Sample records for chain polyunsaturated fatty

  1. [Overexpression of four fatty acid synthase genes elevated the efficiency of long-chain polyunsaturated fatty acids biosynthesis in mammalian cells].

    PubMed

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Wang, Kunfu; Wang, Mingfu; Wang, Didi; Ge, Tangdong; Sun, Jie

    2014-09-01

    Three long-chain polyunsaturated fatty acids, docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) and arachidonic acid (ARA, 20:4n-6), are the most biologically active polyunsaturated fatty acids in the body. They are important in developing and maintaining the brain function, and in preventing and treating many diseases such as cardiovascular disease, inflammation and cancer. Although mammals can biosynthesize these long-chain polyunsaturated fatty acids, the efficiency is very low and dietary intake is needed to meet the requirement. In this study, a multiple-genes expression vector carrying mammalian A6/A5 fatty acid desaturases and multiple-genes expression vector carrying mammalian Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases coding genes was used to transfect HEK293T cells, then the overexpression of the target genes was detected. GC-MS analysis shows that the biosynthesis efficiency and level of DHA, EPA and ARA were significantly increased in cells transfected with the multiple-genes expression vector. Particularly, DHA level in these cells was 2.5 times higher than in the control cells. This study indicates mammal possess a certain mechanism for suppression of high level of biosynthesis of long chain polyunsaturated fatty acids, and the overexpression of Δ6/Δ5 fatty acid desaturases and Δ6/Δ5 fatty acid elongases broke this suppression mechanism so that the level of DHA, EPA and ARA was significantly increased. This study also provides a basis for potential applications of this gene construct in transgenic animal to produce high level of these long-chain polyunsaturated fatty acid.

  2. Long-chain n-3 and n-6 polyunsaturated fatty acids and risk of atrial fibrillation: Results from a Danish cohort study.

    PubMed

    Mortensen, Lotte Maxild; Lundbye-Christensen, Søren; Schmidt, Erik Berg; Calder, Philip C; Schierup, Mikkel Heide; Tjønneland, Anne; Parner, Erik T; Overvad, Kim

    2017-01-01

    Studies of the relation between polyunsaturated fatty acids and risk of atrial fibrillation have been inconclusive. The risk of atrial fibrillation may depend on the interaction between n-3 and n-6 polyunsaturated fatty acids as both types of fatty acids are involved in the regulation of systemic inflammation. We investigated the association between dietary intake of long chain polyunsaturated fatty acids (individually and in combination) and the risk of atrial fibrillation with focus on potential interaction between the two types of polyunsaturated fatty acids. The risk of atrial fibrillation in the Diet, Cancer and Health Cohort was analyzed using the pseudo-observation method to explore cumulative risks on an additive scale providing risk differences. Dietary intake of long chain polyunsaturated fatty acids was assessed by food frequency questionnaires. The main analyses were adjusted for the dietary intake of n-3 α-linolenic acid and n-6 linoleic acid to account for endogenous synthesis of long chain polyunsaturated fatty acids. Interaction was assessed as deviation from additivity of absolute association measures (risk differences). Cumulative risks in 15-year age periods were estimated in three strata of the cohort (N = 54,737). No associations between intake of n-3 or n-6 long chain polyunsaturated fatty acids and atrial fibrillation were found, neither when analyzed separately as primary exposures nor when interaction between n-3 and n-6 long chain polyunsaturated fatty acids was explored. This study suggests no association between intake of long chain polyunsaturated fatty acids and risk of atrial fibrillation.

  3. Role of long-chain and very-long-chain polyunsaturated fatty acids in macular degenerations and dystrophies

    PubMed Central

    Liu, Aihua; Lin, Yanhua; Terry, Ryan; Nelson, Kelly; Bernstein, Paul S

    2014-01-01

    Macular degeneration is a progressive, bilateral eye disorder that damages the macula of the human eye. The most common form of macular degeneration is age-related macular degeneration (AMD), which is the leading cause of irreversible blindness in people older than 50 years in developed countries. Autosomal dominant Stargardt disease-3 (STGD3) is an inherited macular dystrophy that has clinical features similar to dry AMD, but occurs at a much earlier age. It is caused by a mutation in the elongation of very-long-chain fatty acids-like 4 (ELOVL4) gene, which is responsible for encoding the elongase enzyme that converts shorter chain fatty acids into C28–C38 very long-chain polyunsaturated fatty acids (VLCPUFAs, total number of carbons ≥24). Diets rich in long-chain polyunsaturated fatty acids (LCPUFAs) have inverse associations with the progression of AMD and STGD3, and a deficiency in retinal LCPUFAs and VLCPUFAs has been detected in AMD retinas and STGD3 animal models. This article systematically summarizes the roles of LCPUFAs and VLCPUFAs in AMD and STGD3, and discusses future research directions. PMID:25324899

  4. Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties

    PubMed Central

    Abedi, Elahe; Sahari, Mohammad Ali

    2014-01-01

    Recent studies have clearly shown the importance of polyunsaturated fatty acids (as essential fatty acids) and their nutritional value for human health. In this review, various sources, nutritional properties, and metabolism routes of long-chain polyunsaturated fatty acids (LC-PUFA) are introduced. Since the conversion efficiency of linoleic acid (LA) to arachidonic acid (AA) and also α-linolenic acid (ALA) to docosahexaenoic acid (DHA) and eicosatetraenoic acid (EPA) is low in humans, looking for the numerous sources of AA, EPA and EPA fatty acids. The sources include aquatic (fish, crustaceans, and mollusks), animal sources (meat, egg, and milk), plant sources including 20 plants, most of which were weeds having a good amount of LC-PUFA, fruits, herbs, and seeds; cyanobacteria; and microorganisms (bacteria, fungi, microalgae, and diatoms). PMID:25473503

  5. Bacterial Long-Chain Polyunsaturated Fatty Acids: Their Biosynthetic Genes, Functions, and Practical Use

    PubMed Central

    Yoshida, Kiyohito; Hashimoto, Mikako; Hori, Ryuji; Adachi, Takumi; Okuyama, Hidetoshi; Orikasa, Yoshitake; Nagamine, Tadashi; Shimizu, Satoru; Ueno, Akio; Morita, Naoki

    2016-01-01

    The nutritional and pharmaceutical values of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic, eicosapentaenoic and docosahexaenoic acids have been well recognized. These LC-PUFAs are physiologically important compounds in bacteria and eukaryotes. Although little is known about the biosynthetic mechanisms and functions of LC-PUFAs in bacteria compared to those in higher organisms, a combination of genetic, bioinformatic, and molecular biological approaches to LC-PUFA-producing bacteria and some eukaryotes have revealed the notably diverse organization of the pfa genes encoding a polyunsaturated fatty acid synthase complex (PUFA synthase), the LC-PUFA biosynthetic processes, and tertiary structures of the domains of this enzyme. In bacteria, LC-PUFAs appear to take part in specific functions facilitating individual membrane proteins rather than in the adjustment of the physical fluidity of the whole cell membrane. Very long chain polyunsaturated hydrocarbons (LC-HCs) such as hentriacontanonaene are considered to be closely related to LC-PUFAs in their biosynthesis and function. The possible role of LC-HCs in strictly anaerobic bacteria under aerobic and anaerobic environments and the evolutionary relationships of anaerobic and aerobic bacteria carrying pfa-like genes are also discussed. PMID:27187420

  6. Associations of human retinal very long-chain polyunsaturated fatty acids with dietary lipid biomarkers

    PubMed Central

    Gorusupudi, Aruna; Liu, Aihua; Hageman, Gregory S.; Bernstein, Paul S.

    2016-01-01

    The human retina is well-known to have unique lipid profiles enriched in long-chain polyunsaturated fatty acids (LC-PUFAs) and very long-chain polyunsaturated fatty acids (VLC-PUFAs) that appear to promote normal retinal structure and function, but the influence of diet on retinal lipid profiles in health and disease remains controversial. In this study, we examined two independent cohorts of donor eyes and related their retinal lipid profiles with systemic biomarkers of lipid intake. We found that serum and red blood cell lipids, and to a lesser extent orbital fat, are indeed excellent biomarkers of retinal lipid content and n-3/n-6 ratios in both the LC-PUFA and VLC-PUFA series. Eyes from age-related macular degeneration (AMD) donors have significantly decreased levels of VLC-PUFAs and low n-3/n-6 ratios. These results are consistent with the protective role of dietary n-3 LC-PUFAs against AMD and emphasize the importance of monitoring systemic biomarkers of lipid intake when undertaking clinical trials of lipid supplements for prevention and treatment of retinal disease. PMID:26764040

  7. Desaturase and elongase-limiting endogenous long-chain polyunsaturated fatty acid biosynthesis.

    PubMed

    Zhang, Ji Yao; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-03-01

    Endogenous synthesis of the long-chain polyunsaturated fatty acids (LCPUFAs) is mediated by the fatty acid desaturase (FADS) gene cluster (11q12-13.1) and elongation of very long-chain fatty acids 2 (ELOVL2) (6p24.2) and ELOVL5 (6p12.1). Although older biochemical work identified the product of one gene, FADS2, rate limiting for LCPUFA synthesis, recent studies suggest that polymorphisms in any of these genes can limit accumulation of product LCPUFA. Genome-wide association study (GWAS) of Greenland Inuit shows strong adaptation signals within FADS gene cluster, attributed to high omega-3 fatty acid intake, while GWAS found ELOVL2 associated with sleep duration, age and DNA methylation. ELOVL5 coding mutations cause spinocerebellar ataxia 38, and epigenetic marks were associated with depression and suicide risk. Two sterol response element binding sites were found on ELOVL5, a SREBP-1c target gene. Minor allele carriers of a 3 single nucleotide polymorphism (SNP) haplotype in ELOVL2 have decreased 22 : 6n-3 levels. Unequivocal molecular evidence shows mammalian FADS2 catalyzes direct Δ4-desaturation to yield 22 : 6n-3 and 22 : 5n-6. An SNP near FADS1 influences the levels of 5-lipoxygenase products and epigenetic alteration. Genetic polymorphisms within FADS and ELOVL can limit LCPUFA product accumulation at any step of the biosynthetic pathway.

  8. The effect of long chain polyunsaturated fatty acid supplementation on intelligence in low birth weight infant during lactation: A meta-analysis

    PubMed Central

    Song, Yuan; Liu, Ya; Pan, Yun; Yuan, Xiaofeng; Chang, Pengyu; Tian, Yuan; Cui, Weiwei

    2018-01-01

    Background Low birth weight infant (LBWIs) are prone to mental and behavioural problems. As an important constituent of the brain and retina, long chain polyunsaturated fatty acids are essential for foetal infant mental and visual development. The effect of lactation supplemented with long chain polyunsaturated fatty acids (LCPUFA) on the improvement of intelligence in low birth weight children requires further validation. Methods In this study, a comprehensive search of multiple databases was performed to identify studies focused the association between intelligence and long chain polyunsaturated fatty acid supplementation in LBWIs. Studies that compared the Bayley Scales of Infant Development (BSID) or the Wechsler Abbreviated Scale of Intelligence for Children (WISC) scores between LBWIs who were supplemented and controls that were not supplemented with LCPUFA during lactation were selected for inclusion in the meta-analysis. Results The main outcome was the mean difference in the mental development index (MDI) and psychomotor development index (PDI) of the BSID and the full scale intelligence quotient (FSIQ), verbal intelligence quotient (VIQ) and performance intelligence quotient (PIQ) of the WISC between LBWIs and controls. Our findings indicated that the mean BSID or WISC scores in LBWIs did not differ between the supplemented groups and controls. Conclusion This meta-analysis does not reveal that LCPUFA supplementation has a significant impact on the level of intelligence in LBWIs. PMID:29634752

  9. Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats.

    PubMed

    Tyagi, Anupama; Kumar, Uday; Santosh, Vadakattu Sai; Reddy, Suryam; Mohammed, Saazida Bhanu; Ibrahim, Ahamed

    2014-12-01

    Imbalances in the dietary n-6 and n-3 polyunsaturated fatty acids have been implicated in the increased prevalence of inflammatory bowel disease. This study investigated the effects of substitution of linoleic acid with long chain n-3 polyunsaturated fatty acids and hence decreasing n-6:n-3 fatty acid ratio on inflammatory response in dextran sulfate sodium induced colitis. Male weanling Sprague Dawley rats were fed diets with n-6:n-3 fatty acid in the ratios of 215,50,10 or 5 for 3 months and colitis was induced by administration of dextran sulfate sodium in drinking water during last 11 days. Decreasing the dietary n-6:n-3 fatty acid ratio to 10 and 5 significantly attenuated the severity of colitis as evidenced by improvements in clinical symptoms, reversal of shortening of colon length, reduced severity of anemia, preservation of colonic architecture as well as reduced colonic mucosal myeloperoxidase activity. This protection was associated with suppression of colonic mucosal proinflammatory mediators such as TNFα, IL-1β and nitric oxide. These findings suggest that long chain n-3 polyunsaturated fatty acids at a level of 3.0 g/kg diet (n-6:n-3 ratio of 10) prevents dextran sulfate sodium induced colitis by suppressing the proinflammatory mediators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil.

    PubMed

    Ryckebosch, Eline; Bruneel, Charlotte; Termote-Verhalle, Romina; Goiris, Koen; Muylaert, Koenraad; Foubert, Imogen

    2014-10-01

    The purpose of this work was to evaluate the nutritional value of the total lipid extract of different omega-3 long chain polyunsaturated fatty acids producing photoautotrophic microalgae in one study. It was shown that microalgae oils from Isochrysis, Nannochloropsis, Phaeodactylum, Pavlova and Thalassiosira contain sufficient omega-3 LC-PUFA to serve as an alternative for fish oil, which was used as the 'golden standard'. In the microalgae oils an important part of the omega-3 long chain polyunsaturated fatty acids are present in the polar lipid fraction, which may be favourable from a bioavailability and stability viewpoint. Consumption of microalgae oil ensures intake of sterols and carotenoids. The intake of sterols, including cholesterol and phytosterols, is probably not relevant. The intake of carotenoids is however definitely significant and could give the microalgae oils a nutritional added value compared to fish oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association.

    PubMed

    Rimm, Eric B; Appel, Lawrence J; Chiuve, Stephanie E; Djoussé, Luc; Engler, Mary B; Kris-Etherton, Penny M; Mozaffarian, Dariush; Siscovick, David S; Lichtenstein, Alice H

    2018-05-17

    Since the 2002 American Heart Association scientific statement "Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease," evidence from observational and experimental studies and from randomized controlled trials continues to emerge to further substantiate the beneficial effects of seafood long-chain n-3 polyunsaturated fatty acids and cardiovascular disease. A recent American Heart Association science advisory addressed the specific effect of n-3 polyunsaturated fatty acid supplementation on clinical cardiovascular events. This American Heart Association science advisory extends that review and offers further support to include n-3 polyunsaturated fatty acids from seafood consumption. Several potential mechanisms have been investigated, including antiarrhythmic, anti-inflammatory, hematologic, and endothelial, although for most, longer-term dietary trials of seafood are warranted to substantiate the benefit of seafood as a replacement for other important sources of macronutrients. The present science advisory reviews this evidence and makes a suggestion in the context of the 2015-2020 Dietary Guidelines for Americans and in consideration of other constituents of seafood and the impact on sustainability. We conclude that 1 to 2 seafood meals per week be included to reduce the risk of congestive heart failure, coronary heart disease, ischemic stroke, and sudden cardiac death, especially when seafood replaces the intake of less healthy foods. © 2018 American Heart Association, Inc.

  12. Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules

    NASA Astrophysics Data System (ADS)

    Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.

    2007-03-01

    Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.

  13. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae

    PubMed Central

    Martins, Dulce Alves; Custódio, Luísa; Barreira, Luísa; Pereira, Hugo; Ben-Hamadou, Radhouan; Varela, João; Abu-Salah, Khalid M.

    2013-01-01

    The main source of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in human nutrition is currently seafood, especially oily fish. Nonetheless, due to cultural or individual preferences, convenience, geographic location, or awareness of risks associated to fatty fish consumption, the intake of fatty fish is far from supplying the recommended dietary levels. The end result observed in most western countries is not only a low supply of n-3 LC-PUFA, but also an unbalance towards the intake of n-6 fatty acids, resulting mostly from the consumption of vegetable oils. Awareness of the benefits of LC-PUFA in human health has led to the use of fish oils as food supplements. However, there is a need to explore alternatives sources of LC-PUFA, especially those of microbial origin. Microalgae species with potential to accumulate lipids in high amounts and to present elevated levels of n-3 LC-PUFA are known in marine phytoplankton. This review focuses on sources of n-3 LC-PUFA, namely eicosapentaenoic and docosahexaenoic acids, in marine microalgae, as alternatives to fish oils. Based on current literature, examples of marketed products and potentially new species for commercial exploitation are presented. PMID:23807546

  14. High-oleate yeast oil without polyunsaturated fatty acids.

    PubMed

    Tsakraklides, Vasiliki; Kamineni, Annapurna; Consiglio, Andrew L; MacEwen, Kyle; Friedlander, Jonathan; Blitzblau, Hannah G; Hamilton, Maureen A; Crabtree, Donald V; Su, Austin; Afshar, Jonathan; Sullivan, John E; LaTouf, W Greg; South, Colin R; Greenhagen, Emily H; Shaw, A Joe; Brevnova, Elena E

    2018-01-01

    Oleate-enriched triacylglycerides are well-suited for lubricant applications that require high oxidative stability. Fatty acid carbon chain length and degree of desaturation are key determinants of triacylglyceride properties and the ability to manipulate fatty acid composition in living organisms is critical to developing a source of bio-based oil tailored to meet specific application requirements. We sought to engineer the oleaginous yeast Yarrowia lipolytica for production of high-oleate triacylglyceride oil. We studied the effect of deletions and overexpressions in the fatty acid and triacylglyceride synthesis pathways to identify modifications that increase oleate levels. Oleic acid accumulation in triacylglycerides was promoted by exchanging the native ∆9 fatty acid desaturase and glycerol-3-phosphate acyltransferase with heterologous enzymes, as well as deletion of the Δ12 fatty acid desaturase and expression of a fatty acid elongase. By combining these engineering steps, we eliminated polyunsaturated fatty acids and created a Y. lipolytica strain that accumulates triglycerides with > 90% oleate content. High-oleate content and lack of polyunsaturates distinguish this triacylglyceride oil from plant and algal derived oils. Its composition renders the oil suitable for applications that require high oxidative stability and further demonstrates the potential of Y. lipolytica as a producer of tailored lipid profiles.

  15. Effects of Long-Chain Polyunsaturated Fatty Acid Supplementation of Infant Formula on Cognition and Behaviour at 9 Years of Age

    ERIC Educational Resources Information Center

    de Jong, Corina; Kikkert, Hedwig K.; Fidler, Vaclav; Hadders-Algra, Mijna

    2012-01-01

    Aim: Long-chain polyunsaturated fatty acid (LCPUFA) supplementation of infant formula may have a beneficial effect on cognitive development. This study aimed to investigate the effect of LCPUFA formula supplementation primarily on cognition and secondarily on behaviour at age 9 years. Special attention was paid to the potentially modifying effect…

  16. Three Randomized Controlled Trials of Early Long-Chain Polyunsaturated Fatty Acid Supplementation on Means-End Problem Solving in 9-Month-Olds

    ERIC Educational Resources Information Center

    Drover, James; Hoffman, Dennis R.; Castaneda, Yolanda S.; Morale, Sarah E.; Birch, Eileen E.

    2009-01-01

    This study examines whether feeding infants formula supplemented with long-chain polyunsaturated fatty acids (LCPUFA) improves cognitive function of 9-month-olds. Participants included 229 infants from 3 randomized controlled trials. Children received either formula supplemented with docosahexaenoic acid and arachidonic acid, or a control formula…

  17. Serum long-chain omega-3 polyunsaturated Fatty acids and future blood pressure in an ageing population.

    PubMed

    Nyantika, A N; Tuomainen, T-P; Kauhanen, J; Voutilainen, S; Virtanen, J K

    2015-05-01

    To investigate the associations of serum long-chain omega-3 polyunsaturated fatty acids (PUFA) and hair mercury with future blood pressure in an ageing population. Prospective study with baseline measurements in 1998-2001 and follow-up measurements in 2005-2008. The linear relationships (β) of baseline serum fatty acids and hair mercury with future systolic and diastolic blood pressure and pulse pressure were analyzed with multiple linear regression models, using log-transformed values. 181 men and 200 women aged 53-73 y from the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD) population in Eastern Finland, who were free of cardiovascular disease, diabetes or hypertension at baseline. Total serum esterified and nonesterified fatty acids and pubic hair mercury were used as markers for exposure. Anthropometric and other lifestyle and health-related data were collected. The mean serum concentrations were 1.67% (SD 0.92) for eicosapentaenoic acid (EPA), 0.79% (SD 0.16) for docosapentaenoic acid (DPA) and 2.78 (SD 0.92) for docosahexaenoic acid (DHA), of all serum fatty acids. The mean hair mercury concentration was 1.5 µg/g (SD 1.6). We did not find statistically significant associations between the baseline serum long-chain omega-3 PUFA concentrations or hair mercury content and future blood pressure. Hair mercury did not modify the associations with the long-chain omega-3 PUFAs, either. Higher serum long-chain omega-3 PUFA concentration, a biomarker of fish or fish oil consumption, may not have an impact on future blood pressure in an ageing population.

  18. Fads1 and 2 are promoted to meet instant need for long-chain polyunsaturated fatty acids in goose fatty liver.

    PubMed

    Osman, Rashid H; Liu, Long; Xia, Lili; Zhao, Xing; Wang, Qianqian; Sun, Xiaoxian; Zhang, Yihui; Yang, Biao; Zheng, Yun; Gong, Daoqing; Geng, Tuoyu

    2016-07-01

    Global prevalence of non-alcoholic fatty liver disease (NAFLD) constitutes a threat to human health. Goose is a unique model of NAFLD for discovering therapeutic targets as its liver can develop severe steatosis without overt injury. Fatty acid desaturase (Fads) is a potential therapeutic target as Fads expression and mutations are associated with liver fat. Here, we hypothesized that Fads was promoted to provide a protection for goose fatty liver. To test this, goose Fads1 and Fads2 were sequenced. Fads1/2/6 expression was determined in goose liver and primary hepatocytes by quantitative PCR. Liver fatty acid composition was also analyzed by gas chromatography. Data indicated that hepatic Fads1/2/6 expression was gradually increased with the time of overfeeding. In contrast, trans-C18:1n9 fatty acid (Fads inhibitor) was reduced. However, enhanced Fads capacity for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis was not sufficient to compensate for the depleted LC-PUFAs in goose fatty liver. Moreover, cell studies showed that Fads1/2/6 expression was regulated by fatty liver-associated factors. Together, these findings suggest Fads1/2 as protective components are promoted to meet instant need for LC-PUFAs in goose fatty liver, and we propose this is required for severe hepatic steatosis without liver injury.

  19. Long-chain polyunsaturated fatty acid supplementation had no effect on body weight but reduced energy intake in overweight and obese women.

    PubMed

    Harden, Charlotte J; Dible, Victoria A; Russell, Jean M; Garaiova, Iveta; Plummer, Sue F; Barker, Margo E; Corfe, Bernard M

    2014-01-01

    Longer-chain polyunsaturated fatty acids may have greater appetite-suppressing effects than shorter-chain, monosaturated, and saturated fatty acids. Because fish oils are predominantly composed of n-3 long-chain polyunsaturated fatty acid and may assist in the treatment of obesity comorbidities, their effect on body weight and body mass index is of interest. We hypothesized that daily supplementation with docosahexaenoic acid (DHA)-rich oil would reduce energy intake and body weight in overweight and obese women compared with supplementation with oleic acid (OA) rich oil. A double-blinded, randomized, parallel intervention was conducted. Body mass index (in kilograms per meter squared), body weight (in kilograms), body fat (in percent), and lean tissue (in kilograms) were measured at baseline and 12 weeks after intervention with DHA or OA. Diet diaries were also completed at these time points for estimation of energy and macronutrient intake. Subjects reported significantly lower energy (P = .020), carbohydrate (g) (P = .037), and fat (g) (P = .045) intake after DHA compared with OA. Body mass or composition was not affected by treatment, although a fall in body weight in the DHA group approached statistical significance (P = .089). Daily ingestion of DHA over a 12-week period may reduce energy intake in overweight and obese females, but longer-term and adequately powered studies using subjects of both sexes are needed. Other factors that should be considered include the following: the choice of control, the body mass index category of subjects, and ways of improving the compliancy and accuracy of dietary assessment. © 2013.

  20. Hypothalamic fatty acid sensing in Senegalese sole (Solea senegalensis): response to long-chain saturated, monounsaturated, and polyunsaturated (n-3) fatty acids.

    PubMed

    Conde-Sieira, Marta; Bonacic, Kruno; Velasco, Cristina; Valente, Luisa M P; Morais, Sofia; Soengas, José L

    2015-12-15

    We assessed the presence of fatty acid (FA)-sensing mechanisms in hypothalamus of Senegalese sole (Solea senegalensis) and investigated their sensitivity to FA chain length and/or level of unsaturation. Stearate (SA, saturated FA), oleate (OA, monounsaturated FA of the same chain length), α-linolenate [ALA, a n-3 polyunsaturated fatty acid (PUFA) of the same chain length], and eicosapentanoate (EPA, a n-3 PUFA of a larger chain length) were injected intraperitoneally. Parameters related to FA sensing and neuropeptide expression in the hypothalamus were assessed after 3 h and changes in accumulated food intake after 4, 24, and 48 h. Three FA sensing systems characterized in rainbow trout were also found in Senegalese sole and were activated by OA in a way similar to that previously characterized in rainbow trout and mammals. These hypothalamic FA sensing systems were also activated by ALA, differing from mammals, where n-3 PUFAs do not seem to activate FA sensors. This might suggest additional roles and highlights the importance of n-3 PUFA in fish diets, especially in marine species. The activation of FA sensing seems to be partially dependent on acyl chain length and degree of saturation, as no major changes were observed after treating fish with SA or EPA. The activation of FA sensing systems by OA and ALA, but not SA or EPA, is further reflected in the expression of hypothalamic neuropeptides involved in the control of food intake. Both OA and ALA enhanced anorexigenic capacity compatible with the activation of FA sensing systems. Copyright © 2015 the American Physiological Society.

  1. Lipidomics of oxidized polyunsaturated fatty acids

    PubMed Central

    Massey, Karen A.; Nicolaou, Anna

    2013-01-01

    Lipid mediators are produced from the oxidation of polyunsaturated fatty acids through enzymatic and free radical-mediated reactions. When subject to oxygenation via cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases, polyunsaturated fatty acids give rise to an array of metabolites including eicosanoids, docosanoids, and octadecanoids. These potent bioactive lipids are involved in many biochemical and signaling pathways, with inflammation being of particular importance. Moreover, because they are produced by more than one pathway and substrate, and are present in a variety of biological milieus, their analysis is not always possible with conventional assays. Liquid chromatography coupled to electrospray mass spectrometry offers a versatile and sensitive approach for the analysis of bioactive lipids, allowing specific and accurate quantitation of multiple species present in the same sample. Here we explain the principles of this approach to mediator lipidomics and present detailed protocols for the assay of enzymatically produced oxygenated metabolites of polyunsaturated fatty acids that can be tailored to answer biological questions or facilitate assessment of nutritional and pharmacological interventions. PMID:22940496

  2. Spray-dried structured lipid containing long-chain polyunsaturated fatty acids for use in infant formulas.

    PubMed

    Nagachinta, Supakana; Akoh, Casimir C

    2013-10-01

    Human milk fat (HMF) analogs are structured lipids (SLs) modified to have palmitic acid content at the sn-2 position of the triacylglycerol (TAG) and fatty acid composition comparable to HMF. Some of these SLs are also designed to incorporate long-chain polyunsaturated fatty acids (LCPUFAs) because of their important role in infant development. In this study, Maillard reaction products (MRPs), obtained from heated whey protein isolates and corn syrup solids (CSS) solution, were used as encapsulants for microencapsulation of 2 enzymatically synthesized SLs for infant formula applications. The encapsulated SL powders were obtained through spray-drying and evaluated in terms of their microencapsulation efficiency, chemical and physical properties, oxidative stability, and dispersibility. The microencapsulation efficiency of the SLs was 90%. Dispersibility test using particle size measurement demonstrated that these powders dispersed quickly into a homogeneous suspension. The encapsulated SL powders had low peroxide and thiobarbituric acid-reactive substances values. Lower oxidative stability was obtained in the powder containing SL with a higher degree of unsaturation and a lower concentration of tocopherols. The results demonstrated that the degree of fatty acid unsaturation and concentration of endogenous antioxidant in starting oils influenced the oxidative stability of the encapsulated SLs. © 2013 Institute of Food Technologists®

  3. Circulating B-vitamins and smoking habits are associated with serum polyunsaturated Fatty acids in patients with suspected coronary heart disease: a cross-sectional study.

    PubMed

    Skeie, Eli; Strand, Elin; Pedersen, Eva R; Bjørndal, Bodil; Bohov, Pavol; Berge, Rolf K; Svingen, Gard F T; Seifert, Reinhard; Ueland, Per M; Midttun, Øivind; Ulvik, Arve; Hustad, Steinar; Drevon, Christian A; Gregory, Jesse F; Nygård, Ottar

    2015-01-01

    The long-chain polyunsaturated fatty acids are considered to be of major health importance, and recent studies indicate that their endogenous metabolism is influenced by B-vitamin status and smoking habits. We investigated the associations of circulating B-vitamins and smoking habits with serum polyunsaturated fatty acids among 1,366 patients who underwent coronary angiography due to suspected coronary heart disease at Haukeland University Hospital, Norway. Of these, 52% provided information on dietary habits by a food frequency questionnaire. Associations were assessed using partial correlation (Spearman's rho). In the total population, the concentrations of most circulating B-vitamins were positively associated with serum n-3 polyunsaturated fatty acids, but negatively with serum n-6 polyunsaturated fatty acids. However, the associations between B-vitamins and polyunsaturated fatty acids tended to be weaker in smokers. This could not be solely explained by differences in dietary intake. Furthermore, plasma cotinine, a marker of recent nicotine exposure, showed a negative relationship with serum n-3 polyunsaturated fatty acids, but a positive relationship with serum n-6 polyunsaturated fatty acids. In conclusion, circulating B-vitamins are, in contrast to plasma cotinine, generally positively associated with serum n-3 polyunsaturated fatty acids and negatively with serum n-6 polyunsaturated fatty acids in patients with suspected coronary heart disease. Further studies should investigate whether B-vitamin status and smoking habits may modify the clinical effects of polyunsaturated fatty acid intake.

  4. Long-chain n-3 polyunsaturated fatty acids in plasma in British meat-eating, vegetarian, and vegan men.

    PubMed

    Rosell, Magdalena S; Lloyd-Wright, Zouë; Appleby, Paul N; Sanders, Thomas A B; Allen, Naomi E; Key, Timothy J

    2005-08-01

    Plasma concentrations of long-chain n-3 polyunsaturated fatty acids are lower in vegetarians and in vegans than in omnivores. No data are available on whether these concentrations differ between long- and short-term vegetarians and vegans. We compared plasma fatty acid composition in meat-eaters, vegetarians, and vegans and examined whether the proportions of eicosapentaenoic acid (20:5n-3; EPA), docosapentaenoic acid (22:5n-3; DPA), and docosahexaenoic acid (22:6n-3; DHA) were related to the subjects' duration of adherence to their diets or to the proportions of plasma linoleic acid (18:2n-6; LA) and alpha-linolenic acid (18:3n-3; ALA). The present cross-sectional study included 196 meat-eating, 231 vegetarian, and 232 vegan men in the United Kingdom. Information on anthropometry, diet, and smoking habits was obtained through a questionnaire. Total fatty acid composition in plasma was measured. The proportions of plasma EPA and DHA were lower in the vegetarians and in the vegans than in the meat-eaters, whereas only small differences were seen for DPA. Plasma EPA, DPA, and DHA proportions were not significantly associated with the duration of time since the subjects became vegetarian or vegan, which ranged from <1 y to >20 y. In the vegetarians and the vegans, plasma DHA was inversely correlated with plasma LA. The proportions of plasma long-chain n-3 fatty acids were not significantly affected by the duration of adherence to a vegetarian or vegan diet. This finding suggests that when animal foods are wholly excluded from the diet, the endogenous production of EPA and DHA results in low but stable plasma concentrations of these fatty acids.

  5. N-3 Polyunsaturated Fatty Acids through the Lifespan: Implication for Psychopathology

    PubMed Central

    Pusceddu, Matteo M.; Kelly, Philip; Stanton, Catherine; Cryan, John F.

    2016-01-01

    Objective: The impact of lifetime dietary habits and their role in physical, mental, and social well-being has been the focus of considerable recent research. Omega-3 polyunsaturated fatty acids as a dietary constituent have been under the spotlight for decades. Omega-3 polyunsaturated fatty acids constitute key regulating factors of neurotransmission, neurogenesis, and neuroinflammation and are thereby fundamental for development, functioning, and aging of the CNS. Of note is the fact that these processes are altered in various psychiatric disorders, including attention deficit hyperactivity disorder, depression, and Alzheimer’s disease. Design: Relevant literature was identified through a search of MEDLINE via PubMed using the following words, “n-3 PUFAs,” “EPA,” and “DHA” in combination with “stress,” “cognition,” “ADHD,” “anxiety,” “depression,” “bipolar disorder,” “schizophrenia,” and “Alzheimer.” The principal focus was on the role of omega-3 polyunsaturated fatty acids throughout the lifespan and their implication for psychopathologies. Recommendations for future investigation on the potential clinical value of omega-3 polyunsaturated fatty acids were examined. Results: The inconsistent and inconclusive results from randomized clinical trials limits the usage of omega-3 polyunsaturated fatty acids in clinical practice. However, a body of literature demonstrates an inverse correlation between omega-3 polyunsaturated fatty acid levels and quality of life/ psychiatric diseases. Specifically, older healthy adults showing low habitual intake of omega-3 polyunsaturated fatty acids benefit most from consuming them, showing improved age-related cognitive decline. Conclusions: Although further studies are required, there is an exciting and growing body of research suggesting that omega-3 polyunsaturated fatty acids may have a potential clinical value in the prevention and treatment of psychopathologies. PMID:27608809

  6. Long-Chain Polyunsaturated Fatty Acids and Clinical Outcomes of Preterm Infants.

    PubMed

    Lapillonne, Alexandre; Moltu, Sissel J

    2016-01-01

    Long-chain polyunsaturated fatty acids (LCPUFAs) play specific roles during the perinatal period and are very important nutrients to consider. The possible effects of LCPUFAs, particularly docosahexaenoic acid (DHA), on various clinical outcomes of preterm infants are discussed in this paper. Since DHA accumulates in the central nervous system during development, a lot of attention has focused on the effects of DHA on neurodevelopment. Experimental studies as well as recent clinical trials show that providing larger amounts of DHA than currently and routinely provided is associated with better neurological outcomes at 18 months to 2 years. This early advantage, however, does not seem to translate into detectable change in visual and neurodevelopmental outcomes or behavior when assessed in childhood. There is growing evidence that, in addition to effects on development, omega-3 LCPUFAs may reduce the incidence or severity of neonatal morbidities by affecting different steps of the immune and anti-inflammatory response. Studies in preterm infants suggest that the omega-3 LCPUFAs may play a significant role by reducing the risk of bronchopulmonary dysplasia, necrotizing enterocolitis and possibly retinopathy of prematurity and sepsis. Overall, evidence is increasing to support the benefits of high-dose DHA for various health outcomes of preterm infants. These findings are of major clinical relevance mainly because infants born preterm are at particularly high risk for a nutritional deficit in omega-3 fatty acids, predisposing to adverse neonatal outcomes. Further studies are warranted to address these issues as well as to more precisely determine the LCPUFA requirement in order to favor the best possible outcomes of preterm infants. © 2016 S. Karger AG, Basel.

  7. Metabolic health benefits of long-chain omega-3 polyunsaturated fatty acids.

    PubMed

    Howe, Peter; Buckley, Jon

    2014-11-01

    Restricting energy intake and increasing physical activity are advocated for reducing obesity, but many individuals have difficulty complying with these recommendations. Consumption of long-chain omega-3 polyunsaturated fatty acids (n-3 LCPUFA) offers multiple mechanisms to counteract obesity, including appetite suppression; circulatory improvements, which promote nutrient delivery to skeletal muscle and changes in gene expression, which shift metabolism toward increased fat oxidation; increased energy expenditure; and reduced fat deposition. n-3 LCPUFA may also alter gene expression in skeletal muscle to suppress catabolic pathways and upregulate anabolic pathways, resulting in greater lean tissue mass, metabolic rate, and maintenance of physical function. n-3 LCPUFA supplementation has been shown to counteract obesity in rodents, but evidence in humans is limited. Epidemiological associations between n-3 LCPUFA intakes and obesity are inconclusive. Several studies, on the other hand, indicate inverse relationships between biomarkers of n-3 LCPUFA status and obesity, although causality is uncertain. There have been few human intervention trials of omega-3 supplementation for obesity; some have indicated potential benefits, especially when combined with energy-restricted diets or exercise. More trials are needed to confirm these effects and identify mechanisms of action. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  8. Atopic sensitization during the first year of life in relation to long chain polyunsaturated fatty acid levels in human milk.

    PubMed

    Duchén, K; Yu, G; Björkstén, B

    1998-10-01

    The levels of the long chain polyunsaturated n-6 and n-3 fatty acids (PUFA) were studied in colostrum and mature milk of 29 atopic and 29 nonatopic mothers and related to sensitization in their babies during the first 12 mo of life. The levels of alpha-linolenic acid (LNA) were lower (0.96 versus 1.23 weight percentage, p < 0.01) and the levels of dihomo-gamma-linoleic acid were higher (0.36 versus 0.31 weight percentage, p < 0.05) in mature milk from mothers of atopic babies (n = 24) compared with mothers of nonatopic babies (n = 34). The total n-3 levels and the ratio of n-6 PUFA/n-3 PUFA were similar in colostrum of all mothers and then decreased significantly in mature milk (p < 0.001), particularly in milk given to atopic babies. The levels of the n-6 fatty acids arachidonic acid, C22:4, and C22:5 n-6 correlated in milk samples from nonatopic mothers (r = 0.61-0.97, p < 0.05 to p < 0.001) but were largely absent in colostrum and mature milk from atopic mothers. In contrast, LNA and eicosapentaenoic levels correlated in colostrum from the atopic mothers (r = 0.61-0.88) regardless of atopic sensitization in the infants, whereas LNA correlated to C20:4 n-3 in colostrum from nonatopic mothers of nonatopic infants. Furthermore, the levels of the n-3 fatty acid C20:4 n-3 correlated significantly to all n-6 fatty acids, except linoleic acid (r = 0.64-0.79, all p < 0.01) in mature milk from nonatopic mothers of nonsensitized children. Low levels of LNA and total n-3 long chain polyunsaturated fatty acids, in mature milk from the mothers, appear to be associated with atopic sensitization early in life, as well as disturbed relationships between the n-3 fatty acid 20:4 and the n-6 fatty acids particularly in mature milk. On the other hand, disturbed relationships within the individual fatty acids in the n-6 series in human milk reflected the atopic status in the mothers. The variations in the lipid composition of human milk could in part explain some of the

  9. Polyunsaturated fatty acids balance affects platelet NOX2 activity in patients with liver cirrhosis.

    PubMed

    Basili, Stefania; Raparelli, Valeria; Napoleone, Laura; Del Ben, Maria; Merli, Manuela; Riggio, Oliviero; Nocella, Cristina; Carnevale, Roberto; Pignatelli, Pasquale; Violi, Francesco

    2014-07-01

    NADPH-oxidase-2 up-regulation has been suggested in liver damage perpetuation via an oxidative stress-mediated mechanism. n-6/n-3 polyunsaturated fatty acids ratio derangement has been reported in liver disease. To explore polyunsaturated fatty acids balance and its interplay with platelet oxidative stress in liver cirrhosis. A cross-sectional study in 51 cirrhotic patients and sex- and age-matched controls was performed. Serum polyunsaturated fatty acids and oxidative stress markers (urinary isoprostanes and serum soluble NADPH-oxidase-2-derived peptide) were measured. The effect on platelet oxidative stress of n-6/n-3 polyunsaturated fatty acids ratio in vitro and in vivo (1-week supplementation with 3g/daily n-3-polyunsaturated fatty acids) was tested. Compared to controls, cirrhotic patients had significantly higher n-6/n-3 polyunsaturated fatty acids ratio. n-6/n-3 polyunsaturated fatty acids ratio correlated significantly with disease severity and oxidative stress markers. In vitro experiments showed that in Child-Pugh C patients' platelets incubation with low n-6/n-3 polyunsaturated fatty acids ratio resulted in dose-dependent decrease of radical oxigen species (-39%), isoprostanes (-25%) and NADPH-oxidase-2 regulation (-51%). n-3 polyunsaturated fatty acids supplemented patients showed significant oxidative stress indexes reduction. In cirrhosis, n-6/n-3 polyunsaturated fatty acids imbalance up-regulates platelet NADPH-oxidase-2 with ensuing oxidative stress. Further study to evaluate if n-3 supplementation may reduce disease progression is warranted. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity.

    PubMed

    Twining, Cornelia W; Brenna, J Thomas; Lawrence, Peter; Shipley, J Ryan; Tollefson, Troy N; Winkler, David W

    2016-09-27

    Once-abundant aerial insectivores, such as the Tree Swallow (Tachycineta bicolor), have declined steadily in the past several decades, making it imperative to understand all aspects of their ecology. Aerial insectivores forage on a mixture of aquatic and terrestrial insects that differ in fatty acid composition, specifically long-chain omega-3 polyunsaturated fatty acid (LCPUFA) content. Aquatic insects contain high levels of both LCPUFA and their precursor omega-3 PUFA, alpha-linolenic acid (ALA), whereas terrestrial insects contain much lower levels of both. We manipulated both the quantity and quality of food for Tree Swallow chicks in a full factorial design. Diets were either high-LCPUFA or low in LCPUFA but high in ALA, allowing us to separate the effects of direct LCPUFA in diet from the ability of Tree Swallows to convert their precursor, ALA, into LCPUFA. We found that fatty acid composition was more important for Tree Swallow chick performance than food quantity. On high-LCPUFA diets, chicks grew faster, were in better condition, and had greater immunocompetence and lower basal metabolic rates compared with chicks on both low LCPUFA diets. Increasing the quantity of high-LCPUFA diets resulted in improvements to all metrics of performance while increasing the quantity of low-LCPUFA diets only resulted in greater immunocompetence and lower metabolic rates. Chicks preferentially retained LCPUFA in brain and muscle when both food quantity and LCPUFA were limited. Our work suggests that fatty acid composition is an important dimension of aerial insectivore nutritional ecology and reinforces the importance of high-quality aquatic habitat for these declining birds.

  11. An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids.

    PubMed

    Venegas-Calerón, Mónica; Sayanova, Olga; Napier, Johnathan A

    2010-04-01

    It is now accepted that omega-3 polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA; 20:5Delta5,8,11,14,17) and docosahexaenoic acid (DHA, 22:6Delta4,7,10,13,16,19) play important roles in a number of aspects of human health, with marine fish rich in these beneficial fatty acids our primary dietary source. However, over-fishing and concerns about pollution of the marine environment indicate a need to develop alternative, sustainable sources of very long chain polyunsaturated fatty acids (VLC-PUFAs) such as EPA and DHA. A number of different strategies have been considered, with one of the most promising being transgenic plants "reverse-engineered" to produce these so-called fish oils. Considerable progress has been made towards this goal and in this review we will outline the recent achievements in demonstrating the production of omega-3 VLC-PUFAs in transgenic plants. We will also consider how these enriched oils will allow the development of nutritionally-enhanced food products, suitable either for direct human ingestion or for use as an animal feedstuff. In particular, the requirements of aquaculture for omega-3 VLC-PUFAs will act as a strong driver for the development of such products. In addition, biotechnological research on the synthesis of VLC-PUFAs has provided new insights into the complexities of acyl-channelling and triacylglycerol biosynthesis in higher plants. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Importance of medium chain fatty acids in animal nutrition

    NASA Astrophysics Data System (ADS)

    Baltić, B.; Starčević, M.; Đorđević, J.; Mrdović, B.; Marković, R.

    2017-09-01

    Fats in animal and human nutrition are a common subject of research. These studies most often pay attention to particular fat groups (saturated, unsaturated, polyunsaturated fats or fats grouped by the length of their fatty acid chains into short, medium or long chain fatty acids). Medium chain fatty acids (MCFAs) have two main sources: milk and coconut oil. To date, research has shown these acids have positive effects on health, production, feed digestibility and lower body and muscle fats in broilers and swine. MCFAs possess antibacterial, anticoccidial and antiviral effects. Also, it has been proven that these acids act synergistically if they are used together with organic acids, essential oils, or probiotics. Nowadays, commercial MCFA products are available for use in animal nutrition as feed additives.

  13. A critical assessment of transmethylation procedures for n-3 long-chain polyunsaturated fatty acid quantification of lipid classes.

    PubMed

    Sehl, Anthony; Couëdelo, Leslie; Fonseca, Laurence; Vaysse, Carole; Cansell, Maud

    2018-06-15

    Lipid transmethylation methods described in the literature are not always evaluated with care so to insure that the methods are effective, especially on food matrix or biological samples containing polyunsaturated fatty acid (PUFA). The aim of the present study was to select a method suitable for all lipid species rich in long chain n-3 PUFA. Three published methods were adapted and applied on individual lipid classes. Lipid (trans)methylation efficiency was characterized in terms of reaction yield and gas chromatography (GC) analysis. The acid-catalyzed method was unable to convert triglycerides and sterol esters, while the method using an incubation at a moderate temperature was ineffective on phospholipids and sterol esters. On the whole only the method using sodium methoxide and sulfuric acid was effective on lipid classes taken individually or in a complex medium. This study highlighted the use of an appropriate (trans)methylation method for insuring an accurate fatty acid composition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. N-3 polyunsaturated fatty acid regulation of hepatic gene transcription

    PubMed Central

    Jump, Donald B.

    2009-01-01

    Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute

  15. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop.

    PubMed

    Ruiz-Lopez, Noemi; Haslam, Richard P; Napier, Johnathan A; Sayanova, Olga

    2014-01-01

    Omega-3 (also called n-3) long-chain polyunsaturated fatty acids (≥C20; LC-PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega-3 LC-PUFAs, i.e. eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 n-3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega-3 LC-PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non-native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  16. Can long chain n-3 fatty acids from feed be converted into very long chain n-3 fatty acids in fillets from farmed rainbow trout (Oncorhynchus mykiss)?

    NASA Astrophysics Data System (ADS)

    Lušnic Polak, M.; Demšar, L.; Luzar, U.; Polak, T.

    2017-09-01

    The link between the basic chemical and fatty acid composition of trout feed on one hand and trout (Oncorhynchus mykiss) meat (fillet) was investigated.. The content of 52 fatty acids from feed and trout meat lipids was determined by in-situ transesterification and capillary column gas-liquid chromatography. On average, 100 g of trout feed contained 7.4 g of moisture, 47.7 g of proteins, 6.09 g of ash, 21.4 g of fat, and as for fatty acid composition, 47.8 wt. % were monounsaturated, 34.0 wt. % were polyunsaturated and 18.1 wt. % were saturated fatty acids, with the PS ratio 1.88, n-6/n-3 ratio 1.74, 0.80 wt. % of trans and 3.28 wt. % of very long chain n-3 fatty acids. On average, 100 g of trout meat contained 76.1 g of moisture, 21.4 g of proteins, 1.34 g of ash, 2.52 g of fat, and in the fatty acid composition 42.1 wt. % were monounsaturated, 38.2 wt. % were polyunsaturated and 18.9 wt. % were saturated fatty acids, with the PS ratio 2.02, n-6/n-3 ratio 0.98, 0.95 wt. % of trans and 13.25 wt. % of very long chain n-3 fatty acids.

  17. In ovo exposure to omega-3 fatty acids does not enhance omega-3 long-chain polyunsaturated fatty acid metabolism in broiler chickens.

    PubMed

    Kanakri, K; Carragher, J; Muhlhausler, B; Hughes, R; Gibson, R

    2017-10-01

    The content of omega-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) in chicken meat can be boosted by feeding broilers a diet containing α-linolenic acid (ALA, from flaxseed oil), some of which is converted by hepatic enzymes to n-3 LCPUFA. However, most of the accumulated n-3 polyunsaturated fatty acid (PUFA) in meat tissues is still in the form of ALA. Despite this, the levels of chicken diets are being enhanced by the inclusion of vegetable and marine sources of omega-3 fats. This study investigated whether the capacity of chicken for n-3 LCPUFA accumulation could be enhanced or inhibited by exposure to an increased supply of ALA or n-3 LCPUFA in ovo. Breeder hens were fed either flaxseed oil (High-ALA), fish oil (high n-3 LCPUFA) or tallow- (low n-3 PUFA, Control) based diets. The newly hatched chicks in each group were fed either the High-ALA or the Control diets until harvest at 42 days' post-hatch. The n-3 PUFA content of egg yolk and day-old chick meat closely matched the n-3 PUFA composition of the maternal diet. In contrast, the n-3 PUFA composition of breast and leg meat tissues of the 42-day-old offspring closely matched the diet fed post-hatch, with no significant effect of maternal diet. Indeed, there was an inhibition of n-3 LCPUFA accumulation in meat of the broilers from the maternal Fish-Oil diet group when fed the post-hatch High-ALA diet. Therefore, this approach is not valid to elevate n-3 LCPUFA in chicken meat.

  18. Deficiency of long-chain polyunsaturated fatty acids in phenylketonuria: a cross-sectional study.

    PubMed

    Drzymała-Czyż, Sławomira; Kałużny, Łukasz; Krzyżanowska-Jankowska, Patrycja; Walkowiak, Dariusz; Mozrzymas, Renata; Walkowiak, Jarosław

    2018-01-01

    The etiology of altered blood fatty acid (FA) profile in phenylketonuria (PKU) is understood only partially. We aimed to determine whether FAs deficiency is dependent on the diet or metabolic disturbances. The study comprised 40 PKU patients (20 female, 20 male; aged 11 to 35 years; 12 children and 28 adults) and 40 healthy subjects (HS; 20 female, 20 male, aged 18 to 33 years). We assessed the profile of FAs (gas chromatography/mass spectrometry) and analyzed the 72-hour dietary recalls. The amount of C14:0, C16:0 and C16:1n-7, C18:1n-9 did not differ between the analyzed groups. The percentage of C18:0 was higher, while C20:3n-9, C18:2n-6, C20:2n-6, C20:4n-6, C22:4n-6, C22:5n-6 and C22:6n-3 was lower in PKU than in HS. However, C18:3n-6, C18:3n-3 and n-6/n-3 ratio were higher in PKU patients. The C20:4n-6/C20:3n-6 ratio (reaction catalyzed by Δ5-desaturase), the C22:5n-6/C22:4n-6 and the C22:6n-3/C22:5n-3 ratio (both reactions catalyzed by Δ6 desaturase) were significantly lower in PKU patients. Therefore, the deficiency of long-chain polyunsaturated fatty acids in PKU patients may result not only from inadequate supply but also from metabolic disturbances.

  19. [Long-chain polyunsaturated fatty acids in breast-fed and formula fed healthy infants].

    PubMed

    Decsi, T; Adamovich, K; Szász, M; Berthold, K

    1995-03-26

    While human milk contains considerable amounts of long-chain polyunsaturated fatty acids (LCP), most formulae contain only the precursors of LCP synthesis (linoleic and alpha-linolenic acids) but are devoid of preformed dietary LCP such as are arachidonic and docosahexaenoic acids. LCP contents in plasma phospholipids (PL), triglycerides (TG) and sterol esters (STE) were measured by high resolution capillary gas-liquid chromatography in healthy, term infants fed human milk of formula. Percentage contributions of the precursor fatty acids were similar or higher in plasma lipids in formula fed than in breast-fed infants, meanwhile values of the intermediary metabolites of LCP synthesis did not differ between the two groups. Percentage contributions of arachidonic acid were higher in breast-fed than in formula fed infants at the ages of 2 weeks (PL: 9.39 +/- 1.00 vs. 6.91 +/- 0.38, TG: 0.61 +/- 0.03 vs. 0.41 +/- 0.05, %weight/weight, mean +/- SEM), 1 month (PL: 9.06 +/- 1.04 vs. 6.16 +/- 0.35, TG: 0.62 +/- 0.10 vs. 0.32 +/- 0.04, STE: 4.50 +/- 0.45 vs. 2.84 +/- 0.39) and 2 months (PL: 8.41 +/- 1.19 vs. 5.74 +/- 0.37). Similarly, docosahexaenoic acid values were at the ages of 1 month (PL: 1.94 +/- 0.21 vs. 1.19 +/- 0.21, TG: 0.12 +/- 0.03 vs. 0.04 +/- 0.02) and 2 months (PL: 2.02 +/- 0.36 vs. 0.99 +/- 0.07) significantly higher in breast-fed infants than in those receiving formula.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Long-chain polyunsaturated fatty acids decline rapidly in milk from mothers delivering extremely preterm indicating the need for supplementation.

    PubMed

    Nilsson, Anders K; Löfqvist, Chatarina; Najm, Svetlana; Hellgren, Gunnel; Sävman, Karin; Andersson, Mats X; Smith, Lois E H; Hellström, Ann

    2018-06-01

    Our aim was to perform an in-depth analysis of the composition of fatty acids in milk from mothers delivering extremely preterm babies. We investigated longitudinal changes in milk fatty acid profiles and the relationship between several types of fatty acids, including omega-3 and omega-6. Milk samples were collected at three stages of lactation from 78 mothers who delivered at less than 28 weeks of pregnancy at the Sahlgrenska University Hospital, Gothenburg, Sweden, from April 2013 to September 2015. Fatty acid composition was analysed by gas chromatography-mass spectrometry. A reduction in long-chain polyunsaturated fatty acids (LCPUFAs) was observed during the lactation period. The concentrations of arachidonic acid and docosahexaenoic acid declined from medians of 0.34 to 0.22 mol% and 0.29 to 0.15 mol%, respectively, between postnatal day 7 and a postmenstrual age of 40 weeks. Strong correlations were found between the intermediates of several classes of fatty acids, including omega-3, omega-6 and omega-9. A rapid reduction in LCPUFA content in the mother's milk during the lactation period emphasises the importance of fatty acid supplementation to infants born extremely preterm, at least during the period corresponding to the third trimester, when rapid development of the brain and adipose tissue requires high levels of LCPUFAs. ©2018 The Authors. Acta Paediatrica published by John Wiley & Sons Ltd on behalf of Foundation Acta Paediatrica.

  1. trans Octadecenoic acid and trans octadecadienoic acid are inversely related to long-chain polyunsaturates in human milk: results of a large birth cohort study.

    PubMed

    Szabó, Eva; Boehm, Günther; Beermann, Christopher; Weyermann, Maria; Brenner, Hermann; Rothenbacher, Dietrich; Decsi, Tamás

    2007-05-01

    Several observational studies indicate that trans isomeric fatty acids may interfere with the metabolism of essential fatty acids in the human organism. The objective was to investigate the relation between trans fatty acids and long-chain polyunsaturates in mature human milk. Human milk samples (n=769) were obtained at the 6th week of lactation from mothers participating in a birth cohort study in Germany. The fatty acid composition of the milk samples was measured by high-resolution capillary gas-liquid chromatography. trans Octadecenoic and trans octadecadienoic acids were inversely correlated with linoleic acid (r=-0.32 and -0.33, P<0.0001 for both), alpha-linolenic acid (r=-0.35 and -0.27, P<0.0001), arachidonic acid (r=-0.60 and -0.47, P<0.0001), and docosahexaenoic acid (r=-0.51 and -0.33, P<0.0001). In contrast, no inverse correlations were observed between trans hexadecenoic acid and polyunsaturated fatty acids. The data obtained in the present study suggest that the availability of 18-carbon trans isomeric fatty acids may be inversely related to the availability of long-chain polyunsaturated fatty acids in mature human milk.

  2. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids Docosapentaenoic (DPA, 22:5n-6) and Docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    USDA-ARS?s Scientific Manuscript database

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolu...

  3. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production.

    PubMed

    Moi, Ibrahim Musa; Leow, Adam Thean Chor; Ali, Mohd Shukuri Mohamad; Rahman, Raja Noor Zaliha Raja Abd; Salleh, Abu Bakar; Sabri, Suriana

    2018-05-10

    Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.

  4. Cancer Risk and Eicosanoid Production: Interaction between the Protective Effect of Long Chain Omega-3 Polyunsaturated Fatty Acid Intake and Genotype

    PubMed Central

    Lenihan-Geels, Georgia; Bishop, Karen S.; Ferguson, Lynnette R.

    2016-01-01

    Dietary inclusion of fish and fish supplements as a means to improve cancer prognosis and prevent tumour growth is largely controversial. Long chain omega-3 polyunsaturated fatty acids (LCn-3 PUFA), eicosapentaenoic acid and docosahexaenoic acid, may modulate the production of inflammatory eicosanoids, thereby influencing local inflammatory status, which is important in cancer development. Although in vitro studies have demonstrated inhibition of tumour cell growth and proliferation by LCn-3 PUFA, results from human studies have been mainly inconsistent. Genes involved in the desaturation of fatty acids, as well as the genes encoding enzymes responsible for eicosanoid production, are known to be implicated in tumour development. This review discusses the current evidence for an interaction between genetic polymorphisms and dietary LCn-3 PUFA in the risk for breast, prostate and colorectal cancers, in regards to inflammation and eicosanoid synthesis. PMID:26891335

  5. ω-3 Long-Chain Polyunsaturated Fatty Acids and Fatty Acid Desaturase Activity Ratios as Eventual Endophenotypes for ADHD.

    PubMed

    Henríquez-Henríquez, Marcela; Solari, Sandra; Várgas, Gisela; Vásquez, Luis; Allende, Fidel; Castañón S, Carla; Tenorio, Marcela; Quiroga Gutiérrez, Teresa

    2015-11-01

    Epidemiological studies suggest that long-chain polyunsaturated fatty acids (LC-PUFAs) may be suitable as endophenotypes for ADHD. To be appropriated vulnerability traits, endophenotypes should be altered in unaffected relatives of index cases. Serum profiles of LC-PUFAs in unaffected relatives of ADHD patients remain understudied. The main objective of this study was to compare serum LC-PUFAs in ADHD patients, unaffected relatives of index cases, and general-population unaffected participants. LC-PUFA profiles of 72 participants (27 ADHD patients, 27 unaffected relatives, and 18 general-population participants) were obtained by gas chromatography-mass spectrometry (GC-MS). Groups were compared by parametrical statistics. Unaffected females from the general population presented lower Docosapentaenoic acid (DPA; p = .0012) and a-linolenic acid (ALA; p = .0091) levels compared with ADHD females and unaffected relatives. In addition, docosahexaenoic acid (DHA)/ALA and DHA/DPA ratios, addressing desaturase activity, were significantly lower in ADHD patients and unaffected relatives of ADHD patients in the female-subgroup (p = .022 and .04, respectively). DHA/ALA, DHA/DPA, serum DPA, and serum ALA may be suitable as endophenotypes for ADHD women. © The Author(s) 2012.

  6. Biosynthesis of Polyunsaturated Fatty Acids in Octopus vulgaris: Molecular Cloning and Functional Characterisation of a Stearoyl-CoA Desaturase and an Elongation of Very Long-Chain Fatty Acid 4 Protein

    PubMed Central

    Monroig, Óscar; de Llanos, Rosa; Varó, Inmaculada; Hontoria, Francisco; Tocher, Douglas R.; Puig, Sergi; Navarro, Juan C.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C18 chain lengths. Scd was unable to desaturate 20:1n-15 (∆520:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1n-9 (∆1120:1) to ∆5,1120:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5n-3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C24) PUFAs. PMID:28335553

  7. Biosynthesis of Polyunsaturated Fatty Acids in Octopus vulgaris: Molecular Cloning and Functional Characterisation of a Stearoyl-CoA Desaturase and an Elongation of Very Long-Chain Fatty Acid 4 Protein.

    PubMed

    Monroig, Óscar; de Llanos, Rosa; Varó, Inmaculada; Hontoria, Francisco; Tocher, Douglas R; Puig, Sergi; Navarro, Juan C

    2017-03-21

    Polyunsaturated fatty acids (PUFAs) have been acknowledged as essential nutrients for cephalopods but the specific PUFAs that satisfy the physiological requirements are unknown. To expand our previous investigations on characterisation of desaturases and elongases involved in the biosynthesis of PUFAs and hence determine the dietary PUFA requirements in cephalopods, this study aimed to investigate the roles that a stearoyl-CoA desaturase (Scd) and an elongation of very long-chain fatty acid 4 (Elovl4) protein play in the biosynthesis of essential fatty acids (FAs). Our results confirmed the Octopus vulgaris Scd is a ∆9 desaturase with relatively high affinity towards saturated FAs with ≥ C 18 chain lengths. Scd was unable to desaturate 20:1 n- 15 ( ∆5 20:1) suggesting that its role in the biosynthesis of non-methylene interrupted FAs (NMI FAs) is limited to the introduction of the first unsaturation at ∆9 position. Interestingly, the previously characterised ∆5 fatty acyl desaturase was indeed able to convert 20:1 n- 9 ( ∆11 20:1) to ∆5,11 20:2, an NMI FA previously detected in octopus nephridium. Additionally, Elovl4 was able to mediate the production of 24:5 n- 3 and thus can contribute to docosahexaenoic acid (DHA) biosynthesis through the Sprecher pathway. Moreover, the octopus Elovl4 was confirmed to play a key role in the biosynthesis of very long-chain (>C 24 ) PUFAs.

  8. Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids.

    PubMed

    Papina, M; Meziane, T; van Woesik, R

    2003-07-01

    We compared the fatty acid composition of the host-coral Montipora digitata with the fatty acid composition in the coral's endosymbiotic dinoflagellates (zooxanthellae). Fatty acids as methyl esters were determined using gas chromatography (GC) and verified by GC-mass spectrometry. We found the main difference between the fatty acids in the host and their symbionts were that zooxanthellae supported higher proportions of polyunsaturated fatty acids. The presence of fatty acids specific to dinoflagellates (i.e. 18:4omega3, 22:5omega3 and 22:6omega3) in the host tissue suggests that zooxanthellae provide the coral host not only with saturated fatty acids, but also with diverse polyunsaturated fatty acids.

  9. Effect of polyunsaturated fatty acids and phospholipids on ( sup 3 H)-vitamin E incorporation into pulmonary artery endothelial cell membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekharam, K.M.; Patel, J.M.; Block, E.R.

    1990-12-01

    Vitamin E, a dietary antioxidant, is presumed to be incorporated into the lipid bilayer of biological membranes to an extent proportional to the amount of polyunsaturated fatty acids or phospholipids in the membrane. In the present study we evaluated the distribution of incorporated polyunsaturated fatty acids (PUFA) and phosphatidylethanolamine (PE) in various membranes of pulmonary artery endothelial cells. We also studied whether incorporation of PUFA or PE is responsible for increased incorporation of (3H)-vitamin E into the membranes of these cells. Following a 24-hr incubation with linoleic acid (18:2), 18:2 was increased by 6.9-, 9.2-, and 13.2-fold in plasma, mitochondrial,more » and microsomal membranes, respectively. Incorporation of 18:2 caused significant increases in the unsaturation indexes of mitochondrial and microsomal polyunsaturated fatty acyl chains (P less than .01 versus control in both membranes). Incubation with arachidonic acid (20:4) for 24 hr resulted in 1.5-, 2.3-, and 2.4-fold increases in 20:4 in plasma, mitochondrial, and microsomal membranes, respectively. The unsaturation indexes of polyunsaturated fatty acyl chains of mitochondrial and microsomal membranes also increased (P less than .01 versus control in both membranes). Although incubations with 18:2 or 20:4 resulted in several-fold increases in membrane 18:2 or 20:4 fatty acids, incorporation of (3H)-vitamin E into these membranes was similar to that in controls. Following a 24-hr incubation with PE, membrane PE content was significantly increased, and (3H)-vitamin E incorporation was also increased to a comparable degree, i.e., plasma membrane greater than mitochondria greater than microsomes. Endogenous vitamin E content of the cells was not altered because of increased incorporation of PE and (3H)-vitamin E.« less

  10. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton.

    PubMed

    Hixson, Stefanie M; Arts, Michael T

    2016-08-01

    Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems. © 2016 John Wiley & Sons Ltd.

  11. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants.

    PubMed

    Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P

    2012-04-01

    Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.

  12. Effects of dietary conjugated linoleic acid and linoleic:linolenic acid ratio on polyunsaturated fatty acid status in laying hens.

    PubMed

    Du, M; Ahn, D U; Sell, J L

    2000-12-01

    A study was conducted to determine the effects of dietary conjugated linoleic acid (CLA) and the ratio of linoleic:linolenic acid on long-chain polyunsaturated fatty acid status. Thirty-two 31-wk-old White Leghorn hens were randomly assigned to four diets containing 8.2% soy oil, 4.1% soy oil + 2.5% CLA (4.1% CLA source), 4.1% flax oil + 2.5% CLA, or 4.1% soy oil + 4.1% flax oil. Hens were fed the diets for 3 wk before eggs and tissues were collected for the study. Lipids were extracted from egg yolk and tissues, classes of egg yolk lipids were separated, and fatty acid concentrations of total lipids, triglyceride, phosphatidylethanolamine, and phosphatidylcholine were analyzed by gas chromatography. The concentrations of monounsaturated fatty acids and non-CLA polyunsaturated fatty acids were reduced after CLA feeding. The amount of arachidonic acid was decreased after CLA feeding in linoleic acid- and linolenic acid-rich diets, but amounts of eicosapentaenoic acid and docosahexaenoic acid were increased in the linolenic-rich diet, indicating that the synthesis or deposition of long-chain n-3 fatty acids was accelerated after CLA feeding. The increased docosahexaenoic acid and eicosapentaenoic acid contents in lipid may be compensation for the decreased arachidonic acid content. Dietary supplementation of linoleic acid increased n-6 fatty acid levels in lipids, whereas linolenic acid increased n-3 fatty acid levels. Results also suggest that CLA might not be elongated to synthesize long-chain fatty acids in significant amounts. The effect of CLA in reducing the level of n-6 fatty acids and promoting the level of n-3 fatty acids could be related to the biological effects of CLA.

  13. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    PubMed

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  14. Effects of dietary saturated and n-6 polyunsaturated fatty acids on the incorporation of long-chain n-3 polyunsaturated fatty acids into blood lipids.

