. Liamocins have unique chemical structures with a mannitol head group linked to long chain polyester tails consisting of multiple 3,5-dihydroxydecanoic acid ester groups, some of which are ...

  12. The Lewis-acid-catalyzed synthesis of hyperbranched poly(glycerol-diacid)s in toluene

    USDA-ARS?s Scientific Manuscript database

    The first examples of monomeric glycerol-derived hyperbranched polyesters produced in a non-polar solvent system are reported here. The polymers were made by the Lewis acid (dibutyltin(IV)oxide)-catalyzed polycondensation of glycerol with either succinic acid (n (aliphatic chain length)=2), glutari...

  13. STUDY OF THERMOMECHANICAL PROPERTIES OF POLYESTER WITH VINYL ETHER SIDE CHAINS BEFORE AND AFTER PHOTOCURING. (R827121)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Investigation of Lysine-Functionalized Dendrimers as Dichlorvos Detoxification Agents.

    PubMed

    Durán-Lara, Esteban F; Marple, Jennifer L; Giesen, Joseph A; Fang, Yunlan; Jordan, Jacobs H; Godbey, W Terrence; Marican, Adolfo; Santos, Leonardo S; Grayson, Scott M

    2015-11-09

    Lysine-containing polymers have seen broad application due to their amines' inherent ability to bind to a range of biologically relevant molecules. The synthesis of multiple generations of polyester dendrimers bearing lysine groups on their periphery is described in this report. Their hydrolytic stabilities with respect to pH and time, their toxicity to a range of cell lines, and their possible application as nano-detoxification agents of organophosphate compounds are all investigated. These zeroth-, first-, and second-generation water-soluble dendrimers have been designed to bear exactly 4, 8, and 16 lysine groups, respectively, on their dendritic periphery. Such monodisperse bioactive polymers show potential for a range of applications including drug delivery, gene delivery, heavy metal binding, and the sequestration of organic toxins. These monodisperse bioactive dendrimers were synthesized using an aliphatic ester dendritic core (prepared from pentaerythritol) and protected amino acid moieties. This library of lysine-conjugated dendrimers showed the ability to efficiently capture the pesticide dichlorvos, confirming the potential of dendrimer-based antidotes to maintain acetylcholinesterase activity in response to poisoning events.

  15. Role of Hydrogen Bonding on Nonlinear Mechano-Optical Behavior of L-Phenylalanine-based Poly(ester urea)s.

    NASA Astrophysics Data System (ADS)

    Chen, Keke; Yu, Jiayi; Guzman, Gustavo; Es-Haghi, S. Shams; Becker, Matthew L.; Cakmak, Miko

    The uniaxial mechano-optical behavior of a series of amorphous L-phenylalanine-based poly(ester urea) (PEU) films was studied in the rubbery state using a custom real-time measurement system. When the materials were subjected to deformation at temperatures near the glass transition temperature (Tg) , the photoelastic behavior was manifested by a small increase in birefringence with a significant increase in true stress. At temperatures above Tg, PEUs with a shorter diol chain length exhibited a liquid-liquid (Tll) transition at about 1.06 Tg (K), above which the material transforms from a heterogeneous ``liquid of fixed-structure'' to a ``true liquid'' state. The initial photoelastic behavior disappears with increasing temperature, as the initial slope of the stress optical curves becomes temperature independent. Fourier transform infrared spectra of PEUs revealed that the average strength of hydrogen bonding diminishes with increasing temperature. For PEUs with the longest diol chain length, the area associated with N-H stretching region exhibits a linear temperature dependence. The presence of hydrogen bonding enhances the ``stiff'' segmental correlations between adjacent chains in the PEU structure. As a result, the photoelastic constant decreases with increasing hydrogen bonding strength. This work was supported by the Ohio Department of Development's Innovation Platform Program and The National Science Foundation.

  16. Liamocin oil from Aureobasidium pullulans has antibacterial activity with specificity for species of Streptococcus

    USDA-ARS?s Scientific Manuscript database

    The fungus Aureobasidium pullulans produces denser-than-water oils called liamocins. Liamocins have unique chemical structures with a mannitol head group linked to long chain polyester tails consisting of three, four or five 3,5-dihydroxydecanoic acid esters, some of which are O-acetylated. Broth di...

  17. Poly(ester amide)s based on (L)-lactic acid oligomers and α-amino acids: influence of the α-amino acid side chain in the poly(ester amide)s properties.

    PubMed

    Fonseca, Ana C; Coelho, Jorge F J; Valente, Joana F A; Correia, Tiago R; Correia, Ilídio J; Gil, Maria H; Simões, Pedro N

    2013-01-01

    Novel biodegradable and low cytotoxic poly(ester amide)s (PEAs) based on α-amino acids and (L)-lactic acid (L-LA) oligomers were successfully synthesized by interfacial polymerization. The chemical structure of the new polymers was confirmed by spectroscopic analyses. Further characterization suggests that the α-amino acid plays a critical role on the final properties of the PEA. L-phenylalanine provides PEAs with higher glass transition temperature, whereas glycine enhances the crystallinity. The hydrolytic degradation in PBS (pH = 7.4) at 37 °C also depends on the α-amino acid, being faster for glycine-based PEAs. The cytotoxic profiles using fibroblast human cells indicate that the PEAs did not elicit an acute cytotoxic effect. The strategy presented in this work opens the possibility of synthesizing biodegradable PEAs with low citotoxicity by an easy and fast method. It is worth to mention also that the properties of these materials can be fine-tuned only by changing the α-amino acid.

  18. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Mehalick, Leslie A; Poulsen, Christopher; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-12-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2-10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0-80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.

  19. 76 FR 22366 - Certain Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... marketing stages involved in making its reported home-market and U.S. sales for each channel of distribution. FENC reported one channel of distribution (i.e., direct sales to distributers) and a single level of... sales, we examine stages in the marketing process and selling functions along the chain of distribution...

  20. Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery.

    PubMed

    Yan, Huijie; Zhu, Dingcheng; Zhou, Zhuxian; Liu, Xin; Piao, Ying; Zhang, Zhen; Liu, Xiangrui; Tang, Jianbin; Shen, Youqing

    2018-03-30

    Cationic polymers are one of the main non-viral vectors for gene therapy, but their applications are hindered by the toxicity and inefficient transfection, particularly in the presence of serum or other biological fluids. While rational design based on the current understanding of gene delivery process has produced various cationic polymers with improved overall transfection, high-throughput parallel synthesis of libraries of cationic polymers seems a more effective strategy to screen out efficacious polymers. Herein, we demonstrate a novel platform for parallel synthesis of low cationic charge-density polyesters for efficient gene delivery. Unsaturated polyester poly(alkylene maleate) (PAM) readily underwent Michael-addition reactions with various mercaptamines to produce polyester backbones with pendant amine groups, poly(alkylene maleate mercaptamine)s (PAMAs). Variations of the alkylenes in the backbone and the mercaptamines on the side chain produced PAMAs with tunable hydrophobicity and DNA-condensation ability, the key parameters dominating transfection efficiency of the resulting polymer/DNA complexes (polyplexes). A semi-library of such PAMAs was exampled from 7 alkylenes and 18 mercaptamines, from which a lead PAMA, G-1, synthesized from poly(1,4-phenylene bis(methylene) maleate) and N,N-dimethylcysteamine, showed remarkable transfection efficiency even in the presence of serum, owing to its efficient lysosome-circumventing cellular uptake. Furthermore, G-1 polyplexes efficiently delivered the suicide gene pTRAIL to intraperitoneal tumors and elicited effective anticancer activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Degradation Characterization of Aliphatic POLYESTERS—IN Vitro Study

    NASA Astrophysics Data System (ADS)

    Vieira, A. C.; Vieira, J. C.; Guedes, R. M.; Marques, A. T.

    2008-08-01

    The most popular and important biodegradable polymers are aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyhydoxyalkanoates (PHA's) and polyethylene oxide (PEO). However, each of these has some shortcomings which restrict its applications. Blending techniques are an extremely promising approach which can improve or tune the original properties of the polymers[1]. Aliphatic polyesters are a central class of biodegradable polymers, because hydrolytic and/or enzymatic chain cleavage of these materials leads to α-hydroxyacids, which in most cases are ultimately metabolized in human body. This is particularly useful for controlled release devices and for other biomedical applications like suture fibers and ligaments. For aliphatic polyesters, hydrolysis rates are affected by the temperature, molecular structure, and ester group density as well as by the species of enzyme used. The degree of crystallinity may be a crucial factor, since enzymes attack mainly the amorphous domains of a polymer. Four different aliphatic polyesters were characterized in terms of degradation. Sutures fibers of PGA-PCL, PGA, PLA-PCL and PDO were used in this study. Weight loss, pH, molecular weight, crystallinity and strength were measured after six stages of incubation in distilled water, physiological saline and phosphate buffer solution (PBS). Degradation rate was determined, using a first order kinetic equation for all materials in the three incubation media. A relatively wide range of mechanical properties and degradation rates were observed among the materials studied. PBS was the most aggressive environment for the majority of cases.

  2. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Mehalick, Leslie A.; Poulsen, Christopher; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2–10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0–80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26550599

  3. Micro-thermal analysis of polyester coatings

    NASA Astrophysics Data System (ADS)

    Fischer, Hartmut R.

    2010-04-01

    The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure like chain scission and cross-linking are manifested by a shift of the LTA detectable Tg and by a change of the slope of the part of the LTA graph responsible for the penetration of the hot sensor into the material after passing the glass transition temperature. As such LTA is a valuable tool to have a quick look into coating surfaces and especially their ageing. The photo-degradation of polyester in air leads to the formation of a cross-linked network at a surface layer of about 3-4 μm coupled with an increase in hardness and of the glass transition temperature by ˜90 K, the effect is less drastic for a photo-degradation in a nitrogen environment. Moreover, the presence of a non-equilibrium dense surface layer with a higher Tg formed during the drying of the coating formulation and the film solidification can be shown.

  4. Degradation Mechanisms of Poly(ester urethane) Elastomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgar, Alexander S.

    This report describes literature regarding the degradation mechanisms associated with a poly(ester urethane) block copolymer, Estane® 5703 (Estane), used in conjunction with Nitroplasticizer (NP), and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane, also known as high molecular weight explosive (HMX) to produce polymer bonded explosive PBX 9501. Two principal degradation mechanisms are reported: NO2 oxidative reaction with the urethane linkage resulting in crosslinking and chain scission events, and acid catalyzed hydrolysis of the ester linkage. This report details future work regarding this PBX support system, to be conducted in late 2017 and 2018 at Engineered Materials Group (MST-7), Materials Science and Technology Division, Los Alamos Nationalmore » Laboratory. This is the first of a series of three reports on the degradation processes and trends of the support materials of PBX 9501.« less

  5. Ethynyl-terminated ester oligomers and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1986-01-01

    A class of ethynyl terminated oligomers and the process for preparing the same are disclosed. Upon the application of heat, with or without a catalyst, the ethynyl groups react to provide crosslinking and chain extension to increase the polymer use temperature and improve the polymer solvent resistance. These polyesters are potentially useful in packaging, magnetic tapes, capacitors, industrial belting, protective coatings, structural adhesives and composite matrices.

  6. Ethynyl terminated ester oligomers and polymers therefrom

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M. (Inventor); hesives and composite matrices. (Inventor)

    1987-01-01

    A new class of ethynyl-terminated oligomers and the process for preparing same are disclosed. Upon the application of heat, with or without a catalyst, the ethynyl groups react to provide crosslinking and chain extension to increase the polymer use temperature and improve the polymer solvent resistance. These improved polyesters are potentially useful in packaging, magnetic tapes, capacitors, industrial belting, protective coatings, structural adhesives and composite matrices.

  7. Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of Arabidopsis petals.

    PubMed

    Mazurek, Sylwester; Mucciolo, Antonio; Humbel, Bruno M; Nawrath, Christiane

    2013-06-01

    A procedure for the simultaneous analysis of cell-wall polysaccharides, amides and aliphatic polyesters by transmission Fourier transform infrared microspectroscopy (FTIR) has been established for Arabidopsis petals. The combination of FTIR imaging with spectra derivatization revealed that petals, in contrast to other organs, have a characteristic chemical zoning with high amount of aliphatic compounds and esters in the lamina and of polysaccharides in the stalk of the petal. The hinge region of petals was particular rich in amides as well as in vibrations potentially associated with hemicellulose. In addition, a number of other distribution patterns have been identified. Analyses of mutants in cutin deposition confirmed that vibrations of aliphatic compounds and esters present in the lamina were largely associated with the cuticular polyester. Calculation of spectrotypes, including the standard deviation of intensities, allowed detailed comparison of the spectral features of various mutants. The spectrotypes not only revealed differences in the amount of polyesters in cutin mutants, but also changes in other compound classes. For example, in addition to the expected strong deficiencies in polyester content, the long-chain acyl CoA synthase 2 mutant showed increased intensities of vibrations in a wavelength range that is typical for polysaccharides. Identical spectral features were observed in quasimodo2, a cell-wall mutant of Arabidopsis with a defect in pectin formation that exhibits increased cellulose synthase activity. FTIR thus proved to be a convenient method for the identification and characterization of mutants affected in the deposition of cutin in petals. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  8. Biodegradable polyester-based eco-composites containing hemp fibers modified with macrocyclic oligomers

    NASA Astrophysics Data System (ADS)

    Conzatti, Lucia; Utzeri, Roberto; Hodge, Philip; Stagnaro, Paola

    2016-05-01

    An original compatibilizing pathway for hemp fibers/poly(1,4-butylene adipate-co-terephtalate) (PBAT) eco-composites was explored exploiting the capability of macrocyclic oligomers (MCOs), obtained by cyclodepolymerization (CDP) of PBAT at high dilution, of being re-converted into linear chains by entropically-driven ring-opening polymerization (ED-ROP) that occurs simply heating the MCOS in the bulk. CDP reaction of PBAT was carried out varying solvent, catalyst and reaction time. Selected MCOs were used to adjust the conditions of the ED-ROP reaction. The best experimental conditions were then adopted to modify hemp fibers. Eco-composites based on PBAT and hemp fibers as obtained or modified with PBAT macrocyclics or oligomers were prepared by different process strategies. The best fiber-PBAT compatibility was observed when the fibers were modified with PBAT oligomers before incorporation in the polyester matrix.

  9. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Poulsen, Christopher; Mehalick, Leslie A.; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 µM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propridium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2 to 10.0 µM long-chain bases and GML were not cytotoxic; 40.0 to 80.0 µM long-chain bases, but not GML, were cytotoxic; and 80.0 µM long-chain bases induced cellular damage and death in less than 20 minutes. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26005054

  10. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Poulsen, Christopher; Mehalick, Leslie A; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-08-19

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 μM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propidium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2-10.0 μM long-chain bases and GML were not cytotoxic; 40.0-80.0 μM long-chain bases, but not GML, were cytotoxic; and 80.0 μM long-chain bases induced cellular damage and death in less than 20 min. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Polyhydroxyester films obtained by non-catalyzed melt-polycondensation of natural occurring fatty polyhydroxyacids.

    NASA Astrophysics Data System (ADS)

    Benitez, Jose; Heredia-Guerrero, José; Guzman-Puyol, Susana; Barthel, Markus; Dominguez, Eva; Heredia, Antonio

    2015-08-01

    Free-standing polyesters films from mono and polyhydroxylated fatty acids (C16 and C18) have been obtained by non-catalyzed melt-condensation polymerization in air at 150°C. Chemical characterization by Fourier Transform Infrared Spectroscopy (FTIR) and 13C Magic Angle Spinning Nuclear Magnetic Resonance (13C MAS-NMR) has confirmed the formation of the corresponding esters and the occurrence of hydroxyl partial oxidation which extent depends on the type of hydroxylation of the monomer (primary or secondary). Generally, polyester films obtained are hydrophobic, insoluble in common solvents, amorphous and infusible as revealed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). In ?-polyhydroxy acids, esterification reaction with primary hydroxyls is preferential and, therefore, the structure can be defined as linear with variable branching depending on the amount of esterified secondary hydroxyls. The occurrence side oxidative reactions like the diol cleavage are responsible for chain cross-linking. Films are thermally stable up to 200-250°C though this limit can be extended up to 300°C in the absence of ester bonds involving secondary hydroxyls. By analogy with natural occurring fatty polyesters (i.e. cutin in higher plants) these polymers are proposed as biodegradable and non-toxic barrier films or coatings to be used, for instance, in food packing

  12. Avionic Radome Materials

    DTIC Science & Technology

    1974-10-01

    polyester chains. Cross-linking, normally known as the curing process, is brought about by free radicals supplied by a catalyst, usually an organic...peroxide. Cure is normally carried out at room temperature, but a higher tenmerature may be used, depending on the reactivity of the catalyst. In the...selection of an elevated cure temperature permits wide versatility and a large measure of control over the proces-ing of these resins. Since the direct

  13. Biologically Active Polymeric Coating Materials

    DTIC Science & Technology

    1975-04-01

    unsaturated alkyds , or through a condensation reaction of an organometallic oxide and a resin containing carboxylic acid groups as side chains. The...extend the service life of antifouling coatings by means of polymerization of toxicant into paint resins . The coating binder is so constructed that the...from styrene (s6) and polyester (P54, figure 5) organometallic resins . To date, the antifouling performance of epoxy (WS 52B, figure 6) and

  14. Reactive modification of polyesters and their blends

    NASA Astrophysics Data System (ADS)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring the desired rheological and structural characteristics of the final products for potential applications such as low density extrusion foaming or compatibilization of immiscible polymer blends. Important modification conditions through coagents are identified and reaction mechanisms are proposed. A high MW saturated polyester, PET, can also be rheologically modified in extruders through low MW multifunctional anhydride and epoxy compounds by chain extension/branching. Several such modifiers were successfully screened in terms of their reactivity towards PET under controlled reactive extrusion conditions. A dianhydride with medium reactivity was then successfully used in a one-step reactive modification/extrusion foaming process to produce low density foams. A similar process was successfully used to produce small cell size foams from a four component system containing PET, PP and lesser amounts of a low molecular weight multifunctional epoxy compound and an acid functionalized polyolefin, the latter acting as compatibilizers.

  15. Radiation-induced changes affecting polyester based polyurethane binder

    NASA Astrophysics Data System (ADS)

    Pierpoint, Sujita Basi

    The application of thermoplastic polyurethane elastomers as binders in the high energy explosives particularly when used in weapons presents a significantly complex and challenging problem due to the impact of the aging of this polymer on the useful service life of the explosive. In this work, the effects of radiation on the aging of the polyester based polyurethane were investigated using both electron beam and gamma irradiation at various dose rates in the presence and absence of oxygen. It was found by means of GPC that, in the presence and absence of oxygen, the poly (ester urethane) primarily undergoes cross-linking, by means of a carbon-centered secondary alkyl radical. It was also concluded that the polymer partially undergoes scission of the backbone of the main chain at C-O, N-C, and C-C bonds. Substantial changes in the conditions of irradiation and in dose levels did not affect the cross-linking and scission yields. Experiments were also performed with EPR spectroscopy for the purpose of identifying the initial carbon-centered free radicals and for studying the decay mechanisms of these radicals. It was found that the carbon-centered radical which is produced via C-C scission (primary alkyl radical) is rapidly converted to a long-lived allylic species at higher temperatures; more than 80% radicals are converted to allyl species in 2.5 hours. In the presence of oxygen, the allyl radical undergoes a fast reaction to produce a peroxyl radical; this radical decays with a 1.7 hour half-life by pseudo first-order kinetics to negligible levels in 13 hours. FTIR measurements were conducted to identify the radiation-induced changes to the functional groups in the polyester polyurethane. These measurements show an increase in carbonyl, amine and carboxylic groups as a result of reaction of H atoms with R-C-O·, ·NH-R and R-COO·. The FTIR results also demonstrate the production of the unsaturation resulting from hydrogen atom transfer during intrachain conversion of the primary alkyl radical to the allyl species, prompt trans-vinylene production in tetramethylene units, and hydrogen atom abstraction by alkyl radicals on neighboring chains. The production of unsaturation is substantiated by the EPR studies. Finally, a free radical mechanism is proposed for the production of cross-linking in polyester polyurethane.

  16. Elucidation of a side reaction occurring during nitroxide-mediated polymerization of cyclic ketene acetals by tandem mass spectrometric end-group analysis of aliphatic polyesters.

    PubMed

    Albergaria Pereira, Bruna de Fátima; Tardy, Antoine; Monnier, Valérie; Guillaneuf, Yohann; Gigmes, Didier; Charles, Laurence

    2015-12-15

    In order to prevent side reactions while developing new polymerization processes, their mechanism has to be understood and one first key insight is the structure of the end-groups in polymeric by-products. The synthetic method scrutinized here is the nitroxide-mediated polymerization (NMP) of a cyclic ketene acetal, a promising alternative process to the production of polyesters. Polymer end-group characterization was performed by mass spectrometry (MS), combining elemental composition information derived from accurate mass data in the MS mode with fragmentation features recorded in the MS/MS mode. Electrospray was used as the ionization method to ensure the integrity of original chain terminations and a quadrupole time-of-flight (QTOF) instrument was employed for high-resolution mass measurements in both MS and tandem mass spectrometry (MS/MS) modes. Occurrence of side reactions in the studied polymerization method, first evidenced by an unusual increase in dispersity with conversion, was confirmed in MS with the detection of two polymeric impurities in addition to the expected species. Fragmentation rules were first established for this new polyester family in order to derive useful structural information from MS/MS data. In addition to a usual NMP by-product, the initiating group of the second polymeric impurities revealed the degradation of the nitroxide moiety. Unambiguous MS/MS identification of end-groups in by-products sampled from the polymerization medium allowed an unusual side reaction to be identified during the NMP preparation of polyesters. On-going optimization of the polymerization method aims at preventing this undesired process. Copyright © 2015 John Wiley & Sons, Ltd.

  17. In vivo and in vitro sensitivity of blastic plasmacytoid dendritic cell neoplasm to SL-401, an interleukin-3 receptor targeted biologic agent.

    PubMed

    Angelot-Delettre, Fanny; Roggy, Anne; Frankel, Arthur E; Lamarthee, Baptiste; Seilles, Estelle; Biichle, Sabeha; Royer, Bernard; Deconinck, Eric; Rowinsky, Eric K; Brooks, Christopher; Bardet, Valerie; Benet, Blandine; Bennani, Hind; Benseddik, Zehaira; Debliquis, Agathe; Lusina, Daniel; Roussel, Mikael; Solly, Françoise; Ticchioni, Michel; Saas, Philippe; Garnache-Ottou, Francine

    2015-02-01

    Blastic plasmacytoid dendritic cell neoplasm is an aggressive malignancy derived from plasmacytoid dendritic cells. There is currently no accepted standard of care for treating this neoplasm, and therapeutic strategies have never been prospectively evaluated. Since blastic plasmacytoid dendritic cell neoplasm cells express high levels of interleukin-3 receptor α chain (IL3-Rα or CD123), antitumor effects of the interleukin-3 receptor-targeted drug SL-401 against blastic plasmacytoid dendritic cell neoplasm were evaluated in vitro and in vivo. The cytotoxicity of SL-401 was assessed in patient-derived blastic plasmacytoid dendritic cell neoplasm cell lines (CAL-1 and GEN2.2) and in primary blastic plasmacytoid dendritic cell neoplasm cells isolated from 12 patients using flow cytometry and an in vitro cytotoxicity assay. The cytotoxic effects of SL-401 were compared to those of several relevant cytotoxic agents. SL-401 exhibited a robust cytotoxicity against blastic plasmacytoid dendritic cell neoplasm cells in a dose-dependent manner. Additionally, the cytotoxic effects of SL-401 were observed at substantially lower concentrations than those achieved in clinical trials to date. Survival of mice inoculated with a blastic plasmacytoid dendritic cell neoplasm cell line and treated with a single cycle of SL-401 was significantly longer than that of untreated controls (median survival, 58 versus 17 days, P<0.001). These findings indicate that blastic plasmacytoid dendritic cell neoplasm cells are highly sensitive to SL-401, and support further evaluation of SL-401 in patients suffering from blastic plasmacytoid dendritic cell neoplasm. Copyright© Ferrata Storti Foundation.

  18. In vivo and in vitro sensitivity of blastic plasmacytoid dendritic cell neoplasm to SL-401, an interleukin-3 receptor targeted biologic agent

    PubMed Central

    Angelot-Delettre, Fanny; Roggy, Anne; Frankel, Arthur E.; Lamarthee, Baptiste; Seilles, Estelle; Biichle, Sabeha; Royer, Bernard; Deconinck, Eric; Rowinsky, Eric K.; Brooks, Christopher; Bardet, Valerie; Benet, Blandine; Bennani, Hind; Benseddik, Zehaira; Debliquis, Agathe; Lusina, Daniel; Roussel, Mikael; Solly, Françoise; Ticchioni, Michel; Saas, Philippe; Garnache-Ottou, Francine

    2015-01-01

    Blastic plasmacytoid dendritic cell neoplasm is an aggressive malignancy derived from plasmacytoid dendritic cells. There is currently no accepted standard of care for treating this neoplasm, and therapeutic strategies have never been prospectively evaluated. Since blastic plasmacytoid dendritic cell neoplasm cells express high levels of interleukin-3 receptor α chain (IL3-Rα or CD123), antitumor effects of the interleukin-3 receptor-targeted drug SL-401 against blastic plasmacytoid dendritic cell neoplasm were evaluated in vitro and in vivo. The cytotoxicity of SL-401 was assessed in patient-derived blastic plasmacytoid dendritic cell neoplasm cell lines (CAL-1 and GEN2.2) and in primary blastic plasmacytoid dendritic cell neoplasm cells isolated from 12 patients using flow cytometry and an in vitro cytotoxicity assay. The cytotoxic effects of SL-401 were compared to those of several relevant cytotoxic agents. SL-401 exhibited a robust cytotoxicity against blastic plasmacytoid dendritic cell neoplasm cells in a dose-dependent manner. Additionally, the cytotoxic effects of SL-401 were observed at substantially lower concentrations than those achieved in clinical trials to date. Survival of mice inoculated with a blastic plasmacytoid dendritic cell neoplasm cell line and treated with a single cycle of SL-401 was significantly longer than that of untreated controls (median survival, 58 versus 17 days, P<0.001). These findings indicate that blastic plasmacytoid dendritic cell neoplasm cells are highly sensitive to SL-401, and support further evaluation of SL-401 in patients suffering from blastic plasmacytoid dendritic cell neoplasm. PMID:25381130

  19. A novel monoclonal antibody, C41, reveals IL-13Ralpha1 expression by murine germinal center B cells and follicular dendritic cells.

    PubMed

    Poudrier, J; Graber, P; Herren, S; Berney, C; Gretener, D; Kosco-Vilbois, M H; Gauchat, J F

    2000-11-01

    Responsiveness to IL-13 involves at least two chains, IL-4Ralpha and IL-13Ralpha1. Although mouse B cells express IL-4Ralpha, little is known about their expression of IL-13Ralpha chains. To investigate this topic further, we have generated a monoclonal antibody (C41) specific for murine IL-13Ralpha1. Using C41, IL-13Ralpha1 expression was detected on germinal center (GC) B cells by flow cytometry and immunohistochemistry. In addition, IL-13Ralpha1 was observed on follicular dendritic cells, but not interdigitating dendritic cells in the T cell areas. Furthermore, resting B cells also expressed IL-13Ralpha1, and in the presence of IL-13 produced increased amounts of IgM in response to in vitro CD40 stimulation. However, C41 was unable to neutralize this bioactivity. The distribution of IL-13Ralpha1 on murine B cells and during GC reactions suggests a role for IL-13 during B cell differentiation.

  20. Side-chain Liquid Crystal Polymers (SCLCP): Methods and Materials. An Overview

    PubMed Central

    Ganicz, Tomasz; Stańczyk, Włodzimierz

    2009-01-01

    This review focuses on recent developments in the chemistry of side chain liquid crystal polymers. It concentrates on current trends in synthetic methods and novel, well defined structures, supramolecular arrangements, properties, and applications. The review covers literature published in this century, apart from some areas, such as dendritic and elastomeric systems, which have been recently reviewed.

  1. Effect of liquid immersion of PEDOT: PSS-coated polyester fabric on surface resistance and wettability

    NASA Astrophysics Data System (ADS)

    Getnet Tadesse, Melkie; Loghin, Carmen; Chen, Yan; Wang, Lichuan; Catalin, Dumitras; Nierstrasz, Vincent

    2017-06-01

    Coating of textile fabrics with poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) is one of the methods used for obtaining functional or smart applications. In this work, we prepared PEDOT:PSS polymer with certain additives such as polyethylene glycol, methanol (MeOH), and ethylene glycol on polyester fabric substrates by a simple immersion process. Surface resistance was measured and analyzed with analysis of variance to determine the coating parameters at 95% confidence level. Fourier transform infrared (FTIR) analysis and scanning electron microscopy (SEM) study of the samples were performed. Contact angle and washing fastness measurements were conducted, to observe the wettability and washing fastness of the samples, respectively. Surface resistance values were decreased by a factor of 100, due to conductive enhancers. As the immersion time and temperature condition varies, surface resistance showed no difference, statistically. FTIR analysis supports the idea that the mechanism responsible for the conductivity enhancement is the partial replacement of PSS from PEDOT chain by forming a hydrogen bond with hydroxyl ion (OH) of the conductive enhancers. A SEM images showed that PEDOT:PSS is well distributed to the surface of the fabrics. Contact angle measurements showed morphology change in the samples. The conductivity was reasonably stable after 10 washing cycles. Altogether, an effective simple immersion of coated polyester fabric is presented to achieve functional textiles that offer a broad range of possible applications.

  2. Study of the chain conformation of thermotropic nematic main chain polyesters

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Brûlet, A.; Cotton, J. P.; Davidson, P.; Strazielle, C.; Keller, P.

    1994-10-01

    The conformation of main chain mesomorphic polyesters is studied by small angle neutron scattering (SANS) in the isotropic and in the nematic phases, by using mixtures of deuterated and undeuterated polymers. Particular attention is given to neglect the transesterification effects occurring mainly at high temperature for these LC polymers. In the isotropic phase, despite the presence of long rigid mesogenic groups, the LC polyester chains have a Gaussian conformation shown by the variation of the radius of gyration as a function of the molecular weight. This result is confirmed from the scattering variation in the intermediate range of the scattering vector. In the nematic phase, the SANS data are well fitted to a model of cylinder, in which the main chain polymer is confined. In the unoriented phase, the measurements in the intermediate range give the values of the radii of cylinders : they lie in between 10 Å and 19 Å depending on the degree of polymerization of chains. In the oriented nematic phase, the scattering patterns are highly anisotropic : they correspond to very long, thin and well-oriented cylinders. We have calculated the fully extended chain lengths using for the monomer length that measured in situ by X-ray diffraction. Then the comparison of this length with the measured height of the cylinders gives the existence of hairpins and their number per chain. For the short chain, the conformation is almost completely elongated in the nematic direction, whereas hairpin defects appear in longer chains. Their number decreases slightly with decreasing temperature. The orientational fluctuations of cylinders relatively to the nematic director are weak as shown from the high values of their order parameter (P_2 > 0.9). These results are discussed for two spacer lengths as a function of the molecular weight and of the temperature. La conformation de polyesters linéaires mésomorphes est étudiée par diffusion de neutrons aux petits angles (DNPA) dans les phases isotrope et nématique sur des mélanges de polymères hydrogénés et deutériés. Les conditions expérimentales ont été choisies afin de pouvoir négliger les effets de la transestérification obtenus à haute température avec cette famille de polymères cristaux liquides. Dans la phase isotrope, en dépit de la présence de longs et rigides groupements mésogènes, les chaînes de polymères ont une conformation gaussienne, comme le montre la variation du rayon de giration en fonction de la masse moléculaire. Ce résultat est confirmé par les mesures faites dans le domaine intermédiaire du vecteur de diffusion. Dans la phase nématique, les données de DNPA sont bien ajustées par un modèle de cylindre dans lequel la chaîne de polymère est confinée. Dans la phase non orientée, les mesures faites dans le domaine intermédiaire donnent les valeurs des rayons des cylindres (compris entre 10 Å et 19 Å selon le degré de polymérisation des chaînes). Dans la phase nématique orientée, les figures de diffusion sont très anisotropes et correspondent à de longs et étroits cylindres bien orientés. La longueur de la chaîne totalement étirée est calculée à partir de la longueur du monomère mesurée par diffraction de rayons X. Par comparaison avec la hauteur du cylindre mesurée en DNPA, nous déduisons l'existence des épingles à cheveux et leur nombre par chaîne. La conformation d'une chaîne courte est complètement étirée dans la direction du champ nématique, alors que des défauts du type épingles à cheveux apparaissent dans les chaînes plus longues. Le nombre de ces défauts décroît légèrement en diminuant la température. Les fluctuations d'orientation des cylindres autour de la direction du champ nématique sont faibles comme le montrent les valeurs élevées des paramètres d'ordre des cylindres (P_2 > 0,9). Les résultats sont discutés, pour deux longueurs d'espaceur, en fonction de la masse moléculaire et de la température.

  3. 49 CFR 173.165 - Polyester resin kits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Except for transportation by aircraft, polyester resin kits consisting of a base... will not interact dangerously in the event of leakage. (b) For transportation by aircraft, polyester...

  4. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester exchange...

  5. 78 FR 51707 - Certain Polyester Staple Fiber From the Republic of Korea: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839] Certain Polyester Staple... certain polyester staple fiber (polyester staple fiber) from the Republic of Korea (Korea) for the period..., 2013, the Department initiated an administrative review of the antidumping duty order on polyester...

  6. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... prescribed conditions: (a) For the purpose of this section, partial phosphoric acid esters of polyester...

  7. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester exchange...

  8. 75 FR 43921 - Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Certain Polyester Staple... certain polyester staple fiber from Taiwan. The period of review is May 1, 2008, through April 30, 2009... polyester staple fiber (PSF) from Taiwan. See Certain Polyester Staple Fiber From Taiwan: Preliminary...

  9. Functional polyester materials with tunable degradability: Investigations into the use of reductive amination, ketoxime ether, and hydrazone linkages for functionalization, covalent stabilization and crosslinking of poly(epsilon-caprolactone) materials

    NASA Astrophysics Data System (ADS)

    van Horn, Brooke Angela

    Aliphatic polyesters represent one class of degradable, polymeric materials that is receiving significant attention in the search for, and design of, biocompatible and bioresorbable synthetic substances. Functional and crosslinked polyesters, having potential biomedical value, are the target of many avenues of current research. This dissertation work expands the utility of a specific aliphatic polyester, poly(epsilon-caprolactone-co-2-oxepane-1,5-dione) (P(CL-co-OPD)), which contains backbone ketone units that can be reacted with various functional, nucleophilic agents. Results presented in this dissertation convey both the successes had and the challenges encountered in the employment of different "iminyl" chemistries for the synthesis of functional and crosslinked materials. Specifically, the ketone-functionalized polyester was investigated as a general substrate designed to undergo solution-state intramolecular crosslinking and functionalization upon reductive amination with 1,6-hexanediamine and hexylamine, respectively, in the presence of NaCNBH3. Through detailed analysis of the products from these reactions, and simpler systems including small molecule model compounds, the polymeric gamma-keto ester functionality was determined to be incompatible with the reductive amination chemistry, resulting in chain cleavage via intramolecular lactam formation. Subsequent investigation of ketoxime ether formation using synthetic model hydroxylamines, 1-aminooxydodecane and 1,6-bis(aminooxy)hexane, in solution and in the presence of an acid catalyst, resulted in the targeted graft and crosslinked particulate/gel materials, respectively. With the significant interest in the development of synthetic polymer materials of increasing degrees of complexity, attention has been focused on the efficient and high-yielding conversion of polyesters into multi-functional materials. Facile conjugation of aminooxy- and sulfonyl hydrazide model ligands with P(CL-co-OPD) were also explored by both sequential and single-step approaches. The benefits of the characterization of intermediates in a functionalization sequence were then weighed against the corresponding challenges faced by the establishment of equilibria between coupled and uncoupled species in solution. Additionally, in this dissertation, the advantages of a single-step reaction for the construction of multi-functionalization are stressed. Finally, the synthesis and basic characterization of specific functional materials are highlighted with regard to the preparation of novel ligand-bearing graft and particulate nanostructures, decorated with poly(ethylene oxide), chromophores, fluorophores, and radio-labeled molecules, for potential use in diagnostic imaging and drug delivery.

  10. Blends of polyester ionomers with polar polymers: Interactions, reactions, and compatibilization

    NASA Astrophysics Data System (ADS)

    Boykin, Timothy Lamar

    The compatibility of amorphous and semicrystalline polyester ionomers with various polar polymers (i.e., polyesters and polyamides) has been investigated for their potential use as minor component compatibilizers. The degree of compatibility (i.e., ranging from incompatible to miscible) between the polyester ionomers and the polar polymers was determined by evaluating the effect of blend composition on the melting behavior and phase behavior of binary blends. In addition, the origin of compatibility and/or incompatibility for each of the binary blends (i.e., polyamide/ionomer and polyester/ionomer) was determined by evaluating blends prepared by both solution and melt mixed methods. Subsequent to investigation of the binary blends, the effect of polyester ionomer addition on the compatibility of polyamide/polyester blends was investigated by evaluating the mechanical properties and phase morphology of ionomer compatibilized polyamide/polyester blends. Polyester ionomers (amorphous and semicrystalline) were shown to exhibit a high degree of compatibility (even miscibility) with polyamides, such as nylon 6,6 (N66). Compatibility was attributed to specific interactions between the metal counterion of the polyester ionomer and the amide groups of N66. The degree of compatibility (or miscibility) was shown to be dependent on the counterion type of the ionomer, with the highest degree exhibited by blends containing the divalent form of the polyester ionomers. Although polyester ionomers were shown to exhibit incompatibility with both poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), increasing the time of melt processing significantly enhanced the compatibility of the polyester ionomers with both PET and PBT. The observed enhancement in compatibility was attributed to ester-ester interchange between the polyester blend components, which was confirmed by NMR spectroscopy. The addition of polyester ionomers as a minor component compatibilizer (i.e., 2 to 5 wt%) resulted in significant enhancement in the impact strength and a dramatic improvement in the tensile properties compared to uncompatibilized blends of nylon 6,6 (N66) with poly(butylene terephthalate) (PBT). This behavior was attributed to an increase in the interfacial adhesion between the phase-separated domains due to strong interactions between the polyester ionomer and N66. The placement of the ionomer compatibilizer at the N66/PBT interface was facilitated by pre-extrusion of the polyester ionomer with PBT, prior to extrusion with N66.

  11. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  12. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  13. Properties of honeycomb polyester knitted fabrics

    NASA Astrophysics Data System (ADS)

    Feng, A. F.

    2016-07-01

    The properties of honeycomb polyester weft-knitted fabrics were studied to understand their advantages. Seven honeycomb polyester weft-knitted fabrics and one common polyester weft-knitted fabric were selected for testing. Their bursting strengths, fuzzing and pilling, air permeability, abrasion resistance and moisture absorption and perspiration were studied. The results show that the honeycomb polyester weft-knitted fabrics have excellent moisture absorption and liberation. The smaller their thicknesses and area densities are, the better their moisture absorption and liberation will be. Their anti-fuzzing and anti-pilling is good, whereas their bursting strengths and abrasion resistance are poorer compared with common polyester fabric's. In order to improve the hygroscopic properties of the fabrics, the proportion of the honeycomb microporous structure modified polyester in the fabrics should not be less than 40%.

  14. Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes.

    PubMed

    Pellis, Alessandro; Acero, Enrique Herrero; Weber, Hansjoerg; Obersriebnig, Michael; Breinbauer, Rolf; Srebotnik, Ewald; Guebitz, Georg M

    2015-09-01

    Poly(lactic acid) as a biodegradable thermoplastic polyester has received increasing attention. This renewable polyester has found applications in a wide range of products such as food packaging, textiles and biomedical devices. Its major drawbacks are poor toughness, slow degradation rate and lack of reactive side-chain groups. An enzymatic process for the grafting of carboxylic acids onto the surface of poly(L-lactic acid) (PLLA) films was developed using Candida antarctica lipase B as a catalyst. Enzymatic hydrolysis of the PLLA film using Humicola insolens cutinase in order to increase the number of hydroxyl and carboxylic groups on the outer polymer chains for grafting was also assessed and showed a change of water contact angle from 74.6 to 33.1° while the roughness and waviness were an order of magnitude higher in comparison to the blank. Surface functionalization was demonstrated using two different techniques, (14) C-radiochemical analysis and X-ray photoelectron spectroscopy (XPS) using (14) C-butyric acid sodium salt and 4,4,4-trifluorobutyric acid as model molecules, respectively. XPS analysis showed that 4,4,4-trifluorobutyric acid was enzymatically coupled based on an increase of the fluor content from 0.19 to 0.40%. The presented (14) C-radiochemical analyses are consistent with the XPS data indicating the potential of enzymatic functionalization in different reaction conditions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyether polyester copolymer... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this section...

  16. 40 CFR 721.6485 - Hydroxy terminated polyester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydroxy terminated polyester. 721.6485... Substances § 721.6485 Hydroxy terminated polyester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydroxy terminated polyester...

  17. 40 CFR 721.6485 - Hydroxy terminated polyester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydroxy terminated polyester. 721.6485... Substances § 721.6485 Hydroxy terminated polyester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydroxy terminated polyester...

  18. The transport of Staufen2-containing ribonucleoprotein complexes involves kinesin motor protein and is modulated by mitogen-activated protein kinase pathway.

    PubMed

    Jeong, Ji-Hye; Nam, Yeon-Ju; Kim, Seok-Yong; Kim, Eung-Gook; Jeong, Jooyoung; Kim, Hyong Kyu

    2007-09-01

    There is increasing evidence showing that mRNA is transported to the neuronal dendrites in ribonucleoprotein (RNP) complexes or RNA granules, which are aggregates of mRNA, rRNA, ribosomal proteins, and RNA-binding proteins. In these RNP complexes, Staufen, a double-stranded RNA-binding protein, is believed to be a core component that plays a key role in the dendritic mRNA transport. This study investigated the molecular mechanisms of the dendritic mRNA transport using green fluorescent protein-tagged Staufen2 produced employing a Sindbis viral expression system. The kinesin heavy chain was found to be associated with Staufen2. The inhibition of kinesin resulted in a significant decrease in the level of dendritic transport of the Staufen2-containing RNP complexes in neurons under non-stimulating or stimulating conditions. This suggests that the dendritic transport of the Staufen2-containing RNP complexes use kinesin as a motor protein. A mitogen-activated protein kinase inhibitor, PD98059, inhibited the activity-induced increase in the amount of both the Staufen2-containing RNP complexes and Ca(2+)/calmodulin-dependent protein kinase II alpha-subunit mRNA in the distal dendrites of cultured hippocampal neurons. Overall, these results suggest that dendritic mRNA transport is mediated via the Staufen2 and kinesin motor proteins and might be modulated by the neuronal activity and mitogen-activated protein kinase pathway.

  19. 76 FR 2886 - Certain Polyester Staple Fiber From the People's Republic of China: Final Results and Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... duty order on certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC''). See Certain Polyester Staple Fiber From the People's Republic of China: Notice of Preliminary Results...

  20. 75 FR 4044 - Polyester Staple Fiber From Taiwan: Initiation and Preliminary Results of Changed-Circumstances...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber From... Commerce is initiating a changed- circumstances review of the antidumping duty order on polyester staple... previously accorded to Far Eastern Textile Limited with regard to the antidumping duty order on polyester...

  1. 40 CFR 721.9507 - Polyester silane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for the...

  2. 75 FR 34097 - Certain Polyester Staple Fiber From Taiwan: Extension of the Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Certain Polyester Staple... administrative review of the antidumping duty order on certain polyester staple fiber from Taiwan. See Certain Polyester Staple Fiber from Taiwan: Preliminary Results of Antidumping Duty Administrative Review, 75 FR...

  3. 77 FR 6783 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... polyester staple fiber from the PRC. See Initiation of Antidumping and Countervailing Duty Administrative...

  4. 40 CFR 721.9507 - Polyester silane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for the...

  5. 75 FR 38463 - Greige Polyester Cotton Printcloth From the People's Republic of China: Final Results of Sunset...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-101] Greige Polyester Cotton... duty order on greige polyester cotton printcloth from the People's Republic of China (``PRC''). Because..., 1983, the Department issued an antidumping duty order on greige polyester cotton printcloth from the...

  6. 49 CFR 173.165 - Polyester resin kits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Except for transportation by aircraft, polyester resin kits consisting of a base... resin kits consisting of a base material component (Class 3, Packing Group II or III) and an activator...

  7. Distributed Spacing Stochastic Feature Selection and its Application to Textile Classification

    DTIC Science & Technology

    2011-09-01

    Spandex, (b) 65% Polyester / 35% Cot- ton vs 94% Polyester / 6% Spandex, (c) 65% Polyester / 35% Cotton vs 100% Cotton , and (d) 65% Polyester / 35% Cotton ...3-29 3.10. This is an example of the final feature selection process for 100% Cotton Woven, with acceptable distributed spacing set to a 35...3-40 4.1. Representative samples from the 12 class textile data set: 65% Polyester 35% Cotton Woven (red), 80% Nylon 20% Spandex Knit (green), 97

  8. Generation of conductivity through transfer charge properties, for polyesters and polyamides with characteristic functional groups

    NASA Astrophysics Data System (ADS)

    Gonzalez, Carmen; Tagle, Luis Hernan; Terraza, Claudio A.; Barriga, Andres; Cabrera, A. L.; Volkmann, Ulrich G.

    2011-03-01

    Electro-optic properties of σ -conjugated polymers, as polysilylene; are associated with electron conjugation in the silicon atom, which allows a significant delocalization of electrons along of the chain. Thus, the conductivity is intimately connected to the mobility of charge carriers, which in turn depends on the structure and morphology of the system. We report the characterization of polyesters (PEFs) and polyamides (PAFs). Film thicknesses were obtained by ellipsometry. The vibration frequencies of the groups were determined by FT-IR and corroborated by Raman spectroscopy. Structural information was obtained from X-Ray diffraction (XRD). The structural and surface morphology were studied by scanning electron microscope (SEM). Electrical conductivity of the polymers was measured before and after exposure to iodine vapor, for films of different thicknesses. Morphological differentiation was studied by energy dispersive microscopy (EDX), showing a regular distribution of iodine within the polymer. Preliminary conductivity measurements showed adverse effects when oxidation of the polymer films is induced These effects are related to a certain grade of disorder within the system

  9. Artificial extracellular matrix for biomedical applications: biocompatible and biodegradable poly (tetramethylene ether) glycol/poly (ε-caprolactone diol)-based polyurethanes.

    PubMed

    Shahrousvand, Mohsen; Mir Mohamad Sadeghi, Gity; Salimi, Ali

    2016-12-01

    The cells as a tissue component need to viscoelastic, biocompatible, biodegradable, and wettable extracellular matrix for their biological activity. In this study, in order to prepare biomedical polyurethane elastomers with good mechanical behavior and biodegradability, a series of novel polyester-polyether- based polyurethanes (PUs) were synthesized using a two-step bulk reaction by melting pre-polymer method, taking 1,4-Butanediol (BDO) as chain extender, hexamethylene diisocyanate as the hard segment, and poly (tetramethylene ether) glycol (PTMEG) and poly (ε-caprolactone diol) (PCL-Diol) as the soft segment without a catalyst. The soft to the hard segment ratio was kept constant in all samples. Polyurethane characteristics such as thermal and mechanical properties, wettability and water adsorption, biodegradability, and cellular behavior were changed by changing the ratio of polyether diol to polyester diol composition in the soft segment. Our present work provides a new procedure for the preparation of engineered polyurethanes in surface properties and biodegradability, which could be a good candidate for bone, cartilage, and skin tissue engineering.

  10. Surface Modification of Polyester Fiber with Perfluorooctyltrimethoxysilane

    NASA Astrophysics Data System (ADS)

    Wang, Xiangcheng; Liu, Yadong; Li, Dan; Tie, Zihan

    2018-05-01

    An excellent modified polyester fiber was prepared via chemical grafting between polyester fiber and perfluorooctyltrimethoxysilane (FAS-17), or silane coupler (KH-570), or Titanate coupler (DN-101) in isopropyl alcohol aqueous solution. Volume ratio of isopropyl alcohol in aqueous solution was 50:50, the mass concentration of FAS-17 is 2%, reacting on polyester fiber modified for 24h at 60 °C, the polyester fiber contact angle to water was 145 °, and the contact angle to peanut oil was 118 °, with excellent performance of amphiphobic property. KH-570 and DN-101 modified polymer fiber to be hydrophobic properties nearly as FAS-17, but modified polyester fiber have no amphiphobic property.

  11. Study on moisture absorption and sweat discharge of honeycomb polyester fiber

    NASA Astrophysics Data System (ADS)

    Feng, Aifen; Zhang, Yongjiu

    2015-07-01

    The moisture absorption and liberation properties of honeycomb polyester fiber were studied in order to understand its moisture absorption and sweat discharge. Through testing moisture absorption and liberation regains of honeycomb polyester fiber and normal polyester fiber in standard atmospheric conditions, their moisture absorption and liberation curves were depicted, and the regression equations of moisture regains to time during their reaching the balance of moisture absorption and moisture liberation were obtained according to the curves. Their moisture absorption and liberation rate curves were analyzed and the regression equations of the rates to time were obtained. The results shows that the moisture regain of honeycomb polyester fiber is much bigger than the normal polyester fiber's, and the initial moisture absorption and moisture liberation rates of the former are much higher than the latter's, so that the moisture absorbance and sweat discharge of honeycomb polyester fiber are excellent.

  12. 75 FR 30373 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... administrative review of the antidumping duty order on certain polyester staple fiber from the PRC. See...

  13. 75 FR 47795 - Certain Polyester Staple Fiber from Korea: Rescission of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839] Certain Polyester Staple... Polyester staple fiber (``PSF'') covered by the scope of the order is defined as synthetic staple fibers, not carded, combed or otherwise processed for spinning, of polyesters measuring 3.3 decitex (3 denier...

  14. 77 FR 21733 - Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Certain Polyester Staple... Department) initiated an administrative review of the antidumping duty order on certain polyester staple fiber from Taiwan for the period May 1, 2010, through April 30, 2011.\\1\\ In Certain Polyester Staple...

  15. 75 FR 39208 - Polyester Staple Fiber from Taiwan: Final Results of Changed-Circumstances Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber from... Eastern Textile Limited with regard to the antidumping duty order on polyester staple fiber from Taiwan... on polyester staple fiber from Taiwan to determine whether FENC was the successor-in-interest to FET...

  16. 76 FR 60802 - Certain Polyester Staple Fiber From the Republic of Korea and Taiwan: Continuation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839, A-583-833] Certain Polyester... Commission (ITC) that revocation of the antidumping duty orders on certain polyester staple fiber from the... and the ITC instituted sunset reviews of the antidumping duty orders on polyester staple fiber from...

  17. 75 FR 51442 - Polyester Staple Fiber from Taiwan: Rescission of Antidumping Duty Administrative Review in Part

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber from... antidumping duty order on polyester staple fiber from Taiwan. The period of review is May 1, 2009, through... duty order on polyester staple fiber from Taiwan with respect to respondents Nan Ya Plastics...

  18. 78 FR 38938 - Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review; 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber From... duty order on polyester staple fiber (PSF) from Taiwan. The period of review is May 1, 2011, through... Results. None were received. \\1\\ See Polyester Staple Fiber From Taiwan: Preliminary Results of...