    PubMed

    Dias, C B; Wood, L G; Garg, M L

    2016-07-01

    Omega-3 polyunsaturated fatty acids (n-3PUFA) are better absorbed when they are combined with high-fat meals. However, the role of different dietary fats in modulating the incorporation of n-3PUFA in blood lipids in humans has not been previously explored. Omega-6 polyunsaturated fatty acids (n-6PUFA) are known to compete with n-3PUFA in the metabolic pathways and for the incorporation into phospholipids, whereas saturated fats (SFA) may enhance n-3PUFA incorporation into tissues. In a randomized parallel-design trial, we aimed to investigate the long-term effects of n-3PUFA supplementation in subjects consuming a diet enriched with either SFA or n-6PUFA on fatty acid incorporation into plasma and erythrocytes and on blood lipid profiles (total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides). Dietary supplementation with n-3PUFA co-administered with SFA for 6 weeks resulted in a significant rise in total cholesterol (0.46±0.60 mmol/L; P=0.020) and LDL-C (0.48±0.48 mmol/L; P=0.011) in comparison with combination with n-6PUFA. The diet enriched with SFA also induced a greater increase in eicosapentaenoic acid (2.07±0.79 vs 1.15±0.53; P=0.004), a smaller decrease in docosapentaenoic acid (-0.12±0.23 vs -0.30±0.20; P=0.034) and a similar increase in docosahexaenoic acid (3.85±1.14 vs 3.10±1.07; P=0.128) percentage in plasma compared with the diet enriched with n-6PUFA. A similar effect was seen in erythrocytes. N-3PUFA supplementation resulted in similar changes in HDL-C and triglyceride levels. The results suggest that dietary substitution of SFA with n-6PUFA, despite maintaining low levels of circulating cholesterol, hinders n-3PUFA incorporation into plasma and tissue lipids.

  15. Polyunsaturated Fatty Acids in Children

    PubMed Central

    2013-01-01

    Polyunsaturated fatty acids (PUFAs) are the major components of brain and retina, and are the essential fatty acids with important physiologically active functions. Thus, PUFAs should be provided to children, and are very important in the brain growth and development for fetuses, newborn infants, and children. Omega-3 fatty acids decrease coronary artery disease and improve blood flow. PUFAs have been known to have anti-inflammatory action and improved the chronic inflammation such as auto-immune diseases or degenerative neurologic diseases. PUFAs are used for metabolic syndrome related with obesity or diabetes. However, there are several considerations related with intake of PUFAs. Obsession with the intake of unsaturated fatty acids could bring about the shortage of essential fatty acids that are crucial for our body, weaken the immune system, and increase the risk of heart disease, arrhythmia, and stroke. In this review, we discuss types, physiologic mechanism of action of PUFAs, intake of PUFAs for children, recommended intake of PUFAs, and considerations for the intake of PUFAs. PMID:24224148

  16. Predictors of Memory in Healthy Aging: Polyunsaturated Fatty Acid Balance and Fornix White Matter Integrity.

    PubMed

    Zamroziewicz, Marta K; Paul, Erick J; Zwilling, Chris E; Barbey, Aron K

    2017-07-01

    Recent evidence demonstrates that age and disease-related decline in cognition depends not only upon degeneration in brain structure and function, but also on dietary intake and nutritional status. Memory, a potential preclinical marker of Alzheimer's disease, is supported by white matter integrity in the brain and dietary patterns high in omega-3 and omega-6 polyunsaturated fatty acids. However, the extent to which memory is supported by specific omega-3 and omega-6 polyunsaturated fatty acids, and the degree to which this relationship is reliant upon microstructure of particular white matter regions is not known. This study therefore examined the cross-sectional relationship between empirically-derived patterns of omega-3 and omega-6 polyunsaturated fatty acids (represented by nutrient biomarker patterns), memory, and regional white matter microstructure in healthy, older adults. We measured thirteen plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids, memory, and regional white matter microstructure in 94 cognitively intact older adults (65 to 75 years old). A three-step mediation analysis was implemented using multivariate linear regressions, adjusted for age, gender, education, income, depression status, and body mass index. The mediation analysis revealed that a mixture of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids is linked to memory and that white matter microstructure of the fornix fully mediates the relationship between this pattern of plasma phospholipid polyunsaturated fatty acids and memory. These results suggest that memory may be optimally supported by a balance of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids through the preservation of fornix white matter microstructure in cognitively intact older adults. This report provides novel evidence for the benefits of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acid balance on memory and underlying white matter microstructure.

  17. Prevention of alcoholic fatty liver and mitochondrial dysfunction in the rat by long-chain polyunsaturated fatty acids

    PubMed Central

    Song, Byoung-Joon; Moon, Kwan-Hoon; Olsson, Nils U.; Salem, Norman

    2008-01-01

    Background/Aims We reported that reduced dietary intake of polyunsaturated fatty acids (PUFA) such as arachidonic (AA,20:4n6, omega-6) and docosahexaenoic (DHA,22:6n3, omega-3) acids led to alcohol-induced fatty liver and fibrosis. This study was aimed at studying the mechanisms by which a DHA/AA-supplemented diet prevents alcohol-induced fatty liver. Methods Male Long-Evans rats were fed an ethanol or control liquid-diet with or without DHA/AA for 9 weeks. Plasma transaminase levels, liver histology, oxidative/nitrosative stress markers, and activities of oxidatively-modified mitochondrial proteins were evaluated. Results Chronic alcohol administration increased the degree of fatty liver but fatty liver decreased significantly in rats fed the alcohol-DHA/AA-supplemented diet. Alcohol exposure increased oxidative/nitrosative stress with elevated levels of ethanol-inducible CYP2E1, nitric oxide synthase, nitrite and mitochondrial hydrogen peroxide. However, these increments were normalized in rats fed the alcohol-DHA/AA-supplemented diet. The number of oxidatively-modified mitochondrial proteins was markedly increased following alcohol exposure but significantly reduced in rats fed the alcohol-DHA/AA-supplemented diet. The suppressed activities of mitochondrial aldehyde dehydrogenase, ATP synthase, and 3-ketoacyl-CoA thiolase in ethanol-exposed rats were also recovered in animals fed the ethanol-DHA/AA-supplemented diet. Conclusions Addition of DHA/AA prevents alcohol-induced fatty liver and mitochondrial dysfunction in an animal model by protecting various mitochondrial enzymes most likely through reducing oxidative/nitrosative stress. PMID:18571270

  18. ω-3 Long Chain Polyunsaturated Fatty Acids as Sensitizing Agents and Multidrug Resistance Revertants in Cancer Therapy

    PubMed Central

    Corsetto, Paola Antonia; Kopecka, Joanna; Riganti, Chiara

    2017-01-01

    Chemotherapy efficacy is strictly limited by the resistance of cancer cells. The ω-3 long chain polyunsaturated fatty acids (ω-3 LCPUFAs) are considered chemosensitizing agents and revertants of multidrug resistance by pleiotropic, but not still well elucidated, mechanisms. Nowadays, it is accepted that alteration in gene expression, modulation of cellular proliferation and differentiation, induction of apoptosis, generation of reactive oxygen species, and lipid peroxidation are involved in ω-3 LCPUFA chemosensitizing effects. A crucial mechanism in the control of cell drug uptake and efflux is related to ω-3 LCPUFA influence on membrane lipid composition. The incorporation of docosahexaenoic acid in the lipid rafts produces significant changes in their physical-chemical properties affecting content and functions of transmembrane proteins, such as growth factors, receptors and ATP-binding cassette transporters. Of note, ω-3 LCPUFAs often alter the lipid compositions more in chemoresistant cells than in chemosensitive cells, suggesting a potential adjuvant role in the treatment of drug resistant cancers. PMID:29261109

  19. Integrated Immunomodulatory Mechanisms through which Long-Chain n-3 Polyunsaturated Fatty Acids Attenuate Obese Adipose Tissue Dysfunction

    PubMed Central

    Liddle, Danyelle M.; Wellings, Hannah R.; Power, Krista A.; Robinson, Lindsay E.; Monk, Jennifer M.

    2017-01-01

    Obesity is a global health concern with rising prevalence that increases the risk of developing other chronic diseases. A causal link connecting overnutrition, the development of obesity and obesity-associated co-morbidities is visceral adipose tissue (AT) dysfunction, characterized by changes in the cellularity of various immune cell populations, altered production of inflammatory adipokines that sustain a chronic state of low-grade inflammation and, ultimately, dysregulated AT metabolic function. Therefore, dietary intervention strategies aimed to halt the progression of obese AT dysfunction through any of the aforementioned processes represent an important active area of research. In this connection, fish oil-derived dietary long-chain n-3 polyunsaturated fatty acids (PUFA) in the form of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been demonstrated to attenuate obese AT dysfunction through multiple mechanisms, ultimately affecting AT immune cellularity and function, adipokine production, and metabolic signaling pathways, all of which will be discussed herein. PMID:29186929

  20. Polyunsaturated fatty acids are potent openers of human M-channels expressed in Xenopus laevis oocytes.

    PubMed

    Liin, S I; Karlsson, U; Bentzen, B H; Schmitt, N; Elinder, F

    2016-09-01

    Polyunsaturated fatty acids have been reported to reduce neuronal excitability, in part by promoting inactivation of voltage-gated sodium and calcium channels. Effects on neuronal potassium channels are less explored and experimental data ambiguous. The aim of this study was to investigate anti-excitable effects of polyunsaturated fatty acids on the neuronal M-channel, important for setting the resting membrane potential in hippocampal and dorsal root ganglion neurones. Effects of fatty acids and fatty acid analogues on mouse dorsal root ganglion neurones and on the human KV 7.2/3 channel expressed in Xenopus laevis oocytes were studied using electrophysiology. Extracellular application of physiologically relevant concentrations of the polyunsaturated fatty acid docosahexaenoic acid hyperpolarized the resting membrane potential (-2.4 mV by 30 μm) and increased the threshold current to evoke action potentials in dorsal root ganglion neurones. The polyunsaturated fatty acids docosahexaenoic acid, α-linolenic acid and eicosapentaenoic acid facilitated opening of the human M-channel, comprised of the heteromeric human KV 7.2/3 channel expressed in Xenopus oocytes, by shifting the conductance-vs.-voltage curve towards more negative voltages (by -7.4 to -11.3 mV by 70 μm). Uncharged docosahexaenoic acid methyl ester and monounsaturated oleic acid did not facilitate opening of the human KV 7.2/3 channel. These findings suggest that circulating polyunsaturated fatty acids, with a minimum requirement of multiple double bonds and a charged carboxyl group, dampen excitability by opening neuronal M-channels. Collectively, our data bring light to the molecular targets of polyunsaturated fatty acids and thus a possible mechanism by which polyunsaturated fatty acids reduce neuronal excitability. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  1. Breastfeeding, long-chain polyunsaturated fatty acids in colostrum, and infant mental development.

    PubMed

    Guxens, Mònica; Mendez, Michelle A; Moltó-Puigmartí, Carolina; Julvez, Jordi; García-Esteban, Raquel; Forns, Joan; Ferrer, Muriel; Vrijheid, Martine; López-Sabater, M Carmen; Sunyer, Jordi

    2011-10-01

    Breastfeeding has been associated with improved neurodevelopment in children. However, it remains unknown to what extent nutritional advantages of breast milk may explain this relationship. We assessed the role of parental psychosocial factors and colostrum long-chain polyunsaturated fatty acid (LC-PUFA) levels in the relationship between breastfeeding and children's neurodevelopment. A population-based birth cohort was established in the city of Sabadell (Catalonia, Spain) as part of the INMA-INfancia y Medio Ambiente Project. A total of 657 women were recruited during the first trimester of pregnancy. Information about parental characteristics and breastfeeding was obtained by using a questionnaire, and trained psychologists assessed mental and psychomotor development by using the Bayley Scales of Infant Development in 504 children at 14 months of age. A high percentage of breastfeeds among all milk feeds accumulated during the first 14 months was positively related with child mental development (0.37 points per month of full breastfeeding [95% confidence interval: 0.06-0.67]). Maternal education, social class, and intelligence quotient only partly explained this association. Children with a longer duration of breastfeeding also exposed to higher ratios between n-3 and n-6 PUFAs in colostrum had significantly higher mental scores than children with low breastfeeding duration exposed to low levels. Greater levels of accumulated breastfeeding during the first year of life were related to higher mental development at 14 months, largely independently from a wide range of parental psychosocial factors. LC-PUFA levels seem to play a beneficial role in children's mental development when breastfeeding levels are high.

  2. Saturated Branched Chain, Normal Odd-Carbon-Numbered, and n-3 (Omega-3) Polyunsaturated Fatty Acids in Freshwater Fish in the Northeastern United States.

    PubMed

    Wang, Dong Hao; Jackson, James R; Twining, Cornelia; Rudstam, Lars G; Zollweg-Horan, Emily; Kraft, Clifford; Lawrence, Peter; Kothapalli, Kumar; Wang, Zhen; Brenna, J Thomas

    2016-10-04

    The fatty acid profiles of wild freshwater fish are poorly characterized as a human food source for several classes of fatty acids, particularly for branched chain fatty acids (BCFA), a major bioactive dietary component known to enter the US food supply primarily via dairy and beef fat. We evaluated the fatty acid content of 27 freshwater fish species captured in the northeastern US with emphasis on the BCFA and bioactive polyunsaturated fatty acids (PUFA) most associated with fish, specifically n-3 (omega-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Mean BCFA content across all species was 1.0 ± 0.5% (mean ± SD) of total fatty acids in edible muscle, with rainbow smelt (Osmerus mordax) and pumpkinseed (Lepomis gibbosus) the highest at >2% BCFA. In comparison, EPA + DHA constituted 28% ± 7% of total fatty acids. Across all fish species, the major BCFA were iso-15:0, anteiso-15:0, iso-16:0, iso-17:0 and anteiso-17:0. Fish skin had significantly higher BCFA content than muscle tissues, at 1.8% ± 0.7%, but lower EPA and DHA. Total BCFA in fish skins was positively related with that in muscle (r 2 = 0.6). The straight chain saturates n-15:0 and n-17:0 which have been identified previously as markers for dairy consumption were relatively high with means of 0.4% and 0.6%, respectively, and may be an underappreciated marker for seafood intake. Consuming a standardized portion, 70 g (2.5 oz), of wild freshwater fish contributes only small amounts of BCFA, 2.5-24.2 mg, to the American diet, while it adds surprisingly high amounts of EPA + DHA (107 mg to 558 mg).

  3. Comparison of triglycerides and phospholipids as supplemental sources of dietary long-chain polyunsaturated fatty acids in piglets.

    PubMed

    Mathews, Susan A; Oliver, William T; Phillips, Oulayvanh T; Odle, Jack; Diersen-Schade, Deborah A; Harrell, Robert J

    2002-10-01

    Addition of arachidonic acid (AA) and docosahexaenoic acid (DHA) to infant formula promotes visual and neural development. This study was designed to determine whether the source of dietary long-chain polyunsaturated fatty acids (LCPUFA) affected overall animal health and safety. Piglets consumed ad libitum from 1 to 16 d of age a skim milk-based formula with different fat sources added to provide 50% of the metabolizable energy. Treatment groups were as follows: control (CNTL; no added LCPUFA), egg phospholipid (PL), algal/fungal triglyceride (TG) oils, TG plus PL (soy lecithin source) added to match phospholipid treatment (TG + PL) and essential fatty acid deficient (EFAD). Formulas with LCPUFA provided 0.6 and 0.3 g/100 g total fatty acids as AA and DHA, respectively. CNTL piglets had 40% longer ileal villi than PL piglets (P < 0.03), but the TG group was not different from the CNTL group. Gross liver histology did not differ among any of the formula-fed groups (P > 0.1). Apparent dry matter digestibility was 10% greater in CNTL, TG and TG + PL groups compared with PL piglets (P < 0.002). No differences in alanine aminotransferase were detected among treatments, but aspartate aminotransferase was elevated (P < 0.03) in PL piglets compared with TG + PL piglets. Total plasma AA concentration was greater in the TG group compared with CNTL piglets (P < 0.05). Total plasma DHA concentrations were greater in TG piglets compared with PL (P < 0.06) or CNTL (P < 0.02) piglets. These data demonstrate that the algal/fungal TG sources of DHA and AA may be a more appropriate supplement for infant formulas than the egg PL source based on piglet plasma fatty acid profiles and apparent dry matter digestibilities.

  4. Restoration of fillet n-3 long-chain polyunsaturated fatty acid is improved by a modified fish oil finishing diet strategy for atlantic salmon (Salmo salar L.) smolts fed palm fatty acid distillate.

    PubMed

    Codabaccus, Mohamed B; Bridle, Andrew R; Nichols, Peter D; Carter, Chris G

    2012-01-11

    Reducing the lipid content in fish prior to feeding a fish oil finishing diet (FOFD) has the potential to improve n-3 long-chain (≥ C(20)) polyunsaturated fatty acid (LC-PUFA) restoration. This study had two main objectives: (1) determine whether feeding Atlantic salmon smolt a 75% palm fatty acid distillate diet (75PFAD) improves the apparent digestibility (AD) of saturated fatty acids (SFA) and (2) examine whether a food deprivation period after growth on 75PFAD leads to higher n-3 LC-PUFA restoration in the fillet when applying a FOFD. The AD of SFA was higher for 75PFAD compared to that of a fish oil (FO) diet. The relative level (as % total fatty acids (FA)) of n-3 LC-PUFA was higher in unfed fish compared to that in continuously fed fish after 21 and 28 day FOFD periods, respectively. Our results suggest that a food deprivation period prior to feeding a FOFD improves the efficiency of n-3 LC-PUFA restoration in the fillet of Atlantic salmon smolt.

  5. The increase of cell-membranous phosphatidylcholines containing polyunsaturated fatty acid residues induces phosphorylation of p53 through activation of ATR

    PubMed Central

    Zhang, Xu Hannah; Zhao, Chunying; Ma, Zhongmin Alex

    2010-01-01

    Summary The G1 phase of the cell cycle is marked by the rapid turnover of phospholipids. This turnover is regulated by CTP:phosphocholine-cytidylyltransferase (CCT) and group VIA Ca2+-independent-phospholipase A2 (iPLA2). We previously reported that inhibition of iPLA2 arrests cells in G1 phase of the cell cycle by activating the p53-p21 checkpoint. Here we further characterize the mechanism of p53 activation. We show that specific inhibition of iPLA2 induces a time dependent phosphorylation of Ser15 in p53 in the absence of DNA damage. This phosphorylation requires the kinase ataxia-telangiectasia and Rad-3-related (ATR) but not the ataxia-telangiectasia-mutated (ATM) kinase. Moreover, we identify in cell membranes a significant increase of phosphatidylcholines (PCs) containing chains of polyunsaturated fatty acids and a decrease of PCs containing saturated fatty acids in response to inhibition of iPLA2. The time course of phosphorylation of Ser15 in p53 correlates with increasing levels of PCs containing polyunsaturated fatty acids. We further demonstrate that the PCs with linoleic acid in their sn-2 position (18:2n6) induce phosphorylation of Ser15 in p53 in an ATR-dependent manner. Our findings establish that cells can regulate the levels of polyunsaturated fatty acids in phospholipids through iPLA2-mediated deacylation of PCs. Disruption of this regulation increases the proportions of PCs containing polyunsaturated fatty acids and activates the ATR-p53 signalling pathway. PMID:18032786

  6. The increase of cell-membranous phosphatidylcholines containing polyunsaturated fatty acid residues induces phosphorylation of p53 through activation of ATR.

    PubMed

    Zhang, Xu Hannah; Zhao, Chunying; Ma, Zhongmin Alex

    2007-12-01

    The G1 phase of the cell cycle is marked by the rapid turnover of phospholipids. This turnover is regulated by CTP:phosphocholine-cytidylyltransferase (CCT) and group VIA Ca(2+)-independent-phospholipase A(2) (iPLA(2)). We previously reported that inhibition of iPLA(2) arrests cells in G1 phase of the cell cycle by activating the p53-p21 checkpoint. Here we further characterize the mechanism of p53 activation. We show that specific inhibition of iPLA(2) induces a time dependent phosphorylation of Ser15 in p53 in the absence of DNA damage. This phosphorylation requires the kinase ataxia-telangiectasia and Rad-3-related (ATR) but not the ataxia-telangiectasia-mutated (ATM) kinase. Moreover, we identify in cell membranes a significant increase of phosphatidylcholines (PCs) containing chains of polyunsaturated fatty acids and a decrease of PCs containing saturated fatty acids in response to inhibition of iPLA(2). The time course of phosphorylation of Ser15 in p53 correlates with increasing levels of PCs containing polyunsaturated fatty acids. We further demonstrate that the PCs with linoleic acid in their sn-2 position (18:2n6) induce phosphorylation of Ser15 in p53 in an ATR-dependent manner. Our findings establish that cells can regulate the levels of polyunsaturated fatty acids in phospholipids through iPLA(2)-mediated deacylation of PCs. Disruption of this regulation increases the proportions of PCs containing polyunsaturated fatty acids and activates the ATR-p53 signalling pathway.

  7. Omega-3 Polyunsaturated Fatty Acid Status, Microglial Activation, Stress Resilience, and Cognitive Performance

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0657 TITLE: Omega-3 Polyunsaturated Fatty Acid Status, Microglial Activation, Stress Resilience, and Cognitive...AND SUBTITLE Omega-3 Polyunsaturated Fatty Acid Status, Microglial Activation, Stress Resilience, and Cognitive Performance 5a. CONTRACT NUMBER 5b...a marker of activated microglia. Subjects will also complete a comprehensive stress resilience and neurocognitive battery to correlate with [11C

  8. Association between neurotrophin 4 and long-chain polyunsaturated fatty acid levels in mid-trimester amniotic fluid.

    PubMed

    Benn, Kiesha; Passos, Mariana; Jayaram, Aswathi; Harris, Mary; Bongiovanni, Ann Marie; Skupski, Daniel; Witkin, Steven S

    2014-11-01

    The omega-3 long-chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) and the omega-6 LCPUFA arachidonic acid (AA) are essential nervous system components that increase in concentration throughout gestation. The neurotrophins, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) are small basic peptides crucial for fetal brain development. The DHA supplementation during pregnancy has been suggested to enhance neural development. We evaluated whether amniotic fluid DHA and AA concentrations correlated with intra-amniotic neurotrophin levels. Amniotic fluid, obtained at 15 to 19 weeks gestation from 62 women, was tested for BDNF, NGF, NT3, and NT4 by enzyme-linked immunosorbent assay. Concentrations of DHA and AA, and saturated and monounsaturated fatty acids, were determined by gas chromatography. Associations were analyzed by the Spearman rank correlation test. Median levels of AA and DHA were 2.3% and 1.3% of the total intra-amniotic fatty acids, respectively. Median neurotrophin levels (pg/mL) were 36.7 for NT3, 26.8 for BDNF, 5.2 for NT4, and 0.8 for NGF. Intra-amniotic NT4 and BDNF levels were correlated (P = .0016), while NT3 and NGF levels were unrelated to each other or to BDNF or NT4. Only NT4 was positively correlated with amniotic fluid DHA (P < .0001) and AA (P = .0003) concentrations. There were no associations between DHA, AA, or any neurotrophin and maternal age, gestational age at time of amniocentesis, amniocentesis indication, parity, or gestational age at delivery. Elevations in intra-amniotic NT4 with increasing levels of DHA and AA suggest that these LCPUFAs may specifically influence the extent of NT4-mediated fetal brain neurogenesis. © The Author(s) 2014.

  9. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    PubMed Central

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-01

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism. PMID:26742061

  10. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases.

    PubMed

    Xie, Dizhi; Chen, Fang; Lin, Siyuan; You, Cuihong; Wang, Shuqi; Zhang, Qinghao; Monroig, Óscar; Tocher, Douglas R; Li, Yuanyou

    2016-08-01

    Both the spotted scat Scatophagus argus and rabbitfish Siganus canaliculatus belong to the few cultured herbivorous marine teleost, however, their fatty acyl desaturase (Fad) system involved in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis is different. The S. argus has a △6 Fad, while the rabbitfish has △4 and △6/△5 Fads, which were the first report in vertebrate and marine teleost, respectively. In order to compare the characteristics of elongases of very long-chain fatty acids (Elovl) between them, two Elovl cDNAs were cloned from S. argus in the present study. One has 885bp of open read fragment (ORF) encoding a protein with 294 amino acid (aa) showing Elovl5 activity functionally characterized by heterologous expression in yeast, which was primarily active for the elongation of C18 and C20 PUFAs. The other has 915bp of ORF coding for a 305 aa protein showing Elovl4 activity, which was more efficient in the elongation of C20 and C22 PUFAs. Tissue distribution analyses by RT-PCR showed that elovl5 was highly expressed in the liver compared to other tissues determined, whereas elovl4 transcripts were only detected in the eye. The expression of elovl5 and elovl4 were significantly affected by dietary fatty acid composition, with highest expression of mRNA in the liver and eye of fish fed a diet with an 18:3n-3/18:2n-6 ratio of 1.7:1. These results indicated that the S. argus has a similar Elovl system in the LC-PUFA biosynthetic pathway to that of rabbitfish although their Fad system was different, suggesting that the diversification of fish LC-PUFA biosynthesis specificities is more associated with its Fad system. These new insights expand our knowledge and understanding of the molecular basis and regulation of LC-PUFA biosynthesis in fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Dietary polychlorinated biphenyls, long-chain n-3 polyunsaturated fatty acids and incidence of malignant melanoma.

    PubMed

    Donat-Vargas, Carolina; Berglund, Marika; Glynn, Anders; Wolk, Alicja; Åkesson, Agneta

    2017-02-01

    For malignant melanoma, other risk factors aside from sun exposure have been hardly explored. Polychlorinated biphenyls (PCBs)-mainly from fatty fish- may affect melanogenesis and promote melanoma progression, while long-chain n-3 polyunsaturated fatty acids seem to exert antineoplastic actions in melanoma cells. We aimed to assess the association of validated estimates of dietary PCB exposure as well as the intake of eicosapentaenoic acid and docosahexaenoic acid (EPA-DHA), accounting for sun habits and skin type, with the risk of malignant melanoma in middle-aged and elderly women. We included 20,785 women at baseline in 2009 from the prospective population-based Swedish Mammography Cohort. Validated estimates of dietary PCB exposure and EPA-DHA intake were obtained via a food frequency questionnaire. Incident melanoma cases were ascertained through register-linkage. During 4.5 years of follow-up, we ascertained 67 incident cases of melanoma. After multivariable adjustments, exposure to dietary PCBs was associated with four-fold increased risk of malignant melanoma (hazard ratio [HR], 4.0 [95% confidence interval {CI}, 1.2-13; P for trend = 0.02]), while EPA-DHA intake was associated with 80% lower risk (HR, 0.2 [95% CI, 0.1-0.8; P for trend = 0.03]), comparing the highest exposure tertiles with the lowest. While we found a direct association between dietary PCB exposure and risk of melanoma, EPA-DHA intake showed to have a substantial protective association. Question of benefits and risk from fish consumption is very relevant and further prospective studies in the general population verifying these findings are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ketoacylsynthase Domains of a Polyunsaturated Fatty Acid Synthase in Thraustochytrium sp. Strain ATCC 26185 Can Effectively Function as Stand-Alone Enzymes in Escherichia coli.

    PubMed

    Xie, Xi; Meesapyodsuk, Dauenpen; Qiu, Xiao

    2017-05-01

    Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. coli fabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in Thraustochytrium IMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a megaenzyme with

  13. Ketoacylsynthase Domains of a Polyunsaturated Fatty Acid Synthase in Thraustochytrium sp. Strain ATCC 26185 Can Effectively Function as Stand-Alone Enzymes in Escherichia coli

    PubMed Central

    Xie, Xi; Meesapyodsuk, Dauenpen

    2017-01-01

    ABSTRACT Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli. The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. coli fabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in Thraustochytrium. IMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a

  14. Modulation of heart rate and heart rate variability by n-3 long chain polyunsaturated fatty acids: Speculation on mechanism(s).

    PubMed

    Drewery, Merritt L; Spedale, Steven B; Lammi-Keefe, Carol J

    2017-09-01

    Heart rate (HR) and heart rate variability (HRV) are valuable markers of health. Although the underlying mechanism(s) are controversial, it is well documented that n-3 long chain polyunsaturated fatty acid (LCPUFA) intake improves HR and HRV in various populations. Autonomic modulation and/or alterations in cardiac electrophysiology are commonly cited as potential mechanisms responsible for these effects. This article reviews existing evidence for each and explores a separate mechanism which has not received much attention but has scientific merit. Based on presented evidence, it is proposed that n-3 LCPUFAs affect HR and HRV directly by autonomic modulation and indirectly by altering circulating factors, both dependently and independently of the autonomic nervous system. The evidence for changes in cardiac electrophysiology as the mechanism by which n-3 LCPUFAs affect HR and HRV needs strengthening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Maternal long-chain polyunsaturated fatty acid status during early pregnancy and children's risk of problem behavior at age 5-6 years.

    PubMed

    Loomans, Eva M; Van den Bergh, Bea R H; Schelling, Maaike; Vrijkotte, Tanja G M; van Eijsden, Manon

    2014-04-01

    To prospectively investigate the association between maternal long-chain polyunsaturated fatty acid (LCPUFA) status and ratio during pregnancy and children's risk of problem behavior at 5 years of age. Maternal LCPUFA status in plasma phospholipids during pregnancy (M = 13.3, SD = 3 weeks) was available for 4336 women. Children's behavior was rated by their mother (n = 2502) and teacher (n = 2061). When using multivariate logistic regression analyses, we found that greater concentrations of omega-3 fatty acid docosahexaenoic acid (OR 0.75; 95% CI 0.56-0.99; P = .05) decreased children's risk for emotional symptoms. Although lower eicosapentaenoic acid and a greater omega-6:omega-3 LCPUFA (ie, arachidonic acid/[docosahexaenoic acid + eicosapentaenoic acid]) tended to increase the risk for emotional symptoms and the risk of hyperactivity/inattention problems for the omega-6:omega-3 LCPUFA, the results were nonsignificant (P = .07). No evidence was found for mediation by preterm birth and being small for gestational age. The child's sex and infant feeding pattern did not modify the associations. Our results suggest long-term developmental programming influences of maternal LCPUFA status during pregnancy and stress the importance of an adequate and balanced supply of fatty acids in pregnant women for optimal fetal brain development and subsequent long-term behavioral outcomes. Copyright © 2014 Mosby, Inc. All rights reserved.

  16. Achieving definitive results in long-chain polyunsaturated fatty acid supplementation trials of term infants: factors for consideration.

    PubMed

    Meldrum, Suzanne J; Smith, Michael A; Prescott, Susan L; Hird, Kathryn; Simmer, Karen

    2011-04-01

    Numerous randomized controlled trials (RCTs) have been undertaken to determine whether supplementation with long-chain polyunsaturated fatty acids (LCPUFAs) in infancy would improve the developmental outcomes of term infants. The results of such trials have been thoroughly reviewed with no definitive conclusion as to the efficacy of LCPUFA supplementation. A number of reasons for the lack of conclusive findings in this area have been proposed. This review examines such factors with the aim of determining whether an optimal method of investigation for RCTs of LCPUFA supplementation in term infants can be ascertained from previous research. While more research is required to completely inform a method that is likely to achieve definitive results, the findings of this literature review indicate future trials should investigate the effects of sex, genetic polymorphisms, the specific effects of LCPUFAs, and the optimal tests for neurodevelopmental assessment. The current literature indicates a docosahexaenoic acid dose of 0.32%, supplementation from birth to 12 months, and a total sample size of at least 286 (143 per group) should be included in the methodology of future trials. © 2011 International Life Sciences Institute.

  17. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex.

    PubMed

    Herrera, Jose L; Ordoñez-Gutierrez, Lara; Fabrias, Gemma; Casas, Josefina; Morales, Araceli; Hernandez, Guadalberto; Acosta, Nieves G; Rodriguez, Covadonga; Prieto-Valiente, Luis; Garcia-Segura, Luis M; Alonso, Rafael; Wandosell, Francisco G

    2018-01-01

    Different dietary ratios of n -6/ n -3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n -6/ n -3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n -3 and n -6 LC-PUFAs.

  18. Metabolic and Endocrine Effects of Long Chain vs. Essential Omega-3 Polyunsaturated Fatty Acids in Polycystic Ovary Syndrome

    PubMed Central

    Vargas, M. Luisa; Almario, Rogelio U.; Buchan, Wendy; Kim, Kyoungmi; Karakas, Sidika E.

    2011-01-01

    Objective To compare the effects of essential vs. long chain omega (n)-3 polyunsaturated fatty acids (PUFA) in polycystic ovary syndrome (PCOS). Materials/Methods In this 6-week, prospective, double-blinded, placebo (soybean oil) controlled study, 51 completers received 3.5 g n-3 PUFA/day (essential from flaxseed oil or long chain from fish oil). Anthropometric variables, cardiovascular risk factors and androgens were measured; oral glucose tolerance test (OGTT) and frequently sampled intravenous GTT (FSIVGTT) were conducted at the baseline and 6 wks. Results Between group comparisons showed significant differences in serum triglyceride response (p = 0.0368), while the changes in disposition index (DI) also tended to differ (p = 0.0621). When within group changes (after vs. before intervention) were considered, fish oil and flaxseed oil lowered serum triglyceride (p = 0.0154 and p = 0.0176, respectively). Fish oil increased glucose at 120 min of OGTT (p = 0.0355); decreased Matsuda index (p= 0.0378); and tended to decrease early insulin response during IVGTT (AIRg; p = 0.0871). Soybean oil increased glucose at 30 min (p = 0.0030) and 60 min (p = 0.0121) and AUC for glucose (p = 0.0122) during OGTT; tended to decrease AIRg during IVGTT (p= 0.0848); reduced testosterone (p = 0.0216) and tended to reduce SHBG (p = 0.0858). Fasting glucose, insulin, adiponectin, leptin or hs-CRP did not change with any intervention. Conclusions Long chain vs. essential n-3 PUFA rich oils have distinct metabolic and endocrine effects in PCOS, and therefore they should not be used inter-changeably. PMID:21640360

  19. Metabolic and endocrine effects of long-chain versus essential omega-3 polyunsaturated fatty acids in polycystic ovary syndrome.

    PubMed

    Vargas, M Luisa; Almario, Rogelio U; Buchan, Wendy; Kim, Kyoungmi; Karakas, Sidika E

    2011-12-01

    The objective of the study was to compare the effects of essential vs long-chain omega (n)-3 polyunsaturated fatty acids (PUFAs) in polycystic ovary syndrome. In this 6-week, prospective, double-blinded, placebo (soybean oil)-controlled study, 51 completers received 3.5 g n-3 PUFA per day (essential PUFA from flaxseed oil or long-chain PUFA from fish oil). Anthropometric variables, cardiovascular risk factors, and androgens were measured; oral glucose tolerance test (OGTT) and frequently sampled intravenous GTT (IVGTT) were conducted at baseline and 6 weeks. Between-group comparisons showed significant differences in serum triglyceride response (P = .0368), whereas the changes in disposition index also tended to differ (P = .0621). When within-group changes (after vs before intervention) were considered, fish oil and flaxseed oil lowered serum triglyceride (P = .0154 and P = .0176, respectively). Fish oil increased glucose at 120 minutes of OGTT (P = .0355), decreased the Matsuda index (P = .0378), and tended to decrease acute insulin response during IVGTT (P = .0871). Soybean oil increased glucose at 30 (P = .0030) and 60 minutes (P = .0121) and AUC for glucose (P = .0122) during OGTT, tended to decrease acute insulin response during IVGTT (P = .0848), reduced testosterone (P = .0216), and tended to reduce sex hormone-binding globulin (P = .0858). Fasting glucose, insulin, adiponectin, leptin, or high-sensitivity C-reactive protein did not change with any intervention. Long-chain vs essential n-3 PUFA-rich oils have distinct metabolic and endocrine effects in polycystic ovary syndrome; and therefore, they should not be used interchangeably. Published by Elsevier Inc.

  20. Diacylglycerol acyltransferase 2 of Mortierella alpina with specificity on long-chain polyunsaturated fatty acids: A potential tool for reconstituting lipids with nutritional value.

    PubMed

    Jeennor, Sukanya; Veerana, Mayura; Anantayanon, Jutamas; Panchanawaporn, Sarocha; Chutrakul, Chanikul; Laoteng, Kobkul

    2017-12-10

    Based on available genome sequences and bioinformatics tools, we searched for an uncharacterized open reading frame of Mortierella alpina (MaDGAT2) using diacylglycerol acyltransferase sequence (fungal DGAT type 2B) as a query. Functional characterization of the identified native and codon-optimized M. alpina genes were then performed by heterologous expression in Saccharomyces cerevisiae strain defective in synthesis of neutral lipid (NL). Lipid analysis of the yeast tranformant carrying MaDGAT2 showed that the NL biosynthesis and lipid particle formation were restored by the gene complementation. Substrate specificity study of the fungal enzyme by fatty acid supplementation in the transformant cultures showed that it had a broad specificity on saturated and unsaturated fatty acid substrates for esterification into triacylglycerol (TAG). The n-6 polyunsaturated fatty acids (PUFAs) with 18 and 20 carbon atoms, including linoleic acid, γ-linolenic acid, dihomo γ-linolenic and arachidonic acid could be incorporated into TAG fraction in the yeast cells. Interestingly, among n-3 PUFAs tested, the MaDGAT2 enzyme preferred eicosapentaenoic acid (EPA) substrate as its highly proportional constituent found in TAG fraction. This study provides a potential genetic tool for reconstituting oils rich in long-chain PUFAs with nutritional value. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Formula with long-chain polyunsaturated fatty acids reduces incidence of allergy in early childhood.

    PubMed

    Foiles, Amanda M; Kerling, Elizabeth H; Wick, Jo A; Scalabrin, Deolinda M F; Colombo, John; Carlson, Susan E

    2016-03-01

    Allergy has sharply increased in affluent Western countries in the last 30 years. N-3 long-chain polyunsaturated fatty acids (n-3 LCPUFAs) may protect the immune system against development of allergy. We prospectively categorized illnesses by body system in a subset of 91 children from the Kansas City cohort of the DIAMOND (DHA Intake and Measurement of Neural Development) study who had yearly medical records through 4 years of age. As infants, they were fed either a control formula without LCPUFA (n = 19) or one of three formulas with LCPUFA from docosahexaenoic acid (DHA) and arachidonic acid (ARA) (n = 72). Allergic illnesses in the first year were lower in the combined LCPUFA group compared to the control. LCPUFAs significantly delayed time to first allergic illness (p = 0.04) and skin allergic illness (p = 0.03) and resulted in a trend to reduced wheeze/asthma (p = 0.1). If the mother had no allergies, LCPUFAs reduced the risk of any allergic diseases (HR = 0.24, 95% CI = 0.1, 0.56, p = 0.0.001) and skin allergic diseases (HR = 0.35, 95% CI = 0.13, 0.93, p = 0.04). In contrast, if the mother had allergies, LCPUFAs reduced wheezing/asthma (HR = 0.26, 95% CI = 0.07, 0.9, p = 0.02). LCPUFA supplementation during infancy reduced the risk of skin and respiratory allergic diseases in childhood with effects influenced by maternal allergies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex

    PubMed Central

    Herrera, Jose L.; Ordoñez-Gutierrez, Lara; Fabrias, Gemma; Casas, Josefina; Morales, Araceli; Hernandez, Guadalberto; Acosta, Nieves G.; Rodriguez, Covadonga; Prieto-Valiente, Luis; Garcia-Segura, Luis M.; Alonso, Rafael; Wandosell, Francisco G.

    2018-01-01

    Different dietary ratios of n−6/n−3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n−6/n−3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n−3 and n−6 LC-PUFAs. PMID:29740285

  3. Correlation of polyunsaturated fatty acids with the cold adaptation of Rhodotorula glutinis.

    PubMed

    He, Jing; Yang, Zhaojie; Hu, Binbin; Ji, Xiuling; Wei, Yunlin; Lin, Lianbing; Zhang, Qi

    2015-11-01

    This study aimed to investigate the correlation between the cold adaptation of Rhodotorula glutinis YM25079 and the membrane fluidity, content of polyunsaturated fatty acids and mRNA expression level of the Δ(12)-desaturase gene. The optimum temperature for YM25079 growth was analysed first, then the composition changes of membrane lipid in YM25079 were detected by GC-MS and membrane fluidity was evaluated by 1-anilinonaphthalene-8-sulphonate (ANS) fluorescence. Meanwhile, the encoding sequence of Δ(12)-fatty acid desaturase in YM25079 was cloned and further transformed into Saccharomyces cerevisiae INVScl for functional analysis. The mRNA expression levels of Δ(12)-fatty acid desaturase at 15°C and 25°C were analysed by real-time PCR. YM25079 could grow at 5-30°C, with the optimum temperature of 15°C. The membrane fluidity of YM25079 was not significantly reduced when the culture temperature decreased from 25°C to 15°C, but the content of polyunsaturated fatty acids (PUFAs), including linoleic acid and α-Linolenic acid increased significantly from 29.4% to 55.39%. Furthermore, a novel Δ(12)-fatty acid desaturase gene YM25079RGD12 from YM25079 was successfully identified and characterized, and the mRNA transcription level of the Δ(12)-desaturase gene was about five-fold higher in YM25079 cells grown at 15°C than that at 25°C. These results suggests that the cold adaptation of Rhodotorula glutinis YM25079 might result from higher expression of genes, especially the Δ(12)-fatty acid desaturase gene, during polyunsaturated fatty acids biosynthesis, which increased the content of PUFAs in the cell membrane and maintained the membrane fluidity at low temperature. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Effects of dietary polyunsaturated fatty acids and nucleotides on tissue fatty acid profiles of rats with carbon tetrachloride-induced liver damage.

    PubMed

    Fontana, L; Moreira, E; Torres, M I; Periago, J L; Sánchez de Medina, F; Gil, A

    1999-04-01

    The deficiency of polyunsaturated fatty acids (PUFA) that occurs in plasma of patients with liver cirrhosis has been assessed in rats with severe steatosis and mild liver necrosis induced by repeated administration of low doses of carbon tetrachloride (CCl(4)). The contribution of both dietary (n-3) long-chain PUFA and nucleotides to the recovery of the altered fatty acid profiles of tissue lipids of these rats has also been studied. Two groups of rats were used. The first was intraperitoneally injected 0.15 ml of a 10% (v/v) CCl(4)solution in paraffin per 100 g of body weight, three times a week for 9 weeks; the second received paraffin alone. After the treatment, six rats of each group were killed. Afterwards, the remaining controls were fed a semipurified diet (SPD) for 3 weeks, and the remaining rats in the CCl(4)group were divided into three new groups: the first was fed the SP diet; the second was fed the SP diet supplemented with 1% (n-3) polyunsaturated fatty acids (PUFA diet); and the third was fed the SP diet supplemented with 250 mg nucleotides per 100 g diet (NT diet). Fatty acids of plasma, erythrocyte membranes and liver microsomes were analyzed. Decreases in linoleic and arachidonic acids in both total plasma lipids and liver microsomal phospholipids were the main findings due to CCl(4)treatment. The rats that received CCl(4)and the PUFA diet showed the lowest levels of (n-6) PUFA and the highest levels of (n-3) PUFA in liver microsomal phospholipids, as well as a significant increase of (n-3) PUFAs in total plasma lipids. The animals that received the NT diet showed no signs of fatty infiltration and exhibited the highest levels of (n-6) PUFAs in liver microsomal phospholipids. These results show that CCl(4)affects fatty acid metabolism which is accordingly reflected in altered tissue fatty acid profiles, and that balanced diets containing PUFA and nucleotides are important for the recovery of the damaged liver in rats. Copyright 1999 Harcourt

  5. The effects of n-3 long-chain polyunsaturated fatty acid supplementation on AGEs and sRAGE in type 2 diabetes mellitus.

    PubMed

    Kurt, Asuman; Andican, Gülnur; Siva, Zeynep Oşar; Andican, Ahat; Burcak, Gülden

    2016-12-01

    In diabetes mellitus, chronic hyperglycemia leads to formation of advanced glycation end products (AGEs). Binding of AGEs to receptors of AGE (RAGE) causes deleterious effects. In populations with a high consumption of n-3 long-chain polyunsaturated fatty acids, a lower prevalence of diabetes mellitus has been reported. We aimed to investigate the effects of n-3 fatty acid (EPA and DHA) supplementation on the levels of AGEs (carboxymethyl lysine (CML) and pentosidine), sRAGE, and nuclear factor kappa B (NF-kB) in type 2 diabetes mellitus (T2DM). T2DM patients (n = 38) treated with oral hypoglycemic agents, without insulin were supplemented with n-3 fatty acids (1.2 g/day) for 2 months. Plasma CML, pentosidine, sRAGE, and NF-kB levels were measured by ELISA both before and after the supplementation. n-3 fatty acid supplementation significantly reduced fasting glucose (p < 0.01), glycated hemoglobin (HbA 1c ) (p < 0.05), and pentosidine (p < 0.05) levels. The supplementation induced percentage changes in pentosidine and HbA 1c and in pentosidine and creatinine were observed to be correlated (r = 0.349, p < 0.05) and (r = 0.377, p < 0.05), respectively. Waist circumference and systolic and diastolic pressures were significantly decreased due to n-3 supplementation (p < 0.001, p < 0.01, p < 0.01), respectively. Our results show that supplementation with n-3 fatty acid has beneficial effects on waist circumference; systolic and diastolic blood pressures; and the levels of glucose, HbA 1c , and pentosidine in T2DM patients. However, the supplementation failed to decrease these parameters to the reference ranges for healthy subjects. In addition, the supplementation did not appear to induce any significant differences in CML, sRAGE, or NF-kB.

  6. Maternal intake of seafood and supplementary long chain n-3 poly-unsaturated fatty acids and preterm delivery.

    PubMed

    Brantsæter, Anne Lise; Englund-Ögge, Linda; Haugen, Margareta; Birgisdottir, Bryndis Eva; Knutsen, Helle Katrine; Sengpiel, Verena; Myhre, Ronny; Alexander, Jan; Nilsen, Roy M; Jacobsson, Bo; Meltzer, Helle Margrete

    2017-01-19

    Preterm delivery increases the risk of neonatal morbidity and mortality. Studies suggest that maternal diet may affect the prevalence of preterm delivery. The aim of this study was to assess whether maternal intakes of seafood and marine long chain n-3 polyunsaturated fatty acids (LCn-3PUFA) from supplements were associated with preterm delivery. The study population included 67,007 women from the Norwegian Mother and Child Cohort Study. Maternal food and supplement intakes were assessed by a validated self-reported food frequency questionnaire in mid-pregnancy. Information about gestational duration was obtained from the Medical Birth Registry of Norway. We used Cox regression to estimate hazard ratios (HR) with 95% confidence intervals (CI) for associations between total seafood, lean fish, fatty fish, and LCn-3PUFA intakes and preterm delivery. Preterm was defined as any onset of delivery before gestational week 37, and as spontaneous or iatrogenic deliveries and as preterm delivery at early, moderate, and late preterm gestations. Lean fish constituted 56%, fatty fish 34% and shellfish 10% of seafood intake. Any intake of seafood above no/rare intake (>5 g/d) was associated with lower prevalence of preterm delivery. Adjusted HRs were 0.76 (CI: 0.66, 0.88) for 1-2 servings/week (20-40 g/d), 0.72 (CI: 0.62, 0.83) for 2-3 servings/week (40-60 g/d), and 0.72 (CI: 0.61, 0.85) for ≥3 servings/week (>60 g/d), p-trend <0.001. The association was seen for lean fish (p-trend: 0.005) but not for fatty fish (p-trend: 0.411). The intake of supplementary LCn-3PUFA was associated only with lower prevalence of early preterm delivery (before 32 gestational weeks), while increasing intake of LCn-3PUFA from food was associated with lower prevalence of overall preterm delivery (p-trend: 0.002). Any seafood intake above no/rare was associated with lower prevalence of both spontaneous and iatrogenic preterm delivery, and with lower prevalence of late preterm delivery. Any

  7. Preservation of polyunsaturated fatty acyl glycerides via intramolecular antioxidant coupling

    USDA-ARS?s Scientific Manuscript database

    Ferulic acid and its esters are known to be effective antioxidants. Feruloyl di-gamma-linolenoylglycerol was assessed for its ability to serve as an antioxidant for preventing the oxidation of its gamma-linolenoyl polyunsaturated fatty acyl groups in model membrane phospholipid vesicles. The molec...

  8. Dietary enrichment with medium chain triglycerides (AC-1203) elevates polyunsaturated fatty acids in the parietal cortex of aged dogs: implications for treating age-related cognitive decline.

    PubMed

    Taha, Ameer Y; Henderson, Samuel T; Burnham, W M

    2009-09-01

    Dogs demonstrate an age-related cognitive decline, which may be related to a decrease in the concentration of omega-3 polyunsaturated fatty acids (n-3 PUFA) in the brain. Medium chain triglycerides (MCT) increase fatty acid oxidation, and it has been suggested that this may raise brain n-3 PUFA levels by increasing mobilization of n-3 PUFA from adipose tissue to the brain. The goal of the present study was to determine whether dietary MCT would raise n-3 PUFA concentrations in the brains of aged dogs. Eight Beagle dogs were randomized to a control diet (n = 4) or an MCT (AC-1203) enriched diet (n = 4) for 2 months. The animals were then euthanized and the parietal cortex was removed for phospholipid, cholesterol and fatty acid determinations by gas-chromatography. Dietary enrichment with MCT (AC-1203) resulted in a significant increase in brain phospholipid and total lipid concentrations (P < 0.05). In particular, n-3 PUFA within the phospholipid, unesterified fatty acid, and total lipid fractions were elevated in AC-1203 treated subjects as compared to controls (P < 0.05). Brain cholesterol concentrations did not differ significantly between the groups (P > 0.05). These results indicate that dietary enrichment with MCT, raises n-3 PUFA concentrations in the parietal cortex of aged dogs.

  9. Effect of unsaturations on the physical properties of a model membrane with the highly polyunsaturated docosahexaenoic fatty acid

    NASA Astrophysics Data System (ADS)

    Saiz, Leonor; Klein, Michael L.

    2001-03-01

    Polyunsaturated fatty acids are an essential component of biomembranes. The docosahexaenoic fatty acid (DHA), in particular, is found in high concentrations in retinal and neuronal tissue and in the olfactory bulb. Furthermore, it is well known the ability of DHA rich membranes to modulate membrane protein function, in some situations, by modifying the membrane physical properties. A particularly well studied situation is the DHA effect onthe activity of the visual receptor (protein) rhodopsin. Here, we study at a microscopic level this type of complex systems under physiological conditions. In this way, we can probe the molecular origin of the peculiarities that the system confers to membranes. To this purpose, the structure of a fully hydrated mixed (saturated/polyunsaturated) chain lipid bilayer in the biologically relevant liquid crystalline phase has been examined by performing molecular dynamics simulations. The model membrane, a 1-stearoyl- 2-docosahexaenoic- sn-glycero- 3-phosphatidylcholine (18:0/22:6 PC) lipid bilayer, was investigated at room temperature and ambient pressure and the results obtained in the nanosecond time scale were in good agreement with the available experimental data. Among the effects of the multiple unsaturations on the physical properties of these membranes, we focus on the enhanced permeability to water and small organic solvents, the decreased area compressibility modulus, and the domain formation and chain segregation.

  10. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: a prospective, randomized controlled trial.

    PubMed

    O'Connor, D L; Hall, R; Adamkin, D; Auestad, N; Castillo, M; Connor, W E; Connor, S L; Fitzgerald, K; Groh-Wargo, S; Hartmann, E E; Jacobs, J; Janowsky, J; Lucas, A; Margeson, D; Mena, P; Neuringer, M; Nesin, M; Singer, L; Stephenson, T; Szabo, J; Zemon, V

    2001-08-01

    A randomized, masked, controlled trial was conducted to assess effects of supplementing premature infant formulas with oils containing the long-chain polyunsaturated fatty acids, arachidonic acid (AA; 20:4 n6), and docosahexaenoic acid (DHA; 22:6 n3) on growth, visual acuity, and multiple indices of development. Infants (N = 470) with birth weights 750 to 1800 g were assigned within 72 hours of the first enteral feeding to 1 of 3 formula groups with or without long-chain polyunsaturated fatty acids: 1) control (N = 144), 2) AA+DHA from fish/fungal oil (N = 140), and 3) AA+DHA from egg-derived triglyceride (egg-TG)/fish oil (N = 143). Infants were fed human milk and/or Similac Special Care with or without 0.42% AA and 0.26% DHA to term corrected age (CA), then fed human milk or NeoSure with or without 0.42% AA and 0.16% DHA to 12 months' CA. Infants fed exclusively human milk to term CA (EHM-T; N = 43) served as a reference. Visual acuity measured by acuity cards at 2, 4, and 6 months' CA was not different among groups. Visual acuity measured by swept-parameter visual-evoked potentials in a subgroup from 3 sites (45 control, 50 AA+DHA [fish/fungal]; 39 AA+DHA [egg-TG/fish]; and 23 EHM-T) was better in both the AA+DHA (fish/fungal; least square [LS] means [cycle/degree] +/- standard error [SE; octaves] 11.4 +/- 0.1) and AA+DHA (egg-TG/fish; 12.5 +/- 0.1) than control (8.4 +/- 0.1) and closer to that of the EHM-T group (16.0 +/- 0.2) at 6 months' CA. Visual acuity improved from 4 to 6 months' CA in all but the control group. Scores on the Fagan test of novelty preference were greater in AA+DHA (egg-TG/fish; LS means +/- SE, 59.4 +/- 7.7) than AA+DHA (fish/fungal; 57.0 +/- 7.5) and control (57.5 +/- 7.4) at 6 months' CA, but not at 9 months' CA. There were no differences in the Bayley Mental Development Index at 12 months' CA. However, the Bayley motor development index was higher for AA+DHA (fish/fungal; LS means +/- SE, 90.6 +/- 4.4) than control (81.8 +/- 4.3) for

  11. Dietary n-3 long chain polyunsaturated fatty acids in allergy prevention and asthma treatment.

    PubMed

    Willemsen, Linette E M

    2016-08-15

    The rise in non-communicable diseases, such as allergies, in westernized countries links to changes in lifestyle and diet. N-3 long chain polyunsaturated fatty acids (LCPUFA) present in marine oils facilitate a favorable milieu for immune maturation and may contribute to allergy prevention. N-3 LCPUFA can suppress innate and adaptive immune activation and induce epigenetic changes. Murine studies convincingly show protective effects of fish oil, a source of n-3 LCPUFA, in food allergy and asthma models. Observational studies in human indicate that high dietary intake of n-3 LCPUFA and low intake of n-6 PUFA may protect against the development of allergic disease early in life. High n-6 PUFA intake is also associated with an increased asthma risk while n-3 LCPUFA may be protective and reduce symptoms. The quality of the marine oil used has impact on efficacy of allergy prevention and several observations link in particular n-3 LCPUFA DHA to allergy suppression. Randomized controlled trials indicate that optimal timing, duration and dosage of n-3 LC-PUFA is required to exert an allergy protective effect. Supplementation during early pregnancy and lactation has shown promising results regarding allergy prevention. However these findings should be confirmed in a larger cohort. Although clinical trials in asthma patients reveal no consistent clinical benefits of n-3 LCPUFA supplementation on lung function, it can suppress airway inflammation. Future food-pharma approaches may reveal whether adjunct therapy with dietary n-3 LCPUFA can improve allergy prevention or immunotherapy via support of allergen specific oral tolerance induction or contribute to the efficacy of drug therapy for asthma patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Omega-3 long-chain polyunsaturated fatty acids for extremely preterm infants: a systematic review.

    PubMed

    Zhang, Peiyin; Lavoie, Pascal M; Lacaze-Masmonteil, Thierry; Rhainds, Marc; Marc, Isabelle

    2014-07-01

    Omega-3 long chain polyunsaturated fatty acid (LCPUFA) exposure can be associated with reduced neonatal morbidities. We systematically review the evidence for the benefits of omega-3 LCPUFAs for reducing neonatal morbidities in extremely preterm infants. Data sources were PubMed, Embase, Center for Reviews and Dissemination, and the Cochrane Register of Controlled Trials. Original studies were selected that included infants born at <29 weeks' gestation, those published until May 2013, and those that evaluated the relationship between omega-3 LCPUFA supplementation and major adverse neonatal outcomes. Data were extracted on study design and outcome. Effect estimates were pooled. Of the 1876 studies identified, 18 randomized controlled trials (RCTs) and 6 observational studies met the defined criteria. No RCT specifically targeted a population of extremely preterm infants. Based on RCTs, omega-3 LCPUFA was not associated with a decreased risk of bronchopulmonary dysplasia in infants overall (pooled risk ratio [RR] 0.97, 95% confidence interval [CI] 0.82-1.13], 12 studies, n = 2809 infants); however, when considering RCTs that include only infants born at ≤32 weeks' gestation, a trend toward a reduction in the risk of bronchopulmonary dysplasia (pooled RR 0.88, 95% CI 0.74-1.05, 7 studies, n = 1156 infants) and a reduction in the risk of necrotizing enterocolitis (pooled RR 0.50, 95% CI 0.23-1.10, 5 studies, n = 900 infants) was observed with LCPUFA. Large-scale interventional studies are required to determine the clinical benefits of omega-3 LCPUFA, specifically in extremely preterm infants, during the neonatal period. Copyright © 2014 by the American Academy of Pediatrics.

  13. A New Insight to Bone Turnover: Role of ω-3 Polyunsaturated Fatty Acids

    PubMed Central

    López-Frías, Magdalena; López-Aliaga, Inmaculada; Ochoa, Julio J.

    2013-01-01

    Background. Evidence has shown that long-chain polyunsaturated fatty acids (LCPUFA), especially the ω-3 fatty acids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are beneficial for bone health and turnover. Objectives. This review summarizes findings from both in vivo and in vitro studies and the effects of LC PUFA on bone metabolism, as well as the relationship with the oxidative stress, the inflammatory process, and obesity. Results. Some studies in humans indicate that LCPUFA can increase bone formation, affect peak bone mass in adolescents, and reduce bone loss. However, the cellular mechanisms of action of the LCPUFA are complex and involve modulation of fatty acid metabolites such as prostaglandins, resolvins and protectins, several signaling pathways, cytokines, and growth factors, although in certain aspects there is still some controversy. LCPUFA affect receptor activator of nuclear factor κ β (RANK), a receptor found on the osteoclast, causing bone resorption, which controls osteoclast formation. Conclusions. Since fatty acids are an endogenous source of reactive oxygen species, free radicals alter the process of bone turnover; however, although there are clinical evidences linking bone metabolism and dietary lipids, more clinical trials are necessary to prove whether ω-3 PUFA supplementation plays a major role in bone health. PMID:24302863

  14. Association of plasma n-6 and n-3 polyunsaturated fatty acids with synovitis in the knee: the MOST study

    USDA-ARS?s Scientific Manuscript database

    In osteoarthritis (OA) the synovium is often inflamed and inflammatory cytokines contribute to cartilage damage. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have anti-inflammatory effects whereas omega-6 polyunsaturated fatty acids (n-6 PUFAs) have, on balance, proinflammatory effects. The goal ...

  15. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair.

    PubMed

    Dyall, Simon C

    2017-11-01

    The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.

  16. Effect of n-3 polyunsaturated fatty acids on the lipidic profile of healthy Mexican volunteers.

    PubMed

    Carvajal, O; Angulo, O

    1997-01-01

    The effect of n-3 polyunsaturated fatty acids on the serum lipid profile in a Mexican population was evaluated. Three g of salmon oil was the daily intake during four weeks. Total cholesterol, triglycerides, low density lipoproteins, high density lipoproteins and erythrocyte fatty acid composition were analyzed. The hypertriglyceridemic group showed a statistically significant (p < 0.05) reduction of triglycerides and significant (p < 0.01) elevation of high density lipoproteins. The hypercholesterolemic group reduced significantly the levels of cholesterol and triglycerides; high density lipoproteins were augmented by 11.6%. The hypolipidemic effect of n-3 polyunsaturated fatty acids was manifest in the Mexican volunteers under the conditions here evaluated.

  17. Biosynthesis of Polyunsaturated Fatty Acids in the Razor Clam Sinonovacula constricta: Characterization of Δ5 and Δ6 Fatty Acid Desaturases.

    PubMed

    Ran, Zhaoshou; Xu, Jilin; Liao, Kai; Li, Shuang; Chen, Shubing; Yan, Xiaojun

    2018-05-09

    To investigate the endogenous long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic ability in Sinonovacula constricta, fatty acid desaturases (Fads) of this bivalve, namely, Scfad5a, Scfad5b, and Scfad6, were cloned and characterized in the current study. Meanwhile, the tissue distributions of S. constricta Fads and fatty acids (FAs) were examined. Heterologous expression in yeasts confirmed that Scfad5a and Scfad5b were both Δ5 Fads, while Scfad6 was a Δ6 Fad. However, compared with Fads in other organisms, the desaturation activities of S. constricta Fads were relatively low (especially for Scfad6), indicating an adaptation to living conditions. S. constricta Fads were expressed in all tissues examined, and particularly high expressions were found in intestine and gonad. Moreover, FAs were differently distributed among tissues, which might be correlated with their corresponding physiological roles. Taken together, the results provided an insight into LC-PUFA biosynthesis in S. constricta. Notably, Scfad6 was the first functionally characterized Δ6 Fad in marine molluscs to date.

  18. [Comparison of long-chain polyunsaturated fatty acids in plasma and erythrocyte phospholipids for biological monitoring].

    PubMed

    Kawabata, Terue; Nakai, Kunihiko; Hagiwara, Chie; Kurokawa, Naoyuki; Murata, Katsuyuki; Yaginuma, Kozue; Satoh, Hiroshi

    2011-01-01

    Previous data have indicated that the erythrocyte membrane may be the preferred sample type for assessing long-chain polyunsaturated fatty acid (LCPUFA) contents in cardiac and cerebral membranes. In this epidemiological study, we examined whether plasma phospholipids can be used for accurate biological monitoring of the LCPUFA state or whether analysis of erythrocyte membrane phospholipids is indispensable. (1) The analysis of LCPUFA contents in erythrocyte membrane phospholipids was conducted at baseline and after 1 and 3 days at 4°C, and 21 days at -40°C, after blood drawing, and the changes in LCPUFA content were examined. (2) The LCPUFA compositions of plasma and erythrocyte phospholipids in 133 young women (18-30 years old) were examined and the relationships between the sample type and the levels of LCPUFAs were determined. Eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and DHA/arachidonic acid (AA) and (EPA+DHA)/AA ratios in erythrocyte membrane phospholipids after 21 days of blood drawing significantly decreased compared with the corresponding baseline data. Regarding AA, EPA and DHA, a significant positive correlation was shown between levels of erythrocyte membrane phospholipids and plasma phospholipids (AA, r=0.364; EPA, r=0.709; DHA, r=0.653). The predictive value of plasma phospholipids for determining the highest concentration quartile in erythrocyte phospholipids was better in EPA (70%) than in DHA (55%) and AA (42%). The measurement of LCPUFA content in erythrocyte membrane phospholipids is necessary for accurate biological monitoring. We also found that LCPUFA in erythrocyte membrane phospholipids is stable in cold storage (4°C) for 3 days after blood drawing.

  19. Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection

    PubMed Central

    2010-01-01

    Background There are currently no accurate serum markers for detecting early risk of colorectal cancer (CRC). We therefore developed a non-targeted metabolomics technology to analyse the serum of pre-treatment CRC patients in order to discover putative metabolic markers associated with CRC. Using tandem-mass spectrometry (MS/MS) high throughput MS technology we evaluated the utility of selected markers and this technology for discriminating between CRC and healthy subjects. Methods Biomarker discovery was performed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Comprehensive metabolic profiles of CRC patients and controls from three independent populations from different continents (USA and Japan; total n = 222) were obtained and the best inter-study biomarkers determined. The structural characterization of these and related markers was performed using liquid chromatography (LC) MS/MS and nuclear magnetic resonance technologies. Clinical utility evaluations were performed using a targeted high-throughput triple-quadrupole multiple reaction monitoring (TQ-MRM) method for three biomarkers in two further independent populations from the USA and Japan (total n = 220). Results Comprehensive metabolomic analyses revealed significantly reduced levels of 28-36 carbon-containing hydroxylated polyunsaturated ultra long-chain fatty-acids in all three independent cohorts of CRC patient samples relative to controls. Structure elucidation studies on the C28 molecules revealed two families harbouring specifically two or three hydroxyl substitutions and varying degrees of unsaturation. The TQ-MRM method successfully validated the FTICR-MS results in two further independent studies. In total, biomarkers in five independent populations across two continental regions were evaluated (three populations by FTICR-MS and two by TQ-MRM). The resultant receiver-operator characteristic curve AUCs ranged from 0.85 to 0.98 (average = 0.91 ± 0.04). Conclusions A

  20. Note on the chromatographic analyses of marine polyunsaturated fatty acids

    USGS Publications Warehouse

    Schultz, D.M.; Quinn, J.G.

    1977-01-01

    Gas-liquid chromatography was used to study the effects of saponification/methylation and thin-layer chromatographic isolation on the analyses of polyunsaturated fatty acids. Using selected procedures, the qualitative and quantitative distribution of these acids in marine organisms can be determined with a high degree of accuracy. ?? 1977 Springer-Verlag.

  1. The relevance of serum levels of long chain omega-3 polyunsaturated fatty acids and prostate cancer risk: A meta-analysis

    PubMed Central

    Chua, Michael E.; Sio, Maria Christina D.; Sorongon, Mishell C.; Morales, Marcelino L.

    2013-01-01

    Objective: Our objective was to systematically analyze the evidence for an association between serum level long chain omega-3 polyunsaturated fatty acid (n-3 PUFA) and prostate cancer risk from human epidemiological studies. Study Procedures: We searched biomedical literature databases up to November 2011 and included epidemiological studies with description of long chain n-3 PUFA and incidence of prostate cancer in humans. Critical appraisal was done by two independent reviewers. Data were pooled using the general variance-based method with random-effects model; effect estimates were expressed as risk ratio with 95% confidence interval (CI). Heterogeneity was assessed by Chi2 and quantified by I2, publication bias was also determined. Results: In total, 12 studies were included. Significant negative association was noted between high serum level of n-3 PUFA doc-osapentaenoic acid (DPA) and total prostate cancer risk (RR:0.756; 95% CI 0.599, 0.955; p = 0.019). Likewise, a positive association between high blood level of fish oil contents, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and high-grade prostate tumour incidence (RR:1.381; 95% CI 1.050, 1.817; p = 0.021) was noted; however, this finding was evident only after adjustment was done on interstudy variability through the removal of a lower quality study from the pool. Conclusions: High serum levels of long chain n-3 PUFA DPA is associated with reduced total prostate cancer risk. While high blood level of EPA and DHA is possibly associated with increased high-grade prostate tumour risk. PMID:23766835

  2. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    PubMed

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment.

  3. Effect of supplementation with long-chain ω-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): a randomized placebo-controlled intervention trial.

    PubMed

    Widenhorn-Müller, Katharina; Schwanda, Simone; Scholz, Elke; Spitzer, Manfred; Bode, Harald

    2014-01-01

    To determine whether supplementation with the long-chain omega-3 polyunsaturated fatty acids eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) affects behavioral symptoms and cognitive impairments in children 6-12 years of age diagnosed with attention-deficit/hyperactivity disorder (ADHD). The randomized, double-blind placebo-controlled 16 weeks trial was conducted with 95 children diagnosed with ADHD according to DSM-IV criteria. Behavior was assessed by parents, teachers and investigators using standardized rating scales and questionnaires. Further outcome variables were working memory, speed of information processing and various measures of attention. For a subgroup of 81 participants, erythrocyte membrane fatty acid composition was analyzed before and after the intervention. Supplementation with the omega-3 fatty acid mix increased EPA and DHA concentrations in erythrocyte membranes and improved working memory function, but had no effect on other cognitive measures and parent- and teacher-rated behavior in the study population. Improved working memory correlated significantly with increased EPA, DHA and decreased AA (arachidonic acid). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Human milk polyunsaturated long-chain fatty acids and secretory immunoglobulin A antibodies and early childhood allergy.