  19. 76 FR 58040 - Certain Polyester Staple Fiber From Korea and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... Polyester Staple Fiber From Korea and Taiwan Determination On the basis of the record \\1\\ developed in the... antidumping duty orders on certain polyester staple fiber from Korea and Taiwan would be likely to lead to...), entitled Certain Polyester Staple Fiber From Korea and Taiwan: Investigation Nos. 731-TA-825 and 826...

  20. 75 FR 6352 - Certain Polyester Staple Fiber from the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... administrative review of the antidumping duty order on certain polyester staple fiber from the PRC. See...

  1. 77 FR 62217 - Certain Polyester Staple Fiber From the People's Republic of China: Continuation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... International Trade Commission (``ITC'') that revocation of the antidumping duty order on certain polyester... antidumping duty order on certain polyester staple fiber from the PRC pursuant to section 751(c)(2) of the...

  2. 76 FR 7532 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... initiation of the administrative review of the antidumping duty order on certain polyester staple fiber from...

  3. 77 FR 19619 - Certain Polyester Staple Fiber from the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... polyester staple fiber from the PRC.\\1\\ On February 9, 2012 the Department partially extended the deadline...

  4. 78 FR 38939 - Certain Polyester Staple Fiber From the People's Republic of China: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... Preliminary Results of the 2011-2012 administrative review of the antidumping duty order on certain polyester... dumping margin is listed in the ``Final Results of Review'' section below. \\1\\ See Certain Polyester...

  5. 76 FR 28420 - Certain Polyester Staple Fiber From the People's Republic of China: Full Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... results of the administrative review of certain polyester staple fiber from the People's Republic of China... administrative review of the antidumping duty order on certain polyester staple fiber from the PRC. See...

  6. 76 FR 37830 - Polyester Staple Fiber From Korea and Taiwan; Scheduling of Expedited Five-Year Reviews...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation Nos. 731-TA-825 and 826 (Second Review)] Polyester... Duty Orders on Polyester Staple Fiber From Korea and Taiwan AGENCY: United States International Trade... determine whether revocation of the antidumping duty orders on polyester staple fiber from Korea and Taiwan...

  7. 75 FR 76954 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Time Limit for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple... administrative review of certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC''), covering the period June 1, 2008--May 31, 2009. See Certain Polyester Staple Fiber From the People's...

  8. 76 FR 52935 - Certain Polyester Staple Fiber From Korea: Rescission of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839] Certain Polyester Staple... on polyester staple fiber from Korea. See Antidumping or Countervailing Duty Order, Finding, or..., 76 FR 37781 (June 28, 2011). Scope of the Order Polyester staple fiber covered by the scope of the...

  9. Motor Deficits and Cerebellar Atrophy in Elovl5 Knock Out Mice.

    PubMed

    Hoxha, Eriola; Gabriele, Rebecca M C; Balbo, Ilaria; Ravera, Francesco; Masante, Linda; Zambelli, Vanessa; Albergo, Cristian; Mitro, Nico; Caruso, Donatella; Di Gregorio, Eleonora; Brusco, Alfredo; Borroni, Barbara; Tempia, Filippo

    2017-01-01

    Spino-Cerebellar-Ataxia type 38 (SCA38) is caused by missense mutations in the very long chain fatty acid elongase 5 gene, ELOVL5 . The main clinical findings in this disease are ataxia, hyposmia and cerebellar atrophy. Mice in which Elovl5 has been knocked out represent a model of the loss of function hypothesis of SCA38. In agreement with this hypothesis, Elovl5 knock out mice reproduced the main symptoms of patients, motor deficits at the beam balance test and hyposmia. The cerebellar cortex of Elovl5 knock out mice showed a reduction of thickness of the molecular layer, already detectable at 6 months of age, confirmed at 12 and 18 months. The total perimeter length of the Purkinje cell (PC) layer was also reduced in Elovl5 knock out mice. Since Elovl5 transcripts are expressed by PCs, whose dendrites are a major component of the molecular layer, we hypothesized that an alteration of their dendrites might be responsible for the reduced thickness of this layer. Reconstruction of the dendritic tree of biocytin-filled PCs, followed by Sholl analysis, showed that the distribution of distal dendrites was significantly reduced in Elovl5 knock out mice. Dendritic spine density was conserved. These results suggest that Elovl5 knock out mice recapitulate SCA38 symptoms and that their cerebellar atrophy is due, at least in part, to a reduced extension of PC dendritic arborization.

  10. 76 FR 38612 - Certain Polyester Staple Fiber From the Republic of Korea and Taiwan: Final Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839, A-583-833] Certain Polyester... sunset reviews of the antidumping duty orders on polyester staple fiber (PSF) from the Republic of Korea... polyesters measuring 3.3 decitex (3 denier, inclusive) or more in diameter. This merchandise is cut to...

  11. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    PubMed Central

    Gozalbo, Ana; Mestre, Sergio; Sanz, Vicente

    2017-01-01

    A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR) analysis of the volatiles. PMID:29295542

  12. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes.

    PubMed

    Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nomura, N; Onuma, F; Nakahara, T

    1999-02-01

    Polyurethane (PUR) is a polymer derived from the condensation of polyisocyanate and polyol and it is widely used as a base material in various industries. PUR, in particular, polyester PUR, is known to be vulnerable to microbial attack. Recently, environmental pollution by plastic wastes has become a serious issue and polyester PUR had attracted attention because of its biodegradability. There are many reports on the degradation of polyester PUR by microorganisms, especially by fungi. Microbial degradation of polyester PUR is thought to be mainly due to the hydrolysis of ester bonds by esterases. Recently, polyester-PUR-degrading enzymes have been purified and their characteristics reported. Among them, a solid-polyester-PUR-degrading enzyme (PUR esterase) derived from Comamonas acidovorans TB-35 had unique characteristics. This enzyme has a hydrophobic PUR-surface-binding domain and a catalytic domain, and the surface-binding domain was considered as being essential for PUR degradation. This hydrophobic surface-binding domain is also observed in other solid-polyester-degrading enzymes such as poly(hydroxyalkanoate) (PHA) depolymerases. There was no significant homology between the amino acid sequence of PUR esterase and that of PHA depolymerases, except in the hydrophobic surface-binding region. Thus, PUR esterase and PHA depolymerase are probably different in terms of their evolutionary origin and it is possible that PUR esterases come to be classified as a new solid-polyester-degrading enzyme family.

  13. Homeotropic alignment of dendritic columnar liquid crystal induced by hydrogen-bonded triphenylene core bearing fluoroalkyl chains.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2014-07-01

    A 1:3 molar complex of the fluoroalkyl side chain-substituted 2,6,10-tris-carboxymethoxy-3,7,11-tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)triphenylene (TPF4) with the second generation dendron 3,5-bis(3,4-bis-dodecyloxybenzyloxy)-N-pyridin-4-yl-benzamide (DN) assembled through complementary hydrogen bonding to form a supramolecular columnar liquid crystal, which exhibited homeotropic alignment when sandwiched between octadecyltrichlorosilane (OTS)-coated or indium tin oxide (ITO)-coated glass plates due to specific interactions between the fluoroalkyl side chains and the substrates.

  14. 46 CFR 164.023-3 - Specifications and standards incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Weathering Method—164.023-7. Federal Specifications (4) V-T-285E—Thread, Polyester, August 21, 1986—164.023-5..., Polyester Core: Cotton-, Rayon-, or Polyester-Covered, September 30, 1986—164.023-5. (7) MIL-T-43624A—Thread, Polyester, Spun, January 22, 1982—164.023-5. (c) All reference materials are available from the Naval...

  15. 46 CFR 164.023-3 - Specifications and standards incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Weathering Method—164.023-7. Federal Specifications (4) V-T-285E—Thread, Polyester, August 21, 1986—164.023-5..., Polyester Core: Cotton-, Rayon-, or Polyester-Covered, September 30, 1986—164.023-5. (7) MIL-T-43624A—Thread, Polyester, Spun, January 22, 1982—164.023-5. (c) All reference materials are available from the Naval...

  16. Effects of glass scraps powder and glass fiber on mechanical properties of polyester composites

    NASA Astrophysics Data System (ADS)

    Sonsakul, K.; Boongsood, W.

    2017-11-01

    One concern in bus manufacturing is the high cost of glass fiber reinforced in polyester composites parts. The composites of glass fiber and polyester are low elongation and high strength, and glass scraps powder displays high hardness and good chemical compatibility with the polymer matrix and glass fiber. This research aimed to study the effects of glass scraps powder and glass fiber on mechanical performance of polyester composites. Glass fiber was randomly oriented fiber and used as new. Glass scraps were obtained from a bus factory and crushed to powder sizes of 120 and 240 μm by a ball mill. Polyester composites were prepared using Vacuum Infusion Process (VIP).Polyester reinforced with 3 layers of glass fiber was an initial condition. Then, one layer of glass fiber was replaced with glass scraps powder. Flexural strength, tensile strength, impact strength and hardness of the polyester composites were determined. Hardness was increased with a combination of smaller size and higher volume of glass scraps powder. Pictures of specimens obtained by using scanning electron microscope (SEM) confirmed that the powder of glass scraps packed in the layers of glass fiber in polyester composites.

  17. Static properties and moisture content properties of polyester fabrics modified by plasma treatment and chemical finishing

    NASA Astrophysics Data System (ADS)

    Kan, C. W.; Yuen, C. W. M.

    2008-01-01

    Low temperature plasma treatment has been conducted in textile industry and has some success in the dyeing and finishing processes. In this paper, an attempt was made to apply low temperature plasma treatment to improve the anti-static property of polyester fabric. The polyester fabrics were treated under different conditions using low temperature plasma. An Orthogonal Array Testing Strategy was employed to determine the optimum treatment condition. After low temperature plasma treatment, the polyester fabrics were evaluated with different characterisation methods. Under the observation of scanning electron microscope, the surface structure of low temperature plasma-treated polyester fabric was seriously altered. This provided more capacity for polyester to capture moisture and hence increase the dissipation of static charges. The relationship between moisture content and half-life decay time for static charges was studied and the results showed that the increment of moisture content would result in shortening the time for the dissipation of static charges. Moreover, there was a great improvement in the anti-static property of the low temperature plasma-treated polyester fabric after comparing with that of the polyester fabric treated with commercial anti-static finishing agent.

  18. The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments

    NASA Technical Reports Server (NTRS)

    Anderson, R.; Kates, M.; Baedecker, M. J.; Kaplan, I. R.; Ackman, R. G.

    1977-01-01

    Lipid extracts from five recent Dead Sea sediments were analyzed for isoprenoid compounds and the following were isolated: free and phospholipid-bound di-O-phytanylglycerol, free phytanol and free and esterified phytanic acid. The phytanyl groups of the diether and the free phytanol were oxidized to the corresponding phytanic acid; the stereoisomeric composition of the derived phytanic acids as well as of the ester-bound phytanic acid was determined by open-tubular gas-liquid chromatography of the corresponding methyl esters on butanediolsuccinate polyester. Only the 3R, 7R, 11R-isomer of phytanic acid was detected in each of the phytanate samples, indicating that these phytanyl chains in the Dead Sea sediments are most likely derived from extremely halophilic bacteria rather than from phytol of chlorophyll origin. These findings also provide further evidence that the mixtures of RRR and SRR-phytanic acids previously isolated from organic-rich shales were most likely derived from the phytyl chain in chlorophyll.

  19. The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments

    USGS Publications Warehouse

    Anderson, R.; Kates, M.; Baedecker, M.J.; Kaplan, I.R.; Ackman, R.G.

    1977-01-01

    Lipid extracts from five recent Dead Sea sediments were analyzed for isoprenoid compounds and the following were isolated: free and phospholipid-bound di-O-phytanylglycerol, free phytanol and free and esterifled phytanic acid. The phytanyl groups of the diether and the free phytanol were oxidized to the corresponding phytanic acid; the stereoisomeric composition of the derived phytanic acids as well as of the ester-bound phytanic acid was determined by open-tubular gas-liquid chromatography of the corresponding methyl esters on butanediolsuccinate polyester. Only the 3R,7R,11R-isomer of phytanic acid was detected in each of the phytanate samples, indicating that these phytanyl chains in the Dead Sea sediments are most likely derived from extremely halophilic bacteria rather than from phytol of chlorophyll origin. These findings also provide further evidence that the mixtures of RRR and SRR-phytanic acids previously isolated from organic-rich shales were most likely derived from the phytyl chain in chlorophyll. ?? 1977.

  20. Ground radiation tests and flight atomic oxygen tests of ITO protective coatings for Galileo Spacecraft

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.; Maag, Carl R.

    1986-01-01

    Radiation simulation tests (protons and electrons) were performed along with atomic oxygen flight tests aboard the Shuttle to space qualify the surface protective coatings. The results, which contributed to the selection of indium-tin-oxide (ITO) coated polyester as the material for the thermal blankets of the Galileo Spacecraft, are given here. Two candidate materials, polyester and Fluorglas, were radiation-tested to determine changes at simulated Jovian radiation levels. The polyester exhibited a smaller weight loss (2.8) than the Fluorglas (8.8 percent). Other changes of polyester are given. During low-earth orbit, prior to transit to Jupiter, the thermal blankets would be exposed to atomic oxygen. Samples of uncoated and ITO-coated polyesters were flown on the Shuttle. Qualitative results are given which indicated that the ITO coating protected the underlying polyester.

  1. Bushy sphere dendrites with husk-shaped branches axially spreading out from the core for photo-catalytic oxidation/remediation of toxins.

    PubMed

    Shenashen, Mohamed A; Kawada, Satoshi; Selim, Mahmoud M; Morsy, Wafaa M; Yamaguchi, Hitoshi; Alhamid, Abdulaziz A; Ohashi, Naoki; Ichinose, Izumi; El-Safty, Sherif A

    2017-06-14

    This work describes densely interlinked bushy "tree-like chains" characterized by neatly branched sphere dendrites (bushy sphere dendrites, BSD) with long fan-like, husk-shaped branching paths that extend longitudinally from the core axis of the {110}-exposed plane. We confirmed that the hierarchical dendrite surfaces created bowls of swirled caves along the tree-tube in the mat-like branches. These surfaces had high-index catalytic site facets associated with the formation of ridges/defects on the dominant {110}-top-cover surface. These swirled caves along the branches were completely filled with 50-100 nm poly-CN nano-sphere-fossils with orb-like appearance. Such structural features are key issues of the inherent surface reactivity of a powerful catalyst/trapper, enabling photocatalytic oxidation and trapping of extremely toxic arsenite (AsO 3 3- ) species and photo-induced recovery of arsenate (AsO 4 3- ) products from catalyst surfaces. The light-induced release of produced AsO 4 3- from BSD indicates (i) highly controlled waste collection/management (i.e., recovery), (ii) low cost and ecofriendly photo-adsorbent, (iii) selective trapping of real sample water to produce water-free arsenite species; (iv) multiple reuse cycles of catalysts (i.e., reduced waste volume). Matrixed dendrites, covered with 3D microscopic sphere cores that capture solar-light, trap toxins, and are triggered by light, were designed. These dendrites can withstand indoor and outdoor recovery of toxins from water sources.

  2. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... following prescribed conditions: (a) The cross-linked polyester resins are produced by the condensation of... fiber Polyester fiber produced by the condensation of one or more of the acids listed in paragraph (a)(1...

  3. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... polyester resins are produced by the condensation of one or more of the acids listed in paragraph (a)(1) of.... Reinforcements: Asbestos Glass fiber Polyester fiber produced by the condensation of one or more of the acids...

  4. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... polyester resins are produced by the condensation of one or more of the acids listed in paragraph (a)(1) of.... Reinforcements: Asbestos Glass fiber Polyester fiber produced by the condensation of one or more of the acids...

  5. RHEOLOGY OF CONCENTRATED SOLUTIONS OF HYPERBRANCHED POLYESTERS

    EPA Science Inventory

    The solution rheology of different generations of hyperbranched polyesters in N-methyl-2- pyrrolidinone (NMP) solvent was examined in this study. The solutions exhibited Newtonian behavior over a wide range of polyester concentrations. Also, the relative viscosities of poly(amido...

  6. A model for the pyrolysis of unfilled and filled polymers and comparisons with NBS smoke-density chamber data

    NASA Technical Reports Server (NTRS)

    Kumar, R. N.

    1976-01-01

    This paper considers a model for the pyrolysis of polymers for use in mass loss and smoke density predictions in a fire situation. It is based on the fundamental postulate that the overall rate-limiting reactions are in the relatively low temperature condensed phase; the rate limiting step is the polymer degradation to a vaporizable state. The state of the polymer (chain length) at the surface is specified by the vapor pressure equilibrium criterion. For the case of polymers with inert fillers, like alumina trihydrate, the further assumption is made that the linear regression rate of the material is identical to the unfilled material's at the same surface temperature. The fraction of polymer mass loss converted to smoke is inferred from the literature. The smoke density in the NBS-smoke density chamber is predicted for a polyester and the same polyester with two different loads of alumina trihydrate filler. Diffusional effects in the smoke spreading are considered in an elementary manner. The comparisons with experimental data are encouraging. The overall fire characteristics are predicted using only the fundamental physicochemical property values of ingredients.

  7. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    PubMed

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  8. SOLUTION RHEOLOGY OF HYPERBRANCHED POLYESTERS AND THEIR BLENDS WITH LINEAR POLYMERS

    EPA Science Inventory

    In this study, the rheological properties of different generations of hyperbranched polyesters in 1-methyl-2-pyrrolidinone solvent and their blends with poly(2-hydroxyethyl methacrylate) have ben investigated. All the hyperbranched polyester solutions exhibited Newtonian behavior...

  9. Equivalence between a generalized dendritic network and a set of one-dimensional networks as a ground of linear dynamics.

    PubMed

    Koda, Shin-ichi

    2015-05-28

    It has been shown by some existing studies that some linear dynamical systems defined on a dendritic network are equivalent to those defined on a set of one-dimensional networks in special cases and this transformation to the simple picture, which we call linear chain (LC) decomposition, has a significant advantage in understanding properties of dendrimers. In this paper, we expand the class of LC decomposable system with some generalizations. In addition, we propose two general sufficient conditions for LC decomposability with a procedure to systematically realize the LC decomposition. Some examples of LC decomposable linear dynamical systems are also presented with their graphs. The generalization of the LC decomposition is implemented in the following three aspects: (i) the type of linear operators; (ii) the shape of dendritic networks on which linear operators are defined; and (iii) the type of symmetry operations representing the symmetry of the systems. In the generalization (iii), symmetry groups that represent the symmetry of dendritic systems are defined. The LC decomposition is realized by changing the basis of a linear operator defined on a dendritic network into bases of irreducible representations of the symmetry group. The achievement of this paper makes it easier to utilize the LC decomposition in various cases. This may lead to a further understanding of the relation between structure and functions of dendrimers in future studies.

  10. 75 FR 42784 - Greige Polyester/Cotton Printcloth From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-101 (Third Review)] Greige Polyester/Cotton Printcloth From China AGENCY: United States International Trade Commission. ACTION: Termination of... revocation of the antidumping duty order on greige polyester/cotton printcloth from China would be likely to...

  11. Engineering Escherichia coli for Conversion of Glucose to Medium-Chain ω-Hydroxy Fatty Acids and α,ω-Dicarboxylic Acids.

    PubMed

    Bowen, Christopher H; Bonin, Jeff; Kogler, Anna; Barba-Ostria, Carlos; Zhang, Fuzhong

    2016-03-18

    In search of sustainable approaches to plastics production, many efforts have been made to engineer microbial conversions of renewable feedstock to short-chain (C2-C8) bifunctional polymer precursors (e.g., succinic acid, cadaverine, 1,4-butanediol). Less attention has been given to medium-chain (C12-C14) monomers such as ω-hydroxy fatty acids (ω-OHFAs) and α,ω-dicarboxylic acids (α,ω-DCAs), which are precursors to high performance polyesters and polyamides. Here we engineer a complete microbial conversion of glucose to C12 and C14 ω-OHFAs and α,ω-DCAs, with precise control of product chain length. Using an expanded bioinformatics approach, we screen a wide range of enzymes across phyla to identify combinations that yield complete conversion of intermediates to product α,ω-DCAs. Finally, through optimization of culture conditions, we enhance production titer of C12 α,ω-DCA to nearly 600 mg/L. Our results indicate potential for this microbial factory to enable commercially relevant, renewable production of C12 α,ω-DCA-a valuable precursor to the high-performance plastic, nylon-6,12.

  12. Fundamental investigations of clay/polymer nanocomposites and applications in co-extruded microlayered systems

    NASA Astrophysics Data System (ADS)

    Decker, Jeremy John

    The second and fourth generations of hydroxylated dendritic polyesters (HBP2, HBP4) were combined with unmodified sodium montmorillonite clay (Na +MMT) in water to generate a broad range of polymer clay nanocomposites from 0 to 100% wt/wt Na+MMT. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to investigate intercalation states of the clay galleries. It was shown that interlayer spacings were independent of generation number and changed over the composition range from 0.5 nm to 3.5 nm in 0.5 nm increments that corresponded to a flattened HBP conformation within the clay tactoids. The HBP4/Na+MMT systems were investigated to study the vitrified Rigid Amorphous Fraction (RAF) induced by the clay surfaces. Differential Scanning Calorimetry (DSC) showed changes in heat capacity, Delta Cp, at Tg, that decreased with clay content, until completely suppressed at 80 wt% Na+MMT due to confinement. RAF was quantified from these changes in heat capacity and verified by the analysis of orthopositronium lifetime temperature scans utilizing positron annihilation lifetime spectroscopy (PALS): verifying the glassy nature of the RAF at elevated temperatures. Mathematical relationships allowed for correlation of the interlayer spacings with DeltaC p. RAF formation correlated to intercalated HBP4, and external surfaces of the clay tactoids. The interdiffusion of a polymer pair in microlayers was exploited to increase the concentration of nanoclay particles. When microlayers of a nanocomposite composed of organically modified montmorillonite (M2(HT)2 ) inside maleic anhydride grafted linear low-density polyethylene (LLDPE-g-MA) and low-density polyethylene (LDPE) were taken into the melt, the greater mobility of the linear LLDPE-g-MA chains compared to the branched LDPE chains caused shrinkage of the nanocomposite microlayers, concentrating the M 2(HT)2 contained within. Analysis of the clay morphology within these layers demonstrated an increase in clay particle lengths and aspect ratios, which was attributed to the growth of skewed aggregates during concentration. The melt induced clay concentration and increased clay particle dimensions caused significant decreases in the permeability of the nanocomposite microlayers and reduced the overall permeability of the multilayered films. Morphology and transport behavior of these microlayered films were compared to a series of bulk nanocomposites using a second LLDPE-g-MA containing M 2(HT)2 with varying clay content.

  13. Three-Dimensional Polypeptide Architectures Through Tandem Catalysis and Click Chemistry

    NASA Astrophysics Data System (ADS)

    Rhodes, Allison Jane

    Rapid renal clearance, liver accumulation, proteolytic degradation and non-specificity are challenges small molecule drugs, peptides, proteins and nucleic acid therapeutics encounter en route to their intended destination within the body. Nanocarriers (i.e. dendritric polymers, vesicles, and micelles) of approximately 100 nm in diameter, shuttle small molecule drugs to their desired location through passive (EPR effect) and active (ligand-mediated) targeting, maximizing therapeutic efficiency. Polypeptide-based polymers are water-soluble, biocompatible, non-toxic and are therefore excellent candidates for nanocarriers. Dendritic polymers, including dendrimers, cylindrical brushes, and star polymers, are the newest class of nanomedicine drug delivery vehicles. The synthesis and characterization of dendritic polymers is challenging, with tedious and costly procedures. Dendritic polymers possess peripheral pendent functional groups that can potentially be used in ligand-mediated drug delivery vehicles and bioimaging applications. More specifically, cylindrical brushes are dendritic polymers where a single linear polymer (primary chain) has polymer chains (secondary chains) grafted to it. Recently, research groups have shown that cylindrical brush polymers are capable of nanoparticle and supramolecular structure self-assembly. The facile preparation of high-density brush copolypeptides by the "grafting from" approach will be discussed. This approach utilizes a novel, tandem catalytic methodology where alloc-alpha-aminoamide groups are installed within the side-chains of the alpha-amino-N-carboxyanhydride (NCA) monomer serving as masked initiators. These groups are inert during cobalt initiated NCA polymerization, and give alloc-alpha-aminoamide substituted polypeptide main-chains. The alloc-alpha-aminoamide groups are activated in situ using nickel to generate initiators for growth of side-chain brush segments. This method proves to be efficient, yielding well-defined, high-density brushes for applications in drug delivery and imaging. Here, we also report a method for the synthesis of soluble, well-defined, azido functionalized polypeptides in a straightforward, 3-step synthesis. Homo and diblock azidopolypeptides were prepared with controlled segment lengths via living polymerization using Co(PMe3)4 initiator. Through copper azide alkyne click chemistry (CuAAC) in organic solvent, azidopolypeptides were regioselectively and quantitatively modified with carboxylic acid (pH-responsive), amino acid and sugar functional groups. Finally, the advances towards well-defined hyperbranched polypeptides through alpha-amino-acid-N-thiocarboxyanhydrides (NTAs) will be discussed. Within the past 10 years, controlled NCA (alpha-amino acid-N-carboxyanhydride) ring-opening polymerization (ROP) has emerged, expanding the application of copolypeptide polymers in various drug delivery and tissue engineering motifs. Modification of NCA monomers to the corresponding alpha-amino-acid-N-thiocarboxyanhydride (NTA) will diversify ROP reactions, leading to more complex polypeptides (such as hyperbranched polymers), in addition to the possibility of performing these polymerizations under ambient conditions, which would greatly expand their potential utility. The project focuses on the preparation of hyperbranched polypeptides with well-defined architectures and controlled branching density in a one-pot reaction. This will be accomplished by taking advantage of the different selectivities of Co(PMe3)4 and depeNi(COD) polymerization initiators, and by exploiting the reactivity difference between NCA and the more stable NTA monomers.

  14. 75 FR 23300 - Greige Polyester/Cotton Printcloth From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    .../Cotton Printcloth From China AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on greige polyester/cotton printcloth from... antidumping duty order on greige polyester/cotton printcloth from China would be likely to lead to...

  15. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under this...

  16. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under this...

  17. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under this...

  18. Preparation and properties of high storage stability polyester polyol dispersion for two-component waterborne polyurethane coating

    NASA Astrophysics Data System (ADS)

    Hao, H.; Hu, J. Q.; Wang, F.; Tu, W. P.

    2017-01-01

    A new type of polyester polyol dispersion with good storage stability was prepared based on a hydrophilic monomer 5-sodium sulfodimethyl isophthalate (5-SIPM), and frequently-used monomers such as neopentyl glycol (NPG), dimethyl terephthalate (DMT), dimethyl phthalate (DMP) and trimethylolpropane (TMP) by the transpolycondensation and polycondensation method. The polyester polyol dispersion was characterized by FTIR and GPC. The proper content of these monomers were determined by the performance of polyester dispersion: the content of TMP was 15wt%, the content of NPG was 7.5wt% and the hydrophilic monomer 5-SIPM content was 5wt%. Two-component waterborne polyurethane (2K-WPU) coatings were prepared by Bayhydur® XP2487/1 and polyester polyol dispersions, which were stored before and after at 40 ° for 6 weeks, the prepared films have no differences in drying time, adhesion, pencil hardness, gloss and chemical resistance, the result also reveals that the polyester polyol dispersion have excellent storage stability resistance.

  19. Effect of fiber content on tensile retention properties of Cellulose Microfiber Reinforced Polymer Composites for Automobile Application

    NASA Astrophysics Data System (ADS)

    Aseer, J. R.; Sankaranarayanasamy, K.

    2017-12-01

    Today, the utilization of biodegradable materials has been hogging much attention throughout the world. Due to the disposal issues of petroleum based products, there is a focus towards developing biocomposites with superior mechanical properties and degradation rate. In this research work, Hibiscus Sabdariffa (HS) fibers were used as the reinforcement for making biocomposites. The HS fibers were reinforced in the polyester resin by compression moulding method. Water absorption studies of the composite at room temperature are carried out as per ASTM D 570. Also, degradation behavior of HS/Polyester was done by soil burial method. The HS/polyester biocomposites containing 7.5 wt% of HS fiber has shown higher value of tensile strength. The tensile strength retention of the HS/Polyester composites are higher than the neat polyester composites. This value increases with increase of HS fiber loading in the composites. The results indicated that HS/polyester biocomposites can be used for making automobile components such as bumper guards etc.

  20. Synthesis of perfluoroalkylether oxadiazole elastomers

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Korus, R. A.; Shalhoub, I. M.; Kwong, H.

    1979-01-01

    A method for the simultaneous chain extension and crosslinking of perfluoroalkylethers which yields a thermally stable perfluoroalkylether oxadiazole elastomer crosslinked by trifunctional perfluoroalkylether-1,3,5-triazine is reported. In the preparation, hydroxylamine crystals prepared from hydroxylamine hydrochloride to which sodium butoxide had been added is mixed with perfluoroalkylether dinitrile to obtain the monomer, as the nitrile is converted to amidoxime. Monomers are heated at 140 to 200 C to form poly(perfluoroalkylether oxadiazole) with a 1,2,4-oxadiazole structure by a step-growth polymerization reaction. Simultaneous chain extension and crosslinking are observed to occur when the purified monomer is heated directly and when the remaining nitrile in the monomer is allowed to react with excess ammonia to form the corresponding amidine, which is then heated. Weight loss studies show the thermal stability of the perfluoroalkylether elastomer to be generally better than fluorosilicone or polyester elastomers, especially in air, indicating its potential usefulness for high-performance elastomeric applications.

  1. Degradation rates of glycerol polyesters at acidic and basic conditions

    USDA-ARS?s Scientific Manuscript database

    Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...

  2. Overcoming dendritic cell tardiness to triumph over IL-13 receptor: a strategy for the development of effective pediatric vaccines.

    PubMed

    Hoeman, Christine; Dhakal, Mermagya; Zaghouani, Habib

    2010-06-01

    Neonatal exposure to antigen gives rise to a primary response comprising both T helper 1 (Th1) and T helper 2 (Th2) lymphocytes. However, re-encounter with the same antigen yields an indubitably biased response with minimal Th1 but excessive Th2 cells. Since Th1 cells combat microbes while Th2 cells react to allergens, the neonate faces susceptibility to both microbial infections and allergic reactions. The Th1/Th2 imbalance of neonatal immunity stems from a delayed maturation of dendritic cells that yields limited IL-12 cytokine during the neonatal stage. Th1 cells developing under these circumstances up-regulate the IL-13Ralpha1 chain that physically associates with the IL-4Ralpha chain, forming a potentially hazardous heteroreceptor. During re-challenge with antigen, IL-4 from Th2 cells utilizes the heteroreceptor to signal the death of Th1 cells, leading to the Th2 bias of neonatal immunity. Our view to overcome Th1 deficiency is to supplement neonatal immunizations with toll-like receptor ligands that could stimulate maturation of dendritic cells and augment IL-12 production to counter IL-13Ralpha1 up-regulation. This regimen would yield Th1 cells devoid of the heteroreceptor and resistant to IL-4-induced apoptosis. Accordingly, the neonate would have balanced Th1/Th2 immunity and withstand both microbes and allergens. Such approaches could open new avenues for better pediatric vaccines and allergy therapies.

  3. 75 FR 70906 - Certain Polyester Staple Fiber From the People's Republic of China: Partial Rescission of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-905] Certain Polyester Staple Fiber From the People's Republic of China: Partial Rescission of the Third Antidumping Duty... Request Administrative Review'' of the antidumping duty order on certain polyester staple fiber (``PSF...

  4. 46 CFR 164.023-5 - Performance; standard thread.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... specification Material Type Class Ticket No. or size range V-T-285E Polyester I or II 1 E, F, FF. V-T-295E Nylon I or II A E, F, FF. MIL-T-43624A Polyester 24 through 12. MIL-T-43548C Polyester covered only 24...

  5. 76 FR 5331 - Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-31

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative...) initiated an administrative review of the antidumping duty order on certain polyester staple fiber from...

  6. 77 FR 54562 - Certain Polyester Staple Fiber From the Republic of Korea: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-580-839] Certain Polyester Staple Fiber From the Republic of Korea: Rescission of Antidumping Duty Administrative Review AGENCY: Import... antidumping duty order on certain polyester staple fiber from the Republic of Korea (``the Order''). The...

  7. 77 FR 4543 - Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of Antidumping Duty Administrative...) initiated an administrative review of the antidumping duty order on certain polyester staple fiber from...

  8. 46 CFR 164.023-5 - Performance; standard thread.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... specification Material Type Class Ticket No. or size range V-T-285E Polyester I or II 1 E, F, FF. V-T-295E Nylon I or II A E, F, FF. MIL-T-43624A Polyester 24 through 12. MIL-T-43548C Polyester covered only 24...

  9. 77 FR 50530 - Polyester Staple Fiber From China; Scheduling of an Expedited Five-Year Review Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1104 (Review)] Polyester Staple Fiber... Polyester Staple Fiber From China AGENCY: United States International Trade Commission. ACTION: Notice... CONTACT: Joanna Lo (202-205-1888), Office of Investigations, U.S. International Trade Commission, 500 E...

  10. 77 FR 60720 - Certain Polyester Staple Fiber From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... Fiber From China Determination On the basis of the record \\1\\ developed in the subject five-year review... certain polyester staple fiber from China would be likely to lead to continuation or recurrence of... (September 2012), entitled Certain Polyester Staple Fiber from China: Investigation No. 731-TA-1104 (Review...

  11. 78 FR 7414 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... Agreements (``CITA'') has determined that certain cotton/polyester three-thread circular knit fleece fabric... behalf of Intradeco Apparel, Inc. for certain cotton/polyester three-thread circular knit fleece fabric.... Specifications: Certain Cotton/Polyester Three-Thread Circular Knit Fleece Fabric HTS: 6001.21 Fiber content...

  12. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    PubMed

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  13. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells

    PubMed Central

    Chabaud, Mélanie; Heuzé, Mélina L.; Bretou, Marine; Vargas, Pablo; Maiuri, Paolo; Solanes, Paola; Maurin, Mathieu; Terriac, Emmanuel; Le Berre, Maël; Lankar, Danielle; Piolot, Tristan; Adelstein, Robert S.; Zhang, Yingfan; Sixt, Michael; Jacobelli, Jordan; Bénichou, Olivier; Voituriez, Raphaël; Piel, Matthieu; Lennon-Duménil, Ana-Maria

    2015-01-01

    The immune response relies on the migration of leukocytes and on their ability to stop in precise anatomical locations to fulfil their task. How leukocyte migration and function are coordinated is unknown. Here we show that in immature dendritic cells, which patrol their environment by engulfing extracellular material, cell migration and antigen capture are antagonistic. This antagonism results from transient enrichment of myosin IIA at the cell front, which disrupts the back-to-front gradient of the motor protein, slowing down locomotion but promoting antigen capture. We further highlight that myosin IIA enrichment at the cell front requires the MHC class II-associated invariant chain (Ii). Thus, by controlling myosin IIA localization, Ii imposes on dendritic cells an intermittent antigen capture behaviour that might facilitate environment patrolling. We propose that the requirement for myosin II in both cell migration and specific cell functions may provide a general mechanism for their coordination in time and space. PMID:26109323

  14. Design and analysis of linear cascade DNA hybridization chain reactions using DNA hairpins

    NASA Astrophysics Data System (ADS)

    Bui, Hieu; Garg, Sudhanshu; Miao, Vincent; Song, Tianqi; Mokhtar, Reem; Reif, John

    2017-01-01

    DNA self-assembly has been employed non-conventionally to construct nanoscale structures and dynamic nanoscale machines. The technique of hybridization chain reactions by triggered self-assembly has been shown to form various interesting nanoscale structures ranging from simple linear DNA oligomers to dendritic DNA structures. Inspired by earlier triggered self-assembly works, we present a system for controlled self-assembly of linear cascade DNA hybridization chain reactions using nine distinct DNA hairpins. NUPACK is employed to assist in designing DNA sequences and Matlab has been used to simulate DNA hairpin interactions. Gel electrophoresis and ensemble fluorescence reaction kinetics data indicate strong evidence of linear cascade DNA hybridization chain reactions. The half-time completion of the proposed linear cascade reactions indicates a linear dependency on the number of hairpins.

  15. Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins

    PubMed Central

    Hay, Iain D.; Du, Jinping; Burr, Natalie

    2014-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  16. Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities.

    PubMed

    Barratt, S R; Ennos, A R; Greenhalgh, M; Robson, G D; Handley, P S

    2003-01-01

    To investigate the relationship between soil water holding capacity (WHC) and biodegradation of polyester polyurethane (PU) and to quantify and identify the predominant degrading micro-organisms in the biofilms on plastic buried in soil. High numbers of both fungi and bacteria were recovered from biofilms on soil-buried dumb-bell-shaped pieces of polyester PU after 44 days at 15-100% WHC. The tensile strength of the polyester PU was reduced by up to 60% over 20-80% soil WHC, but no reduction occurred at 15, 90 or 100% soil WHC. A PU agar clearance assay indicated that fungi, but not bacteria were, the major degrading organisms in the biofilms on polyester PU and 10-30% of all the isolated fungi were able to degrade polyester PU in this assay. A 5.8S rDNA sequencing identified 13 strains of fungi representing the three major colony morphology types responsible for PU degradation. Sequence homology matches identified these strains as Nectria gliocladioides (five strains), Penicillium ochrochloron (one strain) and Geomyces pannorum (seven strains). Geomyces pannorum was the predominant organism in the biofilms comprising 22-100% of the viable polyester PU degrading fungi. Polyester PU degradation was optimum under a wide range of soil WHC and the predominant degrading organisms were fungi. By identifying the predominant degrading fungi in soil and studying the optimum WHC conditions for degradation of PU it allows us to better understand how plastics are broken down in the environment such as in landfill sites.

  17. 75 FR 5763 - Notice of Correction to the First Administrative Review of Certain Polyester Staple Fiber From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... First Administrative Review of Certain Polyester Staple Fiber From the People's Republic of China: Final... the People's Republic of China (``PRC''). See First Administrative Review of Certain Polyester Staple Fiber From the People's Republic of China: Final Results of Antidumping Duty Administrative Review, 75...

  18. 75 FR 1336 - First Administrative Review of Certain Polyester Staple Fiber From the People's Republic of China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... System. Jianxin Fuda Chemical Fibre Factory. Comment 6: Correction of Name in Federal Register Notice... of Certain Polyester Staple Fiber From the People's Republic of China: Final Results of Antidumping... duty order on certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC...

  19. 77 FR 39990 - Certain Polyester Staple Fiber From the People's Republic of China: Preliminary Results of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-06

    ... calls into question the reliability of this information. \\27\\ See Polyester Staple Fiber Final... Fiber From the People's Republic of China: Preliminary Results of the Antidumping Duty Administrative... duty order on certain polyester staple fiber from the People's Republic of China (``PRC'') for the...

  20. 16 CFR 303.10 - Fiber content of special types of products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... percentages of such components by weight. (2) If the components of such fibers are of a matrix-fibril configuration, the term matrix-fibril fiber or matrix fiber may be used in setting forth the information...% Biconstituent Fiber (65% Nylon, 35% Polyester) 80% Matrix Fiber (60% Nylon, 40% Polyester) 15% Polyester 5...

  1. Sugar-based bicyclic monomers for aliphatic polyesters: a comparative appraisal of acetalized alditols and isosorbide

    PubMed Central

    Zakharova, Elena; Martínez de Ilarduya, Antxon; León, Salvador; Muñoz-Guerra, Sebastián

    2017-01-01

    Abstract Three series of polyalkanoates (adipates, suberates and sebacates) were synthesized using as monomers three sugar-based bicyclic diols derived from D-glucose (Glux-diol and isosorbide) and D-mannose (Manx-diol). Polycondensations were conducted in the melt applying similar reaction conditions for all cases. The aim was to compare the three bicyclic diols regarding their suitability to render aliphatic polyesters with enhanced thermal and mechanical properties. The ensuing polyesters had molecular weights (M w) in the 25,000–50,000 g mol−1 range with highest values being attained for Glux-diol. All the polyesters started to decompose above 300 °C and most of them did not display perceivable crystallinity. On the contrary, they had glass transition temperatures much higher than usually found in homologous polyesters made of alkanediols, and showed a stress–strain behavior consistent with their T g values. Glux-diol was particularly effective in increasing the T g and to render therefore polyesters with high elastic modulus and considerable mechanical strength. PMID:29491789

  2. Simulation on the Performance of a Driven Fan Made by Polyester/Epoxy interpenetrate polymer network (IPN)

    NASA Astrophysics Data System (ADS)

    Fahrul Hassan, Mohd; Jamri, Azmil; Nawawi, Azli; Zaini Yunos, Muhamad; Fauzi Ahmad, Md; Adzila, Sharifah; Nasrull Abdol Rahman, Mohd

    2017-08-01

    The main purpose of this study is to investigate the performance of a driven fan design made by Polyester/Epoxy interpenetrate polymer network (IPN) material that specifically used for turbocharger compressor. Polyester/Epoxy IPN is polymer plastics that was used as replacements for traditional polymers and has been widely used in a variety of applications because of their limitless conformations. Simulation based on several parameters which are air pressure, air velocity and air temperature have been carried out for a driven fan design performance of two different materials, aluminum alloy (existing driven fan design) and Polyester/Epoxy IPN using SolidWorks Flow Simulation software. Results from both simulations were analyzed and compared where both materials show similar performance in terms of air pressure and air velocity due to similar geometric and dimension, but Polyester/Epoxy IPN produces lower air temperature than aluminum alloy. This study shows a preliminary result of the potential Polyester/Epoxy IPN to be used as a driven fan design material. In the future, further studies will be conducted on detail simulation and experimental analysis.

  3. Characterization of Polyester Matrix Reinforced with Banana Fibers Thermal Properties by Photoacoustic Technique

    NASA Astrophysics Data System (ADS)

    de Assis, Foluke S.; Netto, Pedro A.; Margem, Frederico M.; Monteiro, Artur R. P. Junior Sergio N.

    Synthetic fibers are being replaced gradually by natural materials such as lignocellulosic fibers. Compared to synthetic fibers, natural fibers have shown advantages in technical aspects such as environmental and economic. So there is a growing international interest in the use of those fibers. The banana fiber presents significant properties to be studied, but until now few thermal properties on banana fiber as reinforcement of polyester matrix were performed. The present work had as its objective to investigate, by photoacoustic spectroscopy and photothermal techniques the thermal properties of diffusivity, specific heat capacity and conductivity for polyester composites reinforced with banana fibers. In the polyester matrix will be added up to 30% in volume of continuous and aligned banana fibers. These values show that the incorporation of banana fibers in the polyester matrix changes its thermal properties.

  4. Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Du, Zoufei; Cheng, Cheng; Tan, Lin; Lan, Jianwu; Jiang, Shouxiang; Zhao, Ludan; Guo, Ronghui

    2018-03-01

    In this study, a visible-light-driven photocatalyst Bi2WO6/TiO2 composite was reported using one-step hydrothermal method and then coated on the polyester fabric. The samples were systematically characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflection spectroscopy and photoluminescence spectroscopy (PL). The photocatalytic activity of Bi2WO6/TiO2 coated polyester fabric was evaluated by degradation of Rhodamine B (RhB) and Methylene blue (MB) under visible light irradiation. The self-cleaning property of the fabrics was assessed through removing red wine stain. The results reveal that the Bi2WO6/TiO2 composites with irregular shape are coated on the polyester fabric successfully. The UV-vis absorption spectra show a broad absorption band in the visible region, which extends the scope of absorption spectrum and helps to improve the photocatalytic degradation efficiency. Photocatalytic activities of the Bi2WO6/TiO2 composite polyester fabric are associated with the content of TiO2. Bi2WO6/15%TiO2 coated polyester fabric exhibits the degradation efficiency for RhB and MB up to 98% and 95.1%, respectively, which is much higher than that of pure Bi2WO6 and TiO2 coated polyester fabric. Moreover, Bi2WO6/15%TiO2 coated polyester fabric shows good cycle stability toward continuous three cycles of photocatalytic experiment for dyes degradation. In addition, the Bi2WO6/TiO2 coated polyester fabric shows good self-cleaning property. This work could be extended to design of other composite photocatalyst coating on the fabric for enhancing activity by coupling suitable wide and narrow band-gap semiconductors.

  5. Efficient priming of CD4 T cells by Langerin-expressing dendritic cells targeted with porcine epidemic diarrhea virus spike protein domains in pigs.

    PubMed

    Subramaniam, Sakthivel; Cao, Dianjun; Tian, Debin; Cao, Qian M; Overend, Christopher; Yugo, Danielle M; Matzinger, Shannon R; Rogers, Adam J; Heffron, C Lynn; Catanzaro, Nicholas; Kenney, Scott P; Opriessnig, Tanja; Huang, Yao-Wei; Labarque, Geoffrey; Wu, Stephen Q; Meng, Xiang-Jin

    2017-01-02

    Porcine epidemic diarrhea virus (PEDV) first emerged in the United States in 2013 causing high mortality and morbidity in neonatal piglets with immense economic losses to the swine industry. PEDV is an alpha-coronavirus replicating primarily in porcine intestinal cells. PEDV vaccines are available in Asia and Europe, and conditionally-licensed vaccines recently became available in the United States but the efficacies of these vaccines in eliminating PEDV from swine populations are questionable. In this study, the immunogenicity of a subunit vaccine based on the spike protein of PEDV, which was directly targeted to porcine dendritic cells (DCs) expressing Langerin, was assessed. The PEDV S antigen was delivered to the dendritic cells through a single-chain antibody specific to Langerin and the targeted cells were stimulated with cholera toxin adjuvant. This approach, known as "dendritic cell targeting," greatly improved PEDV S antigen-specific T cell interferon-γ responses in the CD4 pos CD8 pos T cell compartment in pigs as early as 7days upon transdermal administration. When the vaccine protein was targeted to Langerin pos DCs systemically through intramuscular vaccination, it induced higher serum IgG and IgA responses in pigs, though these responses require a booster dose, and the magnitude of T cell responses were lower as compared to transdermal vaccination. We conclude that PEDV spike protein domains targeting Langerin-expressing dendritic cells significantly increased CD4 T cell immune responses in pigs. The results indicate that the immunogenicity of protein subunit vaccines can be greatly enhanced by direct targeting of the vaccine antigens to desirable dendritic cell subsets in pigs. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 78 FR 52907 - Determination Under the Textile and Apparel Commercial Availability Provision of the Dominican...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... polyester/nylon cut corduroy fabric, as specified below, is not available in commercial quantities in a... cut corduroy fabric, as specified below. On July 29, 2013, in accordance with CITA's procedures, CITA...: Certain Polyester/Nylon Cut Corduroy Fabric. HTS: 5801.32.0000. Fiber Content: 80-95% polyester, 5-20...

  7. 77 FR 54898 - Certain Polyester Staple Fiber From the People's Republic of China: Final Results of Expedited...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... Fiber From the People's Republic of China: Final Results of Expedited Sunset Review of the Antidumping... (``sunset'') review of the antidumping duty order on certain polyester staple fiber from the People's... Department finds that revocation of the antidumping duty order on certain polyester staple fiber from the PRC...

  8. 78 FR 14512 - Certain Polyester Staple Fiber From the People's Republic of China: Preliminary Results and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... Fiber From the People's Republic of China: Preliminary Results and Rescission in Part of the 2011-2012... administrative review of the antidumping duty order on certain polyester staple fiber from the People's Republic... Industries (``Far Eastern'') and Huvis Sichuan Chemical Fiber Corp. and Huvis Sichuan Polyester Fiber Ltd...

  9. Optical properties of three-dimensional P(St-MAA) photonic crystals on polyester fabrics

    NASA Astrophysics Data System (ADS)

    Liu, Guojin; Zhou, Lan; Wu, Yujiang; Wang, Cuicui; Fan, Qinguo; Shao, Jianzhong

    2015-04-01

    The three-dimensional (3D) photonic crystals with face-centered cubic (fcc) structure was fabricated on polyester fabrics, a kind of soft textile materials quite different from the conventional solid substrates, by gravitational sedimentation self-assembly of monodisperse P(St-MAA) colloidal microspheres. The optical properties of structural colors on polyester fabrics were investigated and the position of photonic band gap was characterized. The results showed that the color-tuning ways of the structural colors from photonic crystals were in accordance with Bragg's law and could be modulated by the size of P(St-MAA) colloidal microspheres and the viewing angles. The L∗a∗b∗ values of the structural colors generated from the assembled polyester fabrics were in agreement with their reflectance spectra. The photonic band gap position of photonic crystals on polyester fabrics could be consistently confirmed by reflectance and transmittance spectra.

  10. [Analysis of anatomical pieces preservation with polyester resin for human anatomy study].

    PubMed

    de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro

    2013-01-01

    To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.

  11. [Application of FTIR micro-spectroscopy in the tribology].

    PubMed

    Hu, Zhi-meng

    2002-10-01

    The wave number of characteristic absorption peak nu asC-O-C of the polyester formed on the frictional process were determined by Fourier Transform Infrared (FTIR) Micro-spectroscopy, and the wave number displacement of characteristic absorption peak nu asC-O-C was analyzed based on the conversion mass of polyester formed. The internal relations between anti-wear order rule of hydroxyl fatty acids and vibration absorption peak nu asC-O-C of polyester formed by hydroxyl fatty acids was deduced according to these results, and the anti-wear order of hydroxyl fatty acids was reasonably explained, that is 13, 14-di-hydroxydocosanoic acid > 13 (14)-monohydroxydocosanoic acid = 9,10-dihydroxyoctadecanoic acid > 9,10,12-trihydroxyoctadecanoic acid > 9(10)-monohydroxyoctadecanoic acid. A net polyester film is formed by 13, 14-dihydroxydocosanoic acid and a linear polyester film is formed by 9, (10)-monohydroxyoctadecanoic acid and 13(14)-monohydroxydocosanoic acid.

  12. Eco-friendly surface modification on polyester fabrics by esterase treatment

    NASA Astrophysics Data System (ADS)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping

    2014-03-01

    Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  13. Synthesizing A Phase Changing Bistable Electroactive Polymer And Silver Nanoparticles Coated Fabric As A Resistive Heating Element

    NASA Astrophysics Data System (ADS)

    Ren, Zhi

    Transducer technologies that convert energy from one form to another (e.g. electrical energy to mechanical energy or thermal energy and vise versa) are considered as the basic building blocks of robots and wearable electronics, two of the rapidly emerging technologies that impact our daily life. With an emphasis on developing the essential smart materials, this dissertation focuses on two specific transducer technologies, bistable large-strain electro-mechanical actuation and resistive Joule heating, in pursuit of refreshable Braille electronic displays and wearable thermal management element, respectively. Dielectric elastomers (DEs) have been intensively studied for their promising ability to mimic human muscles in providing efficient electro-mechanical actuation. They exhibit a unique combination of properties, including large strain, fast response, high energy density, mechanical compliancy, lightweight, and low cost. However, the softness of the DE materials, which is a prerequisite for electrically induced large actuation strain, has been hindering their application in adaptive structures. In these applications such as braille displays, a certain amount of mechanical support is necessary in addition to large strains for the device or system to function. Bistable electroactive polymers (BSEP) that leverage the electrically induced large-strain actuation of DE actuators and the bi-stable rigid-to-rigid deformation of shape memory polymers are innovated to provide large electrical actuation strain in their rubbery state and fix the deformation by cooling down to room temperature to incorporate mechanical rigidity. BSEP materials that can suppress electromechanical instability and exhibit stable mechanical properties in the rubbery state are desired. A bimodal BSEP material with a glass transition temperature right above room temperature has been synthesized employing simple UV curing process. The BSEP has a large storage modulus over 1GPa at room temperature that decreases to several MPa at above 70°C after a rigid-to-rubbery transition via glass transition. The rubbery BSEP possesses a stable storage modulus regardless of temperature fluctuations, which is beneficial to stable electrical actuation performances under an electric field. The bimodal structure creates a framework involving both long chain crosslinkers and small molecular crosslinkers. Due to the limited chain extensibility of this bimodal framework, the rubbery BSEP can self-stiffen at modest strains to suppress electromechanical instability, which is responsible for the premature electrical breakdown of the previous BSEP materials in their rubbery states. A BSEP actuator with a braille dot size exhibits steadily increased actuation height with increasing electric field at 70 °C. A stable actuation with a cycle lifetime of over 2000 cycles at a raised dot height of 0.4 mm was demonstrated. A fabrication process for a page-size braille paper using the BSEP has been developed. A selective heating strategy has been investigated based on a 2-cell device to provide a selective actuation strategy of BSEP braille dots. Wearable thermal management strategy has presented itself recently as a new challenge to offer an optimal thermal experience for the occupant as well as to reduce building energy usage for heating, ventilation and air conditioning (HVAC). Joule heating based on silver nanoparticles (AgNPs) coated non-woven fabric can provide a wearable localized heating element.A sheet resistance of <0.3 ohm/square can be achieved for AgNPs-coated polyester fabrics upon thermal annealing. Multistep electroless deposition creates chemical bonding between oxygen groups on the fabrics' surface and AgNPs. As a result, the bonding between the AgNPs layer and the polyester fabrics is strong enough to resist sonication damage. The resistance only increased slightly after an 80minutes of sonication and therefore the AgNPs-polyester fabrics composite are regarded as washable. The AgNPs coated polyester fabrics was employed as a heating element. A voltage as low as 1volt is adequate to heat up the AgNPs-polyester fabrics to 60 °C in 2 seconds. The heat can be dissipated away fast after turning off the heating voltage, due to the mesh structure of the AgNPs-polyester fabrics. The strategy of the wearable heater can potentially play influential roles in energy saving and consumer experience in a localized thermal management system. (Abstract shortened by ProQuest.).

  14. Engineered soy oils for new value added applications

    NASA Astrophysics Data System (ADS)

    Tran, Phuong T.

    Soybean oil is an abundant annually renewable resource. It is composed of triglycerides with long chain saturated and unsaturated fatty acids. The presence of unsaturated fatty acids allows for chemical modification to introduce new functionalities to soybean oil. A portfolio of chemically modified soy oil with suitable functional groups has been designed and engineered to serve as the starting material in applications such as polyamides, polyesters, polyurethanes, composites, and lubricants. Anhydride, hydroxyl, and silicone functionalities were introduced to soy oil. Anhydride functionality was introduced using a single-step free radical initiated process, and the chemically modified soy oils were evaluated for potential applications as a composite and lubricant. Hydroxyl functionalities were introduced in a single-step catalytic ozonolysis process recently developed in our labs, which proceeds rapidly and efficiently at room temperature without solvent. The transformed soy oil was used to successfully prepare bio-lubricants with good thermal/oxidative stability and bio-plastics such as polyamides, polyesters, and polyurethanes. A new class of organic-inorganic hybrid materials was prepared by curing vinyltrimethoxysilane functionalized soy oil. This hybrid material could have potential as biobased sealant through a moisture initiated room temperature cure. These new classes of soy-based materials are competitive both in cost and performance to petroleum based materials, but offer the advantage of being biobased.

  15. Novel Self-Assembling Amino Acid-Derived Block Copolymer with Changeable Polymer Backbone Structure.

    PubMed

    Koga, Tomoyuki; Aso, Eri; Higashi, Nobuyuki

    2016-11-29

    Block copolymers have attracted much attention as potentially interesting building blocks for the development of novel nanostructured materials in recent years. Herein, we report a new type of self-assembling block copolymer with changeable polymer backbone structure, poly(Fmoc-Ser) ester -b-PSt, which was synthesized by combining the polycondensation of 9-fluorenylmethoxycarbonyl-serine (Fmoc-Ser) with the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St). This block copolymer showed the direct conversion of the backbone structure from polyester to polypeptide through a multi O,N-acyl migration triggered by base-induced deprotection of Fmoc groups in organic solvent. Such polymer-to-polymer conversion was found to occur quantitatively without decrease in degree of polymerization and to cause a drastic change in self-assembling property of the block copolymer. On the basis of several morphological analyses using FTIR spectroscopy, atomic force, and transmission and scanning electron microscopies, the resulting peptide block copolymer was found to self-assemble into a vesicle-like hollow nanosphere with relatively uniform diameter of ca. 300 nm in toluene. In this case, the peptide block generated from polyester formed β-sheet structure, indicating the self-assembly via peptide-guided route. We believe the findings presented in this study offer a new concept for the development of self-assembling block copolymer system.

  16. 75 FR 33783 - Certain Polyester Staple Fiber from the Republic of Korea: Preliminary Results of the 2008 - 2009...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... Fiber from the Republic of Korea: Preliminary Results of the 2008 - 2009 Antidumping Duty Administrative... antidumping duty order on certain polyester staple fiber from the Republic of Korea. The period of review is May 1, 2008, through April 30, 2009. This review covers imports of certain polyester staple fiber from...

  17. Study on Energy Absorption Capacity of Steel-Polyester Hybrid Fiber Reinforced Concrete Under Uni-axial Compression

    NASA Astrophysics Data System (ADS)

    Chella Gifta, C.; Prabavathy, S.

    2018-05-01

    This work presents the energy absorption capacity of hybrid fiber reinforced concrete made with hooked end steel fibers (0.5 and 0.75%) and straight polyester fibers (0.5, 0.8, 1.0 and 2.0%). Compressive toughness (energy absorption capacity) under uni-axial compression was evaluated on 100 × 200 mm size cylindrical specimens with varying steel and polyester fiber content. Efficiency of the hybrid fiber reinforcement is studied with respect to fiber type, size and volume fractions in this investigation. The vertical displacement under uni-axial compression was measured under the applied loads and the load-deformation curves were plotted. From these curves the toughness values were calculated and the results were compared with steel and polyester as individual fibers. The hybridization of 0.5% steel + 0.5% polyester performed well in post peak region due to the addition of polyester fibers with steel fibers and the energy absorption value was 23% greater than 0.5% steel FRC. Peak stress values were also higher in hybrid series than single fiber and based on the results it is concluded that hybrid fiber reinforcement improves the toughness characteristics of concrete without affecting workability.

  18. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    PubMed

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  19. Design and fabrication of an E-shaped wearable textile antenna on PVB-coated hydrophobic polyester fabric

    NASA Astrophysics Data System (ADS)

    Babu Roshni, Satheesh; Jayakrishnan, M. P.; Mohanan, P.; Peethambharan Surendran, Kuzhichalil

    2017-10-01

    In this paper, we investigated the simulation and fabrication of an E-shaped microstrip patch antenna realized on multilayered polyester fabric suitable for WiMAX (Worldwide Interoperability for Microwave Access) applications. The main challenges while designing a textile antenna were to provide adequate thickness, surface uniformity and water wettability to the textile substrate. Here, three layers of polyester fabric were stacked together in order to obtain sufficient thickness, and were subsequently dip coated with polyvinyl butyral (PVB) solution. The PVB-coated polyester fabric showed a hydrophobic nature with a contact angle of 91°. The RMS roughness of the uncoated and PVB-coated polyester fabric was about 341 nm and 15 nm respectively. The promising properties, such as their flexibility, light weight and cost effectiveness, enable effortless integration of the proposed antenna into clothes like polyester jackets. Simulated and measured results in terms of return loss as well as gain were showcased to confirm the usefulness of the fabricated prototype. The fabricated antenna successfully operates at 3.37 GHz with a return loss of 21 dB and a maximum measured gain of 3.6 dB.

  20. Liquefaction of corn stover and preparation of polyester from the liquefied polyol.

    PubMed

    Yu, Fei; Liu, Yuhuan; Pan, Xuejun; Lin, Xiangyang; Liu, Chengmei; Chen, Paul; Ruan, Roger

    2006-01-01

    This research investigated a novel process to prepare polyester from corn stover through liquefaction and crosslinking processes. First, corn stover was liquefied in organic solvents (90 wt% ethylene glycol and 10 wt% ethylene carbonate) with catalysts at moderate temperature under atmospheric pressure. The effect of liquefaction temperature, biomass content, and type of catalyst, such as H2SO4, HCl, H3PO4, and ZnCl2, was evaluated. Higher liquefaction yield was achieved in 2 wt% sulfuric acid, 1/4 (w/w) stover to liquefying reagent ratio; 160 degrees C temperature, in 2 h. The liquefied corn stover was rich in polyols, which can be directly used as feedstock for making polymers without further separation or purification. Second, polyester was made from the liquefied corn stover by crosslinking with multifunctional carboxylic acids and/or cyclic acid anhydrides. The tensile strength of polyester is about 5 MPa and the elongation is around 35%. The polyester is stable in cold water and organic solvents and readily biodegradable as indicated by 82% weight loss when buried in damp soil for 10 mo. The results indicate that this novel polyester could be used for the biodegradable garden mulch film production.

  1. A study on effect of ATH on Euphorbia coagulum modified polyester banana fiber composite

    NASA Astrophysics Data System (ADS)

    Kumari, Sanju; Rai, Bhuvneshwar; Kumar, Gulshan

    2018-02-01

    Fiber reinforced polymer composites are used for building and structural applications due to their high strength. In conventional composites both the binder and the reinforcing fibers are synthetic or either one of the material is natural. In the present study coagulum of Euphorbia royleana has been used for replacing polyester resinas binder in polyester banana composite. Euphorbia coagulum (driedlatex) is rich in resinous mass (60-80%), which are terpenes and polyisoprene (10-20%). Effect of varying percentage of coagulum content on various physico-mechanical properties of polyester-banana composites has been studied. Since banana fiber is sensitive to water due to presence of polar group, banana composite undergoes delamination and deterioration under humid condition. Alkali treated banana fiber along with coagulum content has improved overall mechanical properties and reduction in water absorption. The best physico-mechanical properties have been achieved on replacing 40% of polyester resin by coagulum. An increase of 50% in bending strength, 30% bending modulus and 45% impact strength as well as 68% decrease in water absorption was observed. Incorporation of 20% ATH as flame retardant in coagulum modified banana polyester composite enhanced limiting oxygen index from 20.6 to 26.8% and smoke density reduced up to 40%. This study presents the possibility of utilization of renewable materials for environmental friendly composite development as well as to find out alternative feedstock for petroleum products. Developed Euphorbia latex modified banana polyester composites can have potential utility in hardboard, partition panel, plywood and automotive etc.

  2. Effect of cathode material on the electrorefining of U in LiCl-KCl molten salts

    NASA Astrophysics Data System (ADS)

    Lee, Chang Hwa; Kim, Tack-Jin; Park, Sungbin; Lee, Sung-Jai; Paek, Seung-Woo; Ahn, Do-Hee; Cho, Sung-Ki

    2017-05-01

    The influence of cathode materials on the U electrorefining process is examined using electrochemical measurements and SEM-EDX observations. Stainless steel (STS), Mo, and W electrodes exhibit similar U reduction/oxidation behavior in 500 °C LiCl-KCl-UCl3 molten salts, as revealed by the cyclic voltammograms. However, slight shifts are observed in the cathodic and anodic peak potentials at the STS electrode, which are related to the fast reduction/oxidation kinetics associated with this electrode. The U deposits on the Mo and W electrodes consist of uniform dendritic chains of U in rhomboidal-shaped crystals, whereas several U dendrites protruding from the surface are observed for the STS electrode. EDX mapping of the electrode surfaces reveals that simple scraping of the U dendrites from W electrodes pretreated in dilute HCl solutions to dissolve the residual salt, results in clear removal of the U deposits, whereas a thick U deposit layer strongly adheres to the STS electrode surface even after treatment. This result is expected to contribute to the development of an effective and continuous U recovery process using electrorefining.

  3. Effect of structural parameters on burning behavior of polyester fabrics having flame retardancy property

    NASA Astrophysics Data System (ADS)

    Çeven, E. K.; Günaydın, G. K.

    2017-10-01

    The aim of this study is filling the gap in the literature about investigating the effect of yarn and fabric structural parameters on burning behavior of polyester fabrics. According to the experimental design three different fabric types, three different weft densities and two different weave types were selected and a total of eighteen different polyester drapery fabrics were produced. All statistical procedures were conducted using the SPSS Statistical software package. The results of the Analysis of Variance (ANOVA) tests indicated that; there were statistically significant (5% significance level) differences between the mass loss ratios (%) in weft and mass loss ratios (%) in warp direction of different fabrics calculated after the flammability test. The Student-Newman-Keuls (SNK) results for mass loss ratios (%) both in weft and warp directions revealed that the mass loss ratios (%) of fabrics containing Trevira CS type polyester were lower than the mass loss ratios of polyester fabrics subjected to washing treatment and flame retardancy treatment.

  4. Synthesis of improved polyester resins

    NASA Technical Reports Server (NTRS)

    Mcleod, A. H.; Delano, C. B.

    1979-01-01

    Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800 C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82 C showed that essentially no changes in the composites had occurred.

  5. Semi-aromatic polyesters based on a carbohydrate-derived rigid diol for engineering plastics.

    PubMed

    Wu, Jing; Eduard, Pieter; Thiyagarajan, Shanmugam; Noordover, Bart A J; van Es, Daan S; Koning, Cor E

    2015-01-01

    New carbohydrate-based polyesters were prepared from isoidide-2,5-dimethanol (extended isoidide, XII) through melt polymerization with dimethyl esters of terephthalic acid (TA) and furan-2,5-dicarboxylic acid (FDCA), yielding semi-crystalline prepolymers. Subsequent solid-state post-condensation (SSPC) gave high molecular weight (Mn =30 kg mol(-1) for FDCA) materials, the first examples of high Mn , semi-aromatic homopolyesters containing isohexide derivatives obtained via industrially relevant procedures. NMR spectroscopy showed that the stereo-configuration of XII was preserved under the applied conditions. The polyesters are thermally stable up to 380 °C. The TA- and FDCA-based polyesters have high Tg (105 °C and 94 °C, resp.) and Tm (284 °C and 250 °C, resp.) values. Its reactivity, stability, and ability to afford high Tg and Tm polyesters make XII a promising diol for the synthesis of engineering polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Waterborne Polymeric Films.

    DTIC Science & Technology

    1979-12-01

    resin types: 1) acrylic latex, 2) acrylic solution polymer, 3) epoxy emulsions, 4) polyurethane, 5) butadiene elastomeric latex, 6) polyester/ alkyd , 7...emulsions and the class of polyester/ alkyd resins were evaluated only as network, crosslinked films. -53- j z I, ACRYLIC SOLUTIONLATEX URE THANE ACRYLIC ...amount of "plasticizing" monomer such as ethyl acrylate . 2.3.1.3 Aqueous Polyester Alkyd Resins As indicated in section 2.2.7 of this report,

  7. Mechanical performance of hybrid polyester composites reinforced Cloisite 30B and kenaf fibre

    NASA Astrophysics Data System (ADS)

    Bonnia, N. N.; Surip, S. N.; Ratim, S.; Mahat, M. M.

    2012-06-01

    Hybridization of rubber toughened polyester-kenaf nanocomposite was prepared by adding various percentage of kenaf fiber with 4% Cloisite 30B in unsaturated polyester resin. Composite were prepared by adding filler to modified polyester resin subsequently cross-linked using methyl ethyl ketone peroxide and the accelerator cobalt octanoate 1%. Three per hundred rubbers (phr) of liquid natural rubber (LNR) were added in producing this composite. This composite expected to be applied in the interior of passenger cars and truck cabins. This is a quality local product from a combination of good properties polyester and high performance natural fiber, kenaf that is suitable for many applications such as in automotive sector and construction sector. The mechanical and thermal properties of composite were characterized using Durometer Shore-D hardness test, Izod impact test, Scanning electron microscopy, thermogravimetry (TGA) and differential scanning calorimetry (DSC). Result shows that addition of LNR give good properties on impact, flexural and hardness compare to without LNR composite. DSC curve shows that all composition of composites is fully cured and good in thermal properties. Addition of higher percentage of kenaf will lead the composite to elastic behavior and decrease the toughened properties of the composite. Hybrid system composite showed the flexural properties within the flexural properties of kenaf - polyester and Cloisite 30B.

  8. A solvent induced crystallisation method to imbue bioactive ingredients of neem oil into the compact structure of poly (ethylene terephthalate) polyester.

    PubMed

    Ali, Wazed; Sultana, Parveen; Joshi, Mangala; Rajendran, Subbiyan

    2016-07-01

    Neem oil, a natural antibacterial agent from neem tree (Azadarichtaindica) has been used to impart antibacterial activity to polyester fabrics. Solvent induced polymer modification method was used and that facilitated the easy entry of neem molecules into the compact structure of polyethylene terephthalate (PET) polyester. The polyester fabric was treated with trichloroacetic acid-methylene chloride (TCAMC) solvent system at room temperature prior to treatment with neem oil. The concentration of TCAMC and the treatment time were optimised. XRD and SEM results showed that the TCAMC treatment causes polymer modification and morphological changes in the PET polyester. Antibacterial activity of TCAMC pre-treated and neem-oil-treated polyester fabric was tested using AATCC qualitative and quantitative methods. Both Gram-positive and Gram-negative organisms were used to determine the antimicrobial activity. It was observed that the treated fabric registers substantial antimicrobial activity against both the Staphylococcus aureus (Gram-positive) and the Escherichia coli (Gram-negative) and the effect increases with the increase in concentration of TCAMC treatment. The antibacterial effect remains substantial even after 25 launderings. A kinetic growth study involving the effect of antibacterial activity at various incubation times was carried out. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties.

    PubMed

    Ma, Zuwei; Hong, Yi; Nelson, Devin M; Pichamuthu, Joseph E; Leeson, Cory E; Wagner, William R

    2011-09-12

    Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800-1400%) and high tensile strength (30-60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M(n) and PVLCL 6000 M(n)), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.

  10. Plastic Organic Scintillator Chemistry

    NASA Astrophysics Data System (ADS)

    Brightwell, C. R.; Temanson, E. S.; Febbraro, M. T.

    2017-09-01

    Due to their high light output, quick decay time, affordability, durability and ability to be molded, plastic organic scintillators are increasingly becoming a more viable method of particle detection. Since the plastic is composed entirely of single molecular chains with repeating units, scintillating properties remain stable despite changes in experimental conditions. Different scintillating plastics can be modified and tailored to suit specific experiments depending on a variety of requirements such as light output, scintillating wavelength, and PMT compatibility. The synthesis chemistry of a recent but well-known scintillating polyester, polyethylene naphthalate (PEN) will be presented to demonstrate how plastic organic scintillators can be modified for different particle detection experiments. PEN has been successfully synthesized at ORNL, and procedures are currently being investigated to modify PEN using different reactants and catalysts. The goal is to achieve a transparent scintillating plastic with an incorporated wavelength shifter in the chain that scintillates with a wavelength around 440 nm. The status of this project will be presented. This research is supported by the U. S. Department of Energy Office of Science.

  11. Non-destructive and fast identification of cotton-polyester blend fabrics by the portable near-infrared spectrometer.

    PubMed

    Li, Wen-xia; Li, Feng; Zhao, Guo-liang; Tang, Shi-jun; Liu, Xiao-ying

    2014-12-01

    A series of 376 cotton-polyester (PET) blend fabrics were studied by a portable near-infrared (NIR) spectrometer. A NIR semi-quantitative-qualitative calibration model was established by Partial Least Squares (PLS) method combined with qualitative identification coefficient. In this process, PLS method in a quantitative analysis was used as a correction method, and the qualitative identification coefficient was set by the content of cotton and polyester in blend fabrics. Cotton-polyester blend fabrics were identified qualitatively by the model and their relative contents were obtained quantitatively, the model can be used for semi-quantitative identification analysis. In the course of establishing the model, the noise and baseline drift of the spectra were eliminated by Savitzky-Golay(S-G) derivative. The influence of waveband selection and different pre-processing method was also studied in the qualitative calibration model. The major absorption bands of 100% cotton samples were in the 1400~1600 nm region, and the one for 100% polyester were around 1600~1800 nm, the absorption intensity was enhancing with the content increasing of cotton or polyester. Therefore, the cotton-polyester's major absorption region was selected as the base waveband, the optimal waveband (1100~2500 nm) was found by expanding the waveband in two directions (the correlation coefficient was 0.6, and wave-point number was 934). The validation samples were predicted by the calibration model, the results showed that the model evaluation parameters was optimum in the 1100~2500 nm region, and the combination of S-G derivative, multiplicative scatter correction (MSC) and mean centering was used as the pre-processing method. RC (relational coefficient of calibration) value was 0.978, RP (relational coefficient of prediction) value was 0.940, SEC (standard error of calibration) value was 1.264, SEP (standard error of prediction) value was 1.590, and the sample's recognition accuracy was up to 93.4%. It showed that the cotton-polyester blend fabrics could be predicted by the semi-quantitative-qualitative calibration model.

  12. Polyester Resin Hazards

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.

    1963-01-01

    Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495

  13. Hydrolyzable polyester resins, varnishes and coating compositions containing the same

    DOEpatents

    Yamamori, Naoki; Yokoi, Junji; Yoshikawa, Motoyoshi

    1984-01-01

    Preparation of hydrolyzable polyester resin comprising reacting polycarboxylic acid and polyhydric alcohol components, which is characterized by using, as at least part of said polyhydric alcohol component, a metallic salt of hydroxy carboxylic acid of the formula defined and effecting the polycondensation at a temperature which is no more than the decomposition temperature of said metallic salt. The polyester resins are useful as resinous vehicle of varnishes and antifouling paints.

  14. Influence of nanosize clay platelets on the mechanical properties of glass fiber reinforced polyester composites.

    PubMed

    Jawahar, P; Balasubramanian, M

    2006-12-01

    Glass fiber reinforced polyester composite and hybrid nanoclay-fiber reinforced composites were prepared by hand lay-up process. The mechanical behavior of these materials and the changes as a result of the incorporation of both nanosize clay and glass fibers were investigated. Composites were prepared with a glass fibre content of 25 vol%. The proportion of the nanosize clay platelets was varied from 0.5 to 2.5 vol%. Hybrid clay-fiber reinforced polyester composite posses better tensile, flexural, impact, and barrier properties. Hybrid clay-fiber reinforced polyester composites also posses better shear strength, storage modulus, and glass transition temperature. The optimum properties were found to be with the hybrid laminates containing 1.5 vol% nanosize clay.

  15. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    PubMed Central

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  16. Thermal Expansion Measurements of Polymer Matrix Composites and Syntactics

    DTIC Science & Technology

    1992-04-01

    828 (Shell Chemical) epoxy combined with 50.0 PBW EPON® V-40 polyamide curing agent (Shell Chemical) and Owens Corning (E-780) polyester combined 1...with 24 oz. woven roving with an Owens Corning 463 finish. " A 3 x 1, S-2 glass with 27 oz. woven roving with an Owens Corning 933 finish, nominally...wet polyester resin ( Owens Corning E-780) and subsequently processing the composites using the standard vacuum bag cure cycle for this polyester

  17. The identification of cutin synthase: formation of the plant polyester cutin.

    PubMed

    Yeats, Trevor H; Martin, Laetitia B B; Viart, Hélène M-F; Isaacson, Tal; He, Yonghua; Zhao, Lingxia; Matas, Antonio J; Buda, Gregory J; Domozych, David S; Clausen, Mads H; Rose, Jocelyn K C

    2012-07-01

    A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol. CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase.

  18. A high-throughput assay for enzymatic polyester hydrolysis activity by fluorimetric detection.

    PubMed

    Wei, Ren; Oeser, Thorsten; Billig, Susan; Zimmermann, Wolfgang

    2012-12-01

    A fluorimetric assay for the fast determination of the activity of polyester-hydrolyzing enzymes in a large number of samples has been developed. Terephthalic acid (TPA) is a main product of the enzymatic hydrolysis of polyethylene terephthalate (PET), a synthetic polyester. Terephthalate has been quantified following its conversion to the fluorescent 2-hydroxyterephthalate by an iron autoxidation-mediated generation of free hydroxyl radicals. The assay proved to be robust at different buffer concentrations, reaction times, pH values, and in the presence of proteins. A validation of the assay was performed by analyzing TPA formation from PET films and nanoparticles catalyzed by a polyester hydrolase from Thermobifida fusca KW3 in a 96-well microplate format. The results showed a close correlation (R(2) = 0.99) with those obtained by a considerably more tedious and time-consuming HPLC method, suggesting the aptness of the fluorimetric assay for a high-throughput screening for polyester hydrolases. The method described in this paper will facilitate the detection and development of biocatalysts for the modification and degradation of synthetic polymers. The fluorimetric assay can be used to quantify the amount of TPA obtained as the final degradation product of the enzymatic hydrolysis of PET. In a microplate format, this assay can be applied for the high-throughput screening of polyester hydrolases. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Polyester projects for India, Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiqi, R.

    1993-02-10

    India's Indo Rama Synthetics (Bombay) is planning a $186-million integrated polyester fiber and filament complex at Nagpur, Maharashtra. The complex will have annual capacities for 38,000 m.t. of polyester chips by polycondensation, 25,000 m.t. of polyester staple fiber, and 12,000 m.t. of polyester blended yarn. The company is negotiating with the main world suppliers of polycondensation technology. The first stage of the project is slated to begin production by the end of this year and be fully completed by 1994. In Pakistan, National Fibers Ltd. (PNF; Karachi) has signed a deal with Zimmer (Frankfurt) for technology, procurement, construction, and supportmore » work to expand polyester staple fiber capacity from 14,000 m.t./year to 52,000 m.t./year. The technology involves a continuous polymerization process. The project also calls for improvements to PNF's existing batch plant. It is scheduled for completion by the end of 1994. Total cost of the project is estimated at Rs1.745 billion ($70 million), out of which the foreign exchange component is Rs1.05 billion. The Islamic Development Bank (Jeddah; Saudi Arabia) has already approved a $27-million slice of the financing, while the balance of the foreign exchange loan is being arranged through suppliers credit. Local currency loans will be provided by other financial institutions in Pakistan.« less

  20. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Shi, Wenxin; Zhang, Lanhe; Zhang, Ruijun

    2017-09-01

    A novel polyester thin film composite nanofiltration (NF) membrane was prepared by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) on polyethersulfone (PES) supporting membrane. The performance of the polyester composite NF membrane was optimized by regulating the preparation parameters, including reaction time, pH of the aqueous phase solution, pentaerythritol concentration and TMC concentration. A series of characterization, including permeation experiments, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential analyzer and chlorine resistance experiments, were employed to study the properties of the optimized membrane. The results showed that the optimized polyester composite NF membrane exhibited very high rejection of Na2SO4 (98.1%), but the water flux is relatively low (6.1 L/m2 h, 0.5 MPa, 25 °C). The order of salt rejections is Na2SO4 > MgSO4 > MgCl2 > NaCl, which indicated the membrane was negatively charged, just consistent with the membrane zeta potential results. After treating by NaClO solutions with different concentrations (100 ppm, 500 ppm, 1000 ppm, 2000 ppm, 3000 ppm) for 48 h, the results demonstrated that the polyester NF membrane had good chlorine resistance. Additionally, the polyester TFC NF membrane exhibits good long-term stability.

  1. Amphiphilic graft copolymers from end-functionalized starches: synthesis, characterization, thin film preparation, and small molecule loading.

    PubMed

    Ryno, Lisa M; Reese, Cassandra; Tolan, McKenzie; O'Brien, Jeffrey; Short, Gabriel; Sorriano, Gerardo; Nettleton, Jason; Fulton, Kayleen; Iovine, Peter M

    2014-08-11

    End-functionalized macromolecular starch reagents, prepared by reductive amination, were grafted onto a urethane-linked polyester-based backbone using copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to produce novel amphiphilic hybrid graft copolymers. These copolymers represent the first examples of materials where the pendant chains derived from starch biopolymers have been incorporated into a host polymer by a grafting-to approach. The graft copolymers were prepared in good yields (63-90%) with high grafting efficiencies (66-98%). Rigorous quantitative spectroscopic analyses of both the macromolecular building blocks and the final graft copolymers provide a comprehensive analytical toolbox for deciphering the reaction chemistry. Due to the modular nature of both the urethane-linked polyester synthesis and the postpolymerization modification, the starch content of these novel hybrid graft copolymers was easily tuned from 28-53% (w/w). The uptake of two low molecular weight guest molecules into the hybrid polymer thin films was also studied. It was found that binding of 1-naphthol and pterostilbene correlated linearly with amount of starch present in the hybrid polymer. The newly synthesized graft copolymers were highly processable and thermally stable, therefore, opening up significant opportunities in film and coating applications. These results represent a proof-of-concept system for not only the construction of starch-containing copolymers, but also the loading of these novel polymeric materials with active agents.

  2. The environment shapes microbial enzymes: five cold-active and salt-resistant carboxylesterases from marine metagenomes.

    PubMed

    Tchigvintsev, Anatoli; Tran, Hai; Popovic, Ana; Kovacic, Filip; Brown, Greg; Flick, Robert; Hajighasemi, Mahbod; Egorova, Olga; Somody, Joseph C; Tchigvintsev, Dmitri; Khusnutdinova, Anna; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Savchenko, Alexei; Golyshin, Peter N; Jaeger, Karl-Erich; Yakunin, Alexander F

    2015-03-01

    Most of the Earth's biosphere is cold and is populated by cold-adapted microorganisms. To explore the natural enzyme diversity of these environments and identify new carboxylesterases, we have screened three marine metagenome gene libraries for esterase activity. The screens identified 23 unique active clones, from which five highly active esterases were selected for biochemical characterization. The purified metagenomic esterases exhibited high activity against α-naphthyl and p-nitrophenyl esters with different chain lengths. All five esterases retained high activity at 5 °C indicating that they are cold-adapted enzymes. The activity of MGS0010 increased more than two times in the presence of up to 3.5 M NaCl or KCl, whereas the other four metagenomic esterases were inhibited to various degrees by these salts. The purified enzymes showed different sensitivities to inhibition by solvents and detergents, and the activities of MGS0010, MGS0105 and MGS0109 were stimulated three to five times by the addition of glycerol. Screening of purified esterases against 89 monoester substrates revealed broad substrate profiles with a preference for different esters. The metagenomic esterases also hydrolyzed several polyester substrates including polylactic acid suggesting that they can be used for polyester depolymerization. Thus, esterases from marine metagenomes are cold-adapted enzymes exhibiting broad biochemical diversity reflecting the environmental conditions where they evolved.

  3. Isothermal relaxation current and microstructure changes of thermally aged polyester films impregnated by epoxy resin

    NASA Astrophysics Data System (ADS)

    Jiang, Xiongwei; Sun, Potao; Peng, Qingjun; Sima, Wenxia

    2018-01-01

    In this study, to understand the effect of thermal aging on polymer films degradation, specimens of polyester films impregnated by epoxy resin with different thermal aging temperatures (80 and 130 °C) and aging times (500, 1600, 2400 and 3000 h) are prepared, then charge de-trapping properties of specimens are investigated via the isothermal relaxation current (IRC) measurement, the distributions of trap level and its corresponding density are obtained based on the modified IRC model. It is found that the deep trap density increases remarkably at the beginning of thermal aging (before 1600 h), but it decreases obviously as the aging degree increases. At elevated aging temperature and, in particular considering the presence of air gap between two-layer insulation, the peak densities of deep traps decrease more significant in the late period of aging. It can be concluded that it is the released energy from de-trapping process leads to the fast degradation of insulation. Moreover, after thermal aging, the microstructure changes of crystallinity and molecular structures are analyzed via the x-ray diffraction experiment and Fourier transform infrared spectrometer. The results indicate that the variation of the deep trap density is closely linked with the changes of microstructure, a larger interface of crystalline/amorphous phase, more defects and broken chains caused by thermal aging form higher deep trap density stored in the samples.

  4. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75.

    PubMed

    Shah, Ziaullah; Krumholz, Lee; Aktas, Deniz Fulya; Hasan, Fariha; Khattak, Mutiullah; Shah, Aamer Ali

    2013-11-01

    A polyurethane (PU) degrading bacterial strain MZA-75 was isolated from soil through enrichment technique. The bacterium was identified through 16S rRNA gene sequencing, the phylogenetic analysis indicated the strain MZA-75 belonged to genus Bacillus having maximum similarity with Bacillus subtilis strain JBE0016. The degradation of PU films by strain MZA-75 in mineral salt medium (MSM) was analyzed by scanning electron microscopy (SEM), fourier transform infra-red spectroscopy (FT-IR) and gel permeation chromatography (GPC). SEM revealed the appearance of widespread cracks on the surface. FTIR spectrum showed decrease in ester functional group. Increase in polydispersity index was observed in GPC, which indicates chain scission as a result of microbial treatment. CO2 evolution and cell growth increased when PU was used as carbon source in MSM in Sturm test. Increase in both cell associated and extracellular esterases was observed in the presence of PU indicated by p-Nitrophenyl acetate (pNPA) hydrolysis assay. Analysis of cell free supernatant by gas chromatography-mass spectrometry (GC-MS) revealed that 1,4-butanediol and adipic acid monomers were produced. Bacillus subtilis strain MZA-75 can degrade the soft segment of polyester polyurethane, unfortunately no information about the fate of hard segment could be obtained. Growth of strain MZA-75 in the presence of these metabolites indicated mineralization of ester hydrolysis products into CO2 and H2O.

  5. Atomistic Model for the Polyamide Formation from β-Lactam Catalyzed by Candida Antarctica Lipase B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Iris; Elsasser, Brigitta M.; Schwab, Leendert

    2011-04-01

    Candida antarctica lipase B (CALB) is an established biocatalyst for a variety of transesterification, amidation, and polymerization reactions. In contrast to polyesters, polyamides are not yet generally accessible via enzymatic polymerization. In this regard, an enzyme-catalyzed ring-opening polymerization of {beta}-lactam (2-azetidinone) using CALB is the first example of an enzymatic polyamide formation yielding unbranched poly({beta}-alanine), nylon 3. The performance of this polymerization, however, is poor, considering the maximum chain length of 18 monomer units with an average length of 8, and the molecular basis of the reaction so far is not understood. We have employed molecular modeling techniques using dockingmore » tools, molecular dynamics, and QM/MM procedures to gain insight into the mechanistic details of the various reaction steps involved. As a result, we propose a catalytic cycle for the oligomerization of {beta}-lactam that rationalizes the activation of the monomer, the chain elongation by additional {beta}-lactam molecules, and the termination of the polymer chain. In addition, the processes leading to a premature chain termination are studied. Particularly, the QM/MM calculation enables an atomistic description of all eight steps involved in the catalytic cycle, which features an in situ-generated {beta}-alanine as the elongating monomer and which is compatible with the experimental findings.« less

  6. The identification of cutin synthase: formation of the plant polyester cutin

    PubMed Central

    Yeats, Trevor H.; Martin, Laetitia B. B.; Viart, Hélène M.-F.; Isaacson, Tal; He, Yonghua; Zhao, Lingxia; Matas, Antonio J.; Buda, Gregory J.; Domozych, David S.; Clausen, Mads H.; Rose, Jocelyn K. C.

    2012-01-01

    A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol (2-MHG). CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase. PMID:22610035

  7. Dendritic brushes under theta and poor solvent conditions

    NASA Astrophysics Data System (ADS)

    Gergidis, Leonidas N.; Kalogirou, Andreas; Charalambopoulos, Antonios; Vlahos, Costas

    2013-07-01

    The effects of solvent quality on the internal stratification of polymer brushes formed by dendron polymers up to third generation were studied by means of molecular dynamics simulations with Langevin thermostat. The distributions of polymer units, of the free ends, the radii of gyration, and the back folding probabilities of the dendritic spacers were studied at the macroscopic states of theta and poor solvent. For high grafting densities we observed a small decrease in the height of the brush as the solvent quality decreases. The internal stratification in theta solvent was similar to the one we found in good solvent, with two and in some cases three kinds of populations containing short dendrons with weakly extended spacers, intermediate-height dendrons, and tall dendrons with highly stretched spacers. The differences increase as the grafting density decreases and single dendron populations were evident in theta and poor solvent. In poor solvent at low grafting densities, solvent micelles, polymeric pinned lamellae, spherical and single chain collapsed micelles were observed. The scaling dependence of the height of the dendritic brush at high density brushes for both solvents was found to be in agreement with existing analytical results.

  8. Solid-Liquid Electrolyte as a Nanoion Modulator for Dendrite-Free Lithium Anodes.

    PubMed

    Wen, Kaihua; Wang, Yanlei; Chen, Shimou; Wang, Xi; Zhang, Suojiang; Archer, Lynden A

    2018-06-20

    Rechargeable lithium (Li) metal batteries are considered the most promising of Li-based energy storage technologies. However, tree-like dendrite produced by irregular Li + electrodeposition restricts it wide applications. Herein, based on a cation-microphase-regulation strategy, we create solid-liquid electrolytes (SLEs) by absorbing commercial liquid electrolytes into polyethylene glycol (PEG) engineered nanoporous Al 2 O 3 ceramic membranes. By means of molecular dynamics simulations and comprehensive experiments, we show that Li ions are regulated and promoted in the two microphases, the channel phase and nonchannel phase, respectively. The channel phase can achieve homogeneous Li + flux distribution by multiple mechanisms, including its uniform array of nanochannels and ability to suppress lateral dendrite growth by its high modulus. In the nonchannel phase, PEG chains swollen by electrolyte facilitate desolvation and fast conduction of Li + . As a result, the studied SLEs exhibit high ionic conductivity, low interfacial resistance, and the unique ability to stabilize deposition at the Li anode. By means of galvanostatic cycling studies in symmetric Li cells and Li/Li 4 Ti 5 O 12 cells, we further show that the materials open a path to Li metal batteries with excellent cycling performance.

  9. Enhancing gelation ability of a dendritic gelator through complexation with a polyelectrolyte.

    PubMed

    Zhang, Zijian; Yang, Miao; Zhang, Xinjun; Zhang, Lichu; Liu, Bo; Zheng, Ping; Wang, Wei

    2009-01-01

    A poly(urethane amide) (PUA) dendron with long alkyl chains on its periphery was synthesized and then attached to the backbone of a polyelectrolyte, in which each unit contained a positive charge, by ionizing the carboxyl groups on the apexes of the dendrons to form a dendronized polymer. We found that both the PUA dendron and the dendronized polymer could form organogels in toluene. Interestingly, both the minimum gelation concentration and the gelation time of the dendronized polymer gelator were greatly reduced compared with the dendron alone. Our investigations showed that in the gel phase the intermolecular hydrogen bonding between adjacent dendrons creates similar supramolecular structures in both the dendron and the dendronized polymer gelator, which immobilize solvent molecules by means of interactions between dendrons and solvent molecules. Further studies on the gelation kinetics indicated that the polyelectrolyte backbone plays an important role in prearranging the attached dendritic gelators orderly and quickly into the supramolecular structures through a nucleation-elongation mechanism. Therefore, the gel-forming ability of the dendritic PUA gelator is enhanced by being complexed with the polyelectrolyte. In this work, this positive macromolecular effect is discussed in detail.

  10. EF24 suppresses maturation and inflammatory response in dendritic cells.

    PubMed

    Vilekar, Prachi; Awasthi, Shanjana; Natarajan, Aravindan; Anant, Shrikant; Awasthi, Vibhudutta

    2012-07-01

    Synthetic curcuminoid EF24 was studied for its effect on the maturation and inflammatory response in murine bone marrow derived immortalized JAWS II dendritic cells (DCs). EF24 reduced the expression of LPS-induced MHC class II, CD80 and CD86 molecules. It also abrogated the appearance of dendrites, a typical characteristic of mature DCs. These effects were accompanied by the inhibition of LPS-induced activation of transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB). Simultaneous reduction of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, IL-6] both at the mRNA and secreted levels was also observed. To investigate the dependency of LPS effects on MyD88 adaptor protein, we transfected JAWS II DCs with dominant negative MyD88 plasmid construct (MyD88-DN). EF24 reduced NF-κB activity and TNF-α secretion in a MyD88-dependent manner. These results suggest that EF24 modulates DCs by suppressing their maturation and reducing the secretion of inflammatory cytokines. Further, it appears that EF24 acts at or upstream of MyD88 in the LPS-TLR4/MyD88/NF-κB pathway.

  11. EF24 suppresses maturation and inflammatory response in dendritic cells

    PubMed Central

    Vilekar, Prachi; Natarajan, Aravindan; Anant, Shrikant

    2012-01-01

    Synthetic curcuminoid EF24 was studied for its effect on the maturation and inflammatory response in murine bone marrow derived immortalized JAWS II dendritic cells (DCs). EF24 reduced the expression of LPS-induced MHC class II, CD80 and CD86 molecules. It also abrogated the appearance of dendrites, a typical characteristic of mature DCs. These effects were accompanied by the inhibition of LPS-induced activation of transcription factor nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB). Simultaneous reduction of pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, IL-6] both at the mRNA and secreted levels was also observed. To investigate the dependency of LPS effects on MyD88 adaptor protein, we transfected JAWS II DCs with dominant negative MyD88 plasmid construct (MyD88-DN). EF24 reduced NF-κB activity and TNF-α secretion in a MyD88-dependent manner. These results suggest that EF24 modulates DCs by suppressing their maturation and reducing the secretion of inflammatory cytokines. Further, it appears that EF24 acts at or upstream of MyD88 in the LPS-TLR4/MyD88/NF-κB pathway. PMID:22378503

  12. 3D printing of new biobased unsaturated polyesters by microstereo-thermallithography.

    PubMed

    Gonçalves, Filipa A M M; Costa, Cátia S M F; Fabela, Inês G P; Farinha, Dina; Faneca, Henrique; Simões, Pedro N; Serra, Arménio C; Bártolo, Paulo J; Coelho, Jorge F J

    2014-09-01

    New micro three-dimensional (3D) scaffolds using biobased unsaturated polyesters (UPs) were prepared by microstereo-thermal-lithography (μSTLG). This advanced processing technique offers indubitable advantages over traditional printing methods. The accuracy and roughness of the 3D structures were evaluated by scanning electron microscopy and infinite focus microscopy, revealing a suitable roughness for cell attachment. UPs were synthesized by bulk polycondensation between biobased aliphatic diacids (succinic, adipic and sebacic acid) and two different glycols (propylene glycol and diethylene glycol) using fumaric acid as the source of double bonds. The chemical structures of the new oligomers were confirmed by proton nuclear magnetic resonance spectra, attenuated total reflectance Fourier transform infrared spectroscopy and matrix assisted laser desorption/ionization-time of flight mass spectrometry. The thermal and mechanical properties of the UPs were evaluated to determine the influence of the diacid/glycol ratio and the type of diacid in the polyester's properties. In addition an extensive thermal characterization of the polyesters is reported. The data presented in this work opens the possibility for the use of biobased polyesters in additive manufacturing technologies as a route to prepare biodegradable tailor made scaffolds that have potential applications in a tissue engineering area.

  13. Polyester Fabric's Fluorescent Dyeing in Supercritical Carbon Dioxide and its Fluorescence Imaging.

    PubMed

    Xiong, Xiaoqing; Xu, Yanyan; Zheng, Laijiu; Yan, Jun; Zhao, Hongjuan; Zhang, Juan; Sun, Yanfeng

    2017-03-01

    As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO 2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO 2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4-5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO 2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO 2 dyeing technique.

  14. Dilatation of aortic grafts over time: what to expect and when to be concerned.

    PubMed

    Schroeder, Torben V; Eldrup, Nikolaj; Just, Sven; Hansen, Marc; Nyhuus, Bo; Sillesen, Henrik

    2009-06-01

    Dilatation of aortic prosthetic grafts is commonly reported, but most reports are anecdotal, with little objective data in the literature. We performed a prospective trial of 303 patients who underwent prosthetic graft repair for aortic aneurysm or occlusive disease, randomizing patients between insertion of a woven polyester or expanded polytetrafluoroethylene (ePTFE) graft. Patients were followed with computed tomography and ultrasonography for up to 5 years in order to assess the frequency and magnitude of postoperative dilatation. Graft dilatation was documented in patients with polyester grafts at 12 months. Thereafter and up to 60 months, polyester grafts did not dilate further. After 5 years, polyester prostheses had dilated by 25% and ePTFE by 12.5%, as determined by computed tomography imaging. These observations suggest that dilatation of prosthetic grafts is more frequent with knitted polyester grafts compared with ePTFE. Dilatation occurs within the first year after implantation and can be, in part, explained by a discrepancy between the initial nominal graft diameter and its diameter after clamp release, probably due to an in vivo adaptation of the textile structure. Interestingly, graft dilatation did not appear to be associated with an increased frequency of graft-related complications.

  15. Green and selective polycondensation methods toward linear sorbitol-based polyesters: enzymatic versus organic and metal-based catalysis.

    PubMed

    Gustini, Liliana; Lavilla, Cristina; Janssen, William W T J; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián; Koning, Cor E

    2016-08-23

    Renewable polyesters derived from a sugar alcohol (i.e., sorbitol) were synthesized by solvent-free polycondensation. The aim was to prepare linear polyesters with pendant hydroxyl groups along the polymer backbone. The performance of the sustainable biocatalyst SPRIN liposorb CALB [an immobilized form of Candida antarctica lipase B (CALB); SPRIN technologies] and the organo-base catalyst 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) were compared with two metal-based catalysts: dibutyl tin oxide (DBTO) and scandium trifluoromethanesulfonate [also known as scandium triflate, Sc(OTf)3 ]. For the four catalytic systems, the efficiency and selectivity for the incorporation of sorbitol were studied, mainly using (13) C and (31) P NMR spectroscopies, whereas side reactions, such as ether formation and dehydration of sorbitol, were evaluated using MALDI-TOF-MS. Especially the biocatalyst SPRIN liposorb CALB succeeded in incorporating sorbitol in a selective way without side reactions, leading to close-to-linear polyesters. By using a renewable hydroxyl-reactive curing agent based on l-lysine, transparent and glossy poly(ester urethane) networks were successfully synthesized offering a tangible example of bio-based coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 50 CFR 679.24 - Gear limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... material that is brightly colored, UV-protected plastic tubing or 3/8 inch polyester line or material of an... tubing or 3/8 inch polyester line or material of an equivalent density. (iv) Snap gear streamer standard...

  17. Structure-property relationships in low-temperature adhesives. [for inflatable structures

    NASA Technical Reports Server (NTRS)

    Schoff, C. K.; Udipi, K.; Gillham, J. K.

    1977-01-01

    Adhesive materials of aliphatic polyester, linear hydroxyl end-capped polybutadienes, or SBS block copolymers are studied with the objective to replace conventional partially aromatic end-reactive polyester-isocyanate adhesives that have shown embrittlement

  18. Experimental Investigation on Thermal Physical Properties of an Advanced Polyester Material

    NASA Astrophysics Data System (ADS)

    Guangfa, Gao; Shujie, Yuan; Ruiyuan, Huang; Yongchi, Li

    Polyester materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced polyester material, a series of experiments for thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.

  19. Quasi-static axial crushes on woven jute/polyester AA6063T52 composite tubes

    NASA Astrophysics Data System (ADS)

    Othman, A.; Ismail, AE

    2018-04-01

    Quasi-static axial loading have been studied in this paper to determine the behaviour of jute/polyester wrapped on aluminium alloy 6063T52. The filler material also was include into crush box specimen, which is polyurethane (PU) and polystyrene (PE) rigid foam at ranging 40 and 45 kg/m3 densities. All specimen profile was fabricated using hand layup techniques and the length of each specimen were fixed at 100 mm as well as diameter and width of the tube at 50.8 mm. The two types of tubular cross-section were studied of round and square thin-walled profiles and the angle of fibre at 450 were analysed for four layers. Thin walled of aluminium was 1.9 mm and end frontal of each specimen of composite were chamfered at 450 to prevent catastrophic failure mode. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyses for each specimen to see the behaviour on jute/polyester wrapped on metallic structure can give influence the energy management for automotive application. Result show that the four layers’ jute/polyester with filler material show significant value in term of specific absorbed energy compared empty and polyurethane profiles higher 26.66% for empty and 15.19% compared to polyurethane profiles. It has been found that the thin walled square profile of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 27.42% to 13.13% than empty and polyurethane (PU) foam tubes. An introduce filler material onto thin walled composite profiles gave major advantage increases the mean axial load of 31.87% from 32.94 kN to 48.35 kN from empty to polystyrene thin walled round jute/polyester profiles and 31.7% from 23.11 KN to 33.84 kN from empty to polystyrene thin walled square jute/polyester profiles. Failure mechanisms of the axially loaded composite tubes were also observed and discussed.

  20. The axial crushes behaviour on foam-filled round Jute/Polyester composite tubes

    NASA Astrophysics Data System (ADS)

    Othman, A.; Ismail, A. E.

    2018-04-01

    The present paper investigates the effect of axial loading compression on jute fibre reinforced polyester composite round tubes. The specimen of composite tube was fabricated by hand lay-up method of 120 mm length with fix 50.8 mm inner diameter to determine the behaviour of energy absorption on number of layers of 450 angle fibre and internally reinforced with and without foam filler material. The foam filler material used in this studies were polyurethane (PU) and polystyrene (PE) with average of 40 and 45 kg/m3 densities on the axial crushing load against displacement relations and on the failure modes. The number of layers of on this study were two; three and four were selected to calculate the crush force efficiency (CFE) and the specific energy absorption (SEA) of the composite tubes. Result indicated that the four layers’ jute/polyester show significant value in term of crushing load compared to 2 and 3 layers higher 60% for 2 layer and 3% compared to 3 layers. It has been found that the specific energy absorption of the jute/polyester tubes with polystyrene foam-filled is found higher respectively 10% to 12% than empty and polyurethane (PU) foam tubes. The increase in the number of layers from two to four increases the mean axial load from 1.01 KN to 3.60 KN for empty jute/polyester and from 2.11 KN to 4.26 KN for the polyurethane (PU) foam-filled jute/polyester tubes as well as for 3.60 KN to 5.58 KN for the polystyrene (PE) foam-filled jute/polyester. The author’s found that the failure of mechanism influence the characteristic of curve load against displacement obtained and conclude that an increasing number of layers and introduce filler material enhance the capability of specific absorbed energy.

  1. Premixed polymer concrete overlays.

    DOT National Transportation Integrated Search

    1990-01-01

    The results of a study undertaken to evaluate premixed polymer concrete overlays (PMPCO) over a 3-year period are presented. The PMPCO evaluated were constructed with polyester amide para resin and silica sand 1;. polyester styrene resin 1 and silica...

  2. Biodegradable polyester films from renewable aleuritic acid: surface modifications induced by melt-polycondensation in air

    NASA Astrophysics Data System (ADS)

    Jesús Benítez, José; Alejandro Heredia-Guerrero, José; Inmaculada de Vargas-Parody, María; Cruz-Carrillo, Miguel Antonio; Morales-Flórez, Victor; de la Rosa-Fox, Nicolás; Heredia, Antonio

    2016-05-01

    Good water barrier properties and biocompatibility of long-chain biopolyesters like cutin and suberin have inspired the design of synthetic mimetic materials. Most of these biopolymers are made from esterified mid-chain functionalized ω-long chain hydroxyacids. Aleuritic (9,10,16-trihydroxypalmitic) acid is such a polyhydroxylated fatty acid and is also the major constituent of natural lac resin, a relatively abundant and renewable resource. Insoluble and thermostable films have been prepared from aleuritic acid by melt-condensation polymerization in air without catalysts, an easy and attractive procedure for large scale production. Intended to be used as a protective coating, the barrier's performance is expected to be conditioned by physical and chemical modifications induced by oxygen on the air-exposed side. Hence, the chemical composition, texture, mechanical behavior, hydrophobicity, chemical resistance and biodegradation of the film surface have been studied by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), atomic force microscopy (AFM), nanoindentation and water contact angle (WCA). It has been demonstrated that the occurrence of side oxidation reactions conditions the surface physical and chemical properties of these polyhydroxyester films. Additionally, the addition of palmitic acid to reduce the presence of hydrophilic free hydroxyl groups was found to have a strong influence on these parameters.