    PubMed

    Duchén, K; Casas, R; Fagerås-Böttcher, M; Yu, G; Björkstén, B

    2000-02-01

    changes in PUFA serum phospholipids, particularly for the n-6 PUFA. The AA: EPA ratio in maternal milk was related, however, to the AA:EPA only in serum from non-allergic children, while this was not the case in allergic children. The levels of total S-IgA, anti-cat S-IgA, anti-ovalbumin S-IgA, and anti-beta-lactoglobulin S-IgA in milk from mothers of allergic, as compared to non-allergic, children were similar through the first 3 months of lactation. Low levels of n-3 PUFA in human milk, and particularly a high AA:EPA ratio in maternal milk and serum phospholipids in the infants, were related to the development of symptoms of allergic disease at 18 months of age. The milk PUFA composition influenced the composition of PUFA in serum phospholipids of the children. We also showed that the lower levels of colostral anti-ovalbumin S-IgA and lower total S-IgA in mature milk from atopic mothers did not influence the development of allergic disease in the children up to 18 months of age. The findings indicate that low alpha-linolenic acid, C18:3 n-3 (LNA) and n-3 long-chain polyunsaturated fatty acids (LCP) 20-22 carbon chains, but not the levels of S-IgA antibodies to allergens, are related to the development of atopy in children.

  5. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    PubMed

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Curcumin and long-chain Omega-3 polyunsaturated fatty acids for Prevention of type 2 Diabetes (COP-D): study protocol for a randomised controlled trial.

    PubMed

    Thota, Rohith N; Acharya, Shamasunder H; Abbott, Kylie A; Garg, Manohar L

    2016-11-29

    Lifestyle interventions, including increase in physical activity and dietary counselling, have shown the ability to prevent type 2 diabetes (T2D) in high-risk state individuals, but the prevalence is still skyrocketing in Australia, in line with global prevalence. Currently, no medicines are approved by the Therapeutic Goods Administration in Australia for the management of prediabetes. Therefore, there is a need of developing a safer, biologically efficacious and cost-effective alternative for delaying the transition of individual health state from prediabetes into T2D. In the current trial we propose to evaluate the effects of curcumin and/or long-chain omega-3 polyunsaturated fatty acids on improving glycosylated haemoglobin as a primary outcome, along with secondary outcomes of glycaemic indices, lipid profile and inflammatory parameters. Eighty individuals diagnosed with prediabetes, aged between 30 and 70 years, will be randomly assigned to double placebo, curcumin alone, fish oil alone or double active groups according to a computer-generated randomisation sequence for 12 weeks. At baseline and post-intervention visits participants will be asked to provide blood samples and undergo body composition measurements. A blood sample is used for estimating glycaemic profiles, lipid profiles and inflammatory parameters (C-reactive protein, whole blood cell count, adiponectin, leptin, interleukin-6). The interim visit includes review on compliance with supplements based on capsule log and capsule count, adverse events and anthropometric measurements. In addition to these procedures, participants provide self-reported questionnaires on dietary intake (using a 3-day food record), a physical activity questionnaire and medical history. This trial aims to determine whether curcumin and/or long-chain omega-3 polyunsaturated fatty acids affect surrogate markers of glycaemic control which is relevant to delaying T2D. To date 38 participants completed the trial. No changes

  7. Breastfeeding and long-chain polyunsaturated fatty acid intake in the first 4 post-natal months and infant cognitive development: an observational study.

    PubMed

    Keim, Sarah A; Daniels, Julie L; Siega-Riz, Anna Maria; Herring, Amy H; Dole, Nancy; Scheidt, Peter C

    2012-10-01

    The aim of this study was to examine infant feeding and the long-chain polyunsaturated fatty acid (LCPUFA) concentration of breast milk and formulas in relation to infant development. The prospective Pregnancy, Infection and Nutrition Study (n=358) collected data on breastfeeding, breast milk samples and the formulas fed through 4months post-partum. At 12months of age, infants' development was assessed (Mullen Scales of Early Learning). Linear regression was used to examine development in relation to breastfeeding, breast milk docosahexaenoic acid (DHA) and arachidonic acid (AA) concentration, and DHA and AA concentration from the combination of breast milk and formula. The median breast milk DHA concentration was 0.20% of total fatty acids [interquartile range (IQR)=0.14, 0.34]; median AA concentration was 0.52% (IQR=0.44, 0.63). Upon adjustment for preterm birth, sex, smoking, race and ethnicity and education, breastfeeding exclusivity was unrelated to development. Among infants exclusively breastfed, breast milk LCPUFA concentration was not associated with development (Mullen composite, DHA: adjusted β=-1.3, 95% confidence interval: -10.3, 7.7). Variables combining DHA and AA concentrations from breast milk and formula, weighted by their contribution to diet, were unassociated with development. We found no evidence of enhanced infant development related to the LCPUFA content of breast milk or formula consumed during the first four post-natal months. © 2011 Blackwell Publishing Ltd.

  8. Childrens' Learning and Behaviour and the Association with Cheek Cell Polyunsaturated Fatty Acid Levels

    ERIC Educational Resources Information Center

    Kirby, A.; Woodward, A.; Jackson, S.; Wang, Y.; Crawford, M. A.

    2010-01-01

    Increasing interest in the role of omega-3 fatty acids in relation to neurodevelopmental disorders (e.g. ADHD, dyslexia, autism) has occurred as a consequence of some international studies highlighting this link. In particular, some studies have shown that children with ADHD may have lower concentrations of polyunsaturated fatty acids (PUFAs),…

  9. Serum Polyunsaturated Fatty Acids and Endometriosis.

    PubMed

    Hopeman, Margaret M; Riley, Joan K; Frolova, Antonina I; Jiang, Hui; Jungheim, Emily S

    2015-09-01

    Polyunsaturated fatty acids (PUFAs) are fatty acids containing 2 or more double bonds, and they are classified by the location of the last double bond. Omega 3 (n-3) and omega 6 (n-6) PUFAs are obtained through food sources including fatty fish and seed/vegetable oils, respectively, and they are important to a number of physiologic processes including inflammation. Previous work demonstrates suppressive effects of n-3 PUFAs on endometriotic lesions in animal models and decreased risk of endometriosis among women with high n-3 PUFA intake. Thus, we sought to determine the relationship between circulating levels of PUFAs and endometriosis in women. To do this, we performed a cross-sectional study of serum PUFAs and clinical data from 205 women undergoing in vitro fertilization (IVF). Serum PUFAs were measured using liquid chromatography coupled to tandem mass spectroscopy and included n-3 PUFAs such as α-linolenic acid, eicosapentaenoic acid (EPA), and docosahexaenoic acid and n-6 PUFAs such as linoleic acid and arachidonic acid. Multivariable logistic regression was used to determine relationships between specific and total serum PUFAs and patient history of endometriosis. Women with high serum EPA levels were 82% less likely to have endometriosis compared to women with low EPA levels (odds ratio = 0.18, 95% confidence interval 0.04-0.78). © The Author(s) 2014.

  10. The Molecular Basis of Polyunsaturated Fatty Acid Interactions with the Shaker Voltage-Gated Potassium Channel

    PubMed Central

    Yazdi, Samira; Stein, Matthias; Elinder, Fredrik; Andersson, Magnus; Lindahl, Erik

    2016-01-01

    Voltage-gated potassium (KV) channels are membrane proteins that respond to changes in membrane potential by enabling K+ ion flux across the membrane. Polyunsaturated fatty acids (PUFAs) induce channel opening by modulating the voltage-sensitivity, which can provide effective treatment against refractory epilepsy by means of a ketogenic diet. While PUFAs have been reported to influence the gating mechanism by electrostatic interactions to the voltage-sensor domain (VSD), the exact PUFA-protein interactions are still elusive. In this study, we report on the interactions between the Shaker KV channel in open and closed states and a PUFA-enriched lipid bilayer using microsecond molecular dynamics simulations. We determined a putative PUFA binding site in the open state of the channel located at the protein-lipid interface in the vicinity of the extracellular halves of the S3 and S4 helices of the VSD. In particular, the lipophilic PUFA tail covered a wide range of non-specific hydrophobic interactions in the hydrophobic central core of the protein-lipid interface, while the carboxylic head group displayed more specific interactions to polar/charged residues at the extracellular regions of the S3 and S4 helices, encompassing the S3-S4 linker. Moreover, by studying the interactions between saturated fatty acids (SFA) and the Shaker KV channel, our study confirmed an increased conformational flexibility in the polyunsaturated carbon tails compared to saturated carbon chains, which may explain the specificity of PUFA action on channel proteins. PMID:26751683

  11. DNA methylation perturbations in genes involved in polyunsaturated Fatty Acid biosynthesis associated with depression and suicide risk.

    PubMed

    Haghighi, Fatemeh; Galfalvy, Hanga; Chen, Sean; Huang, Yung-Yu; Cooper, Thomas B; Burke, Ainsley K; Oquendo, Maria A; Mann, J John; Sublette, M Elizabeth

    2015-01-01

    Polyunsaturated fatty acid (PUFA) status has been associated with neuropsychiatric disorders, including depression and risk of suicide. Long-chain PUFAs (LC-PUFAs) are obtained in the diet or produced by sequential desaturation and elongation of shorter-chain precursor fatty acids linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 18:3n-3). We compared DNA methylation patterns in genes involved in LC-PUFA biosynthesis in major depressive disorder (MDD) with (n = 22) and without (n = 39) history of suicide attempt, and age- and sex-matched healthy volunteers (n = 59). Plasma levels of selected PUFAs along the LC-PUFA biosynthesis pathway were determined by transesterification and gas chromatography. CpG methylation levels for the main human LC-PUFA biosynthetic genes, fatty acid desaturases 1 (Fads1) and 2 (Fads2), and elongation of very long-chain fatty acids protein 5 (Elovl5), were assayed by bisulfite pyrosequencing. Associations between PUFA levels and diagnosis or suicide attempt status did not survive correction for multiple testing. However, MDD diagnosis and suicide attempts were significantly associated with DNA methylation in Elovl5 gene regulatory regions. Also the relative roles of PUFA levels and DNA methylation with respect to diagnostic and suicide attempt status were determined by least absolute shrinkage and selection operator logistic regression analyses. We found that PUFA associations with suicide attempt status were explained by effects of Elovl5 DNA methylation within the regulatory regions. The observed link between plasma PUFA levels, DNA methylation, and suicide risk may have implications for modulation of disease-associated epigenetic marks by nutritional intervention.

  12. Five Decades with Polyunsaturated Fatty Acids: Chemical Synthesis, Enzymatic Formation, Lipid Peroxidation and Its Biological Effects

    PubMed Central

    Catalá, Angel

    2013-01-01

    I have been involved in research on polyunsaturated fatty acids since 1964 and this review is intended to cover some of the most important aspects of this work. Polyunsaturated fatty acids have followed me during my whole scientific career and I have published a number of studies concerned with different aspects of them such as chemical synthesis, enzymatic formation, metabolism, transport, physical, chemical, and catalytic properties of a reconstructed desaturase system in liposomes, lipid peroxidation, and their effects. The first project I became involved in was the organic synthesis of [1-14C] eicosa-11,14-dienoic acid, with the aim of demonstrating the participation of that compound as a possible intermediary in the biosynthesis of arachidonic acid “in vivo.” From 1966 to 1982, I was involved in several projects that study the metabolism of polyunsaturated fatty acids. In the eighties, we studied fatty acid binding protein. From 1990 up to now, our laboratory has been interested in the lipid peroxidation of biological membranes from various tissues and different species as well as liposomes prepared with phospholipids rich in PUFAs. We tested the effect of many antioxidants such as alpha tocopherol, vitamin A, melatonin and its structural analogues, and conjugated linoleic acid, among others. PMID:24490074

  13. Membrane Restructuring Events during the Enzymatic Generation of Ceramides with Very Long-Chain Polyunsaturated Fatty Acids.

    PubMed

    Peñalva, Daniel A; Antollini, Silvia S; Ambroggio, Ernesto E; Aveldaño, Marta I; Fanani, María L

    2018-04-10

    In rat sperm heads, sphingomyelin (SM) species that contain very long-chain polyunsaturated fatty acid (V-SM) become ceramides (V-Cer) after inducing in vitro the acrosomal reaction. The reason for such a specific location of this conversion, catalyzed by a sphingomyelinase (SMase), has received little investigation so far. Here, the effects of SMase were compared in unilamellar vesicles (large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs)) containing phosphatidylcholine, and either V-SM or a palmitate-rich SM (P-SM). In uniformly sized LUVs at 37 °C, more V-Cer was generated and more rapidly than P-Cer. Nephelometry and dynamic light scattering showed that LUVs tended to form large lipid particles more intensely, and Förster resonance energy transfer (FRET) increases suggested that lateral lipid mixing was more marked when V-Cer rather than P-Cer was produced. As reported by 6-dodecanoyl-2-dimethyl-aminopnaphthalene (Laurdan) and 1,6-diphenyl-1,3,5,-hexatriene (DPH), the production of V-Cer resulted in higher and faster restriction in lipid mobility than that of P-Cer, implying a stronger increase in membrane dehydration and microviscosity. Moreover, DPH anisotropy suggested a higher solubility of V-Cer than that of P-Cer in the liquid-disordered phase. At room temperature, liquid-condensed lateral domains appeared in P-SM- but not in V-SM-containing GUVs. The former maintained their size while losing their contents gradually during SMase action, whereas the latter became permeable earlier and reduced their size in few minutes until suddenly collapsing. The fast and potent generation of V-Cer may contribute to the membrane restructuring events that occur on the acrosome-reacted sperm head.

  14. Omega-3 fatty acids: new insights into the pharmacology and biology of docosahexaenoic acid, docosapentaenoic acid, and eicosapentaenoic acid.

    PubMed

    Davidson, Michael H

    2013-12-01

    Fish oil contains a complex mixture of omega-3 fatty acids, which are predominantly eicosapentaenoic acid (EPA), docosapentaenoic acid, and docosahexaenoic acid (DHA). Each of these omega-3 fatty acids has distinct biological effects that may have variable clinical effects. In addition, plasma levels of omega-3 fatty acids are affected not only by dietary intake, but also by the polymorphisms of coding genes fatty acid desaturase 1-3 for the desaturase enzymes that convert short-chain polyunsaturated fatty acids to long-chain polyunsaturated fatty acids. The clinical significance of this new understanding regarding the complexity of omega-3 fatty acid biology is the purpose of this review. FADS polymorphisms that result in either lower levels of long-chain omega-3 fatty acids or higher levels of long-chain omega-6 polyunsaturated fatty acids, such as arachidonic acid, are associated with dyslipidemia and other cardiovascular risk factors. EPA and DHA have differences in their effects on lipoprotein metabolism, in which EPA, with a more potent peroxisome proliferator-activated receptor-alpha effect, decreases hepatic lipogenesis, whereas DHA not only enhances VLDL lipolysis, resulting in greater conversion to LDL, but also increases HDL cholesterol and larger, more buoyant LDL particles. Overall, these results emphasize that blood concentrations of individual long-chain polyunsaturated fatty acids, which reflect both dietary intake and metabolic influences, may have independent, but also complementary- biological effects and reinforce the need to potentially provide a complex mixture of omega-3 fatty acids to maximize cardiovascular risk reduction.

  15. Long-chain polyunsaturated fatty acids and the preterm infant: a case study in developmentally sensitive nutrient needs in the United States.

    PubMed

    Brenna, J Thomas

    2016-02-01

    The vast majority of infant formulas in the United States contain the long-chain polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6), which were first permitted by the US Food and Drug Administration in 2001. As a scientific case study, preclinical animal studies of these nutrients definitively influenced the design and interpretation of human clinical studies. Early studies were tied to the availability of test substances, and in hindsight suggest re-evaluation of the essential fatty acid concept in light of the totality of available evidence. Research in the 1950s established the essentiality of n-6 PUFAs for skin integrity; however, widespread recognition of the essentiality of n-3 PUFAs came decades later despite compelling evidence of their significance. Barriers to an understanding of the essentiality of n-3 PUFAs were as follows: 1) their role is in neural function, which is measured only with difficulty compared with skin lesions and growth faltering that are apparent for n-6 PUFAs; 2) the experimental use of vegetable oils as PUFA sources that contain the inefficiently used C18 PUFAs rather than the operative C20 and C22 PUFAs; 3) the shift from reliance on high-quality animal studies to define mechanisms that established the required nutrients in the first part of the 20th century to inherently challenging human studies. Advances in nutrition of premature infants require the best practices and opinions available, taking into account the totality of preclinical and clinical evidence. © 2016 American Society for Nutrition.

  16. Long-chain polyunsaturated fatty acid status during pregnancy and maternal mental health in pregnancy and the postpartum period: results from the GUSTO study.

    PubMed

    Chong, Mary F F; Ong, Yi-Lin; Calder, Philip C; Colega, Marjorelee; Wong, Jocelyn X Y; Tan, Chuen Seng; Lim, Ai Lin; Fisk, Helena L; Cai, Shirong; Pang, Wei Wei; Broekman, Birit F P; Saw, Seang Mei; Kwek, Kenneth; Godfrey, Keith M; Chong, Yap-Seng; Gluckman, Peter; Meaney, Michael J; Chen, Helen

    2015-07-01

    Studies have demonstrated a relationship between lower omega-3 long-chain polyunsaturated fatty acid (LC-PUFA) status and anxiety and depression. It is uncertain whether similar associations occur in pregnant women, when anxiety and depression could have long-term effects on the offspring. We examined the associations between plasma LC-PUFA status during pregnancy and perinatal mental health. At 26-28 weeks' gestation, plasma LC-PUFAs were measured in mothers of the Growing Up in Singapore Toward healthy Outcomes (GUSTO) mother-offspring cohort study, who were recruited between June 2009 and September 2010. Maternal symptoms of anxiety and depression were assessed with the State-Trait Anxiety Inventory (STAI) and Edinburgh Postnatal Depression Scale (EPDS) during the same period and at 3 months' postpartum. The STAI-state subscale was used as a continuous measure of current anxiety, while EPDS scores ≥ 15 during pregnancy or ≥ 13 postpartum were indicative of symptoms of probable depression. In adjusted regression analyses (n = 698), lower plasma total omega-3 PUFA concentrations (β = -6.49 STAI-state subscale scores/unit increase of omega-3 fatty acid; 95% CI, -11.90 to -1.08) and higher plasma omega-6:omega-3 PUFA ratios (β = 6.58 scores/unit increase of fatty acid ratio; 95% CI, 1.19 to 12.66), specifically higher arachidonic acid (AA):docosahexaenoic acid, AA:eicosapentaenoic acid, and AA:docosapentaenoic acid ratios, were associated with increased antenatal anxiety (P < .05 for all), but not postpartum anxiety. There was no association between plasma PUFAs and perinatal probable depression. No association was found with probable depression in pregnancy or postpartum. Lower plasma omega-3 fatty acids and higher omega-6:omega-3 fatty acid ratios were associated with higher antenatal anxiety, but not postpartum anxiety. Replication in other studies is needed to confirm the findings and determine the direction of causality. ClinicalTrials.gov identifier: NCT

  17. Flexibility of "polyunsaturated fatty acid chains" and peptide backbones: A comparative ab initio study.

    PubMed

    Law, Jacqueline M S; Setiadi, David H; Chass, Gregory A; Csizmadia, Imre G; Viskolcz, Béla

    2005-01-27

    The conformational properties of omega-3 type of polyunsaturated fatty acid (PUFA) chains and their fragments were studied using Hartree-Fock (RHF/3-21G) and DFT (B3LYP/6-31G(d)) methods. Comparisons between a unit (U) fragment of the PUFA chain and a mono N-Ac-glycine-NHMe residue show that both structures have the same sequence of sp2-sp3-sp2 atoms. The flexibility of PUFA originates in the internal rotation about the above pairs of sigma bonds. Therefore, potential energy surfaces (PESs) were generated by a scan around the terminal dihedral angles (phi t1 and phi t2) as well as the phi 1 and psi 1 dihedrals of both 1U congeners (Me-CHCH-CH2-CHCHMe and MeCONH-CH2-CONHMe) at the RHF/3-21G level of theory. An interesting similarity was found in the flexibility between the cis allylic structure and the trans peptide models. A flat landscape can be seen in the cis 1U (hepta-2,5-diene) surface, implying that several conformations are expected to be found in this (PES). An exhaustive search carried out on the 1U and 2U models revealed that straight chain structures such as trans and cis beta (phi 1 approximately psi 1 approximately 120 degrees; phi 2 approximately psi 2 approximately -120 degrees) or trans and cis extended (phi 1 approximately psi 1 approximately phi 2 approximately psi 2 approximately 120 degrees) can be formed at the lowest energy of both isomers. However, forming helical structures, such as trans helix (phi 1 approximately -120 degrees, psi 1 approximately 12 degrees; phi 2 approximately -120 degrees, psi 2 approximately 12 degrees) or cis helix (phi 1 approximately -130 degrees, psi 1 approximately 90 degrees; phi 2 approximately -145 degrees, psi 2 approximately 90 degrees) will require more energy. These six conformations, found in 2U, were selected to construct longer chains such as 3U, 4U, 5U, and 6U to obtain the thermochemistry of secondary structures. The variation in the extension or compression of the chain length turned out to be a factor

  18. Polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.

    PubMed

    Tan, May Loong; Ho, Jacqueline J; Teh, Keng Hwang

    2012-12-12

    About 5% of schoolchildren have a specific learning disorder, defined as an unexpected failure to acquire adequate abilities in reading, writing or mathematic skills not as a result of reduced intellectual ability, inadequate teaching or social deprivation. Of these, 80% are reading disorders. Polyunsaturated fatty acids (PUFAs), in particular omega-3 and omega-6 fatty acids, which are found abundantly in the brain and retina are important for learning. Some children with specific learning disorders have been found to be deficient in these PUFAs, and it is argued that supplementation of PUFAs may help these children improve their learning abilities. To assess the effects of polyunsaturated fatty acids (PUFAs) supplementation for children with specific learning disorders, on learning outcomes. We searched the following databases in April 2012: CENTRAL (2012, Issue 4), MEDLINE (1948 to April Week 2 2012), EMBASE (1980 to 2012 Week 16), PsycINFO (1806 to April 2012), ERIC (1966 to April 2012), Science Citation Index (1970 to 20 April 2012), Social Science Citation Index (1970 to 20 April 2012), Conference Proceedings Citation Index-Science (1970 to 20 April 2012), Conference Proceedings Citation Index-Social Sciences and Humanites (1970 to 20 April 2012), Cochrane Database of Systematic Reviews (2012, Issue 4), DARE (2012, Issue 2) , ZETOC (24 April 2012) and WorldCat (24 April 2012). We searched the WHO International Clinical Trials Registry Platform and ClinicalTrials.gov on 24 April 2012. We also searched the reference lists of relevant articles identified by the searches. Randomised or quasi-randomised controlled trials comparing polyunsaturated fatty acids (PUFAs) with placebo or no treatment in children aged below 18 years with specific learning disabilities diagnosed using DSM-IV, ICD-10 or equivalent criteria. We intended to include participants with co-existing developmental disorders such as attention deficit hyperactivity disorder (ADHD) or autism. Two

  19. Occurrence of trans monounsaturated and polyunsaturated fatty acids in Colwellia psychrerythraea strain 34H.

    PubMed

    Hashimoto, Mikako; Orikasa, Yoshitake; Hayashi, Hidenori; Watanabe, Kentaro; Yoshida, Kiyohito; Okuyama, Hidetoshi

    2015-07-01

    Colwellia psychrerythraea strain 34H is an obligately psychrophilic bacterium that has been used as a model cold-adapted microorganism because of its psychrophilic growth profile, significant production of cold-active enzymes, and cryoprotectant extracellular polysaccharide substances. However, its fatty acid components, particularly trans unsaturated fatty acids and long-chain polyunsaturated fatty acids (LC-PUFAs), have not been fully investigated. In this study, we biochemically identified Δ9-trans hexadecenoic acid [16:1(9t)] and LC-PUFAs such as docosahexaenoic acid. These results are comparable with the fact that the strain 34H genome sequence includes pfa and cti genes that are responsible for the biosynthesis of LC-PUFAs and trans unsaturated fatty acids, respectively. Strain 34H cells grown under static conditions at 5 °C had higher levels of 16:1(9t) than those grown under shaken conditions, and this change was accompanied by an antiparallel decrease in the levels of Δ9-cis hexadecenoic acid [16:1(9c)], suggesting that the cis-to-trans isomerization reaction of 16:1(9c) is activated under static (microanaerobic) culture conditions, that is, the enzyme could be activated by the decreased dissolved oxygen concentration of cultures. On the other hand, the levels of LC-PUFAs were too low (less than 3% of the total), even for cells grown at 5 °C, to evaluate their cold-adaptive function in this bacterium. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Polyunsaturated fatty acids in various macroalgal species from North Atlantic and tropical seas.

    PubMed

    van Ginneken, Vincent J T; Helsper, Johannes P F G; de Visser, Willem; van Keulen, Herman; Brandenburg, Willem A

    2011-06-22

    In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was detected.

  1. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas

    PubMed Central

    2011-01-01

    Background In this study the efficacy of using marine macroalgae as a source for polyunsaturated fatty acids, which are associated with the prevention of inflammation, cardiovascular diseases and mental disorders, was investigated. Methods The fatty acid (FA) composition in lipids from seven sea weed species from the North Sea (Ulva lactuca, Chondrus crispus, Laminaria hyperborea, Fucus serratus, Undaria pinnatifida, Palmaria palmata, Ascophyllum nodosum) and two from tropical seas (Caulerpa taxifolia, Sargassum natans) was determined using GCMS. Four independent replicates were taken from each seaweed species. Results Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs), were in the concentration range of 2-14 mg/g dry matter (DM), while total lipid content ranged from 7-45 mg/g DM. The n-9 FAs of the selected seaweeds accounted for 3%-56% of total FAs, n-6 FAs for 3%-32% and n-3 FAs for 8%-63%. Red and brown seaweeds contain arachidonic (C20:4, n-6) and/or eicosapentaenoic acids (EPA, C20:5, n-3), the latter being an important "fish" FA, as major PUFAs while in green seaweeds these values are low and mainly C16 FAs were found. A unique observation is the presence of another typical "fish" fatty acid, docosahexaenoic acid (DHA, C22:6, n-3) at ≈ 1 mg/g DM in S. natans. The n-6: n-3 ratio is in the range of 0.05-2.75 and in most cases below 1.0. Environmental effects on lipid-bound FA composition in seaweed species are discussed. Conclusion Marine macroalgae form a good, durable and virtually inexhaustible source for polyunsaturated fatty acids with an (n-6) FA: (n-3) FA ratio of about 1.0. This ratio is recommended by the World Health Organization to be less than 10 in order to prevent inflammatory, cardiovascular and nervous system disorders. Some marine macroalgal species, like P. palmata, contain high proportions of the "fish fatty acid" eicosapentaenoic acid (EPA, C20:5, n-3), while in S. natans also docosahexaenoic acid (DHA, C22:6, n-3) was

  2. Polyunsaturated Fatty Acids in Male Ruminant Reproduction — A Review

    PubMed Central

    Van Tran, Len; Malla, Bilal Ahmad; Kumar, Sachin; Tyagi, Amrish Kumar

    2017-01-01

    Fatty acids such as n-3 and n-6 polyunsaturated fatty acids (PUFA) are critical nutrients, used to improve male reproductive performance through modification of fatty acid profile and maintenance of sperm membrane integrity, especially under cold shock or cryopreservation condition. Also, PUFA provide the precursors for prostaglandin synthesis and can modulate the expression patterns of many key enzymes involved in both prostaglandin and steroid metabolism. Many studies carried out on diets supplemented with PUFA have demonstrated their capability to sustain sperm motility, viability and fertility during chilling and freezing as well as improving testis development and spermatogenesis in a variety of livestock species. In addition to the type and quantity of dietary fatty acids, ways of addition of PUFA to diet or semen extender is very crucial as it has different effects on semen quality in male ruminants. Limitation of PUFA added to ruminant ration is due to biohydrogenation by rumen microorganisms, which causes conversion of unsaturated fatty acids to saturated fatty acids, leading to loss of PUFA quantity. Thus, many strategies for protecting PUFA from biohydrogenation in rumen have been developed over the years. This paper reviews four aspects of PUFA in light of previous research including rumen metabolism, biological roles, influence on reproduction, and strategies to use in male ruminants. PMID:26954196

  3. Long-chain polyunsaturated fatty acids and the preterm infant: a case study in developmentally sensitive nutrient needs in the United States1234

    PubMed Central

    2016-01-01

    The vast majority of infant formulas in the United States contain the long-chain polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (22:6n–3) and arachidonic acid (20:4n–6), which were first permitted by the US Food and Drug Administration in 2001. As a scientific case study, preclinical animal studies of these nutrients definitively influenced the design and interpretation of human clinical studies. Early studies were tied to the availability of test substances, and in hindsight suggest re-evaluation of the essential fatty acid concept in light of the totality of available evidence. Research in the 1950s established the essentiality of n–6 PUFAs for skin integrity; however, widespread recognition of the essentiality of n–3 PUFAs came decades later despite compelling evidence of their significance. Barriers to an understanding of the essentiality of n–3 PUFAs were as follows: 1) their role is in neural function, which is measured only with difficulty compared with skin lesions and growth faltering that are apparent for n–6 PUFAs; 2) the experimental use of vegetable oils as PUFA sources that contain the inefficiently used C18 PUFAs rather than the operative C20 and C22 PUFAs; 3) the shift from reliance on high-quality animal studies to define mechanisms that established the required nutrients in the first part of the 20th century to inherently challenging human studies. Advances in nutrition of premature infants require the best practices and opinions available, taking into account the totality of preclinical and clinical evidence. PMID:26791188

  4. Effect of n-3 long chain polyunsaturated fatty acids during the perinatal period on later body composition.

    PubMed

    Rodríguez, G; Iglesia, I; Bel-Serrat, S; Moreno, L A

    2012-06-01

    A systematic review to identify studies reporting the effects of n-3 long chain polyunsaturated fatty acids (LCPUFA) intake, during pregnancy and postnatally, on infants and young children's body composition was performed. A structured search strategy was performed in the MEDLINE (PubMed), EMBASE, and LILACS databases. Inclusion and exclusion criteria were defined according to the research question. Only those studies addressing the relationship between n-3 LCPUFA exposure during the perinatal period and later adiposity measured in terms of weight, height, body mass index (BMI), skinfold thickness and/or circumferences were included regardless of the study design. Studies quality was scored and were thereafter categorised into those reporting on maternal intake of n-3 LCPUFA during pregnancy or lactation (6 publications) or on infant's n-3 LCPUFA intake (7 publications). Two studies showed inverse associations between maternal n-3 LCPUFA intake and children's later body composition (lower adiposity, BMI or body weight), two showed direct associations and no effects were observed in the remaining two studies. Among those studies focusing on n-3 LCPUFA intake through enriched infant formulas; three observed no effect on later body composition and two showed higher weight and adiposity with increased amounts of n-3 LCPUFA. Reversely, in two studies weight and fat mass decreased. In conclusion, reported body composition differences in infants and young children were not clearly explained by perinatal n-3 LCPUFA intake via supplemented formulas, breastfeeding or maternal intakes of n-3 LCPUFA during pregnancy and lactation. Associated operational mechanisms including n-3 LCPUFA doses and sources applied are not sufficiently explained and therefore no conclusions could be made.

  5. Excessive ingestion of long-chain polyunsaturated fatty acids during developmental stage causes strain- and sex-dependent eye abnormalities in mice.

    PubMed

    Maekawa, Motoko; Iwayama, Yoshimi; Watanabe, Akiko; Nozaki, Yayoi; Ohnishi, Tetsuo; Ohba, Hisako; Toyoshima, Manabu; Hamazaki, Kei; Osumi, Noriko; Aruga, Jun; Yoshikawa, Takeo

    2010-11-12

    The eyes are rich in long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid [ARA; 20:4 (n-6)] and docosahexaenoic acid [DHA; 22:6 (n-3)]. Despite their abundance in the eyes, ARA and DHA cannot be sufficiently synthesized de novo in mammals. During gestation, eye development is exceptionally rapid, and substantial amounts of LC-PUFAs are needed to ensure proper eye development. Here, we studied the influences of dietary LC-PUFAs in dams (C57BL/6 and C3H/He) on the eye morphogenesis and organogenesis of their pups. Intriguingly, fetuses and newborn mice from C57BL/6 dams fed an LC-PUFA (particularly ARA)-enriched diet displayed a much higher incidence of eye abnormalities such as microphthalmia (small eye) and corneal opacity than those from dams fed an LC-PUFA-poor diet. The effects of LC-PUFAs on eye anomalies were evident only in the female pups of C57BL/6 inbred mice, not in those of C3H/He mice or male C57BL/6 mice. These results demonstrate a gene-by-environment (GxE) interaction in eye development in mice. Furthermore, our molecular analysis suggested the potential roles of Pitx3 and Pax6 in the above interaction involving ARA. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Atomic determinants of BK channel activation by polyunsaturated fatty acids

    PubMed Central

    Tian, Yutao; Aursnes, Marius; Hansen, Trond Vidar; Tungen, Jørn Eivind; Galpin, Jason D.; Leisle, Lilia; Ahern, Christopher A.; Xu, Rong; Heinemann, Stefan H.; Hoshi, Toshinori

    2016-01-01

    Docosahexaenoic acid (DHA), a polyunsaturated ω-3 fatty acid enriched in oily fish, contributes to better health by affecting multiple targets. Large-conductance Ca2+- and voltage-gated Slo1 BK channels are directly activated by nanomolar levels of DHA. We investigated DHA–channel interaction by manipulating both the fatty acid structure and the channel composition through the site-directed incorporation of unnatural amino acids. Electrophysiological measurements show that the para-group of a Tyr residue near the ion conduction pathway has a critical role. To robustly activate the channel, ionization must occur readily by a fatty acid for a good efficacy, and a long nonpolar acyl tail with a Z double bond present at the halfway position for a high affinity. The results suggest that DHA and the channel form an ion–dipole bond to promote opening and demonstrate the channel druggability. DHA, a marine-derived nutraceutical, represents a promising lead compound for rational drug design and discovery. PMID:27849612

  7. Long-chain polyunsaturated fatty acids may mutually benefit both obesity and osteoporosis.

    PubMed

    Kelly, Owen J; Gilman, Jennifer C; Kim, Youjin; Ilich, Jasminka Z

    2013-07-01

    The overconsumption of n-6 polyunsaturated fatty acids (PUFA), resulting in a high ratio of n-6 to n-3 PUFA, may contribute to the increased pathogenesis of obesity and osteoporosis by promoting low-grade chronic inflammation (LGCI). As evidence suggests, both obesity and osteoporosis are linked on a cellular and systemic basis. This review will analyze if a relationship exists between LGCI, fat, bone, and n-3 PUFA. During the life cycle, inflammation increases, fat mass accumulates, and bone mass declines, thus suggesting that a connection exists. This review will begin by examining how the current American diet and dietary guidelines may fall short of providing an anti-inflammatory dose of the n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). It will then define LGCI and outline the evidence for a relationship between fat and bone. Inflammation as it pertains to obesity and osteoporosis and how EPA and DHA can alleviate the associated inflammation will be discussed, followed by some preliminary evidence to show how mesenchymal stem cell (MSC) lineage commitment may be altered by inflammation to favor adipogenesis. Our hypothesis is that n-3 PUFA positively influence obesity and osteoporosis by reducing LGCI, ultimately leading to a beneficial shift in MSC lineage commitment. This hypothesis essentially relates the need for more focused research in several areas such as determining age and lifestyle factors that promote the shift in MSC commitment and if current intakes of EPA and DHA are optimal for fat and bone. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The Role of n-3 Polyunsaturated Fatty Acids in the Prevention and Treatment of Breast Cancer

    PubMed Central

    Liu, Jiajie; Ma, David W. L.

    2014-01-01

    Breast cancer (BC) is the most common cancer among women worldwide. Dietary fatty acids, especially n-3 polyunsaturated fatty acids (PUFA), are believed to play a role in reducing BC risk. Evidence has shown that fish consumption or intake of long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for inhibiting mammary carcinogenesis. The evidence regarding α-linolenic acid (ALA), however, remains equivocal. It is essential to clarify the relation between ALA and cancer since ALA is the principal source of n-3 PUFA in the Western diet and the conversion of ALA to EPA and DHA is not efficient in humans. In addition, the specific anticancer roles of individual n-3 PUFA, alone, have not yet been identified. Therefore, the present review evaluates ALA, EPA and DHA consumed individually as well as in n-3 PUFA mixtures. Also, their role in the prevention of BC and potential anticancer mechanisms of action are examined. Overall, this review suggests that each n-3 PUFA has promising anticancer effects and warrants further research. PMID:25412153

  9. ω3 fatty acid desaturases from microorganisms: structure, function, evolution, and biotechnological use.

    PubMed

    Wang, Mingxuan; Chen, Haiqin; Gu, Zhennan; Zhang, Hao; Chen, Wei; Chen, Yong Q

    2013-12-01

    The biosynthesis of very-long-chain polyunsaturated fatty acids involves an alternating process of fatty acid desaturation and elongation catalyzed by complex series of enzymes. ω3 desaturase plays an important role in converting ω6 fatty acids into ω3 fatty acids. Genes for this desaturase have been identified and characterized in a wide range of microorganisms, including cyanobacteria, yeasts, molds, and microalgae. Like all fatty acid desaturases, ω3 desaturase is structurally characterized by the presence of three highly conserved histidine-rich motifs; however, unlike some desaturases, it lacks a cytochrome b5-like domain. Understanding the structure, function, and evolution of ω3 desaturases, particularly their substrate specificities in the biosynthesis of very-long-chain polyunsaturated fatty acids, lays the foundation for potential production of various ω3 fatty acids in transgenic microorganisms.

  10. Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARα-regulated β-oxidative enzymes

    PubMed Central

    Petrescu, Anca D.; Huang, Huan; Martin, Gregory G.; McIntosh, Avery L.; Storey, Stephen M.; Landrock, Danilo; Kier, Ann B.

    2013-01-01

    Liver fatty acid binding protein (L-FABP) is the major soluble protein that binds very-long-chain n-3 polyunsaturated fatty acids (n-3 PUFAs) in hepatocytes. However, nothing is known about L-FABP's role in n-3 PUFA-mediated peroxisome proliferator activated receptor-α (PPARα) transcription of proteins involved in long-chain fatty acid (LCFA) β-oxidation. This issue was addressed in cultured primary hepatocytes from wild-type, L-FABP-null, and PPARα-null mice with these major findings: 1) PUFA-mediated increase in the expression of PPARα-regulated LCFA β-oxidative enzymes, LCFA/LCFA-CoA binding proteins (L-FABP, ACBP), and PPARα itself was L-FABP dependent; 2) PPARα transcription, robustly potentiated by high glucose but not maltose, a sugar not taken up, correlated with higher protein levels of these LCFA β-oxidative enzymes and with increased LCFA β-oxidation; and 3) high glucose altered the potency of n-3 relative to n-6 PUFA. This was not due to a direct effect of glucose on PPARα transcriptional activity nor indirectly through de novo fatty acid synthesis from glucose. Synergism was also not due to glucose impacting other signaling pathways, since it was observed only in hepatocytes expressing both L-FABP and PPARα. Ablation of L-FABP or PPARα as well as treatment with MK886 (PPARα inhibitor) abolished/reduced PUFA-mediated PPARα transcription of these genes, especially at high glucose. Finally, the PUFA-enhanced L-FABP distribution into nuclei with high glucose augmentation of the L-FABP/PPARα interaction reveals not only the importance of L-FABP for PUFA induction of PPARα target genes in fatty acid β-oxidation but also the significance of a high glucose enhancement effect in diabetes. PMID:23238934

  11. [Metabolic syndrome reversion by polyunsaturated fatty acids ingestion].

    PubMed

    Campos Mondragón, Martha Gabriela; Oliart Ros, Rosa María; Martínez Martinez, Angélica; Méndez Machado, Gustavo Francisco; Angulo Guerrero, Jesús Ofelia

    2013-12-21

    Metabolic syndrome (MS) frequency is growing and diet has an important influence on its evolution. Our objective was to study the effect of 3 sources of polyunsaturated fatty acids on MS parameters in humans. The MS was diagnosed according to the International Diabetes Federation. Three groups of individuals (n=15/group) were quasi-randomly assigned to one of the following treatments during 6 weeks: a) 1.8 g/d n-3 (1.08g eicosapentoaenoic acid+0.72 g docosahexaenoic acid); b) 2.0 g/d conjugated linoleic acid (CLA, 50:50, cis9:trans11, trans10:cis12), and c) 40 g/d walnut. The clinical and biochemical parameters were evaluated at the beginning and the end of the essay. In the group with n-3 the triglycerides level decreased from 183.9 ± 35.2mg/dl to 149.6 ± 29.0mg/dl (P=.007). In the group with walnut the HDL level rose from 41.7 ± 5.2mg/dl to 47.8 ± 5.4 mg/dl (P=.004) and the Castelli index (total cholesterol/HDL) decreased from 4.86 ± 0.97 to 3.82 ± 0.81 (P=.004). There were not significant changes in the CLA group. At the end of the essay, 46.7% of walnut group patients, 46.7% of n-3 group and 20% of CLA group, had no MS. The groups that consumed polyunsaturated fatty acids n-3 and those in walnut in moderate daily doses during 6 weeks had an improvement of the dyslipidemia component of MS, hypertriglyceridemia and low HDL level. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  12. Vitamin D enhances omega-3 polyunsaturated fatty acids-induced apoptosis in breast cancer cells.

    PubMed

    Yang, Jing; Zhu, Shenglong; Lin, Guangxiao; Song, Ci; He, Zhao

    2017-08-01

    Breast cancer is a leading type of cancer in women and generally classified into three subtypes of ER + /PR + , HER2 + and triple negative. Both omega-3 polyunsaturated fatty acids and vitamin D 3 play positive role in the reduction of breast cancer incidence. However, whether combination of omega-3 polyunsaturated fatty acids and vitamin D 3 has stronger protective effect on breast carcinogenesis still remains unknown. In this study, we show that the combination of ω-3 free fatty acids (ω-3 FFAs) and 1α, 25-dihydroxy-vitamin D 3 (VD 3 ) dramatically enhances cell apoptosis among three subtypes of breast cancer cell lines. Bcl-2 and total PARP protein levels are decreased in combined treatment MCF-7 and SK-BR-3 cells. Caspase signals play a vital role in cell apoptosis induced by combination. Moreover, Raf-MAPK signaling pathway is involved in the apoptosis induction by combination of ω-3 FFAs+VD 3 . These results demonstrate that the induction of cell apoptosis by combined treatment is dependent on different signaling pathways in three subtypes of breast cancer cell lines. © 2017 International Federation for Cell Biology.

  13. Establishment of a hepatocyte line for studying biosynthesis of long-chain polyunsaturated fatty acids from a marine teleost, the white-spotted spinefoot Siganus canaliculatus.

    PubMed

    Liu, Y; Zhang, Q H; Dong, Y W; You, C H; Wang, S Q; Li, Y Q; Li, Y Y

    2017-08-01

    A hepatocyte line was established from the liver of white-spotted spinefoot Siganus canaliculatus to study the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA). The cells from the line, designated S. canaliculatus hepatocyte line (SCHL), grew and multiplied well in Dulbecco's modified Eagle's medium (DMEM)-F12 medium supplemented with 20 mM 4-(2-hydroxyethyl) piperazine-1-ethanesulphonic acid (HEPES), 10% foetal bovine serum (FBS) and 0·5% rainbow trout Oncorhychus mykiss serum at 28° C, showing an epithelial-like morphology and the normal chromosome number of 48 (2n) and have been subcultured for over 60 passages. The identity of the hepatocytes was confirmed by periodic acid Schiff (PAS) staining. The mRNA expression of all genes encoding the key enzymes for LC-PUFA biosynthesis including two desaturases (Δ4 Fad and Δ6-Δ5 Fad) and two elongases (Elovl4 and Elovl5), were detected in all cells from passages 5 to 60 and their expression levels became stable after passage 35 and showed responses to various PUFA incubation. This is similar to the situation determined in the liver of S. canaliculatus that were fed diets containing different fatty acids. These results indicated that SCHL was successfully established and can provide an in vitro tool to investigate lipid metabolism and regulatory mechanisms of LC-PUFA biosynthesis in teleosts, especially marine species. © 2017 The Fisheries Society of the British Isles.

  14. Omega-3 polyunsaturated fatty acid (fish oil) supplementation and the prevention of clinical cardiovascular disease

    USDA-ARS?s Scientific Manuscript database

    Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid plus docosahexaenoic acid (omega-3 polyunsaturated fatty acids, commonly called fish oils) on the occurrence of clinical cardiovascular diseases. Although the effects of supplementati...

  15. Gene-diet interaction of a common FADS1 variant with marine polyunsaturated fatty acids for fatty acid composition in plasma and erythrocytes among men.

    PubMed

    Takkunen, Markus J; de Mello, Vanessa D; Schwab, Ursula S; Kuusisto, Johanna; Vaittinen, Maija; Ågren, Jyrki J; Laakso, Markku; Pihlajamäki, Jussi; Uusitupa, Matti I J

    2016-02-01

    Limited information exists on how the relationship between dietary intake of fat and fatty acids in erythrocytes and plasma is modulated by polymorphisms in the FADS gene cluster. We examined gene-diet interaction of total marine PUFA intake with a known gene encoding Δ-5 desaturase enzyme (FADS1) variant (rs174550) for fatty acids in erythrocyte membranes and plasma phospholipids (PL), cholesteryl esters (CE), and triglycerides (TG). In this cross-sectional study, fatty acid compositions were measured using GC, and total intake of polyunsaturated fat from fish and fish oil was estimated using a food frequency questionnaire in a subsample (n = 962) of the Metabolic Syndrome in Men Study. We found nominally significant gene-diet interactions for eicosapentaenoic acid (EPA, 20:5n-3) in erythrocytes (pinteraction = 0.032) and for EPA in plasma PL (pinteraction = 0.062), CE (pinteraction = 0.035), and TG (pinteraction = 0.035), as well as for docosapentaenoic acid (22:5n-3) in PL (pinteraction = 0.007). After excluding omega-3 supplement users, we found a significant gene-diet interaction for EPA in erythrocytes (pinteraction < 0.003). In a separate cohort of the Kuopio Obesity Surgery Study, the same locus was strongly associated with hepatic mRNA expression of FADS1 (p = 1.5 × 10(-10) ). FADS1 variants may modulate the relationship between marine fatty acid intake and circulating levels of long-chain omega-3 fatty acids. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. FADS genetic variants and omega-6 polyunsaturated fatty acid metabolism in a homogeneous island population.

    PubMed

    Mathias, Rasika A; Vergara, Candelaria; Gao, Li; Rafaels, Nicholas; Hand, Tracey; Campbell, Monica; Bickel, Carol; Ivester, Priscilla; Sergeant, Susan; Barnes, Kathleen C; Chilton, Floyd H

    2010-09-01

    Long-chain polyunsaturated fatty acids (PUFA) orchestrate immunity and inflammation through their capacity to be converted to potent inflammatory mediators. We assessed associations of FADS gene cluster polymorphisms and fasting serum PUFA concentrations in a fully ascertained, geographically isolated founder population of European descent. Concentrations of 22 PUFAs were determined by gas chromatography, of which ten fatty acids and five ratios defining FADS1 and FADS2 activity were tested for genetic association against 16 single nucleotide polymorphisms (SNP) in 224 individuals. A cluster of SNPs in tight linkage disequilibrium in the FADS1 gene (rs174537, rs174545, rs174546, rs174553, rs174556, rs174561, rs174568, and rs99780) were strongly associated with arachidonic acid (AA) (P = 5.8 x 10(-7) - 1.7 x 10(-8)) among other PUFAs, but the strongest associations were with the ratio measuring FADS1 activity in the omega-6 series (P = 2.11 x 10(-13) - 1.8 x 10(-20)). The minor allele across all SNPs was consistently associated with decreased omega-6 PUFAs, with the exception of dihomo-gamma-linoleic acid (DHGLA), where the minor allele was consistently associated with increased levels. Our findings in a geographically isolated population with a homogenous dietary environment suggest that variants in the Delta-5 desaturase enzymatic step likely regulate the efficiency of conversion of medium-chain PUFAs to potentially inflammatory PUFAs, such as AA.

  17. Neurophysiologic measures of auditory function in fish consumers: associations with long chain polyunsaturated fatty acids and methylmercury.

    PubMed

    Dziorny, Adam C; Orlando, Mark S; Strain, J J; Davidson, Philip W; Myers, Gary J

    2013-09-01

    Determining if associations exist between child neurodevelopment and environmental exposures, especially low level or background ones, is challenging and dependent upon being able to measure specific and sensitive endpoints. Psychometric or behavioral measures of CNS function have traditionally been used in such studies, but do have some limitations. Auditory neurophysiologic measures examine different nervous system structures and mechanisms, have fewer limitations, can more easily be quantified, and might be helpful additions to testing. To date, their use in human epidemiological studies has been limited. We reviewed the use of auditory brainstem responses (ABR) and otoacoustic emissions (OAE) in studies designed to determine the relationship of exposures to methyl mercury (MeHg) and nutrients from fish consumption with neurological development. We included studies of experimental animals and humans in an effort to better understand the possible benefits and risks of fish consumption. We reviewed the literature on the use of ABR and OAE to measure associations with environmental exposures that result from consuming a diet high in fish. We focused specifically on long chain polyunsaturated fatty acids (LCPUFA) and MeHg. We performed a comprehensive review of relevant studies using web-based search tools and appropriate search terms. Gestational exposure to both LCPUFA and MeHg has been reported to influence the developing auditory system. In experimental studies supplemental LCPUFA is reported to prolong ABR latencies and human studies also suggest an association. Experimental studies of acute and gestational MeHg exposure are reported to prolong ABR latencies and impair hair cell function. In humans, MeHg exposure is reported to prolong ABR latencies, but the impact on hair cell function is unknown. The auditory system can provide objective measures and may be useful in studying exposures to nutrients and toxicants and whether they are associated with children

  18. The Impact of Polyunsaturated Fatty Acids in Reducing Child Attention Deficit and Hyperactivity Disorders

    ERIC Educational Resources Information Center

    Transler, Catherine; Eilander, Ans; Mitchell, Siobhan; van de Meer, Nelly

    2010-01-01

    Objectives: To review the impact of polyunsaturated fatty acids (PUFA) in reducing ADHD symptoms in children. Methods: Peer-reviewed experimental literature published from 1980 to Mai 2009 is consulted (Psychinfo, Medline, and resulting reference lists). Results: Placebo-controlled studies with ADHD or hyperactive children show no effects on…

  19. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health.

    PubMed

    Glaser, Claudia; Lattka, Eva; Rzehak, Peter; Steer, Colin; Koletzko, Berthold

    2011-04-01

    Blood and tissue contents of polyunsaturated fatty acid (PUFA) and long-chain PUFA (LC-PUFA) are related to numerous health outcomes including cardiovascular health, allergies, mental health and cognitive development. Evidence has accumulated to show that in addition to diet, common polymorphisms in the fatty acid desaturase (FADS) gene cluster have very marked effects on human PUFA and LC-PUFA status. Recent results suggest that in addition to fatty acid desaturase 1 and fatty acid desaturase 2, the gene product of fatty acid desaturase 3 is associated with desaturating activity. New data have become available to show that FADS single nucleotide polymorphisms (SNPs) also modulate docosahexaenoic acid status in pregnancy as well as LC-PUFA levels in children and in human milk. There are indications that FADS SNPs modulate the risk for allergic disorders and eczema, and the effect of breastfeeding on later cognitive development. Mechanisms by which FADS SNPs modulate PUFA levels in blood, breast milk and tissues should be explored further. More studies are required to explore the effects of FADS gene variants in populations with different ethnic backgrounds, lifestyles and dietary habits, and to investigate in greater depth the interaction of gene variants, diet and clinical end points, including immune response and developmental outcomes. Analyses of FADS gene variants should be included into all sizeable cohort and intervention studies addressing biological effects of PUFA and LC-PUFA in order to consider these important confounders, and to enhance study sensitivity and precision. © 2011 Blackwell Publishing Ltd.

  20. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.

    PubMed

    Gibson, R A; Neumann, M A; Lien, E L; Boyd, K A; Tu, W C

    2013-01-01

    The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07-17.1 en%) and ALA (0.02-12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1-3 en% ALA and 1-2 en% LA but was suppressed to basal levels (∼2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Women who take n-3 long-chain polyunsaturated fatty acid supplements during pregnancy and lactation meet the recommended intake.

    PubMed

    Jia, Xiaoming; Pakseresht, Mohammadreza; Wattar, Nour; Wildgrube, Jamie; Sontag, Stephanie; Andrews, Murphy; Subhan, Fatheema Begum; McCargar, Linda; Field, Catherine J

    2015-05-01

    The aim of the current study was to estimate total intake and dietary sources of eicosapentaenoic acid (EPA), docosapentanoic (DPA), and docosahexaenoic acid (DHA) and compare DHA intakes with the recommended intakes in a cohort of pregnant and lactating women. Twenty-four-hour dietary recalls and supplement intake questionnaires were collected from 600 women in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort at each trimester of pregnancy and 3 months postpartum. Dietary intake was estimated in 2 ways: by using a commercial software program and by using a database created for APrON. Only 27% of women during pregnancy and 25% at 3 months postpartum met the current European Union (EU) consensus recommendation for DHA. Seafood, fish, and seaweed products contributed to 79% of overall n-3 long-chain polyunsaturated fatty acids intake from foods, with the majority from salmon. The estimated intake of DHA and EPA was similar between databases, but the estimated DPA intake was 20%-30% higher using the comprehensive database built for this study. Women who took a supplement containing DHA were 10.6 and 11.1 times more likely to meet the current EU consensus recommendation for pregnancy (95% confidence interval (CI): 6.952-16.07; P<0.001) and postpartum (95% CI: 6.803-18.14; P<0.001), respectively. Our results suggest that the majority of women in the cohort were not meeting the EU recommendation for DHA during pregnancy and lactation, but taking a supplement significantly improved the likelihood that they would meet recommendations.

  2. Influence of long-chain polyunsaturated fatty acid formula feeds on vitamin E status in preterm infants.

    PubMed

    Kaempf-Rotzoll, Daisy E; Hellstern, Gerald; Linderkamp, Otwin

    2003-10-01

    It has been recommended to supplement formulas for preterm infants with n-3 and n-6 long-chain polyunsaturated fatty acids (LCP) to improve growth, visual acuity, and neurodevelopmental performance. However, large amounts of LCP may increase lipid peroxidation and oxidative stress in preterm infants. We investigated if, under high supplementation of natural tocopherols, LCP addition to formula can be performed safely without causing tocopherol depletion in cell membranes. Thirty-one healthy preterm infants with gestational ages from 28 to 32 weeks were evaluated in a prospective, randomized study from birth to day 42. Nine infants received an n-3 and n-6 LCP-enriched formula (A), eleven infants a standard formula (B), and eleven infants breast milk (control group). Alpha- and gamma-tocopherol extracts were added to both formulas, amounting to five times the value in breast milk (2.3 mg/dL in both formulas versus 0.45 mg/dL in breast milk). Erythrocyte arachidonic acid (AA) and docosahexaenoic acid (DHA) in the phosphatidylethanolamine fraction were similar in the three groups over the study period, whereas a significant reduction of erythrocyte AA and DHA could be detected in the phosphatidylcholine fraction in all three groups from day 14 onwards, when compared to respective cord blood values, with lowest values in the standard formula group. Amazingly, levels of alpha- and gamma-tocopherol were higher in plasma, erythrocytes, platelets, monocytes, and polymorphonuclear leukocytes with LCP supplementation as compared to standard formula and breast milk from day 7 onwards, whereas in buccal mucosal cells, this was not the case until day 42. Gammatocopherol uptake in the LCP-supplemented group was also significantly higher in all cell fractions studied from day 7 onwards. We therefore hypothesize that the LCP supplementation used in formula A improves tocopherol solubility and stability in biological membranes. Under high-dose vitamin E addition to n-3 and n-6 LCP

  3. Meta-analysis of dietary essential fatty acids and long-chain polyunsaturated fatty acids as they relate to visual resolution acuity in healthy preterm infants.

    PubMed

    SanGiovanni, J P; Parra-Cabrera, S; Colditz, G A; Berkey, C S; Dwyer, J T

    2000-06-01

    To derive combined estimates of visual resolution acuity differences between healthy preterm infants consuming different compositions and ratios of essential fatty acids (EFAs) and docosahexaenoic acid (DHA), an omega-3 (n-3) long-chain polyunsaturated fatty acid (LCPUFA). Electronic biomedical reference database (Medline and Health Star from 1965 to July 1999) searches with index terms omega-3, n-3, infant, vision, acuity, and human. Current review article, monograph, and book chapter bibliography/reference section hand searches. A total of 5 original articles and 4 review chapters were reviewed for details on study design, conduct, and outcome. Four prospective trials of EFA/LCPUFA supplementation were included in these analyses. For behaviorally based outcomes, there were 2 randomized comparisons each at

  4. Maternal long chain polyunsaturated fatty acid supplementation in infancy increases length- and weight-for-age but not BMI to 6 years when controlling for effects of maternal smoking

    PubMed Central

    Currie, L.M.; Tolley, E.A.; Thodosoff, J.M.; Kerling, E.H.; Sullivan, D.K.; Colombo, J.; Carlson, S.E.

    2015-01-01

    Summary Long chain polyunsaturated fatty acids (LCPUFA) are added to infant formula but their effect on long-term growth of children is under studied. We evaluated the effects of feeding LCPUFA-supplemented formula (n=54) compared to control formula (n=15) throughout infancy on growth from birth-6 years. Growth was described using separate models developed with the MIXED procedure of SAS® that included maternal smoking history and gender. Compared to children fed control formula, children who consumed LCPUFA supplemented formula had higher length-/stature-/and weight-for-age percentiles but not body mass index (BMI) percentile from birth to 6 years. Maternal smoking predicted lower stature (2-6 years), higher weight-for-length (birth-18 months) and BMI percentile (2-6 years) independent of LCPUFA effects. Gender interacted with the effect of LCPUFA on stature, and the relationship between smoking and BMI, with a larger effect for boys. Energy intake did not explain growth differences. A relatively small control sample is a limitation. PMID:25936840

  5. MASS SPECTROMETRY OF FATTY ALDEHYDES

    PubMed Central

    Berdyshev, Evgeny V.

    2011-01-01

    Fatty aldehydes are important components of the cellular lipidome. Significant interest has been developed towards the analysis of the short chain α,β-unsaturated and hydroxylated aldehydes formed as a result of oxidation of polyunsaturated fatty acids. Multiple gas chromatography-mass spectrometry (GC/MS) and subsequently liquid chromatography-mass spectrometry (LC/MS) approaches have been developed to identify and quantify short-chain as well as long-chain fatty aldehydes. Due to the ability to non-enzymaticaly form Schiff bases with amino groups of proteins, lipids, and with DNA guanidine, free aldehydes are viewed as a marker or metric of fatty acid oxidation and not the part of intracellular signaling pathways which has significantly limited the overall attention this group of molecules have received. This review provides an overview of current GC/MS and LC/MS approaches of fatty aldehyde analysis as well as discusses technical challenges standing in the way of free fatty aldehyde quantitation. PMID:21930240

  6. Combining nutrition, food science and engineering in developing solutions to Inflammatory bowel diseases--omega-3 polyunsaturated fatty acids as an example.

    PubMed

    Ferguson, Lynnette R; Smith, Bronwen G; James, Bryony J

    2010-10-01

    The Inflammatory bowel diseases, Crohn's disease and ulcerative colitis, are debilitating conditions, characterised by lifelong sensitivity to certain foods, and often a need for surgery and life-long medication. The anti-inflammatory effects of long chain omega-3 polyunsaturated acids justify their inclusion in enteral nutrition formulas that have been associated with disease remission. However, there have been variable data in clinical trials to test supplementary omega-3 polyunsaturated fatty acids in inducing or maintaining remission in these diseases. Although variability in trial design has been suggested as a major factor, we suggest that variability in processing and presentation of the products may be equally or more important. The nature of the source, and rapidity of getting the fish or other food source to processing or to market, will affect the percentage of the various fatty acids, possible presence of heavy metal contaminants and oxidation status of the various fatty acids. For dietary supplements or fortified foods, whether the product is encapsulated or not, whether storage is under nitrogen or not, and length of time between harvest, processing and marketing will again profoundly affect the properties of the final product. Clinical trials to test efficacy of these products in IBD to date have utilised the relevant skills of pharmacology and gastroenterology. We suggest that knowledge from food science, nutrition and engineering will be essential to establish the true role of this important group of compounds in these diseases. This journal is © The Royal Society of Chemistry 2010

  7. A role for direct interactions in the modulation of rhodopsin by -3 polyunsaturated lipids

    NASA Astrophysics Data System (ADS)

    Grossfield, Alan; Feller, Scott E.; Pitman, Michael C.

    2006-03-01

    Rhodopsin, the G protein-coupled receptor primarily responsible for sensing light, is found in an environment rich in polyunsaturated lipid chains and cholesterol. Biophysical experiments have shown that lipid unsaturation and cholesterol both have significant effects on rhodopsin's stability and function; -3 polyunsaturated chains, such as docosahexaenoic acid (DHA), destabilize rhodopsin and enhance the kinetics of the photocycle, whereas cholesterol has the opposite effect. Here, we use molecular dynamics simulations to investigate the possibility that polyunsaturated chains modulate rhodopsin stability and kinetics via specific direct interactions. By analyzing the results of 26 independent 100-ns simulations of dark-adapted rhodopsin, we found that DHA routinely forms tight associations with the protein in a small number of specific locations qualitatively different from the nonspecific interactions made by saturated chains and cholesterol. Furthermore, the presence of tightly packed DHA molecules tends to weaken the interhelical packing. These results are consistent with recent NMR work, which proposes that rhodopsin binds DHA, and they suggest a molecular rationale for DHA's effects on rhodopsin stability and kinetics. cholesterol | molecular dynamics | fatty acid | protein-lipid interactions

  8. FADS genetic variants and ω-6 polyunsaturated fatty acid metabolism in a homogeneous island population[S

    PubMed Central

    Mathias, Rasika A.; Vergara, Candelaria; Gao, Li; Rafaels, Nicholas; Hand, Tracey; Campbell, Monica; Bickel, Carol; Ivester, Priscilla; Sergeant, Susan; Barnes, Kathleen C.; Chilton, Floyd H.

    2010-01-01

    Long-chain polyunsaturated fatty acids (PUFA) orchestrate immunity and inflammation through their capacity to be converted to potent inflammatory mediators. We assessed associations of FADS gene cluster polymorphisms and fasting serum PUFA concentrations in a fully ascertained, geographically isolated founder population of European descent. Concentrations of 22 PUFAs were determined by gas chromatography, of which ten fatty acids and five ratios defining FADS1 and FADS2 activity were tested for genetic association against 16 single nucleotide polymorphisms (SNP) in 224 individuals. A cluster of SNPs in tight linkage disequilibrium in the FADS1 gene (rs174537, rs174545, rs174546, rs174553, rs174556, rs174561, rs174568, and rs99780) were strongly associated with arachidonic acid (AA) (P = 5.8 × 10−7 – 1.7 × 10−8) among other PUFAs, but the strongest associations were with the ratio measuring FADS1 activity in the ω-6 series (P = 2.11 × 10−13 – 1.8 × 10−20). The minor allele across all SNPs was consistently associated with decreased ω-6 PUFAs, with the exception of dihomo-γ-linoleic acid (DHGLA), where the minor allele was consistently associated with increased levels. Our findings in a geographically isolated population with a homogenous dietary environment suggest that variants in the Δ-5 desaturase enzymatic step likely regulate the efficiency of conversion of medium-chain PUFAs to potentially inflammatory PUFAs, such as AA. PMID:20562440

  9. Associations of Dietary Long-Chain ω-3 Polyunsaturated Fatty Acids and Fish Consumption With Endometrial Cancer Risk in the Black Women's Health Study

    PubMed Central

    Brasky, Theodore M.; Sponholtz, Todd R.; Palmer, Julie R.; Rosenberg, Lynn; Ruiz-Narváez, Edward A.; Wise, Lauren A.

    2016-01-01

    Dietary long-chain (LC) ω-3 polyunsaturated fatty acids (PUFAs), which derive primarily from intakes of fatty fish, are thought to inhibit inflammation and de novo estrogen synthesis. This study prospectively examined the associations of dietary LC ω-3 PUFAs and fish with endometrial cancer risk in 47,602 African-American women living in the United States, aged 21–69 years at baseline in 1995, and followed them until 2013 (n = 282 cases). Multivariable-adjusted Cox regression models estimated hazard ratios and 95% confidence intervals for associations of LC ω-3 PUFA (quintiled) and fish (quartiled) intake with endometrial cancer risk, overall and by body mass index (BMI; weight (kg)/height (m)2). The hazard ratio for quintile 5 of total dietary LC ω-3 PUFAs versus quintile 1 was 0.79 (95% confidence interval (CI): 0.51, 1.24); there was no linear trend. Hazard ratios for the association were smaller among normal-weight women (BMI <25: hazard ratio (HR) = 0.53, 95% CI: 0.18, 1.58) than among overweight/obese women (BMI ≥25: HR = 0.88, 95% CI: 0.54, 1.43), but these differences were not statistically significant. Fish intake was also not associated with risk (quartile 4 vs. quartile 1: HR = 0.86, 95% CI: 0.56, 1.31). Again hazard ratios were smaller among normal-weight women (HR = 0.65) than among overweight/obese women (HR = 0.94). While compatible with no association, the hazard ratios observed among leaner African-American women are similar to those from recent prospective studies conducted in predominantly white populations. PMID:26755676

  10. Polyunsaturated fatty acids influence differential biosynthesis of oxylipids and other lipid mediators during bovine coliform mastitis.

    PubMed

    Mavangira, Vengai; Gandy, Jeffery C; Zhang, Chen; Ryman, Valerie E; Daniel Jones, A; Sordillo, Lorraine M

    2015-09-01

    Coliform mastitis is a severe and sometimes fatal disease characterized by an unregulated inflammatory response. The initiation, progression, and resolution of inflammatory responses are regulated, in part, by potent oxylipid metabolites derived from polyunsaturated fatty acids. The purpose of this study was to characterize the biosynthesis and diversity of oxylipid metabolites during acute bovine coliform mastitis. Eleven cows diagnosed with naturally occurring acute systemic coliform mastitis and 13 healthy control cows, matched for lactation number and days in milk, were selected for comparison of oxylipid and free fatty acid concentrations in both milk and plasma. Oxylipids and free fatty acids were quantified using liquid chromatography-tandem mass spectrometry. All polyunsaturated fatty acids quantified in milk were elevated during coliform mastitis with linoleic acid being the most abundant. Oxylipids synthesized through the lipoxygenase and cytochrome P450 pathways accounted for the majority of the oxylipid biosynthesis. This study demonstrated a complex and diverse oxylipid network, most pronounced at the level of the mammary gland. Substrate availability, biosynthetic pathways, and degree of metabolism influence the biosynthesis of oxylipids during bovine coliform mastitis. Further studies are required to identify targets for novel interventions that modulate oxylipid biosynthesis during coliform mastitis to optimize inflammation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Omega-3 polyunsaturated fatty acid biomarkers and coronary heart disease: Pooling project of 19 cohort studies

    USDA-ARS?s Scientific Manuscript database

    The role of omega-3 polyunsaturated fatty acids for primary prevention of coronary heart disease (CHD) remains controversial. Most prior longitudinal studies evaluated self-reported consumption rather than biomarkers. This study sought to evaluate biomarkers of seafood-derived eicosapentaenoic acid ...