  3. (Citric acid–co–polycaprolactone triol) polyester

    PubMed Central

    Thomas, Lynda V.; Nair, Prabha D.

    2011-01-01

    Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties. PMID:23507730

  4. 16 CFR 1610.61 - Reasonable and representative testing to assure compliance with the standard for the clothing...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., olefin, polyester, wool, or any combination of these fibers, regardless of weight.) If no exemptions... sweaters; polyester/cotton and 100% cotton fleece/sherpa garments, and 100% cotton terry cloth robes...

  5. Advanced Clothing Studies

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne; Poritz, Darwin

    2014-01-01

    All human space missions require significant logistical mass and volume that add an unprecedented burden on longduration missions beyond low-Earth orbit. For these missions with limited cleaning resources, a new wardrobe must be developed to reduce this logistical burden by reducing clothing mass and extending clothing wear. The present studies have been undertaken, for the first time, to measure length of wear and to assess the acceptance of such extended wear. Garments in these studies are commercially available exercise T-shirts and shorts, routine-wear T-shirts, and longsleeved pullover shirts. Fabric composition (cotton, polyester, light-weight, superfine Merino wool, modacrylic, cotton/rayon, polyester/Cocona, modacrylic/Xstatic, modacrylic/rayon, modacrylic/lyocell/aramid), construction (open knit, tight knit, open weave, tight weave), and finishing treatment (none, quaternary ammonium salt) are the independent variables. Eleven studies are reported here: five studies of exercise T-shirts, three of exercise shorts, two of routine wear Tshirts, and one of shirts used as sleep-wear. All studies are conducted in a climate-controlled environment, similar to a space vehicle's. For exercise clothing, study participants wear the garments during aerobic exercise. For routine wear clothing, study participants wear the T-shirts daily in an office or laboratory. Daily questionnaires collected data on ordinal preferences of nine sensory elements and on reason for retiring a used garment. Study 1 compares knitted cotton, polyester, and Merino exercise T-shirts (61 participants), study 2, knitted polyester, modacrylic, and polyester/Cocona exercise T-shirts (40 participants), study 3, cotton and polyester exercise shorts, knitted and woven (70 participants), all three using factorial experimental designs with and without a finishing treatment, conducted at the Johnson Space Center, sharing study participants. Study 4 compares knitted polyester and ZQ Merino exercise T-shirts, study 5, knitted ZQ Merino and modacrylic routine-wear T-shirts, with study 6 using only knitted polyester exercise shorts. No finishing treatment is used. Studies 4 and 5 use cross-over experimental designs, and all three studies were conducted aboard the ISS with six crew. Studies 4 and 6 were repeated on the ground with the same participants to learn if perception was affected microgravity. Study 7 is a longer-term, single-blind panel study of knitted routine-wear undershirts with at least 12 participants to assess tolerance to Merino by comparing it with a cotton/rayon blends, using a cross-over design, eliminating carryover effects with wash-out periods between shirts.

  6. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Zhiming; Chemistry and Chemical Engineering College, Ocean University of China, Qingdao 266003; Wei Zhixiang

    2005-03-01

    Polyaniline (PANI) nanotubes (130-250 nm in average diameter) doped with {alpha}-naphthalene sulfonic acid ({alpha}-NSA), {beta}-naphthalene sulfonic acid ({beta}-NSA) and 1,5-naphthalene disulfonic acid were synthesized via a self-assembly process. It was found that the formation yield, morphology (hollow or solid), size, crystalline and electrical properties of the nanostructures are affected by the position and number of -SO{sub 3}H groups attached to the naphthalene ring of NSA as well as the synthesis conditions. Moreover, these nanotubes aggregate to form a dendritic morphology when the polymerization is performed at a static state. The micelles composed of dopant or dopant/anilinium cations might act inmore » a template-like fashion in forming self-assembled PANI nanotubes, which was further confirmed by X-ray diffraction measurements, while the aggregated morphology of the nanotubes might result from polymer chain interactions including {pi}-{pi} interactions, hydrogen and ionic bonds.« less

  7. Design of magnetic polyplexes taken up efficiently by dendritic cell for enhanced DNA vaccine delivery.

    PubMed

    Nawwab Al-Deen, F M; Selomulya, C; Kong, Y Y; Xiang, S D; Ma, C; Coppel, R L; Plebanski, M

    2014-02-01

    Dendritic cells (DC) targeting vaccines require high efficiency for uptake, followed by DC activation and maturation. We used magnetic vectors comprising polyethylenimine (PEI)-coated superparamagnetic iron oxide nanoparticles, with hyaluronic acid (HA) of different molecular weights (<10 and 900 kDa) to reduce cytotoxicity and to facilitate endocytosis of particles into DCs via specific surface receptors. DNA encoding Plasmodium yoelii merozoite surface protein 1-19 and a plasmid encoding yellow fluorescent gene were added to the magnetic complexes with various % charge ratios of HA: PEI. The presence of magnetic fields significantly enhanced DC transfection and maturation. Vectors containing a high-molecular-weight HA with 100% charge ratio of HA: PEI yielded a better transfection efficiency than others. This phenomenon was attributed to their longer molecular chains and higher mucoadhesive properties aiding DNA condensation and stability. Insights gained should improve the design of more effective DNA vaccine delivery systems.

  8. Increased plasmacytoid dendritic cells in Guillain-Barré syndrome.

    PubMed

    Wang, Yu-Zhong; Feng, Xun-Gang; Wang, Qian; Xing, Chun-Ye; Shi, Qi-Guang; Kong, Qing-Xia; Cheng, Pan-Pan; Zhang, Yong; Hao, Yan-Lei; Yuki, Nobuhiro

    2015-06-15

    Guillain-Barré syndrome (GBS) is a post-infectious autoimmune disease. Dendritic cells (DCs) can recognize the pathogen and modulate the host immune response. Exploring the role of DCs in GBS will help our understanding of the disease development. In this study, we aimed to analyze plasmacytoid and conventional DCs in peripheral blood of patients with GBS at different stages of the disease: acute phase as well as early and late recovery phases. There was a significant increase of plasmacytoid DCs in the acute phase (p=0.03 vs healthy donors). There was a positive correlation between percentage of plasmacytoid DCs and the clinical severity of patients with GBS (r=0.61, p<0.001). Quantitative polymerase chain reaction and flow cytometry confirmed the aberrant plasmacytoid DCs in GBS. Thus, plasmacytoid DCs may participate in the development of GBS. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Metabolic engineering for microbial production and applications of copolyesters consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates.

    PubMed

    Zou, Xiang Hui; Chen, Guo-Qiang

    2007-02-12

    Poly(hydroxyalkanoate)s (PHAs) are a class of microbially synthesized polyesters that combine biological properties, such as biocompatibility and biodegradability, and non-bioproperties such as thermoprocessability, piezoelectricity, and nonlinear optical activity. PHA monomer structures and their contents strongly affect the PHA properties. Using metabolic engineering approaches, PHA structures and contents can be manipulated to achieve controllable monomer and PHA cellular contents. This paper focuses on metabolic engineering methods to produce PHA consisting of 3-hydroxybutyrate (3HB) and medium-chain-length 3-hydroxyalkanoates (3HA) in recombinant microbial systems. This type of copolyester has mechanical and thermal properties similar to conventional plastics such as poly(propylene) and poly(ethylene terephthalate) (PET). In addition, pathways containing engineered PHA synthases have proven to be useful for enhanced PHA production with adjustable PHA monomers and contents. The applications of PHA as implant biomaterials are briefly discussed here. In the very near term, metabolic engineering will help solve many problems in promoting PHA as a new type of plastic material for many applications.

  10. Polyester polymer concrete overlay.

    DOT National Transportation Integrated Search

    2013-01-01

    Polyester polymer concrete (PPC) was used in a trial application on a section of pavement that suffers from extensive studded tire wear. The purpose of the trial section is to determine if PPC is a possible repair strategy for this type of pavement d...

  11. 78 FR 18314 - Foreign-Trade Zone 169-Manatee County, Florida; Application for Production Authority; ASO, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... of the finished product) include the following: 100% polyester, 100% cotton dyed plain weave, and 62% cotton/38% polyester plain weave (duty rates range from 7 to 12%). In accordance with the Board's...

  12. Initial studies of a flexural member composed of glass-fiber reinforced polyester resin.

    DOT National Transportation Integrated Search

    1973-01-01

    An investigation was conducted of the structural behavior of a flexural member composed entirely of glass-fiber reinforced polyester resin. Three experimental girders were fabricated and load-tested in the laboratory. The physical characteristics of ...

  13. A kinetic study of hydrolysis of polyester elastomer in magnetic tape

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Watanabe, H.

    1994-01-01

    A useful method for kinetic study of the hydrolysis of polyester elastomer is established which uses the number-average molecular weight. The reasonableness of this method is confirmed and the effect of magnetic particles on hydrolysis is considered.

  14. Radioluminescence of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.

  15. Radiation cured polyester compositions containing metal-properties

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Pietrzak, M.; Gonerski, A.

    The subject of the studies was unsaturated polyester resin, Polimal-109 and its compositions containing acrylates of: sodium, potassium, calcium, magnesium, barium, manganese, iron, cobalt, copper and acrylic acid. Polyester resin modified with acrylic acid salts was cured with 60Co gamma radiation. Measurements of Vicat softening temperature, water absorption, creep current resistance, volume and surface resistivity, the tangent of dielectric loss angle and permittivity of radiation cured compositions were carried out. The results of the studies presented testify to the fact that the properties of cross-linked polymers alter after ionogenic compounds have been introduced into them.

  16. The effect of woven and non-woven fiber structure on mechanical properties polyester composite reinforced kenaf

    NASA Astrophysics Data System (ADS)

    Ratim, S.; Bonnia, N. N.; Surip, S. N.

    2012-07-01

    The effects of woven and non-woven kenaf fiber on mechanical properties of polyester composites were studied at different types of perform structures. Composite polyester reinforced kenaf fiber has been prepared via hand lay-up process by varying fiber forms into plain weave, twill and mats structure. The reinforcing efficiency of different fiber structure was compared with control of unreinforced polyester sample. It was found that the strength and stiffness of the composites are largely affected by fiber structure. A maximum value for tensile strength of composite was obtained for twill weave pattern of fiber structure while no significant different for plain weave and mat structure. The elastic modulus of composite has shown some improvement on plain and twill weave pattern. Meanwhile, lower value of modulus elasticity achieved by mats structure composite as well as control sample. The modulus of rupture and impact resistance were also analyzed. The improvement of modulus of rupture value can be seen on plain and twill weave pattern. However impact resistance doesn't show significant improvement in all types of structure except for mat fiber. The mechanical properties of kenaf fiber reinforced polyester composite found to be increased with woven and non-woven fiber structures in composite.

  17. Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets

    PubMed Central

    Le, Minh-Tai; Huang, Shyh-Chour

    2015-01-01

    In the present investigation, we successfully fabricate a hybrid polymer nanocomposite containing epoxy/polyester blend resin and graphene nanoplatelets (GNPs) by a novel technique. A high intensity ultrasonicator is used to obtain a homogeneous mixture of epoxy/polyester resin and graphene nanoplatelets. This mixture is then mixed with a hardener using a high-speed mechanical stirrer. The trapped air and reaction volatiles are removed from the mixture using high vacuum. The hot press casting method is used to make the nanocomposite specimens. Tensile tests, dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) are performed on neat, 0.2 wt %, 0.5 wt %, 1 wt %, 1.5 wt % and 2 wt % GNP-reinforced epoxy/polyester blend resin to investigate the reinforcement effect on the thermal and mechanical properties of the nanocomposites. The results of this research indicate that the tensile strength of the novel nanocomposite material increases to 86.8% with the addition of a ratio of graphene nanoplatelets as low as 0.2 wt %. DMA results indicate that the 1 wt % GNP-reinforced epoxy/polyester nanocomposite possesses the highest storage modulus and glass transition temperature (Tg), as compared to neat epoxy/polyester or the other nanocomposite specimens. In addition, TGA results verify thethermal stability of the experimental specimens, regardless of the weight percentage of GNPs. PMID:28793521

  18. California State Implementation Plan; San Diego County Air Pollution Control District; VOC Emissions from Polyester Resin Operations

    EPA Pesticide Factsheets

    EPA is taking final action to approve revisions to the San Diego County Air Pollution Control District (SDCAPCD) portion of the California SIP concerning volatile organic compound (VOC) emissions from polyester resin operations.

  19. Comparison of three distinct surgical clothing systems for protection from air-borne bacteria: A prospective observational study

    PubMed Central

    2012-01-01

    Background To prevent surgical site infection it is desirable to keep bacterial counts low in the operating room air during orthopaedic surgery, especially prosthetic surgery. As the air-borne bacteria are mainly derived from the skin flora of the personnel present in the operating room a reduction could be achieved by using a clothing system for staff made from a material fulfilling the requirements in the standard EN 13795. The aim of this study was to compare the protective capacity between three clothing systems made of different materials – one mixed cotton/polyester and two polyesters - which all had passed the tests according to EN 13795. Methods Measuring of CFU/m3 air was performed during 21 orthopaedic procedures performed in four operating rooms with turbulent, mixing ventilation with air flows of 755 – 1,050 L/s. All staff in the operating room wore clothes made from the same material during each surgical procedure. Results The source strength (mean value of CFU emitted from one person per second) calculated for the three garments were 4.1, 2.4 and 0.6 respectively. In an operating room with an air flow of 755 L/s both clothing systems made of polyester reduced the amount of CFU/m3 significantly compared to the clothing system made from mixed material. In an operating room with air intake of 1,050 L/s a significant reduction was only achieved with the polyester that had the lowest source strength. Conclusions Polyester has a better protective capacity than cotton/polyester. There is need for more discriminating tests of the protective efficacy of textile materials intended to use for operating garment. PMID:23068884

  20. Macelignan inhibits melanosome transfer mediated by protease-activated receptor-2 in keratinocytes.

    PubMed

    Choi, Eun-Jung; Kang, Young-Gyu; Kim, Jaekyung; Hwang, Jae-Kwan

    2011-01-01

    Skin pigmentation is the result of melanosome transfer from melanocytes to keratinocytes. Protease-activated receptor-2 (PAR-2) is a key mediator of melanosome transfer, which occurs as the melanocyte extends its dendrite toward surrounding keratinocytes that take up melanosomes by phagocytosis. We investigated the effects of macelignan isolated from Myristica fragrans HOUTT. (nutmeg) on melanosome transfer and the regulation of PAR-2 in human keratinocytes (HaCaT). HaCaT cells stimulated by the PAR-2-activating peptide Ser-Leu-Ile-Gly-Arg-Leu-NH₂ (SLIGRL) were treated with macelignan; PAR-2 expression was then determined by reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunocytochemistry. We evaluated the effects of macelignan on calcium mobilization and keratinocyte phagocytosis. In addition, B16F10 melanoma cells and keratinocytes were co-cultured to assess the effects of macelignan on prostaglandin E₂ (PGE₂) secretion and subsequent dendrite formation. Macelignan decreased HaCaT PAR-2 mRNA and protein levels in a dose-dependent manner. Furthermore, macelignan markedly reduced intracellular calcium mobilization and significantly downregulated keratinocyte phagocytosis, as shown by decreased ingestion of Escherichia coli bioparticles and fluorescent microspheres. In co-culture experiments, macelignan reduced keratinocyte PGE₂ secretion, thereby preventing dendrite formation in B16F10 melanoma cells compared with SLIGRL-treated controls. Macelignan inhibits melanosome transfer by downregulating PAR-2, thereby reducing keratinocyte phagocytosis and PGE₂ secretion, which in turn inhibits dendrite formation in B16F10 melanoma cells. Taken together, our findings suggest that macelignan could be used as a natural depigmenting agent to ameliorate hyperpigmentation.

  1. The structural characteristics of inflatable beams

    NASA Astrophysics Data System (ADS)

    Wicker, William J.

    1992-08-01

    Two inflatable beams are designed and fabricated from polyethylene of ultrahigh molecular weight, and the structures are tested against similar composite and metal-alloy tubes. Specific attention is given to the choice of material that insures material stiffness, good strength-to-weight ratio, creep resistance, and durability. A cloth beam is built from a commercial extended-chain polyethylene fiber, and the inflated beams are tested by means of three- and four-point loading to measure bending and shear deformation. Comparing geometrically similar structures shows that the fabric beams can be about 35 percent as stiff as aluminum for small deflections. The inflatable beams have elastic stiffness coefficients five and two times higher than those for nylon and polyester tubes, respectively. Inflatable structures are concluded to hold promise for lightweight aerospace applications which demand small storage areas.

  2. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin-Fatty Acid Biosynthetic Pathway.

    PubMed

    Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D

    2017-04-05

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.

  3. Flame retardant antibacterial cotton high-loft nonwoven fabrics

    USDA-ARS?s Scientific Manuscript database

    Flame retardant treated gray cotton fibers were blended with antibacterial treated gray cotton fibers and polyester/polyester sheath/core bicomponent fibers to form high-loft fabrics. The high flame retardancy (FR) and antibacterial property of these high lofts were evaluated by limiting oxygen inde...

  4. Mechanical characterization of glass fiber (woven roving/chopped strand mat E-glass fiber) reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Bhaskar, V. Vijaya; Srinivas, Kolla

    2017-07-01

    Polymer reinforced composites have been replacing most of the engineering material and their applications become more and more day by day. Polymer composites have been analyzing from past thirty five years for their betterment for adapting more applications. This paper aims at the mechanical properties of polyester reinforced with glass fiber composites. The glass fiber is reinforced with polyester in two forms viz Woven Rovings (WRG) and Chopped Strand Mat (CSMG) E-glass fibers. The composites are fabricated by hand lay-up technique and the composites are cut as per ASTM Standard sizes for corresponding tests like flexural, compression and impact tests, so that flexural strength, compression strength, impact strength and inter laminar shear stress(ILSS) of polymer matrix composites are analyzed. From the tests and further calculations, the polyester composites reinforced with Chopped Strand Mat glass fiber have shown better performance against flexural load, compression load and impact load than that of Woven Roving glass fiber.

  5. Effect of a depilatory agent on cotton, polyester, and rayon versus human hair in a laboratory setting.

    PubMed

    Plesa, Jocelyn A; Shoup, Kelly; Manole, Mioara D; Hickey, Robert W

    2015-03-01

    We examine the ability of a depilatory agent, Nair, to dissolve strands of hair, cotton, polyester, and rayon. We conducted a bench laboratory study in which we tested single strands of hair and natural and synthetic fibers under static tension with a 10.8-g weight and application of Nair. The dependent variable, time until breakage, was recorded. If the strand did not break within 8 hours, the experiment was discontinued. Three types of hair were tested (thin, medium, and thick, as recorded per diameter). Three types of natural and synthetic fibers were tested (cotton, polyester, and rayon). All types of hair had breakage within 10 minutes of the Nair application. Synthetic materials had no breakage after 8 hours with application of Nair. Depilatory agents dissolve hair under tension within minutes. However, they do not dissolve cotton, polyester, and rayon even after many hours of application. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  6. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  7. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    DOE PAGES

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; ...

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds viamore » a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.« less

  8. Electrochemical investigation of powder coatings and their application to magnesium-rich primers for corrosion protection

    NASA Astrophysics Data System (ADS)

    Orgon, Casey Roy

    Corrosion is the decomposition of metal and metal alloys which threatens the integrity of man-made structures. One of the more efficient methods of delaying the corrosion process in metals is by coatings. In this work, the durability of two polyester powder coatings were investigated for corrosion protection of AA-2024-T3. Polyester powder coatings crosslinked by either triglycidyl isocyanurate (TGIC) or beta-hydroxyalkyl amide (HAA) compounds were prepared and investigated for barrier protection of metal substrates by electrochemical impedance spectroscopy (EIS). Polyester-TGIC coatings were found to provide better long-term protection, which can be attributed to the increased mechanical strength and higher concentration of crosslinking in the coating films. Additionally, the polyester powder coatings, along with a fusion bonded epoxy (FBE) were investigated for their compatibility as a topcoat for magnesium-rich primers (MgRP). Under proper application conditions, powder topcoats were successfully applied to cured MgRP while corrosion protection mechanisms of each system were maintained.

  9. Friction and morphology of magnetic tapes in sliding contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Bhushan, B.

    1984-01-01

    Friction and morphological studies were conducted with magnetic tapes containing a Ni-Zn ferrite hemispherical pin in laboratory air at a relative humidity of 40 percent and at 23 C. The results indicate that the binder plays a significant role in the friction properties, morphology, and microstructure of the tape. Comparisons were made with four binders: nitrocellulose; poly (vinyledene) chloride; cellulose acetate; and hydroxyl-terminated, low molecular weight polyester added to the base polymer, polyester-polyurethane. The coefficient of friction was lowest for the tape with the nitrocellulose binder and increased in the order hydroxylterminated, low molecular weight polyester resin; poly (vinyledene) chloride; and cellulose acetate. The degree of enclosure of the oxide particles by the binder was highest for hydroxyl-terminated, low molecular weight polyester and decreased in the order cellulose acetate, poly (vinyledene) chloride, and nitrocellulose. The nature of deformation of the tape was a factor in controlling friction. The coefficient of friction under elastic contact conditions was considerably lower than under conditions that produced plastic contacts.

  10. Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes

    PubMed Central

    2015-01-01

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials. PMID:27162971

  11. Maleate/vinyl ether UV-cured coatings: Effects of composition on curing and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noren, G.K.

    1996-10-01

    The effect of the composition of the maleate polyester and the vinyl ether terminated compound on their UV-curing and properties has been investigated. Linear unsaturated polyester resins based on maleic anhydride and 1,5-pentane diol were synthesized. The molecular weight of the unsaturated polyesters was varied by changing the ratio of maleic anhydride to 1,5-pentane diol and the double bond equivalent weight was varied by replacing maleic anhydride with succinic anhydride. Coating formulations containing these unsaturated polyesters, triethylene glycol divinyl ether and a free radical photoinitiator were crosslinked in the presence of UV light. The coatings were very brittle, exhibiting tensilemore » strengths in the range of 1.5-4.0 MPa and elongations of only 3-7%. Diethyl maleate and isobutyl vinyl ether were effective diluents for reducing viscosity but reduced the cure speed. A vinyl ether urethane oligomer was synthesized and enhanced the flexibility and toughness of the coatings when substituted for triethylene glycol divinyl ether.« less

  12. Polyester: simulating RNA-seq datasets with differential transcript expression.

    PubMed

    Frazee, Alyssa C; Jaffe, Andrew E; Langmead, Ben; Leek, Jeffrey T

    2015-09-01

    Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Polyester is freely available from Bioconductor (http://bioconductor.org/). jtleek@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology.

    PubMed

    Lenz, Robert W; Marchessault, Robert H

    2005-01-01

    The discovery and chemical identification, in the 1920s, of the aliphatic polyester: poly(3-hydroxybutyrate), PHB, as a granular component in bacterial cells proceeded without any of the controversies which marked the recognition of macromolecules by Staudinger. Some thirty years after its discovery, PHB was recognized as the prototypical biodegradable thermoplastic to solve the waste disposal challenge. The development effort led by Imperial Chemical Industries Ltd., encouraged interdisciplinary research from genetic engineering and biotechnology to the study of enzymes involved in biosynthesis and biodegradation. From the simple PHB homopolyester discovered by Maurice Lemoigne in the mid-twenties, a family of over 100 different aliphatic polyesters of the same general structure has been discovered. Depending on bacterial species and substrates, these high molecular weight stereoregular polyesters have emerged as a new family of natural polymers ranking with nucleic acids, polyamides, polyisoprenoids, polyphenols, polyphosphates, and polysaccharides. In this historical review, the chemical, biochemical and microbial highlights are linked to personalities and locations involved with the events covering a discovery timespan of 75 years.

  14. Polyesters from microorganisms.

    PubMed

    Kim, Y B; Lenz, R W

    2001-01-01

    Bacterial polyesters have been found to have useful properties for applications as thermoplastics, elastomers, and adhesives and are biodegradable and biocompatible. Poly(3-hydroxyalkanoates) (PHAs) and poly(beta-malate) are the most representative polyesters synthesized by microorganisms. PHAs containing a wide variety of repeating units can be produced by bacteria, including those containing many types of pendant functional groups which can be synthesized by microorganisms that are grown on unnatural organic substrates. Poly(beta-malate) is of interest primarily for medical applications, especially for drug delivery systems. In this chapter, the bacterial production and properties of poly(3-hydroxyalkanoates) and poly(beta-malate) are described with emphasis on the former.

  15. Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn

    NASA Astrophysics Data System (ADS)

    Özkan, İ.; Duru Baykal, P.

    2017-10-01

    In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.

  16. Comparison of polyester, film-yarn composite, balloon materials subjected to shear and biaxial loading

    NASA Technical Reports Server (NTRS)

    Niccum, R. J.

    1972-01-01

    A series of candidate materials for use in large balloons was tested and their tensile and shear strength capabilities were compared. The tests were done in a cold box at -68 C (-90 F). Some of these materials were fabricated on a special machine called the flying thread loom. This machine laminates various patterns of polyester yarn to a thin polyester film. The results show that the shear strength of materials changes with the angle selected for the transverse yarns, and substantial increases in biaxial load carrying capabilities, compared to materials formerly used, are possible. The loom capabilities and the test methods are discussed.

  17. Instrumental physical analysis of microwaved glycerol citrate foams

    USDA-ARS?s Scientific Manuscript database

    Solid polyester glyceride polymers generated by microwave cooking were further cured in a conventional oven at 100 oC for 0, 6, 24, 48, or 72 hr and their physical properties were tested. Curing polyester glycerides resulted in decreased moisture content (MC), altered color, increased hydrated polym...

  18. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  19. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  20. Physico-mechanical and wear properties of novel sustainable sour-weed fiber reinforced polyester composites

    NASA Astrophysics Data System (ADS)

    Patel, Vinay Kumar; Chauhan, Shivani; Katiyar, Jitendra Kumar

    2018-04-01

    In this study, a novel natural fiber i.e. Sour-weed botanically known as ‘Rumex acetosella’ has been first time introduced as natural reinforcements to polyester matrix. The natural fiber based polyester composites were fabricated by hand lay-up technique using different sizes and different weight percentages. In Sour-weed/Polyester composites, physical (density, water absorption and hardness), mechanical properties (tensile and impact properties) and wear properties (sand abrasion and sliding wear) were investigated for different sizes of sour weed of 0.6 mm, 5 mm, 10 mm, 15 mm and 20 mm at 3, 6 and 9 weight percent loading, respectively in polyester matrix. Furthermore, on average value of results, the multi-criteria optimization technique i.e. TOPSIS was employed to decide the ranking of the composites. From the optimized results, it was observed that Sour-weed composite reinforced with fiber’s size of 15 mm at 6 wt% loading demonstrated the best ranked composite exhibiting best overall properties as average tensile strength of 34.33 MPa, average impact strength of 10 Joule, average hardness of 12 Hv, average specific sand abrasion wear rate of 0.0607 mm3 N‑1m‑1, average specific sliding wear rate of 0.002 90 mm3 N‑1m‑1, average percentage of water absorption of 3.446% and average density of 1.013 among all fabricated composites.

  1. Microfabricated polyester conical microwells for cell culture applications†

    PubMed Central

    Selimović, Šeila; Piraino, Francesco; Bae, Hojae; Rasponi, Marco; Redaelli, Alberto

    2012-01-01

    Over the past few years there has been a great deal of interest in reducing experimental systems to a lab-on-a-chip scale. There has been particular interest in conducting high-throughput screening studies using microscale devices, for example in stem cell research. Microwells have emerged as the structure of choice for such tests. Most manufacturing approaches for microwell fabrication are based on photolithography, soft lithography, and etching. However, some of these approaches require extensive equipment, lengthy fabrication process, and modifications to the existing microwell patterns are costly. Here we show a convenient, fast, and low-cost method for fabricating microwells for cell culture applications by laser ablation of a polyester film coated with silicone glue. Microwell diameter was controlled by adjusting the laser power and speed, and the well depth by stacking several layers of film. By using this setup, a device containing hundreds of microwells can be fabricated in a few minutes to analyze cell behavior. Murine embryonic stem cells and human hepatoblastoma cells were seeded in polyester microwells of different sizes and showed that after 9 days in culture cell aggregates were formed without a noticeable deleterious effect of the polyester film and glue. These results show that the polyester microwell platform may be useful for cell culture applications. The ease of fabrication adds to the appeal of this device as minimal technological skill and equipment is required. PMID:21614380

  2. Dipeptide-based Polyphosphazene and Polyester Blends for Bone Tissue Engineering

    PubMed Central

    Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Jiang, Tao; Kanner, William A.; Li, Xudong; Kumbar, Sangamesh G.; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.

    2010-01-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)1(phenyl phenoxy)1phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2 < Matrix1 < PLAGA in phosphate buffered saline at 37°C over 12 weeks. Significantly higher pH values of degradation media were observed for blends compared to PLAGA confirming the neutralization of PLAGA acidic degradation by polyphosphazene hydrolysis products. The blend components PLAGA and polyphosphazene exhibited a similar degradation pattern as characterized by the molecular weight loss. Furthermore, blends demonstrated significantly higher osteoblast growth rates compared to PLAGA while maintaining osteoblast phenotype over a 21-day culture. Both blends demonstrated improved biocompatibility in a rat subcutaneous implantation model compared to PLAGA over 12 weeks. PMID:20334909

  3. Microfiber Masses Recovered from Conventional Machine Washing of New or Aged Garments.

    PubMed

    Hartline, Niko L; Bruce, Nicholas J; Karba, Stephanie N; Ruff, Elizabeth O; Sonar, Shreya U; Holden, Patricia A

    2016-11-01

    Synthetic textiles can shed numerous microfibers during conventional washing, but evaluating environmental consequences as well as source-control strategies requires understanding mass releases. Polyester apparel accounts for a large proportion of the polyester market, and synthetic jackets represent the broadest range in apparel construction, allowing for potential changes in manufacturing as a mitigation measure to reduce microfiber release during laundering. Here, detergent-free washing experiments were conducted and replicated in both front- and top-load conventional home machines for five new and mechanically aged jackets or sweaters: four from one name-brand clothing manufacturer (three majority polyester fleece, and one nylon shell with nonwoven polyester insulation) and one off-brand (100% polyester fleece). Wash water was filtered to recover two size fractions (>333 μm and between 20 and 333 μm); filters were then imaged, and microfiber masses were calculated. Across all treatments, the recovered microfiber mass per garment ranged from approximately 0 to 2 g, or exceeding 0.3% of the unwashed garment mass. Microfiber masses from top-load machines were approximately 7 times those from front-load machines; garments mechanically aged via a 24 h continuous wash had increased mass release under the same wash protocol as new garments. When published wastewater treatment plant influent characterization and microfiber removal studies are considered, washing synthetic jackets or sweaters as per this study would account for most microfibers entering the environment.

  4. Elucidation of non-intentionally added substances migrating from polyester-polyurethane lacquers using automated LC-HRMS data processing.

    PubMed

    Omer, Elsa; Cariou, Ronan; Remaud, Gérald; Guitton, Yann; Germon, Hélène; Hill, Paul; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2018-03-08

    An untargeted strategy aiming at identifying non-intentionally added substances (NIAS) migrating from coatings was developed. This innovative approach was applied to two polyester-polyurethane lacquers, for which suppliers previously provided the identity of the monomers involved. Lacquers were extracted with acetonitrile and analyzed by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Data, acquired in the full scan mode, were processed using an open-source R-environment (xcms and CAMERA packages) to list the detected features and deconvolute them in groups related to individual compounds. The most intense groups, accounting for more than 85% of cumulated feature intensities, were then investigated. A homemade database, populated with predicted polyester oligomer combinations from a relevant selection of diols and diacids, enabled highlighting the presence of 14 and 17 cyclic predicted polyester oligomers in the two lacquers, including three mutual combinations explained by common known monomers. Combination hypotheses were strengthened by chromatographic considerations and by the investigation of fragmentation patterns. Regarding unpredicted migrating substances, four monomers were hypothesised to explain several polyester or caprolactam oligomer series. Finally, considering both predicted and tentatively elucidated unpredicted oligomers, it was possible to assign hypotheses to features representing up to 82% and 90% of the cumulated intensities in the two lacquers, plus 9% and 3% (respectively) originating from the procedural blank. Graphical abstract Elucidation of non-intentionally added substances.

  5. 76 FR 61057 - Revisions to the California State Implementation Plan, Sacramento Metropolitan Air Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... compound (VOC) emissions from organic chemical manufacturing, soil decontamination, and polyester resin... 74.29 Soil Decontamination Operations 04/08/08 01/10/10 PCAPCD 243 Polyester Resin Operations..... 04....29 establishes procedures for the treatment of soil contaminated with gasoline, diesel fuel or jet...

  6. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method

    USDA-ARS?s Scientific Manuscript database

    This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...

  7. 10 CFR Appendix D to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Clothes Dryers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... granite weave, which is a blended fabric of 50 percent cotton and 50 percent polyester and weighs within... 50 percent polyester fibers. (b) Cloth material that is 24 inches by 36 inches and has been hemmed to...

  8. Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse

    USDA-ARS?s Scientific Manuscript database

    This study aims to evaluate plant fibers that were surface activated with NaOH and corona discharge before incorporating in ortho unsaturated polyester-based fiber composites. It demonstrates the potential use of lignocellulosic particles, especially eucalyptus that presented the higher values for a...

  9. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  10. Propagating synchrony in feed-forward networks

    PubMed Central

    Jahnke, Sven; Memmesheimer, Raoul-Martin; Timme, Marc

    2013-01-01

    Coordinated patterns of precisely timed action potentials (spikes) emerge in a variety of neural circuits but their dynamical origin is still not well understood. One hypothesis states that synchronous activity propagating through feed-forward chains of groups of neurons (synfire chains) may dynamically generate such spike patterns. Additionally, synfire chains offer the possibility to enable reliable signal transmission. So far, mostly densely connected chains, often with all-to-all connectivity between groups, have been theoretically and computationally studied. Yet, such prominent feed-forward structures have not been observed experimentally. Here we analytically and numerically investigate under which conditions diluted feed-forward chains may exhibit synchrony propagation. In addition to conventional linear input summation, we study the impact of non-linear, non-additive summation accounting for the effect of fast dendritic spikes. The non-linearities promote synchronous inputs to generate precisely timed spikes. We identify how non-additive coupling relaxes the conditions on connectivity such that it enables synchrony propagation at connectivities substantially lower than required for linearly coupled chains. Although the analytical treatment is based on a simple leaky integrate-and-fire neuron model, we show how to generalize our methods to biologically more detailed neuron models and verify our results by numerical simulations with, e.g., Hodgkin Huxley type neurons. PMID:24298251

  11. Arginine-based poly(ester amide) nanoparticle platform: From structure-property relationship to nucleic acid delivery.

    PubMed

    You, Xinru; Gu, Zhipeng; Huang, Jun; Kang, Yang; Chu, Chih-Chang; Wu, Jun

    2018-05-25

    Many different types of polycations have been vigorously studied for nucleic acid delivery, but a systematical investigation of the structure-property relationships of polycations for nucleic acid delivery is still lacking. In this study, a new library of biodegradable and biocompatible arginine-based poly(ester amide) (Arg-PEA) biomaterials was designed and synthesized with a tunable structure for such a comprehensive structure-property research. Nanoparticle (NP) complexes were formed through the electrostatic interactions between the polycationic Arg-PEAs and anionic nucleic acids. The following structure effects of the Arg-PEAs on the transfection efficiency of nucleic acids were investigated: 1) the linker/spacer length (length effect and odd-even effect); 2) salt type of arginine; 3) the side chain; 4) chain stiffness; 5) molecular weight (MW). The data obtained revealed that a slight change in the Arg-PEA structure could finely tune its physicochemical property such as hydrophobicity, and this could subsequently affect the nanoparticle size and zeta potential, which, in turn, regulate the transfection efficiency and silencing outcomes. A further study of the Arg-PEA/CpG oligodeoxynucleotide NP complexes indicated that the polymer structure could precisily regulate the immune response of CpG, thus providing a new potential nano-immunotherapy strategy. The in vitro data have further confirmed that the Arg-PEA NPs showed a satisfactory delivery performance for a variety of nucleic acids. Therefore, the data from the current study provide comprehensive information about the Arg-PEA structure-transfection property relationship; the tunable property of the library of Arg-PEA biomaterials can be one of the promising candidates for nucleic acid delivery and other biomedical applications. Polycations have being intensive utilized for nucleic acid delivery. However, there has not been elucidated about the relationship between polycation's structure and the physicochemical properties/biological function. In this timely report, an arginine based poly(ester amide) (Arg-PEA) library was prepared with finely tunable structure to systematically investigate the structure-property relationships of polycations for nucleic acid delivery. The results revealed that slight change of Arg-PEA structure could finely tune the physicochemical property (such as hydrophobicity), which subsequently affect the size and zeta potential of Arg-PEA/nucleic acid nanoparticles(NPs), and finally regulate the resulting transfection or silencing outcomes. Further study of Arg-PEA/CpG NPs indicated that the polymer structure could precisely regulate immuno response of CpG, providing new potential nano-immunotherapy strategy. In vitro evaluations confirmed that the NPs showed satisfied delivery performance for a variety types of nucleic acids. Therefore, these studies provide comprehensive information of Arg-PEA structure-property relationship, and the tunable properties of Arg-PEAs make them promising candidates for nucleic acid delivery and other biomedical applications. Overall, we have shown enough significance and novelty in terms of nucleic acid delivery, biomaterials, pharmaceutical science and nanomedicine. Copyright © 2018. Published by Elsevier Ltd.

  12. Contribution To Degradation Study, Behavior Of Unsaturated Polyester Resin Under Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abellache, D.; Lounis, A.; Taiebi, K.

    2010-01-05

    Applications of unsaturated polyester thermosetting resins are numerous in construction sector, in transport, electric spare parts manufactures, consumer goods, and anticorrosive materials. This survey reports the effect of thermosetting polymer degradation (unsaturated polyester): degradation by neutrons irradiation. In order to evaluate the deterioration of our material, some comparative characterizations have been done between standard samples and damaged ones. Scanning electron microscopy (SEM), ultrasonic scanning, hardness test (Shore D) are the techniques which have been used. The exposure to a neutrons flux is carried out in the column of the nuclear research reactor of Draria (Algiers-Algeria). The energetic profile of themore » incidental fluxes is constituted of fast neutrons (PHI{sub R} = 3.10{sup 12} n.cm{sup -2}.s{sup -1}, E = 2 Mev) of thermal neutrons (PHI{sub TH} = 10{sup 13} n.cm{sup -2}.s{sup -1}; E = 0.025 ev) and epithermal neutrons (PHI{sub epi} = 7.10{sup 11} n.cm{sup -2}.s{sup -1}; E>4,9 ev). The received dose flow is 0,4 Kgy. We notice only a few scientific investigations can be found in this field. In comparison with the standard sample (no exposed) it is shown that the damage degree is an increasing process with the exposure. Concerning the description of irradiation effects on polymers, we can advance that several reactions are in competition: reticulation, chain break, and oxidation by radical mechanism. In our case the incidental particle of high energy fast neutrons whose energy is greater or equal to 2 Mev, is braked by the target with a nuclear shock during which the incidental particle transmits a part of its energy to an atom. If the energy transfer is sufficient, the nuclear shock permits to drive out an atom of its site the latter will return positioning interstitially, the energy that we used oversteps probably the energy threshold (displacement energy). This fast neutrons collision with target cores proceeds to an indirect ionization by the preliminary creation of excited secondary species that will generate ionization. Scanning electron microscopy (SEM) performed with an acceleration tension of 0,7 kV shows clearly the caused damage. This observation seems to indicate the presence of major chain breaks for the sample bombarded during 90 minutes. Let us note that the presence of benzenic cores improves behavior toward radiations indeed the chemical function recognized as the most stable to radiations is the aromatic ring. In order to value the rigidity of our material we have determined the Young's modulus . The values are 7.17, 7.60, 8.39 and 8.96 Gpa respectively for blank samples, 30, 60 and 90 minutes exposure ones. Thus, we remark an increase of Young's modulus that can be interpreted in terms of reticulation, provided to use the level of irradiation dose.« less

  13. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... section, partial phosphoric acid esters of polyester resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol followed by reaction of the resin thus produced with phosphoric... characterizing the type of food and under the conditions of time and temperature characterizing the conditions of...

  14. Bio-Based Nanocomposites: An Alternative to Traditional Composites

    ERIC Educational Resources Information Center

    Tate, Jitendra S.; Akinola, Adekunle T.; Kabakov, Dmitri

    2009-01-01

    Polymer matrix composites (PMC), often referred to as fiber reinforced plastics (FRP), consist of fiber reinforcement (E-glass, S2-glass, aramid, carbon, or natural fibers) and polymer matrix/resin (polyester, vinyl ester, polyurethane, phenolic, and epoxies). Eglass/ polyester and E-glass/vinyl ester composites are extensively used in the marine,…

  15. 76 FR 45227 - Initiation of Antidumping and Countervailing Duty Administrative Reviews, Requests for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-28

    ... antidumping duty orders on Certain Polyester Staple Fiber from the People's Republic of China with respect to... Certain Polyester Staple Fiber from the People's Republic of China with respect to two exporters and on... exporter. Period to be reviewed Antidumping Duty Proceedings Japan: Certain Large Diameter Carbon and Alloy...

  16. Microcellular processing of polylactide-hyperbranched polyester-nanoclay composites

    Treesearch

    Srikanth Pilla; Adam Kramschuster; Jungjoo Lee; Craig Clemons; Shaoqin Gong; Lih-Sheng Turng

    2010-01-01

    The effects of addition of hyperbranched polyesters (HBPs) and nanoclay on the material properties of both solid and microcellular polylactide (PLA) produced via a conventional and microcellular injection-molding process, respectively, were investigated. The effects of two different types of HBPs (i.e., Boltorn H2004® and Boltorn H20®) at the same...

  17. 78 FR 17637 - Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-583-833] Polyester Staple Fiber From... staple fiber (PSF) from Taiwan. The period of review (POR) is May 1, 2011, through April 30, 2012. The.... DATES: Effective Date: March 22, 2013. FOR FURTHER INFORMATION CONTACT: Bryan Hansen or Minoo Hatten, AD...

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS, FILTRATION GROUP, AEROSTAR "C-SERIES" POLYESTER PANEL FILTER

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the AeroStar "C-Series" Polyester Panel Filter air filter for dust and bioaerosol filtration manufactured by Filtration Group. The pressure drop across the filter was 126 Pa clean and 267...

  19. THE PHASE BEHAVIOR OF FLUORINATED DIOLS, DIVINYL ADIPATE, AND A FLUORINATED POLYESTER IN SUPERCRITICAL CARBON DIOXIDE. (R828131)

    EPA Science Inventory

    The use of supercritical carbon dioxide as a reaction medium for polyester synthesis is hindered by the low solubility of diols in CO2. However, it has been previously demonstrated that fluorinated compounds can exhibit greater miscibility with carbon dioxide than t...

  20. Effect of polyester blends in hydroentangled raw and bleached cotton nonwoven fabrics on the adsorption of alkyl-dimethyl-benzyl-ammonium chloride

    USDA-ARS?s Scientific Manuscript database

    The adsorption kinetics and isotherms of alkyl-dimethyl-benzyl-ammonium chloride (ADBAC), a cationic surfactant commonly employed as an antimicrobial agent, on hydroentangled nonwoven fabrics (applicable for wipes) including raw cotton, bleached cotton, and their blends with polyester (PES) were stu...

  1. Thread angle dependency on flame spread shape over kenaf/polyester combined fabric

    NASA Astrophysics Data System (ADS)

    Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir

    2017-09-01

    Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.

  2. Damage of polyesters by the atmospheric free radical oxidant NO3 •: a product study involving model systems

    PubMed Central

    Goeschen, Catrin

    2013-01-01

    Summary Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions. PMID:24204400

  3. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions.

    PubMed

    Napper, Imogen E; Thompson, Richard C

    2016-11-15

    Washing clothes made from synthetic materials has been identified as a potentially important source of microscopic fibres to the environment. This study examined the release of fibres from polyester, polyester-cotton blend and acrylic fabrics. These fabrics were laundered under various conditions of temperature, detergent and conditioner. Fibres from waste effluent were examined and the mass, abundance and fibre size compared between treatments. Average fibre size ranged between 11.9 and 17.7μm in diameter, and 5.0 and 7.8mm in length. Polyester-cotton fabric consistently shed significantly fewer fibres than either polyester or acrylic. However, fibre release varied according to wash treatment with various complex interactions. We estimate over 700,000 fibres could be released from an average 6kg wash load of acrylic fabric. As fibres have been reported in effluent from sewage treatment plants, our data indicates fibres released by washing of clothing could be an important source of microplastics to aquatic habitats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Surface quality of unsaturated polyester resin processed via continuous multi-shot rotational molding

    NASA Astrophysics Data System (ADS)

    Ogila, K. O.; Yang, W.; Shao, M.; Tan, J.

    2017-05-01

    Unsaturated Polyester Resin is a versatile and cost efficient thermosetting plastic whose application in rotational molding is currently limited by its relatively high initial viscosity and heat of reaction. These material characteristics result in uneven material distribution, poor surface finish and imperfections in the moldings especially when large wall thicknesses are required. The current work attempts to remedy these shortcomings through the development of a continuous multi-shot system which adds predetermined loads of unsaturated polyester resin into a rotating mold at various intervals. As part of this system, a laboratory-scale uniaxial rotational molding machine was used to produce Unsaturated Polyester Resin moldings in single and double shots. Optimal processing conditions were determined through visual studies, three dimensional microscopic studies, thickness distribution analysis and Fourier Transform Infrared spectroscopy. Volume filling fractions of 0.049-0.065, second shot volumes of 0.5-0.75 from the first shot, rotational speeds of 15-20 rpm and temperatures of 30-50 °C resulted in moldings of suitable quality on both the inner and outer surfaces.

  5. Cationization and gamma irradiation effects on the dyeability of polyester fabric towards disperse dyes

    NASA Astrophysics Data System (ADS)

    Zohdy, Maged H.

    2005-06-01

    The effect of hydrazine hydrate (HZH) treatment and/or gamma irradiation on the dyeing, mechanical and thermal properties of polyester fabrics (PET) was studied. The different factors that may affect the dyeing performance, such as concentrations of HZH, benzyl alcohol and pH values, were investigated. In this regard, the colour strength of untreated polyester fabrics dyed with the dyestuffs Dispersol blue BR, Dispersol orange B2R and Dispersol red B2B was found to be 10.34, 10.76 and 10.12 compared to 24.61, 24.90 and 23.00 in the case of irradiated and HZH-treated polyester fabrics, respectively. These colour strength values were achieved by preirradiation at a dose of 75 kGy followed by treatment with 15 ml l-1 of HZH. Thermogravimetric analysis (TGA) showed that the thermal decomposition stability was improved by using gamma irradiation and the treatment with HZH as indicated by the calculated activation energies. FT-IR spectroscopy showed that the treatment with HZH acts as cationizer prior to dyeing with disperse dyes.

  6. Release of polyester and cotton fibers from textiles in machine washings.

    PubMed

    Sillanpää, Markus; Sainio, Pirjo

    2017-08-01

    Microplastics are widely spread in the environment, which along with still increasing production have aroused concern of their impacts on environmental health. The objective of this study is to quantify the number and mass of two most common textile fibers discharged from sequential machine washings to sewers. The number and mass of microfibers released from polyester and cotton textiles in the first wash varied in the range 2.1 × 10 5 to 1.3 × 10 7 and 0.12 to 0.33% w/w, respectively. Amounts of released microfibers showed a decreasing trend in sequential washes. The annual emission of polyester and cotton microfibers from household washing machines was estimated to be 154,000 (1.0 × 10 14 ) and 411,000 kg (4.9 × 10 14 ) in Finland (population 5.5 × 10 6 ). Due to the high emission values and sorption capacities, the polyester and cotton microfibers may play an important role in the transport and fate of chemical pollutants in the aquatic environment.

  7. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  8. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor

    PubMed Central

    Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong

    2016-01-01

    Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers—wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order—wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke. PMID:26909119

  9. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-04-01

    Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  10. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties

    PubMed Central

    You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong

    2010-01-01

    Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441

  11. Development of Knitted Warm Garments from Speciality Jute Yarns

    NASA Astrophysics Data System (ADS)

    Roy, Alok Nath

    2013-09-01

    Jute-polyester blended core and textured polyester multifilament cover spun-wrapped yarn was produced using existing jute spinning machines. The spun-wrapped yarn so produced show a reduction in hairiness up to 86.1 %, improvement in specific work of rupture up to 9.8 % and specific flexural rigidity up to 23.6 % over ordinary jute-polyester blended yarn. The knitted swatch produced out of these spun-wrapped yarn using seven gauge and nine gauge needle in both single jersey and double jersey knitting machines showed very good dimensional stability even after three washing. The two-ply and three-ply yarn produced from single spun-wrapped yarn can be easily used in knitting machines and also in hand-knitting for the production of sweaters. The thermal insulation value of the sweaters produced with jute-polyester blended spun-wrapped yarn is comparable with thermal insulation value of sweaters made from 100 % acrylic and 100 % wool. However, the hand-knitted sweaters showed higher thermal insulation value than the machine-knitted sweaters due to less packing of yarn in hand knitted structure as compared to machine knitting.

  12. Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio

    2014-07-01

    S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.

  13. Expression of C-type lectin receptor mRNA in chronic otitis media with cholesteatoma.

    PubMed

    Kim, Sang Hoon; Han, Seung-Ho; Byun, Jae Yong; Park, Moon Suh; Kim, Young Il; Yeo, Seung Geun

    2017-06-01

    The levels of expression of various C-type lectin receptors (CLRs) messenger ribo nucleic acids (mRNAs) were significantly higher in cholesteatomas than in normal skin, suggesting that these CLRs may be involved in the pathogenesis of cholesteatoma. Altered expression of pattern recognition receptors may be associated with immune responses in patients with cholesteatoma. This study assessed the levels of expression of CLR mRNAs in normal skin and in cholesteatoma. Cholesteatoma specimens were obtained from 38 patients with acquired cholesteatoma. The levels of expression of various CLR mRNAs were assessed quantitatively using real-time RT-PCR (Reverse transcription polymerase chain reaction) and correlated with age, sex, the presence of bacteria, hearing level, frequency of surgery, and degree of ossicle destruction. The levels of CD206 (cluster of differentiation 206), DEC-205 (Dendritic and epithelial cell-205), MGL (monoacylglycerol lipase), CLEC5A (C-type lectin domain family 5 member A), Dectin-2 (dendrite cell-associated C-type lectin-2), BDCA2 (Blood dendritic cell antigen 2), Mincle, DCIR (dendritic cell immunoreceptor), Dectin-1, MICL (Myeloid inhibitory C type-like lectin), and CLEC12B (C-type lectin domain family 12, member B) mRNAs were significantly higher in cholesteatoma than in control skin samples (p < 0.05). The levels of CLEC5A (C-type lectin domain family 5 member) and Dectin-1 mRNAs were significantly higher in cholesteatomas with ≥2 than ≤1 destroyed ossicles (p < 0.05), and the levels of MGL, Mincle, Dectin-1, and CLEC12B mRNAs were significantly higher in recurrent than initial cholesteatoma specimens (p < 0.05). The level of CLEC5A mRNAs was significantly higher in patients with severe than mild-to-moderate hearing loss (p < 0.05).

  14. Characterization of a Novel Subgroup of Extracellular Medium-Chain-Length Polyhydroxyalkanoate Depolymerases from Actinobacteria

    PubMed Central

    Gangoiti, Joana; Santos, Marta; Prieto, María Auxiliadora; de la Mata, Isabel; Llama, María J.

    2012-01-01

    Nineteen medium-chain-length (mcl) poly(3-hydroxyalkanoate) (PHA)-degrading microorganisms were isolated from natural sources. From them, seven Gram-positive and three Gram-negative bacteria were identified. The ability of these microorganisms to hydrolyze other biodegradable plastics, such as short-chain-length (scl) PHA, poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), and poly(l-lactide) (PLA), has been studied. On the basis of the great ability to degrade different polyesters, Streptomyces roseolus SL3 was selected, and its extracellular depolymerase was biochemically characterized. The enzyme consisted of one polypeptide chain of 28 kDa with a pI value of 5.2. Its maximum activity was observed at pH 9.5 with chromogenic substrates. The purified enzyme hydrolyzed mcl PHA and PCL but not scl PHA, PES, and PLA. Moreover, the mcl PHA depolymerase can hydrolyze various substrates for esterases, such as tributyrin and p-nitrophenyl (pNP)-alkanoates, with its maximum activity being measured with pNP-octanoate. Interestingly, when poly(3-hydroxyoctanoate-co-3-hydroxyhexanoate [11%]) was used as the substrate, the main hydrolysis product was the monomer (R)-3-hydroxyoctanoate. In addition, the genes of several Actinobacteria strains, including S. roseolus SL3, were identified on the basis of the peptide de novo sequencing of the Streptomyces venezuelae SO1 mcl PHA depolymerase by tandem mass spectrometry. These enzymes did not show significant similarity to mcl PHA depolymerases characterized previously. Our results suggest that these distinct enzymes might represent a new subgroup of mcl PHA depolymerases. PMID:22865072

  15. Photo and biocatalytic activities along with UV protection properties on polyester fabric through green in-situ synthesis of cauliflower-like CuO nanoparticles.

    PubMed

    Rezaie, Ali Bashiri; Montazer, Majid; Rad, Mahnaz Mahmoudi

    2017-11-01

    In this paper, a facile environmentally friendly method is introduced for in-situ synthesis and fabrication of cauliflower-like CuO nanoparticles on the polyester fabric to produce photo and biocatalytic activities with UV protection properties on polyester fabric. The ash of burnt leaves and stems of Seidlitzia rosmarinus plant called Keliab was used as a natural and nontoxic alkaline source for simultaneous synthesis of CuO nanoparticles and surface modification of polyester without using any other compounds. The images of field-emission scanning electron microscopy, patterns of energy-dispersive spectroscopy, UV-visible spectrum and X-ray diffraction confirmed successful synthesis and loading of CuO nanoparticles on the polyester fabric. The treated fabrics showed very good antibacterial activities toward two pathogen bacteria including Staphylococcus aureus as a Gram-positive and Escherichia coli as a Gram-negative bacteria with no adverse effects on human dermal fibroblasts based on MTT test. The treated fabrics confirmed significant photocatalytic activity for degradation of methylene blue under sunlight, self-cleaning properties under UV light and also UV protection properties. Further a colorant effect along with an improvement in the wettability and mechanical properties of the treated fabrics were indicated. Overall, this method can be applied as a clean route for producing photo and bio active textiles protecting against UV irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Dipeptide-based polyphosphazene and polyester blends for bone tissue engineering.

    PubMed

    Deng, Meng; Nair, Lakshmi S; Nukavarapu, Syam P; Jiang, Tao; Kanner, William A; Li, Xudong; Kumbar, Sangamesh G; Weikel, Arlin L; Krogman, Nicholas R; Allcock, Harry R; Laurencin, Cato T

    2010-06-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)(1)(phenyl phenoxy)(1)phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2

  17. Comparison of glass vessels and plastic bags for enclosing living plant parts for headspace analysis.

    PubMed

    Stewart-Jones, Alex; Poppy, Guy M

    2006-04-01

    Plants release volatile chemicals into their surrounding air space that can affect the physiology of neighboring plants and influence the behavior of insects. In studying these interactions, it is desirable to collect volatiles from plants that have not been excised and are growing under as natural conditions as possible. We compared a vessel of borosilicate glass and Nylon-6 or polyester [poly(ethyleneterephthalate) or PET] cooking bags for enclosing plants during collection of volatiles. A push-pull airflow system was used, and volatiles were trapped on Tenax TA and analyzed by gas chromatography after thermal desorption. Low levels of impurities were found for the glass vessel and polyester bags. Nylon bags contained higher levels and more impurities. Recoveries of standards of 10 plant volatiles were measured in static and dynamic systems. In a static air system, there was good recovery only from the glass vessel. In a dynamic system, there was generally good recovery from both the glass vessel and polyester bags. Recoveries of alpha-pinene and (Z)-jasmone were poor throughout. The former was shown to have a very low breakthrough volume on the Tenax TA adsorbent, and the latter may be strongly adsorbed on glass. All three materials were essentially transparent in the IR and visible (photosynthetic) range but with significantly different absorptions in the UV range. In a simulated dynamic entrainment in full sunlight, internal vessel temperatures were higher than ambient by up to 9.5 degrees C in the glass vessel and 7.5 degrees C in the polyester bag. Lower increases in temperature relative to ambient (<1 degrees C) were recorded when entrainments were conducted in the shade. In a field trial, the profiles of volatiles collected from an apple tree infested with rosy apple aphid using a glass vessel and a polyester bag were similar. Polyester bags are recommended as more convenient than glass vessels for the enclosure of plants during the collection of volatiles.

  18. White polymer light-emitting diodes based on star-shaped polymers with an orange dendritic phosphorescent core.

    PubMed

    Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo

    2014-12-01

    A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Resolving the chemical nature of nanodesigned silica surface obtained via a bottom-up approach.

    PubMed

    Rahma, Hakim; Buffeteau, Thierry; Belin, Colette; Le Bourdon, Gwenaëlle; Degueil, Marie; Bennetau, Bernard; Vellutini, Luc; Heuzé, Karine

    2013-08-14

    The covalent grafting on silica surfaces of a functional dendritic organosilane coupling agent inserted, in a long alkyl chain monolayer, is described. In this paper, we show that depending on experimental parameters, particularly the solvent, it is possible to obtain a nanodesigned surface via a bottom-up approach. Thus, we succeed in the formation of both homogeneous dense monolayer and a heterogeneous dense monolayer, the latter being characterized by a nanosized volcano-type pattern (4-6 nm of height, 100 nm of width, and around 3 volcanos/μm(2)) randomly distributed over the surface. The dendritic attribute of the grafted silylated coupling agent affords enough anchoring sites to immobilize covalently functional gold nanoparticles (GNPs), coated with amino PEG polymer to resolve the chemical nature of the surfaces and especially the volcano type nanopattern structures of the heterogeneous monolayer. Thus, the versatile surface chemistry developed herein is particularly challenging as the nanodesign is straightforward achieved in a bottom-up approach without any specific lithography device.

  20. Chemistry and technology of radiation processed composite materials

    NASA Astrophysics Data System (ADS)

    Czvikovszky, T.

    Composite materials of synthetics (based on monomers, oligomers and thermoplastics) and of natural polymers (wood and other fibrous cellulosics) prepared by radiation processing, offer valuable structural materials with enhanced coupling forces between the components. The applied polymer chemistry of such composites shows several common features with that of radiation grafting. E.g. the polymerization rate of oligomer-monomer mixtures in wood remains in most cases proportional to the square-root of the initiating dose-rate, just as in the simultaneous grafting, demonstrating that the chain termination kinetics remain regularly bimolecular in the corresponding dose-rate ranges. In the processing experiences of such composites, low dose requirement, easy process-control, and good technical feasibility have been found for composites of wood with oligomer-monomer mixtures, for coconut fibres with unsaturated polyesters and for pretreated wood fibre with polypropylene.

  1. Production of Odd-Carbon Dicarboxylic Acids in Escherichia coli Using an Engineered Biotin–Fatty Acid Biosynthetic Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haushalter, Robert W.; Phelan, Ryan M.; Hoh, Kristina M.

    Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotinmore » and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.« less

  2. Polyester Wax: A New Embedding Medium for the Histopathologic Study of Human Temporal Bones

    PubMed Central

    Merchant, Saumil N.; Burgess, Barbara; O'Malley, Jennifer; Jones, Diane; Adams, Joe C.

    2007-01-01

    Background Celloidin and paraffin are the two common embedding mediums used for histopathologic study of the human temporal bone by light microscopy. Although celloidin embedding permits excellent morphologic assessment, celloidin is difficult to remove, and there are significant restrictions on success with immunostaining. Embedding in paraffin allows immunostaining to be performed, but preservation of cellular detail within the membranous labyrinth is relatively poor. Objectives/Hypothesis Polyester wax is an embedding medium that has a low melting point (37°C), is soluble in most organic solvents, is water tolerant, and sections easily. We hypothesized that embedding in polyester wax would permit good preservation of the morphology of the membranous labyrinth and, at the same time, allow the study of proteins by immunostaining. Methods Nine temporal bones from individuals aged 1 to 94 years removed 2 to 31 hours postmortem, from subjects who had no history of otologic disease, were used. The bones were fixed using 10% formalin, decal-cified using EDTA, embedded in polyester wax, and serially sectioned at a thickness of 8 to 12 μm on a rotary microtome. The block and knife were cooled with frozen CO2 (dry ice) held in a funnel above the block. Sections were placed on glass slides coated with a solution of 1% fish gelatin and 1% bovine albumin, followed by staining of selected sections with hematoxylin and eosin (H&E). Immunostaining was also performed on selected sections using antibodies to 200 kD neurofilament and Na-K-ATPase. Results Polyester wax–embedded sections demonstrated good preservation of cellular detail of the organ of Corti and other structures of the membranous labyrinth, as well as the surrounding otic capsule. The protocol described in this paper was reliable and consistently yielded sections of good quality. Immuno-staining was successful with both antibodies. Conclusion The use of polyester wax as an embedding medium for human temporal bones offers the advantage of good preservation of morphology and ease of immunostaining. We anticipate that in the future, polyester wax embedding will also permit other molecular biologic assays on temporal bone sections such as the retrieval of nucleic acids and the study of proteins using mass spectrometry–based proteomic analysis. PMID:16467713

  3. Polyesters Based on Linoleic Acid for Biolubricant Basestocks: Low-Temperature, Tribological and Rheological Properties.

    PubMed

    Abdullah, Bashar Mudhaffar; Zubairi, Saiful Irwan; Huri, Hasniza Zaman; Hairunisa, Nany; Yousif, Emad; Basu, Roma Choudhury

    2016-01-01

    Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.

  4. Gelatin-Modified Polyurethanes for Soft Tissue Scaffold

    PubMed Central

    Kucińska-Lipka, Justyna; Janik, Helena

    2013-01-01

    Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility. PMID:24363617

  5. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers.

    PubMed

    Lohan, S B; Icken, N; Teutloff, C; Saeidpour, S; Bittl, R; Lademann, J; Fleige, E; Haag, R; Haag, S F; Meinke, M C

    2016-03-30

    Dendritic core-multi shell (CMS) particles are polymer based systems consisting of a dendritic polar polyglycerol polymer core surrounded by a two-layer shell of nonpolar C18 alkyl chains and hydrophilic polyethylene glycol. Belonging to nanotransport systems (NTS) they allow the transport and storage of molecules with different chemical characters. Their amphipihilic character CMS-NTS permits good solubility in aqueous and organic solutions. We showed by multifrequency electron paramagnetic resonance (EPR) spectroscopy that spin-labeled 5-doxyl stearic acid (5DSA) can be loaded into the CMS-NTS. Furthermore, the release of 5DSA from the carrier into the stratum corneum of porcine skin was monitored ex vivo by EPR spectroscopy. Additionally, the penetration of the CMS-NTS into the skin was analyzed by fluorescence microscopy using indocarbocyanine (ICC) covalently bound to the nanocarrier. Thereby, no transport into the viable skin was observed, whereas the CMS-NTS had penetrated into the hair follicles down to a depth of 340 μm ± 82 μm. Thus, it could be shown that the combined application of fluorescence microscopy and multi-frequency EPR spectroscopy can be an efficient tool for investigating the loading of spin labeled drugs to nanocarrier systems, drug release and penetration into the skin as well as the localization of the NTS in the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites

    DTIC Science & Technology

    2001-11-01

    Montmorillonite Composites DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites A. Baran Inceoglu and Ulku Yilmazer Middle East Technical University, Chemical...analysed the nature of the curing agent on structure. Kornmann, Berglund and Giannelis [8] studied nanocomposites based on montmorillonite modified

  7. Speedy Acquisition of Surface-Contamination Samples

    NASA Technical Reports Server (NTRS)

    Puleo, J. R.; Kirschner, L. E.

    1982-01-01

    Biological contamination of large-area surfaces can be determined quickly, inexpensively, and accurately with the aid of a polyester bonded cloth. Cloth is highly effective in removing microbes from a surface and releasing them for biological assay. In releasing contaminants, polyester bonded cloth was found to be superior to other commercial cleanroom cloths, including spun-bound polyamid cloths and cellulose cloths.

  8. Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride tedlar bags

    USDA-ARS?s Scientific Manuscript database

    Whole air sampling using containers such as flexible bags or rigid canisters is commonly used to collect samples of volatile organic compounds (VOC) in air. The objective of this study was to compare the stability of polyester aluminum (PEA) and polyvinyl fluoride (PVF, brand name Tedlar®) bags for ...

  9. Flexible cryogenic conduit

    DOEpatents

    Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph

    1999-01-01

    A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.

  10. A study on the quality control of slow burning polyester

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wang, Yinglei; Yan, Zhengfeng; Yu, Tao

    2018-04-01

    In this paper, the influence of the alcohol/acid mole ratio, reaction temperature, warm-up mode, end-capping, vacuity to the quality of slow burning polyester was studied. The hydroxyl value will increase when the alcohol/acid mole ratio increase, but the acid value and molecular weight will decrease. The molecular weight and molecular weight distribution of the polyester consistent with the designed one can be obtained by stepped heating up. Monobasic alcohol end-capping can be used to control the molecular weight effectively and reduce acid value. Stripping process narrow the molecular weight distribution and reduce the hydroxyl value. Decompression is in favor of the decrease of acid value and increase of the reaction speed to get qualified production.

  11. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.

    PubMed

    Lü, Shiyou; Song, Tao; Kosma, Dylan K; Parsons, Eugene P; Rowland, Owen; Jenks, Matthew A

    2009-08-01

    Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8/LACS1, one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C(24)) were elevated more than 155%. The C(16) cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C(18) monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C(20)-C(30), with highest activity for C(30) acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C(16) but not C(18) cutin monomers are reduced in lacs1, and C(16) acids are the next most preferred acid (behind C(30)) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C(16) monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C(16)) fatty acids for cutin synthesis.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goebel, Carsten, E-mail: goebel.c.1@pg.com; Troutman, John; Hennen, Jenny

    The strong sensitizing potencies of the most important primary intermediates of oxidative hair dyes, p-phenylenediamine (PPD) and p-toluylenediamine (PTD, i.e. 2-methyl-PPD) are well established. They are considered as the key sensitizers in hair dye allergic contact dermatitis. While modification of their molecular structure is expected to alter their sensitizing properties, it may also impair their color performance. With introduction of a methoxymethyl side chain we found the primary intermediate 2-methoxymethyl-p-phenylenediamine (ME-PPD) with excellent hair coloring performance but significantly reduced sensitizing properties compared to PPD and PTD: In vitro, ME-PPD showed an attenuated innate immune response when analyzed for its proteinmore » reactivity and dendritic cell activation potential. In vivo, the effective concentration of ME-PPD necessary to induce an immune response 3-fold above vehicle control (EC3 value) in the local lymph node assay (LLNA) was 4.3%, indicating a moderate skin sensitizing potency compared to values of 0.1 and 0.17% for PPD and PTD, respectively. Finally, assessing the skin sensitizing potency of ME-PPD under consumer hair dye usage conditions through a quantitative risk assessment (QRA) indicated an allergy induction risk negligible compared to PPD or PTD. - Highlights: • Methoxymethyl side chain in p-phenylenediamine reduces its strong skin sensitizing properties. • Reduced protein reactivity and dendritic cell activation. • Reduced skin sensitizing potency in local lymph node assay (LLNA). • Negligible allergy induction risk under hair dye usage conditions.« less

  13. Longitudinal relaxation of initially straight flexible and stiff polymers

    NASA Astrophysics Data System (ADS)

    Dimitrakopoulos, Panagiotis; Dissanayake, Inuka

    2004-11-01

    The present talk considers the relaxation of a single flexible or stiff polymer chain from an initial straight configuration in a viscous solvent. This problem commonly arises when strong flows are turned off in both industrial and biological applications. The problem is also motivated by recent experiments with single biopolymer molecules relaxing after being fully extended by applied forces as well as by the recent development of micro-devices involving stretched tethered biopolymers. Our results are applicable to a wide array of synthetic polymers such as polyacrylamides, Kevlar and polyesters as well as biopolymers such as DNA, actin filaments, microtubules and MTV. In this talk we discuss the mechanism of the polymer relaxation as was revealed through Brownian Dynamics simulations covering a broad range of time scales and chain stiffness. After the short-time free diffusion, the chain's longitudinal reduction at early intermediate times is shown to constitute a universal behavior for any chain stiffness caused by a quasi-steady relaxation of tensions associated with the deforming action of the Brownian forces. Stiff chains are shown to exhibit a late intermediate-time longitudinal reduction associated with a relaxation of tensions affected by the deforming Brownian and the restoring bending forces. The longitudinal and transverse relaxations are shown to obey different laws, i.e. the chain relaxation is anisotropic at all times. In the talk, we show how from the knowledge of the relaxation mechanism, we can predict and explain the polymer properties including the polymer stress and the solution birefringence. In addition, a generalized stress-optic law is derived valid for any time and chain stiffness. All polymer properties which depend on the polymer length are shown to exhibit two intermediate-time behaviors with the early one to constitute a universal behavior for any chain stiffness. This work was supported in part by the Minta Martin Research Fund. The computations were performed on multiprocessor computers provided by the National Center for Supercomputing Applications (NCSA) in Illinois (grant DMR000003), and by an Academic Equipment Grant from Sun Microsystems Inc.

  14. Accelerated healing of cardiovascular textiles promoted by an RGD peptide.

    PubMed

    Tweden, K S; Harasaki, H; Jones, M; Blevitt, J M; Craig, W S; Pierschbacher, M; Helmus, M N

    1995-07-01

    Polytetrafluoroethylene (PTFE) and polyethylene terephthalate (Dacron polyester) fabrics are used extensively in cardiovascular devices, e.g. heart valve sewing cuffs and vascular prostheses. While devices containing these fabrics are generally successful, it is recognized that fabrics cause complications prior to tissue ingrowth due to their thrombogenic nature. A surface active synthetic peptide, called PepTite Coating (PepTite), which was modeled after the cell attachment domain of human fibronectin has been marketed as a biocompatible coating. This peptide stimulates cell attachment through the arginine-glycine-aspartic acid (RGD) sequence. Modification of medical implants with PepTite has been shown to promote ingrowth of surrounding cells into the material leading to better tissue integration, reduced inflammation and reduced fibrotic encapsulation. In this study, polyester and PTFE textiles were modified with PepTite. The effectiveness of this coating in enhancing wound healing was investigated in a simple vascular and cardiac valve model. Our results indicate that the RGD-containing peptide, PepTite, promoted the formation of an endothelial-like cell layer on both polyester and PTFE vascular patches in the dog model. PepTite was also found to promote the formation of a significantly thinner neointima (pannus) on polyester as compared to that on its uncoated control. These results were corroborated in the cardiac valve model in which a greater amount of thin pannus and less thrombus were seen on coated polyester sewing cuffs than on control uncoated cuffs. This research shows the promising tissue response to RGD coated textiles and the potential role of this peptide in material passivation via accelerated healing.

  15. Mechanical properties of three layer glass fibre reinforced unsaturated polyester filled with P84 Polyimide

    NASA Astrophysics Data System (ADS)

    Ibrahim, Nik Noor Idayu Nik; Mamauod, Siti Nur Liyana; Romli, Ahmad Zafir

    2017-12-01

    The glass fibre reinforced orthophthalic unsaturated polyester composite was widely used in the pipeline industry as a replacement to the corroded steel pipes. A filler which possesses high mechanical performance at high temperature; P84 Polyimide used as the particulate reinforcement in the unsaturated polyester matrix system to increase the mechanical performance of the glass fibre reinforced unsaturated polyester. The glass fibre composite laminates were prepared through a hand lay-up technique and fabricated into three layer laminate. Prior to be used as the matrix system in the lamination process, the unsaturated polyester resin was mixed with masterbatch P84 Polyimide at three loadings amount of 1, 3, and 5 wt%. The addition of P84 Polyimide at 1, 3, and 5 wt% increased the tensile properties and flexural properties especially at 1 wt% filler loading. As the filler loading increased, the tensile properties and flexural properties showed decreasing pattern. In the dynamic mechanical analysis, the values of storage modulus were taken at two points; 50 °C and 150 °C which were the storage modulus before and after the glass transition temperature. All storage modulus showed fluctuation trend for both before and after Tg. However, the storage modulus of the filled composite laminates after Tg showed higher values than unfilled composite laminates at all filler loading. Since the P84 Polyimide possesses high thermal stability, the presence of P84 Polyimide inside the composite system had assisted in delaying the Tg. In terms of the filler dispersion, the Cole-Cole plot showed an imperfect semi-circular shape which indicated good filler dispersion.

  16. 75 FR 44224 - Initiation of Antidumping and Countervailing Duty Administrative Reviews and Requests for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... orders on Certain Polyester Staple Fiber from the People's Republic of China (``PRC'') with respect to... Diameter Carbon and Alloy Seamless, 6/1/09-5/31/10 Standard, Line, and Pressure Pipe, A-588-850.... JFE... Republic of China: Certain Polyester Staple Fiber, \\3\\ A-570-905.... 6/1/09-5/31/10 Far Eastern Industries...

  17. Effects of Fiber Finish on Mechanical, Low and High Speed Impact of Glass Fiber Reinforced Composites

    DTIC Science & Technology

    2011-05-12

    For 70 Min Cool Down And De-mold 10Unclassified For Producing Polyester Or Vinyl Ester Composite Specimens Resin Resin Inlet Vacuum Bag Trap Pump Steel...Reinforcement Finish Matrix Fiber Content (%) Hexcel 1581-F12 Heat Burnt (No Finish) PP 71.0 Polyester 70.0 Vinyl ester 66.2 Hexcel 1581-GR Greige ( Starch

  18. Mulching effects of plant fiber and plant fiber-polyester mats combined with fertilizer on loblslly pine seedlings

    Treesearch

    James D. Haywood; John A. Youngquist

    1991-01-01

    In this preliminary study, several mattings, combined with and without fertilizer application, were tested around newly planted loblolly, pine (Pinus taeda L.) seedlings. After 9 months in the field, jute- polyester and jute mats had similar survival rates relitive to controls, but hemlock-po1yvester mats had depressed survival when used in...

  19. The effect of autoclave resterilisation on polyester vascular grafts.

    PubMed

    Riepe, G; Whiteley, M S; Wente, A; Rogge, A; Schröder, A; Galland, R B; Imig, H

    1999-11-01

    polyester grafts are expensive, single-use items. Some manufacturers of uncoated, woven grafts include instructions for autoclave resterilisation to be performed at the surgeon's own request. Others warn against such manipulation. Theoretically, the glass transition point of polyester at 70-80 degrees C and the possible acceleration of hydrolysis suggest that autoclave resterilisation at 135 degrees C might be a problem. a DeBakey Soft Woven Dacron Vascular Prosthesis (Bard) and a Woven Double Velour Dacron Graft (Meadox) were autoclave-resterilised 0 to 20 times, having been weighed before and after sterilisation. Tactile testing was performed. Mechanical properties were examined by probe puncture and single-filament testing, the surface was examined by scanning electron microscopy and the degree of hydrolysis by infra-red spectroscopy. tactile testing revealed a change of feeling with increasing cycles of resterilisation. Investigation of weight, textile strength, single-filament strength, electron microscopy of the surface and infra-red spectroscopy showed no change of the material. changes felt are presumably a surface phenomenon, not measurably affecting strength or chemistry of material after autoclave resterilisation. We therefore feel that it is safe to use once-autoclave-resterilised surplus uncoated polyester grafts, provided that sterility is guaranteed. Copyright 1999 Harcourt Publishers Ltd.

  20. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization.

    PubMed

    Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael

    2005-01-01

    Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.

  1. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.

    PubMed

    Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo

    2017-06-01

    Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.

  2. Microbial Odor Profile of Polyester and Cotton Clothes after a Fitness Session

    PubMed Central

    Callewaert, Chris; De Maeseneire, Evelyn; Kerckhof, Frederiek-Maarten; Verliefde, Arne; Van de Wiele, Tom

    2014-01-01

    Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation. PMID:25128346

  3. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    PubMed

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Development auxiliaries for dyeing polyester with disperse dyes at low temperatures

    NASA Astrophysics Data System (ADS)

    Carrion-Fite, F. J.; Radei, S.

    2017-10-01

    High-molecular weight organic compounds known as carriers are widely used to expedite polyester dyeing at atmospheric pressure at 100 °C. However, carriers are usually poorly biodegradable and can partially plasticize fibres. Also, dyeing at temperatures above 100 °C in the absence of a carrier entails using expensive equipment. In this work, we developed an alternative method for dyeing polyester at temperatures below 100 °C that reduces energy expenses, dispenses with the need to invest in new equipment and avoids the undesirable effects of non-biodegradable carriers. The method uses disperse dyes in a microemulsion containing a low proportion of a non-toxic organic solvent and either of two alternative development auxiliaries (coumarin and o-vanillin) that is prepared with the aid of ultrasound.

  5. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations

    PubMed Central

    Mutlu, Hatice; Montero de Espinosa, Lucas; Türünç, Oĝuz

    2010-01-01

    Summary We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET) polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS. PMID:21160555

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.; Gosser, Y; Baker, P

    Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in an improved hydrolytic activity and altered substratemore » specificity profile, enhanced thermostability, and remarkable reactivity toward the degradation of the synthetic polyester polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties.« less

  7. Degradation of microbial polyesters.

    PubMed

    Tokiwa, Yutaka; Calabia, Buenaventurada P

    2004-08-01

    Microbial polyhydroxyalkanoates (PHAs), one of the largest groups of thermoplastic polyesters are receiving much attention as biodegradable substitutes for non-degradable plastics. Poly(D-3-hydroxybutyrate) (PHB) is the most ubiquitous and most intensively studied PHA. Microorganisms degrading these polyesters are widely distributed in various environments. Although various PHB-degrading microorganisms and PHB depolymerases have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. Distributions of PHB-degrading microorganisms, factors affecting the biodegradability of PHB, and microbial and enzymatic degradation of PHB are discussed in this review. We also propose an application of a new isolated, thermophilic PHB-degrading microorganism, Streptomyces strain MG, for producing pure monomers of PHA and useful chemicals, including D-3-hydroxycarboxylic acids such as D-3-hydroxybutyric acid, by enzymatic degradation of PHB.

  8. Biomimetic polyesters and their role in ion transport across cell membranes.

    PubMed

    Jedliński, Z; Kurcok, P; Adamus, G; Juzwa, M

    2000-01-01

    Syntheses of biomimetic low-molecular weight poly-(R)-3-hydroxybutanoate mediated by three types of supramolecular catalysts are presented. The utility of these synthetic polyesters for preparation of artificial channels in phospholipid bilayers capable of sodium and calcium ion transport across cell membranes, is discussed. Further studies on possible applications of these bio-polymers for manufacturing drugs of prolonged activity are under way.

  9. Maintenance Operations Degradation of Airfield Pavement Markings

    DTIC Science & Technology

    2012-03-01

    polyurea . 1.4 Research Questions To answer the problem presented, several questions need to be addressed. The first is whether or not rubber...suitable for use on airfields.  Further research is required. Cyrus and Frierson 2006 Polyurea  The material showed poor performance in...evaluating polyurea and one evaluating polyester. Both studies were undertaken to evaluate the effectiveness of polyurea or polyester as a potential

  10. The usefulness of a stretch-polyester pouch to encase implanted pacemakers and defibrillators.

    PubMed

    Parsonnet, V; Bernstein, A D; Neglia, D; Omar, A

    1994-12-01

    This study was undertaken to assess the effects of enclosing permanent pacemaker and ICD pulse generators in a stretch-polyester pouch prior to implantation. Follow-up of 223 patients with oversized pacemakers and with ICDs and 344 with standard-sized pacemaker pulse generators showed that the pouch was effective in decreasing the frequency of pulse generator migration and extrusion.

  11. Air Quality Management Using Pollution Prevention: A Joint Service Approach

    DTIC Science & Technology

    1998-03-01

    sites to promote polymerization. High solids coatings may be one or two component systems based on acrylic , alkyd , epoxy, polyester, or urethane...formulation to form high molecular weight polymers. Examples include acrylic , epoxy/polyester hybrid , functional epoxy, thin film epoxy, and urethane...Air Human System Center (HSC/OEBQ) Naval Facilities Engineering Service Center (NFESC) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9

  12. Process for crosslinking and extending conjugated diene-containing polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)

    1977-01-01

    A process using a Diels-Alder reaction which increases the molecular weight and/or crosslinks polymers by reacting the polymers with bisunsaturated dienophiles is developed. The polymer comprises at least 75% by weight based on the reaction product, has a molecular weight of at least 5000 and a plurality of conjugated 1,3-diene systems incorporated into the molecular structure. A dienophile reaction with the conjugated 1,3-diene of the polymer is at least 1% by weight based on the reaction product. Examples of the polymer include polyesters, polyamides, polyethers, polysulfones and copolymers. The bisunsaturated dienophiles may include bis-maleimides, bis maleic and bis tumaric esters and amides. This method for expanding the molecular weight chains of the polymers, preferable thermoplastics, is advantageous for processing or fabricating thermoplastics. A low molecular weight thermoplastic is converted to a high molecular weight plastic having improved strength and toughness for use in the completed end use article.

  13. Physical and structural characterisation of starch/polyester blends with tartaric acid.

    PubMed

    Olivato, J B; Müller, C M O; Carvalho, G M; Yamashita, F; Grossmann, M V E

    2014-06-01

    Starch/PBAT blends were produced by reactive extrusion with tartaric acid (TA) as an additive. The effects of TA, glycerol and starch+PBAT on the mechanical, optical and structural properties of the films were evaluated, with formulations based in a constrained mixture design. Tartaric acid acts as a compatibiliser and promotes the acid hydrolysis of starch chains. These two functions explain the observed film resistance and opacity. TA reduced the weight loss in water. Scanning electron microscopy (SEM) images showed that TA reduces the interfacial tension between the polymeric phases, resulting in more homogeneous films. Nuclear magnetic resonance ((13)C CPMAS) and Fourier transform infrared spectroscopy (FT-IR) suggest that tartaric acid is able to react with the hydroxyl groups of the starch by esterification/transesterification reactions, confirming its role as a compatibiliser. The addition of TA results in materials with better properties that are suitable for use in food packaging. Published by Elsevier B.V.

  14. Multiwalled carbon nanotube coated polyester fabric as textile based flexible counter electrode for dye sensitized solar cell.

    PubMed

    Arbab, Alvira Ayoub; Sun, Kyung Chul; Sahito, Iftikhar Ali; Qadir, Muhammad Bilal; Jeong, Sung Hoon

    2015-05-21

    Textile wearable electronics offers the combined advantages of both electronics and textile characteristics. The essential properties of these flexible electronics such as lightweight, stretchable, and wearable power sources are in strong demand. Here, we have developed a facile route to fabricate multi walled carbon nanotube (MWCNT) coated polyester fabric as a flexible counter electrode (CE) for dye sensitized solar cells (DSSCs). A variety of MWCNT and enzymes with different structures were used to generate individual enzyme-dispersed MWCNT (E-MWCNT) suspensions by non-covalent functionalization. A highly concentrated colloidal suspension of E-MWCNT was deposited on polyester fabric via a simple tape casting method using an air drying technique. In view of the E-MWCNT coating, the surface structure is represented by topologically randomly assembled tubular graphene units. This surface morphology has a high density of colloidal edge states and oxygen-containing surface groups which execute multiple catalytic sites for iodide reduction. A highly conductive E-MWCNT coated fabric electrode with a surface resistance of 15 Ω sq(-1) demonstrated 5.69% power conversion efficiency (PCE) when used as a flexible CE for DSSCs. High photo voltaic performance of our suggested system of E-MWCNT fabric-based DSSCs is associated with high sheet conductivity, low charge transfer resistance (RCT), and excellent electro catalytic activity (ECA). Such a conductive fabric demonstrated stable conductivity against bending cycles and strong mechanical adhesion of E-MWCNT on polyester fabric. Moreover, the polyester fabric is hydrophobic and, therefore, has good sealing capacity and retains the polymer gel electrolyte without seepage. This facile E-MWCNT fabric CE configuration provides a concrete fundamental background towards the development of textile-integrated solar cells.

  15. Effect OF NaOH Treatment on Bending Strength Of The Polyester Composite Reinforce By Sugar Palm Fibers

    NASA Astrophysics Data System (ADS)

    Arif Irfai, Mochamad; Wulandari, Diah; Sutriyono; Marsyahyo, Eko

    2018-04-01

    The objective of this research is to investigate the effect of NaOH treatment on bending strength of lamina composite reinforced by sugar palm fiber. To know of mechanism fracture can be done with visual inspection of the fracture surface. The Materials used are random sugar palm fibers that have been in the treatment of NaOH, polyester resin and hardener. Sugar palm fibers after washed and dried then soaked NaOH with a long time soaking 0, 2, 4, 6 and 8 hours. The bending test specimens were produced according to ASTM D 790. All specimens were post cured at 62°C for 4 hours. The Bending test was carried out on a universal testing machine. The SEM analysis has conducted to provide the analysis on interface adhesion between the surfaces of fiber with the matrix. The result shows that polyester composite reinforced by sugar palm fiber has highest bending stress 176.77 N/mm2 for 2 hours of a long time soaking NaOH, the highest flexural strain 0.27 mm for 2 hours of a long time soaking NaOH, elongation 24.05% for 2 hours of a long time soaking NaOH and the highest bending modulus 1.267 GPa for 2 hours of a long time soaking NaOH. Based on the results, it can be concluded that the polyester composite reinforced by sugar palm fiber has the optimum bending properties for a long time soaking 2 hours. The fracture surface shows that the polyester composite reinforced by sugar palm fiber pull out that indicate weakens the bond between fiber and matrix.

  16. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics.

    PubMed

    De Falco, Francesca; Gullo, Maria Pia; Gentile, Gennaro; Di Pace, Emilia; Cocca, Mariacristina; Gelabert, Laura; Brouta-Agnésa, Marolda; Rovira, Angels; Escudero, Rosa; Villalba, Raquel; Mossotti, Raffaella; Montarsolo, Alessio; Gavignano, Sara; Tonin, Claudio; Avella, Maurizio

    2018-05-01

    A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biochemical and Structural Insights into Enzymatic Depolymerization of Polylactic Acid and Other Polyesters by Microbial Carboxylesterases.

    PubMed

    Hajighasemi, Mahbod; Nocek, Boguslaw P; Tchigvintsev, Anatoli; Brown, Greg; Flick, Robert; Xu, Xiaohui; Cui, Hong; Hai, Tran; Joachimiak, Andrzej; Golyshin, Peter N; Savchenko, Alexei; Edwards, Elizabeth A; Yakunin, Alexander F

    2016-06-13

    Polylactic acid (PLA) is a biodegradable polyester derived from renewable resources, which is a leading candidate for the replacement of traditional petroleum-based polymers. Since the global production of PLA is quickly growing, there is an urgent need for the development of efficient recycling technologies, which will produce lactic acid instead of CO2 as the final product. After screening 90 purified microbial α/β-hydrolases, we identified hydrolytic activity against emulsified PLA in two uncharacterized proteins, ABO2449 from Alcanivorax borkumensis and RPA1511 from Rhodopseudomonas palustris. Both enzymes were also active against emulsified polycaprolactone and other polyesters as well as against soluble α-naphthyl and p-nitrophenyl monoesters. In addition, both ABO2449 and RPA1511 catalyzed complete or extensive hydrolysis of solid PLA with the production of lactic acid monomers, dimers, and larger oligomers as products. The crystal structure of RPA1511 was determined at 2.2 Å resolution and revealed a classical α/β-hydrolase fold with a wide-open active site containing a molecule of polyethylene glycol bound near the catalytic triad Ser114-His270-Asp242. Site-directed mutagenesis of both proteins demonstrated that the catalytic triad residues are important for the hydrolysis of both monoester and polyester substrates. We also identified several residues in RPA1511 (Gln172, Leu212, Met215, Trp218, and Leu220) and ABO2449 (Phe38 and Leu152), which were not essential for activity against soluble monoesters but were found to be critical for the hydrolysis of PLA. Our results indicate that microbial carboxyl esterases can efficiently hydrolyze various polyesters making them attractive biocatalysts for plastics depolymerization and recycling.

  18. Impact behaviour of Napier/polyester composites under different energy levels

    NASA Astrophysics Data System (ADS)

    Fahmi, I.; Majid, M. S. Abdul; Afendi, M.; Haslan, M.; Helmi E., A.; M. Haameem J., A.

    2016-07-01

    The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.

  19. Fracture behavior of glass fiber reinforced polymer composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avci, A.; Arikan, H.; Akdemir, A

    2004-03-01

    Chopped strand glass fiber reinforced particle-filled polymer composite beams with varying notch-to-depth ratios and different volume fractions of glass fibers were investigated in Mode I fracture using three-point bending tests. Effects of polyester resin content and glass fiber content on fracture behavior was also studied. Polyester resin contents were used 13.00%%, 14.75%, 16.50%, 18.00% and 19.50%, and glass fiber contents were 1% and 1.5% of the total weight of the polymer composite system. Flexural strength of the polymer composite increases with increase in polyester and fiber content. The critical stress intensity factor was determined by using several methods such asmore » initial notch depth method, compliance method and J-integral method. The values of K{sub IC} obtained from these methods were compared.« less

  20. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization1

    PubMed Central

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Marion, Didier; Bakan, Bénédicte

    2016-01-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance. PMID:26676255

  1. Ester Cross-Link Profiling of the Cutin Polymer of Wild-Type and Cutin Synthase Tomato Mutants Highlights Different Mechanisms of Polymerization.

    PubMed

    Philippe, Glenn; Gaillard, Cédric; Petit, Johann; Geneix, Nathalie; Dalgalarrondo, Michèle; Bres, Cécile; Mauxion, Jean-Philippe; Franke, Rochus; Rothan, Christophe; Schreiber, Lukas; Marion, Didier; Bakan, Bénédicte

    2016-02-01

    Cuticle function is closely related to the structure of the cutin polymer. However, the structure and formation of this hydrophobic polyester of glycerol and hydroxy/epoxy fatty acids has not been fully resolved. An apoplastic GDSL-lipase known as CUTIN SYNTHASE1 (CUS1) is required for cutin deposition in tomato (Solanum lycopersicum) fruit exocarp. In vitro, CUS1 catalyzes the self-transesterification of 2-monoacylglycerol of 9(10),16-dihydroxyhexadecanoic acid, the major tomato cutin monomer. This reaction releases glycerol and leads to the formation of oligomers with the secondary hydroxyl group remaining nonesterified. To check this mechanism in planta, a benzyl etherification of nonesterified hydroxyl groups of glycerol and hydroxy fatty acids was performed within cutin. Remarkably, in addition to a significant decrease in cutin deposition, mid-chain hydroxyl esterification of the dihydroxyhexadecanoic acid was affected in tomato RNA interference and ethyl methanesulfonate-cus1 mutants. Furthermore, in these mutants, the esterification of both sn-1,3 and sn-2 positions of glycerol was impacted, and their cutin contained a higher molar glycerol-to-dihydroxyhexadecanoic acid ratio. Therefore, in planta, CUS1 can catalyze the esterification of both primary and secondary alcohol groups of cutin monomers, and another enzymatic or nonenzymatic mechanism of polymerization may coexist with CUS1-catalyzed polymerization. This mechanism is poorly efficient with secondary alcohol groups and produces polyesters with lower molecular size. Confocal Raman imaging of benzyl etherified cutins showed that the polymerization is heterogenous at the fruit surface. Finally, by comparing tomato mutants either affected or not in cutin polymerization, we concluded that the level of cutin cross-linking had no significant impact on water permeance. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester

    PubMed Central

    Li-Beisson, Yonghua; Pollard, Mike; Sauveplane, Vincent; Pinot, Franck; Ohlrogge, John; Beisson, Fred

    2009-01-01

    Distinctive nanoridges on the surface of flowers have puzzled plant biologists ever since their discovery over 75 years ago. Although postulated to help attract insect pollinators, the function, chemical nature, and ontogeny of these surface nanostructures remain uncertain. Studies have been hampered by the fact that no ridgeless mutants have been identified. Here, we describe two mutants lacking nanoridges and define the biosynthetic pathway for 10,16-dihydroxypalmitate, a major cutin monomer in nature. Using gene expression profiling, two candidates for the formation of floral cutin were identified in the model plant Arabidopsis thaliana: the glycerol-3-phosphate acyltransferase 6 (GPAT6) and a member of a cytochrome P450 family with unknown biological function (CYP77A6). Plants carrying null mutations in either gene produced petals with no nanoridges and no cuticle could be observed by either scanning or transmission electron microscopy. A strong reduction in cutin content was found in flowers of both mutants. In planta overexpression suggested GPAT6 preferentially uses palmitate derivatives in cutin synthesis. Comparison of cutin monomer profiles in knockouts for CYP77A6 and the fatty acid ω-hydroxylase CYP86A4 provided genetic evidence that CYP77A6 is an in-chain hydroxylase acting subsequently to CYP86A4 in the synthesis of 10,16-dihydroxypalmitate. Biochemical activity of CYP77A6 was demonstrated by production of dihydroxypalmitates from 16-hydroxypalmitate, using CYP77A6-expressing yeast microsomes. These results define the biosynthetic pathway for an abundant and widespread monomer of the cutin polyester, show that the morphology of floral surfaces depends on the synthesis of cutin, and identify target genes to investigate the function of nanoridges in flower biology. PMID:19959665

  3. Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester.

    PubMed

    Li-Beisson, Yonghua; Pollard, Mike; Sauveplane, Vincent; Pinot, Franck; Ohlrogge, John; Beisson, Fred

    2009-12-22

    Distinctive nanoridges on the surface of flowers have puzzled plant biologists ever since their discovery over 75 years ago. Although postulated to help attract insect pollinators, the function, chemical nature, and ontogeny of these surface nanostructures remain uncertain. Studies have been hampered by the fact that no ridgeless mutants have been identified. Here, we describe two mutants lacking nanoridges and define the biosynthetic pathway for 10,16-dihydroxypalmitate, a major cutin monomer in nature. Using gene expression profiling, two candidates for the formation of floral cutin were identified in the model plant Arabidopsis thaliana: the glycerol-3-phosphate acyltransferase 6 (GPAT6) and a member of a cytochrome P450 family with unknown biological function (CYP77A6). Plants carrying null mutations in either gene produced petals with no nanoridges and no cuticle could be observed by either scanning or transmission electron microscopy. A strong reduction in cutin content was found in flowers of both mutants. In planta overexpression suggested GPAT6 preferentially uses palmitate derivatives in cutin synthesis. Comparison of cutin monomer profiles in knockouts for CYP77A6 and the fatty acid omega-hydroxylase CYP86A4 provided genetic evidence that CYP77A6 is an in-chain hydroxylase acting subsequently to CYP86A4 in the synthesis of 10,16-dihydroxypalmitate. Biochemical activity of CYP77A6 was demonstrated by production of dihydroxypalmitates from 16-hydroxypalmitate, using CYP77A6-expressing yeast microsomes. These results define the biosynthetic pathway for an abundant and widespread monomer of the cutin polyester, show that the morphology of floral surfaces depends on the synthesis of cutin, and identify target genes to investigate the function of nanoridges in flower biology.

  4. Chromite in komatiites: 3D morphologies with implications for crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Godel, Bélinda; Barnes, Stephen J.; Gürer, Derya; Austin, Peter; Fiorentini, Marco L.

    2013-01-01

    High-resolution X-ray computed tomography has been carried out on a suite of komatiite samples representing a range of volcanic facies, chromite contents and degrees of alteration and metamorphism, to reveal the wide range of sizes, shapes and degrees of clustering that chromite grains display as a function of cooling history. Dendrites are spectacularly skeletal chromite grains formed during very rapid crystallization of supercooled melt in spinifex zones close to flow tops. At slower cooling rates in the interiors of thick flows, chromite forms predominantly euhedral grains. Large clusters (up to a dozen of grains) are characteristic of liquidus chromite, whereas fine dustings of mostly individual ~20-μm grains form by in situ crystallization from trapped intercumulus liquid. Chromite in coarse-grained olivine cumulates from komatiitic dunite bodies occurs in two forms: as clusters or chains of euhedral crystals, developing into "chicken-wire" texture where chromite is present in supra-cotectic proportions; and as strongly dendritic, semi-poikilitic grains. These dendritic grains are likely to have formed by rapid crescumulate growth from magma that was close to its liquidus temperature but supersaturated with chromite. In some cases, this process seems to have been favoured by nucleation of chromite on the margins of sulphide liquid blebs. This texture is a good evidence for the predominantly cumulus origin of oikocrysts and in situ origin of heteradcumulate textures. Our 3D textural analysis confirms that the morphology of chromite crystals is a distinctive indicator of crystallization environment even in highly altered rocks.

  5. The Fracture of Thermosetting Resins after Exposure to Water.

    DTIC Science & Technology

    1980-09-01

    formaldehyde , urea - formaldehyde and melamine - formaldehyde resins , epoxides, unsaturated polyesters, diallyl phthalate resins , furanes and certain kinds...linked phenol- formaldehyde (27) and epoxy resins (22), but some work on the fracture surfaces of polyesters with varying flexibiliser additions has been...AO0-A099 975 KINGSTON POLYTECHNIC KINGSTON UPON THAMES (ENGLAND) F/G 11/9 THE FRACTURE OF THERMOSETTING RESINS AFTER EXPOSURE TO WATER.(U) SEP 80 6

  6. Fiber Reinforced Polyester Resins Polymerized by Microwave Source

    NASA Astrophysics Data System (ADS)

    Visco, A. M.; Calabrese, L.; Cianciafara, P.; Bonaccorsi, L.; Proverbio, E.

    2007-12-01

    Polyester resin based composite materials are widely used in the manufacture of fiberglass boats. Production time of fiberglass laminate components could be strongly reduced by using an intense energy source as well as microwaves. In this work a polyester resin was used with 2% by weight of catalyst and reinforced with chopped or woven glass fabric. Pure resin and composite samples were cured by microwaves exposition for different radiation times. A three point bending test was performed on all the cured samples by using an universal testing machine and the resulting fracture surfaces were observed by means of scanning electron microscopy (SEM). The results of mechanical and microscopy analyses evidenced that microwave activation lowers curing time of the composite while good mechanical properties were retained. Microwaves exposition time is crucial for mechanical performance of the composite. It was evidenced that short exposition times suffice for resin activation while long exposure times cause fast cross linking and premature matrix fracture. Furthermore high-radiation times induce bubbles growth or defects nucleation within the sample, decreasing composite performance. On the basis of such results microwave curing activation of polyester resin based composites could be proposed as a valid alternative method for faster processing of laminated materials employed for large-scale applications.

  7. Microbial odor profile of polyester and cotton clothes after a fitness session.

    PubMed

    Callewaert, Chris; De Maeseneire, Evelyn; Kerckhof, Frederiek-Maarten; Verliefde, Arne; Van de Wiele, Tom; Boon, Nico

    2014-11-01

    Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites

    NASA Astrophysics Data System (ADS)

    Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.

    2018-04-01

    This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.

  9. Emergent Behaviors from a Cellular Automaton Model for Invasive Tumor Growth in Heterogeneous Microenvironments

    PubMed Central

    Jiao, Yang; Torquato, Salvatore

    2011-01-01

    Understanding tumor invasion and metastasis is of crucial importance for both fundamental cancer research and clinical practice. In vitro experiments have established that the invasive growth of malignant tumors is characterized by the dendritic invasive branches composed of chains of tumor cells emanating from the primary tumor mass. The preponderance of previous tumor simulations focused on non-invasive (or proliferative) growth. The formation of the invasive cell chains and their interactions with the primary tumor mass and host microenvironment are not well understood. Here, we present a novel cellular automaton (CA) model that enables one to efficiently simulate invasive tumor growth in a heterogeneous host microenvironment. By taking into account a variety of microscopic-scale tumor-host interactions, including the short-range mechanical interactions between tumor cells and tumor stroma, degradation of the extracellular matrix by the invasive cells and oxygen/nutrient gradient driven cell motions, our CA model predicts a rich spectrum of growth dynamics and emergent behaviors of invasive tumors. Besides robustly reproducing the salient features of dendritic invasive growth, such as least-resistance paths of cells and intrabranch homotype attraction, we also predict nontrivial coupling between the growth dynamics of the primary tumor mass and the invasive cells. In addition, we show that the properties of the host microenvironment can significantly affect tumor morphology and growth dynamics, emphasizing the importance of understanding the tumor-host interaction. The capability of our CA model suggests that sophisticated in silico tools could eventually be utilized in clinical situations to predict neoplastic progression and propose individualized optimal treatment strategies. PMID:22215996

  10. Galectin-9 Produced by Intestinal Epithelial Cells Enhances Aldehyde Dehydrogenase Activity in Dendritic Cells in a PI3K- and p38-Dependent Manner.

    PubMed

    de Kivit, Sander; Kostadinova, Atanaska I; Kerperien, JoAnn; Ayechu Muruzabal, Veronica; Morgan, Mary E; Knippels, Leon M J; Kraneveld, Aletta D; Garssen, Johan; Willemsen, Linette E M

    2017-01-01

    Intestinal epithelial cells (IEC) drive regulatory T cell (Treg) responses by promoting the differentiation of aldehyde dehydrogenase (ALDH)-expressing CD103+ dendritic cells (DC). Apical stimulation of TLR9 by CpG DNA on IEC supports galectin-9 expression by IEC, which is promoted by short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (GF). While galectin-9 can induce the maturation of monocyte-derived DC (moDC), the contribution of galectin-9 on the induction of ALDH activity in DC is not known. To this end, DC were stimulated with galectin-9, and ALDH activity and the expression of CD103 were assessed. ALDH activity was increased by moDC exposed to galectin-9, while the expression of CD103 remained unaltered. Galectin-9 secreted by IEC apically exposed to CpG DNA and GF enhanced ALDH activity, but not CD103 expression by moDC, which was abrogated upon galectin-9 neutralization. Similar observations were found in murine GM-CSF-cultured bone marrow-derived DC (BMDC). Using Flt3L-cultured BMDC and ex vivo murine splenic DC, it was observed that galectin-9 only enhanced ALDH activity in the presence of GM-CSF in CD103- cells. The induction of ALDH activity in BMDC was dependent on p38 and PI3K signaling. These data indicate a novel role for galectin-9 in modulating innate immunity by inducing ALDH activity in DC. © 2017 S. Karger AG, Basel.