  12. The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes

    PubMed Central

    Mills, SC; Windsor, AC; Knight, SC

    2005-01-01

    n-3 Polyunsaturated fatty acids (PUFAs) are recognized as having an anti-inflammatory effect, which is initiated and propagated via a number of mechanisms involving the cells of the immune system. These include: eicosanoid profiles, membrane fluidity and lipid rafts, signal transduction, gene expression and antigen presentation. The wide-range of mechanisms of action of n-3 PUFAs offer a number of potential therapeutic tools with which to treat inflammatory diseases. In this review we discuss the molecular, animal model and clinical evidence for manipulation of the immune profile by n-3 PUFAs with respect to inflammatory bowel disease. In addition to providing a potential therapy for inflammatory bowel disease there is also recent evidence that abnormalities in fatty acid profiles, both in the plasma phospholipid membrane and in perinodal adipose tissue, may be a key component in the multi-factorial aetiology of inflammatory bowel disease. Such abnormalities are likely to be the result of a genetic susceptibility to the changing ratios of n-3 : n-6 fatty acids in the western diet. Evidence that the fatty acid components of perinodal adipose are fuelling the pro- or anti-inflammatory bias of the immune response is also reviewed. PMID:16232207

  13. Atlantic salmon (Salmo salar L.) as a net producer of long-chain marine ω-3 fatty acids.

    PubMed

    Sanden, Monica; Stubhaug, Ingunn; Berntssen, Marc H G; Lie, Øyvind; Torstensen, Bente E

    2011-12-14

    The objective of the present study was to investigate the effects of replacing high levels of marine ingredients with vegetable raw materials and with emphasis on lipid metabolism and net production of long-chain polyunsaturated ω-3 fatty acids (EPA + DHA). Atlantic salmon were fed three different replacement vegetable diets and one control marine diet before sensory attributes, β-oxidation capacity, and fatty acid productive value (FAPV) of ingested fatty acids (FAs) were evaluated. Fish fed the high replacement diet had a net production of 0.8 g of DHA and a FAPV of 142%. Fish fed the marine diet had a net loss of DHA. The present work shows that Atlantic salmon can be a net producer of marine DHA when dietary fish oil is replaced by vegetable oil with minor effects on sensory attributes and lipid metabolism.

  14. Nutrigenomics and nutrigenetics of ω3 polyunsaturated fatty acids.

    PubMed

    Vanden Heuvel, John P

    2012-01-01

    Diets rich in ω3 polyunsaturated fatty acids (ω3-PUFAs) such as alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid are associated with decreased incidence and severity of several chronic diseases including cardiovascular disease (CVD) and cancer. At least some of the beneficial effects of these dietary fatty acids are via metabolites such as prostaglandins, leukotrienes, thromboxanes, and resolvins. The effects of ω3-PUFAs are in contrast to those of fatty acids with virtually identical structures, such as the ω6-PUFAs linoleic acid and arachidonic acid, and their corresponding metabolites. The purpose of this chapter is to discuss both the nutrigenomics (nutrient-gene interactions) and nutrigenetics (genetic variation in nutrition) of dietary fatty acids with a focus on the ω3-PUFAs (Gebauer et al., 2007(1)). Important in the biological response for these fatty acids or their metabolites are cognate receptors that are able to regulate gene expression and coordinately affect metabolic or signaling pathways associated with CVD and cancer. Four nuclear receptor (NR) subfamilies will be emphasized as receptors that respond to dietary and endogenous ligands: (1) peroxisome proliferator-activated receptors, (2) retinoid X receptors, (3) liver X receptors, and (4) farnesoid X receptor. In addition to the different responses elicited by varying structures of fatty acids, responses may vary because of genetic variation in enzymes that metabolize ω3- and ω6 fatty acids or that respond to them. In particular, polymorphisms in the fatty acid desaturases and the aforementioned NRs contribute to the complexity of nutritional effects seen with ω3-PUFAs. Following a brief introduction to the health benefits of ω3-PUFAs, the regulation of gene expression by these dietary fatty acids via NRs will be characterized. Subsequently, the effects of single-nucleotide polymorphisms (SNPs) in key enzymes involved in the metabolism and response to ω3-PUFAs will

  15. Genome-wide meta-analyses identify novel loci associated with n-3 and n-6 polyunsaturated fatty acid levels in Chinese and European-ancestry populations.

    PubMed

    Hu, Yao; Li, Huaixing; Lu, Ling; Manichaikul, Ani; Zhu, Jingwen; Chen, Yii-Der I; Sun, Liang; Liang, Shuang; Siscovick, David S; Steffen, Lyn M; Tsai, Michael Y; Rich, Stephen S; Lemaitre, Rozenn N; Lin, Xu

    2016-03-15

    Epidemiological studies suggest that levels of n-3 and n-6 long-chain polyunsaturated fatty acids are associated with risk of cardio-metabolic outcomes across different ethnic groups. Recent genome-wide association studies in populations of European ancestry have identified several loci associated with plasma and/or erythrocyte polyunsaturated fatty acids. To identify additional novel loci, we carried out a genome-wide association study in two population-based cohorts consisting of 3521 Chinese participants, followed by a trans-ethnic meta-analysis with meta-analysis results from 8962 participants of European ancestry. Four novel loci (MYB, AGPAT4, DGAT2 and PPT2) reached genome-wide significance in the trans-ethnic meta-analysis (log10(Bayes Factor) ≥ 6). Of them, associations of MYB and AGPAT4 with docosatetraenoic acid (log10(Bayes Factor) = 11.5 and 8.69, respectively) also reached genome-wide significance in the Chinese-specific genome-wide association analyses (P = 4.15 × 10(-14) and 4.30 × 10(-12), respectively), while associations of DGAT2 with gamma-linolenic acid (log10(Bayes Factor) = 6.16) and of PPT2 with docosapentaenoic acid (log10(Bayes Factor) = 6.24) were nominally significant in both Chinese- and European-specific genome-wide association analyses (P ≤ 0.003). We also confirmed previously reported loci including FADS1, NTAN1, NRBF2, ELOVL2 and GCKR. Different effect sizes in FADS1 and independent association signals in ELOVL2 were observed. These results provide novel insight into the genetic background of polyunsaturated fatty acids and their differences between Chinese and European populations. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Some Phytomonas and Herpetomonas species form unique iso-branched polyunsaturated fatty acids.

    PubMed

    Fish, W R; Holz, G G; Beach, D H

    1982-01-01

    Four trypanosomatid flagellates of the genera Phytomonas and Herpetomonas have been found to carry out the de novo biosynthesis of a variety of iso-branched, C18, C20 and C22, polyunsaturated fatty acids, with 2-5 methylene-interrupted double bonds, which have not been described heretofore from natural materials; iso-C18 delta 6,9, iso-C18 delta 9,12, iso-C20 delta 8,11,14, iso-C 20 delta 5,8,11,14, iso-C22 delta 4,7,10,13,16. Identifications were based upon combinations of chromatographic, chemical degradative, mass spectrometric and proton nuclear magnetic resonance spectrometric techniques. Under appropriate culture conditions, 85% of the total fatty acids of the organisms were branched. The subject trypanosomatids are recommended as model organisms with which to investigate influences of the physical properties of phospholipid fatty acyl groups on eukaryotic cell membrane functions.

  17. Potential therapeutic impact of omega-3 long chain-polyunsaturated fatty acids on inflammation markers in Duchenne muscular dystrophy: A double-blind, controlled randomized trial.

    PubMed

    Rodríguez-Cruz, Maricela; Cruz-Guzmán, Oriana Del Rocío; Almeida-Becerril, Tomás; Solís-Serna, Alan Donovan; Atilano-Miguel, Salvador; Sánchez-González, Juan Raúl; Barbosa-Cortés, Lourdes; Ruíz-Cruz, Eugenia Dolores; Huicochea, Juan Carlos; Cárdenas-Conejo, Alan; Escobar-Cedillo, Rosa Elena; Yam-Ontiveros, Carlos Alberto; Ricárdez-Marcial, Edgar F

    2017-09-23

    Duchenne Muscular Dystrophy (DMD) is the most frequent dystrophy in childhood generated by a deficiency in dystrophin. DMD is a neuromuscular disease and its clinical course comprises chronic inflammation and gradual muscle weakness. Supplementation of omega-3 long chain-Polyunsaturated Fatty Acids (ω-3 long chain-PUFA) reduces inflammatory markers in various disorders. The goal of this research was to analyze the influence of ω-3 long chain-PUFA intake on gene expression and blood inflammatory markers in boys with DMD. In a placebo-controlled, double. Blind, randomized trial, boys with DMD (n = 36) consumed 2.9 g/day of ω-3 long chain-PUFA or sunflower oil as control, in capsules, for a period of 6 months. Blood was analyzed at baseline and at months 1, 2, 3, and 6 of supplementation for expression of inflammatory markers in leukocytes and serum. There was high adherence to capsule intake (control: 95.3% ± 7.2%, and ω-3 long chain-PUFA: 97.4% ± 3.7% at month 6). Enrichment of EicosaPentaenoic Acid (EPA) and DocosaHexaenoic Acid (DHA) in erythrocytes increased significantly in patients supplemented with ω-3 long chain-PUFA compared with the placebo group during the 6 months of supplementation. Messenger RNA (mRNA) of the Nuclear Factor kappa beta (NF-κB) and its target genes InterLeukin 1 beta (IL-1β) and IL-6 was downregulated significantly (p < 0.05) in leukocytes from DMD boys supplemented with ω-3 long chain-PUFA for 6 months, compared to the placebo group. Omega-3 long chain-PUFA intake decreased the serum IL-1β (-59.5%; p = 0.011) and IL-6 (-54.8%; p = 0.041), and increased the serum IL-10 (99.9%, p < 0.005), in relation to those with placebo treatment. Supplementation with ω-3 long chain-PUFA 2.9 g/day is well-tolerated, has a beneficial reductive effect on proinflammatory markers, and increases an anti-inflammatory marker, indicating that ω-3 long chain-PUFA could have a potential therapeutic impact on chronic inflammation in

  18. Mouse models: the ketogenic diet and polyunsaturated fatty acids.

    PubMed

    Borges, Karin

    2008-11-01

    Literature on the anticonvulsant effects of the ketogenic diet (KD) in mouse seizure models is summarized. Recent data show that a KD balanced in vitamin, mineral, and antioxidant content is anticonvulsant in mice, confirming that the KD's effect in mice can be attributed to the composition of the diet and not other dietary factors. Given that the anticonvulsant mechanism of the KD is still unknown, the anticonvulsant profile of the diet in different seizure models may help to decipher this mechanism. The implications of the findings that the KD is anticonvulsant in electrical seizure models are indicated. Further, the potential involvement of polyunsaturated fatty acids (PUFA) in the KD's anticonvulsant mechanism is discussed.

  19. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Overpressure on Eye and Brain Visual Processing Centers in Rats

    DTIC Science & Technology

    2013-10-01

    Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects...studies have not been carried out as yet. Our hypothesis is that novel polyunsaturated fatty acid derived lipid mediators of inflammation, i.e., lipoxins

  20. Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids.

    PubMed

    Choi, Jaewoo; Yin, Tai; Shinozaki, Koichiro; Lampe, Joshua W; Stevens, Jan F; Becker, Lance B; Kim, Junhwan

    2018-05-01

    It is commonly accepted that brain phospholipids are highly enriched with long-chain polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used HPLC-MS to analyze the content and composition of phospholipids in rat brain and compared it to the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing PUFAs is ~ 60% in the brain, whereas it is over 90% in other tissues. The most abundant species of phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the four major organs, challenging the common belief that the brain is highly enriched with PUFAs.

  1. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation.

    PubMed Central

    Koenig, B W; Strey, H H; Gawrisch, K

    1997-01-01

    The elastic area compressibility modulus, Ka, of lamellar liquid crystalline bilayers was determined by a new experimental approach using 2H-NMR order parameters of lipid hydrocarbon chains together with lamellar repeat spacings measured by x-ray diffraction. The combination of NMR and x-ray techniques yields accurate determination of lateral area per lipid molecule. Samples of saturated, monounsaturated, and polyunsaturated phospholipids were equilibrated with polyethylene glycol (PEG) 20,000 solutions in water at concentrations from 0 to 55 wt % PEG at 30 degrees C. This procedure is equivalent to applying 0 to 8 dyn/cm lateral pressure to the bilayers. The resulting reductions in area per lipid were measured with a resolution of +/-0.2 A2 and the fractional area decrease was proportional to applied lateral pressure. For 1,2-dimyristoyl(d54)-sn-glycero-3-phosphocholine, 1-stearoyl(d35)-2-oleoyl-sn-glycero-3-phosphocholine (SOPC-d35), and 1-stearoyl(d35)-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC-d35) cross-sectional areas per molecule in excess water of 59.5, 61.4, and 69.2 A2 and bilayer elastic area compressibility moduli of 141, 221, and 121 dyn/cm were determined, respectively. Combining NMR and x-ray results enables the determination of compressibility differences between saturated and unsaturated hydrocarbon chains. In mixed-chain SOPC-d35 both chains have similar compressibility moduli; however, in mixed-chain polyunsaturated SDPC-d35, the saturated stearic acid chain appears to be far less compressible than the polyunsaturated docosahexaenoic acid chain. Images FIGURE 3 FIGURE 5 PMID:9336191

  2. Chemical synthesis and NMR characterization of structured polyunsaturated triacylglycerols.

    PubMed

    Fauconnot, Laëtitia; Robert, Fabien; Villard, Renaud; Dionisi, Fabiola

    2006-02-01

    The chemical synthesis of pure triacylglycerol (TAG) regioisomers, that contain long chain polyunsaturated fatty acids, such as arachidonic acid (AA) or docosahexaenoic acid (DHA), and saturated fatty acids, such as lauric acid (La) or palmitic acid (P), at defined positions, is described. A single step methodology using (benzotriazol-1-yloxy)-tripyrrolidinophosphonium hexafluorophosphate (PyBOP), an activator of carboxyl group commonly used in peptide synthesis and occasionally used in carboxylic acid esterification, has been developed for structured TAG synthesis. Identification of the fatty acyl chains for each TAG species was confirmed by atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) and fatty acid positional distribution was determined by (1)H and (13)C NMR spectra. The generic described procedures can be applied to a large variety of substrates and was used for the production of specific triacylglycerols of defined molecular structures, with high regioisomeric purity. Combination of MS and NMR was shown to be an efficient tool for structural analysis of TAG. In particular, some NMR signals were demonstrated to be regioisomer specific, allowing rapid positional analysis of LC-PUFA containing TAG.

  3. Facts about polyunsaturated fats

    MedlinePlus

    ... your risk for heart disease. Polyunsaturated fats include omega-3 and omega-6 fats. These are essential fatty ... so you can only get them from food. Omega-3 fatty acids are good for your heart in ...

  4. Comparison of long chain polyunsaturated fatty acid content in human milk in preterm and term deliveries and its correlation with mothers' diet.

    PubMed

    Iranpour, Ramin; Kelishadi, Roya; Babaie, Sharareh; Khosravi-Darani, Kianoush; Farajian, Sanam

    2013-01-01

    Human milk (HM) is the main food for infants, and phospholipids, especially long chain polyunsaturated fatty acids (LCPUFAs), play an essential role in the growth and brain development. This study was designed to evaluate the fatty acid composition in HM of mothers with preterm and full-term newborns and to determine the relationships of dietary intake of docosahexaenoic acid (DHA) and arachidonic acid (AA) of mothers and the content of these fatty acids in their milks. The AA and DHA of HM were determined by gas chromatography at the 3(rd) day after birth from mothers of 59 term and 58 preterm infants. Mothers were selected from those who delivered in Shahid Beheshti Hospital, a referral teaching hospital affiliated to Isfahan University of Medical Sciences, Isfahan, Iran. Dietary fat composition of mothers was examined by a food-frequency questionnaire. Total fat content, and DHA and AA levels of HM were compared in both groups. The correlation of dietary DHA and AA with DHA and AA of HM was determined in both groups. We found that maternal age, body mass index (BMI), and self-reported food-frequency questionnaire did not differ in the two groups. The mean AA (0.19 ± 0.10 mg/ml and 0.16 ± 0.09 mg/ml, respectively), DHA (0.10 ± 0.06 mg/ml and 0.08 ± 0.05 mg/ml, respectively), and total fat content (2.58 ± 2.16 g/dl and 2.06 ± 1.22 g/dl, respectively) of HM of mothers with preterm neonates were non-significantly higher than in mothers with term neonates. The percentage of DHA in the HM fat of preterm and term groups (0.45 ± 0.16% and 0.45 ± 0.18%, respectively) and the percentage of AA (0.85 ± 0.26% and 0.84 ± 0.20%, respectively) were comparable with worldwide standards. No correlations were documented between DHA and AA intake and DHA and AA content of HM in both groups. Although DHA and AA content of HM in preterm group was higher than in term group, this difference were not significant. In Isfahan, the percentage of DHA and AA was acceptable in the

  5. Efficiency of transfer of essential polyunsaturated fatty acids versus organic carbon from producers to consumers in a eutrophic reservoir.

    PubMed

    Gladyshev, Michail I; Sushchik, Nadezhda N; Anishchenko, Olesia V; Makhutova, Olesia N; Kolmakov, Vladimir I; Kalachova, Galina S; Kolmakova, Anzhelika A; Dubovskaya, Olga P

    2011-02-01

    One of the central paradigms of ecology is that only about 10% of organic carbon production of one trophic level is incorporated into new biomass of organisms of the next trophic level. Many of energy-yielding compounds of carbon are designated as 'essential', because they cannot be synthesized de novo by consumers and must be obtained with food, while they play important structural and regulatory functions. The question arises: are the essential compounds transferred through trophic chains with the same efficiency as bulk carbon? To answer this question, we measured gross primary production of phytoplankton and secondary production of zooplankton and content of organic carbon and essential polyunsaturated fatty acids of ω-3 family with 18-22 carbon atoms (PUFA) in the biomass of phytoplankton and zooplankton in a small eutrophic reservoir during two summers. Transfer efficiency between the two trophic levels, phytoplankton (producers) and zooplankton (consumers), was calculated as ratio of the primary production versus the secondary (zooplankton) production for both carbon and PUFA. We found that the essential PUFA were transferred from the producers to the primary consumers with about twice higher efficiency than bulk carbon. In contrast, polyunsaturated fatty acids with 16 carbon atoms, which are synthesized exclusively by phytoplankton, but are not essential for animals, had significantly lower transfer efficiency than both bulk carbon, and essential PUFA. Thus, the trophic pyramid concept, which implicitly implies that all the energy-yielding compounds of carbon are transferred from one trophic level to the next with the same efficiency of about on average 10%, should be specified for different carbon compounds.

  6. Structural and functional interaction of fatty acids with human liver fatty acid-binding protein (L-FABP) T94A variant.

    PubMed

    Huang, Huan; McIntosh, Avery L; Martin, Gregory G; Landrock, Kerstin K; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2014-05-01

    The human liver fatty acid-binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride levels. How this amino acid substitution elicits these effects is not known. This issue was addressed using human recombinant wild-type (WT) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC and CC). The T94A substitution did not alter or only slightly altered L-FABP binding affinities for saturated, monounsaturated or polyunsaturated long chain fatty acids, nor did it change the affinity for intermediates of triglyceride synthesis. Nevertheless, the T94A substitution markedly altered the secondary structural response of L-FABP induced by binding long chain fatty acids or intermediates of triglyceride synthesis. Finally, the T94A substitution markedly decreased the levels of induction of peroxisome proliferator-activated receptor α-regulated proteins such as L-FABP, fatty acid transport protein 5 and peroxisome proliferator-activated receptor α itself meditated by the polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid in cultured primary human hepatocytes. Thus, although the T94A substitution did not alter the affinity of human L-FABP for long chain fatty acids, it significantly altered human L-FABP structure and stability, as well as the conformational and functional response to these ligands. © 2014 FEBS.

  7. Polyunsaturated fatty acids in the central nervous system: evolution of concepts and nutritional implications throughout life.

    PubMed

    Alessandri, Jean-Marc; Guesnet, Philippe; Vancassel, Sylvie; Astorg, Pierre; Denis, Isabelle; Langelier, Bénédicte; Aïd, Sabah; Poumès-Ballihaut, Carine; Champeil-Potokar, Gaëlle; Lavialle, Monique

    2004-01-01

    Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (AA, 20:4n-6) are the major polyunsaturated fatty acids in the membranes of brain and retinal cells. Animals specifically deficient in dietary n-3 fatty acids have low DHA content in their membranes, reduced visual acuity and impaired learning ability. Studies on bottle-fed human infants have shown that adding DHA and AA to milk replacer-formulas can bring their concentrations in the infant blood lipids to values as high as those produced by breast-feeding and significantly improves mental development and maturation of visual function. In older subjects, diverse neuropsychiatric and neurodegenerative diseases have been associated to decreased blood levels of n-3 PUFA. Low intakes of fish or of n-3 PUFA in populations have been associated with increased risks of depression and Alzheimer disease, and n-3 PUFA, especially eicosapentaenoic acid (EPA, 20:5n-3), have shown efficacy as adjunctive treatment - and in some cases as the only treatment--in several psychiatric disorders. The mechanisms by which polyunsaturated fatty acids have an impact on neuronal functions will be reviewed: the modulation of membrane biophysical properties, regulation of neurotransmitter release, synthesis of biologically active oxygenated derivatives, and nuclear receptor-mediated transcription of genes responsive to fatty acids or to their derivatives.

  8. Effects of saturated palmitic acid and omega-3 polyunsaturated fatty acids on Sertoli cell apoptosis.

    PubMed

    Hu, Xuechun; Ge, Xie; Liang, Wei; Shao, Yong; Jing, Jun; Wang, Cencen; Zeng, Rong; Yao, Bing

    2018-05-25

    Obesity is believed to negatively affect male semen quality and is accompanied by dysregulation of free fatty acid (FFA) metabolism in plasma. However, the implication of dysregulated FFA on semen quality and the involvement of Sertoli cells remain unclear. In the present study, we report obesity decreased Sertoli cell viability through dysregulated FFAs. We observed an increased rate of apoptosis in Sertoli cells, accompanied with elevated FFA levels, in the testes of obese mice that were provided a high-fat diet (HFD). Moreover, the levels of reactive oxygen species were elevated. Furthermore, we demonstrated by in vitro assays that saturated palmitic acid (PA), which is the most common saturated FFA in plasma, led to decreased cell viability of TM4 Sertoli cells in a time- and dose-dependent manner. A similar finding was noted in primary mouse Sertoli cells. In contrast to saturated FFA, omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) protected Sertoli cells from PA-induced lipotoxicity at the physiologically relevant levels. These results indicated that the lipotoxicity of saturated fatty acids might be the cause of obesity-induced Sertoli cell apoptosis, which leads to decreased semen quality. In addition, ω-3 PUFAs could be classified as protective FFAs. FFA: free fatty acid; HFD: high-fat diet; SD: standard diet; PA: palmitic acid; PUFA: polyunsaturated fatty acid; AI: apoptotic index; MTT: 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide; ROS: reactive oxygen species; HE: Hematoxylin and eosin; WT1: Wilm Tumor 1; NAFLD: non- alcoholic fatty liver disease; DCFH-DA: 2', 7' dichlorofluorescin diacetate; 36B4: acidic ribosomal phosphoprotein P0; SD: standard deviation; EPA: eicosapentaenoic acid; PI: propidium iodide; DHA: docosahexenoic acid.

  9. Red blood cell n-3 polyunsaturated fatty acids in first trimester of pregnancy are inversely associated with placental weight.

    PubMed

    Magnusardottir, Anna R; Steingrimsdottir, Laufey; Thorgeirsdottir, Holmfridur; Hauksson, Arnar; Skuladottir, Gudrun V

    2009-01-01

    To investigate pregnancy outcome in relation to red blood cell (RBC) level of long-chain n-3 polyunsaturated fatty acids (PUFA) in the first trimester of pregnancy and the influence of lifestyle factors on the RBC level of long-chain n-3 PUFA. Observational study in a community with traditional fish and cod liver oil consumption. Seventy-seven healthy pregnant women. The PUFA composition of RBC was measured in the 11th to 15th week of pregnancy. The women answered food frequency and lifestyle questionnaires. Information on pregnancy outcome was collected from birth records. Placental weight, long-chain n-3 PUFA in diet and RBC, smoking. Of all the pregnancy outcome variables tested, placental weight was the only one associated with long-chain n-3 PUFA in RBC. Inverse association was found between the proportion of long-chain n-3 PUFA in RBC and placental weight, adjusted for birthweight (p=0.035). The proportion of long-chain n-3 PUFA in RBC was positively related to long-chain n-3 PUFA intake (p<0.001) and negatively related to smoking (p=0.011). The human fetus relies on maternal supply and placental delivery of long-chain n-3 PUFA for optimal development and function, particularly of the central nervous system. Given the importance of dietary n-3 PUFA during pregnancy, further studies are warranted to investigate the relationship between placental weight, maternal long-chain n-3 PUFA status and smoking.

  10. Analysis of nutritional habits and intake of polyunsaturated fatty acids in veterans with peripheral arterial disease.

    PubMed

    Nosova, Emily V; Bartel, Kevin; Chong, Karen C; Alley, Hugh F; Conte, Michael S; Owens, Christopher D; Grenon, S Marlene

    2015-10-01

    Inadequate nutrient intake may contribute to the development and progression of peripheral arterial disease (PAD). This study's aim was to assess intake of essential fatty acids and nutrients among veterans with PAD. All 88 subjects had ankle-brachial indices of <0.9 and claudication. A validated food frequency questionnaire evaluated dietary intake, and values were compared to guidelines established by the American Heart Association (AHA) and American College of Cardiology (ACC), as well as the AHA/ACC endorsed Dietary Approaches to Stop Hypertension (DASH) eating plan. The mean age was 69 ± 8 years. Compared to the AHA/ACC guidelines, subjects with PAD had an inadequate intake of long-chain polyunsaturated fatty acids (n-3 PUFA; 59% consumed >1 gram daily). Our subjects with PAD had an increased intake of cholesterol (31% met the cut-off established in the DASH plan), total fat (5%) and sodium (53%). They had an inadequate intake of magnesium (3%), calcium (5%), and soluble fiber (3%). Dietary potassium intake met the recommended guidelines. In our subjects with PAD, intake of critical nutrients deviated substantially from the recommended amounts. Further prospective studies should evaluate whether PAD patients experience clinical benefit if diets are modified to meet the AHA/ACC recommendations. © The Author(s) 2015.

  11. Increased dietary long-chain polyunsaturated fatty acids alter serum fatty acid concentrations and lower risk of urine stone formation in cats.

    PubMed

    Hall, Jean A; Brockman, Jeff A; Davidson, Stephen J; MacLeay, Jen M; Jewell, Dennis E

    2017-01-01

    The lifespan of cats with non-obstructive kidney stones is shortened compared with healthy cats indicating a need to reduce stone formation and minimize chronic kidney disease. The purpose of this study was to investigate the effects of increasing dietary polyunsaturated fatty acids (PUFA) on urine characteristics. Domestic-short-hair cats (n = 12; mean age 5.6 years) were randomized into two groups and fed one of two dry-cat foods in a cross-over study design. For one week before study initiation, all cats consumed control food that contained 0.07% arachidonic acid (AA), but no eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). Group 1 continued eating control food for 56 days. Group 2 was fed test food for 56 days, which was control food plus fish oil and high-AA oil. Test food contained 0.17% AA, 0.09% EPA and 0.18% DHA. After 56 days, cats were fed the opposite food for another 56 days. At baseline and after each feeding period, serum was analyzed for fatty acid concentrations, and urine for specific gravity, calcium concentration, relative-super-saturation for struvite crystals, and a calcium-oxalate-titrimetric test was performed. After consuming test food, cats had increased (all P<0.001) serum concentrations of EPA (173%), DHA (61%), and AA (35%); decreased urine specific gravity (P = 0.02); decreased urine calcium concentration (P = 0.06); decreased relative-super-saturation for struvite crystals (P = 0.03); and increased resistance to oxalate crystal formation (P = 0.06) compared with cats consuming control food. Oxalate crystal formation was correlated with serum calcium concentration (r = 0.41; P<0.01). These data show benefits for reducing urine stone formation in cats by increasing dietary PUFA.

  12. Increased dietary long-chain polyunsaturated fatty acids alter serum fatty acid concentrations and lower risk of urine stone formation in cats

    PubMed Central

    Brockman, Jeff A.; Davidson, Stephen J.; MacLeay, Jen M.; Jewell, Dennis E.

    2017-01-01

    The lifespan of cats with non-obstructive kidney stones is shortened compared with healthy cats indicating a need to reduce stone formation and minimize chronic kidney disease. The purpose of this study was to investigate the effects of increasing dietary polyunsaturated fatty acids (PUFA) on urine characteristics. Domestic-short-hair cats (n = 12; mean age 5.6 years) were randomized into two groups and fed one of two dry-cat foods in a cross-over study design. For one week before study initiation, all cats consumed control food that contained 0.07% arachidonic acid (AA), but no eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA). Group 1 continued eating control food for 56 days. Group 2 was fed test food for 56 days, which was control food plus fish oil and high-AA oil. Test food contained 0.17% AA, 0.09% EPA and 0.18% DHA. After 56 days, cats were fed the opposite food for another 56 days. At baseline and after each feeding period, serum was analyzed for fatty acid concentrations, and urine for specific gravity, calcium concentration, relative-super-saturation for struvite crystals, and a calcium-oxalate-titrimetric test was performed. After consuming test food, cats had increased (all P<0.001) serum concentrations of EPA (173%), DHA (61%), and AA (35%); decreased urine specific gravity (P = 0.02); decreased urine calcium concentration (P = 0.06); decreased relative-super-saturation for struvite crystals (P = 0.03); and increased resistance to oxalate crystal formation (P = 0.06) compared with cats consuming control food. Oxalate crystal formation was correlated with serum calcium concentration (r = 0.41; P<0.01). These data show benefits for reducing urine stone formation in cats by increasing dietary PUFA. PMID:29073223

  13. Acyl chain asymmetry and polyunsaturation of brain phospholipids facilitate membrane vesiculation without leakage

    PubMed Central

    Manni, Marco M; Tiberti, Marion L; Pagnotta, Sophie; Barelli, Hélène; Gautier, Romain

    2018-01-01

    Phospholipid membranes form cellular barriers but need to be flexible enough to divide by fission. Phospholipids generally contain a saturated fatty acid (FA) at position sn1 whereas the sn2-FA is saturated, monounsaturated or polyunsaturated. Our understanding of the impact of phospholipid unsaturation on membrane flexibility and fission is fragmentary. Here, we provide a comprehensive view of the effects of the FA profile of phospholipids on membrane vesiculation by dynamin and endophilin. Coupled to simulations, this analysis indicates that: (i) phospholipids with two polyunsaturated FAs make membranes prone to vesiculation but highly permeable; (ii) asymmetric sn1-saturated-sn2-polyunsaturated phospholipids provide a tradeoff between efficient membrane vesiculation and low membrane permeability; (iii) When incorporated into phospholipids, docosahexaenoic acid (DHA; omega-3) makes membranes more deformable than arachidonic acid (omega-6). These results suggest an explanation for the abundance of sn1-saturated-sn2-DHA phospholipids in synaptic membranes and for the importance of the omega-6/omega-3 ratio on neuronal functions. PMID:29543154

  14. Microencapsulated krill and tuna oil blend raises plasma long-chain n-3 polyunsaturated fatty acid levels compared to tuna oil with similar increases in ileal contractility in rats.

    PubMed

    Patten, Glen S; Sanguansri, Luz; Augustin, Mary Ann; Abeywardena, Mahinda Y; Bird, Anthony R; Patch, Craig S; Belobrajdic, Damien P

    2017-03-01

    Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) may be more bioavailable from krill oil compared to fish oil due to their phospholipid structure. We tested whether a microencapsulated krill and tuna oil blend (ME-TOKO) provided greater LC n-3 PUFA bioavailability, improved blood lipid profiles and increased intestinal contractility compared to microencapsulated tuna oil (ME-TO). Rats were divided into three groups to receive isocaloric diets containing ME-TO, ME-TOKO and microencapsulated olive oil (ME-OO) at 0.3 or 2 g/100 g for 4 weeks. Final body and organ weights, feed intake and waste output were similar. ME-TOKO rats had higher plasma total LC n-3 PUFA levels compared to ME-TO, but liver LC n-3 PUFA levels and plasma triglyceride and cholesterol levels were similar in non-fasted rats. Diets containing 2% ME-TO and ME-TOKO also showed similar increases in ileal contractility. In summary, ME-TO bioavailability of LC n-3 PUFA was similar to ME-TOKO.

  15. Association between serum long-chain omega-3 polyunsaturated fatty acids and cognitive performance in elderly men and women: The Kuopio Ischaemic Heart Disease Risk Factor Study.

    PubMed

    D'Ascoli, T A; Mursu, J; Voutilainen, S; Kauhanen, J; Tuomainen, T-P; Virtanen, J K

    2016-08-01

    Fish intake and the long-chain omega-3 polyunsaturated fatty acids (PUFAs) in fish have been suggested to lower the risk of cognitive decline. We assessed whether serum long-chain omega-3 PUFAs eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) are associated with performance on neuropsychological tests in an older population and whether exposure to methylmercury, mainly from fish, or apolipoprotein-E4 (Apo-E4) phenotype can modify the associations. A total of 768 participants from the population-based Kuopio Ischaemic Heart Disease Risk Factor Study were included. Cognitive function was measured using five neuropsychological tests: the Trail Making Test, the Verbal Fluency Test, the Selective Reminding Test, the Visual Reproduction Test and the Mini Mental State Exam. Multivariate-adjusted analysis of covariance and linear regression were used to analyze the cross-sectional associations. We found statistically significant associations between serum EPA+DPA+DHA and better performance in the Trail Making Test and the Verbal Fluency Test. The individual associations with EPA and DHA were similar with the findings with EPA+DPA+DHA, although the associations with DHA were stronger. No associations were observed with serum DPA. Pubic hair mercury content was associated only with a worse performance in the Trail Making Test, and mercury had only little impact on the associations between the serum PUFAs and cognitive performance. Apo-E4 phenotype did not modify the associations with PUFAs or mercury. Higher serum long-chain omega-3 PUFA concentrations were associated with better performance on neuropsychological tests of frontal lobe functioning in older men and women. Mercury exposure or Apo-E4 phenotype had little impact on cognitive performance.

  16. Assessment of a land-locked Atlantic salmon (Salmo salar L.) population as a potential genetic resource with a focus on long-chain polyunsaturated fatty acid biosynthesis.

    PubMed

    Betancor, M B; Olsen, R E; Solstorm, D; Skulstad, O F; Tocher, D R

    2016-03-01

    The natural food for Atlantic salmon (Salmo salar) in freshwater has relatively lower levels of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) than found in prey for post-smolt salmon in seawater. Land-locked salmon such as the Gullspång population feed exclusively on freshwater type lipids during its entire life cycle, a successful adaptation derived from divergent evolution. Studying land-locked populations may provide insights into the molecular and genetic control mechanisms that determine and regulate n-3 LC-PUFA biosynthesis and retention in Atlantic salmon. A two factorial study was performed comparing land-locked and farmed salmon parr fed diets formulated with fish or rapeseed oil for 8 weeks. The land-locked parr had higher capacity to synthesise n-3 LC-PUFA as indicated by higher expression and activity of desaturase and elongase enzymes. The data suggested that the land-locked salmon had reduced sensitivity to dietary fatty acid composition and that dietary docosahexaenoic acid (DHA) did not appear to suppress expression of LC-PUFA biosynthetic genes or activity of the biosynthesis pathway, probably an evolutionary adaptation to a natural diet lower in DHA. Increased biosynthetic activity did not translate to enhanced n-3 LC-PUFA contents in the flesh and diet was the only factor affecting this parameter. Additionally, high lipogenic and glycolytic potentials were found in land-locked salmon, together with decreased lipolysis which in turn could indicate increased use of carbohydrates as an energy source and a sparing of lipid. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Perfluoroalkyl acid contamination and polyunsaturated fatty acid composition of French freshwater and marine fishes.

    PubMed

    Yamada, Ami; Bemrah, Nawel; Veyrand, Bruno; Pollono, Charles; Merlo, Mathilde; Desvignes, Virginie; Sirot, Véronique; Oseredczuk, Marine; Marchand, Philippe; Cariou, Ronan; Antignac, Jean-Phillippe; Le Bizec, Bruno; Leblanc, Jean-Charles

    2014-07-30

    In this study, French marine and freshwater fish perfluoroalkyl acid (PFAA) contamination are presented along with their fatty acid (FA) composition to provide further elements for a risk/benefit balance of fish consumption to be assessed. The 29 most consumed marine fish species were collected in four metropolitan French coastal areas in 2004 to constitute composite samples. Geographical differences in terms of consumed species and contamination level were taken into account. Three hundred and eighty-seven composite samples corresponding to 16 freshwater fish species collected between 2008 and 2010 in the six major French rivers or their tributaries were selected among the French national agency for water and aquatic environments freshwater fish sample library. The raw edible parts were analyzed for FA composition and PFAA contamination. Results show that freshwater fishes are more contaminated by PFAAs than marine fishes and do not share the same contamination profile. Freshwater fish contamination is mostly driven by perfluorooctane sulfonate (PFOS) (75%), whereas marine fish contamination is split between perfluorooctanoic acid (PFOA) (24%), PFOS (20%), perfluorohexanoic acid (PFHxA) (15%), perfluoropentanoic acid (PFHpA) (11%), and perfluorobutanoic acid (PFBA) (11%). Common carp, pike-perch, European perch, thicklip grey mullet, and common roach presented the most unfavorable balance profile due to their high level of PFAAs and low level of n-3 long-chain polyunsaturated fatty acids (LC-PUFAs). These data could be used, if needed, in an updated opinion on fish consumption that takes into account PFAA contamination.

  18. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Guixiang; Etherton, Terry D.; Department of Dairy and Animal Science, Pennsylvania State University, University Park, PA

    2005-10-28

    The effects of linoleic acid (LA), {alpha}-linolenic acid (ALA), and docosahexaenoic acid (DHA) were compared to that of palmitic acid (PA), on inflammatory responses in human monocytic THP-1 cells. When cells were pre-incubated with fatty acids for 2-h and then stimulated with lipopolysaccharide for 24-h in the presence of fatty acids, secretion of interleukin (IL)-6, IL-1{beta}, and tumor necrosis factor-{alpha} (TNF{alpha}) was significantly decreased after treatment with LA, ALA, and DHA versus PA (P < 0.01 for all); ALA and DHA elicited more favorable effects. These effects were comparable to those for 15-deoxy-{delta}{sup 12,14}-prostaglandin J2 (15d-PGJ2) and were dose-dependent. Inmore » addition, LA, ALA, and DHA decreased IL-6, IL-1{beta}, and TNF{alpha} gene expression (P < 0.05 for all) and nuclear factor (NF)-{kappa}B DNA-binding activity, whereas peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) DNA-binding activity was increased. The results indicate that the anti-inflammatory effects of polyunsaturated fatty acids may be, in part, due to the inhibition of NF-{kappa}B activation via activation of PPAR{gamma}.« less

  19. Effects of different ratios of monounsaturated and polyunsaturated fatty acids to saturated fatty acids on regulating body fat deposition in hamsters.

    PubMed

    Liao, Fang-Hsuean; Liou, Tsan-Hon; Shieh, Ming-Jer; Chien, Yi-Wen

    2010-01-01

    Effects of monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid consumption on regulating body fat accumulation and body weight gain are controversial between animal and human studies. We designed a 2 x 2 factorial study, with two levels of MUFAs (60% and 30%) and two levels of polyunsaturated-to-saturated fatty acid (P/S) ratio (5 and 3) to prepare four kinds of experimental oils consisting of 60% MUFAs with a high or low P/S ratio (HMHR or HMLR, respectively) or 30% MUFAs with a high or low P/S ratio (LMHR or LMLR, respectively). Thirty-two male golden Syrian hamsters were randomly divided into four groups and fed the experimental diets containing 15% (w/w) fat for 12 wk. No difference was observed in the mean daily food intake. Hamsters fed the LMLR diet had increased weight gain, epididymal and retroperitoneal white adipose tissues, plasma non-esterified fatty acids, insulin, hepatic acetyl coenzyme A carboxylase and malic enzyme activities, and mRNA expressions of peroxisome proliferator-activated receptor-alpha and sterol regulatory element-binding protein-1c among all groups (P < 0.05). Hamsters fed the HMHR diet had lower plasma insulin levels and hepatic acetyl coenzyme A carboxylase activities among groups (P < 0.05) and elevated hepatic acyl coenzyme A oxidase and carnitine palmitoyltransferase-I activities compared with those fed the LMLR diet (P < 0.05). Hamsters fed the LMLR diet had increased weight gain and body fat accumulation, whereas the HMHR diet appeared to be beneficial in preventing white adipose tissue accumulation by decreasing plasma insulin levels and increasing hepatic lipolytic enzyme activities involved in beta-oxidation. 2010 Elsevier Inc. All rights reserved.

  20. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits.

    PubMed

    Shahidi, Fereidoon; Ambigaipalan, Priyatharini

    2018-03-25

    Omega-3 polyunsaturated fatty acids (PUFAs) include α-linolenic acid (ALA; 18:3 ω-3), stearidonic acid (SDA; 18:4 ω-3), eicosapentaenoic acid (EPA; 20:5 ω-3), docosapentaenoic acid (DPA; 22:5 ω-3), and docosahexaenoic acid (DHA; 22:6 ω-3). In the past few decades, many epidemiological studies have been conducted on the myriad health benefits of omega-3 PUFAs. In this review, we summarized the structural features, properties, dietary sources, metabolism, and bioavailability of omega-3 PUFAs and their effects on cardiovascular disease, diabetes, cancer, Alzheimer's disease, dementia, depression, visual and neurological development, and maternal and child health. Even though many health benefits of omega-3 PUFAs have been reported in the literature, there are also some controversies about their efficacy and certain benefits to human health.

  1. Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi.

    PubMed

    Sayanova, Olga; Haslam, Richard P; Calerón, Monica Venegas; López, Noemi Ruiz; Worthy, Charlotte; Rooks, Paul; Allen, Michael J; Napier, Johnathan A

    2011-05-01

    The Prymnesiophyceae coccolithophore Emiliania huxleyi is one of the most abundant alga in our oceans and therefore plays a central role in marine foodwebs. E. huxleyi is notable for the synthesis and accumulation of the omega-3 long chain polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6Δ(4,7,10,13,16,19), n-3) which is accumulated in fish oils and known to have health-beneficial properties to humans, preventing cardiovascular disease and related pathologies. Here we describe the identification and functional characterisation of the five E. huxleyi genes which direct the synthesis of docosahexaenoic acid in this alga. Surprisingly, E. huxleyi does not use the conventional Δ6-pathway, instead using the alternative Δ8-desaturation route which has previously only been observed in a few unrelated microorganisms. Given that E. huxleyi accumulates significant levels of the Δ6-desaturated fatty acid stearidonic acid (18:4Δ(6,9,12,15), n-3), we infer that the biosynthesis of DHA is likely to be metabolically compartmentalised from the synthesis of stearidonic acid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Low breast milk levels of long-chain n-3 fatty acids in allergic women, despite frequent fish intake.

    PubMed

    Johansson, S; Wold, A E; Sandberg, A-S

    2011-04-01

    Long-chain n-3 polyunsaturated fatty acids (PUFAs) have immune regulating and anti-inflammatory effects. However, their role in allergic disease is unclear. Allergic diseases are immunologically heterogeneous, and we hypothesized that n-3 fatty acid composition in serum and breast milk may vary according to clinical manifestations. Further, animal studies have shown reduction of serum-PUFA levels during allergic inflammation. To investigate fatty acid composition in breast milk and serum from women with different atopic disease manifestations. Secondly, to determine whether low PUFA levels reflected insufficient intakes. Fatty acids were analysed in breast milk and serum of women with atopic eczema and respiratory allergy (n=16), only respiratory allergy (n=7), as well as healthy women (n=22). Dietary intake of foods expected to affect long-chain n-3 PUFA levels were estimated by food-frequency questionnaire. The fatty acid pattern was related to diagnostic group and intake of relevant food items using a multivariate pattern recognition method (partial least squares projections to latent structures and discriminant analysis). Results Women with a combination of eczema and respiratory allergy had lower breast milk levels of several PUFAs (arachidonic acid, eicosapentaenoic acid, EPA, docosahexaenoic acid, DHA, and docosapentaenoic acid, DPA), and a lower ratio of long-chain n-3 PUFAs/n-6 PUFAs. Their PUFA levels differed not only from that of healthy women, but also from that of women with only respiratory allergy. The latter had a fatty acid pattern similar to that of healthy women. Despite low EPA, DHA and DPA levels women with eczema and respiratory allergy consumed no less fish than did healthy women. Our data suggest that reduced levels of long-chain n-3 fatty acids in serum and breast milk characterize women with extensive allergic disease including eczema, and are not related to low fish intake. Consumption of PUFAs during the allergic process may explain

  3. Interaction between Marine-Derived n-3 Long Chain Polyunsaturated Fatty Acids and Uric Acid on Glucose Metabolism and Risk of Type 2 Diabetes Mellitus: A Case-Control Study.

    PubMed

    Li, Kelei; Wu, Kejian; Zhao, Yimin; Huang, Tao; Lou, Dajun; Yu, Xiaomei; Li, Duo

    2015-08-26

    The present case-control study explored the interaction between marine-derived n-3 long chain polyunsaturated fatty acids (n-3 LC PUFAs) and uric acid (UA) on glucose metabolism and risk of type 2 diabetes mellitus (T2DM). Two hundred and eleven healthy subjects in control group and 268 T2DM subjects in case group were included. Plasma phospholipid (PL) fatty acids and biochemical parameters were detected by standard methods. Plasma PL C22:6n-3 was significantly lower in case group than in control group, and was negatively correlated with fasting glucose (r = -0.177, p < 0.001). Higher plasma PL C22:6n-3 was associated with lower risk of T2DM, and the OR was 0.32 (95% confidence interval (CI), 0.12 to 0.80; p = 0.016) for per unit increase of C22:6n-3. UA was significantly lower in case group than in control group. UA was positively correlated with fasting glucose in healthy subjects, but this correlation became negative in T2DM subjects. A significant interaction was observed between C22:6n-3 and UA on fasting glucose (p for interaction = 0.005): the lowering effect of C22:6n-3 was only significant in subjects with a lower level of UA. In conclusion, C22:6n-3 interacts with UA to modulate glucose metabolism.

  4. Opportunities for probiotics and polyunsaturated fatty acids to improve metabolic health of overweight pregnant women.

    PubMed

    Mokkala, K; Röytiö, H; Ekblad, U; Laitinen, K

    2017-02-07

    Overweight during pregnancy predisposes both the mother and foetus to health complications. Maternal complications include gestational diabetes, obstetric problems and type 2 diabetes later in life. Complications for the offspring are not only restricted to the foetal period or birth, such as prematurity and foetal macrosomia, but may also have long-term metabolic health implications through the mechanism of early nutrition programming. One of the key metabolic components characterising overweight in the non-pregnant state is low-grade inflammation manifested by elevated levels of circulatory pro-inflammatory cytokines. In pregnancy, in addition to adipose tissue and placenta, inflammatory response may originate from the gut. The extent to which overweight induces metabolic maladaptation during pregnancy and further compromises maternal and child health is currently poorly understood. In this review, we evaluate recent scientific literature and describe the suggested links between overweight, gut and low-grade inflammation associated metabolic disorders. We focus on overweight pregnant women and gestational diabetes, and discuss how specific dietary factors, probiotics and long-chain polyunsaturated fatty acids (fish oil), might confer health benefits in combatting against metabolic risk factors.

  5. Polyunsaturated fatty acid amides from the Zanthoxylum genus - from culinary curiosities to probes for chemical biology.

    PubMed

    Chruma, Jason J; Cullen, Douglas J; Bowman, Lydia; Toy, Patrick H

    2018-01-25

    Covering up to February 2017The pericarps of several species from the Zanthoxylum genus, a.k.a. the "prickly ash", have long been used for culinary purposes throughout Asia, most notably in the Sichuan (previously Szechuan) cuisine of Southwestern China, due to the unique tingling and numbing orosensations arising from a collection of polyunsaturated fatty acid amide (alkamide) constituents. The past decade has experienced dramatically increased academic and industrial interest in these pungent Zanthoxylum-derived alkamides, with a concomitant explosion in studies aimed at elucidating the specific biochemical mechanisms behind several medically-relevant biological activities exhibited by the natural products. This rapid increase in interest is partially fueled by advances in organic synthesis reported within the past few years that finally have allowed for the production of diastereomerically-pure Zanthoxylum alkamides and related analogs in multigram quantities. Herein is a comprehensive review of the discovery, total synthesis, and biological evaluation of Zanthoxylum-derived polyunsaturated fatty acid amides and synthetic analogues. Critical insights into how chemical synthesis can further benefit future chemical biology efforts in the field are also provided.

  6. Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development.

    PubMed

    Delgado-Noguera, Mario F; Calvache, Jose Andres; Bonfill Cosp, Xavier

    2010-12-08

    Long chain polyunsaturated fatty acids (LCPUFA), especially docosahexaenoic acid (DHA), are the most abundant fatty acids in the brain and are necessary for growth and maturation of the brain and retina. LCPUFA are named "essential" because they cannot be synthesised efficiently by the human body and come from maternal diet. It remains controversial whether LCPUFA supplementation to breastfeeding mothers is beneficial for the development of their infants. To assess the effectiveness and safety of supplementation with LCPUFA in breastfeeding mothers in the cognitive and physical development of their infants as well as safety for the mother and infant. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (November 2009), CENTRAL (2009, Issue 2), PubMed (1966 to July 2009), EMBASE (1974 to June 2009), CINAHL (1984 to June 2009), LILACS (1982 to June 2009), Google Scholar (June 2009) and reference lists of published narrative and systematic reviews. Randomised controlled trials or cluster-randomised controlled trials evaluating the effects of LCPUFA supplementation on breastfeeding mothers and their infants. Two review authors independently assessed eligibility and trial quality and performed data extraction. We included six randomised controlled trials involving 1280 women. We found no significant difference in children's neurodevelopment: language development (standardised mean difference (SMD) -0.14, 95% confidence interval (CI) -0.49 to 0.20; two trials, 349 participants); intelligence or problem-solving ability (two trials, 817 participants; SMD -0.22, 95% CI -0.23 to 0.66); psychomotor development (SMD 0.34, 95% CI -0.11 to 0.78; two trials, 279 participants); motor development (SMD 0.08, 95% CI -0.13 to 0.29; two trials, 349 participants); in child attention there was a significant difference (SMD 0.50, 95% CI 0.24 to 0.77; one study). For child visual acuity there was no significant difference (SMD -0.06, 95% CI -0.26 to 0.14; three trials

  7. Erythrocyte polyunsaturated fatty acid composition is associated with depression and FADS genotype in Caucasians.

    PubMed

    Cribb, Lachlan; Murphy, Jenifer; Froud, Amy; Oliver, Georgina; Bousman, Chad A; Ng, Chee H; Sarris, Jerome

    2017-05-29

    Polyunsaturated fatty acids (PUFAs) play an important role in the pathophysiology of major depressive disorder (MDD), related, in part, to their role in inflammatory systems. The enzymes δ-5 and δ-6 desaturase are the rate-limiting steps in the metabolism of PUFAs and are encoded in the genes fatty acid desaturase (FADS) 1 and 2, respectively. Single nucleotide polymorphisms (SNPs) and haplotypes within the FADS gene cluster have been shown to influence PUFA composition. The objective of this study was to determine whether key omega-3 (n-3) and omega-6 (n-6) fatty acids may be associated with depression, and to explore the role of FADS genotype in PUFA variation. Four erythrocyte long chain (LC) fatty acids (linoleic acid [LA], α-linolenic acid [ALA], arachidonic acid [AA] and Eicosapentaenoic acid [EPA]), as well as six SNPs (rs174537, rs174547, rs174570, rs174575, rs498793 and rs3834458) within the FADS gene cluster were measured in a sample of 207 participants (154 with MDD versus 53 non-depressed controls). The precursor LC-PUFAs LA and ALA appeared to be negatively associated with depression (P < 0.001 and P < 0.01, respectively), while AA:LA (surrogate measure of desaturase activity) was positively associated with depression (P < 0.01). No significant differences were noted in erythrocyte EPA, AA or AA:EPA between groups. Minor alleles of each SNP (excluding rs498793) were associated with variation in desaturase activity and LA. Both rs174537 and rs174547 were associated with ALA. No genotype was associated with EPA or AA. Minor alleles of rs174537 and rs174547 were significantly associated with lower odds of MDD (although significance was lost after correction for multiple comparisons). Precursor LC-PUFAs, LA and ALA, appear to be associated with MDD and potentially modulated by genetic variation in the FADS gene cluster. These results provide support for the consideration of PUFA composition, diet and FADS genetic variation in the

  8. Involvement of Resveratrol and ω-3 Polyunsaturated Fatty Acids on Sirtuin 1 Gene Expression in THP1 Cells.

    PubMed

    Tsuchiya, Takafumi; Endo, Ayano; Tsujikado, Kyoko; Inukai, Toshihiko

    2017-10-01

    Resveratrol, a kind of polyphenol, has the potential to activate the longevity gene in several cells, in the same manner as calorie restriction. We investigated the effect of resveratrol and ω-3-line polyunsaturated fatty acid on surtuin 1 (SIRT1) gene expression in human monocytes (THP1) cells. We examined the gene expression of THP1 cells using real-time polymerase chain reaction and Western blotting analysis. Resveratol, eicosapentaenoic acid (EPA) and docosahexaeanoic acid (DHA) as n-3 polyunsaturated fatty acid were added on THP1 cells. We observed the changes in the SIRT1 gene expression in those cells, under various doses of agents and in time courses. Then, we examined the interaction of glucose and mannitol on those agents׳ effect of the gene expression. The concentration range of glucose and mannitol was from 5-20mM, respectively. The SIRT1 gene expression could be defined in 24 and 48 hours both in real-time polymerase chain reaction analysis and in Western blotting. Resveratrol showed SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. Although EPA at 10μM showed marked increase in SIRT1 gene expression compared to control condition in Western blotting, this phenomenon was not in dose-dependent manner. DHA did not exhibit any augmentation of SIRT1 gene expression in a dose-dependent manner in the range of 0-20μM in both analyses. We refined the dose-dependent inhibition of the SIRT1 gene expression within 20mM glucose medium. Although 20mM did not exhibit any inhibition, 10μM resveratrol induced the gene expression compared to control medium. Both 5 and 15mM mannitol medium did not significantly alter basic gene expression and 10μM resveratrol-induced gene expression. The present results suggest that resveratrol and EPA, but not DHA, markedly activated the SIRT1 gene expression in THP1 cells, and that high glucose medium could inhibit the basic gene expression, but not powerful resveratrol-induced gene

  9. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications

    PubMed Central

    Pereira, Hugo; Barreira, Luísa; Figueiredo, Filipe; Custódio, Luísa; Vizetto-Duarte, Catarina; Polo, Cristina; Rešek, Eva; Engelen, Aschwin; Varela, João

    2012-01-01

    As mammals are unable to synthesize essential polyunsaturated fatty acids (PUFA), these compounds need to be taken in through diet. Nowadays, obtaining essential PUFA in diet is becoming increasingly difficult; therefore this work investigated the suitability of using macroalgae as novel dietary sources of PUFA. Hence, 17 macroalgal species from three different phyla (Chlorophyta, Phaeophyta and Rhodophyta) were analyzed and their fatty acid methyl esters (FAME) profile was assessed. Each phylum presented a characteristic fatty acid signature as evidenced by clustering of PUFA profiles of algae belonging to the same phylum in a Principal Components Analysis. The major PUFA detected in all phyla were C18 and C20, namely linoleic, arachidonic and eicosapentaenoic acids. The obtained data showed that rhodophytes and phaeophytes have higher concentrations of PUFA, particularly from the n-3 series, thereby being a better source of these compounds. Moreover, rhodophytes and phaeophytes presented “healthier” ∑n-6/∑n-3 and PUFA/saturated fatty acid ratios than chlorophytes. Ulva was an exception within the Chlorophyta, as it presented high concentrations of n-3 PUFA, α-linolenic acid in particular. In conclusion, macroalgae can be considered as a potential source for large-scale production of essential PUFA with wide applications in the nutraceutical and pharmacological industries. PMID:23118712

  10. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial

    PubMed Central

    2012-01-01

    Background Human milk is the optimal nutrition for infants. When breastfeeding is not possible, supplementation of infant formula with long chain polyunsaturated fatty acids appears to promote neurodevelopmental outcome and visual function. Plant oils, that are the only source of fat in most of infant formulas, do not contain specific fatty acids that are present in human and cow milk and do not encounter milk fat triglyceride structure. Experimental data suggest that a mix of dairy lipids and plant oils can potentiate endogenous synthesis of n-3 long chain polyunsaturated fatty acids. This trial aims to determine the effect of an infant formula supplemented with a mixture of dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in full-term infants (primary outcome). Erythrocyte membrane long chain polyunsaturated fatty acids and fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level, the gastrointestinal tolerance, the changes throughout the study in blood fatty acids content, in growth and body composition are evaluated as secondary outcomes. Methods/Design In a double-blind controlled randomized trial, 75 healthy full-term infants are randomly allocated to receive for four months a formula supplemented with a mixture of dairy lipids and plant oils or a formula containing only plant oils or a formula containing plant oils supplemented with arachidonic acid and docosahexaenoic acid. Twenty-five breast-fed infants constitute the reference group. Erythrocyte membrane omega-3 fatty acid profile, long chain polyunsaturated fatty acids and the other fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level are measured after four months of intervention. Gastrointestinal tolerance, the changes in blood fatty acids content, in growth and body composition, assessed by means of an air displacement plethysmography system, are also evaluated throughout the study. Discussion The achievement

  11. The influence of a formula supplemented with dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in healthy full-term infants: a double-blind randomized controlled trial.

    PubMed

    Giannì, Maria Lorella; Roggero, Paola; Baudry, Charlotte; Ligneul, Amandine; Morniroli, Daniela; Garbarino, Francesca; le Ruyet, Pascale; Mosca, Fabio

    2012-10-17

    Human milk is the optimal nutrition for infants. When breastfeeding is not possible, supplementation of infant formula with long chain polyunsaturated fatty acids appears to promote neurodevelopmental outcome and visual function. Plant oils, that are the only source of fat in most of infant formulas, do not contain specific fatty acids that are present in human and cow milk and do not encounter milk fat triglyceride structure. Experimental data suggest that a mix of dairy lipids and plant oils can potentiate endogenous synthesis of n-3 long chain polyunsaturated fatty acids. This trial aims to determine the effect of an infant formula supplemented with a mixture of dairy lipids and plant oils on the erythrocyte membrane omega-3 fatty acid profile in full-term infants (primary outcome). Erythrocyte membrane long chain polyunsaturated fatty acids and fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level, the gastrointestinal tolerance, the changes throughout the study in blood fatty acids content, in growth and body composition are evaluated as secondary outcomes. In a double-blind controlled randomized trial, 75 healthy full-term infants are randomly allocated to receive for four months a formula supplemented with a mixture of dairy lipids and plant oils or a formula containing only plant oils or a formula containing plant oils supplemented with arachidonic acid and docosahexaenoic acid. Twenty-five breast-fed infants constitute the reference group. Erythrocyte membrane omega-3 fatty acid profile, long chain polyunsaturated fatty acids and the other fatty acids content, the plasma lipid profile and the insulin-growth factor 1 level are measured after four months of intervention. Gastrointestinal tolerance, the changes in blood fatty acids content, in growth and body composition, assessed by means of an air displacement plethysmography system, are also evaluated throughout the study. The achievement of an appropriate long chain

  12. Supplementing long-chain n-3 polyunsaturated fatty acids in canned wild Pacific pink salmon with Alaska salmon oil

    PubMed Central

    Lapis, Trina J; Oliveira, Alexandra C M; Crapo, Charles A; Himelbloom, Brian; Bechtel, Peter J; Long, Kristy A

    2013-01-01

    Establishing n-3 polyunsaturated fatty acid contents in canned wild Alaska pink salmon products is challenging due to ample natural variation found in lipid content of pink salmon muscle. This study investigated the effect of adding salmon oil (SO) to canned pink salmon produced from fish exhibiting two opposite degrees of skin watermarking, bright (B) and dark (D). Specific goals of the study were to evaluate the benefits of adding SO to canned pink salmon with regard to nutritional value of the product, sensory characteristics, and the oxidative and hydrolytic stability of the lipids over thermal processing. Six groups of canned pink salmon were produced with variable levels of SO, either using bright (with 0, 1, or 2% SO) or dark (with 0, 2, or 4% SO) pink salmon. Compositional analysis revealed highest (P < 0.05) lipid content in sample B2 (8.7%) and lowest (P < 0.05) lipid content in sample D0 (3.5%). Lipid content of samples B0, B1, D2, and D4 was not significantly different (P > 0.05) ranging from 5.7% to 6.8%. Consequently, addition of SO to canned pink salmon allowed for consistent lipid content between bright and dark fish. Addition of 1% or 2% SO to canned bright pink salmon was not detrimental to the sensory properties of the product. It is recommended that canned bright pink salmon be supplemented with at least 1% SO, while supplementation with 2% SO would guarantee a minimum quantity of 1.9 g of n-3 fatty acids per 100 g of product. Addition of 4% SO to canned dark pink salmon was detrimental to product texture and taste, while supplementation with 2% SO did not negatively affect sensorial properties of the product. Accordingly, canned dark pink salmon should be supplemented with 2% SO so that a minimum n-3 fatty acids content of 1.5 g per 100 g of product. PMID:24804010

  13. A More Desirable Balanced Polyunsaturated Fatty Acid Composition Achieved by Heterologous Expression of Δ15/Δ4 Desaturases in Mammalian Cells

    PubMed Central

    Zhu, Guiming; Ou, Qin; Zhang, Tao; Jiang, Xudong; Sun, Guozhi; Zhang, Ning; Wang, Kunfu; Fang, Heng; Wang, Mingfu; Sun, Jie; Ge, Tangdong

    2013-01-01

    Arachidonic (ARA), eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the most biologically active polyunsaturated fatty acids, but their biosyntheses in mammals are very limited. The biosynthesis of DHA is the most difficult, because this undergoes the Sprecher pathway–a further elongation step from docosapentaenoic acid (DPA), a Δ6-desaturase acting on a C24 fatty acid substrate followed by a peroxisomal chain shortening step. This paper reports the successful heterologous expression of two non-mammalian genes (with modification of codon usage), coding for Euglena gracilis Δ4-desaturase and Siganus canaliculatus Δ4-desaturase respectively, in mammalian cells (HEK293 cell line). Both of the Δ4-desaturases can efficiently function, directly converting DPA into DHA. Moreover, the cooperation of the E. gracilis Δ4-desaturase with C. elegans Δ15-desaturase (able to convert a number of n-6 PUFAs to their corresponding n-3 PUFAs) in transgenic HEK293 cells made a more desirable fatty acid composition – a drastically reduced n-6/n-3 PUFAs ratio and a high level of DHA as well as EPA and ARA. Our findings provide a basis for potential applications of the gene constructs for expression of Δ15/Δ4-desaturases in transgenic livestock to produce such a fatty acid profile in the related products, which certainly will bring benefit to human health. PMID:24391980

  14. Associations of maternal long-chain polyunsaturated fatty acids, methyl mercury, and infant development in the Seychelles Child Development Nutrition Study.

    PubMed

    Strain, J J; Davidson, Philip W; Bonham, Maxine P; Duffy, Emeir M; Stokes-Riner, Abbie; Thurston, Sally W; Wallace, Julie M W; Robson, Paula J; Shamlaye, Conrad F; Georger, Lesley A; Sloane-Reeves, Jean; Cernichiari, Elsa; Canfield, Richard L; Cox, Christopher; Huang, Li Shan; Janciuras, Joanne; Myers, Gary J; Clarkson, Thomas W

    2008-09-01

    Fish consumption during gestation can provide the fetus with long-chain polyunsaturated fatty acids (LCPUFA) and other nutrients essential for growth and development of the brain. However, fish consumption also exposes the fetus to the neurotoxicant, methyl mercury (MeHg). We studied the association between these fetal exposures and early child development in the Seychelles Child Development Nutrition Study (SCDNS). Specifically, we examined a priori models of Omega-3 and Omega-6 LCPUFA measures in maternal serum to test the hypothesis that these LCPUFA families before or after adjusting for prenatal MeHg exposure would reveal associations with child development assessed by the BSID-II at ages 9 and 30 months. There were 229 children with complete outcome and covariate data available for analysis. At 9 months, the PDI was positively associated with total Omega-3 LCPUFA and negatively associated with the ratio of Omega-6/Omega-3 LCPUFA. These associations were stronger in models adjusted for prenatal MeHg exposure. Secondary models suggested that the MeHg effect at 9 months varied by the ratio of Omega-6/Omega-3 LCPUFA. There were no significant associations between LCPUFA measures and the PDI at 30 months. There were significant adverse associations, however, between prenatal MeHg and the 30-month PDI when the LCPUFA measures were included in the regression analysis. The BSID-II mental developmental index (MDI) was not associated with any exposure variable. These data support the potential importance to child development of prenatal availability of Omega-3 LCPUFA present in fish and of LCPUFA in the overall diet. Furthermore, they indicate that the beneficial effects of LCPUFA can obscure the determination of adverse effects of prenatal MeHg exposure in longitudinal observational studies.

  15. Associations of maternal long chain polyunsaturated fatty acids, methyl mercury, and infant development in the Seychelles Child Development Nutrition Study

    PubMed Central

    Strain, J.J.; Davidson, Philip W.; Bonham, Maxine P.; Duffy, Emeir M.; Stokes-Riner, Abbie; Thurston, Sally W.; Wallace, Julie M.W.; Robson, Paula J.; Shamlaye, Conrad F.; Georger, Lesley A.; Sloane-Reeves, Jean; Cernichiari, Elsa; Canfield, Richard L.; Cox, Christopher; Huang, Li Shan; Janciuras, Joanne; Myers, Gary J.; Clarkson, Thomas W.