  11. Leishmania Uses Mincle to Target an Inhibitory ITAM Signaling Pathway in Dendritic Cells that Dampens Adaptive Immunity to Infection.

    PubMed

    Iborra, Salvador; Martínez-López, María; Cueto, Francisco J; Conde-Garrosa, Ruth; Del Fresno, Carlos; Izquierdo, Helena M; Abram, Clare L; Mori, Daiki; Campos-Martín, Yolanda; Reguera, Rosa María; Kemp, Benjamin; Yamasaki, Sho; Robinson, Matthew J; Soto, Manuel; Lowell, Clifford A; Sancho, David

    2016-10-18

    C-type lectin receptors sense a diversity of endogenous and exogenous ligands that may trigger differential responses. Here, we have found that human and mouse Mincle bind to a ligand released by Leishmania, a eukaryote parasite that evades an effective immune response. Mincle-deficient mice had milder dermal pathology and a tenth of the parasite burden compared to wild-type mice after Leishmania major intradermal ear infection. Mincle deficiency enhanced adaptive immunity against the parasite, correlating with increased activation, migration, and priming by Mincle-deficient dendritic cells (DCs). Leishmania triggered a Mincle-dependent inhibitory axis characterized by SHP1 coupling to the FcRγ chain. Selective loss of SHP1 in CD11c + cells phenocopies enhanced adaptive immunity to Leishmania. In conclusion, Leishmania shifts Mincle to an inhibitory ITAM (ITAMi) configuration that impairs DC activation. Thus, ITAMi can be exploited for immune evasion by a pathogen and may represent a paradigm for ITAM-coupled receptors sensing self and non-self. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The melanocortin receptor agonist NDP-MSH impairs the allostimulatory function of dendritic cells.

    PubMed

    Rennalls, La'Verne P; Seidl, Thomas; Larkin, James M G; Wellbrock, Claudia; Gore, Martin E; Eisen, Tim; Bruno, Ludovica

    2010-04-01

    As alpha-melanocyte-stimulating hormone (alpha-MSH) is released by immunocompetent cells and has potent immunosuppressive properties, it was determined whether human dendritic cells (DCs) express the receptor for this hormone. Reverse transcription-polymerase chain reaction detected messenger RNA specific for all of the known melanocortin receptors in DCs. Mixed lymphocyte reactions also revealed that treatment with [Nle(4), DPhe(7)]-alpha-MSH (NDP-MSH), a potent alpha-MSH analogue, significantly reduced the ability of DCs to stimulate allogeneic T cells. The expression of various cell surface adhesion, maturation and costimulatory molecules on DCs was also investigated. Although treatment with NDP-MSH did not alter the expression of CD83 and major histocompatibility complex class I and II, the surface expression of CD86 (B7.2), intercellular adhesion molecule (ICAM-1/CD54) and CD1a was reduced. In summary, our data indicate that NDP-MSH inhibits the functional activity of DCs, possibly by down-regulating antigen-presenting and adhesion molecules and that these events may be mediated via the extracellular signal-regulated kinase 1 and 2 pathway.

  13. Application of complex macromolecular architectures for advanced microelectronic materials.

    PubMed

    Hedrick, James L; Magbitang, Teddie; Connor, Eric F; Glauser, Thierry; Volksen, Willi; Hawker, Craig J; Lee, Victor Y; Miller, Robert D

    2002-08-02

    The distinctive features of well-defined, three-dimensional macromolecules with topologies designed to enhance solubility and amplify end-group functionality facilitated nanophase morphologies in mixtures with organosilicates and ultimately nanoporous organosilicate networks. Novel macromolecular architectures including dendritic and star-shaped polymers and organic nanoparticles were prepared by a modular approach from several libraries of building blocks including various generations of dendritic initiators and dendrons, selectively placed to amplify functionality and/or arm number, coupled with living polymerization techniques. Mixtures of an organosilicate and the macromolecular template were deposited, cured, and the phase separation of the organic component, organized the vitrifying organosilicate into nanostructures. Removal of the sacrificial macromolecular template, also denoted as porogen, by thermolysis, yielded the desired nanoporous organosilicate, and the size scale of phase separation was strongly dependent on the chain topology. These materials were designed for use as interlayer, ultra-low dielectric insulators for on-chip applications with dielectric constant values as low as 1.5. The porogen design, chemistry and role of polymer architecture on hybrid and pore morphology will be emphasized.

  14. Structure of a Unimolecular Dendritic Reverse Micelle in Dense CO2 Via Small Angle Scattering

    NASA Astrophysics Data System (ADS)

    Lin, J. S.

    1997-03-01

    Dilute solutions in dense CO2 (5Kpsi and 25 degC) of a unimolecular reverse micelle were studied via small angle x ray scattering (SAXS). The unimolecular micelle was based on a fourth generation poly(propylene imine) dendrimer, functionalized with perfluoropolyether acid fluoride chains. A value of 26 added chains per dendrimer was obtained from other characterization techniques, and this number of chains was fixed in the fitting of the SAXS data to an f-arm star model. The molecular weight ( 33.5K g mol-1) agreed well with estimates from other techniques. The observed negative second virial coefficient, A2 = -1.2 x 10-4 cm^3 g-2 mol, correlates with prior observations, as does the observed radius of gyration, Rg = 32ÅSponsors: Div. of Mat. Sci., Basic Energy Sc., USDOE, contract DE-AC05-96OR22464, Oak Ridge Nat. Lab., managed by Lockheed Martin Energy Research Corp.; The Royal Commission for the Exhibition of 1851; National Science Foundation; Consortium for the Sythesis and Processing of Polymeric Materials in Carbon Dioxide.

  15. Interactions between F-111 Fuselage Fuel Tank Sealants. Part I. Characterisation of Polyester Sealants and their Hydrolytic Degradation Products,

    DTIC Science & Technology

    1983-12-01

    maleic acid , adipic acid , azelaic acid and suberic acid . To ensure complete esterification during the exhaustive degradation reactions, an...spectroscopic techniques. Major components were shown to be sebacic acid and neopentyl glycol. The most significant difference between the two polyester...and acid equivalent weights of the prepolymers, their hydrolysis products and hydrolysed cured sealants were determined to assess extent of degradation

  16. Weathering Tests on Protective Helmets Approved to Australian Standard AS 1698 (for Vehicle Users).

    DTIC Science & Technology

    1979-11-01

    Expanded Polystyrene HELMETI Colour Production; SAA Size ,Length Width j Mass Circumference Date Serial No. cm imm mm nu qm nun L A White July 󈨒 B535336...HELMET DETAILS Make: ARAI Model: S-75 Shell: Fibreglass Reinforced Polyester Resin Liner: Expanded Polystyrene HELMET Colour Production SAA Size...Reinforced Polyester Resin Liner; Expanded Polystyrene (with thin plastic inner shell) HELMET Colour Production’ SAA Size Length Width Mass

  17. Effect of Manufacturing Method to Tensile Properties of Hybrid Composite Reinforced by Natural (Agel Leaf Fiber) and Glass Fibers

    NASA Astrophysics Data System (ADS)

    Nugroho, A.; Abdurohman, K.; Kusmono; Hestiawan, H.; Jamasri

    2018-04-01

    This paper described the effect of different type of manufacturing method to tensile properties of hybrid composite woven agel leaf fiber and glass fiber as an alternative of LSU structure material. The research was done by using 3 ply of woven agel leaf fiber (ALF) and 3 ply of glass fiber (wr200) while the matrix was using unsaturated polyester. Composite manufacturing method used hand lay-up and vacuum bagging. Tensile test conducted with Tensilon universal testing machine, specimen shape and size according to standard size ASTM D 638. Based on tensile test result showed that the tensile strength of agel leaf fiber composite with unsaturated polyester matrix is 54.5 MPa by hand lay-up and 84.6 MPa with vacuum bagging method. From result of tensile test, hybrid fiber agel composite and glass fiber with unsaturated polyester matrix have potential as LSU structure.

  18. Investigation of electrically conducting yarns for use in textile actuators

    NASA Astrophysics Data System (ADS)

    Martinez, Jose G.; Richter, Klaus; Persson, Nils-Krister; Jager, Edwin W. H.

    2018-07-01

    Textile actuators are an emerging technology to develop biomimetic actuators with synergetic actuation. They are composed of a passive fabric coated with an electroactive polymer providing with mechanical motion. Here we used different conducting yarns (polyamide + carbon, silicon + carbon, polyamide + silver coated, cellulose + carbon, polyester + 2 × INOX 50 μm, polyester + 2 × Cu/Sn and polyester + gold coated) to develop such textile actuators. It was possible to coat them through direct electrochemical methods, which should provide with an easier and more cost-effective fabrication process. The conductivity and the electrochemical properties of the yarns were sufficient to allow the electropolymerization of the conducting polymer polypyrrole on the yarns. The electropolymerization was carried out and both the linear and angular the actuation of the yarns was investigated. These yarns may be incorporated into textile actuators for assistive prosthetic devices easier and cheaper to get and at the same time with good mechanical performance are envisaged.

  19. Impact behaviour of Napier/polyester composites under different energy levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahmi, I., E-mail: fahmi-unimap@yahoo.com; Majid, M. S. Abdul, E-mail: shukry@unimap.edu.my; Afendi, M., E-mail: afendirojan@unimap.edu.my

    2016-07-19

    The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energymore » levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.« less

  20. Nickel-titanium wire as a flexor tendon suture material: an ex vivo study.

    PubMed

    Karjalainen, T; Göransson, H; Viinikainen, A; Jämsä, T; Ryhänen, J

    2010-07-01

    Nickel-titanium shape memory alloy (NiTi) is a new suture material that is easy to handle, is strong, and biocompatible. The purpose of this study was to evaluate the material properties and biomechanical behaviour of 150 microm and 200 microm NiTi wires in flexor tendon repair. Braided polyester (4-0 Ethibond) was used as control. Fifty fresh-frozen porcine flexor tendons were repaired using the Pennington modification of the Kessler repair or a double Kessler technique. NiTi wires were stiffer and reached higher tensile strength compared to braided polyester suture. Repairs with 200 microm NiTi wire had a higher yield force, ultimate force and better resistance to gapping than 4-0 braided polyester repairs. Repairs made with 200 microm NiTi wire achieved higher stiffness and ultimate force than repairs made with 150 microm NiTi wire.

  1. Evaluation of suture material characteristics in an in vitro experimental model.

    PubMed

    Justan, I

    2010-01-01

    The purpose of our study was to indentify the mechanical characteristics of various suture materials. We created an in-vitro experimental flexor tendon model. Materials were divided into four groups: monofilament polypropylene non-absorbable material (group 1); monofilament long-term absorbable material (group 2); polyester multifilament non-absorbable coated material (group 3) and polyester multifilament non-absorbable uncoated material (group 4). We performed 135 tests. The mean maximal tensile strength was 62.92 N in group 1, 75.20 N in group 2, 36.38 N in group 3 and 72.4 N in group 4. Elasticity in millimetres was adjusted at the 35N level: group 1:2.01 mm, group 2:2.18 mm, group 3:2.14 and group 4:1.51 mm. With regard to its elasticity and favourable SD for tensile strength measurements, polyester multifilament non-absorbable uncoated material was considered to be the most suitable material.

  2. Thermal and mechanical behaviour of sub micron sized fly ash reinforced polyester resin composite

    NASA Astrophysics Data System (ADS)

    Nantha Kumar, P.; Rajadurai, A.; Muthuramalingam, T.

    2018-04-01

    The utilization of particles reinforced resin matrix composites is being increased owing to its lower density and high strength to weight ratio. In the present study, an attempt has been made to synthesize fly ash particles reinforced polyester resin composite for engine cowling application. The thermal stability and mechanical behaviours such as hardness and flexural strength of the composite with 2, 3 and 4 weight % of reinforcement is studied and analyzed. The thermo gravimetric analysis indicates that the higher addition of reinforcement increases the decomposition temperature due to its refractory nature. It is also observed that the hardness increases with higher filler addition owing to the resistance of FA particles towards penetration. The flexural strength is found to increase up to the addition of 3% of FA particles, whereas the polyester resin composite prepared with 4% FA particles addition is observed to have low flexural strength owing to agglomeration of particles.

  3. Pyroglyphid mites, xerophilic fungi and allergenic activity in dust from hospital mattresses.

    PubMed

    v d Lustgraaf, B; Jorde, W

    1977-12-01

    Dust from mattresses of different composition and age was analysed for mites, xerophilic fungi and allergenic activity. The mites of the genus Demodex were the most abundant (58.2 per cent). Also pyroglyphid mites occurred commonly (36.6 per cent). Pyroglyphid mites were present in small numbers (mean: 1 specimen/0.2 g of dust) in 12 out of the 17 older polyester-foam mattresses. The 11 cotton-horsechair mattresses and the newly used polyester-foam mattresses (three tested) were without them. The dust from the cotton-horsehair mattresses had a significantly higher allergenic activity than from those of polyester-foam. Xerophilic fungi were isolated in three out of 31 mattresses. The species isolated belonged to the genus Aspergillus and Eurotium. E. repens occurred most frequently. Disinfection of mattresses was suggested to have a negative influence on the occurrence of mites and fungi.

  4. Study of the effect of surface treatment of kenaf fibre on mechanical properties of kenaf filled unsaturated polyester composite

    NASA Astrophysics Data System (ADS)

    Salem, I. A. S.; Rozyanty, A. R.; Betar, B. O.; Adam, T.; Mohammed, M.; Mohammed, A. M.

    2017-10-01

    In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. Tensile strength of untreated UP/KF composites was found to be higher for 40 wt% loading of kenaf fiber. The highest tensile strength value was obtained after treatment with 0.4 wt% concentration of stearic acid at 56 MPa and tensile modulus was at 2409 MPa. From the flexural strength result obtained, it is clearly seen that 40 wt% loading of kenaf fiber and treatment with 0.4 wt% concentration of stearic acid give the highest value at 72 MPa and flexural modulus at 3929 MPa.

  5. Pre-Flight Advanced Clothing Study

    NASA Technical Reports Server (NTRS)

    Orndoff, Evelyne; Poritz, Darwin; Schlesinger, Thilini; Byme, Vicky

    2014-01-01

    All human space missions require significant logistical mass and volume that will become an excessive burden for long duration missions beyond low Earth orbit. The current International Space Station (ISS) crew wardrobe has already evolved not only to reduce some of the logistical burden but also to address crew preference. The present study was undertaken to find ways further to reduce this logistical burden while examining human response to different types of clothes. The primary objective of the study is to measure how long people can wear the same exercise garment, depending on the type of fabric and the presence of antimicrobial treatment. The secondary objective is to assess the reasons for length of wear from perceptions of clothing characteristics, including nine ordinal scales. Cardiovascular exercise was chosen as the activity in this experiment for its profuse sweating effect and because it is considered a more severe treatment applied to the clothes than every-day usage. Study garments were exercise T-shirts and shorts purchased from various vendors. Fabric construction, fabric composition, and finishing treatment were defined as the key variables. A web-based questionnaire was used for self-reported data collection. The study was divided in three balanced experiments: a cotton-polyester-wool (CPW) T-shirts study with 61 participants, a polyester-modacrylic-polyester/cocona (PMC) T-shirts study with 40 participants, and a shorts study with 70 participants. In the CPW study, the T-shirts were made of 100% cotton, or of 100% polyester or of 100% wool, and categorized into open and tight knit constructions. In the PMC study, the T-shirts were made of 100% polyester, or of 82% modacrylic, or of 95% polyester with 5% cocona fiber, without construction distinction. The shorts were made either of 100% cotton or of 100% polyester, and were knitted or woven. Some garments were treated with Bio-Protect 500 antimicrobial finish according the experimental design. The data collected from the questionnaire included garment identification, level of exertion, duration of exercise session, number of exercise sessions, an ordinal preference scale for nine sensory elements, and reason for retiring a used garment. From the analysis of the combined CPW and PMC shirt studies, there are statistically significant differences among the mean lifetimes of various types of shirts. The exercise shirts with the longest mean lifetimes are untreated wool (600 minutes), treated cotton (526 minutes), and untreated modacrylic (515 minutes). From the combined CPW and PMC shirt studies, the most preferred material was untreated open-knit wool, which is one of the two materials that jointly were worn the longest, untreated wool, both open-knit and tight-knit. For the CP shorts study, there were no statistically significant differences in mean lifetimes of the exercise shorts at the 5% significance level due to the treatment combinations. There was therefore no justification to examine differences among levels of main effects or interactions. The preference for shorts was in this order: untreated woven polyester, untreated knitted polyester, untreated woven cotton, and treated knitted cotton.The nine preference scales were tabulated to determine the preference responses at the end of those exercise periods which were prior to the period when a garment was retired and a new garment was started. The assumption is that an unfavorable assessment of a garment leads to its retirement. The scent scale response was predominantly unfavorable at the end of the exercise period immediately prior to the exercise period when a new garment was started. Additional work on wool clothing is needed to assess if this material can be part of a crew wardrobe for long duration missions. The results of this study informed the choice of fabrics for an upcoming ISS intra-vehicular clothing study.

  6. Storage, Preservation, and Recovery of Magnetic Recording Tape

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.

    1994-01-01

    During the 1970's, a commercial magnetic recording tape fabricated with magnetic oxide particles, and with oxide and backcoat binders made from polyester urethane was being used for spacecraft tape recorders, and which would periodically manifest operational problems such as layer-to-layer adhesion, stick-slip, and shedding of sticky organic materials. These problems were generally associated with periods of high humidity. An experimental study identified that these problems resulted from hydrolysis of the polyester urethane binders.

  7. Dynamic-compliance and viscosity of PET and PEN

    NASA Astrophysics Data System (ADS)

    Weick, Brian L.

    2016-05-01

    Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.

  8. Dynamic-compliance and viscosity of PET and PEN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weick, Brian L.

    Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.

  9. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  10. A sustainable slashing industry using biodegradable sizes from modified soy protein to replace petro-based poly(vinyl alcohol).

    PubMed

    Zhao, Yi; Zhao, Yuzhu; Xu, Helan; Yang, Yiqi

    2015-02-17

    Biodegradable sizing agents from triethanolamine (TEA) modified soy protein could substitute poly(vinyl alcohol)(PVA) sizes for high-speed weaving of polyester and polyester/cotton yarns to substantially decrease environmental pollution and impel sustainability of textile industry. Nonbiodegradable PVA sizes are widely used and mainly contribute to high chemical oxygen demand (COD) in textile effluents. It has not been possible to effectively degrade, reuse or replace PVA sizes so far. Soy protein with good biodegradability showed potential as warp sizes in our previous studies. However, soy protein sizes lacked film flexibility and adhesion for required high-speed weaving. Additives with multiple hydroxyl groups, nonlinear molecule, and electric charge could physically modify secondary structure of soy protein and lead to about 23.6% and 43.3% improvement in size adhesion and ability of hair coverage comparing to unmodified soy protein. Industrial weaving results showed TEA-soy protein had relative weaving efficiency 3% and 10% higher than PVA and chemically modified starch sizes on polyester/cotton fabrics, and had relative weaving efficiency similar to PVA on polyester fabrics, although with 3- 6% lower add-on. In addition, TEA-soy sizes had a BOD5/COD ratio of 0.44, much higher than 0.03 for PVA, indicating that TEA-soy sizes were easily biodegradable in activated sludge.

  11. The Influence of the Environment and Clothing on Human Exposure to Ultraviolet Light

    PubMed Central

    Liu, Jin; Zhang, Wei

    2015-01-01

    Objection The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. Methods The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. Results (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth’s surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Conclusion Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution. PMID:25923778

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, R.C.; Garard, R.J.; Lokhandwala, K.K.

    The crush behavior (specific energy absorption and crush load stability) of unidirectional fiber composite rods having tougher matrices than vinyl ester were investigated and compared with the crush behavior of similar specimens having a vinyl ester matrix. The matrices were a cyclic polyester and two rubber-toughened vinyl esters. The specific energy absorption with the cyclic polyester matrix, 180 MJ/m{sup 3}, was slightly lower than that with the vinyl ester matrix, 230 MJ/m{sup 3}. On the other hand, the crush stability was markedly better. The average deviation of the crush load about the mean was as small as 3.5% with themore » cyclic polyester matrix, in contrast to about 12% with the vinyl ester matrix. The higher ductility of the cyclic polyester and the good fiber-matrix bond strength together resulted in less fracturing of the matrix and more uniform kink-band formation across the composite cross section than occurred with the vinyl ester matrix. There was also a reduction in the tendency for fibers at the periphery of the rod to splay outward rather than being crushed. Of the two rubber-toughened vinyl ester matrices, a 30% reduction was found in the average deviation of the crush load about the mean with the matrix toughened with a core-shell material, although no improvement was found with the CTBN rubber-modified vinyl ester resin.« less

  13. Analytical approaches to identify potential migrants in polyester-polyurethane can coatings.

    PubMed

    Louise Bradley, Emma; Driffield, Malcolm; Guthrie, James; Harmer, Nick; Thomas Oldring, Peter Kenneth; Castle, Laurence

    2009-12-01

    The safety of a polyester-polyurethane can coating has been assessed using a suite of complementary analytical methods to identify and estimate the concentrations of potential chemical migrants. The polyester was based on phthalic acids and aliphatic diols. The polyisocyanate cross-linking agent was 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane homopolymer (IPDI) blocked with methylethylketone oxime (MEKO) to make a one-part formulation. The overall migrate, obtained using solvent extraction of cured films, comprised almost completely of 12 cyclic and one linear polyester oligomer up to molecular weight 800 and containing up to six monomer units. These 13 oligomers covered a total of 28 isomeric forms. Other minor components detected were plasticisers and surfactants as well as impurities present in the starting materials. There was no detectable residue of either the blocked isocyanate (<0.01 microg/dm(2)) used as the starting substance or the unblocked isocyanate (<0.02 microg/dm(2)). The level of extractable IPDI was used as an indicator of the completeness of cure in experimental coatings. These studies revealed that there was an influence of time, temperature and catalyst content. Polymerisation was also influenced by the additives used and by the ageing of the wet coating formulation over several months. These studies allow parameters to be specified to ensure that commercial production coatings receive a full cure giving low migration characteristics.

  14. The influence of the environment and clothing on human exposure to ultraviolet light.

    PubMed

    Liu, Jin; Zhang, Wei

    2015-01-01

    The aim of this study is to determine the effect of clothing and the environment on human exposure to ultraviolet light. The ultraviolet (ultraviolet A and ultraviolet B) light intensity was measured, and air quality parameters were recorded in 2014 in Beijing, China. Three types of clothing (white polyester cloth, pure cotton white T-shirt, and pure cotton black T-shirt) were individually placed on a mannequin. The ultraviolet (ultraviolet A and ultraviolet B) light intensities were measured above and beneath each article of clothing, and the percentage of ultraviolet light transmission through the clothing was calculated. (1) The ultraviolet light transmission was significantly higher through white cloth than through black cloth; the transmission was significantly higher through polyester cloth than through cotton. (2) The weather significantly influenced ultraviolet light transmission through white polyester cloth; transmission was highest on clear days and lowest on overcast days (ultraviolet A: P=0.000; ultraviolet B: P=0.008). (3) Air quality parameters (air quality index and particulate matter 2.5 and 10) were inversely related to the ultraviolet light intensity that reached the earth's surface. Ultraviolet B transmission through white polyester cloth was greater under conditions of low air pollution compared with high air pollution. Clothing color and material and different types of weather affected ultraviolet light transmission; for one particular cloth, the transmission decreased with increasing air pollution.

  15. Regulation of dendrite growth and maintenance by exocytosis

    PubMed Central

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    ABSTRACT Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop–exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments. PMID:26483382

  16. Three-Dimensional Dendrite Growth Within the Shrouds of Single Crystal Blades of a Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Wu, Zining; Huang, Can; Ma, Dexin; Jakumeit, Jürgen; Bührig-Polaczek, Andreas

    2017-12-01

    The effect of withdrawal rates on the three-dimensional dendrite growth within the shrouds of single crystal blades during directional solidification was studied by both experiments and numerical simulations. The results showed that at given withdrawal rates, the dendrite pattern within the shrouds comprised three zones: primary dendrite zone, secondary dendrite spread zone, and a higher-order dendrite branched zone. With increasing withdrawal rate, the average primary dendrite arm spacing in the primary dendrite zone and the average secondary dendrite arm spacings in both the secondary dendrite spread zone and the higher-order dendrite branched zone were reduced. Independent of the variation in withdrawal rate, two analogous dendrite growth routes were observed within the shrouds of the employed blade geometry. These routes originated from the primary dendrites in the primary dendrite zone and filled in the shrouds by directly spreading secondary or successively branching higher-order dendrites. Except for a withdrawal rate of 6 mm min-1, these dendrites impinged at the shroud's highest extremity and could be explained by the simulated moving isotherms. As the withdrawal rate was increased to 2.5 mm min-1, undercooling and contraction stress-related equiaxed grains were observed in the interdendritic region at the lowest shroud extremity. With increasing withdrawal rate, the amount of the defects was increased. Since the defects destroy the integrity of single crystal blades, the solidification condition within the shroud should be controlled to avoid their occurrence. Along the dendrite growth route, an accumulated misorientation of the dendrites was observed. At the same positions, this accumulation increased with increasing withdrawal rate.

  17. Gating, modulation and subunit composition of voltage-gated K+ channels in dendritic inhibitory interneurones of rat hippocampus

    PubMed Central

    Lien, Cheng-Chang; Martina, Marco; Schultz, Jobst H; Ehmke, Heimo; Jonas, Peter

    2002-01-01

    GABAergic interneurones are diverse in their morphological and functional properties. Perisomatic inhibitory cells show fast spiking during sustained current injection, whereas dendritic inhibitory cells fire action potentials with lower frequency. We examined functional and molecular properties of K+ channels in interneurones with horizontal dendrites in stratum oriens-alveus (OA) of the hippocampal CA1 region, which mainly comprise somatostatin-positive dendritic inhibitory cells. Voltage-gated K+ currents in nucleated patches isolated from OA interneurones consisted of three major components: a fast delayed rectifier K+ current component that was highly sensitive to external 4-aminopyridine (4-AP) and tetraethylammonium (TEA) (half-maximal inhibitory concentrations < 0.1 mm for both blockers), a slow delayed rectifier K+ current component that was sensitive to high concentrations of TEA, but insensitive to 4-AP, and a rapidly inactivating A-type K+ current component that was blocked by high concentrations of 4-AP, but resistant to TEA. The relative contributions of these components to the macroscopic K+ current were estimated as 57 ± 5, 25 ± 6, and 19 ± 2 %, respectively. Dendrotoxin, a selective blocker of Kv1 channels had only minimal effects on K+ currents in nucleated patches. Coapplication of the membrane-permeant cAMP analogue 8-(4-chlorophenylthio)-adenosine 3′:5′-cyclic monophosphate (cpt-cAMP) and the phosphodiesterase blocker isobutyl-methylxanthine (IBMX) resulted in a selective inhibition of the fast delayed rectifier K+ current component. This inhibition was absent in the presence of the protein kinase A (PKA) inhibitor H-89, implying the involvement of PKA-mediated phosphorylation. Single-cell reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed a high abundance of Kv3.2 mRNA in OA interneurones, whereas the expression level of Kv3.1 mRNA was markedly lower. Similarly, RT-PCR analysis showed a high abundance of Kv4.3 mRNA, whereas Kv4.2 mRNA was undetectable. This suggests that the fast delayed rectifier K+ current and the A-type K+ current component are mediated predominantly by homomeric Kv3.2 and Kv4.3 channels. Selective modulation of Kv3.2 channels in OA interneurones by cAMP is likely to be an important factor regulating the activity of dendritic inhibitory cells in principal neurone-interneurone microcircuits. PMID:11790809

  18. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an automated fiber placement machine and the successful fabrication of a carbon fiber plate with an integrated microvascular channel is demonstrated.

  19. The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/ epoxy on low velocity impact response of a composite plate

    NASA Astrophysics Data System (ADS)

    Al-Maharma, A. Y.; Sendur, P.

    2018-05-01

    In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.

  20. Liquid crystal polyester thermosets

    DOEpatents

    Benicewicz, Brian C.; Hoyt, Andrea E.

    1992-01-01

    The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.

  1. Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices.

    PubMed

    Santer, Roger D

    2017-03-01

    Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated 'tiny targets' have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the calculation of fly photoreceptor excitations are available with this paper, and the ways in which these and photoreceptor-based models of attraction can provide colorimetric values for the engineering of more-attractively coloured polyester fabrics are discussed.

  2. Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices

    PubMed Central

    2017-01-01

    Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated ‘tiny targets’ have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the calculation of fly photoreceptor excitations are available with this paper, and the ways in which these and photoreceptor-based models of attraction can provide colorimetric values for the engineering of more-attractively coloured polyester fabrics are discussed. PMID:28306721

  3. Pattern of cytokine receptors expressed by human dendritic cells migrated from dermal explants.

    PubMed Central

    Larregina, A T; Morelli, A E; Kolkowski, E; Sanjuan, N; Barboza, M E; Fainboim, L

    1997-01-01

    Different reasons account for the lack of information about the expression of cytokine receptors on human dendritic cells (DC): (a) DC are a trace population; (b) the proteolytic treatment used to isolate DC may alter enzyme-sensitive epitopes; and (c) low numbers of receptors per cell. In the present work the expression of cytokine receptors was analysed by flow cytometry on the population of dermal DC (DDC) that spontaneously migrate from short-term culture dermal explants. DDC obtained after dermal culture were CD1alow, CD1b+, CD1c+, human leucocyte antigen (HLA)-DR+, CD11chigh, CD11b+ and CD32+. The DC lineage was confirmed by ultrastructural analysis. DDC expressed interleukin (IL)-1R type 1 (monoclonal antibody (mAb) hIL-1R1-M1; and 6B5); IL-1R type 2 (mAb hIL-1R2-M22); IL-2R alpha chain (mAb anti-Tac; and hIL-2R-M1) and IL-2R gamma chain (mAb 3B5; and AG14C). DDC did not stain for IL-2R beta chain using four mAbs recognizing two different epitopes of IL-2R beta (mAb 2R-B; Mik-beta 1; and CF1; Mik-beta 3, respectively). DDC were also positive for the cytokine binding chains (alpha chains) of IL-3R (mAb 9F5); IL-4R (mAb hIL-4R-M57; and S456C9); and IL-7R (mAb hIL-7R-M20; and R3434). DDC showed low levels of IL-6R alpha chain (mAb B-F19; B-R6; and B-E23) and its signal transducer gp130 (mAb A2; and B1). DDC strongly expressed interferon-gamma receptor (IFN-gamma R) (mAb GIR-208) and were negative for IL-8R (mAb B-G20; and B-F25). All DDC were highly positive for granulocyte-macrophage colony-stimulating factor receptor (GM-CSFR) alpha chain (mAb hGM-CSFR-M1; SC06; SC04, and 8G6) and to a lesser extent for the common beta chain of GM-CSFR, IL-3R and IL-5R (mAb 3D7). On the other hand, reactivity was not found for granulocyte colony-stimulating factor receptor (G-CSFR) (mAb hGCSFR-M1) nor macrophage colony-stimulating factor receptor (M-CSFR) (mAb 7-7A3-17) confirming the DC lineage of DDC. As previously reported for lymphoid DC, DDC expressed tumour necrosis factor receptort (TNFR) 75000 MW (mAb utr-1; hTNFR-M1; and MR2-1) but lacked TNFR 55000 MW (mAb htr-9; MR1-1; and MR1-2). In summary, DDC express receptors for a broad panel of cytokines, even receptors for cytokines whose effects on DC are still unknown (i.e. IL-2R alpha gamma; IL-6R alpha/gp 130; IL-7R alpha gamma). Images Figure 1 PMID:9227332

  4. Critical Role for Interferon Regulatory Factor 3 (IRF-3) and IRF-7 in Type I Interferon-Mediated Control of Murine Norovirus Replication

    PubMed Central

    Thackray, Larissa B.; Duan, Erning; Lazear, Helen M.; Kambal, Amal; Schreiber, Robert D.; Diamond, Michael S.

    2012-01-01

    Human noroviruses (HuNoV) are the major cause of epidemic, nonbacterial gastroenteritis in the world. The short course of HuNoV-induced symptoms has implicated innate immunity in control of norovirus (NoV) infection. Studies using murine norovirus (MNV) confirm the importance of innate immune responses during NoV infection. Type I alpha and beta interferons (IFN-α/β) limit HuNoV replicon function, restrict MNV replication in cultured cells, and control MNV replication in vivo. Therefore, the cell types and transcription factors involved in antiviral immune responses and IFN-α/β-mediated control of NoV infection are important to define. We used mice with floxed alleles of the IFNAR1 chain of the IFN-α/β receptor to identify cells expressing lysozyme M or CD11c as cells that respond to IFN-α/β to restrict MNV replication in vivo. Furthermore, we show that the transcription factors IRF-3 and IRF-7 work in concert to initiate unique and overlapping antiviral responses to restrict MNV replication in vivo. IRF-3 and IRF-7 restrict MNV replication in both cultured macrophages and dendritic cells, are required for induction of IFN-α/β in macrophages but not dendritic cells, and are dispensable for the antiviral effects of IFN-α/β that block MNV replication. These studies suggest that expression of the IFN-α/β receptor on macrophages/neutrophils and dendritic cells, as well as of IRF-3 and IRF-7, is critical for innate immune responses to NoV infection. PMID:23035219

  5. Enhanced molecular recognition for imprinted monolithic column containing polyhedral oligomeric silsesquioxanes by dendritic effect of mesoporous molecular sieve scaffolds.

    PubMed

    Yang, Fang-Fang; Li, Zai-Xuan; Xu, Yu-Jing; Huang, Yan-Ping; Liu, Zhao-Sheng

    2018-06-07

    The dendritic effect of nano mesoporous molecular sieve was first used to enhance molecular recognition of molecularly imprinted polymers (MIPs)-based polyhedral oligomeric silsesquioxanes (POSS). In this study, the MIPs were made using S-naproxen (S-NAP) as template molecule, 4-vinylpyridine (4-VP) as functional monomer, ethylene glycol dimethacrylate as cross-linker, 1-butyl-3-methylimidazoliumtetrafluoroborate ([BMIM]BF 4 )/DMSO as binary porogens, 1-propylmethacrylate-heptaisobutyl substituted as POSS monomer, and mesoporous molecular sieve (Mobil composition of matter No. 41, MCM-41) as dendritic scaffold. The influence of synthesis parameters on the imprinting effect, including the content of POSS monomer and derivatized MCM-41-MPS, the ratio of template to monomer, and the ratio of binary porogens were also investigated, respectively. The morphology of the polymers was characterized by scanning electron microscopy, nitrogen adsorption, and X-ray powder diffraction. The results showed that POSS&MCM-41-MPS MIP had a stronger imprinting effect with an imprinting factor 6.86, which is approximately 2.4, 2.3, and 3 times than that of POSS MIP, MCM-41-MPS MIP, and conventional MIP, respectively. The increase of affinity might be attributed to impediment of the chain motion of polymer due to improved POSS aggregation and the dipole interaction between the POSS units by introduce of MCM-41-MPS as scaffolds. The resulting POSS&MCM-41-MPS MIP was used as adsorbent for the enrichment of S-NAP in solid-phase extraction with a high recovery of 97.65% and the value of RSD was 0.94%.

  6. Sedimentary depositional environments in the Gulf of Alaska from GLORIA Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.R.; Bruns, T.R.; Stevenson, A.J.

    1990-05-01

    GLORIA side-scan images provide new insight to the morphology and sedimentology of the Gulf of Alaska and show that tectonism strongly influences downslope and abyssal plain sediment transport. Along the Fairweather-Queen Charlotte transform margin south of Cross Sound short, chute-like canyons cross the slope to submarine-fan channels. At least one canyon is offset by strike-slip motion along the fault Fan channels coalesce to form two deep-sea turbidite channels (Mukluk and Horizon) that extend 1,000 km southward to the Tufts Abyssal Plain. From Cross Sound to Pamplona Spur, dendritic gulley systems and short chutes cross the slope into tributary channels thatmore » merge into major channels. Tributary channels from Cross Sound to Alsek Valley form the Chirikov channel system which bends westward and ends in turbidite fans south of the Kodiak-Bowie Seamount chain. A probable ancestral Chirikov channel carried sediment westward to the Aleutian Trench, Channels from Alsek Valley to Pamplona Spur coalesce 280 km seaward of the slope to form the Surveyor Channel which meanders across the abyssal plain 500 km to the Aleutian trench. Between Pamplona Spur and Middleton Island, dendritic slope canyons reach the eastern end of the Aleutian Trench sediment moves southwestward along the trench. Southwest of Middleton Island, discontinuous trench-parallel subduction ridges change slope drainage from a dendritic to trellised pattern as sediment is forced to flow around the ridges to the Aleutian Trench. At least two small fans have been constructed on the trench floor. Southwest of Kodiak Island, subduction ridges create mid-slope basins that trap modern sediment.« less

  7. Tau-Dependent Kv4.2 Depletion and Dendritic Hyperexcitability in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Hall, Alicia M.; Throesch, Benjamin T.; Buckingham, Susan C.; Markwardt, Sean J.; Peng, Yin; Wang, Qin

    2015-01-01

    Neuronal hyperexcitability occurs early in the pathogenesis of Alzheimer's disease (AD) and contributes to network dysfunction in AD patients. In other disorders with neuronal hyperexcitability, dysfunction in the dendrites often contributes, but dendritic excitability has not been directly examined in AD models. We used dendritic patch-clamp recordings to measure dendritic excitability in the CA1 region of the hippocampus. We found that dendrites, more so than somata, of hippocampal neurons were hyperexcitable in mice overexpressing Aβ. This dendritic hyperexcitability was associated with depletion of Kv4.2, a dendritic potassium channel important for regulating dendritic excitability and synaptic plasticity. The antiepileptic drug, levetiracetam, blocked Kv4.2 depletion. Tau was required, as crossing with tau knock-out mice also prevented both Kv4.2 depletion and dendritic hyperexcitability. Dendritic hyperexcitability induced by Kv4.2 deficiency exacerbated behavioral deficits and increased epileptiform activity in hAPP mice. We conclude that increased dendritic excitability, associated with changes in dendritic ion channels including Kv4.2, may contribute to neuronal dysfunction in early stages AD. PMID:25878292

  8. Design and Fabrication of an Elastomer Test Machine.

    DTIC Science & Technology

    1988-05-01

    provided by the Army Materials Technology Laboratories, were tested with the ETM at U.C.N.W. RUBBER 15 TP14AX 15 NAT25A 15 SBR26 NBR 6 FIBREGLASS REINFORCED...stationary, tilted and rotational) are comparable with 0001 AM and 0001 AN samples. SAMPLE NBR 62 This is a matt black, rubber based sample described as a... RUBBER 0001 AM 0001 AN 0001 AE -6- POLYURETHANE ECP 1 S ECP 2 Morbay 2690 Budd 20 1080 (Polyester) ) Gallagher Corporation A8 (Polyester) ) All

  9. Wood-Polymer composites obtained by gamma irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gago, J.; Lopez, A.; Rodriguez, J.

    2007-10-26

    In this work we impregnate three Peruvian woods (Calycophy spruceanum Be, Aniba amazonica Meiz and Hura crepitans L) with styrene-polyester resin and methyl methacrylate. The polymerization of the system was promoted by gamma radiation and the experimental optimal condition was obtained with styrene-polyester 1:1 and 15 kGy. The obtained composites show reduced water absorption and better mechanical properties compared to the original wood. The structure of the wood-polymer composites was studied by light microscopy. Water absorption and hardness were also obtained.

  10. Interactions between F-111 Fuselage Fuel Tank Sealants. Part 2. Variation in Performance Properties of Polysulfides after Contact with Polyester Degradation Products,

    DTIC Science & Technology

    1984-08-01

    principally from sebacic acid and neopentyl glycol and that the most significant difference between the sealants was the greater proportion of trihydric...exhaustive hydrolysis of the polyesters would generate sebacic acid and neopentyl glycol , in practice ester units such as (1) which are terminated with both...slight to moderate swelling and softening of the polysulfides with PR-1422 being the most susceptible. Neopentyl glycol suppressed the swelling due to

  11. Characterization and Fate of Gun and Rocket Propellant Residues on Testing and Training Ranges

    DTIC Science & Technology

    2011-08-01

    propellant sticks, is tied in three places with polyester and cotton thread ties. The bundle is then wrapped in lead foil (a de-coppering agent...sticks and the tying of the bundle in five places, again using polyester and cotton thread ties. The combustible case is manufactured mainly from...and brought back to DRDC to be weighed and extracted to measure the remaining 2,4-DNT. Most of what was collected was the remains of the cotton

  12. Hygrothermomechanical evaluation of transverse filament tape epoxy/polyester fiberglass composites

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Chamis, C. C.

    1984-01-01

    Transverse filament tape (TFT) fiberglass/epoxy and TFT polyester composites intended for low cost wind turbine blade fabrication have been subjected to static and cyclic load behavior tests whose results are presently evaluated on the basis of an integrated hygrothermomechanical response theory. Laminate testing employed simulated filament winding procedures. The results obtained show that the predicted hygrothermomechanical environmental effects on TFT composites are in good agreement with measured data for various properties, including fatigue at different R-ratio values.

  13. Polymeric Beads for Organic Coatings

    DTIC Science & Technology

    1982-10-31

    Clear Solid Polymeric Beads A solid polymeric bead is comprised of a sol id mass of polymerized unsaturated polyester/styrene resin mixture . 2. lear...than the current unsaturated polyester resin . For example, a bead male from acrylic resin could be more trans- - parent, more durable and provide more...0.44 Isopropyl Alcohol I 11.26 I 1 .73 60% Wt. Alkyd Resin - Volume I 251.26 i 30.52 " Sol ids 51% 1 I Anti.-Skinning Agent I 0.90 I 0.12 Mineral

  14. Critical Role of Plasmacytoid Dendritic Cells in Regulating Gene Expression and Innate Immune Responses to Human Rhinovirus-16

    PubMed Central

    Xi, Yang; Troy, Niamh M.; Anderson, Denise; Pena, Olga M.; Lynch, Jason P.; Phipps, Simon; Bosco, Anthony; Upham, John W.

    2017-01-01

    Though human rhinoviruses (HRVs) are usually innocuous viruses, they can trigger serious consequences in certain individuals, especially in the setting of impaired interferon (IFN) synthesis. Plasmacytoid dendritic cells (pDCs) are key IFN producing cells, though we know little about the role of pDC in HRV-induced immune responses. Herein, we used gene expression microarrays to examine HRV-activated peripheral blood mononuclear cells (PBMCs) from healthy people, in combination with pDC depletion, to assess whether observed gene expression patterns were pDC dependent. As expected, pDC depletion led to a major reduction in IFN-α release. This was associated with profound differences in gene expression between intact PBMC and pDC-depleted PBMC, and major changes in upstream regulators: 70–80% of the HRV activated genes appeared to be pDC dependent. Real-time PCR confirmed key changes in gene expression, in which the following selected genes were shown to be highly pDC dependent: the transcription factor IRF7, both IL-27 chains (IL-27p28 and EBI3), the alpha chain of the IL-15 receptor (IL-15RA) and the IFN-related gene IFI27. HRV-induced IL-6, IFN-γ, and IL-27 protein synthesis were also highly pDC dependent. Supplementing pDC-depleted cultures with recombinant IL-15, IFN-γ, IL-27, or IL-6 was able to restore the IFN-α response, thereby compensating for the absence of pDC. Though pDC comprise only a minority population of migratory leukocytes, our findings highlight the profound extent to which these cells contribute to the immune response to HRV. PMID:29118754

  15. Exogenous Thyropin from p41 Invariant Chain Diminishes Cysteine Protease Activity and Affects IL-12 Secretion during Maturation of Human Dendritic Cells

    PubMed Central

    Zavašnik-Bergant, Tina; Bergant Marušič, Martina

    2016-01-01

    Dendritic cells (DC) play a pivotal role as antigen presenting cells (APC) and their maturation is crucial for effectively eliciting an antigen-specific immune response. The p41 splice variant of MHC class II-associated chaperone, called invariant chain p41 Ii, contains an amino acid sequence, the p41 fragment, which is a thyropin-type inhibitor of proteolytic enzymes. The effects of exogenous p41 fragment and related thyropin inhibitors acting on human immune cells have not been reported yet. In this study we demonstrate that exogenous p41 fragment can enter the endocytic pathway of targeted human immature DC. Internalized p41 fragment has contributed to the total amount of the immunogold labelled p41 Ii-specific epitope, as quantified by transmission electron microscopy, in particular in late endocytic compartments with multivesicular morphology where antigen processing and binding to MHC II take place. In cell lysates of treated immature DC, diminished enzymatic activity of cysteine proteases has been confirmed. Internalized exogenous p41 fragment did not affect the perinuclear clustering of acidic cathepsin S-positive vesicles typical of mature DC. p41 fragment is shown to interfere with the nuclear translocation of NF-κB p65 subunit in LPS-stimulated DC. p41 fragment is also shown to reduce the secretion of interleukin-12 (IL-12/p70) during the subsequent maturation of treated DC. The inhibition of proteolytic activity of lysosomal cysteine proteases in immature DC and the diminished capability of DC to produce IL-12 upon their subsequent maturation support the immunomodulatory potential of the examined thyropin from p41 Ii. PMID:26960148

  16. Interactions with Astroglia Influence the Shape of the Developing Dendritic Arbor and Restrict Dendrite Growth Independent of Promoting Synaptic Contacts

    PubMed Central

    Farley, Jennifer R.; Sterritt, Jeffrey R.; Crane, Andrés B.; Wallace, Christopher S.

    2017-01-01

    Astroglia play key roles in the development of neurons, ranging from regulating neuron survival to promoting synapse formation, yet basic questions remain about whether astrocytes might be involved in forming the dendritic arbor. Here, we used cultured hippocampal neurons as a simple in vitro model that allowed dendritic growth and geometry to be analyzed quantitatively under conditions where the extent of interactions between neurons and astrocytes varied. When astroglia were proximal to neurons, dendrites and dendritic filopodia oriented toward them, but the general presence of astroglia significantly reduced overall dendrite growth. Further, dendritic arbors in partial physical contact with astroglia developed a pronounced pattern of asymmetrical growth, because the dendrites in direct contact were significantly smaller than the portion of the arbor not in contact. Notably, thrombospondin, the astroglial factor shown previously to promote synapse formation, did not inhibit dendritic growth. Thus, while astroglia promoted the formation of presynaptic contacts onto dendrites, dendritic growth was constrained locally within a developing arbor at sites where dendrites contacted astroglia. Taken together, these observations reveal influences on spatial orientation of growth as well as influences on morphogenesis of the dendritic arbor that have not been previously identified. PMID:28081563

  17. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    PubMed Central

    Carrión, Francisco; Montalbán, Laura; Real, Julia I.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  18. MnO2 nanotubes assembled on conductive graphene/polyester composite fabric as a three-dimensional porous textile electrode for flexible electrochemical capacitors.

    PubMed

    Jin, Chun; Jin, Li-Na; Guo, Mei-Xia; Liu, Ping; Zhang, Jia-Nan; Bian, Shao-Wei

    2017-12-15

    A three-dimensional (3D) electrode material was successfully synthesized through a facile ZnO-assisted hydrothermal process in which vertical MnO 2 nanotube arrays were in situ grown on the conductive graphene/polyester composite fabric. The morphology and structure of MnO 2 nanotubes/graphene/polyester textile electrode were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The 3D electrode structure facilitates to achieve the maximum number of active sites for the pesudocapacitance redox reaction, fast electrolyte ion transportation and short ion diffusion path. The electrochemical measurements showed that the electrode possesses good capacitance capacity which reached 498F/g at a scan rate of 2mV/s in Na 2 SO 4 electrolyte solution. The electrode also showed stable electrochemical performances under the conditions of long-term cycling, and mechanical bending and twisting. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Optical, colloidal and biological properties of up-converting nanoparticles embedded in polyester nanocarriers

    NASA Astrophysics Data System (ADS)

    Wawrzyńczyk, Dominika; Kulbacka, Julita; Bazylińska, Urszula

    2017-08-01

    We have investigated the change in optical properties and biocompatibility of up-converting NaYF4 nanoparticles (NPs) upon encapsulation inside the polyester nanocarriers (NCs) stabilized by Crempophor RH40 (CRH40), poly(D,L-lactide) (PLA), Pluronic P123 (P123). NaYF4:Er3+,Yb3+ NPs showed intense green and red emission, and upon encapsulation the increase of red band in respect to green one was observed, with no luminescence lifetime shortening. Obtained NCs showed prolonged colloidal stability and protective effect of the polymer shell simultaneously preserving the high emission efficiency of nanoparticles embedded within the silicon oil (SO) core. Based on emission spectra, kinetic measurements and cytotoxicity studies upon human malignant melanoma Me45 cell line we have shown the advantages of using polyester NCs as containers for the up-converting NPs. Due to the possibility of co-encapsulation of photosensitizers the obtained nanocarriers showed potential for application in theranostics.

  20. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications

    PubMed Central

    Kaplan, Jonah; Grinstaff, Mark

    2015-01-01

    Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications. PMID:26383018

  1. Pressure polymerization of polyester

    DOEpatents

    Maurer, Charles J.; Shaw, Gordon; Smith, Vicky S.; Buelow, Steven J.; Tumas, William; Contreras, Veronica; Martinez, Ronald J.

    2000-08-29

    A process is disclosed for the preparation of a polyester polymer or polyester copolymer under superatmospheric pressure conditions in a pipe or tubular reaction under turbannular flow conditions. Reaction material having a glycol equivalents to carboxylic acid equivalents mole ratio of from 1.0:1 to 1.2:1, together with a superatmospheric dense gaseous medium are fed co-currently to the reactor. Dicarboxylic acid and/or diol raw materials may be injected into any of the reaction zones in the process during operation to achieve the overall desired mole ratio balance. The process operates at temperatures of from about 220.degree. C. to about 320.degree. C., with turbannular flow achieved before the polymer product and gas exit the reactor process. The pressure in the reaction zones can be in the range from 15 psia to 2500 psia. A polymer product having a DP of a greater than 40, more preferably at least about 70, is achieved by the transfer of water from the reacting material polymer melt to the gaseous medium in the reactor.

  2. Self-assembling process of Oxalamide compounds and their nucleation efficiency in bio-degradable Poly(hydroxyalkanoate)s

    NASA Astrophysics Data System (ADS)

    Ma, Piming; Deshmukh, Yogesh S.; Wilsens, Carolus H. R. M.; Ryan Hansen, Michael; Graf, Robert; Rastogi, Sanjay

    2015-08-01

    One of the key requirements in semi-crystalline polyesters, synthetic or bio-based, is the control on crystallization rate and crystallinity. One of the limiting factors in the commercialization of the bio-based polyesters, for example polyhydroxyalkanoates synthesized by bacteria for energy storage purposes, is the slow crystallization rate. In this study, we show that by tailoring the molecular structure of oxalamide compounds, it is possible to dissolve these compounds in molten poly(hydroxybutyrate) (PHB), having a hydroxyvalerate co-monomer content of less than 2 mol%. Upon cooling the polymer melt, the homogeneously dispersed oxalamide compound crystallizes just below the melting temperature of the polymer. The phase-separated compound reduces the nucleation barrier of the polymer, thus enhancing the crystallization rate, nucleation density and crystallinity. The findings reported in this study provide a generic route for the molecular design of oxalamide-based compounds that can be used for enhancing nucleation efficiency of semi-crystalline bio-based polyesters.