    2008-01-01

    Fish consumption during gestation can provide the fetus with long chain polyunsaturated fatty acids (LCPUFA) and other nutrients essential for growth and development of the brain. However, fish consumption also exposes the fetus to the neurotoxicant, methyl mercury (MeHg). We studied the association between these fetal exposures and early child development in the Seychelles Child Development Nutrition Study (SCDNS). Specifically, we examined a priori models of Ω-3 and Ω-6 LCPUFA measures in maternal serum to test the hypothesis that these LCPUFA families before or after adjusting for prenatal MeHg exposure would reveal associations with child development assessed by the BSID-II at ages 9 and 30 months. There were 229 children with complete outcome and covariate data available for analysis. At 9 months, the PDI was positively associated with total Ω-3 LCPUFA and negatively associated with the ratio of Ω-6/Ω-3 LCPUFA. These associations were stronger in models adjusted for prenatal MeHg exposure. Secondary models suggested that the MeHg effect at 9 months varied by the ratio of Ω-6/Ω-3 LCPUFA. There were no significant associations between LCPUFA measures and the PDI at 30 months. There were significant adverse associations, however, between prenatal MeHg and the 30 month PDI when the LCPUFA measures were included in the regression analysis. The BSID-II Mental Developmental Index (MDI) was not associated with any exposure variable. These data support the potential importance to child development of prenatal availability of Ω-3 LCPUFA present in fish and of LCPUFA in the overall diet. Furthermore, they indicate that the beneficial effects of LCPUFA can obscure the determination of adverse effects of prenatal MeHg exposure in longitudinal observational studies. PMID:18590765

  16. Effect of Omega-3 Polyunsaturated Fatty Acid Supplementation in Patients with Atrial Fibrillation.

    PubMed

    Kumar, Sanjay; Qu, Sarah; Kassotis, John T

    2012-01-01

    Atrial fibrillation (AF) is the most common sustained atrial arrhythmia conferring a higher morbidity and mortality. Despite the increasing incidence of AF; available therapies are far from perfect. Dietary fish oils, containing omega 3 fatty acids, also called polyunsaturated fatty acid [PUFA] have demonstrated beneficial electrophysiological, autonomic and anti-inflammatory effects on both atrial and ventricular tissue. Multiple clinical trials, focusing on various subsets of patients with AF, have studied the role of PUFA and their potential role in reducing the incidence of this common arrhythmia. While PUFA appears to have a beneficial effect in the primary prevention of AF in the elderly with structural heart disease, this benefit has not been universally observed. In the secondary prevention of AF, PUFA seems to have a greater impact in the reducing AF in patients with paroxysmal or persistent AF, stages of AF associated with less atrial fibrosis and negative structural remodeling. However, AF suppression has not been consistently demonstrated in clinical trials. In patients undergoing heart surgery, increasing PUFA intake has yielded mixed results in terms of AF prevention post-operatively; however, increased PUFA has been associated with a reduction in hospital stay. Therefore recommending the use of PUFA for the purpose of AF reduction remains controversial. This is in part attributable to the complexity of AF. Other conflicting variables include: heterogeneous patient populations studied; variable dosing; duration of follow-up; comorbidities; and, concomitant pharmacotherapy. This review article reviews in detail available basic and clinical research studies of fish oil in the treatment of AF, and its role in the treatment of this common disorder. AF=Atrial fibrillation, CHS=Cardiovascular Health Study,CABG=Coronary artery bypass surgery, d=Day, DHA=Docosahexaenoic acid, EPA=Eicosapentaenoic acid, ERP= Effective refractory period, g=Gram, PAF= Paroxysmal

  17. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms

    PubMed Central

    Monroig, Óscar; Tocher, Douglas R.; Navarro, Juan C.

    2013-01-01

    Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs. PMID:24152561

  18. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    PubMed Central

    2011-01-01

    Background The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Results Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). Conclusion These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism. PMID:22018327

  19. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids.

    PubMed

    Lecker, Jaime L; Matthan, Nirupa R; Billheimer, Jeffrey T; Rader, Daniel J; Lichtenstein, Alice H

    2011-10-21

    The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic low density lipoprotein (LDL) receptor, sterol regulatory element binding protein (SREBP)-1c and acyl-CoA: cholesterol acyl transferase-2 (ACAT) mRNA and protein (p < 0.05), and higher hepatic apolipoprotein (apo) B-100 and apo E protein levels. In contrast, cholesterol-depleted hamsters fed fish oil, relative to safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  20. The composition of polyunsaturated fatty acids in erythrocytes of lactating mothers and their infants.

    PubMed

    Jørgensen, Marianne Hørby; Nielsen, Pernille Kjaer; Michaelsen, Kim Fleischer; Lund, Pia; Lauritzen, Lotte

    2006-01-01

    Long-chain polyunsaturated fatty acids (LCPUFA) in breastmilk, specifically docosahexaenoic acid (DHA), are important for infant brain development. Accretion of DHA in the infant brain is dependent on DHA-status, intake and metabolism. The aim of this study was to describe changes in maternal and infant erythrocyte (RBC) DHA-status during the first four months of lactation. We examined 17 mothers and their term infants at 1, 2 and 4 months of age. Milk samples and RBC from the mothers and infants were obtained and analysed for fatty acid composition. Comparative analysis of the results showed that the content of DHA in maternal RBC-phosphatidylcholine (PE) decreased over the four month period and this was not accompanied by a decrease in DHA in infant RBC-PE (P = 0.005). The ratio of n-6 PUFA to n-3 PUFA increased over time in maternal RBC-PE, but not in infant RBC-PE (P < 0.001). The level of 22:5n-6 and the ratio of LCPUFA to precursor PUFAs in infant RBC was higher than in maternal RBC phospholipids. (P = and P < 0.001 respectively). We found a decrease in the level of LCPUFA in milk, specifically AA. However, we did not observe a significant decrease in milk DHA, which may have been due to two outliers. These results indicate better DHA-status and a higher n-3/n-6 PUFA in RBC of infants than in mothers. Whether these differences reflect preferential n-3 PUFA transfer via breastmilk or differences in PUFA-metabolism and utilization remains to be shown.

  1. Role of ω3 long-chain polyunsaturated fatty acids in reducing cardio-metabolic risk factors.

    PubMed

    Abeywardena, Mahinda Y; Patten, Glen S

    2011-09-01

    Cardiovascular disease is the leading cause of mortality in many economically developed nations, and its incidence is increasing at a rapid rate in emerging economies. Diet and lifestyle issues are closely associated with a myriad of cardiovascular disease risk factors including abnormal plasma lipids, hypertension, insulin resistance, diabetes and obesity, suggesting that diet-based approaches may be of benefit. Omega-3 longchain-polyunsaturated fatty acids (ω3 LC-PUFA) are increasingly being used in the prevention and management of several cardiovascular risk factors. Both the ω3 and ω6 PUFA families are considered essential, as the human body is itself unable to synthesize them. The conversion of the two precursor fatty acids - linoleic acid (18:2ω6) and α-linoleic acid (α18:3ω3) - of these two pathways to longer (≥C(20)) PUFA is inefficient. Although there is an abundance of ω6 PUFA in the food supply; in many populations the relative intake of ω3 LC-PUFA is low with health authorities advocating increased consumption. Fish oil, rich in eicosapentaenoic (EPA, 20:5ω3) and docosahexaenoic (DHA, 22:6ω3) acids, has been found to cause a modest reduction in blood pressure at a dose level of >3g/d both in untreated and treated hypertensives. Whilst a multitude of mechanisms may contribute to the blood pressure lowering action of ω3 LC-PUFA, improved vascular endothelial cell function appears to play a central role. Recent studies which evaluated the potential benefits of fish oil in type-2 diabetes have helped to alleviate concerns raised in some previous studies which used relatively large dose (5-8 g/d) and reported a worsening of glycemic control. Several meta-analyses have confirmed that the most consistent action of ω3 LC-PUFA in insulin resistance and type-2 diabetes is the reduction in triglycerides. In some studies, fish oil has been found to cause a small rise in LDL-cholesterol, but a change in the LDL particle size, from the smaller more

  2. FabQ, a Dual-Function Dehydratase/Isomerase, Circumvents the Last Step of the Classical Fatty Acid Synthesis Cycle

    PubMed Central

    Bi, Hongkai; Wang, Haihong; Cronan, John E.

    2015-01-01

    SUMMARY In the classical anaerobic pathway of unsaturated fatty acid biosynthesis, that of Escherichia coli, the double bond is introduced into the growing acyl chain by the FabA dehydratase/isomerase. Another dehydratase, FabZ, functions in the chain elongation cycle. In contrast, Aerococcus viridans has only a single FabA/FabZ homolog we designate FabQ. FabQ can not only replace the function of E. coli FabZ in vivo, but it also catalyzes the isomerization required for unsaturated fatty acid biosynthesis. Most strikingly, FabQ in combination with E. coli FabB imparts the surprising ability to bypass reduction of the trans-2-acyl-ACP intermediates of classical fatty acid synthesis. FabQ allows elongation by progressive isomerization reactions to form the polyunsaturated fatty acid, 3-hydroxy-cis-5, 7-hexadecadienoic acid, both in vitro and in vivo. FabQ therefore provides a potential pathway for bacterial synthesis of polyunsaturated fatty acids. PMID:23972938

  3. N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer.

    PubMed

    Ouldamer, Lobna; Goupille, Caroline; Vildé, Anne; Arbion, Flavie; Body, Gilles; Chevalier, Stephan; Cottier, Jean Philippe; Bougnoux, Philippe

    2016-01-01

    The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality. Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality. We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality. These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.

  4. Fatty acid desaturase gene variants, cardiovascular risk factors, and myocardial infarction in the costa rica study

    USDA-ARS?s Scientific Manuscript database

    Genetic variation in fatty acid desaturases (FADS) has previously been linked to long-chain polyunsaturated fatty acids (PUFAs) in adipose tissue and cardiovascular risk. The goal of our study was to test associations between six common FADS polymorphisms (rs174556, rs3834458, rs174570, rs2524299, r...

  5. The impact of FADS genetic variants on ω6 polyunsaturated fatty acid metabolism in African Americans

    PubMed Central

    2011-01-01

    Background Arachidonic acid (AA) is a long-chain omega-6 polyunsaturated fatty acid (PUFA) synthesized from the precursor dihomo-gamma-linolenic acid (DGLA) that plays a vital role in immunity and inflammation. Variants in the Fatty Acid Desaturase (FADS) family of genes on chromosome 11q have been shown to play a role in PUFA metabolism in populations of European and Asian ancestry; no work has been done in populations of African ancestry to date. Results In this study, we report that African Americans have significantly higher circulating levels of plasma AA (p = 1.35 × 10-48) and lower DGLA levels (p = 9.80 × 10-11) than European Americans. Tests for association in N = 329 individuals across 80 nucleotide polymorphisms (SNPs) in the Fatty Acid Desaturase (FADS) locus revealed significant association with AA, DGLA and the AA/DGLA ratio, a measure of enzymatic efficiency, in both racial groups (peak signal p = 2.85 × 10-16 in African Americans, 2.68 × 10-23 in European Americans). Ancestry-related differences were observed at an upstream marker previously associated with AA levels (rs174537), wherein, 79-82% of African Americans carry two copies of the G allele compared to only 42-45% of European Americans. Importantly, the allelic effect of the G allele, which is associated with enhanced conversion of DGLA to AA, on enzymatic efficiency was similar in both groups. Conclusions We conclude that the impact of FADS genetic variants on PUFA metabolism, specifically AA levels, is likely more pronounced in African Americans due to the larger proportion of individuals carrying the genotype associated with increased FADS1 enzymatic conversion of DGLA to AA. PMID:21599946

  6. Omega-3 and omega-6 fatty acid intakes and endometrial cancer risk in a population-based case-control study.

    PubMed

    Arem, Hannah; Neuhouser, Marian L; Irwin, Melinda L; Cartmel, Brenda; Lu, Lingeng; Risch, Harvey; Mayne, Susan T; Yu, Herbert

    2013-04-01

    Animal and laboratory studies suggest that long-chain omega-3 (n-3) fatty acids, a type of polyunsaturated fat found in fatty fish, may protect against carcinogenesis, but human studies on dietary intake of polyunsaturated fats and fish with endometrial cancer risk show mixed results. We evaluated the associations between endometrial cancer risk and intake of fatty acids and fish in a population-based sample of 556 incident cancer cases and 533 age-matched controls using multivariate unconditional logistic regression methods. Although total n-3 fatty acid intake was not associated with endometrial cancer risk, higher intakes of eicosapentaenoic (EPA 20:5) and docosahexaenoic (DHA 22:6) fatty acids were significantly associated with lower risks (OR = 0.57, 95 % CI: 0.39-0.84; OR = 0.64, 95 % CI: 0.44-0.94; respectively) comparing extreme quartiles. The ratio of n-3:n-6 fatty acids was inversely associated with risk only on a continuous scale (OR = 0.84, 95 % CI: 0.71-0.99), while total fish intake was not associated with risk. Fish oil supplement use was significantly associated with reduced risk of endometrial cancer: OR = 0.63 (95 % CI: 0.45-0.88). Our results suggest that dietary intake of the long-chain polyunsaturated fatty acids EPA and DHA in foods and supplements may have protective associations against the development of endometrial cancer.

  7. Are Polyunsaturated Fatty Acids Implicated in Histaminergic Dysregulation in Bipolar Disorder?: AN HYPOTHESIS.

    PubMed

    Riveros, María E; Retamal, Mauricio A

    2018-01-01

    Bipolar disorder (BD) is an extremely disabling psychiatric disease, characterized by alternate states of mania (or hypomania) and depression with euthymic states in between. Currently, patients receive pharmacological treatment with mood stabilizers, antipsychotics, and antidepressants. Unfortunately, not all patients respond well to this type of treatment. Bipolar patients are also more prone to heart and metabolic diseases as well as a higher risk of suicide compared to the healthy population. For a correct brain function is indispensable a right protein and lipids (e.g., fatty acids) balance. In particular, the amount of fatty acids in the brain corresponds to a 50-70% of the dry weight. It has been reported that in specific brain regions of BD patients there is a reduction in the content of unsaturated n-3 fatty acids. Accordingly, a diet rich in n-3 fatty acids has beneficial effects in BD patients, while their absence or high levels of saturated fatty acids in the diet are correlated to the risk of developing the disease. On the other hand, the histamine system is likely to be involved in the pathophysiology of several psychiatric diseases such as BD. Histamine is a neuromodulator involved in arousal, motivation, and energy balance; drugs acting on the histamine receptor H3 have shown potential as antidepressants and antipsychotics. The histaminergic system as other neurotransmission systems can be altered by fatty acid membrane composition. The purpose of this review is to explore how polyunsaturated fatty acids content alterations are related to the histaminergic system modulation and their impact in BD pathophysiology.

  8. ω3-Polyunsaturated fatty acids for heart failure: Effects of dose on efficacy and novel signaling through free fatty acid receptor 4.

    PubMed

    O'Connell, Timothy D; Block, Robert C; Huang, Shue P; Shearer, Gregory C

    2017-02-01

    Heart failure (HF) affects 5.7 million in the U.S., and despite well-established pharmacologic therapy, the 5-year mortality rate remains near 50%. Furthermore, the mortality rate for HF has not declined in years, highlighting the need for new therapeutic options. Omega-3 polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are important regulators of cardiovascular health. However, questions of efficacy and mechanism of action have made the use of ω3-PUFAs in all cardiovascular disease (CVD) controversial. Here, we review recent studies in animal models of HF indicating that ω3-PUFAs, particularly EPA, are cardioprotective, with the results indicating a threshold for efficacy. We also examine clinical studies suggesting that ω3-PUFAs improve outcomes in patients with HF. Due to the relatively small number of clinical studies of ω3-PUFAs in HF, we discuss EPA concentration-dependency on outcomes in clinical trials of CVD to gain insight into the perceived questionable efficacy of ω3-PUFAs clinically, with the results again indicating a threshold for efficacy. Ultimately, we suggest that the main failing of ω3-PUFAs in clinical trials might be a failure to reach a therapeutically effective concentration. We also examine mechanistic studies suggesting that ω3-PUFAs signal through free fatty acid receptor 4 (Ffar4), a G-protein coupled receptor (GPR) for long-chain fatty acids (FA), thereby identifying an entirely novel mechanism of action for ω3-PUFA mediated cardioprotection. Finally, based on mechanistic animal studies suggesting that EPA prevents interstitial fibrosis and diastolic dysfunction, we speculate about a potential benefit for EPA-Ffar4 signaling in heart failure preserved with ejection fraction. Copyright © 2016. Published by Elsevier Ltd.

  9. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred

    2010-02-01

    The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.

  10. Long-chain omega-3 polyunsaturated fatty acid dietary intake is positively associated with bone mineral density in normal and osteopenic Spanish women

    PubMed Central

    Pedrera-Canal, Maria; Aliaga, Ignacio; Leal-Hernandez, Olga; Rico-Martin, Sergio; Canal-Macias, Maria L.

    2018-01-01

    The regular consumption of long-chain omega-3 polyunsaturated fatty acids (LCO3-PUFAs) results in general health benefits. The intake of LCO3-PUFAs has been reported to contribute to bone metabolism. We aimed to investigate the relationships between dietary intakes of LCO3-PUFAs and bone mineral density (BMD) in Spanish women aged 20–79 years old. A total of 1865 female subjects (20–79 years old) were enrolled, and lumbar (L2, L3, L3 and total spine), hip (femoral neck (FN), femoral trochanter (FT) and Ward’s triangle (WT)) bone mineral density (BMD) were measured by dual energy X-ray absorptiometry (DXA). Dietary intakes of total energy, calcium, vitamin D, alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and n-6 fatty acids (linoleic acid (LA) and arachidonic acid (AA)) were assessed by a self-administered food frequency questionnaire (FFQ). Spearman’s rank correlations between LCO3-PUFAs and BMD were estimated. Partial correlations controlling for age, weight, height, dietary calcium, vitamin D, menopausal status and energy were calculated. A multiple regression analysis was computed to assess significant associations with BMD in this population. After adjustment for potential confounding factors, there were positive correlations between ALA, EPA and DHA intake and BMD. According to the WHO diagnosis criteria for osteoporosis, in this population of normal and osteopenic women, the dietary intake of ALA was also significantly associated with BMD at the hip. In normal women, the dietary intake of DHA was also significantly associated with BMD at the lumbar spine. No significant associations between LCO3-PUFAs and BMD were detected in the lumbar spine of osteopenic or osteoporotic women. The dietary intake of LCO3-PUFAs was positively associated with BMD in Spanish women at both the hips and the lumbar spine. We highlight that the intake of LCO3-PUFAs is not significantly associated with BMD in osteoporotic women; however

  11. N-3 polyunsaturated fatty acid DHA during IVM affected oocyte developmental competence in cattle.

    PubMed

    Oseikria, Mouhamad; Elis, Sébastien; Maillard, Virginie; Corbin, Emilie; Uzbekova, Svetlana

    2016-06-01

    The positive effect of n-3 polyunsaturated fatty acids (FAs) on fertility in ruminants seems to be partly mediated through direct effects on the oocyte developmental potential. We aimed to investigate whether supplementation with physiological levels of docosahexaenoic acid (DHA, C22:6 n-3 polyunsaturated fatty acids) during IVM has an effect on oocyte maturation and in vitro embryo development in cattle. We reported that DHA (0, 1, 10, or 100 μM) had no effect on oocyte viability or maturation rate after 22-hour IVM. Incubation of oocyte-cumulus complexes with 1-μM DHA during IVM significantly increased (P < 0.05) oocyte cleavage rate as compared with control (86.1% vs. 78.8%, respectively) and the greater than 4-cell embryo rate at Day 2 after parthenogenetic activation (39.1% vs. 29.7%, respectively). Supplementation with 1 μM DHA during IVM also induced a significant increase in the blastocyst rate at Day 7 after IVF as compared with control (30.6% vs. 17.6%, respectively) and tended to increase the number of cells in the blastocysts (97.1 ± 4.9 vs. 81.2 ± 5.3, respectively; P = 0.08). On the contrary, 10-μM DHA had no effects, whereas 100-μM DHA significantly decreased the cleavage rate compared with control (69.5% vs.78.8%, respectively) and the greater than 4-cell embryo rate at Day 2 after parthenogenetic activation (19.5% vs. 29.7%). As was shown by real-time polymerase chain reaction, negative effects of 100-μM DHA were associated with significant increase of progesterone synthesis by oocyte-cumulus complexes, a three-fold increase in expression level of FA transporter CD36 and a two-fold decrease of FA synthase FASN genes in cumulus cells (CCs) of corresponding oocytes. Docosahexaenoic acid at 1 and 10 μM had no effect on expression of those and other key lipid metabolism-related genes in CC. In conclusion, administration of a low physiological dose of DHA (1 μM) during IVM may have beneficial effects on oocyte developmental

  12. Therapeutic potential of n-3 polyunsaturated fatty acids in disease.

    PubMed

    Fetterman, James W; Zdanowicz, Martin M

    2009-07-01

    The potential therapeutic benefits of supplementation with n-3 polyunsaturated fatty acids (PUFAs) in various diseases are reviewed, and the antiinflammatory actions, activity, and potential drug interactions and adverse effects of n-3 PUFAs are discussed. Fish oils are an excellent source of long-chain n-3 PUFAs, such as eicosapentaenoic acid and docosahexaenoic acid. After consumption, n-3 PUFAs can be incorporated into cell membranes and reduce the amount of arachidonic acid available for the synthesis of proinflammatory eicosanoids (e.g., prostaglandins, leukotrienes). Likewise, n-3 PUFAs can also reduce the production of inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1, and interleukin-6. Considerable research has been conducted to evaluate the potential therapeutic effects of fish oils in numerous conditions, including arthritis, coronary artery disease, inflammatory bowel disease, asthma, and sepsis, all of which have inflammation as a key component of their pathology. Additional investigations into the use of supplementation with fish oils in patients with neural injury, cancer, ocular diseases, and critical illness have recently been conducted. The most commonly reported adverse effects of fish oil supplements are a fishy aftertaste and gastrointestinal upset. When recommending an n-3 PUFA, clinicians should be aware of any possible adverse effect or drug interaction that, although not necessarily clinically significant, may occur, especially for patients who may be susceptible to increased bleeding (e.g., patients taking warfarin). The n-3 PUFAs have been shown to be efficacious in treating and preventing various diseases. The wide variation in dosages and formulations used in studies makes it difficult to recommend dosages for specific treatment goals.

  13. Validity of a food frequency questionnaire to estimate long-chain polyunsaturated fatty acid intake among Japanese women in early and late pregnancy.

    PubMed

    Kobayashi, Minatsu; Jwa, Seung Chik; Ogawa, Kohei; Morisaki, Naho; Fujiwara, Takeo

    2017-01-01

    The relative validity of food frequency questionnaires for estimating long-chain polyunsaturated fatty acid (LC-PUFA) intake among pregnant Japanese women is currently unclear. The aim of this study was to verify the external validity of a food frequency questionnaire, originally developed for non-pregnant adults, to assess the dietary intake of LC-PUFA using dietary records and serum phospholipid levels among Japanese women in early and late pregnancy. A validation study involving 188 participants in early pregnancy and 169 participants in late pregnancy was conducted. Intake LC-PUFA was estimated using a food frequency questionnaire and evaluated using a 3-day dietary record and serum phospholipid concentrations in both early and late pregnancy. The food frequency questionnaire provided estimates of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) intake with higher precision than dietary records in both early and late pregnancy. Significant correlations were observed for LC-PUFA intake estimated using dietary records in both early and late pregnancy, particularly for EPA and DHA (correlation coefficients ranged from 0.34 to 0.40, p < 0.0001). Similarly, high correlations for EPA and DHA in serum phospholipid composition were also observed in both early and late pregnancy (correlation coefficients ranged 0.27 to 0.34, p < 0.0001). Our findings suggest that the food frequency questionnaire, which was originally designed for non-pregnant adults and was evaluated in this study against dietary records and biological markers, has good validity for assessing LC-PUFA intake, especially EPA and DHA intake, among Japanese women in early and late pregnancy. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. Effects of cooking techniques on fatty acid and oxylipin content of farmed rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Rainbow trout is an excellent source of long chain omega-3 polyunsaturated fatty acids (PUFA) which have beneficial health effects. We determined the fatty acid and oxylipin content of 2-year old rainbow trout fillets that were raw, baked, broiled, microwaved, or pan-fried in corn (CO), canola (CaO...

  15. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans.

    PubMed

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M A; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-03-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Anthocyanins do not influence long-chain n-3 fatty acid status: studies in cells, rodents and humans☆

    PubMed Central

    Vauzour, David; Tejera, Noemi; O'Neill, Colette; Booz, Valeria; Jude, Baptiste; Wolf, Insa M.A.; Rigby, Neil; Silvan, Jose Manuel; Curtis, Peter J.; Cassidy, Aedin; de Pascual-Teresa, Sonia; Rimbach, Gerald; Minihane, Anne Marie

    2015-01-01

    Increased tissue status of the long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) is associated with cardiovascular and cognitive benefits. Limited epidemiological and animal data suggest that flavonoids, and specifically anthocyanins, may increase EPA and DHA levels, potentially by increasing their synthesis from the shorter-chain n-3 PUFA, α-linolenic acid. Using complimentary cell, rodent and human studies we investigated the impact of anthocyanins and anthocyanin-rich foods/extracts on plasma and tissue EPA and DHA levels and on the expression of fatty acid desaturase 2 (FADS2), which represents the rate limiting enzymes in EPA and DHA synthesis. In experiment 1, rats were fed a standard diet containing either palm oil or rapeseed oil supplemented with pure anthocyanins for 8 weeks. Retrospective fatty acid analysis was conducted on plasma samples collected from a human randomized controlled trial where participants consumed an elderberry extract for 12 weeks (experiment 2). HepG2 cells were cultured with α-linolenic acid with or without select anthocyanins and their in vivo metabolites for 24 h and 48 h (experiment 3). The fatty acid composition of the cell membranes, plasma and liver tissues were analyzed by gas chromatography. Anthocyanins and anthocyanin-rich food intake had no significant impact on EPA or DHA status or FADS2 gene expression in any model system. These data indicate little impact of dietary anthocyanins on n-3 PUFA distribution and suggest that the increasingly recognized benefits of anthocyanins are unlikely to be the result of a beneficial impact on tissue fatty acid status. PMID:25573539

  17. Selective enrichment of n-3 fatty acids in human plasma lipid motifs following intake of marine fish

    USDA-ARS?s Scientific Manuscript database

    Plasma levels of n-3 long chain polyunsaturated fatty acids (LCPUFA) are associated with a reduction in risk of cardiovascular disease and other chronic, age-related diseases like Alzheimer’s disease. In this work, we tested the hypothesis that n-3 LCPUFA fatty acids in human plasma are incorporated...

  18. Incorporation of dietary n-3 fatty acids into selective phosphatidylcholine lipids in human plasma after salmon intake

    USDA-ARS?s Scientific Manuscript database

    Elevated intake of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) is associated with reduced risk for cardiovascular disease. Intake of n-3 LCPUFA is often quantified by analysis of plasma phospholipid fatty acids (PLFA); however, the typical analysis by gas chromatography does not allow fo...

  19. Improved zeolite regeneration processes for preparing saturated branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    Ferrierite zeolite solid is an excellent catalyst for the skeletal isomerization of unsaturated linear-chain fatty acids (i.e., oleic acid) to unsaturated branched-chain fatty acids (i.e., iso-oleic acid) follow by hydrogenation to give saturated branched-chain fatty acids (i.e., isostearic acid). ...

  20. Metabolism of polyunsaturated fatty acids by mouse peritoneal macrophages: the lipoxygenase metabolic pathway.

    PubMed

    Rabinovitch, H; Durand, J; Gualde, N; Rigaud, M

    1981-12-01

    When resident macrophages from mice are incubated with exogenous polyunsaturated fatty acids, they produce lipoxygenic metabolites. To delineate this metabolic chart we used high pressure liquid chromatography and gas chromatography prior to mass spectrometry-computer system. The lipoxygenic activity of these cells leads to many compounds. Among them we describe the monohydroxylated metabolites and vicinal hydroxyepoxyenes. In the mechanism of formation of the latter unstable cyclic precursors might occur as intermediates between hydroperoxides and them. Dihydroxy compounds could arise from hydrolysis of unstable epoxide precursor which could be the second substrate of the glutathione transferase system and could lead to thioaminolipids.

  1. Biliary Polyunsaturated Fatty Acids and Telocytes in Gallstone Disease

    PubMed Central

    Pasternak, Artur; Bugajska, Jolanta; Szura, Mirosław; Walocha, Jerzy A.; Matyja, Andrzej; Gajda, Mariusz; Sztefko, Krystyna; Gil, Krzysztof

    2017-01-01

    It has been reported that intake of ω-3 polyunsaturated fatty acids (PUFAs) reduces the risk of coronary heart disease. It also influences bile composition, decreasing biliary cholesterol saturation in the bile of patients with gallstones. In addition to bile composition disturbances, gallbladder hypomotility must be a cofactor in the pathogenesis of cholelithiasis, as it leads to the prolonged nucleation phase. Our current knowledge about gallbladder motility has been enhanced by the study of a population of newly described interstitial (stromal) cells—telocytes (TCs). The purpose of this study was to determine whether TC loss, reported by our team recently, might be related to bile lithogenicity, expressed as cholesterol saturation index or the difference in biliary PUFA profiles in patients who suffer from cholecystolithiasis and those not affected by this disease. We determined biliary lipid composition including the fatty acid composition of the phospholipid species in bile. Thus, we investigated whether differences in biliary fatty acid profiles (ω-3 PUFA and ω-6 PUFA) in gallbladder bile may influence its lithogenicity and the quantity of TCs within the gallbladder wall. We conclude that the altered PUFA concentrations in the gallbladder bile, with elevation of ω-6 PUFA, constitute important factors influencing TC density in the gallbladder wall, being one of the possible pathophysiological components for the gallstone disease development. This study established that altered bile composition in patients with cholelithiasis may influence TC quantity within the gallbladder muscle, and we concluded that reduction in TC number may be a consequence of the supersaturated bile toxicity, while some other bile components (ω-3 PUFA, glycocholic, and taurocholic acids) may exert protective effects on TC and thus possibly influence the mechanisms regulating gallbladder and extrahepatic bile duct motility. Thus, ω-3 PUFA may represent a possible option to prevent

  2. Polyunsaturated fatty acids effect on serum triglycerides concentration in presence of metabolic syndrome components. The Alaska-Siberia Project

    PubMed Central

    Lopez-Alvarenga, Juan C.; Ebbesson, Sven O E; Ebbesson, Lars O E; Tejero, M Elizabeth; Voruganti, V. Saroja; Comuzzie, Anthony G

    2009-01-01

    Serum fatty acids (FA) have wide effects on metabolism: Serum saturated fatty acids (SFA) increase triglyceride (TG) levels in plasma while polyunsaturated fatty acids (PUFA) reduce them. Traditionally, Eskimos have a high consumption of omega -3 fatty acids (ω–3 FA), but the westernization of their food habits have increased their dietary SFAs, partly reflected in their serum concentrations. We studied the joint effect of serum SFAs and PUFAs on circulating levels of TG in the presence of metabolic syndrome components. We included 212 men and 240 women (age 47.9±15.7 y, BMI 26.9±5.3) from four villages located in Alaska for a cross sectional study. Generalized linear models were employed to build surface responses of TG as in functions of SFAs and PUFAs measured in blood samples adjusting by sex, BMI and village. The effects of individual FAs were assessed by multiple linear regression analysis and partial correlations (r) were calculated. The most important predictors for TG levels were glucose tolerance (r = 0.116, p = 0.018) and BMI (r = 0.42, p<0.001). TG concentration showed negative associations with 20:3ω-6 (r =− 0.16, p = 0.001), 20:4ω-6 (r = −0.14, p=0.005), 20:5ω-3 (r = −0.17, p<0.001) and 22:5ω-3 (r = −0.26, p<0.001), and positive associations with palmitic acid (r = 0.16, p<0.001) and 18:3ω-3 (r = 0.15, p<0.001). The surface response analysis suggested that the effect of palmitic acid on TG is blunted in different degrees according to the PUFA chemical structure. The long chain ω-3, even in presence of high levels of SF, was associated with lower triglyceride levels. Eicosapentanoic acid (20:5ω3) had the strongest effect against palmitic acid on TG. The total FA showed moderate association with levels of TG, while SFA was positively associated, and large chain PUFA negatively. The westernized dietary habits among Eskimos are likely to change their metabolic profile and increase comorbidities related to metabolic disease. PMID

  3. Incorporation of Dairy Lipids in the Diet Increased Long-Chain Omega-3 Fatty Acids Status in Post-weaning Rats

    PubMed Central

    Drouin, Gaetan; Catheline, Daniel; Sinquin, Annaëlle; Baudry, Charlotte; Le Ruyet, Pascale; Rioux, Vincent; Legrand, Philippe

    2018-01-01

    In human nutrition, optimized the status of n-3 long-chain polyunsaturated fatty acids (LCPUFA) and especially docosahexaenoic acid (DHA) during growth appears to be one of the most important goal. We investigated the potential impact of a partial incorporation of dairy lipids (DL) in the diet to increase the n-3 LCPUFA content in tissues, compared to a mixture of vegetable oils. Rats were fed with vegetable oil diet or DL diet, supplemented or not supplemented with DHA, from weaning for 6 weeks. All diets provided the same quantity of 2.3% of total fatty acids of precursor α-linolenic acid. LCPUFA levels in brain, retina, liver, heart, red blood cells and epididymal adipose tissue, Δ-6 desaturase activity and mRNA expression in liver, and plasma cholesterol were measured. Rats fed a DL diet increased their DHA content in brain and retina compared with rats fed a vegetable oil diet and reached the same level than rats directly supplemented with DHA. The status of n-3 docosapentaenoic acid increased with DL diet in heart, red blood cells and liver. The n-3 docosapentaenoic acid specifically discriminated DL diets in the heart. DL diet increased α-linolenic acid content in liver and epididymal adipose tissue, provided specific fatty acids as short- and medium-chain fatty acids and myristic acid, and increased plasma cholesterol. We hypothesized that dairy lipids may increase the n-3 LCPUFA enrichment in tissues by preserving precursor α-linolenic acid from β-mitochondrial oxidation, associated with the presence of short- and medium-chain fatty acids in DL diets. In conclusion, a partial incorporation of dairy lipids in the diet with an adequate α-linolenic acid content improved the n-3 LCPUFA status, especially DHA in brain and retina. PMID:29876354

  4. Determination of Double Bond Positions in Polyunsaturated Fatty Acids Using the Photochemical Paternò-Büchi Reaction with Acetone and Tandem Mass Spectrometry.

    PubMed

    Murphy, Robert C; Okuno, Toshiaki; Johnson, Christopher A; Barkley, Robert M

    2017-08-15

    The positions of double bonds along the carbon chain of methylene interrupted polyunsaturated fatty acids are unique identifiers of specific fatty acids derived from biochemical reactions that occur in cells. It is possible to obtain direct structural information as to these double bond positions using tandem mass spectrometry after collisional activation of the carboxylate anions of an acetone adduct at each of the double bond positions formed by the photochemical Paternò-Büchi reaction with acetone. This reaction can be carried out by exposing a small portion of an inline fused silica capillary to UV photons from a mercury vapor lamp as the sample is infused into the electrospray ion source of a mass spectrometer. Collisional activation of [M - H] - yields a series of reverse Paternò-Büchi reaction product ions that essentially are derived from cleavage of the original carbon-carbon double bonds that yield an isopropenyl carboxylate anion corresponding to each double bond location. Aldehydic reverse Paternò-Büchi product ions are much less abundant as the carbon chain length and number of double bonds increase. The use of a mixture of D 0 /D 6 -acetone facilitates identification of these double bonds indicating product ions as shown for arachidonic acid. If oxygen is present in the solvent stream undergoing UV photoactivation, ozone cleavage ions are also observed without prior collisional activation. This reaction was used to determine the double bond positions in a 20:3 fatty acid that accumulated in phospholipids of RAW 264.7 cells cultured for 3 days.

  5. Rotator cuff tendinopathy: is there a role for polyunsaturated Fatty acids and antioxidants?

    PubMed

    Lewis, Jeremy S; Sandford, Fiona M

    2009-01-01

    Despite the lack of robust evidence, there has been a steady increase in the use of dietary supplements, including Omega 3 fatty acids and antioxidants, in the management of musculoskeletal conditions. One reason for this is that unsatisfactory outcomes with conventional treatments have lead sufferers to seek alternative solutions including the use of nutritional supplements. In the United Kingdom alone, the current supplement market is estimated to be over 300 pounds million per annum. One target market for nutritional supplements is tendinopathies including conditions involving the rotator cuff. This condition is debilitating and associated with considerable morbidity. Incidence increases with advancing age. High levels of cytokines, such as the pro-inflammatory interleukin 1 beta and vascular endothelial growth factor, have been reported within the bursa of patients with rotator cuff disease. There is also evidence that high concentrations of free-radical oxidants may also be involved in tendon pathology. Therefore, the possibility exists that dietary supplements may have a beneficial effect on tendon pathology, including that of the rotator cuff. A review was conducted to synthesize the available research literature on the histopathology of rotator cuff disease and the effectiveness of polyunsaturated fatty acids (PUFAs) and antioxidants on tendinopathies. A search was conducted using the MEDLINE, CINAHL, AMED, EMBASE, Cochrane, and PEDro databases using the terms "rotator cuff" and "tear/s" and "subacromial impingement syndrome," "burase," "bursitis," "tendinopathy," "tendinitis," "tendinosis," "polyunsaturated fatty acids," "PUFA," "Omega 3," "histopathology," "etiology," and "antioxidants." English language was an inclusion criterion. There were no randomized clinical trials found relating specifically to the rotator cuff. Only one trial was found that investigated the efficacy of PUFAs and antioxidants on tendinopathies. The findings suggest that some (low

  6. Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis

    PubMed Central

    Eijkelkamp, Bart A.; Begg, Stephanie L.; Pederick, Victoria G.; Trapetti, Claudia; Gregory, Melissa K.; Whittall, Jonathan J.; Paton, James C.; McDevitt, Christopher A.

    2018-01-01

    Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections. PMID:29867785

  7. Simple, effective protein extraction method and proteomics analysis from polyunsaturated fatty acids-producing micro-organisms.

    PubMed

    Ling, Xueping; Guo, Jing; Zheng, Chuqiang; Ye, Chiming; Lu, Yinghua; Pan, Xueshan; Chen, Zhengqi; Ng, I-Son

    2015-12-01

    Polyunsaturated fatty acids (PUFAs) are valuable ingredients in the food and pharmaceutical products due to their beneficial influence on human health. Most studies paid attention on the production of PUFAs from oleaginous micro-organisms but seldom on the comparative proteomics of cells. In the study, three methods (i.e., cold shock, acetone precipitation and ethanol precipitation) for lipid removal from crude protein extracts were applied in different PUFAs-producing micro-organisms. Among the selective strains, Schizochytrium was used as an oleaginous strain with high lipid of 60.3 (w/w%) in biomass. The Mortierella alpina and Cunninghamella echinulata were chosen as the low-lipid-content strains with 25.8 (w/w%) and 21.8 (w/w%) of lipid in biomass, respectively. The cold shock resulted as the most effective method for lipid removed, thus obtained higher protein amount for Schizochytrium. Moreover, from the comparative proteomics for the three PUFAs-producing strains, it showed more significant proteins of up or down-regulation were explored under cold shock treatment. Therefore, the essential proteins (i.e., polyunsaturated fatty acid synthase) and regulating proteins were observed. In conclusion, this study provides a valuable and practical approach for analysis of high PUFAs-producing strains at the proteomics level, and would further accelerate the understanding of the metabolic flux in oleaginous micro-organisms.

  8. Very Long Chain Fatty Acids Are Functionally Involved in Necroptosis.

    PubMed

    Parisi, Laura R; Li, Nasi; Atilla-Gokcumen, G Ekin

    2017-12-21

    Necroptosis is a form of regulated cell death that is linked to various human diseases. Distinct membrane-related, thus lipid-dependent, alterations take place during necroptosis. However, little is known about the roles of specific lipids in this process. We used an untargeted LC-MS-based approach to reveal that distinct lipid species are regulated at the molecular level during necroptosis. We found that ceramides and very long chain fatty acids accumulate during this process. Intrigued by the specificity of very long chain fatty acid accumulation, we focused on characterizing their involvement during necroptosis. Biochemical characterizations suggested that activated fatty acid biosynthesis and elongation could be responsible for these accumulations. We further showed that inhibition of fatty acid biosynthesis and depletion of very long chain fatty acids prevented loss of plasma membrane integrity and cell death, strongly suggesting that very long chain fatty acids are functionally involved in necroptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cognitive antecedents of consumers' willingness to purchase fish rich in polyunsaturated fatty acids (PUFA).

    PubMed

    Foxall, G; Leek, S; Maddock, S

    1998-12-01

    A sample of UK consumers (N = 311) was interviewed in order to identify the attitudinal, cognitive and involvement characteristics of probable early adopters of polyunsaturated fatty acid (PUFA) fed fish. Attitude to fish significantly influenced PUFA fish, premium price PUFA fish, PUFA salmon, PUFA eel and PUFA sturgeon purchase. Involvement in healthy eating influenced PUFA fish, premium price PUFA fish and PUFA salmon purchase. Cognitive style did not influence PUFA fish and premium price PUFA fish purchase; nor, contrary to earlier research, did cognitive style and involvement interact to influence intended PUFA fish purchases.

  10. Tissue Fatty Acid Profile is Differently Modulated from Olive Oil and Omega-3 Polyunsaturated Fatty Acids in ApcMin/+ Mice.

    PubMed

    Tutino, Valeria; Caruso, Maria G; De Leonardis, Giampiero; De Nunzio, Valentina; Notarnicola, Maria

    2017-11-16

    Fatty acid profile can be considered an appropriate biomarker for investigating the relations between the patterns of fatty acid metabolism and specific diseases, as cancer, cardiovascular and degenerative diseases. Aim of this study was to test the effects of diets enriched with olive oil and omega-3 Polyunsaturated Fatty Acids (PUFAs) on fatty acid profile in intestinal tissue of ApcMin/+ mice. Three groups of animals were considered: control group, receiving a standard diet; olive oilgroup, receiving a standard diet enriched with olive oil; omega-3 group, receiving a standard diet enriched with salmon fish. Tissue fatty acid profile was evaluated by gas chromatography method. Olive oil and omega-3 PUFAs in the diet differently affect the tissue fatty acid profile. Compared to control group, the levels of Saturated Fatty Acids (SFAs) were lower in olive oil group, while an increase of SFAs was found in omega-3 group. Monounsaturated Fatty Acids (MUFAs) levels were enhanced after olive oil treatment, and in particular, a significant increase of oleic acid levels was detected; MUFAs levels were instead reduced in omega-3 group in line with the decrease of oleic acid levels. The total PUFAs levels were lower in olive oil respect to control group. Moreover, a significant induction of Saturation Index (SI) levels was observed after omega-3 PUFAs treatment, while its levels were reduced in mice fed with olive oil. Our data demonstrated a different effect of olive oil and omega-3 PUFAs on tissue lipid profile in APCMin/+ mice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota.

    PubMed

    Watson, Henry; Mitra, Suparna; Croden, Fiona C; Taylor, Morag; Wood, Henry M; Perry, Sarah L; Spencer, Jade A; Quirke, Phil; Toogood, Giles J; Lawton, Clare L; Dye, Louise; Loadman, Paul M; Hull, Mark A

    2017-09-26

    Omega-3 polyunsaturated fatty acids (PUFAs) have anticolorectal cancer (CRC) activity. The intestinal microbiota has been implicated in colorectal carcinogenesis. Dietary omega-3 PUFAs alter the mouse intestinal microbiome compatible with antineoplastic activity. Therefore, we investigated the effect of omega-3 PUFA supplements on the faecal microbiome in middle-aged, healthy volunteers (n=22). A randomised, open-label, cross-over trial of 8 weeks' treatment with 4 g mixed eicosapentaenoic acid/docosahexaenoic acid in two formulations (soft-gel capsules and Smartfish drinks), separated by a 12-week 'washout' period. Faecal samples were collected at five time-points for microbiome analysis by 16S ribosomal RNA PCR and Illumina MiSeq sequencing. Red blood cell (RBC) fatty acid analysis was performed by liquid chromatography tandem mass spectrometry. Both omega-3 PUFA formulations induced similar changes in RBC fatty acid content, except that drinks were associated with a larger, and more prolonged, decrease in omega-6 PUFA arachidonic acid than the capsule intervention (p=0.02). There were no significant changes in α or β diversity, or phyla composition, associated with omega-3 PUFA supplementation. However, a reversible increased abundance of several genera, including Bifidobacterium , Roseburia and Lactobacillus was observed with one or both omega-3 PUFA interventions. Microbiome changes did not correlate with RBC omega-3 PUFA incorporation or development of omega-3 PUFA-induced diarrhoea. There were no treatment order effects. Omega-3 PUFA supplementation induces a reversible increase in several short-chain fatty acid-producing bacteria, independently of the method of administration. There is no simple relationship between the intestinal microbiome and systemic omega-3 PUFA exposure. ISRCTN18662143. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless

  12. Expression of dehydratase domains from a polyunsaturated fatty acid synthase increases the production of fatty acids in Escherichia coli.

    PubMed

    Oyola-Robles, Delise; Rullán-Lind, Carlos; Carballeira, Néstor M; Baerga-Ortiz, Abel

    2014-02-05

    Increasing the production of fatty acids by microbial fermentation remains an important step toward the generation of biodiesel and other portable liquid fuels. In this work, we report an Escherichia coli strain engineered to overexpress a fragment consisting of four dehydratase domains from the polyunsaturated fatty acid (PUFA) synthase enzyme complex from the deep-sea bacterium, Photobacterium profundum. The DH1-DH2-UMA enzyme fragment was excised from its natural context within a multi-enzyme PKS and expressed as a stand-alone protein. Fatty acids were extracted from the cell pellet, esterified with methanol and quantified by GC-MS analysis. Results show that the E. coli strain expressing the DH tetradomain fragment was capable of producing up to a 5-fold increase (80.31 mg total FA/L culture) in total fatty acids over the negative control strain lacking the recombinant enzyme. The enhancement in production was observed across the board for all the fatty acids that are typically made by E. coli. The overexpression of the DH tetradomain did not affect E. coli cell growth, thus showing that the observed enhancement in fatty acid production was not a result of effects associated with cell density. The observed enhancement was more pronounced at lower temperatures (3.8-fold at 16 °C, 3.5-fold at 22 °C and 1.5-fold at 30 °C) and supplementation of the media with 0.4% glycerol did not result in an increase in fatty acid production. All these results taken together suggest that either the dehydration of fatty acid intermediates are a limiting step in the E. coli fatty acid biosynthesis machinery, or that the recombinant dehydratase domains used in this study are also capable of catalyzing thioester hydrolysis of the final products. The enzyme in this report is a new tool which could be incorporated into other existing strategies aimed at improving fatty acid production in bacterial fermentations toward accessible biodiesel precursors. Copyright © 2013 Elsevier Inc

  13. Health information impact on the relative importance of beef attributes including its enrichment with polyunsaturated fatty acids (omega-3 and conjugated linoleic acid).

    PubMed

    Kallas, Zein; Realini, Carolina E; Gil, José Maria

    2014-08-01

    This paper uses Choice Experiments (CE) to investigate Spanish consumers' preferences towards beef meat enriched with polyunsaturated fatty acids (omega-3 and conjugated linoleic acid). Data were gathered from self-completed questionnaires in a controlled environment with two different samples (320 and 322 consumers) differentiated by the information received. The surveys were carried out in three main Spanish cities (Barcelona, Zaragoza and Pamplona), representing the average consumer. A variation of the "Dual Response Choice Experiments" (DRCE) design was used due to its ability to emphasize the purchase context. Results showed that consumers who received information attach higher preference for enriched meat with polyunsaturated fatty acids. The utility associated with the higher content of fat increase for informed consumers, showing a substitute effect. Informed consumers are willing to accept meat with a higher amount of visible fat if it is enriched with beneficial fatty acids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Pathways of Polyunsaturated Fatty Acid Utilization: Implications for Brain Function in Neuropsychiatric Health and Disease

    PubMed Central

    Liu, Joanne J.; Green, Pnina; Mann, J. John; Rapoport, Stanley I.; Sublette, M. Elizabeth

    2014-01-01

    Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer’s disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease. PMID:25498862

  15. Development of rabbit meat products fortified with n-3 polyunsaturated fatty acids.

    PubMed

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-02-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a "functional food" by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA.

  16. Development of Rabbit Meat Products Fortified With n-3 Polyunsaturated Fatty Acids

    PubMed Central

    Petracci, Massimiliano; Bianchi, Maurizio; Cavani, Claudio

    2009-01-01

    Rabbit meat is a highly digestible, tasty, low-calorie food, often recommended by nutritionists over other meats. Currently research in the rabbit sector is interested in developing feeding strategies aiming to further increase the nutritional value of rabbit meat as a “functional food” by including n-3 polyunsaturated fatty acids (n-3 PUFA), conjugated linoleic acid (CLA), vitamins and antioxidants in rabbit diets and assessing their effects on both raw and stored/processed meat quality properties. Our recent studies indicate that the dietary inclusion from 3 to 6% of linseed might be considered as a way to achieve the enrichment of the meat with α-linolenic acid and to guarantee satisfactory product stability during further processing and storage. Considering that 6% dietary linseed corresponds to a n-3 PUFA content of 8.5% of the total fatty acids and a lipid content of 4.7 g/100 g of leg meat, a content of 396 mg n-3 PUFA/100g meat can be estimated, which represents about 19% of the recommended daily allowance (RDA) for n-3 PUFA. PMID:22253971

  17. Polyphenol fatty acid esters as serine protease inhibitors: a quantum-chemical QSAR analysis.

    PubMed

    Viskupicova, Jana; Danihelova, Martina; Majekova, Magdalena; Liptaj, Tibor; Sturdik, Ernest

    2012-12-01

    We investigated the ability of polyphenol fatty acid esters to inhibit the activity of serine proteases trypsin, thrombin, elastase and urokinase. Potent protease inhibition in micromolar range was displayed by rutin and rutin derivatives esterified with medium and long chain, mono- and polyunsaturated fatty acids (1e-m), followed by phloridzin and esculin esters with medium and long fatty acid chain length (2a-d, 3a-d), while unmodified compounds showed only little or no effect. QSAR study of the compounds tested provided the most significant parameters for individual inhibition activities, i.e. number of hydrogen bond donors for urokinase, molecular volume for thrombin, and solvation energy for elastase. According to the statistical analysis, the action of elastase inhibitors is opposed to those of urokinase and thrombin. Cluster analysis showed two groups of compounds: original polyphenols together with rutin esters with short fatty acid chain length and rutin esters with long fatty acid chain length.

  18. Supplementation with N-3 Long-Chain Polyunsaturated Fatty Acids or Olive Oil in Men and Women with Renal Disease Induces Differential Changes in the DNA Methylation of FADS2 and ELOVL5 in Peripheral Blood Mononuclear Cells

    PubMed Central

    Hoile, Samuel P.; Clarke-Harris, Rebecca; Huang, Rae-Chi; Calder, Philip C.; Mori, Trevor A.; Beilin, Lawrence J.; Lillycrop, Karen A.; Burdge, Graham C.

    2014-01-01

    Background Studies in animal models and in cultured cells have shown that fatty acids can induce alterations in the DNA methylation of specific genes. There have been no studies of the effects of fatty acid supplementation on the epigenetic regulation of genes in adult humans. Methods and Results We investigated the effect of supplementing renal patients with 4 g daily of either n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA) or olive oil (OO) for 8 weeks on the methylation status of individual CpG loci in the 5′ regulatory region of genes involved in PUFA biosynthesis in peripheral blood mononuclear cells from men and women (aged 53 to 63 years). OO and n-3 LCPUFA each altered (>10% difference in methylation) 2/22 fatty acid desaturase (FADS)-2 CpGs, while n-3 LCPUFA, but not OO, altered (>10%) 1/12 ELOVL5 CpGs in men. OO altered (>6%) 8/22 FADS2 CpGs and (>3%) 3/12 elongase (ELOVL)-5 CpGs, while n-3 LCPUFA altered (>5%) 3/22 FADS2 CpGs and 2/12 (>3%) ELOVL5 CpGs in women. FADS1 or ELOVL2 methylation was unchanged. The n-3 PUFA supplementation findings were replicated in blood DNA from healthy adults (aged 23 to 30 years). The methylation status of the altered CpGs in FADS2 and ELOVL5 was associated negatively with the level of their transcripts. Conclusions These findings show that modest fatty acid supplementation can induce altered methylation of specific CpG loci in adult humans, contingent on the nature of the supplement and on sex. This has implications for understanding the effect of fatty acids on PUFA metabolism and cell function. PMID:25329159

  19. Does perinatal omega-3 polyunsaturated fatty acid deficiency increase appetite signaling?

    PubMed

    Mathai, Michael L; Soueid, Mona; Chen, Nora; Jayasooriya, Anura P; Sinclair, Andrew J; Wlodek, Mary E; Weisinger, Harrison S; Weisinger, Richard S

    2004-11-01

    To investigate the effect of maternal dietary omega-3 polyunsaturated fatty acid (PUFA) deficiency and repletion on food appetite signaling. Sprague-Dawley rat dams were maintained on diets either supplemented with (CON) or deficient in (DEF) omega-3 PUFA. All offspring were raised on the maternal diet until weaning. After weaning, two groups remained on the respective maternal diet (CON and DEF groups), whereas a third group, born of dams fed the DEF diet, were switched to the CON diet (REC). Experiments on food intake began when the male rats reached 16 weeks of age. Food intake was stimulated either by a period of food restriction, by blocking glucose utilization (by 2-deoxyglucose injection), or by blocking beta-oxidation of fatty acids (by beta-mercaptoacetate injection). DEF animals consumed more than CON animals in response to all stimuli, with the greatest difference (1.9-fold) demonstrated following administration of 2-deoxyglucose. REC animals also consumed more than CON animals in response to food restriction and 2-deoxyglucose but not to beta-mercaptoacetate. These findings indicate that supply of omega-3 PUFA, particularly during the perinatal period, plays a role in the normal development of mechanisms controlling food intake, especially glucoprivic (i.e. reduced glucose availability) appetite signaling. Dietary repletion of omega-3 PUFA from 3 weeks of age restored intake responses to fatty acid metabolite signaling but did not reverse those in response to food restriction or glucoprivic stimuli.

  20. Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder.

    PubMed

    McNamara, Robert K; Welge, Jeffrey A

    2016-05-01

    Dietary deficiency in polyunsaturated fatty acids (PUFAs), including the omega-3 fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), and excesses in omega-6 fatty acids, including linoleic acid (LA; 18:2n-6) and arachidonic acid (AA; 20:4n-6), may be associated with the pathophysiology of bipolar disorder. In an effort to provide clarification regarding the relationship between PUFA biostatus and bipolar disorder, this meta-analysis investigated studies comparing erythrocyte (red blood cell) membrane PUFA composition in patients with bipolar disorder and healthy controls. A meta-analysis was performed on case-control studies comparing erythrocyte PUFA (EPA, DHA, LA and AA) levels in patients with bipolar I disorder and healthy controls. Standardized effect sizes were calculated and combined using a random effects model. Six eligible case-control studies comprising n = 118 bipolar I patients and n = 147 healthy controls were included in the analysis. Compared with healthy controls, patients with bipolar I disorder exhibited robust erythrocyte DHA deficits (p = 0.0008) and there was a trend for lower EPA (p = 0.086). There were no significant differences in LA (p = 0.42) or AA (p = 0.64). Bipolar I disorder is associated with robust erythrocyte DHA deficits. These findings add to a growing body of evidence implicating omega-3 PUFA deficiency in the pathophysiology of bipolar disorder. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Genetic and epigenetic transgenerational implications related to omega-3 fatty acids. Part I: maternal FADS2 genotype and DNA methylation correlate with polyunsaturated fatty acid status in toddlers: an exploratory analysis.

    PubMed

    Lupu, Daniel S; Cheatham, Carol L; Corbin, Karen D; Niculescu, Mihai D

    2015-11-01

    Polyunsaturated fatty acid metabolism in toddlers is regulated by a complex network of interacting factors. The contribution of maternal genetic and epigenetic makeup to this milieu is not well understood. In a cohort of mothers and toddlers 16 months of age (n = 65 mother-child pairs), we investigated the association between maternal genetic and epigenetic fatty acid desaturase 2 (FADS2) profiles and toddlers' n-6 and n-3 fatty acid metabolism. FADS2 rs174575 variation and DNA methylation status were interrogated in mothers and toddlers, as well as food intake and plasma fatty acid concentrations in toddlers. A multivariate fit model indicated that maternal rs174575 genotype, combined with DNA methylation, can predict α-linolenic acid plasma concentration in all toddlers and arachidonic acid concentrations in boys. Arachidonic acid intake was predictive for its plasma concentration in girls, whereas intake of 3 major n-3 species (eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were predictive for their plasma concentrations in boys. FADS2 genotype and DNA methylation in toddlers were not related to plasma concentrations or food intakes, except for CpG8 methylation. Maternal FADS2 methylation was a predictor for the boys' α-linolenic acid intakes. This exploratory study suggests that maternal FADS2 genetic and epigenetic status could be related to toddlers' polyunsaturated fatty acid metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Attenuation of lead neurotoxicity by supplementation of polyunsaturated fatty acid in Wistar rats.

    PubMed

    Singh, Pramod Kumar; Nath, Rajendra; Ahmad, Mohammad Kaleem; Rawat, Akash; Babu, Suresh; Dixit, Rakesh Kumar

    2016-11-01

    Among various types of polyunsaturated fatty acid (PUFA), omega-3 fatty acids play a crucial role in development and function of the brain. This study was undertaken to investigate the possible neuroprotective efficacy of omega-3 fatty acid on lead-induced neurotoxicity in rats. The experiment was carried out on 32 male Wistar rats divided into four groups. The first group (control) was treated with distilled water and second group with lead acetate at the doses of 3 mg/kg b.wt. (body weight)/oral, whereas third and fourth groups were simultaneously treated with lead acetate (3 mg/kg b.wt.) plus omega-3 fatty acid (300 mg/kg b.wt./oral) and lead acetate (3 mg/kg b.wt.) plus vitamin E (100 mg/kg b.wt./oral), respectively, for a period of 90 days. Their biochemical and histopathological investigations have been carried out. The level of lead was markedly elevated in brain (4.71-fold) and blood (5.65-fold), also increased levels of ROS, GSH, LPO with concomitant reduction in the activities of delta-ALAD, CAT, SOD, and GPx. In addition, lead-induced brain damage was indicated by histopathological changes. Omega-3 fatty acid resulted in marked improvement in most of the biochemical parameters as well as histopathological changes in rats. The results obtained were compared with vitamin E as the standard antioxidant agents. Omega-3 fatty acid significantly (P < 0.05) decreased the effect of lead-induced brain damage as well as biochemical changes similar to that of standard drug, vitamin E. So, our result suggested that omega-3 fatty acid may play a protective role in lead-induced neurotoxicity and associated human health risk.

  3. No effect of adding dairy lipids or long chain polyunsaturated fatty acids on formula tolerance and growth in full term infants: a randomized controlled trial.

    PubMed

    Gianni, Maria Lorella; Roggero, Paola; Baudry, Charlotte; Fressange-Mazda, Catherine; le Ruyet, Pascale; Mosca, Fabio

    2018-01-22

    When breastfeeding is not possible, infants are fed formulas in which lipids are usually of plant origin. However, the use of dairy fat in combination with plant oils enables a lipid profile in formula closer to breast milk in terms of fatty acid composition, triglyceride structure and cholesterol content. The objectives of this study were to investigate the impact on growth and gastrointestinal tolerance of a formula containing a mix of dairy lipids and plant oils in healthy infants. This study was a monocentric, double-blind, controlled, randomized trial. Healthy term infants aged less than 3 weeks whose mothers did not breastfeed were randomly allocated to formula containing either: a mix of plant oils and dairy fat (D), only plant oils (P) or plant oils supplemented with long-chain polyunsaturated fatty acids (PDHA). Breastfed infants were included in a reference group (BF). Anthropometric parameters and body composition were measured after 2 and 4 months. Gastrointestinal tolerance was evaluated during 2 day-periods after 1 and 3 months thanks to descriptive parameters reported by parents. Nonrandomized BF infants were not included in the statistical analysis. Eighty eight formula-fed and 29 BF infants were enrolled. Gains of weight, recumbent length, cranial circumference and fat mass were similar between the 3 formula-fed groups at 2 and 4 months and close to those of BF. Z-scores for weight, recumbent length and cranial circumference in all groups were within normal ranges for growth standards. No significant differences were noted among the 3 formula groups in gastrointestinal parameters (stool frequency/consistency/color), occurrence of gastrointestinal symptoms (abdominal pain, flatulence, regurgitation) or infant's behavior. A formula containing a mix of dairy lipids and plant oils enables a normal growth in healthy newborns. This formula is well tolerated and does not lead to abnormal gastrointestinal symptoms. Consequently, reintroduction of

  4. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  5. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  6. Long chain polyunsaturated fatty acid supplementation in infants born at term.

    PubMed

    Jasani, Bonny; Simmer, Karen; Patole, Sanjay K; Rao, Shripada C

    2017-03-10

    The long chain polyunsaturated fatty acids (LCPUFA) docosahexaenoic acid (DHA) and arachidonic acid (AA) are considered essential for maturation of the developing brain, retina and other organs in newborn infants. Standard infant milk formulae are not supplemented with LCPUFA; they contain only alpha-linolenic acid and linoleic acid, from which formula-fed infants must synthesise their own DHA and AA, respectively. Over the past few years, some manufacturers have added LCPUFA to formula milk and have marketed these products as providing an advantage for the overall development of full-term infants. To assess whether supplementation of formula milk with LCPUFA is both safe and beneficial for full-term infants, while focusing on effects on visual function, neurodevelopment and physical growth. Two review authors independently searched the Cochrane Central Register of Controlled Trials (CENTRAL; December 2016), MEDLINE (Ovid, 1966 to December 2016), Embase (Ovid, 1980 to December 2016), the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1980 to December 2016) and abstracts of the Pediatric Academic Societies (2000 to 2016). We applied no language restrictions. We reviewed all randomised controlled trials (RCTs) evaluating effects of LCPUFA supplemented versus non-supplemented formula milk on visual function, neurodevelopment and physical growth. We did not include trials reporting only biochemical outcomes. Two review authors extracted data independently. We assessed risk of bias of included studies using the guidelines of the Cochrane Neonatal Review Group. When appropriate, we conducted meta-analysis to determine a pooled estimate of effect. We identified 31 RCTs and included 15 of these in the review (N = 1889).Nine studies assessed visual acuity, six of which used visual evoked potentials (VEP), two Teller cards and one both. Four studies reported beneficial effects, and the remaining five did not. Meta-analysis of three RCTs showed significant

  7. Fatty acid and hydrocarbon composition in tropical marine Shewanella amazonensis strain SB2B(T).

    PubMed

    Motoigi, Taro; Okuyama, Hidetoshi

    2011-10-01

    Shewanella amazonensis strain SB2B(T) is an isolate from shallow-water marine sediments derived from the Amazon River delta. This bacterium contained a long-chain polyunsaturated hydrocarbon, all-cis -3,6,9,12,16,19,22,25,28 hentriacontanonaene (C31:9), constituting 1-2% of the total fatty acid methyl ester and hydrocarbon fraction, which was produced dependently of decreased growth temperature. Analysis of its cellular fatty acid composition demonstrated that isopentadecanoic acid was the major fatty acid component and that all the main monounsaturated fatty acids had straight chains with a cis configuration. However, monoenoic cyclopropyl fatty acids, which were previously reported to be present in this bacterium, were not detected by mass spectrometric analysis. The growth temperature affected the content of Δ9-cis -hexadecenoic [16:1(Δ9c)], palmitic, and heptadecanoic acids. These results suggest that C31:9, as well as 16:1(Δ9c) might be involved in adaptation to low temperature in S. amazonensis strain SB2B(T) . Our result suggests that polyunsaturated fatty acid synthase protein complex may be involved in synthesis of C31:9 but not in production of eicosapentaenoic acid. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Correlates of whole-blood polyunsaturated fatty acids among young children with moderate acute malnutrition.

    PubMed

    Yaméogo, C W; Cichon, B; Fabiansen, C; Rytter, M J H; Faurholt-Jepsen, D; Stark, K D; Briend, A; Shepherd, S; Traoré, A S; Christensen, V B; Michaelsen, K F; Friis, H; Lauritzen, L

    2017-07-13

    Severe acute malnutrition (SAM) has been associated with low polyunsaturated fatty acid (PUFA) status. However, investigations regarding PUFA status and correlates in children with moderate acute malnutrition (MAM) from low-income countries are scarce. The aim of this study was to describe whole-blood PUFA levels in children with moderate acute malnutrition (MAM) and to identify correlates of PUFAs. We conducted a cross-sectional study using baseline data from a prospective nutritional intervention trial among 1609 children with MAM aged 6-23 months in Burkina Faso,West Africa. Whole-blood PUFAs were measured by gas chromatography and expressed as percent of total whole-blood fatty acids (FA%). Potential correlates of PUFAs including infection, inflammation, hemoglobin, anthropometry (difference between children diagnosed as having MAM based on low mid-upper-arm-circumference (MUAC) only, low MUAC and weight-for-height z-score (WHZ), or low WHZ only) and diet were assessed by linear regression adjusted for age and sex. Children with MAM had low concentrations of whole-blood PUFAs, particularly n-3 PUFAs. Moreover, children diagnosed with MAM based only on low MUAC had 0.32 (95% confidence interval (CI), 0.14; 0.50) and 0.40 (95% CI, 0.16; 0.63) FA% lower arachidonic acid (AA) than those recruited based on both low WHZ as well as low MUAC and those recruited with low WHZ only, respectively. Infection and inflammation were associated with low levels of all long-chain (LC)-PUFAs, while hemoglobin was positively associated with whole-blood LC-PUFAs. While PUFA deficiency was not a general problem, overall whole-blood PUFA concentrations, especially of n-3 PUFAs, were low. Infection, inflammation, hemoglobin, anthropometry and diet were correlates of PUFAs concentrations in children with MAM. The trial is registered at http://www.isrctn.com ( ISRCTN42569496 ).

  9. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions.

    PubMed

    Giordano, Elena; Visioli, Francesco

    2014-01-01

    Several lines of investigation are being developed to assess the impact of polyunsaturated fatty acids, namely those of the omega 3 series, intake on oxidative stress. Keeping in mind that there might be a dose-response relation, in vivo and in vitro data strongly suggest that omega 3 fatty acids might act as anti- rather than pro-oxidant in several cells such as vascular cells, hence diminishing inflammation, oxidative stress, and, in turn, the risk of atherosclerosis and degenerative disorders such as cardiovascular disease. © 2013 Published by Elsevier Ltd.

  10. High Endogenous Accumulation of ω-3 Polyunsaturated Fatty Acids Protect against Ischemia-Reperfusion Renal Injury through AMPK-Mediated Autophagy in Fat-1 Mice.