  3. Nanocellulose based polymer composite for acoustical materials

    NASA Astrophysics Data System (ADS)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  4. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    PubMed

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  5. Evaluation of a Wipe Surface Sample Method for Collection of Bacillus Spores from Nonporous Surfaces▿

    PubMed Central

    Brown, Gary S.; Betty, Rita G.; Brockmann, John E.; Lucero, Daniel A.; Souza, Caroline A.; Walsh, Kathryn S.; Boucher, Raymond M.; Tezak, Mathew; Wilson, Mollye C.; Rudolph, Todd

    2007-01-01

    Polyester-rayon blend wipes were evaluated for efficiency of extraction and recovery of powdered Bacillus atrophaeus spores from stainless steel and painted wallboard surfaces. Method limits of detection were also estimated for both surfaces. The observed mean efficiency of polyester-rayon blend wipe recovery from stainless steel was 0.35 with a standard deviation of ±0.12, and for painted wallboard it was 0.29 with a standard deviation of ±0.15. Evaluation of a sonication extraction method for the polyester-rayon blend wipes produced a mean extraction efficiency of 0.93 with a standard deviation of ±0.09. Wipe recovery quantitative limits of detection were estimated at 90 CFU per unit of stainless steel sample area and 105 CFU per unit of painted wallboard sample area. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling following the release of a biological agent such as Bacillus anthracis. PMID:17122390

  6. Evaluation of a wipe surface sample method for collection of Bacillus spores from nonporous surfaces.

    PubMed

    Brown, Gary S; Betty, Rita G; Brockmann, John E; Lucero, Daniel A; Souza, Caroline A; Walsh, Kathryn S; Boucher, Raymond M; Tezak, Mathew; Wilson, Mollye C; Rudolph, Todd

    2007-02-01

    Polyester-rayon blend wipes were evaluated for efficiency of extraction and recovery of powdered Bacillus atrophaeus spores from stainless steel and painted wallboard surfaces. Method limits of detection were also estimated for both surfaces. The observed mean efficiency of polyester-rayon blend wipe recovery from stainless steel was 0.35 with a standard deviation of +/-0.12, and for painted wallboard it was 0.29 with a standard deviation of +/-0.15. Evaluation of a sonication extraction method for the polyester-rayon blend wipes produced a mean extraction efficiency of 0.93 with a standard deviation of +/-0.09. Wipe recovery quantitative limits of detection were estimated at 90 CFU per unit of stainless steel sample area and 105 CFU per unit of painted wallboard sample area. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling following the release of a biological agent such as Bacillus anthracis.

  7. Pervasive plastisphere: First record of plastics in egagropiles (Posidonia spheroids).

    PubMed

    Pietrelli, Loris; Di Gennaro, Alessia; Menegoni, Patrizia; Lecce, Francesca; Poeta, Gianluca; Acosta, Alicia T R; Battisti, Corrado; Iannilli, Valentina

    2017-10-01

    The ability of Posidonia oceanica spheroids (egagropiles, EG) to incorporate plastics was investigated along the central Italy coast. Plastics were found in the 52.84% of the egagropiles collected (n = 685). The more represented size of plastics has range within 1-1.5 cm, comparable to the size of natural fibres. Comparing plastics occurring both in EG and in surrounding sand, Polyethylene, Polyester and Nylon were the most abundant polymers in EG, while PSE, PE, PP and PET were the most represented in sand. In particular PE and PP were significantly more represented in sand, while PE, Nylon, Polyester and microfibers (as pills) were more represented in EG. Within plastics found in EG, 26.9% were microfibers as small pills (<1 cm), mainly composed of polyamide, polyester, cotton and PET mixing. These microfibers might be produced by discharges from washing machines and currently represents an emerging pollutant with widespread distribution in marine and freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Surface modification of metallic cardiovascular stents by strongly adhering aliphatic polyester coatings.

    PubMed

    Jérôme, Christine; Aqil, Abdelhafid; Voccia, Samuël; Labaye, David-Emmanuel; Maquet, Véronique; Gautier, Sandrine; Bertrand, Olivier F; Jérôme, Robert

    2006-03-01

    This article reports on a novel two-step strategy for the coating of cardiovascular stents by strongly adhering biocompatible and biodegradable aliphatic polyesters. First, a precoating of poly(ethylacrylate) (PEA) was electrografted onto the metallic substrate by cathodic reduction of the parent monomer in dimethylformamide (DMF). The electrodeposition of PEA, in a good solvent of it, was confirmed by both Infra-red and Raman spectroscopies. The pendant ester groups of PEA were then chemically reduced into aluminum alkoxides, able to initiate the ring-opening polymerization (ROP) of either D,L-lactide (LA) or epsilon-caprolactone (CL). Growth of biodegradable PLA or PCL coatings from the adhering precoating was confirmed by both Infra-red and Raman spectroscopies, and directly observed by scanning electron microscopy (SEM). This type of coating can act as an anchoring layer for the subsequent casting of drug-loaded polyester films allowing the controlled release of antiproliferative agents for the treatment of in-stent restenosis. (c) 2005 Wiley Periodicals, Inc.

  9. A Bond-Fluctuation Model of Translational Dynamics of Chain-like Particles through Mucosal Scaffolds.

    PubMed

    Bajd, Franci; Serša, Igor

    2018-06-05

    Mucus scaffolds represent one of the most common barriers in targeted drug delivery and can remarkably reduce the outcome of pharmacological therapies. An efficient transport of drug particles through a mucus barrier is a precondition for an efficient drug delivery. Understanding the transport mechanism is particularly important for treatment of disorders such as cystic fibrosis. These are characterized by an onset of high-density mucus scaffolds imposing an increased steric filtering. In this study, we employed the bond-fluctuation model to analyze the effect of steric interactions on slowing the translational dynamics of compound chain-like particles traversing through scaffolds of different configurations (regular isotropic and anisotropic versus irregular random). The model, which accounts for both the geometry-imposed steric interaction as well as the intrachain steric interaction between the chain subunits, yields a transient subdiffusive motional pattern persists between the short-time and long-time Gaussian diffusion limits. The motion is analyzed in terms of a mean-squared displacement, diffusion coefficient, and radius of gyration. With higher levels of restriction or larger particles, the subdiffusive motional regime persists longer. The study also demonstrates that an important feature of the motion is also geometry-induced chain accommodation. The presented model is generic and could also be applied to studying the translational dynamics of other particles with more complex architecture such as dendrites or chain-decorated nanoparticles. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Effect of Solute Diffusion on Dendrite Growth in the Molten Pool of Al-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Gu, Cheng; Liu, Yun; Wei, Yanhong

    2017-10-01

    A cellular automaton (CA)-finite difference model is developed to simulate dendrite growth and solute diffusion during solidification process in the molten pool of Al-Cu alloy. In order to explain the interaction between the dendritic growth and solute distribution, a series of CA simulations with different solute diffusion velocity coefficients are carried out. It is concluded that the solute concentration increases with dendrite growing and solute accumulation in the dendrite tip. Converged value of the dendrite tip growth velocity is about 480 μm/s if the mesh size is refined to 2 μm or less. Growth of the primary dendrite and the secondary dendrite is mainly influenced by solute diffusion at the dendrite tips. And growth of secondary and tertiary dendrites is mainly influenced by solute diffusion at interdendrite.

  11. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    PubMed

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  12. Bio-modification of Cotton and Micro-denier Polyester with Sericin to Develop Potent Antibacterial and Antifungal Textile Products

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, M.; Uddandrao, V. V. Sathibabu; Saravanan, G.; Vadivukkarasi, S.; Koushik, C. V.

    2018-06-01

    The present study was aimed to develop a novel textile product through bio modification of cotton and micro-denier polyester with sericin (Sn) against bacterial and fungal growth. The authors extracted and purified Sn from silk yellow cocoons. Sn solution (10 g/L) was incorporated into the 100% cotton (C), 100% micro-denier polyester (MDP) and 65/35 micro-denier polyester/cotton (MDP/C) in a padding mangle by a 2-dip/2-nip process and fabrics were analysed by Field-Emission scanning electron microscope. Fabrics were divided into six groups such as untreated groups (C, MDP and MDP/C) and Sn-treated groups (Sn + C, Sn + MDP and Sn + MDP/C) and then underwent organoleptic evaluation and as well as anti-bacterial (Staphylococcus aureus and Escherichia coli) and anti-fungal (Aspergillus niger and Trichoderma harzianum) activities. Sn treated fabrics were found to show the presence of Sn by scanning electron micrographs and also attained high organoleptic score from the panel members. In addition, the Sn-treated fabrics displayed outstanding anti bacterial and anti fungal properties in terms of both qualitative and quantitative analysis. Sn + MDP/C fabrics have shown potential reduction in bacterial and fungal growth when compared with other treated and untreated fabrics. Hence, this study suggests that bio modification of C, MDP and MDP/C with Sn may make them ideal candidate for their application in medical textiles against pathogens.

  13. Microclimatic Variation Within Sleeve Cages Used in Ecological Studies

    PubMed Central

    Nelson, Lori A.; Rieske, Lynne K.

    2014-01-01

    Abstract Sleeve cages for enclosing or excluding arthropods are essential components of field studies evaluating trophic interactions. Microclimatic variation in sleeve cages was evaluated to characterize its potential effects on subsequent long-term experiments. Two sleeve cage materials, polyester and nylon, and two cage sizes, 400 and 6000 cm 2 , were tested on eastern hemlock, Tsuga canadensis (L.) Carrière. Temperature and relative humidity inside and outside cages, and the cost and durability of the cage materials, were compared. Long-term effects of the sleeve cages were observed by measuring new growth on T. canadensis branches. The ultimate goal was to identify a material that minimizes bag-induced microclimatic variation. Bagged branches whose microclimates mimic those of surrounding unbagged branches should have minimal effects on plant growth and may prove ideal venues for assessing herbivore and predator behavior under natural conditions. No differences were found in temperature or humidity between caging materials. Small cages had higher average temperatures than large cages, especially in the winter, but this difference was confounded by the fact that small cages were positioned higher in trees than large cages. Differences in plant growth were detected. Eastern hemlock branches enclosed within polyester cages produced fewer new growth tips than uncaged controls. Both polyester and nylon cages reduced the length of new shoot growth relative to uncaged branches. In spite of higher costs, nylon cages were superior to polyester with respect to durability and ease of handling. PMID:25368083

  14. Co-Expression of ORFCma with PHB Depolymerase (PhaZCma ) in Escherichia coli Induces Efficient Whole-Cell Biodegradation of Polyesters.

    PubMed

    Lee, Ming-Chieh; Liu, En-Jung; Yang, Cheng-Han; Hsiao, Li-Jung; Wu, Tzong-Ming; Li, Si-Yu

    2018-04-01

    Whole-cell degradation of polyesters not only avoids the tedious process of enzyme separation, but also allows the degraded product to be reused as a carbon source. In this study, Escherichia coli BL21(DE3) harboring phaZ Cma , a gene encoding poly(3-hydroxybutyrate) (PHB) depolymerase from Caldimonas manganoxidans, is constructed. The extra-cellular fraction of E. coli/pPHAZ exhibits a fast PHB degradation rate where it only took 35 h to completely degrade PHB films, while C. manganoxidans takes 81 h to do the same. The co-expression of ORF Cma (a putative periplasmic substrate binding protein that is within the same operon of phaZ Cma ) further improves the PHB degradation. While 28 h is needed for E. coli/pPHAZ to cause an 80% weight loss in PHB films, E. coli/pORFPHAZ needs only 21 h. Furthermore, it is able to degrade at-least four different polyesters, PHB, poly(lactic acid) (PLA), polycaprolactone (PCL), and poly(butylene succinate-co-adipate) (PBSA). Testing of the time course of 3-hydroxybutyrate concentration and the turbidity of the degradation solutions over time shows that PhaZ Cma has both exo- and endo-enzymatic activity. The whole-cell E. coli/pORFPHAZ can be used for recycling various polyesters while ORF Cma can potentially be a universal element for enhancing the secretion of recombinant protein. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Textile for heart valve prostheses: fabric long-term durability testing.

    PubMed

    Heim, Frederic; Durand, Bernard; Chakfe, Nabil

    2010-01-01

    The rapid developments and success in percutaneous vascular surgery over the last two decades with the now common stent grafts implantation, make the noninvasive surgery technique today attractive even for heart valve replacement. Less traumatic for the patient and also less time consuming, percutaneous heart valve replacement is however at its beginning and restricted to end of life patients. The noninvasive procedure expects from the heart valve prosthesis material to be resistant and adapted to folding requirements of the implantation process (catheter). Polyester fabric could be a suited material for heart valve implanted percutaneously. Highly flexible and resistant, polyester fabric proved to be well adapted to the dynamic behavior of a valve and polyester (Dacron) is also widely used for vascular grafts implantation and shows good biocompatibility and durability. However, today there's no data available on long-term durability of fabric used as heart valve material. The purpose of this work is to study the long term behavior of a microdenier polyester fabric construction under combined in vitro flexure and tension fatigue stress. In the novel in vitro testing technique presented, a fabric specimen was subjected to combined flexural and tensile fatigue generated by fluid flow under physiological pressure conditions. The results obtained show how flexural properties change with fatigue time, which reflects directly on the suitability of a fabric in such devices. It was also observed that these fabric structural changes directly influence the in vitro behavior of the textile heart valve prosthesis. (c) 2009 Wiley Periodicals, Inc.

  16. Changing the color of textiles with realistic visual rendering

    NASA Astrophysics Data System (ADS)

    Hébert, Mathieu; Henckens, Lambert; Barbier, Justine; Leboulleux, Lucie; Page, Marine; Roujas, Lucie; Cazier, Anthony

    2015-03-01

    Fast and easy preview of a fabric without having to produce samples would be very profitable for textile designers, but remains a technological challenge. As a first step towards this objective, we study the possibility of making images of a real sample, and changing virtually the colors of its yarns while preserving the shine and shadow texture. We consider two types of fabrics: Jacquard weave fabrics made of polyester warp and weft yarns of different colors, and satin ribbons made of polyester and metallic yarns. For the Jacquard fabric, we make a color picture with a scanner on a sample in which the yarns have contrasted colors, threshold this image in order to distinguish the pixels corresponding to each yarn, and accordingly modify their hue and chroma values. This method is simple to operate but do not enable to simulate the angle-dependent shine. A second method, tested on the satin ribbon made of black polyester and achromatic metallic yarns, is based on polarized imaging. We analyze the polarization state of the reflected light which is different for dielectric and metallic materials illuminated by polarized light. We then add a fixed color value to the pixels representing the polyester yarns and modify the hue and chroma of the pixels representing the metallic yarns. This was performed for many incident angles of light, in order to render the twinkling effect displayed by these ribbons. We could verify through a few samples that the simulated previews reproduce real pictures with visually acceptable accuracy.

  17. Loading of chitosan - Nano metal oxide hybrids onto cotton/polyester fabrics to impart permanent and effective multifunctions.

    PubMed

    Ibrahim, Nabil A; Eid, Basma M; El-Aziz, Eman Abd; Elmaaty, Tarek M Abou; Ramadan, Shaimaa M

    2017-12-01

    New and durable multifunctional properties of cotton/polyester blended fabrics were developed through loading of chitosan (Cs) and various metal oxide nanoparticles (MONPs) namely ZnO, TiO 2 , and SiO 2 onto fabric surface using citric acid/Sodium hypophosphite for ester-crosslinking and creating new anchoring and binding sites, COOH groups, onto the ester-crosslinked fabrics surface. The surface morphology and the presence of active ingredients (Cs & MONPs) onto selected - coated fabric samples were analyzed by SEM images and confirmed by EDS spectrums. The influence of various finishing formulations on some performance and functional properties such as wettability, antibacterial activity, UV-protection, self-cleaning, resiliency and durability to wash were studied. The obtained results revealed that the extent of improvement in the imparted functional properties is governed by type of loaded-hybrid and follows the decreasing order: Cs-TiO 2 NPs>Cs-ZnONPs>SiO 2 NP s >Cs alone, as well as kind of substrate cotton/polyester (65/35)>cotton/polyester (50/50). Moreover, after 15 washing cycles, the durability of the imparted functional properties of Cs/TiO 2 NP s - loaded substrates marginally decreased indicating the strong fixation of the hybrid components onto the ester-crosslinked substrates. The obtained bioactive multifunctional textiles can be used for producing eco-friendly protective textile materials for numerous applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. New poly(ester urea) derived from L-leucine: electrospun scaffolds loaded with antibacterial drugs and enzymes.

    PubMed

    Díaz, Angélica; del Valle, Luis J; Tugushi, David; Katsarava, Ramaz; Puiggalí, Jordi

    2015-01-01

    Electrospun scaffolds from an amino acid containing poly(ester urea) (PEU) were developed as promising materials in the biomedical field and specifically in tissue engineering applications. The selected poly(ester urea) was obtained with a high yield and molecular weight by reaction of phosgene with a bis(α-aminoacyl)-α,ω-diol-diester monomer. The polymer having L-leucine, 1,6-hexanediol and carbonic acid units had a semicrystalline character and relatively high glass transition and melting temperatures. Furthermore it was highly soluble in most organic solvents, an interesting feature that facilitated the electrospinning process and the effective incorporation of drugs with bactericidal activity (e.g. biguanide derivatives such as clorhexidine and polyhexamethylenebiguanide) and enzymes (e.g. α-chymotrypsin) that accelerated the degradation process. Continuous micro/nanofibers were obtained under a wide range of processing conditions, being diameters of electrospun fibers dependent on the drug and solvent used. Poly(ester urea) samples were degradable in media containing lipases and proteinases but the degradation rate was highly dependent on the surface area, being specifically greater for scaffolds with respect to films. The high hydrophobicity of new scaffolds had repercussions on enzymatic degradability since different weight loss rates were found depending on how samples were exposed to the medium (e.g. forced or non-forced immersion). New scaffolds were biocompatible, as demonstrated by adhesion and proliferation assays performed with fibroblast and epithelial cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Adjuvant effect of short chain triacylglycerol tributyrin on a mouse contact hypersensitivity model.

    PubMed

    Sekiguchi, Kota; Ogawa, Erina; Kurohane, Kohta; Konishi, Hideyuki; Mochizuki, Narumi; Manabe, Kei; Imai, Yasuyuki

    2018-03-01

    Little attention has been paid to chemicals that can enhance hypersensitivity caused by other chemicals. We have demonstrated that phthalate esters with short chain alcohols enhance fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) in a mouse model. Furthermore, phthalate esters with such an enhancing effect were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels, which are expressed on a part of sensory neurons, using a TRPA1-expressing cell line. In this study, we examined these activities of esters comprising glycerol and a short chain fatty acid, i.e. dibutyrin and tributyrin. We carried out chemical synthesis of dibutyrin isomers. Each dibutyrin isomer weakly activated TRPA1 and slightly enhanced skin sensitization to FITC. Unexpectedly, TRPA1 activation and enhancement of FITC-CHS were much more evident in the presence of tributyrin. Mechanistically, tributyrin induced increased dendritic cell trafficking from the skin to draining lymph nodes. Tributyrin enhanced interferon-γ (IFN-γ) production by draining lymph nodes, while its effect on interleukin-4 (IL-4) production was relatively less prominent. These results suggested that tributyrin concomitantly caused TRPA1 activation and an adjuvant effect on FITC-CHS. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fluorescent water-Soluble Probes Based on Ammonium Cation Peg Substituted Perylenepisimides: Synthesis, Photophysical Properties, and Live Cell Images

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Cai, Jiaxuan; Zhang, Shuchen; Yi, Xuegang; Gao, Baoxiang

    2018-01-01

    To synthesize perylenbisimides (PBI) fluorescent probes that will improve the water-soluble ability and the cytocompatibility, the synthesis and properties of fluorescent water-soluble probes based on dendritic ammonium cation polyethylene glycol (PEG) substituted perylenebisimides(GPDIs) are presented. As we expected, with increased ammonium cation PEG, the aggregation of the PBI in an aqueous solution is completely suppressed by the hydrophilic ammonium cation PEG groups. And the fluorescence quantum yield increases from 25% for GPDI-1 to 62% for GPDI-2. When incubated with Hela cells for 48 h, the viabilities are 71% (for GPDI-1) and 76% (for GPDI-2). Live cell imaging shows that these probes are efficiently internalized by HeLa cells. The study of the photophysical properties indicated increasing the ammonium cation PEG generation can increase the fluorescence quantum yield. Live cell imaging shows that with the ammonium cation PEG chains of perylenebisimides has high biocompatibility. The exceptionally low cytotoxicity is ascribed to the ammonium cation PEG chains, which protect the dyes from nonspecifically interacting with the extracellular proteins. Live cell imaging shows that ammonium cations PEG chains can promote the internalization of these probes.

  1. VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses

    NASA Astrophysics Data System (ADS)

    Mittelbrunn, María; Molina, Ana; Escribese, María M.; Yáñez-Mó, María; Escudero, Ester; Ursa, Ángeles; Tejedor, Reyes; Mampaso, Francisco; Sánchez-Madrid, Francisco

    2004-07-01

    The integrin 41 (VLA-4) not only mediates the adhesion and transendothelial migration of leukocytes, but also provides costimulatory signals that contribute to the activation of T lymphocytes. However, the behavior of 41 during the formation of the immune synapse is currently unknown. Here, we show that 41 is recruited to both human and murine antigen-dependent immune synapses, when the antigen-presenting cell is a B lymphocyte or a dendritic cell, colocalizing with LFA-1 at the peripheral supramolecular activation complex. However, when conjugates are formed in the presence of anti-4 antibodies, VLA-4 colocalizes with the CD3- chain at the center of the synapse. In addition, antibody engagement of 4 integrin promotes polarization toward a T helper 1 (Th1) response in human in vitro models of CD4+ T cell differentiation and naïve T cell priming by dendritic cells. The in vivo administration of anti-4 integrin antibodies also induces an immune deviation to Th1 response that dampens a Th2-driven autoimmune nephritis in Brown Norway rats. These data reveal a regulatory role of 4 integrins on T lymphocyte-antigen presenting cell cognate immune interactions.

  2. Long-term in vivo provision of antigen-specific T cell immunity by programming hematopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Lili; Baltimore, David

    2005-03-01

    A method to genetically program mouse hematopoietic stem cells to develop into functional CD8 or CD4 T cells of defined specificity in vivo is described. For this purpose, a bicistronic retroviral vector was engineered that efficiently delivers genes for both and chains of T cell receptor (TCR) to hematopoietic stem cells. When modified cell populations were used to reconstruct the hematopoietic lineages of recipient mice, significant percentages of antigen-specific CD8 or CD4 T cells were observed. These cells expressed normal surface markers and responded to peptide antigen stimulation by proliferation and cytokine production. Moreover, they could mature into memory cells after peptide stimulation. Using TCRs specific for a model tumor antigen, we found that the recipient mice were able to partially resist a challenge with tumor cells carrying the antigen. By combining cells modified with CD8- and CD4-specific TCRs, and boosting with dendritic cells pulsed with cognate peptides, complete suppression of tumor could be achieved and even tumors that had become established would regress and be eliminated after dendritic cell/peptide immunization. This methodology of "instructive immunotherapy" could be developed for controlling the growth of human tumors and attacking established pathogens.

  3. CD4-Negative Variant of Cutaneous Blastic Plasmacytoid Dendritic Cell Neoplasm With a Novel PBRM1 Mutation in an 11-Year-Old Girl.

    PubMed

    Yigit, Nuri; Suarez, Luisa Fernanda; Roth, Lisa Giulino; Orazi, Attilio; Tam, Wayne

    2017-05-01

    We report a rare case of CD4- cutaneous blastic plasmacytoid dendritic cell neoplasm (BPDCN) with a novel PBRM1 mutation. An 11-year-old girl presented with an enlarged mass on her left arm and underwent an incisional biopsy. Histopathologic examination and immunohistochemistry studies showed a monotonous proliferation of blasts that were CD4-, CD56+, and CD123+. There was no evidence of leukemic dissemination. Next-generation sequencing detected PBRM1 and CIC gene abnormalities. We confirmed and validated a novel PBRM1 mutation by conventional polymerase chain reaction and Sanger sequencing. CD4- variant of BPDCN may be mistaken for myeloid sarcoma or extramedullary lymphoblastic leukemia/lymphoma because of their overlapping morphologic and immunophenotypic features; thus, a careful clinicopathologic evaluation is essential to reach the correct diagnosis. PBRM1 mutation seems to be a driver event in this case. Our study underscores the importance of alterations in chromatin remodeling in the pathogenesis of BPDCN. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    PubMed

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  5. Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1

    PubMed Central

    Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria

    2015-01-01

    Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP3 receptors (IP3Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP3R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP3R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP3R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. PMID:25637353

  6. Butyrate Conditions Human Dendritic Cells to Prime Type 1 Regulatory T Cells via both Histone Deacetylase Inhibition and G Protein-Coupled Receptor 109A Signaling

    PubMed Central

    Kaisar, Maria M. M.; Pelgrom, Leonard R.; van der Ham, Alwin J.; Yazdanbakhsh, Maria; Everts, Bart

    2017-01-01

    Recently, it has become clear that short-chain fatty acids (SCFAs), and in particular butyrate, have anti-inflammatory properties. Murine studies have shown that butyrate can promote regulatory T cells via the induction of tolerogenic dendritic cells (DCs). However, the effects of SCFAs on human DCs and how they affect their capacity to prime and polarize T-cell responses have not been addressed. Here, we report that butyrate suppresses LPS-induced maturation and metabolic reprogramming of human monocyte-derived DCs (moDCs) and conditions them to polarize naive CD4+ T cells toward IL-10-producing type 1 regulatory T cells (Tr1). This effect was dependent on induction of the retinoic acid-producing enzyme retinaldehyde dehydrogenase 1 in DCs. The induction of retinaldehyde dehydrogenase activity and Tr1 cell differentiation by butyrate was dependent on simultaneous inhibition of histone deacetylases and signaling through G protein-coupled receptor 109A. Taken together, we reveal that butyrate is a potent inducer of tolerogenic human DCs, thereby shedding new light on the cellular and molecular mechanisms through which SCFAs can exert their immunomodulatory effects in humans. PMID:29163504

  7. Space exploration by dendritic cells requires maintenance of myosin II activity by IP3 receptor 1.

    PubMed

    Solanes, Paola; Heuzé, Mélina L; Maurin, Mathieu; Bretou, Marine; Lautenschlaeger, Franziska; Maiuri, Paolo; Terriac, Emmanuel; Thoulouze, Maria-Isabel; Launay, Pierre; Piel, Matthieu; Vargas, Pablo; Lennon-Duménil, Ana-Maria

    2015-03-12

    Dendritic cells (DCs) patrol the interstitial space of peripheral tissues. The mechanisms that regulate their migration in such constrained environment remain unknown. We here investigated the role of calcium in immature DCs migrating in confinement. We found that they displayed calcium oscillations that were independent of extracellular calcium and more frequently observed in DCs undergoing strong speed fluctuations. In these cells, calcium spikes were associated with fast motility phases. IP₃ receptors (IP₃Rs) channels, which allow calcium release from the endoplasmic reticulum, were identified as required for immature DCs to migrate at fast speed. The IP₃R1 isoform was further shown to specifically regulate the locomotion persistence of immature DCs, that is, their capacity to maintain directional migration. This function of IP₃R1 results from its ability to control the phosphorylation levels of myosin II regulatory light chain (MLC) and the back/front polarization of the motor protein. We propose that by upholding myosin II activity, constitutive calcium release from the ER through IP₃R1 maintains DC polarity during migration in confinement, facilitating the exploration of their environment. © 2015 Institut Curie/Inserm. Published under the terms of the CC BY NC ND 4.0 license.

  8. High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder.

    PubMed

    Kong, Junjun; Li, Yi; Bai, Yungang; Li, Zonglin; Cao, Zengwen; Yu, Yancun; Han, Changyu; Dong, Lisong

    2018-06-01

    A novel polyester poly(diethylene glycol succinate) (PDEGS) was synthesized and evaluated as a plasticizer for polylactide (PLA) in this study. Meanwhile, an effective sustainable filler, functionalized eggshell powder (FES) with a surface layer of calcium phenyphosphonate was also prepared. Then, PLA biocomposites were prepared from FES and PDEGS using a facile melt blending process. The addition of 15 wt% PDEGS as plasticizer showed good miscibility with PLA macromolecules and increased the chain mobility of PLA. The crystallization kinetics of PLA composites revealed that the highly effective nucleating FES significantly improved the crystallization ability of PLA at both of non-isothermal and isothermal conditions. In addition, the effective plasticizer and well-dispersed FES increased the elongation at break from 6% of pure PLA to over 200% for all of the plasticized PLA composites. These biodegradable PLA biocomposites, coupled with excellent crystallization ability and tunable mechanical properties, demonstrate their potential as alternatives to traditional commodity plastics. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Maintenance of dendritic spine morphology by partitioning-defective 1b through regulation of microtubule growth.

    PubMed

    Hayashi, Kenji; Suzuki, Atsushi; Hirai, Syu-ichi; Kurihara, Yasuyuki; Hoogenraad, Casper C; Ohno, Shigeo

    2011-08-24

    Dendritic spines are postsynaptic structures that receive excitatory synaptic input from presynaptic terminals. Actin and its regulatory proteins play a central role in morphogenesis of dendritic spines. In addition, recent studies have revealed that microtubules are indispensable for the maintenance of mature dendritic spine morphology by stochastically invading dendritic spines and regulating dendritic localization of p140Cap, which is required for actin reorganization. However, the regulatory mechanisms of microtubule dynamics remain poorly understood. Partitioning-defective 1b (PAR1b), a cell polarity-regulating serine/threonine protein kinase, is thought to regulate microtubule dynamics by inhibiting microtubule binding of microtubule-associated proteins. Results from the present study demonstrated that PAR1b participates in the maintenance of mature dendritic spine morphology in mouse hippocampal neurons. Immunofluorescent analysis revealed PAR1b localization in the dendrites, which was concentrated in dendritic spines of mature neurons. PAR1b knock-down cells exhibited decreased mushroom-like dendritic spines, as well as increased filopodia-like dendritic protrusions, with no effect on the number of protrusions. Live imaging of microtubule plus-end tracking proteins directly revealed decreases in distance and duration of microtubule growth following PAR1b knockdown in a neuroblastoma cell line and in dendrites of hippocampal neurons. In addition, reduced accumulation of GFP-p140Cap in dendritic protrusions was confirmed in PAR1b knock-down neurons. In conclusion, the present results suggested a novel function for PAR1b in the maintenance of mature dendritic spine morphology by regulating microtubule growth and the accumulation of p140Cap in dendritic spines.

  10. Effect of the environment on the dendritic morphology of the rat auditory cortex

    PubMed Central

    Bose, Mitali; Muñoz-Llancao, Pablo; Roychowdhury, Swagata; Nichols, Justin A.; Jakkamsetti, Vikram; Porter, Benjamin; Byrapureddy, Rajasekhar; Salgado, Humberto; Kilgard, Michael P.; Aboitiz, Francisco; Dagnino-Subiabre, Alexies; Atzori, Marco

    2010-01-01

    The present study aimed to identify morphological correlates of environment-induced changes at excitatory synapses of the primary auditory cortex (A1). We used the Golgi-Cox stain technique to compare pyramidal cells dendritic properties of Sprague-Dawley rats exposed to different environmental manipulations. Sholl analysis, dendritic length measures, and spine density counts were used to monitor the effects of sensory deafness and an auditory version of environmental enrichment (EE). We found that deafness decreased apical dendritic length leaving basal dendritic length unchanged, whereas EE selectively increased basal dendritic length without changing apical dendritic length. On the contrary, deafness decreased while EE increased spine density in both basal and apical dendrites of A1 layer 2/3 (LII/III) neurons. To determine whether stress contributed to the observed morphological changes in A1, we studied neural morphology in a restraint-induced model that lacked behaviorally relevant acoustic cues. We found that stress selectively decreased apical dendritic length in the auditory but not in the visual primary cortex. Similar to the acoustic manipulation, stress-induced changes in dendritic length possessed a layer specific pattern displaying LII/III neurons from stressed animals with normal apical dendrites but shorter basal dendrites, while infragranular neurons (layers V and VI) displayed shorter apical dendrites but normal basal dendrites. The same treatment did not induce similar changes in the visual cortex, demonstrating that the auditory cortex is an exquisitely sensitive target of neocortical plasticity, and that prolonged exposure to different acoustic as well as emotional environmental manipulation may produce specific changes in dendritic shape and spine density. PMID:19771593

  11. Dendritic Cells in Kidney Transplant Biopsy Samples Are Associated with T Cell Infiltration and Poor Allograft Survival

    PubMed Central

    De Serres, Sacha A.; Safa, Kassem; Bijol, Vanesa; Ueno, Takuya; Onozato, Maristela L.; Iafrate, A. John; Herter, Jan M.; Lichtman, Andrew H.; Mayadas, Tanya N.; Guleria, Indira; Rennke, Helmut G.; Najafian, Nader; Chandraker, Anil

    2015-01-01

    Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival. PMID:25855773

  12. Self-replenishing ability of cross-linked low surface energy polymer films investigated by a complementary experimental-simulation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, A. C. C., E-mail: a.c.c.esteves@tue.nl, E-mail: g.dewith@tue.nl; Lyakhova, K.; Riel, J. M. van

    2014-03-28

    Nowadays, many self-healing strategies are available for recovering mechanical damage of bulk polymeric materials. The recovery of surface-dependent functionalities on polymer films is, however, equally important and has been less investigated. In this work we study the ability of low surface energy cross-linked poly(ester urethane) networks containing perfluorinated dangling chains to self-replenish their surface, after being submitted to repeated surface damage. For this purpose we used a combined experimental-simulation approach. Experimentally, the cross-linked films were intentionally damaged by cryo-microtoming to remove top layers and create new surfaces which were characterized by water Contact Angle measurements and X-Ray Photoelectron Spectroscopy. Themore » same systems were simultaneously represented by a Dissipative Particles Dynamics simulation method, where the damage was modeled by removing the top film layers in the simulation box and replacing it by new “air” beads. The influence of different experimental parameters, such as the concentration of the low surface energy component and the molecular mobility span of the dangling chains, on the surface recovery is discussed. The combined approach reveals important details of the self-replenishing ability of damaged polymer films such as the occurrence of multiple-healing events, the self-replenishing efficiency, and the minimum “healing agent” concentration for a maximum recovery.« less

  13. Method of inhibiting dislocation generation in silicon dendritic webs

    DOEpatents

    Spitznagel, John A.; Seidensticker, Raymond G.; McHugh, James P.

    1990-11-20

    A method of tailoring the heat balance of the outer edge of the dendrites adjacent the meniscus to produce thinner, smoother dendrites, which have substantially less dislocation sources contiguous with the dendrites, by changing the view factor to reduce radiation cooling or by irradiating the dendrites with light from a quartz lamp or a laser to raise the temperature of the dendrites.

  14. Amplitude Normalization of Dendritic EPSPs at the Soma of Binaural Coincidence Detector Neurons of the Medial Superior Olive

    PubMed Central

    Winters, Bradley D.; Jin, Shan-Xue; Ledford, Kenneth R.

    2017-01-01

    The principal neurons of the medial superior olive (MSO) encode cues for horizontal sound localization through comparisons of the relative timing of EPSPs. To understand how the timing and amplitude of EPSPs are maintained during propagation in the dendrites, we made dendritic and somatic whole-cell recordings from MSO principal neurons in brain slices from Mongolian gerbils. In somatic recordings, EPSP amplitudes were largely uniform following minimal stimulation of excitatory synapses at visualized locations along the dendrites. Similar results were obtained when excitatory synaptic transmission was eliminated in a low calcium solution and then restored at specific dendritic sites by pairing input stimulation and focal application of a higher calcium solution. We performed dual dendritic and somatic whole-cell recordings to measure spontaneous EPSPs using a dual-channel template-matching algorithm to separate out those events initiated at or distal to the dendritic recording location. Local dendritic spontaneous EPSP amplitudes increased sharply in the dendrite with distance from the soma (length constant, 53.6 μm), but their attenuation during propagation resulted in a uniform amplitude of ∼0.2 mV at the soma. The amplitude gradient of dendritic EPSPs was also apparent in responses to injections of identical simulated excitatory synaptic currents in the dendrites. Compartmental models support the view that these results extensively reflect the influence of dendritic cable properties. With relatively few excitatory axons innervating MSO neurons, the normalization of dendritic EPSPs at the soma would increase the importance of input timing versus location during the processing of interaural time difference cues in vivo. SIGNIFICANCE STATEMENT The neurons of the medial superior olive analyze cues for sound localization by detecting the coincidence of binaural excitatory synaptic inputs distributed along the dendrites. Previous studies have shown that dendritic voltages undergo severe attenuation as they propagate to the soma, potentially reducing the influence of distal inputs. However, using dendritic and somatic patch recordings, we found that dendritic EPSP amplitude increased with distance from the soma, compensating for dendritic attenuation and normalizing EPSP amplitude at the soma. Much of this normalization reflected the influence of dendritic morphology. As different combinations of presynaptic axons may be active during consecutive cycles of sound stimuli, somatic EPSP normalization renders spike initiation more sensitive to synapse timing than dendritic location. PMID:28213442

  15. Glycoprotein Mucin Molecular Brush on Cancer Cells and its Correlation with Resistance Against Drug Delivery

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Shah, Aalok; Campbell, Robert; Wan, Kai-Tak

    2012-02-01

    Uptake of cytotoxic drugs by typical tumor cells is limited by the dense dendritic network of oligosaccharide mucin chains that forms a mechanical barrier. Atomic force microscopy is used to directly measure the force needed to pierce the mucin layer to reach the cell surface. Measurements are analyzed by deGennes' steric reputation theory. Multi-drug resistant ovarian tumor cells shows significantly larger penetration load compared to the wide type. A pool of pancreatic, lung, colorectal, and breast cells are also characterized. The chemotherapeutic agent, benzyl-α-GalNac, for inhibiting glycosylation is shown to be effective in reducing the mechanical barrier.

  16. Gas gangrene of the abdominal wall due to late-onset enteric fistula after polyester mesh repair of an incisional hernia.

    PubMed

    Moussi, A; Daldoul, S; Bourguiba, B; Othmani, D; Zaouche, A

    2012-04-01

    The occurrence of enteric fistulae after wall repair using a prosthetic mesh is a serious but, fortunately, rare complication. We report the case of a 66-year-old diabetic man who presented with gas gangrene of the abdominal wall due to an intra-abdominal abscess caused by intestinal erosion six years after an incisional hernia repair using a polyester mesh. The aim of this case report is to illustrate the seriousness of enteric fistula after parietal repair using a synthetic material.

  17. Chemical Resistance of Ornamental Compound Stone Produced with Marble Waste and Unsaturated Polyester

    NASA Astrophysics Data System (ADS)

    Ribeiro, Carlos E. Gomes; Rodriguez, Rubén J. Sánchez; Vieira, Carlos M. Fontes

    Ornamental compound stone are produced by industry for decades, however, few published studies describe these materials. Brazil has many deposits of stone wastes and a big potential to produce these materials. This work aims to evaluate the chemical resistance of ornamental compound stones produced with marble waste and unsaturated polyester. An adaptation of Annex H of ABNT NBR 13818:97 standard, with reagents commonly used in household products, was used. The results were compared with those obtained for natural stone used in composite production.

  18. Bronchiolitis obliterans organizing pneumonia due to titanium nanoparticles in paint.

    PubMed

    Cheng, Tong-Hong; Ko, Fu-Chang; Chang, Junn-Liang; Wu, Kuo-An

    2012-02-01

    We present a case of a 58-year-old man who experienced Bronchiolitis obliterans organizing pneumonia after a 3-month exposure to polyester powder paint. Mineralogical analysis by transmission electron microscopy of a pulmonary sample and the polyester powder paint he was exposed to showed the presence of titanium dioxide nanoparticles in both. We suggest that exposure to titanium dioxide nanoparticles should be added to the etiology of Bronchiolitis obliterans organizing pneumonia. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. In-situ measurement of processing properties during fabrication in a production tool

    NASA Technical Reports Server (NTRS)

    Kranbuehl, D. E.; Haverty, P.; Hoff, M.; Loos, A. C.

    1988-01-01

    Progress is reported on the use of frequency-dependent electromagnetic measurements (FDEMs) as a single, convenient technique for continuous in situ monitoring of polyester cure during fabrication in a laboratory and manufacturing environment. Preliminary FDEM sensor and modeling work using the Loss-Springer model in order to develop an intelligent closed-loop, sensor-controlled cure process is described. FDEMs using impedance bridges in the Hz to MHz region is found to be ideal for automatically monitoring polyester processing properties continuously throughout the cure cycle.

  20. High-performance liquid chromatographic determination of benzil in air as an indicator of emissions derived from polyester powder coatings.

    PubMed

    Pukkila, J; Kokotti, H; Peltonen, K

    1989-10-06

    A method to estimate occupational exposure to emissions from the curing of polyester powder paints was developed. The method is based on the monitoring only of a certain marker compound in workroom air in order to make the determinations easier. Benzil, reproducibly emitted from all the powders tested, was chosen as the indicator for curing (220 degrees C)-derived emissions. A method for the air sampling and high-performance liquid chromatographic benzil is described. Aspects of the use of marker compounds are discussed.

  1. Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila.

    PubMed

    Zhang, Heng; Wang, Yan; Wong, Jack Jing Lin; Lim, Kah-Leong; Liou, Yih-Cherng; Wang, Hongyan; Yu, Fengwei

    2014-08-25

    Pruning of unnecessary axons and/or dendrites is crucial for maturation of the nervous system. However, little is known about cell adhesion molecules (CAMs) that control neuronal pruning. In Drosophila, dendritic arborization neurons, ddaCs, selectively prune their larval dendrites. Here, we report that Rab5/ESCRT-mediated endocytic pathways are critical for dendrite pruning. Loss of Rab5 or ESCRT function leads to robust accumulation of the L1-type CAM Neuroglian (Nrg) on enlarged endosomes in ddaC neurons. Nrg is localized on endosomes in wild-type ddaC neurons and downregulated prior to dendrite pruning. Overexpression of Nrg alone is sufficient to inhibit dendrite pruning, whereas removal of Nrg causes precocious dendrite pruning. Epistasis experiments indicate that Rab5 and ESCRT restrain the inhibitory role of Nrg during dendrite pruning. Thus, this study demonstrates the cell-surface molecule that controls dendrite pruning and defines an important mechanism whereby sensory neurons, via endolysosomal pathway, downregulate the cell-surface molecule to trigger dendrite pruning. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Microtubule nucleation and organization in dendrites

    PubMed Central

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  3. Somatic spikes regulate dendritic signaling in small neurons in the absence of backpropagating action potentials.

    PubMed

    Myoga, Michael H; Beierlein, Michael; Regehr, Wade G

    2009-06-17

    Somatic spiking is known to regulate dendritic signaling and associative synaptic plasticity in many types of large neurons, but it is unclear whether somatic action potentials play similar roles in small neurons. Here we ask whether somatic action potentials can also influence dendritic signaling in an electrically compact neuron, the cerebellar stellate cell (SC). Experiments were conducted in rat brain slices using a combination of imaging and electrophysiology. We find that somatic action potentials elevate dendritic calcium levels in SCs. There was little attenuation of calcium signals with distance from the soma in SCs from postnatal day 17 (P17)-P19 rats, which had dendrites that averaged 60 microm in length, and in short SC dendrites from P30-P33 rats. Somatic action potentials evoke dendritic calcium increases that are not affected by blocking dendritic sodium channels. This indicates that dendritic signals in SCs do not rely on dendritic sodium channels, which differs from many types of large neurons, in which dendritic sodium channels and backpropagating action potentials allow somatic spikes to control dendritic calcium signaling. Despite the lack of active backpropagating action potentials, we find that trains of somatic action potentials elevate dendritic calcium sufficiently to release endocannabinoids and retrogradely suppress parallel fiber to SC synapses in P17-P19 rats. Prolonged SC firing at physiologically realistic frequencies produces retrograde suppression when combined with low-level group I metabotropic glutamate receptor activation. Somatic spiking also interacts with synaptic stimulation to promote associative plasticity. These findings indicate that in small neurons the passive spread of potential within dendrites can allow somatic spiking to regulate dendritic calcium signaling and synaptic plasticity.

  4. Conformationally pre-organized and pH-responsive flat dendrons: synthesis and self-assembly at the liquid-solid interface.

    PubMed

    El Malah, Tamer; Ciesielski, Artur; Piot, Luc; Troyanov, Sergey I; Mueller, Uwe; Weidner, Steffen; Samorì, Paolo; Hecht, Stefan

    2012-01-21

    Efficient Cu-catalyzed 1,3-dipolar cycloaddition reactions have been used to prepare two series of three regioisomers of G-1 and G-2 poly(triazole-pyridine) dendrons. The G-1 and G-2 dendrons consist of branched yet conformationally pre-organized 2,6-bis(phenyl/pyridyl-1,2,3-triazol-4-yl)pyridine (BPTP) monomeric and trimeric cores, respectively, carrying one focal and either two or four peripheral alkyl side chains. In the solid state, the conformation and supramolecular organization were studied by means of a single crystal X-ray structure analysis of one derivative. At the liquid-solid interface, the self-assembly behavior was investigated by scanning tunneling microscopy (STM) on graphite surfaces. Based on the observed supramolecular organization, it appears that the subtle balance between conformational preferences inherent in the dendritic backbone on the one side and the adsorption and packing of the alkyl side chains on the graphite substrate on the other side dictate the overall structure formation in 2D.

  5. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    PubMed

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target.

  6. Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Python, Francois; Goebel, Carsten; Aeby, Pierre

    2009-09-15

    The number of studies involved in the development of in vitro skin sensitization tests has increased since the adoption of the EU 7th amendment to the cosmetics directive proposing to ban animal testing for cosmetic ingredients by 2013. Several studies have recently demonstrated that sensitizers induce a relevant up-regulation of activation markers such as CD86, CD54, IL-8 or IL-1{beta} in human myeloid cell lines (e.g., U937, MUTZ-3, THP-1) or in human peripheral blood monocyte-derived dendritic cells (PBMDCs). The present study aimed at the identification of new dendritic cell activation markers in order to further improve the in vitro evaluation ofmore » the sensitizing potential of chemicals. We have compared the gene expression profiles of PBMDCs and the human cell line MUTZ-3 after a 24-h exposure to the moderate sensitizer cinnamaldehyde. A list of 80 genes modulated in both cell types was obtained and a set of candidate marker genes was selected for further analysis. Cells were exposed to selected sensitizers and non-sensitizers for 24 h and gene expression was analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction. Results indicated that PIR, TRIM16 and two Nrf2-regulated genes, CES1 and NQO1, are modulated by most sensitizers. Up-regulation of these genes could also be observed in our recently published DC-activation test with U937 cells. Due to their role in DC activation, these new genes may help to further refine the in vitro approaches for the screening of the sensitizing properties of a chemical.« less

  7. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants.

    PubMed

    Arjunan, P; El-Awady, A; Dannebaum, R O; Kunde-Ramamoorthy, G; Cutler, C W

    2016-02-01

    The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Amplitude Normalization of Dendritic EPSPs at the Soma of Binaural Coincidence Detector Neurons of the Medial Superior Olive.

    PubMed

    Winters, Bradley D; Jin, Shan-Xue; Ledford, Kenneth R; Golding, Nace L

    2017-03-22

    The principal neurons of the medial superior olive (MSO) encode cues for horizontal sound localization through comparisons of the relative timing of EPSPs. To understand how the timing and amplitude of EPSPs are maintained during propagation in the dendrites, we made dendritic and somatic whole-cell recordings from MSO principal neurons in brain slices from Mongolian gerbils. In somatic recordings, EPSP amplitudes were largely uniform following minimal stimulation of excitatory synapses at visualized locations along the dendrites. Similar results were obtained when excitatory synaptic transmission was eliminated in a low calcium solution and then restored at specific dendritic sites by pairing input stimulation and focal application of a higher calcium solution. We performed dual dendritic and somatic whole-cell recordings to measure spontaneous EPSPs using a dual-channel template-matching algorithm to separate out those events initiated at or distal to the dendritic recording location. Local dendritic spontaneous EPSP amplitudes increased sharply in the dendrite with distance from the soma (length constant, 53.6 μm), but their attenuation during propagation resulted in a uniform amplitude of ∼0.2 mV at the soma. The amplitude gradient of dendritic EPSPs was also apparent in responses to injections of identical simulated excitatory synaptic currents in the dendrites. Compartmental models support the view that these results extensively reflect the influence of dendritic cable properties. With relatively few excitatory axons innervating MSO neurons, the normalization of dendritic EPSPs at the soma would increase the importance of input timing versus location during the processing of interaural time difference cues in vivo SIGNIFICANCE STATEMENT The neurons of the medial superior olive analyze cues for sound localization by detecting the coincidence of binaural excitatory synaptic inputs distributed along the dendrites. Previous studies have shown that dendritic voltages undergo severe attenuation as they propagate to the soma, potentially reducing the influence of distal inputs. However, using dendritic and somatic patch recordings, we found that dendritic EPSP amplitude increased with distance from the soma, compensating for dendritic attenuation and normalizing EPSP amplitude at the soma. Much of this normalization reflected the influence of dendritic morphology. As different combinations of presynaptic axons may be active during consecutive cycles of sound stimuli, somatic EPSP normalization renders spike initiation more sensitive to synapse timing than dendritic location. Copyright © 2017 the authors 0270-6474/17/373138-12$15.00/0.

  9. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic compositemore » products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of useful products using this technology is to scale the technology from the 700-L pilot reactor to a small-scale production facility, with dedicated operation staff and engineering controls. In addition, we recommend that a market study be conducted as well as further product development for construction products that will utilize the unique properties of this bio-based material.« less

  10. Dendritic solidification. I - Analysis of current theories and models. II - A model for dendritic growth under an imposed thermal gradient

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1985-01-01

    A critical review of the present dendritic growth theories and models is presented. Mathematically rigorous solutions to dendritic growth are found to rely on an ad hoc assumption that dendrites grow at the maximum possible growth rate. This hypothesis is found to be in error and is replaced by stability criteria which consider the conditions under which a dendrite tip advances in a stable fashion in a liquid. The important elements of a satisfactory model for dendritic solidification are summarized and a theoretically consistent model for dendritic growth under an imposed thermal gradient is proposed and described. The model is based on the modification of an analysis due to Burden and Hunt (1974) and predicts correctly in all respects, the transition from a dendritic to a planar interface at both very low and very large growth rates.

  11. A role for a rat homolog of staufen in the transport of RNA to neuronal dendrites.

    PubMed

    Tang, S J; Meulemans, D; Vazquez, L; Colaco, N; Schuman, E

    2001-11-08

    RNAs are present in dendrites and may be used for local protein synthesis in response to synaptic activity. To begin to understand dendritic RNA targeting, we cloned a rat homolog of staufen, a Drosophila gene that participates in mRNA targeting during development. In hippocampal neurons, rat staufen protein displays a microtubule-dependent somatodendritic distribution pattern that overlaps with dendritic RNAs. To determine whether r-staufen is required for dendritic RNA targeting, we constructed a mutant version containing the RNA binding domains (stau-RBD) but lacking the C-terminal portion potentially involved in dendritic targeting. Stau-RBD expression was restricted to the cell bodies and proximal dendrites. Expression of stau-RBD significantly decreased, while overexpression of wild-type r-staufen increased, the amount of dendritic mRNA. Taken together, these results suggest that the rat staufen protein plays an important role in the delivery of RNA to dendrites.