    PubMed

    Gwon, Do Hyeong; Hwang, Tae Woong; Ro, Ju-Ye; Kang, Yoon-Joong; Jeong, Jin Young; Kim, Do-Kyung; Lim, Kyu; Kim, Dong Woon; Choi, Dae Eun; Kim, Jwa-Jin

    2017-09-30

    Regulated autophagy is involved in the repair of renal ischemia-reperfusion injury (IRI). Fat-1 transgenic mice produce ω3-Polyunsaturated fatty acids (ω3-PUFAs) from ω6-Polyunsaturated fatty acids (ω6-PUFAs) without a dietary ω3-PUFAs supplement, leading to a high accumulation of omega-3 in various tissues. ω3-PUFAs show protective effects against various renal injuries and it has recently been reported that ω3-PUFAs regulate autophagy. We assessed whether ω3-PUFAs attenuated IR-induced acute kidney injury (AKI) and evaluated its associated mechanisms. C57Bl/6 background fat-1 mice and wild-type mice (wt) were divided into four groups: wt sham ( n = 10), fat-1 sham ( n = 10), wt IRI (reperfusion 35 min after clamping both the renal artery and vein; n = 15), and fat-1 IRI ( n = 15). Kidneys and blood were harvested 24 h after IRI and renal histological and molecular data were collected. The kidneys of fat-1 mice showed better renal cell survival, renal function, and pathological damage than those of wt mice after IRI. In addition, fat-1 mice showed less oxidative stress and autophagy impairment; greater amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, Beclin-1, and Atg7; lower amounts of p62; and, higher levels of renal cathepsin D and ATP6E than wt kidneys. They also showed more adenosine monophosphate-activated protein kinase (AMPK) activation, which resulted in the inhibition of phosphorylation of the mammalian target of rapamycin (mTOR). Collectively, ω3-PUFAs in fat-1 mice contributed to AMPK mediated autophagy activation, leading to a renoprotective response.

  11. High-Throughput Quantitative Lipidomics Analysis of Nonesterified Fatty Acids in Human Plasma.

    PubMed

    Christinat, Nicolas; Morin-Rivron, Delphine; Masoodi, Mojgan

    2016-07-01

    We present a high-throughput, nontargeted lipidomics approach using liquid chromatography coupled to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. We applied this method to screen a wide range of fatty acids from medium-chain to very long-chain (8 to 24 carbon atoms) in human plasma samples. The method enables us to chromatographically separate branched-chain species from their straight-chain isomers as well as separate biologically important ω-3 and ω-6 polyunsaturated fatty acids. We used 51 fatty acid species to demonstrate the quantitative capability of this method with quantification limits in the nanomolar range; however, this method is not limited only to these fatty acid species. High-throughput sample preparation was developed and carried out on a robotic platform that allows extraction of 96 samples simultaneously within 3 h. This high-throughput platform was used to assess the influence of different types of human plasma collection and preparation on the nonesterified fatty acid profile of healthy donors. Use of the anticoagulants EDTA and heparin has been compared with simple clotting, and only limited changes have been detected in most nonesterified fatty acid concentrations.

  12. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study

    PubMed Central

    2010-01-01

    Background Polyunsaturated fatty acids are essential nutrients for humans. They are structural and functional components of cell membranes and pre-stages of the hormonally and immunologically active eicosanoids. Recent discoveries have shown that the long-chained omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also play an important role in the central nervous system. They are essential for normal brain functioning including attention and other neuropsychological skills. Materials and methods In our large observational study we monitored 810 children from 5 to 12 years of age referred for medical help and recommended for consuming polyunsaturated fatty acids (PUFA) in combination with zinc and magnesium by a physician over a period of at least 3 months. The food supplement ESPRICO® (further on referred to as the food supplement) is developed on the basis of current nutritional science and containing a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc. Study objective was to evaluate the nutritional effects of the PUFA-zinc-magnesium combination on symptoms of attention deficit, impulsivity, and hyperactivity as well as on emotional problems and sleep related parameters. Assessment was performed by internationally standardised evaluation scales, i.e. SNAP-IV and SDQ. Tolerance (adverse events) and acceptance (compliance) of the dietary therapy were documented. Results After 12 weeks of consumption of a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc most subjects showed a considerable reduction in symptoms of attention deficit and hyperactivity/impulsivity assessed by SNAP-IV. Further, the assessment by SDQ revealed fewer emotional problems at the end of the study period compared to baseline and also sleeping disorders. Mainly problems to fall asleep, decreased during the 12 week nutritional therapy. Regarding safety, no serious adverse events occurred. A total of 16 adverse

  13. Supplementation of polyunsaturated fatty acids, magnesium and zinc in children seeking medical advice for attention-deficit/hyperactivity problems - an observational cohort study.

    PubMed

    Huss, Michael; Völp, Andreas; Stauss-Grabo, Manuela

    2010-09-24

    Polyunsaturated fatty acids are essential nutrients for humans. They are structural and functional components of cell membranes and pre-stages of the hormonally and immunologically active eicosanoids. Recent discoveries have shown that the long-chained omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) also play an important role in the central nervous system. They are essential for normal brain functioning including attention and other neuropsychological skills. In our large observational study we monitored 810 children from 5 to 12 years of age referred for medical help and recommended for consuming polyunsaturated fatty acids (PUFA) in combination with zinc and magnesium by a physician over a period of at least 3 months. The food supplement ESPRICO® (further on referred to as the food supplement) is developed on the basis of current nutritional science and containing a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc. Study objective was to evaluate the nutritional effects of the PUFA-zinc-magnesium combination on symptoms of attention deficit, impulsivity, and hyperactivity as well as on emotional problems and sleep related parameters. Assessment was performed by internationally standardised evaluation scales, i.e. SNAP-IV and SDQ. Tolerance (adverse events) and acceptance (compliance) of the dietary therapy were documented. After 12 weeks of consumption of a combination of omega-3 and omega-6 fatty acids as well as magnesium and zinc most subjects showed a considerable reduction in symptoms of attention deficit and hyperactivity/impulsivity assessed by SNAP-IV. Further, the assessment by SDQ revealed fewer emotional problems at the end of the study period compared to baseline and also sleeping disorders. Mainly problems to fall asleep, decreased during the 12 week nutritional therapy. Regarding safety, no serious adverse events occurred. A total of 16 adverse events with a possible causal relationship to

  14. Synthesis of structured triacylglycerols enriched in n-3 fatty acids by immobilized microbial lipase.

    PubMed

    Araújo, Maria Elisa Melo Branco de; Campos, Paula Renata Bueno; Alberto, Thiago Grando; Contesini, Fabiano Jares; Carvalho, Patrícia de Oliveira

    The search for new biocatalysts has aroused great interest due to the variety of micro-organisms and their role as enzyme producers. Native lipases from Aspergillus niger and Rhizopus javanicus were used to enrich the n-3 long-chain polyunsaturated fatty acids content in the triacylglycerols of soybean oil by acidolysis with free fatty acids from sardine oil in solvent-free media. For the immobilization process, the best lipase/support ratios were 1:3 (w/w) for Aspergillus niger lipase and 1:5 (w/w) for Rhizopus javanicus lipase using Amberlite MB-1. Both lipases maintained constant activity for 6 months at 4°C. Reaction time, sardine-free fatty acids:soybean oil mole ratio and initial water content of the lipase were investigated to determine their effects on n-3 long-chain polyunsaturated fatty acids incorporation into soybean oil. Structured triacylglycerols with 11.7 and 7.2% of eicosapentaenoic acid+docosahexaenoic acid were obtained using Aspergillus niger lipase and Rhizopus javanicus lipase, decreasing the n-6/n-3 fatty acids ratio of soybean oil (11:1 to 3.5:1 and 4.7:1, respectively). The best reaction conditions were: initial water content of lipase of 0.86% (w/w), sardine-free faty acids:soybean oil mole ratio of 3:1 and reaction time of 36h, at 40°C. The significant factors for the acidolysis reaction were the sardine-free fatty acids:soybean oil mole ratio and reaction time. The characterization of structured triacylglycerols was obtained using easy ambient sonic-spray ionization mass spectrometry. The enzymatic reaction led to the formation of many structured triacylglycerols containing eicosapentaenoic acid, docosahexaenoic acid or both polyunsaturated fatty acids. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. [Polyunsaturated omega-3 fatty acids and systemic lupus erythematosus: what do we know?].

    PubMed

    Borges, Mariane Curado; Santos, Fabiana de Miranda Moura; Telles, Rosa Weiss; Correia, Maria Isabel Toulson Davisson; Lanna, Cristina Costa Duarte

    2014-01-01

    Various studies have demonstrated the impact of omega-3 fatty acids on the concentration of C reactive protein (CRP), pro-inflammatory eicosanoids, cytokines, chemokines and other inflammatory mediators. Therefore, the supplementation of these types of lipids may represent additional option treatment for chronic systemic diseases, such as Systemic Lupus Erythematous and other rheumatic diseases. The role of these lipids has not been well established, yet. However, it seems there is a direct relationship between its intake and the decrease of the disease clinical manifestations as well as of the inflammatory status of the patients. Thus, the aim of this manuscript is to present a thorough review on the effects of omega-3 fatty acids in patients with SLE. Bibliographic data set as the Medical Literature Analysis and Retrieval System Online (MEDLINE) and Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) were searched using as key words: systemic lupus erythematous (SLE), polyunsaturated fatty acids omega-3, eicosapentanoic acid (EPA), docosahexanoic acid (DHA), antioxidants and diet. Manuscripts published up to September 2013 were included. There were 43 articles related to the topic, however only 15 pertained human studies, with three review articles and 12 clinical studies. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  16. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids docosapentaenoic (DPA, 22:5n-6) and docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    NASA Astrophysics Data System (ADS)

    Broadhurst, C. Leigh; Schmidt, Walter F.; Kim, Moon S.; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Bauchan, Gary L.; Shelton, Daniel R.

    2016-05-01

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolute necessity of the LC-PUFA docosahexaenoic acid (DHA; 22:6n-3) in these fast signal processing tissues. A lipid of the same chain length with just one less diene group, docosapentaenoic acid (DPA; 22:5n-6) is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS to DPA, and DHA from -100 to 20°C. 20 Mb three-dimensional data arrays with 1°C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. DPA and DHA show significant spectral changes with premelting (-33 and -60°C, respectively) and melting (-27 and -44°C, respectively). The CH2-(HC=CH)-CH2 moieties are not identical in the second half of the DHA and DPA structures. The DHA molecule contains major CH2 twisting (1265 cm-1) with no noticeable CH2 bending, consistent with a flat helical structure with small pitch. Further modeling of neuronal membrane phospholipids must take into account this structure for DHA, which would be configured parallel to the hydrophilic head group line.

  17. Soraphen A, an inhibitor of acetyl CoA carboxylase activity, interferes with fatty acid elongation

    PubMed Central

    Jump, Donald B.; Torres-Gonzalez, Moises; Olson, L. Karl

    2010-01-01

    Acetyl CoA carboxylase (ACC1 & ACC2) generates malonyl CoA, a substrate for de novo lipogenesis (DNL) and an inhibitor of mitochondrial fatty acid β-oxidation (FAO). Malonyl CoA is also a substrate for microsomal fatty acid elongation, an important pathway for saturated (SFA), mono- (MUFA) and polyunsaturated fatty acid (PUFA) synthesis. Despite the interest in ACC as a target for obesity and cancer therapy, little attention has been given to the role ACC plays in long chain fatty acid synthesis. This report examines the effect of pharmacological inhibition of ACC on DNL & palmitate (16:0) and linoleate (18:2,n-6) metabolism in HepG2 and LnCap cells. The ACC inhibitor, soraphen A, lowers cellular malonyl CoA, attenuates DNL and the formation of fatty acid elongation products derived from exogenous fatty acids, i.e., 16:0 & 18:2,n-6; IC50 ~ 5 nM. Elevated expression of fatty acid elongases (Elovl5, Elovl6) or desaturases (FADS1, FADS2) failed to override the soraphen A effect on SFA, MUFA or PUFA synthesis. Inhibition of fatty acid elongation leads to the accumulation of 16- and 18-carbon unsaturated fatty acids derived from 16:0 and 18:2,n-6, respectively. Pharmacological inhibition of ACC activity will not only attenuate DNL and induce FAO, but will also attenuate the synthesis of very long chain saturated, mono- and polyunsaturated fatty acids. PMID:21184748

  18. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids

    PubMed Central

    Chen, Xi; Du, Xue; Shen, Jianliang; Wang, Weiqun

    2016-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59–81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits. PMID:27510581

  19. Original Research: Effect of various dietary fats on fatty acid profile in duck liver: Efficient conversion of short-chain to long-chain omega-3 fatty acids.

    PubMed

    Chen, Xi; Du, Xue; Shen, Jianliang; Lu, Lizhi; Wang, Weiqun

    2017-01-01

    Omega-3 fatty acids, especially long-chain omega-3 fatty acids, have been associated with potential health benefits for chronic disease prevention. Our previous studies found that dietary omega-3 fatty acids could accumulate in the meat and eggs in a duck model. This study was to reveal the effects of various dietary fats on fatty acid profile and conversion of omega-3 fatty acids in duck liver. Female Shan Partridge Ducks were randomly assigned to five dietary treatments, each consisting of 6 replicates of 30 birds. The experimental diets substituted the basal diet by 2% of flaxseed oil, rapeseed oil, beef tallow, or fish oil, respectively. In addition, a dose response study was further conducted for flaxseed and fish oil diets at 0.5%, 1%, and 2%, respectively. At the end of the five-week treatment, fatty acids were extracted from the liver samples and analyzed by GC-FID. As expected, the total omega-3 fatty acids and the ratio of total omega-3/omega-6 significantly increased in both flaxseed and fish oil groups when compared with the control diet. No significant change of total saturated fatty acids or omega-3 fatty acids was found in both rapeseed and beef tallow groups. The dose response study further indicated that 59-81% of the short-chain omega-3 ALA in flaxseed oil-fed group was efficiently converted to long-chain DHA in the duck liver, whereas 1% of dietary flaxseed oil could produce an equivalent level of DHA as 0.5% of dietary fish oil. The more omega-3 fatty acids, the less omega-6 fatty acids in the duck liver. Taken together, this study showed the fatty acid profiling in the duck liver after various dietary fat consumption, provided insight into a dose response change of omega-3 fatty acids, indicated an efficient conversion of short- to long-chain omega-3 fatty acid, and suggested alternative long-chain omega-3 fatty acid-enriched duck products for human health benefits. © 2016 by the Society for Experimental Biology and Medicine.

  20. Anti-inflammatory Effects of Omega-3 Polyunsaturated Fatty Acids and Soluble Epoxide Hydrolase Inhibitors in Angiotensin-II Dependent Hypertension

    PubMed Central

    Ulu, Arzu; Harris, Todd R; Morisseau, Christophe; Miyabe, Christina; Inoue, Hiromi; Schuster, Gertrud; Dong, Hua; Iosif, Ana-Maria; Liu, Jun-Yan; Weiss, Robert H; Chiamvimonvat, Nipavan; Imig, John D; Hammock, Bruce D

    2013-01-01

    The mechanisms underlying the anti-inflammatory and anti-hypertensive effects of long chain ω-3 polyunsaturated fatty acids (PUFAs) are still unclear. The epoxides of an ω-6 fatty acid, arachidonic acid (epoxyeicosatrienoic acids; EETs) also exhibit anti-hypertensive and anti-inflammatory effects. Thus, we hypothesized that the major ω-3 PUFAs including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) may lower blood pressure and attenuate renal markers of inflammation through their epoxide metabolites. Here, we supplemented mice with an ω-3 rich diet for three weeks in a murine model of angiotensin-II dependent hypertension. Also, since EPA and DHA epoxides are metabolized by soluble epoxide hydrolase (sEH), we tested the combination of a sEH inhibitor and the ω-3 rich diet. Our results show that ω-3 rich diet in combination with the sEH inhibitor lowered Ang-II increased blood pressure, further increased renal levels of EPA and DHA epoxides, reduced renal markers of inflammation (i.e. prostaglandins and MCP-1), down-regulated an epithelial sodium channel and up-regulated Angiotensin converting enzyme-2 message (ACE-2) and significantly modulated cyclooxygenase and lipoxygenase metabolic pathways. Overall, our findings suggest that epoxides of the ω-3 PUFAs contribute to lowering SBP and attenuating inflammation in part by reduced prostaglandins and MCP-1 and by up-regulation of ACE-2 in angiotensin-II dependent hypertension. PMID:23676336

  1. Fish Lipids as a Valuable Source of Polyunsaturated Fatty Acids

    NASA Astrophysics Data System (ADS)

    Merdzhanova, Albena; Ivanov, Ivaylo; Dobreva, Diana A.; Makedonski, Lyubomir

    2017-03-01

    This article presents information about omega-3 (h-3) and omega-6 (n-6) polyunsaturated fatty acid (PUFA) contents in a broad range of commercially important fish species available on Bulgarian fish markets. The aim is to raise consumers' awareness and encourage them to eat fish. Fish species from the Black Sea coast have relatively high proportion of n-3 PUFAs, of which more than 80% is by EPf (eicosapentaenoic acid, C 20:5 n-3) and DHA (docosahexaenoic acid, C 22:6 n-3). Extensive epidemiological studies show that fish consumption is inversely associated with the incidence of cardiovascular diseases (CVD), stroke and the functioning of the brain. About 0.5 g of omega-3 (EPA+DHA) a day or two savings of oily fish a week are required to reduce the risk of death from CVD. PUFAs needs should be satisfied not only with food additives but with fish lipids containing food.

  2. Wastewater recycling technology for fermentation in polyunsaturated fatty acid production.

    PubMed

    Song, Xiaojin; Ma, Zengxin; Tan, Yanzhen; Zhang, Huidan; Cui, Qiu

    2017-07-01

    To reduce fermentation-associated wastewater discharge and the cost of wastewater treatment, which further reduces the total cost of DHA and ARA production, this study first analyzed the composition of wastewater from Aurantiochytrium (DHA) and Mortierella alpina (ARA) fermentation, after which wastewater recycling technology for these fermentation processes was developed. No negative effects of DHA and ARA production were observed when the two fermentation wastewater methods were cross-recycled. DHA and ARA yields were significantly inhibited when the wastewater from the fermentation process was directly reused. In 5-L fed-batch fermentation experiments, using this cross-recycle technology, the DHA and ARA yields were 30.4 and 5.13gL -1 , respectively, with no significant changes (P>0.05) compared to the control group, and the water consumption was reduced by half compared to the traditional process. Therefore, this technology has great potential in industrial fermentation for polyunsaturated fatty acid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Optimization of odd chain fatty acid production by Yarrowia lipolytica.

    PubMed

    Park, Young-Kyoung; Dulermo, Thierry; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc

    2018-01-01

    Odd chain fatty acids (odd FAs) have a wide range of applications in therapeutic and nutritional industries, as well as in chemical industries including biofuel. Yarrowia lipolytica is an oleaginous yeast considered a preferred microorganism for the production of lipid-derived biofuels and chemicals. However, it naturally produces negligible amounts of odd chain fatty acids. The possibility of producing odd FAs using Y. lipolytica was investigated. Y. lipolytica wild-type strain was shown able to grow on weak acids; acetate, lactate, and propionate. Maximal growth rate on propionate reached 0.24 ± 0.01 h -1 at 2 g/L, and growth inhibition occurred at concentration above 10 g/L. Wild-type strain accumulated lipids ranging from 7.39 to 8.14% (w/w DCW) depending on the carbon source composition, and odd FAs represented only 0.01-0.12 g/L. We here proved that the deletion of the PHD1 gene improved odd FAs production, which reached a ratio of 46.82% to total lipids. When this modification was transferred to an obese strain, engineered for improving lipid accumulation, further increase odd FAs production reaching a total of 0.57 g/L was shown. Finally, a fed-batch co-feeding strategy was optimized for further increase odd FAs production, which generated 0.75 g/L, the best production described so far in Y. lipolytica . A Y. lipolytica strain able to accumulate high level of odd chain fatty acids, mainly heptadecenoic acid, has been successfully developed. In addition, a fed-batch co-feeding strategy was optimized to further improve lipid accumulation and odd chain fatty acid content. These lipids enriched in odd chain fatty acid can (1) improve the properties of the biodiesel generated from Y. lipolytica lipids and (2) be used as renewable source of odd chain fatty acid for industrial applications. This work paves the way for further improvements in odd chain fatty acids and fatty acid-derived compound production.

  4. Fatty acid composition of intramuscular fat and odour-active compounds of lamb commercialized in northern Spain.

    PubMed

    Bravo-Lamas, Leire; Barron, Luis J R; Farmer, Linda; Aldai, Noelia

    2018-05-01

    Muscle fatty acid composition and odour-active compounds released during cooking were characterized in lamb chops (Longissimus thoracis et lumborum, n = 48) collected at retail level in northern Spain. Lamb samples were classified in two groups according to their 10 t/11 t-18:1 ratio: ≤1 (10 t-non-shifted, n = 21) and >1 (10 t-shifted, n = 27). Higher n-3 polyunsaturated fatty acid, vaccenic (11 t-18:1) and rumenic acid (9c,11 t-18:2), and iso-branched chain fatty acid contents were found in non-shifted lamb samples while n-6 polyunsaturated fatty acid, internal methyl-branched chain fatty acid, and 10 t-18:1 contents were greater in shifted samples. Regardless the fatty acid profile differences between lamb sample groups, odour-active compound profile was very similar and mostly affected by the cooking conditions. Overall, the main odour-active compounds of cooked lamb were described as "green", "meaty", "roasted", and "fatty" being methyl pyrazine, methional, dimethyl pyrazine, and dimethyl trisulphide the main odour-active compounds. Aldehydes and alcohols were the most abundant volatiles in all samples, and they were mostly originated from the oxidation of unsaturated fatty acids during cooking. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity

    PubMed Central

    Bi, Xinyun; Li, Fanghong; Liu, Shanshan; Jin, Yan; Zhang, Xin; Yang, Tao; Dai, Yifan; Li, Xiaoxi; Zhao, Allan Zijian

    2017-01-01

    Despite the benefit of insulin, blockade of autoimmune attack and regeneration of pancreatic islets are ultimate goals for the complete cure of type 1 diabetes (T1D). Long-term consumption of ω-3 polyunsaturated fatty acids (PUFAs) is known to suppress inflammatory processes, making these fatty acids candidates for the prevention and amelioration of autoimmune diseases. Here, we explored the preventative and therapeutic effects of ω-3 PUFAs on T1D. In NOD mice, dietary intervention with ω-3 PUFAs sharply reduced the incidence of T1D, modulated the differentiation of Th cells and Tregs, and decreased the levels of IFN-γ, IL-17, IL-6, and TNF-α. ω-3 PUFAs exerted similar effects on the differentiation of CD4+ T cells isolated from human peripheral blood mononuclear cells. The regulation of CD4+ T cell differentiation was mediated at least in part through ω-3 PUFA eicosanoid derivatives and by mTOR complex 1 (mTORC1) inhibition. Importantly, therapeutic intervention in NOD mice through nutritional supplementation or lentivirus-mediated expression of an ω-3 fatty acid desaturase, mfat-1, normalized blood glucose and insulin levels for at least 182 days, blocked the development of autoimmunity, prevented lymphocyte infiltration into regenerated islets, and sharply elevated the expression of the β cell markers pancreatic and duodenal homeobox 1 (Pdx1) and paired box 4 (Pax4). The findings suggest that ω-3 PUFAs could potentially serve as a therapeutic modality for T1D. PMID:28375156

  6. Association between very long chain fatty acids in the meibomian gland and dry eye resulting from n-3 fatty acid deficiency.

    PubMed

    Tanaka, Hideko; Harauma, Akiko; Takimoto, Mao; Moriguchi, Toru

    2015-06-01

    In our previously study, we reported lower tear volume in with an n-3 fatty acid deficient mice and that the docosahexaenoic acid and total n-3 fatty acid levels in these mice are significantly reduced in the meibomian gland, which secretes an oily tear product. Furthermore, we noted very long chain fatty acids (≥25 carbons) in the meibomian gland. To verify the detailed mechanism of the low tear volume in the n-3 fatty acid-deficient mice, we identified the very long chain fatty acids in the meibomian gland, measured the fatty acid composition in the tear product. Very long chain fatty acids were found to exist as monoesters. In particular, very long chain fatty acids with 25-29 carbons existed for the most part as iso or anteiso branched-chain fatty acids. n-3 fatty acid deficiency was decreased the amount of meibum secretion from meibomian gland without change of fatty acid composition. These results suggest that the n-3 fatty acid deficiency causes the enhancement of evaporation of tear film by reducing oily tear secretion along with the decrease of meibomian gland function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The impact of omega-3 fatty acids on osteoporosis.

    PubMed

    Maggio, M; Artoni, A; Lauretani, F; Borghi, L; Nouvenne, A; Valenti, G; Ceda, G P

    2009-01-01

    The essential polyunsaturated fatty acids (PUFAs) comprise 2 main classes: n-6 and n-3 fatty acids. The most common source of n-6 fatty acids is linoleic acid (LA) which is found in high concentrations in various vegetable oils. Arachidonic acid (AA), the 20-carbon n-6 fatty acid, is obtained largely by synthesis from LA in the body. The n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic (DHA) are found in fish and fish oils. Long-Chain polyunsaturated fatty acids (LCPUFAs) and lipid mediators derived from LCPUFAs have critical roles in the regulation of a variety of biological processes including bone metabolism. There are different mechanisms by which dietary fatty acids affect bone: effect on calcium balance, effect on osteoblastogenesis and osteoblast activity, change of membrane function, decrease in inflammatory cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha), modulation of peroxisome proliferators-activated receptor gamma (PPARgamma). Animal studies have shown that a higher dietary omega-3/omega-6 fatty acids ratio is associated with beneficial effects on bone health. In spite of increasing evidence of the positive effects of dietary fats on bone metabolism from animal and in vitro studies, the few studies conducted in humans do not allow us to draw a definitive conclusion on their usefulness in clinical practice.

  8. Encapsulation of vegetable oils as source of omega-3 fatty acids for enriched functional foods.

    PubMed

    Ruiz Ruiz, Jorge Carlos; Ortiz Vazquez, Elizabeth De La Luz; Segura Campos, Maira Rubi

    2017-05-03

    Polyunsaturated omega-3 fatty acids (PUFAs), a functional component present in vegetable oils, are generally recognized as being beneficial to health. Omega-3 PUFAs are rich in double bonds and unsaturated in nature; this attribute makes them highly susceptible to lipid oxidation and unfit for incorporation into long shelf life foods. The microencapsulation of oils in a polymeric matrix (mainly polysaccharides) offers the possibility of controlled release of the lipophilic functional ingredient and can be useful for the supplementation of foods with PUFAs. The present paper provides a literature review of different vegetable sources of omega-3 fatty acids, the functional effects of omega-3 fatty acids, different microencapsulation methods that can possibly be used for the encapsulation of oils, the properties of vegetable oil microcapsules, the effect of encapsulation on oxidation stability and fatty acid composition of vegetable oils, and the incorporation of long-chain omega-3 polyunsaturated fatty acids in foods.

  9. Growth-Environment Dependent Modulation of Staphylococcus aureus Branched-Chain to Straight-Chain Fatty Acid Ratio and Incorporation of Unsaturated Fatty Acids.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Johnson, Seth R; Song, Yang; Tefft, Ryan; Gatto, Craig; Wilkinson, Brian J

    2016-01-01

    The fatty acid composition of membrane glycerolipids is a major determinant of Staphylococcus aureus membrane biophysical properties that impacts key factors in cell physiology including susceptibility to membrane active antimicrobials, pathogenesis, and response to environmental stress. The fatty acids of S. aureus are considered to be a mixture of branched-chain fatty acids (BCFAs), which increase membrane fluidity, and straight-chain fatty acids (SCFAs) that decrease it. The balance of BCFAs and SCFAs in USA300 strain JE2 and strain SH1000 was affected considerably by differences in the conventional laboratory medium in which the strains were grown with media such as Mueller-Hinton broth and Luria broth resulting in high BCFAs and low SCFAs, whereas growth in Tryptic Soy Broth and Brain-Heart Infusion broth led to reduction in BCFAs and an increase in SCFAs. Straight-chain unsaturated fatty acids (SCUFAs) were not detected. However, when S. aureus was grown ex vivo in serum, the fatty acid composition was radically different with SCUFAs, which increase membrane fluidity, making up a substantial proportion of the total (<25%) with SCFAs (>37%) and BCFAs (>36%) making up the rest. Staphyloxanthin, an additional major membrane lipid component unique to S. aureus, tended to be greater in content in cells with high BCFAs or SCUFAs. Cells with high staphyloxanthin content had a lower membrane fluidity that was attributed to increased production of staphyloxanthin. S. aureus saves energy and carbon by utilizing host fatty acids for part of its total fatty acids when growing in serum, which may impact biophysical properties and pathogenesis given the role of SCUFAs in virulence. The nutritional environment in which S. aureus is grown in vitro or in vivo in an infection is likely to be a major determinant of membrane fatty acid composition.

  10. Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish oil sparing and demand for -3 long-chain polyunsaturated fatty acids.

    PubMed

    Bowzer, J; Jackson, C; Trushenski, J

    2016-03-01

    Previous research suggests that saturated (SFA) and monounsaturated fatty acid (MUFA) rich lipids, including beef tallow, can make utilization or diet-to-tissue transfer of long-chain polyunsaturated fatty acids (LC-PUFA) more efficient. We hypothesized that using beef tallow as an alternative to fish oil may effectively reduce the LC-PUFA demand of hybrid striped bass × and allow for greater fish oil sparing. Accordingly, we evaluated growth performance and tissue fatty acid profiles of juvenile fish (23.7 ± 0.3 g) fed diets containing menhaden fish oil (considered an ideal source of LC-PUFA for this taxon), beef tallow (BEEF ONLY), or beef tallow amended with purified sources of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) to achieve levels corresponding to 50 or 100% of those observed in the FISH ONLY feed. Diets were randomly assigned to quadruplicate tanks of fish ( = 4; 10 fish/tank), and fish were fed assigned diets to apparent satiation once daily for 10 wk. Survival (98-100%) was equivalent among treatments, but weight gain (117-180%), specific growth rate (1.1-1.5% BW/d), feed intake (1.4-1.8% BW/d), thermal growth coefficient (0.50-0.70), and feed conversion ratio (FCR; 1.1-1.4, DM basis) varied. Except for FCR, no differences were observed between the FISH ONLY and BEEF ONLY treatments, but performance was generally numerically superior among fish fed the diets containing beef tallow supplemented with DHA at the 100% or both EPA and DHA at the 50% or 100% level. Tissue fatty acid composition was significantly distorted in favor among fish fed the beef tallow-based feeds; however, profile distortion was most overt in peripheral tissues. Results suggest that beef tallow may be used as a primary lipid source in practical diets for hybrid striped bass, but performance may be improved by supplementation with LC-PUFA, particularly DHA. Furthermore, our results suggest that -3 LC-PUFA requirements reported for hybrid striped bass may not be

  11. Models of plasma membrane organization can be applied to mitochondrial membranes to target human health and disease with polyunsaturated fatty acids.

    PubMed

    Raza Shaikh, Saame; Brown, David A

    2013-01-01

    Bioactive n-3 polyunsaturated fatty acids (PUFA), abundant in fish oil, have potential for treating symptoms associated with inflammatory and metabolic disorders; therefore, it is essential to determine their fundamental molecular mechanisms. Recently, several labs have demonstrated the n-3 PUFA docosahexaenoic acid (DHA) exerts anti-inflammatory effects by targeting the molecular organization of plasma membrane microdomains. Here we briefly review the evidence that DHA reorganizes the spatial distribution of microdomains in several model systems. We then emphasize how models on DHA and plasma membrane microdomains can be applied to mitochondrial membranes. We discuss the role of DHA acyl chains in regulating mitochondrial lipid-protein clustering, and how these changes alter several aspects of mitochondrial function. In particular, we summarize effects of DHA on mitochondrial respiration, electron leak, permeability transition, and mitochondrial calcium handling. Finally, we conclude by postulating future experiments that will augment our understanding of DHA-dependent membrane organization in health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Altered erythrocyte membrane fatty acid profile in typical Rett syndrome: effects of omega-3 polyunsaturated fatty acid supplementation.

    PubMed

    Signorini, Cinzia; De Felice, Claudio; Leoncini, Silvia; Durand, Thierry; Galano, Jean-Marie; Cortelazzo, Alessio; Zollo, Gloria; Guerranti, Roberto; Gonnelli, Stefano; Caffarelli, Carla; Rossi, Marcello; Pecorelli, Alessandra; Valacchi, Giuseppe; Ciccoli, Lucia; Hayek, Joussef

    2014-11-01

    This study mainly aims at examining the erythrocyte membrane fatty acid (FAs) profile in Rett syndrome (RTT), a genetically determined neurodevelopmental disease. Early reports suggest a beneficial effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on disease severity in RTT. A total of 24 RTT patients were assigned to ω-3 PUFAs-containing fish oil for 12 months in a randomized controlled study (average DHA and EPA doses of 72.9, and 117.1mg/kgb.w./day, respectively). A distinctly altered FAs profile was detectable in RTT, with deficient ω-6 PUFAs, increased saturated FAs and reduced trans 20:4 FAs. FAs changes were found to be related to redox imbalance, subclinical inflammation, and decreased bone density. Supplementation with ω-3 PUFAs led to improved ω-6/ω-3 ratio and serum plasma lipid profile, decreased PUFAs peroxidation end-products, normalization of biochemical markers of inflammation, and reduction of bone hypodensity as compared to the untreated RTT group. Our data indicate that a significant FAs abnormality is detectable in the RTT erythrocyte membranes and is partially rescued by ω-3 PUFAs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): a randomised, placebo-controlled trial.

    PubMed

    Andrieu, Sandrine; Guyonnet, Sophie; Coley, Nicola; Cantet, Christelle; Bonnefoy, Marc; Bordes, Serge; Bories, Lawrence; Cufi, Marie-Noëlle; Dantoine, Thierry; Dartigues, Jean-François; Desclaux, Françoise; Gabelle, Audrey; Gasnier, Yannick; Pesce, Alain; Sudres, Kristel; Touchon, Jacques; Robert, Philippe; Rouaud, Olivier; Legrand, Philippe; Payoux, Pierre; Caubere, Jean-Paul; Weiner, Michael; Carrié, Isabelle; Ousset, Pierre-Jean; Vellas, Bruno

    2017-05-01

    No large trials have been done to investigate the efficacy of an intervention combining a specific compound and several lifestyle interventions compared with placebo for the prevention of cognitive decline. We tested the effect of omega 3 polyunsaturated fatty acid supplementation and a multidomain intervention (physical activity, cognitive training, and nutritional advice), alone or in combination, compared with placebo, on cognitive decline. The Multidomain Alzheimer Preventive Trial was a 3-year, multicentre, randomised, placebo-controlled superiority trial with four parallel groups at 13 memory centres in France and Monaco. Participants were non-demented, aged 70 years or older, and community-dwelling, and had either relayed a spontaneous memory complaint to their physician, limitations in one instrumental activity of daily living, or slow gait speed. They were randomly assigned (1:1:1:1) to either the multidomain intervention (43 group sessions integrating cognitive training, physical activity, and nutrition, and three preventive consultations) plus omega 3 polyunsaturated fatty acids (ie, two capsules a day providing a total daily dose of 800 mg docosahexaenoic acid and 225 mg eicosapentaenoic acid), the multidomain intervention plus placebo, omega 3 polyunsaturated fatty acids alone, or placebo alone. A computer-generated randomisation procedure was used to stratify patients by centre. All participants and study staff were blinded to polyunsaturated fatty acid or placebo assignment, but were unblinded to the multidomain intervention component. Assessment of cognitive outcomes was done by independent neuropsychologists blinded to group assignment. The primary outcome was change from baseline to 36 months on a composite Z score combining four cognitive tests (free and total recall of the Free and Cued Selective Reminding test, ten Mini-Mental State Examination orientation items, Digit Symbol Substitution Test, and Category Naming Test) in the modified

  14. De novo fatty acid biosynthesis and elongation in very long-chain acyl-CoA dehydrogenase-deficient mice supplemented with odd or even medium-chain fatty acids.

    PubMed

    Tucci, Sara; Behringer, Sidney; Spiekerkoetter, Ute

    2015-11-01

    An even medium-chain triglyceride (MCT)-based diet is the mainstay of treatment in very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (VLCADD). Previous studies with magnetic resonance spectroscopy have shown an impact of MCT on the average fatty acid chain length in abdominal fat. We therefore assume that medium-chain fatty acids (MCFAs) are elongated and accumulate in tissue as long-chain fatty acids. In this study, we explored the hepatic effects of long-term supplementation with MCT or triheptanoin, an odd-chain C7-based triglyceride, in wild-type and VLCAD-deficient (VLCAD(-/-) ) mice after 1 year of supplementation as compared with a control diet. The de novo biosynthesis and elongation of fatty acids, and peroxisomal β-oxidation, were quantified by RT-PCR. This was followed by a comprehensive analysis of hepatic and cardiac fatty acid profiles by GC-MS. Long-term application of even and odd MCFAs strongly induced de novo biosynthesis and elongation of fatty acids in both wild-type and VLCAD(-/-) mice, leading to an alteration of the hepatic fatty acid profiles. We detected de novo-synthesized and elongated fatty acids, such as heptadecenoic acid (C17:1n9), eicosanoic acid (C20:1n9), erucic acid (C22:1n9), and mead acid (C20:3n9), that were otherwise completely absent in mice under control conditions. In parallel, the content of monounsaturated fatty acids was massively increased. Furthermore, we observed strong upregulation of peroxisomal β-oxidation in VLCAD(-/-) mice, especially when they were fed an MCT diet. Our data raise the question of whether long-term MCFA supplementation represents the most efficient treatment in the long term. Studies on the hepatic toxicity of triheptanoin are still ongoing. © 2015 FEBS.

  15. n3- polyunsaturated Fat Acid Content of Some Edible Fish from Bahrain Waters

    NASA Astrophysics Data System (ADS)

    Al-Arrayedu, F. H.; Al Maskati, H. A.; Abdullah, F. J.

    1999-08-01

    This study was performed to determine the content of n3- polyunsaturated fatty acids in 10 fish species that are commonly consumed in Bahrain in addition to the main commercial shrimp species. White sardinella, which is a plankton feeder, had the highest content of n3- polyunsaturated fatty acids. It had the highest value of eicosapentaenoic acid (146.5 ± 20 mg 100 g-1) and linolenic acid (98.9±f 100 g-1) and the second highest value of docosahexaenoic acid at (133.7 ± 22 mg 100 g-1). Spanish mackerel which feeds mainly on sardinella was second with eicosapentaenoc acid at 55 ± 5.4 mg 100 g-1, docosahexaenoic acid at 161 ± 19.8 mg 100 g-1, linolenic acid at 16.4 mg 100 g-1 and docosapentaenoic acid at 25 ± 1.9 mg 100 g-1. Rabbitfish, the most popular edible fish in Bahrain which feeds mainly on benthic algae had the third highest content of n3- polyunsaturated fatty acids with eicosapentaenoic acid at 37.5 ± 3.9 mg 100 g-1, docosahexaenoic acid at 76 ± 6.7 mg 100 g-1, and docosapentaenoic acid at 85.8 ± 10 mg 100 g-1. The other fish and crustacean species studied were Arabian carpet shark, doublebar bream, grouper, gray grunt, golden travally, keeled mullet, spangled emperor and shrimp. The study explores the transfer of n3- polyunsaturated fatty acids through the food webs of the examined fish. It is apparent, generally, that plankton feeders displayed the highest content of n3- polyunsaturated fatty acids followed by seaweed and algae grazers, with benthic carnivores feeding on invertebrates displaying the poorest content. The values reported here, however, are much lower than those reported for fish available in American markets and in Mediterranean fish. Warm water temperature and high salinity which lead to lowering of the density of phytoplankton and phytoplankton content of n3- polyunsaturated fatty acids are suggested as the reason for the observed low values of n3- polyunsaturated fatty acids in Bahrain fish.

  16. Inhibition of telomerase by linear-chain fatty acids: a structural analysis.

    PubMed Central

    Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki

    2002-01-01

    In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150

  17. Biosynthetic production of universally (13)C-labelled polyunsaturated fatty acids as reference materials for natural health product research.

    PubMed

    Le, Phuong Mai; Fraser, Catherine; Gardner, Graeme; Liang, Wei-Wan; Kralovec, Jaroslav A; Cunnane, Stephen C; Windust, Anthony J

    2007-09-01

    Long-chain polyunsaturated fatty acids (LCPUFA) including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) have become important natural health products with numerous proven benefits related to brain function and cardiovascular health. Not only are omega-3 fatty acids available in a plethora of dietary supplements, but they are also increasingly being incorporated as triglycerides into conventional foods, including bread, milk, yoghurt and confectionaries. Recently, transgenic oil seed crops and livestock have been developed that enhance omega-3 fatty acid content. This diverse array of matrices presents a difficult analytical challenge and is compounded further by samples generated through clinical research. Stable isotope (13)C-labelled LCPUFA standards offer many advantages as research tools because they may be distinguished from their naturally abundant counterparts by mass spectrometry and directly incorporated as internal standards into analytical procedures. Further, (13)C-labelled LCPUFAs are safe to use as metabolic tracers to study uptake and metabolism in humans. Currently, (13)C-labelled LCPUFAs are expensive, available in limited supply and not in triglyceride form. To resolve these issues, marine heterotrophic microorganisms are being isolated and screened for LCPUFA production with a view to the efficient biosynthetic production of U-(13)C-labelled fatty acids using U-(13)C glucose as a carbon source. Of 37 isolates obtained, most were thraustochytrids, and either DHA or omega-6 docosapentaenoic acid (22:5n-6) were produced as the major LCPUFA. The marine protist Hyalochlorella marina was identified as a novel source of EPA and omega-3 docosapentaenoic acid (22:5n-3). As proof of principle, gram-level production of (13)C-labelled DHA has been achieved with high chemical purity ( >99%) and high (13)C incorporation levels (>90%), as confirmed by NMR and MS analyses. Finally, U-(13)C-DHA was enzymatically re-esterified to

  18. Zeolites relieves inhibitory stress from high concentrations of long chain fatty acids.

    PubMed

    Nordell, Erik; Hansson, Anna B; Karlsson, Martin

    2013-12-01

    Protein and fat rich slaughterhouse waste is a very attractive waste stream for the production of biogas because of the high biochemical methane potential of the substrate. The material has however some drawbacks as the sole material for biogas production due to the production of several process disturbing metabolites such as ammonia, sulfides and long chain fatty acids. We can in this work present results that show that zeolites have the potential to relieve inhibitory stress from the presence of long chain fatty acids. Moreover, the results strongly indicate that it is mainly acetic acid consumers that are most negatively affected by long chain fatty acids and that the mechanism of stress relief is an adsorption of long chain fatty acids to the zeolites. In addition to this, it is shown that the effect is immediate and that only a small amount of zeolites is necessary to cancel the inhibitory effect of long chain fatty acids. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory From the American Heart Association.

    PubMed

    Siscovick, David S; Barringer, Thomas A; Fretts, Amanda M; Wu, Jason H Y; Lichtenstein, Alice H; Costello, Rebecca B; Kris-Etherton, Penny M; Jacobson, Terry A; Engler, Mary B; Alger, Heather M; Appel, Lawrence J; Mozaffarian, Dariush

    2017-04-11

    Multiple randomized controlled trials (RCTs) have assessed the effects of supplementation with eicosapentaenoic acid plus docosahexaenoic acid (omega-3 polyunsaturated fatty acids, commonly called fish oils) on the occurrence of clinical cardiovascular diseases. Although the effects of supplementation for the primary prevention of clinical cardiovascular events in the general population have not been examined, RCTs have assessed the role of supplementation in secondary prevention among patients with diabetes mellitus and prediabetes, patients at high risk of cardiovascular disease, and those with prevalent coronary heart disease. In this scientific advisory, we take a clinical approach and focus on common indications for omega-3 polyunsaturated fatty acid supplements related to the prevention of clinical cardiovascular events. We limited the scope of our review to large RCTs of supplementation with major clinical cardiovascular disease end points; meta-analyses were considered secondarily. We discuss the features of available RCTs and provide the rationale for our recommendations. We then use existing American Heart Association criteria to assess the strength of the recommendation and the level of evidence. On the basis of our review of the cumulative evidence from RCTs designed to assess the effect of omega-3 polyunsaturated fatty acid supplementation on clinical cardiovascular events, we update prior recommendations for patients with prevalent coronary heart disease, and we offer recommendations, when data are available, for patients with other clinical indications, including patients with diabetes mellitus and prediabetes and those with high risk of cardiovascular disease, stroke, heart failure, and atrial fibrillation. © 2017 American Heart Association, Inc.

  20. ω-3 Polyunsaturated fatty acids accelerate airway repair by activating FFA4 in club cells.

    PubMed

    Lee, Kyoung-Pil; Park, Soo-Jin; Kang, Saeromi; Koh, Jung-Min; Sato, Koichi; Chung, Hae-Young; Okajima, Fumikazu; Im, Dong-Soon

    2017-06-01

    A G protein-coupled receptor (GPCR) named free fatty acid receptor 4 (FFA4, also known as GPR120) was found to act as a GPCR for ω-3 polyunsaturated fatty acids. Its expression has been reported in lung epithelial club cells. We investigated whether supplementation of the ω-3 fatty acids benefits lung health. Omacor (7.75 mg/kg), clinically prescribed preparation of ω-3 fatty acids, and FFA4-knockout mice were utilized in a naphthalene-induced mouse model of acute airway injury (1 injection of 30 mg/kg ip). Naphthalene injection induced complete destruction of bronchiolar epithelial cells within a day. Appearance of bronchiolar epithelial cells was observed after 21 days in control mice. It was found, however, that supplementation of Omacor accelerated the recovery. The appearance of bronchiolar epithelial cells was observed between 7 and 14 days after naphthalene injury in Omacor-treated mice. In isolated club cells, ω-3 fatty acids were found to stimulate cell proliferation and migration but to inhibit cell differentiation. With the use of pharmacological tools and FFA4-knockout mice, FFA4 was found to be responsible for ω-3 fatty acids-induced proliferation in vitro in club cells. Furthermore, accelerated recovery from naphthalene-induced airway injury in Omacor-treated mice was not observed in FFA4-knockout mice in vivo. Present findings indicate that ω-3 fatty acids-induced proliferation of bronchiole epithelial cells through FFA4 is responsible for Omacor-induced accelerated recovery from airway injury. Therefore, intermittent administration of Omacor needs to be tested for acute airway injury because ω-3 fatty acids stimulate proliferation but inhibit differentiation of club cells. Copyright © 2017 the American Physiological Society.

  1. Modulation of fear memory by dietary polyunsaturated fatty acids via cannabinoid receptors.

    PubMed

    Yamada, Daisuke; Takeo, Jiro; Koppensteiner, Peter; Wada, Keiji; Sekiguchi, Masayuki

    2014-07-01

    Although the underlying mechanism remains unknown, several studies have suggested benefits of n-3 long-chain polyunsaturated fatty acid (PUFA) for patients with anxiety disorders. Elevated fear is thought to contribute to the pathogenesis of particular anxiety disorders. The aim of the present study was to evaluate whether the dietary n-3 to n-6 PUFA (3:6) ratio influences fear memory. For this purpose, the effects of various dietary 3:6 ratios on fear memory were examined in mice using contextual fear conditioning, and the effects of these diets on central synaptic transmission were examined to elucidate the mechanism of action of PUFA. We found that fear memory correlated negatively with dietary, serum, and brain 3:6 ratios in mice. The low fear memory in mice fed a high 3:6 ratio diet was increased by the cannabinoid CB1 receptor antagonist rimonabant, reaching a level seen in mice fed a low 3:6 ratio diet. The agonist sensitivity of CB1 receptor was enhanced in the basolateral nucleus of the amygdala (BLA) of mice fed a high 3:6 ratio diet, compared with that of mice fed a low 3:6 ratio diet. Similar enhancement was induced by pharmacological expulsion of cholesterol in the neuronal membrane of brain slices from mice fed a low 3:6 ratio diet. CB1 receptor-mediated short-term synaptic plasticity was facilitated in pyramidal neurons of the BLA in mice fed a high 3:6 ratio diet. These results suggest that the ratio of n-3 to n-6 PUFA is a factor regulating fear memory via cannabinoid CB1 receptors.

  2. Biosynthesis of Essential Polyunsaturated Fatty Acids in Wheat Triggered by Expression of Artificial Gene

    PubMed Central

    Mihálik, Daniel; Klčová, Lenka; Ondreičková, Katarína; Hudcovicová, Martina; Gubišová, Marcela; Klempová, Tatiana; Čertík, Milan; Pauk, János; Kraic, Ján

    2015-01-01

    The artificial gene D6D encoding the enzyme ∆6desaturase was designed and synthesized using the sequence of the same gene from the fungus Thamnidium elegans. The original start codon was replaced by the signal sequence derived from the wheat gene for high-molecular-weight glutenin subunit and the codon usage was completely changed for optimal expression in wheat. Synthesized artificial D6D gene was delivered into plants of the spring wheat line CY-45 and the gene itself, as well as transcribed D6D mRNA were confirmed in plants of T0 and T1 generations. The desired product of the wheat genetic modification by artificial D6D gene was the γ-linolenic acid. Its presence was confirmed in mature grains of transgenic wheat plants in the amount 0.04%–0.32% (v/v) of the total amount of fatty acids. Both newly synthesized γ-linolenic acid and stearidonic acid have been detected also in leaves, stems, roots, awns, paleas, rachillas, and immature grains of the T1 generation as well as in immature and mature grains of the T2 generation. Contents of γ-linolenic acid and stearidonic acid varied in range 0%–1.40% (v/v) and 0%–1.53% (v/v) from the total amount of fatty acids, respectively. This approach has opened the pathway of desaturation of fatty acids and production of essential polyunsaturated fatty acids in wheat. PMID:26694368

  3. n-3 Polyunsaturated fatty acids in animal models with neuroinflammation.

    PubMed

    Orr, Sarah K; Trépanier, Marc-Olivier; Bazinet, Richard P

    2013-01-01

    Neuroinflammation is present in the majority of acute and chronic neurological disorders. Excess or prolonged inflammation in the brain is thought to exacerbate neuronal damage and loss. Identifying modulators of neuroinflammation is an active area of study since it may lead to novel therapies. Omega-3 polyunsaturated fatty acids (n-3 PUFA) are anti-inflammatory in many non-neural tissues; their role in neuroinflammation is less studied. This review summarizes the relationship between n-3 PUFA and brain inflammation in animal models of brain injury and aging. Evidence by and large shows protective effects of n-3 PUFA in models of sickness behavior, stroke, aging, depression, Parkinson's disease, diabetes, and cytokine- and irradiation-induced cognitive impairments. However, rigorous studies that test the direct effects of n-3 PUFA in neuroinflammation in vivo are lacking. Future research in this area is necessary to determine if, and if so which, n-3 PUFA directly target brain inflammatory pathways. n-3 PUFA bioactive metabolites may provide novel therapeutic targets for neurological disorders with a neuroinflammatory component. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Beyond fatty acid methyl esters: Expanding the renewable carbon profile with alkenones from Isochrysis sp.

    USDA-ARS?s Scientific Manuscript database

    In addition to characteristic fatty acid methyl esters (FAMEs), biodiesel produced from Isochrysis sp. contains a significant amount (14% dry weight) of predominantly C37 and C38 longchain alkenones. These compounds are members of a class of lipids known collectively as polyunsaturated long-chain al...

  5. Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species

    PubMed Central

    Moravec, Anna R.; Siv, Andrew W.; Hobby, Chelsea R.; Lindsay, Emily N.; Norbash, Layla V.; Shults, Daniel J.; Symes, Steven J. K.

    2017-01-01

    ABSTRACT The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids. IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in

  6. Omega-3 Polyunsaturated Fatty Acids: The Way Forward in Times of Mixed Evidence

    PubMed Central

    Weylandt, Karsten H.; Serini, Simona; Chen, Yong Q.; Su, Hui-Min; Lim, Kyu; Calviello, Gabriella

    2015-01-01

    Almost forty years ago, it was first hypothesized that an increased dietary intake of omega-3 polyunsaturated fatty acids (PUFA) from fish fat could exert protective effects against several pathologies. Decades of intense preclinical investigation have supported this hypothesis in a variety of model systems. Several clinical cardiovascular studies demonstrated the beneficial health effects of omega-3 PUFA, leading medical institutions worldwide to publish recommendations for their increased intake. However, particularly in recent years, contradictory results have been obtained in human studies focusing on cardiovascular disease and the clinical evidence in other diseases, particularly chronic inflammatory and neoplastic diseases, was never established to a degree that led to clear approval of treatment with omega-3 PUFA. Recent data not in line with the previous findings have sparked a debate on the health efficacy of omega-3 PUFA and the usefulness of increasing their intake for the prevention of a number of pathologies. In this review, we aim to examine the controversies on the possible use of these fatty acids as preventive/curative tools against the development of cardiovascular, metabolic, and inflammatory diseases, as well as several kinds of cancer. PMID:26301240

  7. Dietary Alfalfa and Calcium Salts of Long-Chain Fatty Acids Alter Protein Utilization, Microbial Populations, and Plasma Fatty Acid Profile in Holstein Freemartin Heifers.

    PubMed

    He, Yang; Qiu, Qinghua; Shao, Taoqi; Niu, Wenjing; Xia, Chuanqi; Wang, Haibo; Li, Qianwen; Gao, Zhibiao; Yu, Zhantao; Su, Huawei; Cao, Binghai

    2017-12-20

    This study presented the effects of alfalfa and calcium salts of long-chain fatty acids (CSFA) on feed intake, apparent digestibility, rumen fermentation, microbial community, plasma biochemical parameters, and fatty acid profile in Holstein freemartin heifers. Eight Holstein freemartin heifers were randomly divided into a 4 × 4 Latin Square experiment with 2 × 2 factorial diets, with or without alfalfa or CSFA. Dietary supplementation of CSFA significantly increased the apparent digestibility of dry matter, crude protein, neutral detergent fiber, organic matter, and significantly reduced N retention (P < 0.05). CSFA increased the concentration of ammonia nitrogen in the ruminal fluid (P < 0.05), but alfalfa increased the concentration of valerate and isovalerate (P < 0.05). CSFA increased the concentration of ammonia nitrogen and the relative population of Streptococcus bovis in the rumen (P < 0.05) and inhibited the relative population of Ruminococcus flavefaciens, methanogens, and protozoa (P < 0.05). Alfalfa instead of Leymus chinensis increased the relative population of Butyrivibrio fibrisolvens and Ruminobacter amylophilus in the rumen (P < 0.05) and reduced the relative population of the Ruminococcus albus and Megasphaera elsdenii (P < 0.05). Supplemental CSFA increased the concentration of cholesterol and low-density lipoprotein cholesterol in the plasma (P < 0.05). And it also altered the composition of fatty acids in the plasma, which was expressed in reducing saturated fatty acid (ΣSFA) ratio and C14-C17 fatty acids proportion except C16:0 (P < 0.05) and increasing the proportion of polyunsaturated fatty acid (ΣPUFA) and unsaturated fatty acid (ΣUFA) (P < 0.05). The results showed that alfalfa and CSFA had interaction effect on the apparent digestibility of ether extracts, plasma triglyceride concentration, isobutyrate concentration, and Ruminococcus albus relative abundance in the rumen. It was concluded that alfalfa substituting Leymus chinensis

  8. Implications of dietary ω-3 and ω-6 polyunsaturated fatty acids in breast cancer

    PubMed Central

    Zanoaga, Oana; Jurj, Ancuta; Raduly, Lajos; Cojocneanu-Petric, Roxana; Fuentes-Mattei, Enrique; Wu, Oscar; Braicu, Cornelia; Gherman, Claudia Diana; Berindan-Neagoe, Ioana

    2018-01-01

    Breast cancer represents one of the most common forms of cancer in women worldwide, with an increase in the number of newly diagnosed patients in the last decade. The role of fatty acids, particularly of a diet rich in ω-3 and ω-6 polyunsaturated fatty acids (PUFAs), in breast cancer development is not fully understood and remains controversial due to their complex mechanism of action. However, a large number of animal models and cell culture studies have demonstrated that high levels of ω-3 PUFAs have an inhibitory role in the development and progression of breast cancer, compared to ω-6 PUFAs. The present review focused on recent studies regarding the correlation between dietary PUFAs and breast cancer development, and aimed to emphasize the main molecular mechanisms involved in the modification of cell membrane structure and function, modulation of signal transduction pathways, gene expression regulation, and antiangiogenic and antimetastatic effects. Furthermore, the anticancer role of ω-3 PUFAs through the modulation of microRNA expression levels was also reviewed. PMID:29434704

  9. Establishment of the fatty acid profile of the brain of the king penguin (Aptenodytes patagonicus) at hatch: effects of a yolk that is naturally rich in n-3 polyunsaturates.

    PubMed

    Speake, Brian K; Decrock, Frederic; Surai, Peter F; Wood, Nicholas A R; Groscolas, René

    2003-01-01

    Because the yolk lipids of the king penguin (Aptenodytes patagonicus) contain the highest concentrations of long-chain n-3 polyunsaturated fatty acids yet reported for an avian species, the consequences for the establishment of the brain's fatty acid profile in the embryo were investigated. To place the results in context, the fatty acid compositions of yolk lipid and brain phospholipid of the king penguin were compared with those from three other species of free-living birds. The proportions of docosahexaenoic acid (22:6n-3; DHA) in the total lipid of the initial yolks for the Canada goose (Branta canadensis), mallard (Anas platyrhynchos), moorhen (Gallinula chloropus), and king penguin were (% w/w of fatty acids) 1.0+/-0.1, 1.9+/-0.2, 3.3+/-0.1, and 5.9+/-0.2, respectively. The respective concentrations of DHA (% w/w of phospholipid fatty acids) in brains of the newly hatched chicks of these same species were 18.5+/-0.2, 19.6+/-0.7, 16.9+/-0.4, and 17.6+/-0.1. Thus, the natural interspecies diversity in yolk fatty acid profiles does not necessarily produce major differences in the DHA content of the developing brain. Only about 1% of the amount of DHA initially present in the yolk was recovered in the brain of the penguin at hatch. There was no preferential uptake of DHA from the yolk during development of the king penguin.

  10. Factors affecting variations in the detailed fatty acid profile of Mediterranean buffalo milk determined by 2-dimensional gas chromatography.

    PubMed

    Pegolo, S; Stocco, G; Mele, M; Schiavon, S; Bittante, G; Cecchinato, A

    2017-04-01

    Buffalo milk is the world's second most widely produced milk, and increasing attention is being paid to its composition, particularly the fatty acid profile. The objectives of the present study were (1) to characterize the fatty acid composition of Mediterranean buffalo milk, and (2) to investigate potential sources of variation in the buffalo milk fatty acid profile. We determined the profile of 69 fatty acid traits in 272 individual samples of Mediterranean buffalo milk using gas chromatography. In total, 51 individual fatty acids were identified: 24 saturated fatty acids, 13 monounsaturated fatty acids, and 14 polyunsaturated fatty acids. The major individual fatty acids in buffalo milk were in the order 16:0, 18:1 cis-9, 14:0, and 18:0. Saturated fatty acids were the predominant fraction in buffalo milk fat (70.49%); monounsaturated and polyunsaturated fatty acids were at 25.95 and 3.54%, respectively. Adopting a classification based on carbon-chain length, we found that medium-chain fatty acids (11-16 carbons) represented the greater part (53.7%) of the fatty acid fraction of buffalo milk, whereas long-chain fatty acids (17-24 carbons) and short-chain fatty acids (4-10 carbons) accounted for 32.73 and 9.72%, respectively. The n-3 and n-6 fatty acids were 0.46 and 1.77%, respectively. The main conjugated linoleic acid, rumenic acid, represented 0.45% of total milk fatty acids. Herd/test date and stage of lactation were confirmed as important sources of variation in the fatty acid profile of buffalo milk. The percentages of short-chain and medium-chain fatty acids in buffalo milk increased in early lactation (+0.6 and +3.5%, respectively), whereas long-chain fatty acids decreased (-4.2%). The only exception to this pattern was butyric acid, which linearly decreased from the beginning of lactation, confirmation that its synthesis is independent of malonyl-CoA. These results seem to suggest that in early lactation the mobilization of energy reserves may have less

  11. Synthesis, chemical characterization, and economical feasibility of poly-phenolic-branched-chain fatty acids: Synthesis of poly-phenolic-branched-chain fatty acids

    USDA-ARS?s Scientific Manuscript database

    New poly-phenolic branched-chain fatty acid (poly-PBC-FA) products were synthesized from a combination of soybean fatty acids and phenolic materials through a highly efficient zeolite catalyzed arylation method. These poly-PBC-FAs are liquid at room temperature and do not have the unpleasant odor li...

  12. Cross-sectional associations of cortical β-amyloid with erythrocyte membrane long-chain polyunsaturated fatty acids in older adults with subjective memory complaints.

    PubMed

    Hooper, Claudie; De Souto Barreto, Philipe; Payoux, Pierre; Salabert, Anne Sophie; Guyonnet, Sophie; Andrieu, Sandrine; Vellas, Bruno

    2017-08-01

    Omega-3 (n-3) and 6 (n-6) polyunsaturated fatty acids (PUFAs) have been associated with reduced cognitive decline in observational studies. Hence, we examined the cross-sectional associations between cortical β-amyloid (Aβ) and erythrocyte membrane PUFAs in 61 non-demented elderly individuals reporting subjective memory complaints from the Multidomain Alzheimer Preventive Trial placebo arm. Cortical-to-cerebellar standard uptake value ratios were obtained using [ 18 F] florbetapir positron emission tomography. Fatty acids were measured in erythrocyte membranes by gas chromatography. Associations were explored using adjusted multiple linear regression models and were considered significant at p ≤ 0.005 after correction for multiple testing (10 comparisons). We found no significant associations between cortical Aβ and erythrocyte membrane PUFAs. The associations closest to significance after adjustment were those between Aβ and erythrocyte membrane arachidonic acid (without apolipoprotein E status adjustment: B-coefficient, 0.03; CI, 0.01, 0.05; p = 0.02. Including Apolipoprotein E adjustment: B-coefficient, 0.03; CI, 0.00, 0.06; p = 0.04) and Aβ and erythrocyte membrane linoleic acid (without apolipoprotein E status adjustment: B-coefficient, -0.02; CI, -0.04, 0.00; p = 0.02. Including Apolipoprotein E adjustment: B-coefficient, -0.02; CI, -0.04, 0.00; p = 0.09). Furthermore, the association between Aβ and erythrocyte membrane arachidonic acid seemed to be specific to Apolipoprotein E ε4 non-carriers (B-coefficient 0.03, CI: 0.00, 0.06, p = 0.03, n = 36). In contrast, no association was found between Aβ and erythrocyte membrane linoleic acid in Apolipoprotein E ε4 stratified analysis. Investigating the relationships between Aβ and PUFAs longitudinally would provide further evidence as to whether fatty acids, particularly arachidonic acid and linoleic acid, might modulate cognition through Aβ-dependent mechanisms. © 2017 International

  13. Diverse physiological effects of long-chain saturated fatty acids: implications for cardiovascular disease.

    PubMed

    Flock, Michael R; Kris-Etherton, Penny M

    2013-03-01

    The purpose of this review is to discuss the metabolism of long-chain saturated fatty acids and the ensuing effects on an array of metabolic events. Individual long-chain saturated fatty acids exhibit unique biological properties. Dietary saturated fat absorption varies depending on chain-length and the associated food matrix. The in-vivo metabolism of saturated fatty acids varies depending on the individual fatty acid and the nutritional state of the individual. A variety of fatty acid metabolites are formed, each with their own unique structure and properties that warrant further research. Replacing saturated fatty acids with unsaturated fatty acids improves the blood lipid profile and reduces cardiovascular disease risk, although the benefits depend on the specific saturated fatty acid(s) being replaced. Acknowledging the complexity of saturated fatty acid metabolism and associated metabolic events is important when assessing their effects on cardiovascular disease risk. Investigating the biological effects of saturated fatty acids will advance our understanding of how they affect cardiovascular disease risk.

  14. N-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiotensinogen and other inflammatory adipokines in part via NF-kB dependent mechanisms

    USDA-ARS?s Scientific Manuscript database

    Excessive secretion of angiotensinogen (Agt) and other adipokines such as Interleukin-6 (IL-6) and Monocyte chemotactic protein-1 (MCP-1) have been linked to obesity and associated metabolic disorders, with a common feature being inflammation. We have previously shown that n-3 polyunsaturated fatty ...

  15. Lipid oxidation of stored eggs enriched with very long chain n-3 fatty acids, as affected by dietary olive leaves (Olea europea L.) or α-tocopheryl acetate supplementation.

    PubMed

    Botsoglou, E; Govaris, A; Fletouris, D; Botsoglou, N

    2012-09-15

    The antioxidant potential of dietary olive leaves or α-tocopheryl acetate supplementation on lipid oxidation of refrigerated stored hen eggs enriched with very long-chain n-3 fatty acids, was investigated. Ninety-six brown Lohmann laying hens, were equally assigned into three groups. Hens within the control group were given a typical diet containing 3% fish oil, whereas other groups were given the same diet further supplemented with 10 g ground olive leaves/kg feed or 200mg α-tocopheryl acetate/kg feed. Results showed that α-tocopheryl acetate or olive leaves supplementation had no significant effect on the fatty acid composition and malondialdehyde (MDA) levels of fresh eggs but reduced their lipid hydroperoxide levels compared to controls. Storage for 60 d decreased the proportions of polyunsaturated fatty acids (PUFAs) but increased those of monounsaturated fatty acids (MUFAs) in eggs from the control group, while had no effect on the fatty acid composition of the eggs from the other two groups, which showed decreased levels of lipid hydroperoxides and MDA. Therefore, the very long chain n-3 PUFAs in eggs were protected from undergoing deterioration partly by olive leaves supplementation and totally by α-tocopheryl acetate supplementation. In addition, incorporating tocopherols into eggs might also provide a source of tocopherols for the human diet. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Reversed-phase high-performance liquid chromatography purification of methyl esters of C(16)-C(28) polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)].