  12. Active action potential propagation but not initiation in thalamic interneuron dendrites

    PubMed Central

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  13. Vapor-Liquid Sol-Gel Approach to Fabricating Highly Durable and Robust Superhydrophobic Polydimethylsiloxane@Silica Surface on Polyester Textile for Oil-Water Separation.

    PubMed

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong

    2017-08-23

    Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.

  14. Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells.

    PubMed

    Cheng, Hongwei; Wu, Zhixian; Wu, Caisheng; Wang, Xiaoyuan; Liow, Sing Shy; Li, Zibiao; Wu, Yun-Long

    2018-02-01

    Stanniocalcin 2 (STC2) overexpression in hepatocellular carcinoma (HCC) could lead to poor prognosis, which might be due to its induced P-glycoprotein and Bcl-2 protein expression level increase. P-glycoprotein or membrane pump induced drug efflux and altered prosurvival Bcl-2 expression are key mechanisms for drug resistance leading to failure of chemotherapy in HCC. However, current strategy to overcome both P-glycoprotein and Bcl-2 protein induced drug resistance was rarely reported. In this work, we utilized an amphiphilic poly[(R)-3-hydroxybutyrate] (PHB)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic polyester to encapsulate chemotherapeutic paclitaxel (PTX) in hydrophobic PHB domain and Bcl-2 convertor Nur77/ΔDBD gene (Nur77 without DNA binding domain for mitochondria localization) by formation of polyplex due to cationic PDMAEMA segment, to effectively inhibit the drug resistant HepG2/STC2 and SMCC7721/STC2 liver cancer cell growth. Thanks to the cationic nanoparticle complex formation ability and high transfection efficiency to express Bcl-2 conversion proteins, PHB-PDMAEMA/PTX@polyplex could partially impair P-glycoprotein induced PTX efflux and activate the apoptotic function of previous prosurvival Bcl-2 protein. This is the pioneer report of cationic amphiphilic polyester PHB-PDMAEMA to codeliver anticancer drug and therapeutic plasmid to overcome both pump and non-pump mediated chemotherapeutic resistance in liver cancer cells, which might be inspiring for the application of polyester in personalized cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. One-step production of immobilized alpha-amylase in recombinant Escherichia coli.

    PubMed

    Rasiah, Indira A; Rehm, Bernd H A

    2009-04-01

    Industrial enzymes are often immobilized via chemical cross-linking onto solid supports to enhance stability and facilitate repeated use in bioreactors. For starch-degrading enzymes, immobilization usually places constraints on enzymatic conversion due to the limited diffusion of the macromolecular substrate through available supports. This study describes the one-step immobilization of a highly thermostable alpha-amylase (BLA) from Bacillus licheniformis and its functional display on the surface of polyester beads inside engineered Escherichia coli. An optimized BLA variant (Termamyl) was N-terminally fused to the polyester granule-forming enzyme PhaC of Cupriavidus necator. The fusion protein lacking the signal sequence mediated formation of stable polyester beads exhibiting alpha-amylase activity. The alpha-amylase beads were assessed with respect to alpha-amylase activity, which was demonstrated qualitatively and quantitatively. The immobilized alpha-amylase showed Michaelis-Menten enzyme kinetics exerting a V(max) of about 506 mU/mg of bead protein with a K(m) of about 5 microM, consistent with that of free alpha-amylase. The stability of the enzyme at 85 degrees C and the capacity for repeated usage in a starch liquefaction process were also demonstrated. In addition, structural integrity and functionality of the beads at extremes of pH and temperature, demonstrating their suitability for industrial use, were confirmed by electron microscopy and protein/enzyme analysis. This study proposes a novel, cost-effective method for the production of immobilized alpha-amylase in a single step by using the polyester granules forming protein PhaC as a fusion partner in engineered E. coli.

  16. One-Step Production of Immobilized α-Amylase in Recombinant Escherichia coli▿ †

    PubMed Central

    Rasiah, Indira A.; Rehm, Bernd H. A.

    2009-01-01

    Industrial enzymes are often immobilized via chemical cross-linking onto solid supports to enhance stability and facilitate repeated use in bioreactors. For starch-degrading enzymes, immobilization usually places constraints on enzymatic conversion due to the limited diffusion of the macromolecular substrate through available supports. This study describes the one-step immobilization of a highly thermostable α-amylase (BLA) from Bacillus licheniformis and its functional display on the surface of polyester beads inside engineered Escherichia coli. An optimized BLA variant (Termamyl) was N-terminally fused to the polyester granule-forming enzyme PhaC of Cupriavidus necator. The fusion protein lacking the signal sequence mediated formation of stable polyester beads exhibiting α-amylase activity. The α-amylase beads were assessed with respect to α-amylase activity, which was demonstrated qualitatively and quantitatively. The immobilized α-amylase showed Michaelis-Menten enzyme kinetics exerting a Vmax of about 506 mU/mg of bead protein with a Km of about 5 μM, consistent with that of free α-amylase. The stability of the enzyme at 85°C and the capacity for repeated usage in a starch liquefaction process were also demonstrated. In addition, structural integrity and functionality of the beads at extremes of pH and temperature, demonstrating their suitability for industrial use, were confirmed by electron microscopy and protein/enzyme analysis. This study proposes a novel, cost-effective method for the production of immobilized α-amylase in a single step by using the polyester granules forming protein PhaC as a fusion partner in engineered E. coli. PMID:19201981

  17. Nondestructive identification of dye mixtures in polyester and cotton fibers using raman spectroscopy and ultraviolet-visible (UV-Vis) microspectrophotometry.

    PubMed

    Was-Gubala, Jolanta; Starczak, Roza

    2015-01-01

    Presented in this paper is an assessment of the applicability of Raman spectroscopy and microspectrophotometry (MSP) in visible and ultraviolet light (UV-Vis) in the examination of textile fibers dyed with mixtures of synthetic dyes. Fragments of single polyester fibers, stained with ternary mixtures of disperse dyes in small mass concentrations, and fragments of single cotton fibers, dyed with binary or ternary mixtures of reactive dyes, were subjected to the study. Three types of excitation sources, 514, 633, and 785 nm, were used during Raman examinations, while the MSP study was conducted in the 200 to 800 nm range. The results indicate that the capabilities for discernment of dye mixtures are similar in the spectroscopic methods that were employed. Both methods have a limited capacity to distinguish slightly dyed polyester fiber; additionally, it was found that Raman spectroscopy enables identification of primarily the major components in dye mixtures. The best results, in terms of the quality of Raman spectra, were obtained using an excitation source from the near infrared. MSP studies led to the conclusion that polyester testing should be carried out in the range above 310 nm, while for cotton fibers there is no limitation or restriction of the applied range. Also, MSP UV-Vis showed limited possibilities for discriminatory analysis of cotton fibers dyed with a mixture of reactive dyes, where the ratio of the concentration of the main dye used in the dyeing process to minor dye was higher than four. The results presented have practical applications in forensic studies, inter alia.

  18. Spider-web amphiphiles as artificial lipid clusters: design, synthesis, and accommodation of lipid components at the air-water interface.

    PubMed

    Ariga, Katsuhiko; Urakawa, Toshihiro; Michiue, Atsuo; Kikuchi, Jun-ichi

    2004-08-03

    As a novel category of two-dimensional lipid clusters, dendrimers having an amphiphilic structure in every unit were synthesized and labeled "spider-web amphiphiles". Amphiphilic units based on a Lys-Lys-Glu tripeptide with hydrophobic tails at the C-terminal and a polar head at the N-terminal are dendrically connected through stepwise peptide coupling. This structural design allowed us to separately introduce the polar head and hydrophobic tails. Accordingly, we demonstrated the synthesis of the spider-web amphiphile series in three combinations: acetyl head/C16 chain, acetyl head/C18 chain, and ammonium head/C16 chain. All the spider-web amphiphiles were synthesized in satisfactory yields, and characterized by 1H NMR, MALDI-TOFMS, GPC, and elemental analyses. Surface pressure (pi)-molecular area (A) isotherms showed the formation of expanded monolayers except for the C18-chain amphiphile at 10 degrees C, for which the molecular area in the condensed phase is consistent with the cross-sectional area assigned for all the alkyl chains. In all the spider-web amphiphiles, the molecular areas at a given pressure in the expanded phase increased in proportion to the number of units, indicating that alkyl chains freely fill the inner space of the dendritic core. The mixing of octadecanoic acid with the spider-web amphiphiles at the air-water interface induced condensation of the molecular area. From the molecular area analysis, the inclusion of the octadecanoic acid bears a stoichiometric characteristic; i.e., the number of captured octadecanoic acids in the spider-web amphiphile roughly agrees with the number of branching points in the spider-web amphiphile.

  19. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases

    PubMed Central

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-01-01

    Background Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Design and Methods Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Results Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-α) and also induced allogeneic naive CD4+ T cells to proliferate and to produce type 1 cytokines such as interferon-γ and tumor necrosis factor-α. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Conclusions Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and endothelial microparticles could be an important immunmodulatory therapeutic target. PMID:19648164

  20. Transparent Composites Made from Tunicate Cellulose Membranes and Environmentally Friendly Polyester.

    PubMed

    Zhao, Yadong; Moser, Carl; Henriksson, Gunnar

    2018-05-25

    A series of optically transparent composites were made by using tunicate cellulose membranes, in which the naturally organized cellulose microfibrillar network structure of tunicate tunics was preserved and used as the template and a solution of glycerol and citric acid at different molar ratios was used as the matrix. Polymerization through ester bond formation occurred at elevated temperatures without any catalyst, and water was released as the only byproduct. The obtained composites had a uniform and dense structure. Thus, the produced glycerol citrate polyester improved the transparency of the tunicate cellulose membrane while the cellulose membrane provided rigidity and strength to the prepared composite. The interaction between cellulose and polyester afforded the composites high thermal stability. Additionally, the composites were optically transparent and their shape, strength, and flexibility were adjustable by varying the formulation and reaction conditions. These composites of cellulose, glycerol, and citric acid are renewable and biocompatible and have many potential applications as structural materials in packaging, flexible displays, and solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dry entrapment of enzymes by epoxy or polyester resins hardened on different solid supports.

    PubMed

    Barig, Susann; Funke, Andreas; Merseburg, Andrea; Schnitzlein, Klaus; Stahmann, K-Peter

    2014-06-10

    Embedding of enzymes was performed with epoxy or polyester resin by mixing in a dried enzyme preparation before polymerization was started. This fast and low-cost immobilization method produced enzymatically active layers on different solid supports. As model enzymes the well-characterized Thermomyces lanuginosus lipase and a new threonine aldolase from Ashbya gossypii were used. It was shown that T. lanuginosus lipase recombinantly expressed in Aspergillus oryzae is a monomeric enzyme with a molecular mass of 34kDa, while A. gossypii threonine aldolase expressed in Escherichia coli is a pyridoxal-5'-phosphate binding homotetramer with a mass of 180kDa. The enzymes were used freeze dried, in four different preparations: freely diffusing, adsorbed on octyl sepharose, as well as cross-linked enzyme aggregates or as suspensions in organic solvent. They were mixed with standard two-component resins and prepared as layers on solid supports made of different materials e.g. metal, glass, polyester. Polymerization led to encapsulated enzyme preparations showing activities comparable to literature values. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Developments in the use of rare earth metal complexes as efficient catalysts for ring-opening polymerization of cyclic esters used in biomedical applications

    NASA Astrophysics Data System (ADS)

    Cota, Iuliana

    2017-04-01

    Biodegradable polymers represent a class of particularly useful materials for many biomedical and pharmaceutical applications. Among these types of polyesters, poly(ɛ-caprolactone) and polylactides are considered very promising for controlled drug delivery devices. These polymers are mainly produced by ring-opening polymerization of their respective cyclic esters, since this method allows a strict control of the molecular parameters (molecular weight and distribution) of the obtained polymers. The most widely used catalysts for ring-opening polymerization of cyclic esters are tin- and aluminium-based organometallic complexes; however since the contamination of the aliphatic polyesters by potentially toxic metallic residues is particularly of concern for biomedical applications, the possibility of replacing organometallic initiators by novel less toxic or more efficient organometallic complexes has been intensively studied. Thus, in the recent years, the use of highly reactive rare earth initiators/catalysts leading to lower polymer contamination has been developed. The use of rare earth complexes is considered a valuable strategy to decrease the polyester contamination by metallic residues and represents an attractive alternative to traditional organometallic complexes.

  3. A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme

    PubMed Central

    Taguchi, Seiichi; Yamada, Miwa; Matsumoto, Ken'ichiro; Tajima, Kenji; Satoh, Yasuharu; Munekata, Masanobu; Ohno, Katsuhiro; Kohda, Katsunori; Shimamura, Takashi; Kambe, Hiromi; Obata, Shusei

    2008-01-01

    Polylactate (PLA) is synthesized as a representative bio-based polyester by the chemo-bio process on the basis of metal catalyst-mediated chemical polymerization of lactate (LA) supplied by microbial fermentation. To establish the one-step microbial process for synthesis of LA-based polyesters, we explored whether polyhydroxyalkanoate (PHA) synthase would exhibit polymerizing activity toward a LA-coenzyme A (CoA), based on the fact that PHA monomeric constituents, especially 3-hydroxybutyrate (3HB), are structurally analogous to LA. An engineered PHA synthase was discovered as a candidate by a two-phase in vitro polymerization system previously developed. An LA-CoA producing Escherichia coli strain with a CoA transferase gene was constructed, and the generation of LA-CoA was demonstrated by capillary electrophoresis/MS analysis. Next, when the engineered PHA synthase gene was introduced into the resultant recombinant strain, we confirmed the one-step biosynthesis of the LA-incorporated copolyester, P(6 mol% LA-co-94 mol% 3HB), with a number-average molecular weight of 1.9 × 105, as revealed by gel permeation chromatography, gas chromatography/MS, and NMR. PMID:18978031

  4. Aliphatic hyperbranched polyester: A new building block in the construction of multifunctional nanoparticles and nanocomposites**

    PubMed Central

    Santra, Santimukul; Kaittanis, Charalambos; Perez, J. Manuel

    2009-01-01

    Herein we report the design and synthesis of multifunctional hyperbranched polyester-based nanoparticles and nanocomposites with properties ranging from magnetic, fluorescence, antioxidant and X-ray contrast. The fabrication of these nanostructures was achieved using a novel aliphatic and biodegradable hyperbranched polyester (HBPE) synthesized from readily available diethylmalonate. The polymer’s globular structure with functional surface carboxylic groups and hydrophobic cavities residing in the polymer’s interior allows for the formation of multifunctional polymeric nanoparticles, which are able to encapsulate a diversity of hydrophobic cargos. Via simple surface chemistry modifications, the surface carboxylic acid groups were modified to yield nanoparticles with a variety of surface functionalizations, such as amino, azide and propargyl groups, which mediated the conjugation of small molecules. This capability achieved the engineering of the HBPE nanoparticle surface for specific cell internalization studies and the formation of nanoparticle assemblies for the creation of novel nanocomposites that retained, and in some cases enhanced, the properties of the parental nanoparticle building blocks. Considering these results, the HBPE polymer, nanoparticles and composites should be ideal for biomedical, pharmaceutical, nanophotonics and material applications. PMID:19957939

  5. Greensilica® vectors for smart textiles.

    PubMed

    Matos, Joana C; Avelar, Inês; Martins, M Bárbara F; Gonçalves, M Clara

    2017-01-20

    The present work aims developing a versatile Greensilica ® vector/carrier, able to bind to a wide range of textile matrices of carbohydrate polymers and susceptible of being loaded with chemicals/drugs/therapeutic molecules, to create a green tailor-made (multi)functional high-tech textile. A green, eco-friendly, ammonia-free, easily scalable, time-saving sol-gel process was established for the production of those silica-based colloidal particles (SiO 2 , amine-SiO 2 , diamine-SiO 2 , and epoxy-SiO 2 ). Two different textile matrices (cotton, polyester) were functionalized, through the impregnation of Greensilica® particles. The impregnation was performed with and without cure. Diamine-SiO 2 colloidal particles exhibited the higher bonding efficiency in cured textile matrices (both cotton and polyester), while with no cure the best adherence to cotton and polyester textile matrices was achieved with diamine-SiO 2 and amine-SiO 2 , respectively. Use once and throw away and continued use applications were envisaged and screened through washing tests. The efficiency of the textiles impregnation was confirmed by SEM, and quantified by ICP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment.

    PubMed

    Carney Almroth, Bethanie M; Åström, Linn; Roslund, Sofia; Petersson, Hanna; Johansson, Mats; Persson, Nils-Krister

    2018-01-01

    Microplastics in the environment are a subject of intense research as they pose a potential threat to marine organisms. Plastic fibers from textiles have been indicated as a major source of this type of contaminant, entering the oceans via wastewater and diverse non-point sources. Their presence is also documented in terrestrial samples. In this study, the amount of microfibers shedding from synthetic textiles was measured for three materials (acrylic, nylon, polyester), knit using different gauges and techniques. All textiles were found to shed, but polyester fleece fabrics shed the greatest amounts, averaging 7360 fibers/m -2 /L -1 in one wash, compared with polyester fabrics which shed 87 fibers/m -2 /L -1 . We found that loose textile constructions shed more, as did worn fabrics, and high twist yarns are to be preferred for shed reduction. Since fiber from clothing is a potentially important source of microplastics, we suggest that smarter textile construction, prewashing and vacuum exhaustion at production sites, and use of more efficient filters in household washing machines could help mitigate this problem.

  7. The Evolution of Silica Nanoparticle-polyester Coatings on Surfaces Exposed to Sunlight.

    PubMed

    Truong, Vi Khanh; Stefanovic, Miljan; Maclaughlin, Shane; Tobin, Mark; Vongsvivut, Jitraporn; Al Kobaisi, Mohammad; Crawford, Russell J; Ivanova, Elena P

    2016-10-11

    Corrosion of metallic surfaces is prevalent in the environment and is of great concern in many areas, including the military, transport, aviation, building and food industries, amongst others. Polyester and coatings containing both polyester and silica nanoparticles (SiO2NPs) have been widely used to protect steel substrata from corrosion. In this study, we utilized X-ray photoelectron spectroscopy, attenuated total reflection infrared micro-spectroscopy, water contact angle measurements, optical profiling and atomic force microscopy to provide an insight into how exposure to sunlight can cause changes in the micro- and nanoscale integrity of the coatings. No significant change in surface micro-topography was detected using optical profilometry, however, statistically significant nanoscale changes to the surface were detected using atomic force microscopy. Analysis of the X-ray photoelectron spectroscopy and attenuated total reflection infrared micro-spectroscopy data revealed that degradation of the ester groups had occurred through exposure to ultraviolet light to form COO·, -H2C·, -O·, -CO· radicals. During the degradation process, CO and CO2 were also produced.

  8. Aminolysis of polyethylene terephthalate surface along with in situ synthesis and stabilizing ZnO nanoparticles using triethanolamine optimized with response surface methodology.

    PubMed

    Poortavasoly, Hajar; Montazer, Majid; Harifi, Tina

    2016-01-01

    This research concerned the simultaneous polyester surface modification and synthesis of zinc oxide nano-reactors to develop durable photo-bio-active fabric with variable hydrophobicity/hydrophilicity under sunlight. For this purpose, triethanolamine (TEA) was applied as a stabilizer and pH adjusting chemical for the aminolysis of polyester surface and enhancing the surface reactivity along with synthesis and deposition of ZnO nanoparticles on the fabric. Therefore, TEA played a crucial role in providing the alkaline condition for the preparation of zinc oxide nanoparticles and acting as stabilizer controlling the size of the prepared nanoparticles. The stain-photodegradability regarded as self-cleaning efficiency, wettability and weight change under the process was optimized based on zinc acetate and TEA concentrations, using central composite design (CCD). Findings also suggested the potential of the prepared fabric in inhibiting Staphylococcus aureus and Escherichia coli bacteria growth with greater than 99.99% antibacterial efficiency. Besides, the proposed treatment had no detrimental effect on tensile strength and hand feeling of the polyester fabric. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Study of the effect of surface treatment of kenaf fiber on chemical structure and water absorption of kenaf filled unsaturated polyester composite

    NASA Astrophysics Data System (ADS)

    Salem, I. A. S.; Rozyanty, A. R.; Betar, B. O.; Adam, T.; Mohammed, M.; Mohammed, A. M.

    2017-10-01

    In this research, unsaturated polyester/kenaf fiber (UP/KF) composites was prepared by using hand lay-up process. The effect of surface treatment of kenaf fiber on mechanical properties of kenaf filled unsaturated polyester composites were studied. Different concentrationsof stearic acid (SA) were applied, i.e. 0, 0.4, and 0.8 wt%. The Fourier transform infrared (FT-IR) spectra of kenaf fiber shows high intensity of the peak around 3300-3400 cm-1, which is attributed to the hydrogen bonded O-H stretching. However, the treated kenaf fiber with stearic acid shows the elimination of O-H group and this peak is vanished. This is due to the reaction of (-COOH) group of stearic with (-OH) group of kenaf fiber. The results of water absorption study revealed that increasing the loading of KF in the composite will result is increasing the tendency to absorb water. However, the absorption was significantly decreased after treatment with stearic acid as well as the time to reach to the equilibrium state.

  10. Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons

    PubMed Central

    Larkum, M E; Zhu, J J; Sakmann, B

    2001-01-01

    Double, triple and quadruple whole-cell voltage recordings were made simultaneously from different parts of the apical dendritic arbor and the soma of adult layer 5 (L5) pyramidal neurons. We investigated the membrane mechanisms that support the conduction of dendritic action potentials (APs) between the dendritic and axonal AP initiation zones and their influence on the subsequent AP pattern. The duration of the current injection to the distal dendritic initiation zone controlled the degree of coupling with the axonal initiation zone and the AP pattern. Two components of the distally evoked regenerative potential were pharmacologically distinguished: a rapidly rising peak potential that was TTX sensitive and a slowly rising plateau-like potential that was Cd2+ and Ni2+ sensitive and present only with longer-duration current injection. The amplitude of the faster forward-propagating Na+-dependent component and the amplitude of the back-propagating AP fell into two classes (more distinctly in the forward-propagating case). Current injection into the dendrite altered propagation in both directions. Somatic current injections that elicited single Na+ APs evoked bursts of Na+ APs when current was injected simultaneously into the proximal apical dendrite. The mechanism did not depend on dendritic Na+–Ca2+ APs. A three-compartment model of a L5 pyramidal neuron is proposed. It comprises the distal dendritic and axonal AP initiation zones and the proximal apical dendrite. Each compartment contributes to the initiation and to the pattern of AP discharge in a distinct manner. Input to the three main dendritic arbors (tuft dendrites, apical oblique dendrites and basal dendrites) has a dominant influence on only one of these compartments. Thus, the AP pattern of L5 pyramids reflects the laminar distribution of synaptic activity in a cortical column. PMID:11389204

  11. The morphology and electrical geometry of rat jaw-elevator motoneurones.

    PubMed Central

    Moore, J A; Appenteng, K

    1991-01-01

    1. The aim of this work was to quantify both the morphology and electrical geometry of the dendritic trees of jaw-elevator motoneurones. To do this we have made intracellular recordings from identified motoneurones in anaesthetized rats, determined their membrane properties and then filled them with horseradish peroxidase by ionophoretic ejection. Four neurones were subsequently fully reconstructed and the lengths and diameters of all the dendritic segments measured. 2. The mean soma diameter was 25 microns and values of mean dendritic length for individual cells ranged from 514 to 773 microns. Dendrites branched on average 9.1 times to produce 10.2 end-terminations. Dendritic segments could be represented as constant diameter cylinders between branch points. Values of dendritic surface area ranged from 1.08 to 2.52 x 10(5) microns 2 and values of dendritic to total surface area from 98 to 99%. 3. At branch points the ratio of the summed diameters of the daughter dendrites to the 3/2 power against the parent dendrite to the 3/2 power was exactly 1.0. Therefore the individual branch points could be collapsed into a single cylinder. Furthermore for an individual dendrite the diameter of this cylinder remained constant with increasing electrical distance from the soma. Thus individual dendrites can be represented electrically as cylinders of constant diameter. 4. However dendrites of a given neurone terminated at different electrical distances from the soma. The equivalent-cylinder diameter of the combined dendritic tree remained constant over the proximal half and then showed a pronounced reduction over the distal half. The reduction in equivalent diameter could be ascribed to the termination of dendrites at differing electrical distances from the soma. Therefore the complete dendritic tree of these motoneurones is best represented as a cylinder over the proximal half of their electrical length but as a cone over the distal half. PMID:1804966

  12. Passive dendrites enable single neurons to compute linearly non-separable functions.

    PubMed

    Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris

    2013-01-01

    Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions.

  13. Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions

    PubMed Central

    Cazé, Romain Daniel; Humphries, Mark; Gutkin, Boris

    2013-01-01

    Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions. PMID:23468600

  14. Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons.

    PubMed

    Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D

    2008-02-01

    Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.

  15. Golgi-type I and Golgi-type II neurons in the ventral anterior thalamic nucleus of the adult human: morphological features and quantitative analysis.

    PubMed

    Al-Hussain Bani Hani, Saleh M; El-Dwairi, Qasim A; Bataineh, Ziad M; Al-Haidari, Mohammad S; Al-Alami, Jamil

    2008-05-01

    The morphological and quantitative features of neurons in the adult human ventral anterior thalamic nucleus were studied in Golgi preparations. Two neuronal types were found and their quantitative features were studied. Golgi-type I neurons were medium to large cells with dense dendritic trees and dendritic protrusions and short hair-like appendages. They have somatic mean diameter of 30.8 microm (+/-9.4, n = 85). They have an average 100.3 dendritic branches, 48.97 dendritic branching points, and 58.85 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 3.1 microm (+/-1, n = 80), 1.85 microm (+/-0.8, n = 145), and 1.5 microm (+/-0.4, n = 160), respectively. Golgi-type II neurons were small to medium cells with few sparsely branching dendrites and dendritic stalked appendages with or without terminal swellings. They have somatic mean diameters of 22.2 microm (+/-5.8, n = 120). They have an average 33.76 dendritic branches, 16.49 dendritic branching points, and 21.97 dendritic tips. The mean diameters of their primary, secondary, and tertiary dendrites were 1.6 microm (+/-0.86, n = 70), 1.15 microm (+/-0.55, n = 118), and 1 microm (+/-0.70, n = 95), respectively. These quantitative data may form the basis for further quantitative studies involving aging or some degenerative diseases that may affect cell bodies and/or dendritic trees of the Golgi-type I and/or Golgi-type II thalamic neurons.

  16. Fine and distributed subcellular retinotopy of excitatory inputs to the dendritic tree of a collision-detecting neuron

    PubMed Central

    Zhu, Ying

    2016-01-01

    Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation. PMID:27009157

  17. Wnt5 and Drl/Ryk Gradients Pattern the Drosophila Olfactory Dendritic Map

    PubMed Central

    Wu, Yuping; Helt, Jay-Christian; Wexler, Emily; Petrova, Iveta M.; Noordermeer, Jasprina N.; Fradkin, Lee G.

    2014-01-01

    During development, dendrites migrate to their correct locations in response to environmental cues. The mechanisms of dendritic guidance are poorly understood. Recent work has shown that the Drosophila olfactory map is initially formed by the spatial segregation of the projection neuron (PN) dendrites in the developing antennal lobe (AL). We report here that between 16 and 30 h after puparium formation, the PN dendrites undergo dramatic rotational reordering to achieve their final glomerular positions. During this period, a novel set of AL-extrinsic neurons express high levels of the Wnt5 protein and are tightly associated with the dorsolateral edge of the AL. Wnt5 forms a dorsolateral-high to ventromedial-low pattern in the antennal lobe neuropil. Loss of Wnt5 prevents the ventral targeting of the dendrites, whereas Wnt5 overexpression disrupts dendritic patterning. We find that Drl/Ryk, a known Wnt5 receptor, is expressed in a dorsolateral-to-ventromedial (DL > VM) gradient by the PN dendrites. Loss of Drl in the PNs results in the aberrant ventromedial targeting of the dendrites, a defect that is suppressed by reduction in Wnt5 gene dosage. Conversely, overexpression of Drl in the PNs results in the dorsolateral targeting of their dendrites, an effect that requires Drl's cytoplasmic domain. We propose that Wnt5 acts as a repulsive guidance cue for the PN dendrites, whereas Drl signaling in the dendrites inhibits Wnt5 signaling. In this way, the precise expression patterns of Wnt5 and Drl orient the PN dendrites allowing them to target their final glomerular positions. PMID:25378162

  18. Neocortical dendritic complexity is controlled during development by NOMA-GAP-dependent inhibition of Cdc42 and activation of cofilin.

    PubMed

    Rosário, Marta; Schuster, Steffen; Jüttner, René; Parthasarathy, Srinivas; Tarabykin, Victor; Birchmeier, Walter

    2012-08-01

    Neocortical neurons have highly branched dendritic trees that are essential for their function. Indeed, defects in dendritic arborization are associated with human neurodevelopmental disorders. The molecular mechanisms regulating dendritic arbor complexity, however, are still poorly understood. Here, we uncover the molecular basis for the regulation of dendritic branching during cortical development. We show that during development, dendritic branching requires post-mitotic suppression of the RhoGTPase Cdc42. By generating genetically modified mice, we demonstrate that this is catalyzed in vivo by the novel Cdc42-GAP NOMA-GAP. Loss of NOMA-GAP leads to decreased neocortical volume, associated specifically with profound oversimplification of cortical dendritic arborization and hyperactivation of Cdc42. Remarkably, dendritic complexity and cortical thickness can be partially restored by genetic reduction of post-mitotic Cdc42 levels. Furthermore, we identify the actin regulator cofilin as a key regulator of dendritic complexity in vivo. Cofilin activation during late cortical development depends on NOMA-GAP expression and subsequent inhibition of Cdc42. Strikingly, in utero expression of active cofilin is sufficient to restore postnatal dendritic complexity in NOMA-GAP-deficient animals. Our findings define a novel cell-intrinsic mechanism to regulate dendritic branching and thus neuronal complexity in the cerebral cortex.

  19. A primer on clothing systems for cold-weather field work

    USGS Publications Warehouse

    Denner, J.C.

    1993-01-01

    Hypothermia in cold environments can be prevented by physiological adaptation and by the proper use of cold weather clothing. The human body adjusts to cold temperature by increasing the rates of basal metabolism, specific dynamic action, and physical exercise. Heat loss is reduced by vasoconstriction. Clothing systems for cold weather reduce loss by providing insulation and protection from the elements. Satisfactory cold- weather clothing is constructed of wool fabrics or the synthetic fibers polypropylene and polyester. Outerwear suitable for cold climates is insulated with down, high-loft polyester fiberfills, or the new synthetic thin insulators. (USGS)

  20. SNAP-25 requirement for dendritic growth of hippocampal neurons.

    PubMed

    Grosse, G; Grosse, J; Tapp, R; Kuchinke, J; Gorsleben, M; Fetter, I; Höhne-Zell, B; Gratzl, M; Bergmann, M

    1999-06-01

    Structure and dimension of the dendritic arbor are important determinants of information processing by the nerve cell, but mechanisms and molecules involved in dendritic growth are essentially unknown. We investigated early mechanisms of dendritic growth using mouse fetal hippocampal neurons in primary culture, which form processes during the first week in vitro. We detected a key component of regulated exocytosis, SNAP-25 (synaptosomal associated protein of 25 kDa), in axons and axonal terminals as well as in dendrites identified by the occurrence of the dendritic markers transferrin receptor and MAP2. Selective inactivation of SNAP-25 by botulinum neurotoxin A (BoNTA) resulted in inhibition of axonal growth and of vesicle recycling in axonal terminals. In addition, dendritic growth of hippocampal pyramidal and granule neurons was significantly inhibited by BoNTA. In contrast, cleavage of synaptobrevin by tetanus toxin had an effect on neither axonal nor dendritic growth. Our observations indicate that SNAP-25, but not synaptobrevin, is involved in constitutive axonal growth and dendrite formation by hippocampal neurons.

  1. Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth.

    PubMed

    Yang, Wei-Kang; Peng, Yu-Huei; Li, Hsun; Lin, Hsiu-Chen; Lin, Yu-Ching; Lai, Tzu-Ting; Suo, Hsien; Wang, Chien-Hsiang; Lin, Wei-Hsiang; Ou, Chan-Yen; Zhou, Xin; Pi, Haiwei; Chang, Henry C; Chien, Cheng-Ting

    2011-10-20

    During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Dendritic Na+ spikes enable cortical input to drive action potential output from hippocampal CA2 pyramidal neurons

    PubMed Central

    Sun, Qian; Srinivas, Kalyan V; Sotayo, Alaba; Siegelbaum, Steven A

    2014-01-01

    Synaptic inputs from different brain areas are often targeted to distinct regions of neuronal dendritic arbors. Inputs to proximal dendrites usually produce large somatic EPSPs that efficiently trigger action potential (AP) output, whereas inputs to distal dendrites are greatly attenuated and may largely modulate AP output. In contrast to most other cortical and hippocampal neurons, hippocampal CA2 pyramidal neurons show unusually strong excitation by their distal dendritic inputs from entorhinal cortex (EC). In this study, we demonstrate that the ability of these EC inputs to drive CA2 AP output requires the firing of local dendritic Na+ spikes. Furthermore, we find that CA2 dendritic geometry contributes to the efficient coupling of dendritic Na+ spikes to AP output. These results provide a striking example of how dendritic spikes enable direct cortical inputs to overcome unfavorable distal synaptic locale to trigger axonal AP output and thereby enable efficient cortico-hippocampal information flow. DOI: http://dx.doi.org/10.7554/eLife.04551.001 PMID:25390033

  3. Golgi-independent secretory trafficking through recycling endosomes in neuronal dendrites and spines

    PubMed Central

    Bowen, Aaron B; Bourke, Ashley M; Hiester, Brian G; Hanus, Cyril

    2017-01-01

    Neurons face the challenge of regulating the abundance, distribution and repertoire of integral membrane proteins within their immense, architecturally complex dendritic arbors. While the endoplasmic reticulum (ER) supports dendritic translation, most dendrites lack the Golgi apparatus (GA), an essential organelle for conventional secretory trafficking. Thus, whether secretory cargo is locally trafficked in dendrites through a non-canonical pathway remains a fundamental question. Here we define the dendritic trafficking itinerary for key synaptic molecules in rat cortical neurons. Following ER exit, the AMPA-type glutamate receptor GluA1 and neuroligin 1 undergo spatially restricted entry into the dendritic secretory pathway and accumulate in recycling endosomes (REs) located in dendrites and spines before reaching the plasma membrane. Surprisingly, GluA1 surface delivery occurred even when GA function was disrupted. Thus, in addition to their canonical role in protein recycling, REs also mediate forward secretory trafficking in neuronal dendrites and spines through a specialized GA-independent trafficking network. PMID:28875935

  4. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing

    2018-03-01

    Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

  5. Orientations of dendritic growth during solidification

    NASA Astrophysics Data System (ADS)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  6. The Evolution of Dendrite Morphology during Isothermal Coarsening

    NASA Technical Reports Server (NTRS)

    Alkemper, Jens; Mendoza, Roberto; Kammer, Dimitris; Voorhees, Peter W.

    2003-01-01

    Dendrite coarsening is a common phenomenon in casting processes. From the time dendrites are formed until the inter-dendritic liquid is completely solidified dendrites are changing shape driven by variations in interfacial curvature along the dendrite and resulting in a reduction of total interfacial area. During this process the typical length-scale of the dendrite can change by orders of magnitude and the final microstructure is in large part determined by the coarsening parameters. Dendrite coarsening is thus crucial in setting the materials parameters of ingots and of great commercial interest. This coarsening process is being studied in the Pb-Sn system with Sn-dendrites undergoing isothermal coarsening in a Pb-Sn liquid. Results are presented for samples of approximately 60% dendritic phase, which have been coarsened for different lengths of times. Presented are three-dimensional microstructures obtained by serial-sectioning and an analysis of these microstructures with regard to interface orientation and interfacial curvatures. These graphs reflect the evolution of not only the microstructure itself, but also of the underlying driving forces of the coarsening process. As a visualization of the link between the microstructure and the driving forces a three-dimensional microstructure with the interfaces colored according to the local interfacial mean curvature is shown.

  7. Bi-stable dendrite in constant electric field: a model analysis.

    PubMed

    Baginskas, A; Gutman, A; Svirskis, G

    1993-03-01

    Some neurons possess dendritic persistent inward current, which is activated during depolarization. Dendrites can be stably depolarized, i.e. they are bi-stable if the net current is inward. A proper method to show the existence of dendritic bi-stability is putting the neuron into the electric field to induce transmembrane potential changes along the dendrites. Here we present analytical and computer simulation of the bi-stable dendrite in the d.c. field. A prominent jump to a depolarization plateau can be seen in the soma upon initial hyperpolarization of its membrane. If a considerable portion of dendrites are parallel to the field it is impossible to switch off the depolarization plateau by changing the direction and the strength of the electric field. There is nothing similar in neurons with ohmic dendrites. The results of the simulation conform to the experimental observations in turtle motoneurons [Hounsgaard J. and Kiehn O. (1993) J. Physiol., Lond. (in press)]; comparison of the theoretical and the experimental results makes semi-quantitative estimation of some electrical parameters of dendrites possible. We propose modifications of the experiment which enable one to measure dendritic length constants and other parameters of stained neurons.

  8. Septic shock sera containing circulating histones induce dendritic cell-regulated necrosis in fatal septic shock patients.

    PubMed

    Raffray, Loic; Douchet, Isabelle; Augusto, Jean-Francois; Youssef, Jihad; Contin-Bordes, Cecile; Richez, Christophe; Duffau, Pierre; Truchetet, Marie-Elise; Moreau, Jean-Francois; Cazanave, Charles; Leroux, Lionel; Mourrissoux, Gaelle; Camou, Fabrice; Clouzeau, Benjamin; Jeannin, Pascale; Delneste, Yves; Gabinski, Claude; Guisset, Olivier; Lazaro, Estibaliz; Blanco, Patrick

    2015-04-01

    Innate immune system alterations, including dendritic cell loss, have been reproducibly observed in patients with septic shock and correlated to adverse outcomes or nosocomial infections. The goal of this study is to better understand the mechanisms behind this observation in order to better assess septic shock pathogenesis. Prospective, controlled experimental study. Research laboratory at an academic medical center. The study enrolled 71 patients, 49 with septic shock and 22 with cardiogenic shock. Seventeen healthy controls served as reference. In vitro monocyte-derived dendritic cells were generated from healthy volunteers. Sera were assessed for their ability to promote in vitro dendritic cell death through flow cytometry detection in each group of patients. The percentage of apoptotic or necrotic dendritic cells was evaluated by annexin-V and propidium iodide staining. We observed that only patients with septic shock and not patients with pure cardiogenic shock were characterized by a rapid and profound loss of circulating dendritic cells. In vitro analysis revealed that sera from patients with septic shock induced higher dendritic cell death compared to normal sera or cardiogenic shock (p<0.005). Sera from surviving patients induced dendritic cell death through a caspase-dependent apoptotic pathway, whereas sera from nonsurviving patients induced dendritic cell-regulated necrosis. Dendritic cell necrosis was not due to necroptosis but was dependent of the presence of circulating histone. The toxicity of histones toward dendritic cell could be prevented by recombinant human activated protein C. Finally, we observed a direct correlation between the levels of circulating histones in patients and the ability of the sera to promote dendritic cell-regulated necrosis. The study demonstrates a differential mechanism of dendritic cell death in patients with septic shock that is dependent on the severity of the disease.

  9. Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons

    PubMed Central

    Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha

    2017-01-01

    We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley’s K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains. PMID:28662210

  10. Three-dimensional spatial modeling of spines along dendritic networks in human cortical pyramidal neurons.

    PubMed

    Anton-Sanchez, Laura; Larrañaga, Pedro; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Bielza, Concha

    2017-01-01

    We modeled spine distribution along the dendritic networks of pyramidal neurons in both basal and apical dendrites. To do this, we applied network spatial analysis because spines can only lie on the dendritic shaft. We expanded the existing 2D computational techniques for spatial analysis along networks to perform a 3D network spatial analysis. We analyzed five detailed reconstructions of adult human pyramidal neurons of the temporal cortex with a total of more than 32,000 spines. We confirmed that there is a spatial variation in spine density that is dependent on the distance to the cell body in all dendrites. Considering the dendritic arborizations of each pyramidal cell as a group of instances of the same observation (the neuron), we used replicated point patterns together with network spatial analysis for the first time to search for significant differences in the spine distribution of basal dendrites between different cells and between all the basal and apical dendrites. To do this, we used a recent variant of Ripley's K function defined to work along networks. The results showed that there were no significant differences in spine distribution along basal arbors of the same neuron and along basal arbors of different pyramidal neurons. This suggests that dendritic spine distribution in basal dendritic arbors adheres to common rules. However, we did find significant differences in spine distribution along basal versus apical networks. Therefore, not only do apical and basal dendritic arborizations have distinct morphologies but they also obey different rules of spine distribution. Specifically, the results suggested that spines are more clustered along apical than in basal dendrites. Collectively, the results further highlighted that synaptic input information processing is different between these two dendritic domains.

  11. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    PubMed

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P < 0.05 or 0.01). The expression levels of NF-kappa B (NF-κB) in dendritic cells were also specifically inhibited by tumor-derived factors (P < 0.05 or 0.01). Moreover, the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  12. Microstructural and Mechanical-Property Manipulation through Rapid Dendrite Growth and Undercooling in an Fe-based Multinary Alloy

    PubMed Central

    Ruan, Ying; Mohajerani, Amirhossein; Dao, Ming

    2016-01-01

    Rapid dendrite growth in single- or dual-phase multicomponent alloys can be manipulated to improve the mechanical properties of such metallic materials. Rapid growth of (αFe) dendrites was realized in an undercooled Fe-5Ni-5Mo-5Ge-5Co (wt.%) multinary alloy using the glass fluxing method. The relationship between rapid dendrite growth and the micro-/nano-mechanical properties of the alloy was investigated by analyzing the grain refinement and microstructural evolution resulting from the rapid dendrite growth. It was found that (αFe) dendrites grow sluggishly within a low but wide undercooling range. Once the undercooling exceeds 250 K, the dendritic growth velocity increases steeply until reaching a plateau of 31.8 ms−1. The increase in the alloy Vickers microhardness with increasing dendritic growth velocity results from the hardening effects of increased grain/phase boundaries due to the grain refinement, the more homogeneous distribution of the second phase along the boundaries, and the more uniform distribution of solutes with increased contents inside the grain, as verified also by nanohardness maps. Once the dendritic growth velocity exceeds ~8 ms−1, the rate of Vickers microhardness increase slows down significantly with a further increase in dendritic growth velocity, owing to the microstructural transition of the (αFe) phase from a trunk-dendrite to an equiaxed-grain microstructure. PMID:27539749

  13. Numerical simulation of dendrite growth in nickel-based superalloy and validated by in-situ observation using high temperature confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Yan, Xuewei; Xu, Qingyan; Liu, Baicheng

    2017-12-01

    Dendritic structures are the predominant microstructural constituents of nickel-based superalloys, an understanding of the dendrite growth is required in order to obtain the desirable microstructure and improve the performance of castings. For this reason, numerical simulation method and an in-situ observation technology by employing high temperature confocal laser scanning microscopy (HT-CLSM) were used to investigate dendrite growth during solidification process. A combined cellular automaton-finite difference (CA-FD) model allowing for the prediction of dendrite growth of binary alloys was developed. The algorithm of cells capture was modified, and a deterministic cellular automaton (DCA) model was proposed to describe neighborhood tracking. The dendrite and detail morphology, especially hundreds of dendrites distribution at a large scale and three-dimensional (3-D) polycrystalline growth, were successfully simulated based on this model. The dendritic morphologies of samples before and after HT-CLSM were both observed by optical microscope (OM) and scanning electron microscope (SEM). The experimental observations presented a reasonable agreement with the simulation results. It was also found that primary or secondary dendrite arm spacing, and segregation pattern were significantly influenced by dendrite growth. Furthermore, the directional solidification (DS) dendritic evolution behavior and detail morphology were also simulated based on the proposed model, and the simulation results also agree well with experimental results.

  14. Dendrite regeneration of adult Drosophila sensory neurons diminishes with aging and is inhibited by epidermal-derived matrix metalloproteinase 2.

    PubMed

    DeVault, Laura; Li, Tun; Izabel, Sarah; Thompson-Peer, Katherine L; Jan, Lily Yeh; Jan, Yuh Nung

    2018-03-01

    Dendrites possess distinct structural and functional properties that enable neurons to receive information from the environment as well as other neurons. Despite their key role in neuronal function, current understanding of the ability of neurons to regenerate dendrites is lacking. This study characterizes the structural and functional capacity for dendrite regeneration in vivo in adult animals and examines the effect of neuronal maturation on dendrite regeneration. We focused on the class IV dendritic arborization (c4da) neuron of the Drosophila sensory system, which has a dendritic arbor that undergoes dramatic remodeling during the first 3 d of adult life and then maintains a relatively stable morphology thereafter. Using a laser severing paradigm, we monitored regeneration after acute and spatially restricted injury. We found that the capacity for regeneration was present in adult neurons but diminished as the animal aged. Regenerated dendrites recovered receptive function. Furthermore, we found that the regenerated dendrites show preferential alignment with the extracellular matrix (ECM). Finally, inhibition of ECM degradation by inhibition of matrix metalloproteinase 2 (Mmp2) to preserve the extracellular environment characteristics of young adults led to increased dendrite regeneration. These results demonstrate that dendrites retain regenerative potential throughout adulthood and that regenerative capacity decreases with aging. © 2018 DeVault et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine.

    PubMed

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong; Du, Sidan; Wu, Jane

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm-RTSVM- which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research.

  16. Divergent Effects of Dendritic Cells on Pancreatitis

    DTIC Science & Technology

    2015-09-01

    role of dendritic cells in pancreatitis. Dendritic cells are professional antigen presenting cells which initiate innate and adaptive immune... Lymphoid -tissue-specific homing of bone- marrow-derived dendritic cells . Blood. 113:6638–6647. http://dx.doi .org/10.1182/blood-2009-02-204321 Dapito...Award Number: W81XWH-12-1-0313 TITLE: Divergent Effects of Dendritic Cells on Pancreatitis PRINCIPAL INVESTIGATOR: Dr. George Miller

  17. Ternary eutectic dendrites: Pattern formation and scaling properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rátkai, László; Szállás, Attila; Pusztai, Tamás

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with themore » interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.« less

  18. Synthesis of ZnTe dendrites on multi-walled carbon nanotubes/polyimide nanocomposite membrane by electrochemical atomic layer deposition and photoelectrical property research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yimin; Kou, Huanhuan; Li, Jiajia

    2012-10-15

    We report on the electrochemical atomic layer deposition (EC-ALD) of ZnTe dendrites on the carboxyl-functionalized multi-walled carbon nanotubes/polyimide (COOH-MWCNTs/PI) membrane. Electrochemical characteristics were studied by cyclic voltammetry (CV) and the deposition of ZnTe dendrites was completed using amperometric method (I-t). The prepared ZnTe dendrites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth mechanism of ZnTe dendrites was elucidated to give a deep understanding of crystal growth. The concentration of reagents and deposition cycle had a significant effect on the morphology and structure of deposits. UV-vis transmission study indicated a direct bandmore » gap of 2.26 eV. Photoelectrical measurement confirmed the p-type conductivity of ZnTe dendrites, which indicated that the dendritic ZnTe crystals may have potential practical application in optoelectronic devices. - Graphical abstract: Representative SEM images of ZnTe dendrites. (a) Panorama of ZnTe dendrites; (b) a single dendrite. The regular branches appeared like leaves and showed a parallel arrangement layer upon layer between each other. Highlights: Black-Right-Pointing-Pointer ZnTe dendrites were successfully synthesized on CNTs/PI membrane by electrodeposition. Black-Right-Pointing-Pointer The growth mechanism of ZnTe dendritic structures was investigated in detail. Black-Right-Pointing-Pointer The concentration and deposition cycle greatly affected the morphology of ZnTe. Black-Right-Pointing-Pointer OCP and I-t studies showed that ZnTe can be beneficial to photoelectric applications.« less

  19. Stent placement for benign colonic stenosis: case report, review of the literature, and animal pilot data.

    PubMed

    Geiger, Timothy M; Miedema, Brent W; Tsereteli, Zurab; Sporn, Emanuel; Thaler, Klaus

    2008-10-01

    Permanent metal stent placement for malignant intestinal obstruction has been proven to be efficient. Temporary stents for benign conditions of the colon and rectum are less studied. This is a case study, review of the literature, and observation from an animal model on placement of stents in the colorectum for benign disease. A 55-year-old man presented with recurrent obstructions from a benign stricture of the distal sigmoid colon. After failed balloon dilations, a polyester coated stent was placed. The purpose of the stent was to improve symptoms and avoid surgery. The stent was expelled after 5 days. We conducted a literature review of stents placed for benign colorectal strictures and an animal study to evaluate stent migration. In the literature, there were 53 reports of uncovered metal stents, four covered metal stents, and six polyester stents. Patency rates were 71%, and migration rate was 43%. Migration occurred earlier with polyester stents (mean=8 days) versus covered (32 days) or uncovered metal stents (112 days). Severe complications were seen in 23% of patients. Four 45-kg pigs underwent rectosigmoid transection with a 21-mm anastomosis and endoscopic placement of a Polyflex stent. Two stents were secured with suture. Stents without fixation were expelled within 24 h of surgery. Stents with fixation were expelled between postoperative days 2 and 14. Stents for the treatment of benign colorectal strictures are safe, with comparable patency rates between stent types. Metal stents can cause severe complications. In a pig model, covered polyester stents tend to migrate early even with fixation. Further investigation needs to focus on new stent designs and/or better fixation.

  20. Effects of Porous Polystyrene Resin Parameters on Candida antarctica Lipase B Adsorption, Distribution, and Polyester Synthesis Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,B.; Miller, M.; Gross, R.

    2007-01-01

    Polystyrene resins with varied particle sizes (35 to 350-600 {mu}m) and pore diameters (300-1000 {angstrom}) were employed to study the effects of immobilization resin particle size and pore diameter on Candida antarctica Lipase B (CALB) loading, distribution within resins, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed rapidly (saturation time {<=}4 min) for particle sizes 120 {mu}m (pore size = 300 {angstrom}). Infrared microspectroscopy showed that CALB forms protein loading fronts regardless of resin particle size at similar enzyme loadings ({approx}8%). From the IR images, the fractions of total surface area available to the enzyme aremore » 21, 33, 35, 37, and 88% for particle sizes 350-600, 120, 75, 35 {mu}m (pore size 300 {angstrom}), and 35 {mu}m (pore size 1000 {angstrom}), respectively. Titration with methyl p-nitrophenyl n-hexylphosphate (MNPHP) showed that the fraction of active CALB molecules adsorbed onto resins was {approx}60%. The fraction of active CALB molecules was invariable as a function of resin particle and pore size. At {approx}8% (w/w) CALB loading, by increasing the immobilization support pore diameter from 300 to 1000 {angstrom}, the turnover frequency (TOF) of {var_epsilon}-caprolactone ({var_epsilon}-CL) to polyester increased from 12.4 to 28.2 s{sup -1}. However, the {var_epsilon}-CL conversion rate was not influenced by changes in resin particle size. Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid. The results herein are compared to those obtained with a similar series of methyl methacrylate resins, where variations in particle size largely affected CALB distribution within resins and catalyst activity for polyester synthesis.« less

Top