    PubMed

    Mansour, Maged P

    2005-12-02

    A preparative reversed-phase (RP; C(18)) high-performance liquid chromatography (HPLC) method with gradient elution using acetonitrile (MeCN)-chloroform (CHCl(3)) (or dichloromethane (DCM)) and evaporative light-scattering detection (ELSD) with automatic multiple injection and fraction collection was used to purify milligram quantities of microalgal polyunsaturated fatty acids (PUFA), separated as methyl esters (ME). PUFA-ME purified included methyl esters of docosahexaenoic acid (DHA; 22:6(n-3)), eicosapentaenoic acid (EPA; 20:5(n-3)) and the unusual very long-chain (C(28)) highly unsaturated fatty acid (VLC-HUFA), octacosaoctaenoic acid [28:8(n-3)(4, 7, 10, 13, 16, 19, 22, 25)] from the marine dinoflagellate Scrippsiella sp. CS-295/c. Other PUFA purified from various microalgae using this RP-HPLC method to greater than 95% purity included 16:3(n-4), 16:4(n-3), 16:4(n-1) and 18:5(n-3). The number of injections required was variable and depended on the abundance of the desired PUFA-ME, and resolution from closely eluting PUFA-ME, which determined the maximum loading. The purity of these fatty acids was determined by electron impact (EI) GC-MS and the chain length and location of double bonds was determined by EI GC-MS of 4,4-dimethyl oxazoline (DMOX) derivatives formed using a low temperature method. Advantages over silver-ion HPLC for purifying PUFA-ME is that separation occurs according to chain length as well as degree of unsaturation enabling separation of PUFA-ME with the same degree of unsaturation but different chain length (i.e. between 18:5(n-3) and 20:5(n-3)). In addition, PUFA-ME are not strongly adsorbed, but elute earlier than their more saturated corresponding FAME of the same chain length. This method is robust, simple, and requires only a short re-equilibration time. It is a useful tool for preparing milligram quantities of pure PUFA-ME for bioactive screening (as free fatty acids), although many multiple injections may be required for minor PUFA

  17. Lower omega-3 polyunsaturated fatty acids and lower docosahexaenoic acid in men with pedophilia.

    PubMed

    Mincke, Elda; Cosyns, Paul; Christophe, Armand B; De Vriese, Stephanie; Maes, Michael

    2006-12-01

    Previous studies have suggested that abnormalities in plasma phospholipid fatty acids may play a role in aggressive behavior. Recently, it was suggested that a dysfunctional serotonergic turnover in the brain may be involved in the etiopathology of pedophilia. Depletion of n-3 polyunsaturated fatty acids (PUFA) may cause alterations in the serotonergic system that may be related to pedophilia and aggression. This study examines the serum phospholipid n-3 and n-6 PUFA fractions in pedophilia. Twenty-seven pedophilic men and eighteen healthy volunteers participated in this study. In pedophilia there was a significant depletion of the C22:6n-3 (docosahexaenoic acid, DHA), total n-3 fractions and an increase in the total n-6/n-3 and C20:4n-6/C20:5n-3 (arachidonic acid/eicosapentaenoic acid) ratios. Using the NEO Personality Inventory, lower DHA in pedophiles is related to more impulsiveness and lower agreeableness (trust, altruism, straightforwardness, compliance) and conscientiousness (self-discipline). The results of this study suggest that a depletion of the serum phospholipid n-3 higher unsaturated fatty acids (HUFAs) and, in particular, of DHA may take part in the pathophysiology of pedophilia. One hypothesis is that a depletion of n-3 HUFAs and DHA may cause alterations in the serotonergic turnover, which are related to impulse discontrol and aggression-hostility, behaviors which are associated with pedophilia.

  18. Polyunsaturated fatty acyl-coenzyme As are inhibitors of cholesterol biosynthesis in zebrafish and mice

    PubMed Central

    Karanth, Santhosh; Tran, Vy My; Kuberan, Balagurunathan; Schlegel, Amnon

    2013-01-01

    SUMMARY Lipid disorders pose therapeutic challenges. Previously we discovered that mutation of the hepatocyte β-hydroxybutyrate transporter Slc16a6a in zebrafish causes hepatic steatosis during fasting, marked by increased hepatic triacylglycerol, but not cholesterol. This selective diversion of trapped ketogenic carbon atoms is surprising because acetate and acetoacetate can exit mitochondria and can be incorporated into both fatty acids and cholesterol in normal hepatocytes. To elucidate the mechanism of this selective diversion of carbon atoms to fatty acids, we fed wild-type and slc16a6a mutant animals high-protein ketogenic diets. We find that slc16a6a mutants have decreased activity of the rate-limiting enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr), despite increased Hmgcr protein abundance and relative incorporation of mevalonate into cholesterol. These observations suggest the presence of an endogenous Hmgcr inhibitor. We took a candidate approach to identify such inhibitors. First, we found that mutant livers accumulate multiple polyunsaturated fatty acids (PUFAs) and PUFA-CoAs, and we showed that human HMGCR is inhibited by PUFA-CoAs in vitro. Second, we injected mice with an ethyl ester of the PUFA eicosapentaenoic acid and observed an acute decrease in hepatic Hmgcr activity, without alteration in Hmgcr protein abundance. These results elucidate a mechanism for PUFA-mediated cholesterol lowering through direct inhibition of Hmgcr. PMID:24057001

  19. Lipidomic profile in three species of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum) containing very long chain polyunsaturated fatty acids.

    PubMed

    Řezanka, Tomáš; Lukavský, Jaromír; Nedbalová, Linda; Sigler, Karel

    2017-07-01

    This study describes the identification of very long chain polyunsaturated fatty acids (VLCPUFAs) in three strains of dinoflagellates (Amphidinium carterae, Cystodinium sp., and Peridinium aciculiferum). The strains were cultivated and their lipidomic profiles were obtained by high resolution mass spectrometry with the aid of positive and negative electrospray ionization (ESI) mode by Orbitrap apparatus. Hydrophilic interaction liquid chromatography (HILIC/ESI) was used to separate major lipid classes of the three genera of dinoflagellates by neutral loss scan showing the ion [M + H-28:8] + , where 28:8 was octacosaoctaenoic acid, and by precursor ion scanning of ions at m/z 407, which was an ion corresponding to the structure of acyl of 28:8 acid (C 27 H 39 COO - ). Based on these analyzes, it was found that out of more than a dozen lipid classes present in the total lipids, only two classes of neutral lipids, i.e. major triacylglycerols and minor diacylglycerols contain VLCPUFAs. In polar lipids, VLCPUFAs were identified only in phosphatidic acid (PA) and phosphatidyl choline (PC) or in their lyso-forms (LPA and LPC). Further analysis of individual lipid classes by reversed-phase high-performance liquid chromatography (RP-HPLC) showed the presence of triacylglycerols (TAGs) containing VLCPUFAs, i.e. molecular species of the sn-28:7/28:8/28:8, sn-26:7/28:7/28:8, or sn-26:7/28:8/28:8 types. These TAGs are the longest and most unsaturated TAGs isolated from a natural source that have yet been synthesized. In the case of PA and PC, tandem MS identified sn-28:8/16:0-PA and sn-28:8/16:0-PC and the corresponding lyso-forms (28:8-LPC and 28:8-LPA). All these results indicate that TAGs containing VLCPUFAs are biosynthesized in dinoflagellates in the same manner as in higher eukaryotic organisms, which means that the PA, after conversion to DAG, serves as a precursor in the biosynthesis of other phospholipids, e.g. PC, and, after further acylation, also of TAG. Copyright

  20. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  1. Optimization of the Synthesis of Structured Phosphatidylcholine with Medium Chain Fatty Acid.

    PubMed

    Ochoa-Flores, Angélica A; Hernández-Becerra, Josafat A; Cavazos-Garduño, Adriana; Vernon-Carter, Eduardo J; García, Hugo S

    2017-11-01

    Structured phosphatidylcholine was successfully produced by acidolysis between phosphatidylcholine and free medium chain fatty acid, using phospholipase A 1 immobilized on Duolite A568. Response surface methodology was applied to optimize the reaction system using three process parameters: molar ratio of substrates (phosphatidylcholine to free medium chain fatty acid), enzyme loading, and reaction temperature. All parameters evaluated showed linear and quadratic significant effects on the production of modified phosphatidylcholine; molar ratio of substrates contributed positively, but temperature influenced negatively. Increased enzyme loading also led to increased production of modified phosphatidylcholine but only during the first 9 hours of the acidolysis reaction. Optimal conditions obtained from the model were a ratio of phosphatidylcholine to free medium chain fatty acid of 1:15, an enzyme loading of 12%, and a temperature of 45°C. Under these conditions a production of modified phosphatidylcholine of 52.98 % were obtained after 24 h of reaction. The prediction was confirmed from the verification experiments; the production of modified phosphatidylcholine was 53.02%, the total yield of phosphatidylcholine 64.28% and the molar incorporation of medium chain fatty acid was 42.31%. The acidolysis reaction was scaled-up in a batch reactor with a similar production of modified phosphatidylcholine, total yield of phosphatidylcholine and molar incorporation of medium chain fatty acid. Purification by column chromatography of the structured phosphatidylcholine yielded 62.53% of phosphatidylcholine enriched with 42.52% of medium chain fatty acid.

  2. Dietary α-Linolenic Acid, Marine ω-3 Fatty Acids, and Mortality in a Population With High Fish Consumption: Findings From the PREvención con DIeta MEDiterránea (PREDIMED) Study.

    PubMed

    Sala-Vila, Aleix; Guasch-Ferré, Marta; Hu, Frank B; Sánchez-Tainta, Ana; Bulló, Mònica; Serra-Mir, Mercè; López-Sabater, Carmen; Sorlí, Jose V; Arós, Fernando; Fiol, Miquel; Muñoz, Miguel A; Serra-Majem, Luis; Martínez, J Alfredo; Corella, Dolores; Fitó, Montserrat; Salas-Salvadó, Jordi; Martínez-González, Miguel A; Estruch, Ramón; Ros, Emilio; B

    2016-01-26

    Epidemiological evidence suggests a cardioprotective role of α-linolenic acid (ALA), a plant-derived ω-3 fatty acid. It is unclear whether ALA is beneficial in a background of high marine ω-3 fatty acids (long-chain n-3 polyunsaturated fatty acids) intake. In persons at high cardiovascular risk from Spain, a country in which fish consumption is customarily high, we investigated whether meeting the International Society for the Study of Fatty Acids and Lipids recommendation for dietary ALA (0.7% of total energy) at baseline was related to all-cause and cardiovascular disease mortality. We also examined the effect of meeting the society's recommendation for long-chain n-3 polyunsaturated fatty acids (≥500 mg/day). We longitudinally evaluated 7202 participants in the PREvención con DIeta MEDiterránea (PREDIMED) trial. Multivariable-adjusted Cox regression models were fitted to estimate hazard ratios. ALA intake correlated to walnut consumption (r=0.94). During a 5.9-y follow-up, 431 deaths occurred (104 cardiovascular disease, 55 coronary heart disease, 32 sudden cardiac death, 25 stroke). The hazard ratios for meeting ALA recommendation (n=1615, 22.4%) were 0.72 (95% CI 0.56-0.92) for all-cause mortality and 0.95 (95% CI 0.58-1.57) for fatal cardiovascular disease. The hazard ratios for meeting the recommendation for long-chain n-3 polyunsaturated fatty acids (n=5452, 75.7%) were 0.84 (95% CI 0.67-1.05) for all-cause mortality, 0.61 (95% CI 0.39-0.96) for fatal cardiovascular disease, 0.54 (95% CI 0.29-0.99) for fatal coronary heart disease, and 0.49 (95% CI 0.22-1.01) for sudden cardiac death. The highest reduction in all-cause mortality occurred in participants meeting both recommendations (hazard ratio 0.63 [95% CI 0.45-0.87]). In participants without prior cardiovascular disease and high fish consumption, dietary ALA, supplied mainly by walnuts and olive oil, relates inversely to all-cause mortality, whereas protection from cardiac mortality is limited to

  3. Genetic variation in fatty acid elongases is not associated with intermediate cardiovascular phenotypes or myocardial infarction

    USDA-ARS?s Scientific Manuscript database

    Elongases 2, 4 and 5, encoded by genes ELOVL2, ELOVL4 and ELOVL5, have a key role in the biosynthesis of very long chain polyunsaturated fatty acids (PUFAs). To date, few studies have investigated the associations between elongase polymorphisms and cardiovascular health. We investigated whether ELOV...

  4. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels.

    PubMed

    Elinder, Fredrik; Liin, Sara I

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (Na V ), potassium (K V ), calcium (Ca V ), and proton (H V ) channels, as well as calcium-activated potassium (K Ca ), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1 : The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2 : The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3 : The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4 : The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5 : The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.

  5. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels

    PubMed Central

    Elinder, Fredrik; Liin, Sara I.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels. PMID:28220076

  6. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study.

    PubMed

    Tanaka, Toshiko; Shen, Jian; Abecasis, Gonçalo R; Kisialiou, Aliaksei; Ordovas, Jose M; Guralnik, Jack M; Singleton, Andrew; Bandinelli, Stefania; Cherubini, Antonio; Arnett, Donna; Tsai, Michael Y; Ferrucci, Luigi

    2009-01-01

    Polyunsaturated fatty acids (PUFA) have a role in many physiological processes, including energy production, modulation of inflammation, and maintenance of cell membrane integrity. High plasma PUFA concentrations have been shown to have beneficial effects on cardiovascular disease and mortality. To identify genetic contributors of plasma PUFA concentrations, we conducted a genome-wide association study of plasma levels of six omega-3 and omega-6 fatty acids in 1,075 participants in the InCHIANTI study on aging. The strongest evidence for association was observed in a region of chromosome 11 that encodes three fatty acid desaturases (FADS1, FADS2, FADS3). The SNP with the most significant association was rs174537 near FADS1 in the analysis of arachidonic acid (AA; p = 5.95 x 10(-46)). Minor allele homozygotes had lower AA compared to the major allele homozygotes and rs174537 accounted for 18.6% of the additive variance in AA concentrations. This SNP was also associated with levels of eicosadienoic acid (EDA; p = 6.78 x 10(-9)) and eicosapentanoic acid (EPA; p = 1.07 x 10(-14)). Participants carrying the allele associated with higher AA, EDA, and EPA also had higher low-density lipoprotein (LDL-C) and total cholesterol levels. Outside the FADS gene cluster, the strongest region of association mapped to chromosome 6 in the region encoding an elongase of very long fatty acids 2 (ELOVL2). In this region, association was observed with EPA (rs953413; p = 1.1 x 10(-6)). The effects of rs174537 were confirmed in an independent sample of 1,076 subjects participating in the GOLDN study. The ELOVL2 SNP was associated with docosapentanoic and DHA but not with EPA in GOLDN. These findings show that polymorphisms of genes encoding enzymes in the metabolism of PUFA contribute to plasma concentrations of fatty acids.

  7. A mechanism underlying the effects of polyunsaturated fatty acids on breast cancer

    PubMed Central

    ZHANG, HAO; ZHOU, LEI; SHI, WEI; SONG, NING; YU, KARU; GU, YUCHUN

    2012-01-01

    Breast cancer is the most frequent cancer in women. Evidence suggests that the polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) affect breast cancer proliferation, differentiation and prognosis. However, the mechanism still remains unclear. In this study, the expression of transient receptor potential canonical (TRPC)3 was detected throughout the cell cytoplasm and at the cell surface of MCF-7 cells. Ca2+ entry was induced in these cells via activated TRPC3 by either the diacylglycerol analogue (OAG) or by intracellular Ca2+ store depletion. TRPC-mediated Ca2+ entry was inhibited by PUFAs including arachidonic acid (AA) and linolenic acid (LA) but not saturated fatty acids. Overexpression of the PUFA degradation enzyme, cyclooxygenase 2 (COX2), enhanced capacitative Ca2+ entry. In addition, inhibition of COX2 reduced [Ca2+]i. Nevertheless, inhibition of TRPC reduced the cell cycle S phase and cell migration, implicating a functional role for TRP-mediated Ca2+ entry in cell proliferation and invasion. Exogenous PUFA as well as a TRPC3 antagonist consistently attenuated breast cancer cell proliferation and migration, suggesting a mechanism in which PUFA restrains the breast cancer partly via its inhibition of TRPC channels. Additionally, our results also suggest that TRPC3 appears as a new mediator of breast cancer cell migration/invasion and represents a potential target for a new class of anticancer agent. PMID:22692672

  8. Postprandial lipid responses do not differ following consumption of butter or vegetable oil when consumed with omega-3 polyunsaturated fatty acids.

    PubMed

    Dias, Cintia B; Phang, Melinda; Wood, Lisa G; Garg, Manohar L

    2015-04-01

    Dietary saturated fat (SFA) intake has been associated with elevated blood lipid levels and increased risk for the development of chronic diseases. However, some animal studies have demonstrated that dietary SFA may not raise blood lipid levels when the diet is sufficient in omega-3 polyunsaturated fatty acids (n-3PUFA). Therefore, in a randomised cross-over design, we investigated the postprandial effects of feeding meals rich in either SFA (butter) or vegetable oil rich in omega-6 polyunsaturated fatty acids (n-6PUFA), in conjunction with n-3PUFA, on blood lipid profiles [total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triacylglycerol (TAG)] and n-3PUFA incorporation into plasma lipids over a 6-h period. The incremental area under the curve for plasma cholesterol, LDL-C, HDL-C, TAG and n-3PUFA levels over 6 h was similar in the n-6PUFA compared to SFA group. The postprandial lipemic response to saturated fat is comparable to that of n-6PUFA when consumed with n-3PUFA; however, sex-differences in response to dietary fat type are worthy of further attention.

  9. Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development.

    PubMed

    Delgado-Noguera, Mario F; Calvache, Jose Andres; Bonfill Cosp, Xavier; Kotanidou, Eleni P; Galli-Tsinopoulou, Assimina

    2015-07-14

    Long chain polyunsaturated fatty acids (LCPUFA), especially docosahexaenoic acid (DHA), are the most abundant fatty acids in the brain and are necessary for growth and maturation of an infant's brain and retina. LCPUFAs are named "essential" because they cannot be synthesised efficiently by the human body and come from maternal diet. It remains controversial whether LCPUFA supplementation to breastfeeding mothers is beneficial for the development of their infants. To assess the effectiveness and safety of supplementation with LCPUFA in breastfeeding mothers in the cognitive and physical development of their infants as well as safety for the mother and infant. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (6 August 2014), CENTRAL (Cochrane Library 2014, Issue 8), PubMed (1966 to August 2014), EMBASE (1974 to August 2014), LILACS (1982 to August 2014), Google Scholar (August 2014) and reference lists of published narrative and systematic reviews. Randomised controlled trials or cluster-randomised controlled trials evaluating the effects of LCPUFA supplementation on breastfeeding mothers (including the pregnancy period) and their infants. Two review authors independently assessed eligibility and trial quality, performed data extraction and evaluated data accuracy. We included eight randomised controlled trials involving 1567 women. All the studies were performed in high-income countries. The longest follow-up was seven years.We report the results from the longest follow-up time point from included studies. Overall, there was moderate quality evidence as assessed using the GRADE approach from these studies for the following outcomes measured beyond 24 months age of children: language development and child weight. There was low-quality evidence for the outcomes: Intelligence or solving problems ability, psychomotor development, child attention, and child visual acuity.We found no significant difference in children's neurodevelopment at long

  10. Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation.

    PubMed

    Khadge, Saraswoti; Thiele, Geoffrey M; Sharp, John Graham; McGuire, Timothy R; Klassen, Lynell W; Black, Paul N; DiRusso, Concetta C; Talmadge, James E

    2018-06-01

    Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.

  11. Modifications of Atlantic salmon by-product oil for obtaining different ω-3 polyunsaturated fatty acids concentrates: An approach to comparative analysis.

    PubMed

    Haq, Monjurul; Park, Seul-Ki; Kim, Min-Jung; Cho, Yeon-Jin; Chun, Byung-Soo

    2018-04-01

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) rich 2-monoacylglycerols (2-MAG), omega-3 polyunsaturated free fatty acids (ω-3 PUFFAs) concentrate, and PUFA enriched acylglycerols were prepared from salmon frame bone oil (SFBO) by enzymatic alcoholysis, urea complexation, and enzymatic esterification, respectively. The yields of 2-MAG, ω-3 PUFFAs concentrate, and PUFA enriched acylglycerols were 40.25, 16.52, and 15.65%, respectively. ω-3 PUFFAs concentrate and PUFA enriched acylglycerols showed darker red color than SFBO and 2-MAG due to aggregation of astaxanthin pigment in ω-3 PUFFAs concentrate during urea complexation. The viscosity and specific gravity of SFBO and PUFA enriched acylglycerols showed similar values whereas 2-MAG and ω-3 PUFFAs showed significantly (p < 0.05) lower values. Stability parameters like acid value, peroxide value, free fatty acid value, and p-anisidine value of SFBO and ω-3 PUFAs concentrates were within acceptable limits except extreme high acid value and free fatty acid value of ω-3 PUFFAs concentrate. Thermogravimetric analysis showed similar and higher thermal stability of SFBO and PUFA enriched acylglycerols than 2-MAG and ω-3 PUFFAs concentrate. The ω-3 PUFAs content in 2-MAG, ω-3 PUFFAs concentrate, and PUFA enriched acylglycerols was increased to 20.81, 52.96, and 51.74% respectively from 13.54% in SFBO. ω-3 PUFFAs concentrate and PUFA enriched acylglycerols showed higher DPPH and ABTS radical scavenging activity than SFBO and 2-MAG. The results obtained from this study suggest the production of PUFA enriched acylglycerols rich in ω-3 PUFAs supplements from fish oil for human and pet animals. Copyright © 2017. Published by Elsevier B.V.

  12. Lipoprotein lipase variants interact with polyunsaturated fatty acids for obesity traits in women: replication in two populations.

    PubMed

    Ma, Y; Tucker, K L; Smith, C E; Lee, Y C; Huang, T; Richardson, K; Parnell, L D; Lai, C Q; Young, K L; Justice, A E; Shao, Y; North, K E; Ordovás, J M

    2014-12-01

    Lipoprotein lipase (LPL) is a candidate gene for obesity based on its role in triglyceride hydrolysis and the partitioning of fatty acids towards storage or oxidation. Whether dietary fatty acids modify LPL associated obesity risk is unknown. We examined five single nucleotide polymorphisms (SNPs) (rs320, rs2083637, rs17411031, rs13702, rs2197089) for potential interaction with dietary fatty acids for obesity traits in 1171 participants (333 men and 838 women, aged 45-75 y) of the Boston Puerto Rican Health Study (BPRHS). In women, SNP rs320 interacted with dietary polyunsaturated fatty acids (PUFA) for body mass index (BMI) (P = 0.002) and waist circumference (WC) (P = 0.001) respectively. Higher intake of PUFA was associated with lower BMI and WC in homozygotes of the major allele (TT) (P = 0.01 and 0.005) but not in minor allele carriers (TG and GG). These interactions were replicated in an independent population, African American women of the Atherosclerosis Risk in Communities (ARIC) study (n = 1334). Dietary PUFA modulated the association of LPL rs320 with obesity traits in two independent populations. These interactions may be relevant to the dietary management of obesity, particularly in women. Copyright © 2014. Published by Elsevier B.V.

  13. Lipoprotein lipase variants interact with polyunsaturated fatty acids for obesity traits in women: Replication in two populations

    PubMed Central

    Ma, Y.; Tucker, K.L.; Smith, C.E.; Lee, Y.C.; Huang, T.; Richardson, K.; Parnell, L.D.; Lai, C.Q.; Young, K.L.; Justice, A.E.; Shao, Y.; North, K.E.; Ordovás, J.M.

    2015-01-01

    Background and aims Lipoprotein lipase (LPL) is a candidate gene for obesity based on its role in triglyceride hydrolysis and the partitioning of fatty acids towards storage or oxidation. Whether dietary fatty acids modify LPL associated obesity risk is unknown. Methods and results We examined five single nucleotide polymorphisms (SNPs) (rs320, rs2083637, rs17411031, rs13702, rs2197089) for potential interaction with dietary fatty acids for obesity traits in 1171 participants (333 men and 838 women, aged 45–75 y) of the Boston Puerto Rican Health Study (BPRHS). In women, SNP rs320 interacted with dietary polyunsaturated fatty acids (PUFA) for body mass index (BMI) (P = 0.002) and waist circumference (WC) (P = 0.001) respectively. Higher intake of PUFA was associated with lower BMI and WC in homozygotes of the major allele (TT) (P = 0.01 and 0.005) but not in minor allele carriers (TG and GG). These interactions were replicated in an independent population, African American women of the Atherosclerosis Risk in Communities (ARIC) study (n = 1334). Conclusion Dietary PUFA modulated the association of LPL rs320 with obesity traits in two independent populations. These interactions may be relevant to the dietary management of obesity, particularly in women. PMID:25156894

  14. Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance.

    PubMed

    Yazawa, Hisashi; Iwahashi, Hitoshi; Kamisaka, Yasushi; Kimura, Kazuyoshi; Uemura, Hiroshi

    2009-03-01

    Saccharomyces cerevisiae produces saturated and monounsaturated fatty acids of 16- and 18-carbon atoms and no polyunsaturated fatty acids (PUFAs) with more than two double bonds. To study the biological significance of PUFAs in yeast, we introduced Kluyveromyces lactis Delta12 fatty acid desaturase (KlFAD2) and omega3 fatty acid desaturase (KlFAD3) genes into S. cerevisiae to produce linoleic and alpha-linolenic acids in S. cerevisiae. The strain producing linoleic and alpha-linolenic acids showed an alkaline pH-tolerant phenotype. DNA microarray analyses showed that the transcription of a set of genes whose expressions are under the repression of Rim101p were downregulated in this strain, suggesting that Rim101p, a transcriptional repressor which governs the ion tolerance, was activated. In line with this activation, the strain also showed elevated resistance to Li(+) and Na(+) ions and to zymolyase, a yeast lytic enzyme preparation containing mainly beta-1,3-glucanase, indicating that the cell wall integrity was also strengthened in this strain. Our findings demonstrate a novel influence of PUFA production on transcriptional control that is likely to play an important role in the early stage of alkaline stress response. The Accession No. for microarray data in the Center for Information Biology Gene Expression database is CBX68.

  15. Omega-3 polyunsaturated fatty acids promote amyloid-β clearance from the brain through mediating the function of the glymphatic system.

    PubMed

    Ren, Huixia; Luo, Chuanming; Feng, Yanqing; Yao, Xiaoli; Shi, Zhe; Liang, Fengyin; Kang, Jing X; Wan, Jian-Bo; Pei, Zhong; Su, Huanxing

    2017-01-01

    Impairment of amyloid-β (Aβ) clearance leads to Aβ accumulation in the brain during the development of Alzheimer's disease (AD). Strategies that can restore or improve the clearance function hold great promise in delaying or preventing the onset of AD. Here, we show that n-3 polyunsaturated fatty acids (PUFAs), by use of fat-1 transgenic mice and oral administration of fish oil, significantly promote interstitial Aβ clearance from the brain and resist Aβ injury. Such beneficial effects were abolished in Aqp4-knockout mice, suggesting that the AQP4-dependent glymphatic system is actively involved in the promoting the effects of n-3 PUFAs on the clearance of extracellular Aβ. Imaging on clarified brain tissues clearly displayed that n-3 PUFAs markedly inhibit the activation of astrocytes and protect the AQP4 polarization in the affected brain region after Aβ injection. The results of the present study prove a novel mechanism by which n-3 PUFAs exert protective roles in reducing Aβ accumulation via mediating the glymphatic system function.-Ren, H., Luo, C., Feng, Y., Yao, X., Shi, Z., Liang, F., Kang, J. X., Wan, J.-B., Pei, Z., Su, H. Omega-3 polyunsaturated fatty acids promote amyloid-β clearance from the brain through mediating the function of the glymphatic system. © FASEB.

  16. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools.

    PubMed

    Taha, Ameer Y; Cheon, Yewon; Faurot, Keturah F; Macintosh, Beth; Majchrzak-Hong, Sharon F; Mann, J Douglas; Hibbeln, Joseph R; Ringel, Amit; Ramsden, Christopher E

    2014-05-01

    Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA. Published by Elsevier Ltd.

  17. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools

    PubMed Central

    Taha, Ameer Y.; Cheon, Yewon; Faurot, Keturah F.; MacIntosh, Beth; Majchrzak-Hong, Sharon F.; Mann, J. Douglas; Hibbeln, Joseph R.; Ringel, Amit; Ramsden, Christopher E.

    2014-01-01

    Background Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. Objective To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, change unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Design Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to: (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Results Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Conclusion Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFA for 12 weeks further increases n-3 PUFA plasma concentrations, but also reduces AA. PMID:24675168

  18. Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet.

    PubMed

    Umezawa, Masakazu; Nakamura, Masayuki; El-Ghoneimy, Ashraf A; Onoda, Atsuto; Shaheen, Hazem M; Hori, Hiroshi; Shinkai, Yusuke; El-Sayed, Yasser S; El-Far, Ali H; Takeda, Ken

    2018-01-01

    Exposure to diesel exhaust (DE) exacerbates non-alcoholic fatty liver disease, and may systemically affect lipid metabolism. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have anti-inflammatory activity and suppresses hepatic triacylglycerol accumulation, but many daily diets are deficient in this nutrient. Therefore, the effect of DE exposure in mice fed n-3 PUFA-deficient diet was investigated. Mice were fed control chow or n-3 PUFA-deficient diet for 4 weeks, then exposed to clean air or DE by inhalation for further 4 weeks. Liver histology, plasma parameters, and expression of fatty acid synthesis-related genes were evaluated. N-3 PUFA-deficient diet increased hepatic lipid droplets accumulation and expression of genes promoting fatty acid synthesis: Acaca, Acacb, and Scd1. DE further increased the plasma leptin and the expression of fatty acid synthesis-related genes: Acacb, Fasn, and Scd1. N-3 PUFA-deficient diet and DE exposure potentially enhanced hepatic fatty acid synthesis and subsequently accumulation of lipid droplets. The combination of low-dose DE exposure and intake of n-3 PUFA-deficient diet may be an additional risk factor for the incidence of non-alcoholic fatty liver disease. The present study suggests an important mechanism for preventing toxicity of DE on the liver through the incorporation of n-3 PUFAs in the diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. STRUCTURAL AND FUNCTIONAL INTERACTION OF FATTY ACIDS WITH HUMAN LIVER FATTY ACID BINDING PROTEIN (L-FABP) T94A VARIANT

    PubMed Central

    Huang, Huan; McIntosh, Avery L.; Martin, Gregory G.; Landrock, Kerstin K.; Landrock, Danilo; Gupta, Shipra; Atshaves, Barbara P.; Kier, Ann B.; Schroeder, Friedhelm

    2014-01-01

    The human liver fatty acid binding protein (L-FABP) T94A variant, the most common in the FABP family, has been associated with elevated liver triglyceride (TG) levels. How this amino acid substitution elicits these effects is not known. This issue was addressed with human recombinant wild-type (WT, T94T) and T94A variant L-FABP proteins as well as cultured primary human hepatocytes expressing the respective proteins (genotyped as TT, TC, and CC). T94A substitution did not or only slightly alter L-FABP binding affinities for saturated, monounsaturated, or polyunsaturated long chain fatty acids (LCFA), nor did it change the affinity for intermediates in TG synthesis. Nevertheless, T94A substitution markedly altered the secondary structural response of L-FABP induced by binding LCFA or intermediates of TG synthesis. Finally, T94A substitution markedly diminished polyunsaturated fatty acid, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), induction of peroxisome proliferator-activated receptor alpha (PPARα) - regulated proteins such as L-FABP, fatty acid transport protein 5 (FATP5), and PPARα itself in cultured primary human hepatocytes. Thus, while T94A substitution did not alter the affinity of human L-FABP for LCFAs, it significantly altered human L-FABP structure and stability as well as conformational and functional response to these ligands. PMID:24628888

  20. Association of polyunsaturated fatty acids in breast milk with fatty acid desaturase gene polymorphisms among Chinese lactating mothers.

    PubMed

    Ding, Zhen; Liu, Guo-Liang; Li, Xiang; Chen, Xue-Yan; Wu, Yi-Xia; Cui, Can-Can; Zhang, Xi; Yang, Guang; Xie, Lin

    2016-06-01

    The fatty acid desaturase (FADS) controls polyunsaturated fatty acid (PUFA) synthesis in human tissues and breast milk. Evaluate the influence of 10 single nucleotide polymorphisms (SNPs) and various haplotypes in the FADS gene cluster (FADS1, FADS2, FADS3) on PUFA concentration in the breast milk of 209 healthy Chinese women. PUFA concentrations were measured in breast milk using gas chromatography and genotyping was performed using the Sequenom Mass Array system. A SNP (rs1535) and 2-locus haplotypes (rs3834458-rs1535, rs1535-rs174575) in the FADS2 gene were associated with concentrations of γ-linoleic acid (GLA) and arachidonic acid (AA) in breast milk. Likewise, in the FADS1 gene, a 2-locus constructed haplotype (rs174547-rs174553) also affected GLA and AA concentration (P<0.05 for all). Minor allele carriers of the SNP and haplotypes described above had lower concentrations of GLA and AA. In the FADS2 gene, the 3-locus haplotype rs3834458-rs1535-rs174575, significantly affected concentrations of GLA but not AA. Pairwise comparison showed that individuals major homozygous for the SNP rs1000778 in the FADS3 gene had lower concentrations of ALA and linoleic acid (LA) in their breast milk. Polymorphisms in the FADS gene cluster influence PUFA concentrations in the breast milk of Chinese Han lactating women. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Synthesis and concentration of 2-monoacylglycerols rich in polyunsaturated fatty acids.

    PubMed

    Zhang, Yu; Wang, Xiaosan; Xie, Dan; Zou, Shuo; Jin, Qingzhe; Wang, Xingguo

    2018-06-01

    Polyunsaturated fatty acids (PUFA) in 2-monoacylglycerols form exhibit various biological activities and have potential applications in food and pharmaceuticals. Preparation of 2-monoacylglycerols was conducted by enzymatic enthanolysis. The effects of lipase type, substrate weight ratio, reaction time and lipase load on the 2-monoacylglycerols content in the crude product were investigated. Lipozyme 435 behaved as 1,3-specific and high-catalytic-activity lipase in this reaction. Under the optimal conditions (ethanol:oil = 3:1 (w/w), 8% Lipozyme 435, 3 h), 27% 2-monoacylglycerols were obtained. After solvent extraction of 2-monoacylglycerols, the abilities of low temperature crystallization and molecular distillation to concentrate 2-PUFA-monoacylglycerols were compared. Low temperature crystallization concentrated 81.13% and 74.29% PUFA by acetonitrile and hexane, respectively, with over 90% in 2-monoacylglycerol forms. Conversely, molecular distillation yielded a PUFA concentration of 72% but decreased the 2-monoacylglycerols content to 69.81%. Thus, the method including enzymatic ethanolysis and low temperature crystallization is suitable for preparation of 2-monoacylglycerols rich in PUFA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The effect of polyunsaturated fatty acids on obesity through epigenetic modifications.

    PubMed

    Hernando Boigues, Julián F; Mach, Núria

    2015-01-01

    In recent years it has been demonstrated that polyunsaturated fatty acids (PUFA) have anti-inflammatory and as regulators of lipid metabolism. However, the epigenomic mechanisms involved in these processes are not known in depth. The aim of this review was to describe the scientific evidence supports that regular consumption of PUFA may reduce obesity and overweight by altering epigenetic marks. A search of recent publications was carried out in human clinical trials, as well as animal model and in vitro experiments. Exist a possible therapeutic effect of PUFAs on the prevention and development of obesity due to their ability to reversively modify the methylation of the promoters of genes associated with lipid metabolism and to modulate the activity of certain microRNAs. A better knowledge and understanding of the PUFAs role in epigenetic regulation of obesity is possible with the current published results. The PUFAs may modulate the promotor epigenetic marks in several adipogenic genes and regulate the expression of several miRNAs. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  3. Influence of oxygen on the biosynthesis of polyunsaturated fatty acids in microalgae.

    PubMed

    Sun, Xiao-Man; Geng, Ling-Jun; Ren, Lu-Jing; Ji, Xiao-Jun; Hao, Ning; Chen, Ke-Quan; Huang, He

    2018-02-01

    As one of the most important environmental factors, oxygen is particularly important for synthesis of n-3 polyunsaturated fatty acids (n-3 PUFA) in microalgae. In general, a higher oxygen supply is beneficial for cell growth but obstructs PUFA synthesis. The generation of reactive oxygen species (ROS) under aerobic conditions, which leads to the peroxidation of lipids and especially PUFA, is an inevitable aspect of life, but is often ignored in fermentation processes. Irritability, microalgal cells are able to activate a number of anti-oxidative defenses, and the lipid profile of many species is reported to be altered under oxidative stress. In this review, the effects of oxygen on the PUFA synthesis, sources of oxidative damage, and anti-oxidative defense systems of microalgae were summarized and discussed. Moreover, this review summarizes the published reports on microalgal biotechnology involving direct/indirect oxygen regulation and new bioreactor designs that enable the improved production of PUFA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. High-Throughput Quantitative Lipidomics Analysis of Nonesterified Fatty Acids in Plasma by LC-MS.

    PubMed

    Christinat, Nicolas; Morin-Rivron, Delphine; Masoodi, Mojgan

    2017-01-01

    Nonesterified fatty acids are important biological molecules which have multiple functions such as energy storage, gene regulation, or cell signaling. Comprehensive profiling of nonesterified fatty acids in biofluids can facilitate studying and understanding their roles in biological systems. For these reasons, we have developed and validated a high-throughput, nontargeted lipidomics method coupling liquid chromatography to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. Sufficient chromatographic separation is achieved to separate positional isomers such as polyunsaturated and branched-chain species and quantify a wide range of nonesterified fatty acids in human plasma samples. However, this method is not limited only to these fatty acid species and offers the possibility to perform untargeted screening of additional nonesterified fatty acid species.

  5. Properties of Acetate Kinase Isozymes and a Branched-Chain Fatty Acid Kinase from a Spirochete

    PubMed Central

    Harwood, Caroline S.; Canale-Parola, Ercole

    1982-01-01

    Spirochete MA-2, which is anaerobic, ferments glucose, forming acetate as a major product. The spirochete also ferments (but does not utilize as growth substrates) small amounts of l-leucine, l-isoleucine, and l-valine, forming the branched-chain fatty acids isovalerate, 2-methylbutyrate, and isobutyrate, respectively, as end products. Energy generated through the fermentation of these amino acids is utilized to prolong cell survival under conditions of growth substrate starvation. A branched-chain fatty acid kinase and two acetate kinase isozymes were resolved from spirochete MA-2 cell extracts. Kinase activity was followed by measuring the formation of acyl phosphate from fatty acid and ATP. The branched-chain fatty acid kinase was active with isobutyrate, 2-methylbutyrate, isovalerate, butyrate, valerate, or propionate as a substrate but not with acetate as a substrate. The acetate kinase isozymes were active with acetate and propionate as substrates but not with longer-chain fatty acids as substrates. The acetate kinase isozymes and the branched-chain fatty acid kinase differed in nucleoside triphosphate and cation specificities. Each acetate kinase isozyme had an apparent molecular weight of approximately 125,000, whereas the branched-chain fatty acid kinase had a molecular weight of approximately 76,000. These results show that spirochete MA-2 synthesizes a branched-chain fatty acid kinase specific for leucine, isoleucine, and valine fermentation. It is likely that a phosphate branched-chain amino acids is also synthesized by spirochete MA-2. Thus, in spirochete MA-2, physiological mechanisms have evolved which serve specifically to generate maintenance energy from branched-chain amino acids. PMID:6288660

  6. Polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.

    PubMed

    Tan, May Loong; Ho, Jacqueline J; Teh, Keng Hwang

    2016-09-28

    About 5% of school children have a specific learning disorder, defined as unexpected failure to acquire adequate abilities in reading, writing or mathematics that is not a result of reduced intellectual ability, inadequate teaching or social deprivation. Of these events, 80% are reading disorders. Polyunsaturated fatty acids (PUFAs), in particular, omega-3 and omega-6 fatty acids, which normally are abundant in the brain and in the retina, are important for learning. Some children with specific learning disorders have been found to be deficient in these PUFAs, and it is argued that supplementation of PUFAs may help these children improve their learning abilities. 1. To assess effects on learning outcomes of supplementation of polyunsaturated fatty acids (PUFAs) for children with specific learning disorders.2. To determine whether adverse effects of supplementation of PUFAs are reported in these children. In November 2015, we searched CENTRAL, Ovid MEDLINE, Embase, PsycINFO, 10 other databases and two trials registers. We also searched the reference lists of relevant articles. Randomised controlled trials (RCTs) or quasi-RCTs comparing PUFAs with placebo or no treatment in children younger than 18 years with specific learning disabilities, as diagnosed in accordance with the fifth (or earlier) edition of theDiagnostic and Statistical Manual of Mental Disorders (DSM-5), or the 10th (or earlier) revision of the International Classification of Diseases (ICD-10) or equivalent criteria. We included children with coexisting developmental disorders such as attention deficit hyperactivity disorder (ADHD) or autism. Two review authors (MLT and KHT) independently screened the titles and abstracts of articles identified by the search and eliminated all studies that did not meet the inclusion criteria. We contacted study authors to ask for missing information and clarification, when needed. We used the GRADE approach to assess the quality of evidence. Two small studies

  7. Fortification of foods with omega-3 polyunsaturated fatty acids.

    PubMed

    Ganesan, Balasubramanian; Brothersen, Carl; McMahon, Donald J

    2014-01-01

    A $600 million nutritional supplements market growing at 30% every year attests to consumer awareness of, and interests in, health benefits attributed to these supplements. For over 80 years the importance of polyunsaturated fatty acid (PUFA) consumption for human health has been established. The FDA recently approved the use of ω-3 PUFAs in supplements. Additionally, the market for ω-3 PUFA ingredients grew by 24.3% last year, which affirms their popularity and public awareness of their benefits. PUFAs are essential for normal human growth; however, only minor quantities of the beneficial ω-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are synthesized by human metabolism. Rather PUFAs are obtained via dietary or nutritional supplementation and modified into other beneficial metabolites. A vast literature base is available on the health benefits and biological roles of ω-3 PUFAs and their metabolism; however, information on their dietary sources and palatability of foods incorporated with ω-3 PUFAs is limited. DHA and EPA are added to many foods that are commercially available, such as infant and pet formulae, and they are also supplemented in animal feed to incorporate them in consumer dairy, meat, and poultry products. The chief sources of EPA and DHA are fish oils or purified preparations from microalgae, which when added to foods, impart a fishy flavor that is considered unacceptable. This fishy flavor is completely eliminated by extensively purifying preparations of n-3 PUFA sources. While n-3 PUFA lipid autoxidation is considered the main cause of fishy flavor, the individual oxidation products identified thus far, such as unsaturated carbonyls, do not appear to contribute to fishy flavor or odor. Alternatively, various compound classes such as free fatty acids and volatile sulfur compounds are known to impart fishy flavor to foods. Identification of the causative compounds to reduce and eventually eliminate fishy flavor is important

  8. The Effects of Polyunsaturated Lipid Components on bilayer Structure

    NASA Astrophysics Data System (ADS)

    Pramudya, Y.; Kiss, A.; Nguyen, Lam T.; Yuan, J.; Hirst, Linda S.

    2007-03-01

    Polyunsaturated fatty acids (PUFAs), such as DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) have been the focus of much research attention in recent years, due to their apparent health benefits and effects on cell physiology. They are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, particularly in the retinal rod cells and the central nervous system. In this work lipid bilayer structure has been investigated in lipid mixtures, incorporating polyunsaturated fatty acid moieties. The structural effects of increasing concentrations of both symmetric and asymmetric PUFA materials on the bilayer structure are investigated via synchrotron x-ray diffraction on solution samples. We observe bilayer spacings to increase with the percentage of unsaturated fatty acid lipid in the membrane, whilst the degree of ordering significantly decreases. In fact above 20% of fatty acid, well defined bilayers are no longer observed to form. Evidence of phase separation can be clearly seen from these x-ray results and in combination with AFM measurements.

  9. Comparison of inferred fractions of n-3 and n-6 polyunsaturated fatty acids in feral domestic cat diets with those in commercial feline extruded diets.

    PubMed

    Backus, Robert C; Thomas, David G; Fritsche, Kevin L

    2013-04-01

    To compare presumed fatty acid content in natural diets of feral domestic cats (inferred from body fat polyunsatrated fatty acids content) with polyunsaturated fatty acid content of commercial feline extruded diets. Subcutaneous and intra-abdominal adipose tissue samples (approx 1 g) from previously frozen cadavers of 7 adult feral domestic cats trapped in habitats remote from human activity and triplicate samples (200 g each) of 7 commercial extruded diets representing 68% of market share obtained from retail stores. Lipid, triacylglycerol, and phospholipid fractions in adipose tissue samples and ether extracts of diet samples were determined by gas chromatography of methyl esters. Triacylglycerol and phospholipid fractions in the adipose tissue were isolated by thin-layer chromatography. Diet samples were also analyzed for proximate contents. For the adipose tissue samples, with few exceptions, fatty acids fractions varied only moderately with lipid fraction and site from which tissue samples were obtained. Linoleic, α-linolenic, arachidonic, eicosapentaenoic, and docosahexaenoic acid fractions were 15.0% to 28.2%, 4.5% to 18.7%, 0.9% to 5.0%, < 0.1% to 0.2%, and 0.6% to 1.7%, respectively. As inferred from the adipose findings, dietary fractions of docosahexaenoic and α-linolenic acid were significantly greater than those in the commercial feline diets, but those for linoleic and eicosapentaenoic acids were not significantly different. The fatty acid content of commercial extruded feline diets differed from the inferred content of natural feral cat diets, in which dietary n-3 and possibly n-6 polyunsaturated fatty acids were more abundant. The impact of this difference on the health of pet cats is not known.

  10. Plasma phosphatidylcholine concentrations of polyunsaturated fatty acids are differentially associated with hop bone mineral density and hip fracture in older adults: The Framingham Osteoporosis Study

    USDA-ARS?s Scientific Manuscript database

    Polyunsaturated fatty acids (PUFA) may influence bone health. Our objective was to examine associations between plasma phosphatidylcholine (PC) PUFA concentrations and hip measures: 1) femoral neck bone mineral density (FN-BMD) (n=765); 2) 4-y change in FN-BMD (n=556); and 3) hip fracture risk (n=76...

  11. Quality Characteristics of a Low-Fat Beef Patty Enriched by Polyunsaturated Fatty Acids and Vitamin D3.

    PubMed

    Gómez, Inmaculada; Sarriés, María Victoria; Ibañez, Francisco C; Beriain, María José

    2018-02-01

    Olive and linseed oils have high contents of oleic acid and n-3 fatty acids (FA), respectively. Vitamin D 3 , an essential nutrient, is in low contents in meat. This study investigated the potential application of olive and linseed oils' mixture as a backfat replacer, and vitamin D 3 as a supplement, in order to develop a product enriched by polyunsaturated FAs and vitamin D 3 . Two treatments were manufactured: conventional (C: 0% emulsion, 0 μg vitamin D 3 /100 g product) and modified (M: 10.9% emulsion/, 8.3 μg vitamin D 3 /100 g product). The quality characteristics and cooking effects on the FA and vitamin D 3 contents were assessed. The sensory properties of cooked patties were not affected by olive and linseed oils' mixture (P > 0.05). The instrumental textural parameters were lower in cooked M patties (P < 0.01), except springiness (P = 0.766) that was not affected by formulation. The contents of α-linoleic acid in M patty were 19-fold higher than those from C patty. The contents of n-3 and n-6 were higher in M patty (P < 0.05) than in C patty. Although cooking decreased the content of vitamin D 3 in M patty (6.7 compared with 5.2 μg/100 g product), considerable increments were achieved compared to C patty. There is an increasing demand of consumers for healthier meat products; therefore, the improvement of their nutritional profile without negatively affecting quality characteristics is key factor for meat sector. This study emphasizes the feasibility of using the combination of olive and linseed oils' mixture and vitamin D 3 to yield new meat products with high contents of polyunsaturated fatty acids and vitamin D 3 . The effectiveness of combination of oils mixture and vitamin D 3 tested in this study is proven and the high contribution of vitamin D 3 and some fatty acids of nutritional interest identified. © 2018 Institute of Food Technologists®.

  12. Short branched-chain C6 carboxylic acids result in increased growth, novel 'unnatural' fatty acids and increased membrane fluidity in a Listeria monocytogenes branched-chain fatty acid-deficient mutant.

    PubMed

    Sen, Suranjana; Sirobhushanam, Sirisha; Hantak, Michael P; Lawrence, Peter; Brenna, J Thomas; Gatto, Craig; Wilkinson, Brian J

    2015-10-01

    Listeria monocytogenes is a psychrotolerant food borne pathogen, responsible for the high fatality disease listeriosis, and expensive food product recalls. Branched-chain fatty acids (BCFAs) of the membrane play a critical role in providing appropriate membrane fluidity and optimum membrane biophysics. The fatty acid composition of a BCFA-deficient mutant is characterized by high amounts of straight-chain fatty acids and even-numbered iso fatty acids, in contrast to the parent strain where odd-numbered anteiso fatty acids predominate. The presence of 2-methylbutyrate (C5) stimulated growth of the mutant at 37°C and restored growth at 10°C along with the content of odd-numbered anteiso fatty acids. The C6 branched-chain carboxylic acids 2-ethylbutyrate and 2-methylpentanoate also stimulated growth to a similar extent as 2-methylbutyrate. However, 3-methylpentanoate was ineffective in rescuing growth. 2-Ethylbutyrate and 2-methylpentanoate led to novel major fatty acids in the lipid profile of the membrane that were identified as 12-ethyltetradecanoic acid and 12-methylpentadecanoic acid respectively. Membrane anisotropy studies indicated that growth of strain MOR401 in the presence of these precursors increased its membrane fluidity to levels of the wild type. Cells supplemented with 2-methylpentanoate or 2-ethylbutyrate at 10°C shortened the chain length of novel fatty acids, thus showing homeoviscous adaptation. These experiments use the mutant as a tool to modulate the membrane fatty acid compositions through synthetic precursor supplementation, and show how existing enzymes in L. monocytogenes adapt to exhibit non-native activity yielding unique 'unnatural' fatty acid molecules, which nevertheless possess the correct biophysical properties for proper membrane function in the BCFA-deficient mutant. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Docosahexaenoic acid at the sn-2 position of structured triacylglycerols improved n-3 polyunsaturated fatty acid assimilation in tissues of hamsters.

    PubMed

    Bandarra, Narcisa M; Lopes, Paula A; Martins, Susana V; Ferreira, Júlia; Alfaia, Cristina M; Rolo, Eva A; Correia, Jorge J; Pinto, Rui M A; Ramos-Bueno, Rebeca P; Batista, Irineu; Prates, José A M; Guil-Guerrero, José L

    2016-05-01

    In this study, we hypothesized that the incorporation of docosahexaenoic acid (DHA) in tissues will be higher when it is ingested as triacylglycerols (TAG) structured at the sn-2 position, which enhances efficacy and health benefits of dietary DHA n-3 supplementation. Ten-week-old Golden Syrian male hamsters were randomly allocated into 4 dietary groups with 10 animals in each: linseed oil (LSO; control group), fish oil (FO), fish oil ethyl esters (FO-EE), and structured DHA at the sn-2 position of TAG (DHA-SL). After 12 weeks, there were no variations in the hamsters' body composition parameters across dietary groups. The DHA-SL diet had the lowest values of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, total lipids, and aspartate aminotransferase activity, whereas the inverse was observed for the FO diet. Glucose was increased in the LSO diet without affecting insulin and insulin resistance markers. Whereas n-3 polyunsaturated fatty acid was increased in the brain of hamsters fed the DHA-SL diet, higher levels of n-6 polyunsaturated fatty acid were observed in the liver and erythrocytes of the LSO. The highest omega-3 index was obtained with the DHA-SL diet. The principal component analyses discriminated DHA from other metabolites and set apart 4 clusters matching the 4 diets. Similarly, liver, erythrocytes, and brain were separated from each other, pointing toward an individual signature on fatty acid deposition. The structured sn-2 position DHA-containing TAG ameliorated blood lipids and fatty acid incorporation, in particular eicosapentaenoic acid and DHA in liver, erythrocytes, and brain, relative to commercially FOs, thus improving the health benefits of DHA due to its higher bioavailability. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Mechanisms of ozone toxicity in cultured cells. I. Reduced clonogenic ability of polyunsaturated fatty acid-supplemented fibroblasts. Effect of vitamin E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konings, A.W.

    1986-01-01

    The direct action of ozone on viability and survival of normal and modified mouse lung fibroblasts has been studied. By cell manipulation of fibroblasts in culture, the content of polyunsaturated fatty acids (PUFA) in the phospholipids was increased from about 6% to about 40%. The cellular content of alpha-tocopherol (alpha-T) (vitamin E) could be drastically enhanced. Vitamin E supplementation to the cell did not influence the PUFA manipulation. Normal, PUFA, and PUFA(alpha-T) fibroblasts were exposed to ozone by bubbling 10 ppm through the cell suspensions for different periods of time (0-6 h). No significant effects of the ozone exposure couldmore » be established when normal fibroblasts were used. The PUFA fibroblasts, however, were very vulnerable to ozone toxicity, both in terms of dye uptake (Trypan blue) and cell death (clonogenic ability). When alpha-tocopherol was present in the cell (200 ng/10(6) cells), a clear protection against ozone toxicity was found. It is concluded that ozone toxicity might be higher under conditions of a relative high amount of polyunsaturated fatty acids in the membrane phospholipids of the cell and a low cellular antioxidant capacity. Cellular membranes are probably an important target for ozone-induced cell death.« less

  15. Volatiles formation in gelled emulsions enriched in polyunsaturated fatty acids during storage: type of oil and antioxidant.

    PubMed

    Gayoso, Lucía; Poyato, Candelaria; Calvo, María Isabel; Cavero, Rita Yolanda; Ansorena, Diana; Astiasarán, Iciar

    2017-08-01

    Gelled emulsions with carrageenan are a novel type of emulsion that could be used as a carrier of unsaturated fatty acids in functional foods formulations. Lipid degradation through volatile compounds was studied in gelled emulsions which were high in polyunsaturated oils (sunflower or algae oil) after 49 days of storage. Aqueous Lavandula latifolia extract was tested as a natural antioxidant. Analysis of the complete volatile profile of the samples resulted in a total of 40 compounds, classified in alkanes, alkenes, aldehydes, ketones, acids, alcohols, furans, terpenes and aromatic hydrocarbons. During storage, the formation of the volatile compounds was mostly related to the oxidation of the main fatty acids of the sunflower oil (linolenic acid) and the algae oil (docosahexaenoic acid). Despite the antioxidant capacity shown by the L. latifolia extract, its influence in the oxidative stability in terms of total volatiles was only noticed in sunflower oil gels ( p  < 0.05), where a significant decrease in the aldehydes fraction was found.

  16. Engineered Production of Short Chain Fatty Acid in Escherichia coli Using Fatty Acid Synthesis Pathway

    PubMed Central

    Jawed, Kamran; Mattam, Anu Jose; Fatma, Zia; Wajid, Saima; Abdin, Malik Z.; Yazdani, Syed Shams

    2016-01-01

    Short-chain fatty acids (SCFAs), such as butyric acid, have a broad range of applications in chemical and fuel industries. Worldwide demand of sustainable fuels and chemicals has encouraged researchers for microbial synthesis of SCFAs. In this study we compared three thioesterases, i.e., TesAT from Anaerococcus tetradius, TesBF from Bryantella formatexigens and TesBT from Bacteroides thetaiotaomicron, for production of SCFAs in Escherichia coli utilizing native fatty acid synthesis (FASII) pathway and modulated the genetic and bioprocess parameters to improve its yield and productivity. E. coli strain expressing tesBT gene yielded maximum butyric acid titer at 1.46 g L-1, followed by tesBF at 0.85 g L-1 and tesAT at 0.12 g L-1. The titer of butyric acid varied significantly depending upon the plasmid copy number and strain genotype. The modulation of genetic factors that are known to influence long chain fatty acid production, such as deletion of the fadD and fadE that initiates the fatty acid degradation cycle and overexpression of fadR that is a global transcriptional activator of fatty acid biosynthesis and repressor of degradation cycle, did not improve the butyric acid titer significantly. Use of chemical inhibitor cerulenin, which restricts the fatty acid elongation cycle, increased the butyric acid titer by 1.7-fold in case of TesBF, while it had adverse impact in case of TesBT. In vitro enzyme assay indicated that cerulenin also inhibited short chain specific thioesterase, though inhibitory concentration varied according to the type of thioesterase used. Further process optimization followed by fed-batch cultivation under phosphorous limited condition led to production of 14.3 g L-1 butyric acid and 17.5 g L-1 total free fatty acid at 28% of theoretical yield. This study expands our understanding of SCFAs production in E. coli through FASII pathway and highlights role of genetic and process optimization to enhance the desired product. PMID:27466817

  17. α–Synuclein and PolyUnsaturated Fatty Acids Promote Clathrin Mediated Endocytosis and Synaptic Vesicle Recycling

    PubMed Central

    Ben Gedalya, Tziona; Loeb, Virginie; Israeli, Eitan; Altschuler, Yoram; Selkoe, Dennis J.; Sharon, Ronit

    2009-01-01

    α-Synuclein (αS) is an abundant neuronal cytoplasmic protein implicated in Parkinson’s disease (PD), but its physiological function remains unknown. Consistent with its having structural motifs shared with class A1 apolipoproteins, αS can reversibly associate with membranes and help regulate membrane fatty acid (FA) composition. We previously observed that variations in αS expression level in dopaminergic cultured cells or brains are associated with changes in polyunsaturated fatty acid (PUFA) levels and altered membrane fluidity. We now report that αS acts with PUFAs to enhance the internalization of the membrane-binding dye, FM 1-43. Specifically, αS expression coupled with exposure to physiological levels of certain PUFAs enhanced clathrin-mediated endocytosis in neuronal and non-neuronal cultured cells. Moreover, αS expression and PUFA enhanced basal and evoked synaptic vesicle endocytosis in primary hippocampal cultures of wt and genetically depleted αS mouse brains. We suggest that αS, and PUFAs normally functions in endocytic mechanisms and are specifically involved in synaptic vesicle recycling upon neuronal stimulation. PMID:18980610

  18. Omega-3 polyunsaturated fatty acids for the prevention of cardiovascular disease: do formulation, dosage & comparator matter?

    PubMed

    DiNicolantonio, James J; Meier, Pascal; O'Keefe, James H

    2013-01-01

    Multiple trials over the past two decades testing omega-3 polyunsaturated fatty acids (PUFAs), containing eicosapentaenoic acid (EPA) and or docosahexaenoic acid (DHA), have shown substantial benefits for reducing major coronary heart disease (CHD) events, all-cause mortality, cardiovascular (CV) death, sudden cardiac death (SCD), and stroke. However, recent trials testing omega-3s have generally failed to confirm these benefits. While increased fish and fish oil intake among the general population, increased use of optimal medical therapy (including statins, aspirin, and modern antihypertensive medications) probably make it more challenging for fish oil supplementation to show additional benefits, there might be further explanations in the formulation, dosage, and comparator used in these recent omega-3 trials.

  19. Distribution of volatile branched-chain fatty acids in various lamb tissues.

    PubMed

    Brennand, C P; Lindsay, R C

    1992-01-01

    Volatile fatty acids (C4-C11) including even-, odd-, and branched-chain members in lamb tissues were quantitatively analyzed. Volatile branched-chain fatty acids (BCFA) were more concentrated in subcutaneous adipose tissue samples (rump, shoulder, breast) than in perinepheric adipose or muscle tissues. Perinepheric adipose tissue contained relatively high quantities of n-chain, even-numbered fatty acids and very low levels of BCFA. Greater variation existed in fatty acid profiles among similar subcutaneous adipose tissues from different lambs than between samples of adipose tissue from different carcass sites from a given lamb sample. 4-Methyl- and 4-ethyloctanoic acids were present at concentrations greatly above threshold levels in all lamb fats tested, and thus upon hydrolysis would contribute species-related flavors to lamb. 4-Methylnonanoic concentrations in lamb fats ranged from nondetectable to greater than the threshold level, and therefore this compound would not always contribute to the species-related flavors of lamb. Lean meat samples contained very low concentrations of 4-methyl- and 4-ethyloctanoic acids. Copyright © 1992. Published by Elsevier Ltd.

  20. Cerebral asymmetry and behavioral lateralization in rats chronically lacking n-3 polyunsaturated fatty acids.

    PubMed

    Vancassel, Sylvie; Aïd, Sabah; Pifferi, Fabien; Morice, Elise; Nosten-Bertrand, Marika; Chalon, Sylvie; Lavialle, Monique

    2005-11-15

    Anatomic and functional brain lateralization underlies hemisphere specialization for cognitive and motor control, and deviations from the normal patterns of asymmetry appear to be related to behavioral deficits. Studies on n-3 polyunsaturated fatty acid (PUFA) deficiency and behavioral impairments led us to postulate that a chronic lack of n-3 PUFA can lead to changes in lateralized behavior by affecting structural or neurochemical patterns of asymmetry in motor-related brain structures. We compared the effects of a chronic n-3 PUFA deficient diet with a balanced diet on membrane phospholipid fatty acids composition and immunolabeling of choline acetyltransferase (ChAt), as a marker of cholinergic neurons, in left and right striatum of rats. Lateral motor behavior was assessed by rotation and paw preference. Control rats had an asymmetric PUFA distribution with a right behavioral preference, whereas ChAt density was symmetrical. In deficient rats, the cholinergic neuron density was 30% lower on the right side, associated with a loss of PUFA asymmetry and behavior laterality. They present higher rotation behavior, and significantly more of them failed the handedness test. These results indicate that a lack of n-3 PUFA is linked with a lateral behavior deficit, possibly leading to cognitive disturbances.

  1. Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs.

    PubMed

    Ortega, Francisco J; Cardona-Alvarado, Mónica I; Mercader, Josep M; Moreno-Navarrete, José M; Moreno, María; Sabater, Mònica; Fuentes-Batllevell, Núria; Ramírez-Chávez, Enrique; Ricart, Wifredo; Molina-Torres, Jorge; Pérez-Luque, Elva L; Fernández-Real, José M

    2015-10-01

    Consumption of long-chain polyunsaturated fatty acids (PUFAs), which are abundant in seafood and nuts, ameliorates components of the metabolic syndrome. Circulating microRNAs (miRNAs) have demonstrated to be valuable biomarkers of metabolic diseases. Here, we investigated whether a sustained nuts-enriched diet can lead to changes in circulating miRNAs, in parallel to the dietary modification of fatty acids (FAs). The profile of 192 common miRNAs was assessed (TaqMan low-density arrays) in plasma from 10 healthy women before and after an 8-week trial with a normocaloric diet enriched with PUFAs (30 g/day of almonds and walnuts). The most relevant miRNAs were validated in an extended sample of 30 participants (8 men and 22 women). Adiponectin was measured by immunoassay and FAs by gas liquid chromatography coupled to mass spectrometry. The percentage of both ω-3 (P=.01) and ω-6 (P=.029) PUFAs of dietary origin (as inferred from plasma FA concentrations) increased, whereas saturated FAs decreased (P=.0008). Concomitantly with changes in circulating FAs, several miRNAs were modified by treatment, including decreased miR-328, miR-330-3p, miR-221 and miR-125a-5p, and increased miR-192, miR-486-5p, miR-19b, miR-106a, miR-769-5p, miR-130b and miR-18a. Interestingly, miR-106a variations in plasma correlated with changes in PUFAs, while miR-130b (r=0.58, P=.003) and miR-221 (r=0.46, P=.03) reflected changes in C-reactive protein. The dietary modulation of miR-125a-5p mirrored changes in fasting triglycerides (r=-0.44, P=.019) and increased adiponectin (r=0.43, P=.026). Dietary FAs (as inferred from plasma FA concentration) are linked to changes in circulating miRNAs, which may be modified by a PUFAs-enriched diet. Copyright © 2015. Published by Elsevier Inc.

  2. Correlations between FAS elongation cycle genes expression and fatty acid production for improvement of long-chain fatty acids in Escherichia coli.

    PubMed

    Lee, Sunhee; Jung, Yeontae; Lee, Seunghan; Lee, Jinwon

    2013-03-01

    Microorganisms have been used for biodiesel (fatty acid methyl ester) production due to their significant environmental and economic benefits. The aim of the present research was to develop new strains of Escherichia coli K-12 MG1655 and to increase the content of long-chain fatty acids by overexpressing essential enzymes that are involved in the fatty acid synthase elongation cycle. In addition, the relationship of β-ketoacyl-acyl carrier protein (ACP) synthase (fabH), β-ketoacyl-ACP reductase (fabG), β-hydroxyacyl-ACP dehydrase (fabZ), and β-enoyl-ACP reductase (fabI) with respect to fatty acid production was investigated. The four enzymes play a unique role in fatty acid biosynthesis and elongation processes. We report the generation of recombinant E. coli strains that produced long-chain fatty acids to amounts twofold over wild type. To verify the results, NAD(+)/NADH ratios and glucose analyses were performed. We also confirmed that FabZ plays an important role in producing unsaturated fatty acids (UFAs) as E. coli SGJS25 (overexpressing the fabZ gene) produced the highest percentage of UFAs (35 % of total long-chain fatty acids), over wild type and other recombinants. Indeed, cis-9-hexadecenoic acid, a major UFA in E. coli SGJS25, was produced at levels 20-fold higher than in wild type after 20 h in culture. The biochemically engineered E. coli presented in this study is expected to be more economical for producing long-chain fatty acids in quality biodiesel production processes.

  3. Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.

    PubMed

    Crown, Scott B; Marze, Nicholas; Antoniewicz, Maciek R

    2015-01-01

    The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.

  4. Cardiorespiratory fitness modifies the association between dietary fat intake and plasma fatty acids.

    PubMed

    König, D; Väisänen, S B; Bouchard, C; Halle, M; Lakka, T A; Baumstark, M W; Alen, M; Berg, A; Rauramaa, R

    2003-07-01

    To investigate the relation between (1) cardiorespiratory fitness and plasma saturated, monounsaturated and polyunsaturated fatty acids and (2) the interactions between cardiorespiratory fitness, dietary fat intake and plasma fatty acid composition. Cross-sectional analysis. The subjects were randomly selected, 127 middle-aged Finnish men participating in the DNASCO exercise intervention study. Cardiorespiratory fitness was determined spiroergometrically, dietary intake of macro- and micronutrients by 4-day food records and plasma fatty acids by gas chromatography. The subjects were divided into tertiles of aerobic fitness. Differences between fitness tertiles were not observed for dietary intake of total fat, and saturated, monounsaturated or polyunsaturated fatty acids (percent of total energy). In contrast, plasma saturated fatty acids were significantly lower (P <0.01) and polyunsaturated fatty acids significantly higher (P <0.05) in the highest fitness tertile compared to the lowest tertile. Dietary saturated fat intake was positively associated with plasma saturated fatty acids (r=0.342; P <0.05) and inversely with plasma polyunsaturated fatty acids (r=-0.453; P <0.01) only in the lowest fitness tertile. In addition, a positive correlation between body mass index and plasma saturated fatty acids (r=0.516; P <0.01) as well as a negative correlation between body mass index and plasma polyunsaturated fatty acids (r=-0.516; P <0.01) was observed in the lowest tertile solely. Different levels in cardiorespiratory fitness are associated with different levels in plasma saturated and polyunsaturated fatty acids and lead to modifications in the association between dietary and plasma fatty acids. These findings can perhaps be explained by a reduced hepatic fatty acid and lipoprotein synthesis as well as by an enhanced muscular lipid utilization, which are commonly seen in those who are physically active and who exhibit a higher level of fitness.

  5. Dietary omega-3 polyunsaturated fatty acids improve the neurolipidome and restore the DHA status while promoting functional recovery after experimental spinal cord injury.

    PubMed

    Figueroa, Johnny D; Cordero, Kathia; Llán, Miguel S; De Leon, Marino

    2013-05-15

    Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome.

  6. Dietary Omega-3 Polyunsaturated Fatty Acids Improve the Neurolipidome and Restore the DHA Status while Promoting Functional Recovery after Experimental Spinal Cord Injury

    PubMed Central

    Figueroa, Johnny D.; Cordero, Kathia; llán, Miguel S.

    2013-01-01

    Abstract Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) confer multiple health benefits and decrease the risk of neurological disorders. Studies are needed, however, to identify promising cellular targets and to assess their prophylactic value against neurodegeneration. The present study (1) examined the efficacy of a preventive diet enriched with ω-3 PUFAs to reduce dysfunction in a well-established spinal cord injury (SCI) animal model and (2) used a novel metabolomics data analysis to identify potential neurolipidomic targets. Rats were fed with either control chow or chow enriched with ω-3 PUFAs (750 mg/kg/day) for 8 weeks before being subjected to a sham or a contusion SCI operation. We report new evidence showing that rats subjected to SCI after being pre-treated with a diet enriched with ω-3 PUFAs exhibit significantly better functional outcomes. Pre-treated animals exhibited lower sensory deficits, autonomic bladder recovery, and early improvements in locomotion that persisted for at least 8 weeks after trauma. We found that SCI triggers a robust alteration in the cord PUFA neurolipidome, which was characterized by a marked docosahexaenoic acid (DHA) deficiency. This DHA deficiency was associated with dysfunction and corrected with the ω-3 PUFA-enriched diet. Multivariate data analyses revealed that the spinal cord of animals consuming the ω-3 PUFA-enriched diet had a fundamentally distinct neurolipidome, particularly increasing the levels of essential and long chain ω-3 fatty acids and lysolipids at the expense of ω-6 fatty acids and its metabolites. Altogether, dietary ω-3 PUFAs prophylaxis confers resiliency to SCI mediated, at least in part, by generating a neuroprotective and restorative neurolipidome. PMID:23294084

  7. The omega-3 fatty acid DHA dose-dependently reduces atherosclerosis: a putative role for F4-neuroprostanes a specific class of peroxidized metabolites

    USDA-ARS?s Scientific Manuscript database

    Objective. Consumption of long chain omega-3 polyunsaturated fatty acids is associated with reduced risks of cardiovascular disease but the role of their oxygenated metabolites remains unclear. We hypothesized that peroxidized metabolites of docosahexaenoic acid (DHA, 22:6 n-3) could play a role in ...

  8. Cardiac function in children with premature ventricular contractions: the effect of omega-3 polyunsaturated fatty acid supplementation.

    PubMed

    Oner, Taliha; Ozdemir, Rahmi; Doksöz, Onder; Genc, Dildar B; Guven, Baris; Demirpence, Savas; Yilmazer, Murat M; Yozgat, Yilmaz; Mese, Timur; Tavli, Vedide

    2018-07-01

    Premature ventricular contractions are accepted as benign in structurally normal hearts. However, reversible cardiomyopathy can sometimes develop. Omega-3 polyunsaturated fatty acids have anti-arrhythmic properties in animals and humans.AimWe evaluated left ventricular function in children with premature ventricular contractions with normal cardiac anatomy and assessed the impact of omega-3 fatty acid supplementation on left ventricular function in a prospective trial. A total of 25 patients with premature ventricular contraction, with more than 2% premature ventricular contractions on 24-hour Holter electrocardiography, and 30 healthy patients were included into study. All patients underwent electrocardiography, left ventricular M-mode echocardiography, and myocardial performance index testing. Patients with premature ventricular contraction were given omega-3 fatty acids at a dose of 1 g/day for 3 months, and control echocardiography and 24-hour Holter electrocardiography were performed. Neither placebo nor omega-3 fatty acids were given to the control group. Compared with the values of the control group, the patients with premature ventricular contraction had significantly lower fractional shortening. The myocardial performance index decreased markedly in the patient groups. The mean heart rate and mean premature ventricular contraction percentage of Group 2 significantly decreased in comparison with their baseline values after the omega-3 supplementation. In conclusion, premature ventricular contractions can lead to systolic cardiac dysfunction in children. Omega-3 supplementation may improve cardiac function in children with premature ventricular contractions. This is the first study conducted in children to investigate the possible role of omega-3 fatty acid supplementation on treatment of premature ventricular contractions.

  9. Short-chain fatty acid sensing in rat duodenum.

    PubMed

    Akiba, Yasutada; Inoue, Takuya; Kaji, Izumi; Higashiyama, Masaaki; Narimatsu, Kazuyuki; Iwamoto, Ken-ichi; Watanabe, Masahiko; Guth, Paul H; Engel, Eli; Kuwahara, Atsukazu; Kaunitz, Jonathan D

    2015-02-01

    Luminal lipid in the duodenum modulates gastroduodenal functions via the release of gut hormones and mediators such as cholecystokinin and 5-HT. The effects of luminal short-chain fatty acids (SCFAs) in the foregut are unknown. Free fatty acid receptors (FFARs) for long-chain fatty acids (LCFAs) and SCFAs are expressed in enteroendocrine cells. SCFA receptors, termed FFA2 and FFA3, are expressed in duodenal enterochromaffin cells and L cells, respectively. Activation of LCFA receptor (FFA1) and presumed FFA3 stimulates duodenal HCO3(-) secretion via a glucagon-like peptide (GLP)-2 pathway, whereas FFA2 activation induces HCO3(-) secretion via muscarinic and 5-HT4 receptor activation. The presence of SCFA sensing in the duodenum with GLP-2 and 5-HT signals further supports the hypothesis that luminal SCFA in the foregut may contribute towards the generation of functional symptoms. Intraduodenal fatty acids (FA) and bacterial overgrowth, which generate short-chain FAs (SCFAs), have been implicated in the generation of functional dyspepsia symptoms. We studied the mechanisms by which luminal SCFA perfusion affects duodenal HCO3(-) secretion (DBS), a measure of mucosal neurohumoral activation. Free fatty acid receptor (FFAR) 1 (FFA1), which binds long-chain FA (LCFA), and SCFA receptors FFA2 and FFA3 were immunolocalised to duodenal enteroendocrine cells. FFA3 colocalised with glucagon-like peptide (GLP)-1, whereas FFA2 colocalised with 5-HT. Luminal perfusion of the SCFA acetate or propionate increased DBS, enhanced by dipeptidyl peptidase-IV (DPPIV) inhibition, at the same time as increasing GLP-2 portal blood concentrations. Acetate-induced DBS was partially inhibited by monocarboxylate/HCO3(-) exchanger inhibition without affecting GLP-2 release, implicating acetate absorption in the partial mediation of DBS. A selective FFA2 agonist dose-dependently increased DBS, unaffected by DPPIV inhibition or by cholecystokinin or 5-HT3 receptor antagonists, but was inhibited

  10. The effects of omega-3 polyunsaturated Fatty Acid consumption on mammary carcinogenesis.

    PubMed

    Witte, Theodore R; Hardman, W Elaine

    2015-05-01

    The consumption of omega-3 polyunsaturated fatty acids (n-3 PUFA) is associated with a reduced risk of breast cancer. Studies in animals and in vitro have demonstrated mechanisms that could explain this apparent effect, but clinical and epidemiological studies have returned conflicting results on the practical benefits of dietary n-3 PUFA for prevention of breast cancer. Effects are often only significant within a population when comparing the highest n-3 PUFA consumption group to the lowest n-3 group or highest n-6 group. The beneficial effects of n-3 PUFA eicosapentaenoic and docosahexaenoic on the risk of breast cancer are dose dependent and are negatively affected by total n-6 consumption. The majority of the world population, including the most highly developed regions, consumes insufficient n-3 PUFA to significantly reduce breast cancer risk. This review discusses the physiological and dietary context in which reduction of breast cancer risk may occur, some proposed mechanisms of action and meaningful recommendations for consumption of n-3 PUFA in the diet of developed regions.

  11. Medium-chain fatty acid synthesis in lactating-rabbit mammary gland. Intracellular concentration and specificity of medium-chain acyl thioester hydrolase.

    PubMed Central

    Knudsen, J

    1979-01-01

    The concentration of medium-chain acyl thioester hydrolase and of fatty acid synthetase was determined by rocket immunoelectrophoresis in nine different particle-free supernatant fractions from lactating-rabbit mammary gland. The molar ratio of the hydrolase to fatty acid synthetase was 1.99 +/- 0.66 (mean +/- S.D.). A rate-limiting concentration of malonyl-CoA was required to ensure the predominant synthesis of medium-chain fatty acids when 2 mol of the hydrolase was added per mol of fatty acid synthetase. The interaction of the hydrolase with fatty acid synthetase was concentration-dependent, though an optimum concentration of hydrolase to synthetase could not be obtained. The lactating-rabbit mammary gland hydrolase altered the pattern of fatty acids synthesized by fatty acid synthetases prepared from cow, goat, sheep and rabbit lactating mammary glands, rabbit liver and cow adipose tissue. PMID:574008

  12. Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators of Inflammation to Ameliorate the Deleterious Effects of Blast Over Pressure on Eye and Brain Visual Processing Centers in Rats

    DTIC Science & Technology

    2015-08-01

    PI under Dr. Long, proposing treatment of blast induced ocular injuries with dietary supplementation of omega-3 polyunsaturated fatty acid. However...fatty acids, arachidonic (20:4ω-6), eicospentaenoic (20:5ω-3), and docosahexaenoic (22:6ω-3) acids (see supplemental Figure B, below). Indeed, all of...to cellular apoptosis and eventual tissue fibrosis (Serhan, 2010) (see supplemental figure C, below). Thus, we felt that they were excellent drug

  13. Effect of chain length on binding of fatty acids to Pluronics in microemulsions.

    PubMed

    James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O

    2008-03-15

    We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.

  14. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. © 2015 Wiley Periodicals, Inc.

  15. Simultaneous production of oil enriched in ω-3 polyunsaturated fatty acids and biodiesel from fish wastes.

    PubMed

    Enascuta, Cristina Emanuela; Stepan, Emil; Bolocan, Ion; Bombos, Dorin; Calin, Catalina; Oprescu, Elena-Emilia; Lavric, Vasile

    2018-05-01

    The waste resulted from fish processing industries are discarded into the environment around the world, causing environmental pollution. The main problem of fish oil extracted from waste is the high content in free fatty acids (FFA) which decrease the yield in fatty acids esters during transesterification reactions. Therefore, to correct the fish-oil properties, a new environmentally friendly heterogeneous superacid catalyst (SO 4 2- /SnO 2 -ZrO 2 ) was tested in the esterification reaction of FFA with ethanol. The catalyst was characterized by different techniques (XRD, FT-IR, FT-IR of adsorbed pyridine, BET, SEM-EDX, TGA and acidity measurements). The reaction was found to follow a Langmuir-Hinshelwood (L-H) dual-site mechanism with the novelty that both Brönsted and Lewis acid centers participate equally in the esterification reaction. The pre-treated oil was subjected to transesterification reaction with ethanol over a heterogeneous base catalyst and then, the saturated and unsaturated fractions of fatty acid ethyl esters (FAEE) were separated using a vacuum rectification unit with falling film. The saturated content can be used as biofuel, while the unsaturated FAEE are further transesterified with glycerol in order to obtain oil with high content in polyunsaturated fatty acids (PUFA). A detailed study of the intrinsic kinetic process at the surface of the superacid catalyst and a thorough mathematical model of the fixed bed reactor were written and validated by an experimental program, designed according to the D-optimal methodology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Evaluation of cyclosporine-sparing effects of polyunsaturated fatty acids in the treatment of canine atopic dermatitis.

    PubMed

    Müller, M R; Linek, M; Löwenstein, C; Röthig, A; Doucette, K; Thorstensen, K; Mueller, R S

    2016-04-01

    A randomised, double-blinded, placebo-controlled multicentre trial was conducted in 36 dogs with atopic dermatitis to evaluate the cyclosporine-sparing effect of polyunsaturated fatty acids. Dogs were stable on their individual cyclosporine dosage and received either a mainly omega-3 fatty acid product with a minor omega-6 fatty acid fraction or placebo, orally for 12 weeks. Dogs were examined every 4 weeks and the Canine Atopic Dermatitis Extent and Severity Index (CADESI-03) was determined by a clinician. Pruritus, quality of life, global condition and coat quality were scored by the owner. If the dog's CADESI-03 and/or pruritus score improved by at least 25% compared with the previous visit, the cyclosporine dosage was decreased by approximately 25%. If the scores deteriorated by at least 25%, the cyclosporine dosage was increased by the same percentage. The median daily cyclosporine dosage/kg bodyweight decreased in the active group from 4.1 mg to 2.6 mg and in the placebo group from 3.5 mg to 3.3 mg over the study period. The difference between the two groups was significant (P = 0.009). The improvement in median pruritus score from inclusion to completion was significantly greater in the active group than in the placebo group (P = 0.04). There was no significant difference in CADESI-03 changes between groups (P = 0.38). The results of this study indicate a cyclosporine-sparing effect of a mainly omega-3 fatty acid supplement in dogs with atopic dermatitis. Copyright © 2016. Published by Elsevier Ltd.

  17. Impact of Genetic and Epigenetic Variations Within the FADS Cluster on the Composition and Metabolism of Polyunsaturated Fatty Acids in Prostate Cancer.

    PubMed

    Cui, Tao; Hester, Austin G; Seeds, Michael C; Rahbar, Elaheh; Howard, Timothy D; Sergeant, Susan; Chilton, Floyd H

    2016-09-01

    In vitro and experimental animal studies have demonstrated that high levels of omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and high ratios of n-6 to omega-3 (n-3) PUFAs are strongly associated with the development and progression of prostate cancer (PCA). However, epidemiological studies in humans have demonstrated inconsistent findings linking dietary PUFAs and PCA risk. We hypothesize that genetic and epigenetic variations within the fatty acid desaturase (FADS) gene cluster produce gene-diet interactions that may explain these disparate findings. This study tested the relationship of the genotype of a single nucleotide polymorphism, rs174537, and the methylation status of a CpG site, cg27386326, with PUFA composition, and markers of PUFA biosynthesis in PCA tissue. Sixty PCA specimens from patients undergoing radical prostatectomy were genotyped, pyrosequenced and quantitated for fatty acids (FAs). Long-chain (LC)-PUFAs, such as arachidonic acid (ARA), were abundant in these specimens, with ARA accounting for 15.8% of total FAs. In addition, there was a positive association of the G allele at rs174537 with concentrations of ARA and adrenic acid and ratios of products to precursors within the n-6 PUFA pathway such that specimens from homozygous G individuals exhibited increasingly higher values as compared to specimens from heterozygous individuals and homozygous T individuals. Finally, the methylation status of cg27386326 was inversely correlated with tissue concentrations of LC-PUFAs and markers of LC-PUFA biosynthesis. These data reveal that genetic and epigenetic variations within the FADS cluster are highly associated with LC-PUFA concentrations and LC-PUFA biosynthetic capacity in PCA tissue. They also raise the potential that gene-PUFA interactions play an important role in PCA risk and severity. Prostate 76:1182-1191, 2016. © 2016 The Authors. The Prostate published by Wiley Periodicals, Inc. © 2016 The Authors. The Prostate published by Wiley

  18. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans

    PubMed Central

    Huang, Chao-Wei; Chien, Yi-Shan; Chen, Yu-Jen; Ajuwon, Kolapo M.; Mersmann, Harry M.; Ding, Shih-Torng

    2016-01-01

    The incidence of obesity and its comorbidities, such as insulin resistance and type II diabetes, are increasing dramatically, perhaps caused by the change in the fatty acid composition of common human diets. Adipose tissue plays a role as the major energy reservoir in the body. An excess of adipose mass accumulation caused by chronic positive energy balance results in obesity. The n-3 polyunsaturated fatty acids (n-3 PUFA), DHA (docosahexaenoic acid) and EPA (eicosapentaenoic acid) exert numerous beneficial effects to maintain physiological homeostasis. In the current review, the physiology of n-3 PUFA effects in the body is delineated from studies conducted in both human and animal experiments. Although mechanistic studies in human are limited, numerous studies conducted in animals and models in vitro provide potential molecular mechanisms of the effects of these fatty acids. Three aspects of n-3 PUFA in adipocyte regulation are discussed: (1) lipid metabolism, including adipocyte differentiation, lipolysis and lipogenesis; (2) energy expenditure, such as mitochondrial and peroxisomal fatty acid β-oxidation; and (3) inflammation, including adipokines and specialized pro-resolving lipid mediators. Additionally, the mechanisms by which n-3 PUFA regulate gene expression are highlighted. The beneficial effects of n-3 PUFA may help to reduce the incidence of obesity and its comorbidities. PMID:27735847

  19. A Tc-99m-labeled long chain fatty acid derivative for myocardial imaging.

    PubMed

    Magata, Yasuhiro; Kawaguchi, Takayoshi; Ukon, Misa; Yamamura, Norio; Uehara, Tomoya; Ogawa, Kazuma; Arano, Yasushi; Temma, Takashi; Mukai, Takahiro; Tadamura, Eiji; Saji, Hideo

    2004-01-01

    C-11- and I-123-labeled long chain fatty acid derivatives have been reported as useful radiopharmaceuticals for the estimation of myocardial fatty acid metabolism. We have reported that Tc-99m-labeled N-[[[(2-mercaptoethyl)amino]carbonyl]methyl]-N-(2-mercaptoethyl)-6-aminohexanoic acid ([(99m)Tc]MAMA-HA), a medium chain fatty acid derivative, is metabolized by beta-oxidation in the liver and that the MAMA ligand is useful for attaching to the omega-position of fatty acid derivatives as a chelating group for Tc-99m. On the basis of these findings, we focused on developing a Tc-99m-labeled long chain fatty acid derivative that reflected fatty acid metabolism in the myocardium. In this study, we synthesized a dodecanoic acid derivative, MAMA-DA, and a hexadecanoic acid derivative, MAMA-HDA, and performed radiolabeling and biodistribution studies. [(99m)Tc]MAMA-DA and [(99m)Tc]MAMA-HDA were prepared using a ligand-exchange reaction. Biodistribution studies were carried out in normal mice and rats. Then, a high initial uptake of Tc-99m was observed, followed by a rapid clearance from the heart. The maximum heart/blood ratio was 3.6 at 2 min postinjection of [(99m)Tc]MAMA-HDA. These kinetics were similar to those with postinjection of p-[(125)I]iodophenylpentadecanoic acid. Metabolite analysis showed [(99m)Tc]MAMA-HDA was metabolized by beta-oxidation in the body. In conclusion, [(99m)Tc]MAMA-HDA is a promising compound as a long chain fatty acid analogue for estimating beta-oxidation of fatty acid in the heart.

  20. Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid.

    PubMed

    Siriwardhana, Nalin; Kalupahana, Nishan S; Moustaid-Moussa, Naima

    2012-01-01

    Marine-based fish and fish oil are the most popular and well-known sources of n-3 polyunsaturated fatty acids (PUFAs), namely, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). These n-3 PUFAs are known to have variety of health benefits against cardiovascular diseases (CVDs) including well-established hypotriglyceridemic and anti-inflammatory effects. Also, various studies indicate promising antihypertensive, anticancer, antioxidant, antidepression, antiaging, and antiarthritis effects. Moreover, recent studies also indicate anti-inflammatory and insulin-sensitizing effects of these fatty acids in metabolic disorders. Classically, n-3 PUFAs mediate some of these effects by antagonizing n-6 PUFA (arachidonic acid)-induced proinflammatory prostaglandin E₂ (PGE₂) formation. Another well-known mechanism by which n-3 PUFAs impart their anti-inflammatory effects is via reduction of nuclear factor-κB activation. This transcription factor is a potent inducer of proinflammatory cytokine production, including interleukin 6 and tumor necrosis factor-α, both of which are decreased by EPA and DHA. Other evidence also demonstrates that n-3 PUFAs repress lipogenesis and increase resolvins and protectin generation, ultimately leading to reduced inflammation. Finally, beneficial effects of EPA and DHA in insulin resistance include their ability to increase secretion of adiponectin, an anti-inflammatory adipokine. In summary, n-3 PUFAs have multiple health benefits mediated at least in part by their anti-inflammatory actions; thus their consumption, especially from dietary sources, should be encouraged. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Polyunsaturated fatty acid supplementation: effects of seaweed Ascophyllum nodosum and flaxseed on milk production and fatty acid profile of lactating ewes during summer.

    PubMed

    Caroprese, Mariangela; Ciliberti, Maria Giovanna; Marino, Rosaria; Santillo, Antonella; Sevi, Agostino; Albenzio, Marzia

    2016-08-01

    The research reported in this Research Communication was undertaken to evaluate the effects of different sources of polyunsaturated fatty acids (PUFA) supplemented in the diet on milk production and milk fatty acid profile of lactating ewes exposed to long term heat stress. The experiment was conducted during summer, involved 32 ewes divided into 4 groups of 8 each, and lasted 6 weeks. The ewes in all groups were fed twice daily and received 1·8 kg/d of oat hay and 1 kg/d of concentrate. Flaxseed group (FS) was supplemented with 250 g/d of whole flaxseed, Ascophyllum nodosum group (AG) was supplemented with 25 g/d of seaweed Ascophyllum nodosum, and the combination group (FS + AG) received both flaxseed and Ascophyllum nodosum supplementation. The control group (CON) was fed with 1 kg/d of pelleted concentrate without PUFA supplementation. Milk samples were collected twice daily per week, and analysed for fat, total protein, casein, and lactose content. At the beginning and then at 2, 4 and 6 week of the experiment each milk sample was analysed for milk fatty acids. Temperature-humidity index (THI) was calculated daily. Supplementation of flaxseed and of the combination of flaxseed and Ascophyllum nodosum increased milk yield. The total content of saturated fatty acids (SFA) in milk decreased for ewes fed FS, followed by FS + AG. On the contrary, monounsaturated fatty acids (MUFA) increased for ewes fed FS and FS + AG. The total n-3 FA was found higher in FS and FS + AG than in AG and CON groups mainly because of the increase in C 18 : 3 n-3 in FS and FS + AG milk. Milk from FS + AG resulted in the highest n-3/n-6 ratio and decreases in atherogenic and thrombogenic indices. The combination of seaweed Ascophyllum nodosum and flaxseed can be suggested as an adequate supplementation to sustain milk production and milk fatty acid profile of sheep during summer season.

  2. n-3 fatty acids: role in neurogenesis and neuroplasticity.

    PubMed

    Crupi, R; Marino, A; Cuzzocrea, S

    2013-01-01

    Omega-3 polyunsaturated fatty acids (PUFA) are essential unsaturated fatty acids with a double bond (C=C) starting after the third carbon atom from the end of the carbon chain. They are important nutrients but, unfortunately, mammals cannot synthesize them, whereby they must be obtained from food sources or from supplements. Amongst nutritionally important polyunsaturated n-3 fatty acids, α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are highly concentrated in the brain and have anti-oxidative stress, anti-inflammatory and antiapoptotic effects. They are involved in many bodily processes and may reportedly lead to neuron protection in neurological diseases. aged or damaged neurons and in Alzheimer's disease. Their effect in cognitive and behavioral functions and in several neurological and psychiatric disorders has been also proven. The dentate gyrus (DG), a sub-region of hippocampus, is implicated in cognition and mood regulation. The hippocampus represents one of the two areas in the mammalian brain in which adult neurogenesis occurs. This process is associated with beneficial effects on cognition, mood and chronic pharmacological treatment. The exposure to n-3 fatty acids enhances adult hippocampal neurogenesis associated with cognitive and behavioral processes, promotes synaptic plasticity by increasing long-term potentiation and modulates synaptic protein expression to stimulate the dendritic arborization and new spines formation. On this basis we review the effect of n-3 fatty acids on adult hippocampal neurogenesis and neuroplasticity. Moreover their possible use as a new therapeutic approach for neurodegenerative diseases is pointed out.

  3. Evidence from in vivo 31-phosphorus magnetic resonance spectroscopy phosphodiesters that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans.

    PubMed

    Puri, Basant K; Counsell, Serena J; Ross, Brian M; Hamilton, Gavin; Bustos, Marcelo G; Treasaden, Ian H

    2008-04-17

    This study tested the hypothesis that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans. Ethane is released specifically following peroxidation of n-3 polyunsaturated fatty acids. We reasoned that the cerebral source of ethane would be the docosahexaenoic acid component of membrane phospholipids. Breakdown of the latter also releases phosphorylated polar head groups, giving rise to glycerophosphorylcholine and glycerophosphorylethanolamine, which can be measured from the 31-phosphorus neurospectroscopy phosphodiester peak. Schizophrenia patients were chosen because of evidence of increased free radical-mediated damage and cerebral lipid peroxidation in this disorder. Samples of alveolar air were obtained from eight patients and ethane was analyzed and quantified by gas chromatography and mass spectrometry (m/z = 30). Cerebral 31-phosphorus spectra were obtained from the same patients at a magnetic field strength of 1.5 T using an image-selected in vivo spectroscopy sequence (TR = 10 s; 64 signal averages localized on a 70 x 70 x 70 mm3 voxel). The quantification of the 31-phosphorus signals using prior knowledge was carried out in the temporal domain after truncating the first 1.92 ms of the signal to remove the broad component present in the 31-phosphorus spectra. The ethane and phosphodiester levels, expressed as a percentage of the total 31-phosphorus signal, were positively and significantly correlated (rs = 0.714, p < 0.05). Our results support the hypothesis that the measurement of exhaled ethane levels indexes cerebral n-3 lipid peroxidation. From a practical viewpoint, if human cerebral n-3 polyunsaturated fatty acid catabolism can be measured by ethane in expired breath, this would be more convenient than determining the area of the 31-phosphorus neurospectroscopy phosphodiester peak.

  4. Evidence from in vivo 31-phosphorus magnetic resonance spectroscopy phosphodiesters that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans

    PubMed Central

    Puri, Basant K; Counsell, Serena J; Ross, Brian M; Hamilton, Gavin; Bustos, Marcelo G; Treasaden, Ian H

    2008-01-01

    Background This study tested the hypothesis that exhaled ethane is a biomarker of cerebral n-3 polyunsaturated fatty acid peroxidation in humans. Ethane is released specifically following peroxidation of n-3 polyunsaturated fatty acids. We reasoned that the cerebral source of ethane would be the docosahexaenoic acid component of membrane phospholipids. Breakdown of the latter also releases phosphorylated polar head groups, giving rise to glycerophosphorylcholine and glycerophosphorylethanolamine, which can be measured from the 31-phosphorus neurospectroscopy phosphodiester peak. Schizophrenia patients were chosen because of evidence of increased free radical-mediated damage and cerebral lipid peroxidation in this disorder. Methods Samples of alveolar air were obtained from eight patients and ethane was analyzed and quantified by gas chromatography and mass spectrometry (m/z = 30). Cerebral 31-phosphorus spectra were obtained from the same patients at a magnetic field strength of 1.5 T using an image-selected in vivo spectroscopy sequence (TR = 10 s; 64 signal averages localized on a 70 × 70 × 70 mm3 voxel). The quantification of the 31-phosphorus signals using prior knowledge was carried out in the temporal domain after truncating the first 1.92 ms of the signal to remove the broad component present in the 31-phosphorus spectra. Results The ethane and phosphodiester levels, expressed as a percentage of the total 31-phosphorus signal, were positively and significantly correlated (rs = 0.714, p < 0.05). Conclusion Our results support the hypothesis that the measurement of exhaled ethane levels indexes cerebral n-3 lipid peroxidation. From a practical viewpoint, if human cerebral n-3 polyunsaturated fatty acid catabolism can be measured by ethane in expired breath, this would be more convenient than determining the area of the 31-phosphorus neurospectroscopy phosphodiester peak. PMID:18433512

  5. Associations between long chain polyunsaturated fatty acids and cardiovascular lipid risk factors in youth with type 1 diabetes: SEARCH Nutrition Ancillary Study.

    PubMed

    Couch, Sarah C; Crandell, Jamie; King, Irena; Peairs, Abigail; Shah, Amy S; Dolan, Lawrence M; Tooze, Janet; Crume, Tessa; Mayer-Davis, Elizabeth

    2017-01-01

    In this longitudinal study we explored the relationships between plasma n-3 and n-6 polyunsaturated fatty acids (PUFAs) and Δ5 and Δ6 desaturase activities (D5D and D6D, respectively) and fasting lipids in youth with type 1 diabetes (T1D). Incident cases of T1D in youth <20years of age who were seen for a baseline study visit (N=914) and a 1-year follow-up visit (N=416) were included. Fasting blood samples were obtained at each visit and plasma phospholipid n-6 PUFAs were measured, which included linoleic acid (LA), dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA); n-3 PUFAs included α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Estimated D5D and D6D were calculated as FA product-to-precursor ratios, where D5D=AA/DGLA and D6D=DGLA/LA. To examine the longitudinal relationships between long chain PUFAs, desaturase activities and fasting plasma lipids in youth with T1D mixed effects models were used for each individual PUFAs, D5D and D6D, adjusted for demographics, clinic site, diabetes duration, insulin regimen, insulin dose/kg, HbA1c, insulin sensitivity score, and body mass index with random effects to account for the repeated measurements. Favorable lipid associations were found between LA and low-density lipoprotein (LDL) cholesterol (β=-0.58, p<0.05); AA, plasma triglycerides (TG) (β=-0.04, p<0.05) and TG/high-density lipoprotein (HDL)-C ratio (β=-0.04, p<0.05); and D5D, plasma TG (β=-0.2, p<0.05) and TG/HDL-cholesterol ratio (β=-0.23, p<0.05). Findings were mixed for the n-3 PUFAs and DGLA: ALA was positively associated with plasma TG (β=0.33, p<0.05) and HDL cholesterol (β=9.86, p<0.05); EPA was positively associated with total cholesterol (β=8.17, p<0.05), LDL cholesterol (β=5.74, p<0.01) and HDL cholesterol (β=2.27, p<0.01); and DGLA was positively associated with TG/HDL-cholesterol ratio (β=0.05, P<0.05). Findings suggest that the most abundant PUFA, LA as well as its metabolic bi-product AA, may

  6. Omega-3 Polyunsaturated Fatty Acids and Oxylipins in Neuroinflammation and Management of Alzheimer Disease.

    PubMed

    Devassy, Jessay Gopuran; Leng, Shan; Gabbs, Melissa; Monirujjaman, Md; Aukema, Harold M

    2016-09-01

    Alzheimer disease (AD) is becoming one of the most prevalent neurodegenerative conditions worldwide. Although the disease progression is becoming better understood, current medical interventions can only ameliorate some of the symptoms but cannot slow disease progression. Neuroinflammation plays an important role in the advancement of this disorder, and n-3 (ω-3) polyunsaturated fatty acids (PUFAs) are involved in both the reduction in and resolution of inflammation. These effects may be mediated by the anti-inflammatory and proresolving effects of bioactive lipid mediators (oxylipins) derived from n-3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in fish oil. Although interventions have generally used fish oil containing both EPA and DHA, several studies that used either EPA or DHA alone or specific oxylipins derived from these fatty acids indicate that they have distinct effects. Both DHA and EPA can reduce neuroinflammation and cognitive decline, but EPA positively influences mood disorders, whereas DHA maintains normal brain structure. Fewer studies with a plant-derived n-3 PUFA, α-linolenic acid, suggest that other n-3 PUFAs and their oxylipins also may positively affect AD. Further research identifying the unique anti-inflammatory and proresolving properties of oxylipins from individual n-3 PUFAs will enable the discovery of novel disease-management strategies in AD. © 2016 American Society for Nutrition.

  7. Polyunsaturated Fatty Acids Inhibit T Cell Signal Transduction by Modification of Detergent-insoluble Membrane Domains

    PubMed Central

    Stulnig, Thomas M.; Berger, Markus; Sigmund, Thomas; Raederstorff, Daniel; Stockinger, Hannes; Waldhäusl, Werner

    1998-01-01

    Polyunsaturated fatty acids (PUFAs) exert immunosuppressive effects, but the molecular alterations leading to T cell inhibition are not yet elucidated. Signal transduction seems to involve detergent-resistant membrane domains (DRMs) acting as functional rafts within the plasma membrane bilayer with Src family protein tyrosine kinases being attached to their cytoplasmic leaflet. Since DRMs include predominantly saturated fatty acyl moieties, we investigated whether PUFAs could affect T cell signaling by remodeling of DRMs. Jurkat T cells cultured in PUFA-supplemented medium showed a markedly diminished calcium response when stimulated via the transmembrane CD3 complex or glycosyl phosphatidylinositol (GPI)- anchored CD59. Immunofluorescence studies indicated that CD59 but not Src family protein tyrosine kinase Lck remained in a punctate pattern after PUFA enrichment. Analysis of DRMs revealed a marked displacement of Src family kinases (Lck, Fyn) from DRMs derived from PUFA-enriched T cells compared with controls, and the presence of Lck in DRMs strictly correlated with calcium signaling. In contrast, GPI-anchored proteins (CD59, CD48) and ganglioside GM1, both residing in the outer membrane leaflet, remained in the DRM fraction. In conclusion, PUFA enrichment selectively modifies the cytoplasmic layer of DRMs and this alteration could underlie the inhibition of T cell signal transduction by PUFAs. PMID:9813086

  8. A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction

    USDA-ARS?s Scientific Manuscript database

    OBJECTIVE: Regulation of fatty acid (FA) metabolism is central to adipocyte dysfunction during diet-induced obesity (DIO). Long-chain acyl-CoA synthetase-4 (ACSL4) has been hypothesized to modulate the metabolic fates of polyunsaturated FA (PUFA), including arachidonic acid (AA), but the in vivo act...

  9. Long-chain n-3 polyunsaturated fatty acids and incidence rate of coronary artery calcification in Japanese in Japan and United States whites – population-based prospective cohort study

    PubMed Central

    Sekikawa, Akira; Miura, Katsuyuki; Lee, Sunghee; Fujiyoshi, Akira; Edmundowicz, Daniel; Kadowaki, Takashi; Evans, Rhobert W.; Kadowaki, Sayaka; Sutton-Tyrrell, Kim; Okamura, Tomonori; Bertolet, Marnie; Masaki, Kamal H.; Nakamura, Yasuyuki; Barinas-Mitchell, Emma J. M.; Willcox, Bradley J.; Kadota, Aya; Seto, Todd B.; Maegawa, Hiroshi; Kuller, Lewis H.; Ueshima, Hirotsugu

    2014-01-01

    Objective To determine whether serum levels of long-chain n-3 polyunsaturated fatty acids (LCn3PUFAs) contribute to the difference in incidence rate of coronary artery calcification (CAC) between Japanese in Japan and U.S. whites. Methods In a population-based prospective-cohort study, 214 Japanese and 152 white men aged 40–49 years at baseline (2002–2006) with coronary calcium score (CCS) = 0 were reexamined for CAC in 2007–2010. Among these, 175 Japanese and 113 whites participated in the follow-up exam. Incident cases were defined as participants with CCS ≥ 10 at follow-up. A relative risk regression analysis was used to model incidence rate ratio between Japanese and whites. The incidence rate ratio was first adjusted for potential confounders at baseline and then further adjusted for serum LCn3PUFAs at baseline. Results Mean (standard deviation) serum percentage of LCn3PUFA was > 100% higher in Japanese than in whites (9.08 (2.49) versus 3.84 (1.79), respectively, p<0.01). Japanese had a significantly lower incidence rate of CAC compared to whites (0.9 versus 2.9/100 person-years, respectively, p < 0.01). Incidence rate ratio of CAC taking follow-up time into account between Japanese and white men was 0.321 (95% confidence interval (CI) 0.150, 0.690: p<0.01). After adjusting for age, systolic-blood pressure, low-density-lipoprotein cholesterol, diabetes, and other potential confounders, the ratio remained significant: 0.262 (95% CI: 0.094, 0.731, p=0.01). After further adjusting for LCn3PUFAs, however, the ratio was attenuated and became non-significant (0.376 (95% CI: 0.090, 1.572, p=0.18). Conclusions LCn3PUFAs significantly contributed to the difference in CAC incidence between Japanese and white men. PMID:24352736

  10. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean

    PubMed Central

    Kanobe, Charles; McCarville, Michael T.; O’Neal, Matthew E.; Tylka, Gregory L.; MacIntosh, Gustavo C.

    2015-01-01

    The soybean aphid (Aphis glycines Matsumura) is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of “metabolic hijacking” by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor. PMID:26684003

  11. Sites of intermolecular crosslinking of fatty acyl chains in phospholipids carrying a photoactivable carbene precursor

    PubMed Central

    Gupta, Chhitar M.; Costello, Catherine E.; Khorana, H. Gobind

    1979-01-01

    Sonicated vesicles of 1-fatty acyl-2-ω-(2-diazo-3,3,3-trifluoropropionoxy) fatty acyl sn-glycero-3-phosphoryl-cholines were shown recently to form intermolecular crosslinks by insertion of the photogenerated carbene into a C—H bond of a neighboring hydrocarbon chain. We now report that photolysis of multilamellar dispersions gives a second series of products in which carbene insertion is accompanied by elimination of a molecule of hydrogen fluoride. The sites of crosslinking in the latter compounds have been studied by mass spectrometry using phospholipids with varying chain lengths of the fatty acyl groups carrying the carbene precursor. The patterns observed show that the point of maximum crosslinking is consistent with the recent conclusion that in phospholipids the sn-2 fatty acyl chain trails the sn-1 chain by 2-4 atoms. Images PMID:16592675

  12. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective

    PubMed Central

    Schönfeld, Peter; Wojtczak, Lech

    2016-01-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. PMID:27080715

  13. Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation.

    PubMed

    Cormier, Hubert; Rudkowska, Iwona; Thifault, Elisabeth; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-09-10

    Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM). Polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS) and serum fatty acid composition. To investigate whether common genetic variations in the FADS gene cluster influence fasting glucose (FG) and fasting insulin (FI) responses following a 6-week n-3 polyunsaturated fatty acids (PUFA) supplementation. 210 subjects completed a 2-week run-in period followed by a 6-week supplementation with 5 g/d of fish oil (providing 1.9 g-2.2 g of EPA + 1.1 g of DHA). Genotyping of 18 SNPs of the FADS gene cluster covering 90% of all common genetic variations (minor allele frequency ≥ 0.03) was performed. Carriers of the minor allele for rs482548 (FADS2) had increased plasma FG levels after the n-3 PUFA supplementation in a model adjusted for FG levels at baseline, age, sex, and BMI. A significant genotype*supplementation interaction effect on FG levels was observed for rs482548 (p = 0.008). For FI levels, a genotype effect was observed with one SNP (rs174456). For HOMA-IS, several genotype*supplementation interaction effects were observed for rs7394871, rs174602, rs174570, rs7482316 and rs482548 (p = 0.03, p = 0.01, p = 0.03, p = 0.05 and p = 0.07; respectively). RESULTS suggest that SNPs in the FADS gene cluster may modulate plasma FG, FI and HOMA-IS levels in response to n-3 PUFA supplementation.

  14. Polymorphisms in Fatty Acid Desaturase (FADS) Gene Cluster: Effects on Glycemic Controls Following an Omega-3 Polyunsaturated Fatty Acids (PUFA) Supplementation

    PubMed Central

    Cormier, Hubert; Rudkowska, Iwona; Thifault, Elisabeth; Lemieux, Simone; Couture, Patrick; Vohl, Marie-Claude

    2013-01-01

    Changes in desaturase activity are associated with insulin sensitivity and may be associated with type 2 diabetes mellitus (T2DM). Polymorphisms (SNPs) in the fatty acid desaturase (FADS) gene cluster have been associated with the homeostasis model assessment of insulin sensitivity (HOMA-IS) and serum fatty acid composition. Objective: To investigate whether common genetic variations in the FADS gene cluster influence fasting glucose (FG) and fasting insulin (FI) responses following a 6-week n-3 polyunsaturated fatty acids (PUFA) supplementation. Methods: 210 subjects completed a 2-week run-in period followed by a 6-week supplementation with 5 g/d of fish oil (providing 1.9 g–2.2 g of EPA + 1.1 g of DHA). Genotyping of 18 SNPs of the FADS gene cluster covering 90% of all common genetic variations (minor allele frequency ≥ 0.03) was performed. Results: Carriers of the minor allele for rs482548 (FADS2) had increased plasma FG levels after the n-3 PUFA supplementation in a model adjusted for FG levels at baseline, age, sex, and BMI. A significant genotype*supplementation interaction effect on FG levels was observed for rs482548 (p = 0.008). For FI levels, a genotype effect was observed with one SNP (rs174456). For HOMA-IS, several genotype*supplementation interaction effects were observed for rs7394871, rs174602, rs174570, rs7482316 and rs482548 (p = 0.03, p = 0.01, p = 0.03, p = 0.05 and p = 0.07; respectively). Conclusion: Results suggest that SNPs in the FADS gene cluster may modulate plasma FG, FI and HOMA-IS levels in response to n-3 PUFA supplementation. PMID:24705214

  15. Omega-3 fatty acids (image)

    MedlinePlus

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  16. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome.

    PubMed

    Tortosa-Caparrós, Esther; Navas-Carrillo, Diana; Marín, Francisco; Orenes-Piñero, Esteban

    2017-11-02

    A lipid excess produces a systemic inflammation process due to tumor necrosis factor-α, interleukin-6 and C-reactive protein synthesis. Simultaneously, this fat excess promotes the appearance of insulin resistance. All this contributes to the development of atherosclerosis and increases the risk of cardiovascular diseases (CVDs). On the other hand, polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid and docosahexaenoic acid (omega 3), and arachidonic acid (omega 6) have shown anti-inflammatory properties. Lately, an inverse relationship between omega-3 fatty acids, inflammation, obesity and CVDs has been demonstrated. To check fatty acids effect, the levels of some inflammation biomarkers have been analyzed. Leptin, adiponectin and resistin represent a group of hormones associated with the development of CVDs, obesity, type 2 diabetes mellitus and insulin resistance and are modified in obese/overweight people comparing to normal weight people. Omega-3 PUFAs have been shown to decrease the production of inflammatory mediators, having a positive effect in obesity and diabetes mellitus type-2. Moreover, they significantly decrease the appearance of CVD risk factors. Regarding omega-6 PUFA, there is controversy whether their effects are pro- or anti-inflammatory. The aim of this manuscript is to provide a comprehensive overview about the role of omega-3 and omega-6 PUFAs in CVDs and metabolic syndrome.

  17. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid short- and branched-chain alkyl esters biodiesel.

    PubMed

    Teo, Wei Suong; Ling, Hua; Yu, Ai-Qun; Chang, Matthew Wook

    2015-01-01

    Biodiesel is a mixture of fatty acid short-chain alkyl esters of different fatty acid carbon chain lengths. However, while fatty acid methyl or ethyl esters are useful biodiesel produced commercially, fatty acid esters with branched-chain alcohol moieties have superior fuel properties. Crucially, this includes improved cold flow characteristics, as one of the major problems associated with biodiesel use is poor low-temperature flow properties. Hence, microbial production as a renewable, nontoxic and scalable method to produce fatty acid esters with branched-chain alcohol moieties from biomass is critical. We engineered Saccharomyces cerevisiae to produce fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters using endogenously synthesized fatty acids and alcohols. Two wax ester synthase genes (ws2 and Maqu_0168 from Marinobacter sp.) were cloned and expressed. Both enzymes were found to catalyze the formation of fatty acid esters, with different alcohol preferences. To boost the ability of S. cerevisiae to produce the aforementioned esters, negative regulators of the INO1 gene in phospholipid metabolism, Rpd3 and Opi1, were deleted to increase flux towards fatty acyl-CoAs. In addition, five isobutanol pathway enzymes (Ilv2, Ilv5, Ilv3, Aro10, and Adh7) targeted into the mitochondria were overexpressed to enhance production of alcohol precursors. By combining these engineering strategies with high-cell-density fermentation, over 230 mg/L fatty acid short- and branched-chain alkyl esters were produced, which is the highest titer reported in yeast to date. In this work, we engineered the metabolism of S. cerevisiae to produce biodiesels in the form of fatty acid short- and branched-chain alkyl esters, including ethyl, isobutyl, isoamyl and active amyl esters. To our knowledge, this is the first report of the production of fatty acid isobutyl and active amyl esters in S. cerevisiae. Our findings will be useful for

  18. Omega-3 polyunsaturated fatty acids and chronic stress-induced modulations of glutamatergic neurotransmission in the hippocampus.

    PubMed

    Hennebelle, Marie; Champeil-Potokar, Gaëlle; Lavialle, Monique; Vancassel, Sylvie; Denis, Isabelle

    2014-02-01

    Chronic stress causes the release of glucocorticoids, which greatly influence cerebral function, especially glutamatergic transmission. These stress-induced changes in neurotransmission could be counteracted by increasing the dietary intake of omega-3 polyunsaturated fatty acids (n-3 PUFAs). Numerous studies have described the capacity of n-3 PUFAs to help protect glutamatergic neurotransmission from damage induced by stress and glucocorticoids, possibly preventing the development of stress-related disorders such as depression or anxiety. The hippocampus contains glucocorticoid receptors and is involved in learning and memory. This makes it particularly sensitive to stress, which alters certain aspects of hippocampal function. In this review, the various ways in which n-3 PUFAs may prevent the harmful effects of chronic stress, particularly the alteration of glutamatergic synapses in the hippocampus, are summarized. © 2014 International Life Sciences Institute.

  19. Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival.

    PubMed

    Lam, Sin Man; Wang, Zehua; Li, Jie; Huang, Xun; Shui, Guanghou

    2017-08-01

    Mechanistic basis governing the extreme longevity and developmental quiescence of dauer juvenile, a "non-ageing" developmental variant of Caenorhabditis elegans, has remained largely obscure. Using a lipidomic approach comprising multiple reaction monitoring transitions specific to distinct fatty acyl moieties, we demonstrated that in comparison to other developmental stages, the membrane phospholipids of dauer larva contain a unique enrichment of polyunsaturated fatty acids (PUFAs). Esterified PUFAs in phospholipids exhibited temporal accumulation throughout the course of dauer endurance, followed by sharp reductions prior to termination of diapause. Reductions in esterified PUFAs were accompanied by concomitant increases in unbound PUFAs, as well as their corresponding downstream oxidized derivatives (i.e. eicosanoids). Global phospholipidomics has unveiled that PUFA sequestration in membrane phospholipids denotes an essential aspect of dauer dormancy, principally via suppression of eicosanoid production; and a failure to upkeep membrane lipid homeostasis is associated with termination of dauer endurance. Copyright © 2017. Published by Elsevier B.V.

  20. Mediterranean diet and cardioprotection: the role of nitrite, polyunsaturated fatty acids and polyphenols

    PubMed Central

    Nadtochiy, Sergiy M.; Redman, Emily K.

    2010-01-01

    The continually increasing rate of myocardial infarction (MI) in the Western world at least partly can be explained by a poor diet lacking in green vegetables, fruits, and fish, and enriched in food that contains saturated fat. In contrast, a number of epidemiological studies provide strong evidence highlighting the cardioprotective benefits of the Mediterranean diet enriched in green vegetables, fruits, fish and grape wine. Regular consumption of these products leads to an accumulation of nitrate/nitrite/NO•, polyunsaturated fatty acids (PUFA), and polyphenolic compounds, such as resveratrol, in the human body. Studies have confirmed that these constituents are bioactive exogenous mediators, which induce strong protection against MI. The aim of this review is to provide a critical, in-depth analysis of the cardioprotective pathways mediated by nitrite/NO•, PUFA, and phenolic compounds of grape wines discovered in the recent years, including cross-talk between different mechanisms and compounds. Overall, these findings may facilitate the design and synthesis of novel therapeutic tools for the treatment of MI. PMID:21454053

  1. [Effects-of combined calories restriction and polyunsaturated fatty acids on colitis in rats].

    PubMed

    Qian, Yan; Zhang, Ying; Liu, Hui; Wang, Lei; Li, Xiuhua; Qiu, Fubin

    2014-09-01

    To explore the effect of n-6 and n-3 polyunsaturated fatty acids combined with calorie restriction( CR) in DSS induced ulcerative colitis rats. Forty female rats were randomly divided into five groups, control group, model group, CR group, 5:1 PUFA ad libitum group, 5: 1 PUFA CR group. CR groups provided with a limited daily food allotment of 60% of that eaten by the ad libitum animals for 14 weeks. Ulcerative colitis model in rats were given 5. 0% dextran sulfate sodium in their drinking water for 7 days. 5:1 PUFA CR group significantly decreased body weight, disease activity index, macroscopic and histological score compared to model group. In addition, administration of 5: 1 PUFA CR effectively inhibited MPO activity. The levels of TNF-α and IL-6 in the serum with colitis were decreased by 5: 1 PUFA CR (P <0. 05). These results suggest that combination of calories restriction and n-6/n-3 =5:1 PUFA may be more beneficial in attenuating the progression of DSS induced ulcerative colitis.

  2. Maternal plasma phosphatidylcholine polyunsaturated fatty acids during pregnancy and offspring growth and adiposity

    PubMed Central

    Bernard, Jonathan Y.; Tint, Mya-Thway; Aris, Izzuddin M.; Chen, Ling-Wei; Quah, Phaik Ling; Tan, Kok Hian; Yeo, George Seow-Heong; Fortier, Marielle V.; Yap, Fabian; Shek, Lynette; Chong, Yap-Seng; Gluckman, Peter D.; Godfrey, Keith M.; Calder, Philip C.; Chong, Mary F. F.; Kramer, Michael S.; Botton, Jérémie; Lee, Yung Seng

    2017-01-01

    Summary Polyunsaturated fatty acids (PUFA) are essential for offspring development, but it is unclear whether pregnancy PUFA status affects growth and adiposity. In 985 mothers from the Singaporean GUSTO cohort, we measured plasma phosphatidylcholine PUFAs at 26-28 weeks’ gestation, including linoleic (LA) and docosahexaenoic (DHA) acid. We assessed the associations with fetal growth, neonatal body composition, abdominal adipose tissue volume, and postnatal growth and skinfold thicknesses. Regression coefficients were presented for 5% increase in PUFA levels. LA levels were positively associated with birthweight (β (95% CI): 0.04 (0.01, 0.08) kg), body mass index (0.13 (0.02, 0.25) kg/m2), and abdominal adipose tissue volume, but not with later outcomes. DHA levels, although not associated with birth outcomes, were related to higher length/height: 0.63 (0.09, 1.16) cm at 12 months and 1.29 (0.34, 2.24) at 5 years. LA was positively associated with neonatal body size, and DHA with child height. Pregnancy PUFA status may influence offspring growth and adiposity. PMID:28651694

  3. Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats.

    PubMed

    Tou, Janet C; Altman, Stephanie N; Gigliotti, Joseph C; Benedito, Vagner A; Cordonier, Elizabeth L

    2011-10-14

    Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption has lead to an increasing variety of available n-3 PUFA sources. However, sources differ in the type, amount, and structural form of the n-3 PUFAs. Therefore, the objective of this study was to determine the effect of different sources of ω-3 PUFAs on digestibility, tissue deposition, eicosanoid metabolism, and oxidative stability. Female Sprague-Dawley rats (age 28 d) were randomly assigned (n = 10/group) to be fed a high fat 12% (wt) diet consisting of either corn oil (CO) or n-3 PUFA rich flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) oil for 8 weeks. Rats were individually housed in metabolic cages to determine fatty acid digestibility. Diet and tissue fatty acid composition was analyzed by gas chromatography and lipid classes using thin layer chromatography. Eicosanoid metabolism was determined by measuring urinary metabolites of 2-series prostaglandins (PGs) and thromoboxanes (TXBs) using enzyme immunoassays. Oxidative stability was assessed by measuring thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) using colorimetric assays. Gene expression of antioxidant defense enzymes was determined by real time quantitative polymerase chain reaction (RT-qPCR). Rats fed KO had significantly lower DHA digestibility and brain DHA incorporation than SO and TO-fed rats. Of the n-3 PUFA sources, rats fed SO and TO had the highest n-3 PUFAs digestibility and in turn, tissue accretion. Higher tissue n-3 LC-PUFAs had no significant effect on 2-series PG and TXB metabolites. Despite higher tissue n-3 LC-PUFA deposition, there was no increase in oxidation susceptibility indicated by no significant increase in TBARS or decrease in TAC and gene expression of antioxidant defense enzymes, in SO or TO-fed rats. On the basis that the optimal n-3 PUFA sources should provide high digestibility and efficient tissue

  4. Screening of marine bacterial producers of polyunsaturated fatty acids and optimisation of production.

    PubMed

    Abd El Razak, Ahmed; Ward, Alan C; Glassey, Jarka

    2014-02-01

    Water samples from three different environments including Mid Atlantic Ridge, Red Sea and Mediterranean Sea were screened in order to isolate new polyunsaturated fatty acids (PUFAs) bacterial producers especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Two hundred and fifty-one isolates were screened for PUFA production and among them the highest number of producers was isolated from the Mid-Atlantic Ridge followed by the Red Sea while no producers were found in the Mediterranean Sea samples. The screening strategy included a simple colourimetric method followed by a confirmation via GC/MS. Among the tested producers, an isolate named 66 was found to be a potentially high PUFA producer producing relatively high levels of EPA in particular. A Plackett-Burman statistical design of experiments was applied to screen a wide number of media components identifying glycerol and whey as components of a production medium. The potential low-cost production medium was optimised by applying a response surface methodology to obtain the highest productivity converting industrial by-products into value-added products. The maximum achieved productivity of EPA was 20 mg/g, 45 mg/l, representing 11% of the total fatty acids, which is approximately five times more than the amount produced prior to optimisation. The production medium composition was 10.79 g/l whey and 6.87 g/l glycerol. To our knowledge, this is the first investigation of potential bacteria PUFA producers from Mediterranean and Red Seas providing an evaluation of a colourimetric screening method as means of rapid screening of a large number of isolates.

  5. Radiolabeled dimethyl branched long chain fatty acid for heart imaging

    DOEpatents

    Knapp, Jr., Furn F.; Goodman, Mark M.; Kirsch, Gilbert

    1988-08-16

    A radiolabeled long chain fatty acid for heart imaging that has dimethyl branching at one of the carbons of the chain which inhibits the extent to which oxidation can occur. The closer to the carboxyl the branching is positioned, the more limited the oxidation, thereby resulting in prolonged retention of the radiolabeled compound in the heart.

  6. Effects of Different Ratio of n-6/n-3 Polyunsaturated Fatty Acids on the PI3K/Akt Pathway in Rats with Reflux Esophagitis.

    PubMed

    Zhuang, Jia-Yuan; Chen, Zhi-Yao; Zhang, Tao; Tang, Du-Peng; Jiang, Xiao-Yin; Zhuang, Ze-Hao

    2017-01-30

    BACKGROUND We designed this study to investigate the influence of different ratios of n-6/n-3 polyunsaturated fatty acid in the diet of reflux esophagitis (RE) rats' and the effect on the PI3K/Akt pathway. MATERIAL AND METHODS RE rats were randomly divided into a sham group and modeling groups of different concentrations of n-6/n-3 polyunsaturated fatty acid (PUFA): 12:1 group, 10:1 group, 5:1 group, and 1:1 group. RT-PCR and Western-blot were used to detect the expression of PI3K, Akt, p-Akt, NF-κBp50, and NF-κBp65 proteins in esophageal tissue. RESULTS In the n-6/n-3 PUFAs groups the expression of PI3K, Akt, p-Akt, nf-κbp50, and NF-κBp65 mRNA decreased with the decrease in n-6/n-3 ratios in the diet. The lowest expression of each indicator occurred in the 1:1 n-6/n-3 group compared with other n-6/n-3 groups, the difference was statistically significant (p<0.05). CONCLUSIONS The inhibition of n-3 PUFAs in the development of esophageal inflammation in rats with RE was attributed to the function of PI3K/Akt-NF-κB signaling pathway.

  7. Confocal analysis of hepatocellular long-chain fatty acid uptake.

    PubMed

    Elsing, C; Winn-Börner, U; Stremmel, W

    1995-12-01

    Transmembrane transport and cytosolic accumulation of fatty acids were investigated using confocal laser scanning microscopy (cLSM). A Zeiss LSM 310 system was used to determine the uptake of the fluorescent fatty acid derivative 12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3- diazol-4-yl)amino]octadecanoic acid (12-NBD stearate) (C18) in single rat hepatocytes. Uptake was a saturable process with a Michaelis-Menten constant value of 68 nM. Initial uptake velocity was dependent on extracellular presence of albumin and beta-lactoglobulin. Absence of albumin reduced uptake to 32 +/- 16% (P < 0.01) of control values. In the presence of unlabeled stearate, uptake of 12-NBD stearate was lowered to 49 +/- 12% (P < 0.01). Ion substitution experiments showed no sodium dependency of uptake. Increase in membrane potential led to a pronounced accumulation of the fatty acid derivative within the plasma membrane and in the adjacent cytoplasmic compartment, whereas membrane depolarization had no effect on uptake rates. In separate experiments line scans through representative hepatocytes were analyzed to generate "x-t" plots. 12-NBD stearate showed a fluorescence pattern with prominent staining of the area of the plasma membrane and the adjacent cytoplasm, dependent on the presence of extracellular albumin. For the hepatocellular cytosolic accumulation process of 12-NBD stearate a diffusion constant of 22.2 +/- 6.2 x 10(-9) cm2/s was calculated. In contrast to the long-chain fatty acid derivative 12-NBD stearate, short (C5)- and medium (C11)-chain fatty acids revealed no membrane interaction with hepatocytes. Erythrocytes also lacked a membrane interaction process for 12-NBD stearate. In conclusion, it was demonstrated that cLSM is capable of directly evaluating the cellular fatty acid uptake process at a subcellular level.

  8. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    PubMed

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  9. Effect of n-3 long chain polyunsaturated fatty acid supplementation in pregnancy on infants’ allergies in first year of life: randomised controlled trial

    PubMed Central

    Palmer, D J; Sullivan, T; Gold, M S; Prescott, S L; Heddle, R; Gibson, R A

    2012-01-01

    Objective To determine whether dietary n-3 long chain polyunsaturated fatty acid (LCPUFA) supplementation of pregnant women with a fetus at high risk of allergic disease reduces immunoglobulin E associated eczema or food allergy at 1 year of age. Design Follow-up of infants at high hereditary risk of allergic disease in the Docosahexaenoic Acid to Optimise Mother Infant Outcome (DOMInO) randomised controlled trial. Setting Adelaide, South Australia. Participants 706 infants at high hereditary risk of developing allergic disease whose mothers were participating in the DOMInO trial. Interventions The intervention group (n=368) was randomly allocated to receive fish oil capsules (providing 900 mg of n-3 LCPUFA daily) from 21 weeks’ gestation until birth; the control group (n=338) received matched vegetable oil capsules without n-3 LCPUFA. Main outcome measure Immunoglobulin E associated allergic disease (eczema or food allergy with sensitisation) at 1 year of age. Results No differences were seen in the overall percentage of infants with immunoglobulin E associated allergic disease between the n-3 LCPUFA and control groups (32/368 (9%) v 43/338 (13%); unadjusted relative risk 0.68, 95% confidence interval 0.43 to 1.05, P=0.08; adjusted relative risk 0.70, 0.45 to 1.09, P=0.12), although the percentage of infants diagnosed as having atopic eczema (that is, eczema with associated sensitisation) was lower in the n-3 LCPUFA group (26/368 (7%) v 39/338 (12%); unadjusted relative risk 0.61, 0.38 to 0.98, P=0.04; adjusted relative risk 0.64, 0.40 to 1.02, P=0.06). Fewer infants were sensitised to egg in the n-3 LCPUFA group (34/368 (9%) v 52/338 (15%); unadjusted relative risk 0.61, 0.40 to 0.91, P=0.02; adjusted relative risk 0.62, 0.41 to 0.93, P=0.02), but no difference between groups in immunoglobulin E associated food allergy was seen. Conclusion n-3 LCPUFA supplementation in pregnancy did not reduce the overall incidence of immunoglobulin E associated allergies in

  10. Infant formula supplementation with long-chain polyunsaturated fatty acids has no effect on Bayley developmental scores at 18 months of age--IPD meta-analysis of 4 large clinical trials.

    PubMed

    Beyerlein, Andreas; Hadders-Algra, Mijna; Kennedy, Katherine; Fewtrell, Mary; Singhal, Atul; Rosenfeld, Eva; Lucas, Alan; Bouwstra, Hylco; Koletzko, Berthold; von Kries, Rüdiger

    2010-01-01

    To find out whether supplementation of formula milk by long-chain polyunsaturated fatty acids (LCPUFA) affects neurodevelopment at 18 months of age in term or preterm infants by an individual patient data (IPD) meta-analysis. Data of 870 children from 4 large randomised clinical trials for formula milk with and without LCPUFAs allowed for assessing the effect of LCPUFA with adjustment for potential confounders and extensive subgroup analysis on prematurity, LCPUFA source, and dosage. Any additional clinical trials examining the effect of LCPUFA supplementation on Bayley Scales of Infant Development at 18 months were regarded as relevant. Two relevant studies were identified by MEDLINE, but were not available to us. An IPD meta-analysis was performed with subgroup analyses by preterm delivery, very low birth weight (<1500 g), trials with higher amounts of docosahexaenoic acid (DHA) and arachidonic acid (AA), and specific sources of LCPUFA. The sample size of 870 children was sufficient to detect clinically relevant differences in Bayley Scales even in subgroups. There were no significant differences in mental or psychomotor developmental indexes between LCPUFA-supplemented and control groups for all children or in subgroups. This was confirmed with adjustment for the possible confounders: sex, gestational age, birth weight, maternal age, and maternal smoking. The adjusted mean differences in mental developmental index and psychomotor developmental index for all of the children were -0.8 (95% confidence interval -2.8 to 1.2) and -1.0 (-2.7 to 0.7), respectively. These data based on considerable sample size provide substantial evidence that LCPUFA supplementation of infant formula does not have a clinically meaningful effect on the neurodevelopment as assessed by Bayley scores at 18 months. Inclusion of all relevant data should not have led to differing conclusions except, possibly, for very-low-birth-weight infants.

  11. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective.

    PubMed

    Schönfeld, Peter; Wojtczak, Lech

    2016-06-01

    Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Polyunsaturated fatty acids in serum and homocysteine concentrations in Japanese men and women: a cross-sectional study.

    PubMed

    Kume, Ayami; Kurotani, Kayo; Sato, Masao; Ejima, Yuko; Pham, Ngoc Minh; Nanri, Akiko; Kuwahara, Keisuke; Mizoue, Tetsuya

    2013-06-10

    Supplementation studies have suggested a role of n-3 polyunsaturated fatty acids (PUFAs) in homocysteine metabolism, but the evidence is limited and inconsistent among studies that measured blood levels of n-3 and n-6 PUFAs. We examined the association between blood levels of PUFAs and homocysteine in Japanese men and women. The subjects were 496 employees (290 men and 206 women) of 2 municipal offices in Japan. Fatty acid composition in serum phospholipids and cholesterol ester (CE) was measured using gas-liquid chromatography. Multiple regression was used to calculate means of homocysteine concentrations according to PUFA tertile with adjustment for potential confounders. Serum homocysteine concentration decreased with increasing levels of total n-3 PUFA, eicosapentaenoic acid and docosahexaenoic acid (DHA) in serum phospholipids and CE with adjustment for age, sex and workplace. However, only DHA in serum phospholipids remained statistically significant after additional adjustment for other potential confounders including serum folate (P-trend = 0.04). N-6 PUFAs were not significantly associated with homocysteine concentrations. Higher proportion of DHA in serum phospholipids may be associated with lower homocysteine concentrations in Japanese men and women.

  13. Polyunsaturated fatty acids and suicide risk in mood disorders: A systematic review.

    PubMed

    Pompili, Maurizio; Longo, Lucia; Dominici, Giovanni; Serafini, Gianluca; Lamis, Dorian A; Sarris, Jerome; Amore, Mario; Girardi, Paolo

    2017-03-06

    Deficiency of omega-3 polyunsaturated fatty acids (PUFAs) and an alteration between the ratio of omega-3 and omega-6 PUFAs may contribute to the pathogenesis of bipolar disorder and unipolar depression. Recent epidemiological studies have also demonstrated an association between the depletion of PUFAs and suicide. Our aim was to investigate the relationship between PUFAs and suicide; assess whether the depletion of PUFAs may be considered a risk factor for suicidal behavior; in addition to detailing the potential use of PUFAs in clinical practice. We performed a systematic review on PUFAs and suicide in mood disorders, searching MedLine, Excerpta Medica, PsycLit, PsycInfo, and Index Medicus for relevant epidemiological, post-mortem, and clinical studies from January 1997 to September 2016. A total of 20 articles from peer-reviewed journals were identified and selected for this review. The reviewed studies suggest that subjects with psychiatric conditions have a depletion of omega-3 PUFAs compared to control groups. This fatty acid depletion has also been found to contribute to suicidal thoughts and behavior in some cases. However, large epidemiological studies have generally not supported this finding, as the depletion of omega-3 PUFAs was not statistically different between controls and patients diagnosed with a mental illness and/or who engaged in suicidal behavior. Increasing PUFA intake may be relevant in the treatment of depression, however in respect to the prevention of suicide, the data is currently not supportive of this approach. Changes in levels of PUFAs may however be a risk factor to evaluate when assessing for suicide risk. Clinical studies should be conducted to prospectively assess whether prescriptive long-term use of PUFAs in PUFA-deficient people with depression, may have a preventative role in attenuating suicide. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. 7 Things to Know about Omega-3 Fatty Acids

    MedlinePlus

    ... X Y Z 7 Things To Know About Omega-3 Fatty Acids Share: Omega-3 fatty acids are a group of polyunsaturated fatty ... a number of functions in the body. The omega-3 fatty acids EPA and DHA are found in ...

  15. Horse meat consumption affects iron status, lipid profile and fatty acid composition of red blood cells in healthy volunteers.

    PubMed

    Del Bó, Cristian; Simonetti, Paolo; Gardana, Claudio; Riso, Patrizia; Lucchini, Giorgio; Ciappellano, Salvatore

    2013-03-01

    This study investigated the effect of moderate consumption of horse meat on iron status, lipid profile and fatty acid composition of red blood cells in healthy male volunteers. Fifty-two subjects were randomly assigned to two groups of 26 subjects each: a test group consuming two portions of 175 g/week of horse meat, and a control group that abstained from eating horse meat during the 90 days trial. Before and after 90 days, blood samples were collected for analysis. Horse meat consumption significantly (p ≤ 0.05) reduced serum levels of total and low-density lipoprotein cholesterol ( - 6.2% and - 9.1%, respectively) and transferrin ( - 4.6%). Total n - 3, long chain polyunsaturated fatty acids n - 3 and docosahexeanoic acid content in erythrocytes increased (p ≤ 0.05) by about 7.8%, 8% and 11%, respectively. In conclusion, the regular consumption of horse meat may contribute to the dietary intake of n - 3 polyunsaturated fatty acids and may improve lipid profile and iron status in healthy subjects.

  16. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials

    PubMed Central

    Mazahery, Hajar; Stonehouse, Welma; Delshad, Maryam; Kruger, Marlena C.; Conlon, Cathryn A.; Beck, Kathryn L.; von Hurst, Pamela R.

    2017-01-01

    Omega-3 long chain polyunsaturated fatty acid supplementation (n-3 LCPUFA) for treatment of Autism Spectrum Disorder (ASD) is popular. The results of previous systematic reviews and meta-analyses of n-3 LCPUFA supplementation on ASD outcomes were inconclusive. Two meta-analyses were conducted; meta-analysis 1 compared blood levels of LCPUFA and their ratios arachidonic acid (ARA) to docosahexaenoic acid (DHA), ARA to eicosapentaenoic acid (EPA), or total n-6 to total n-3 LCPUFA in ASD to those of typically developing individuals (with no neurodevelopmental disorders), and meta-analysis 2 compared the effects of n-3 LCPUFA supplementation to placebo on symptoms of ASD. Case-control studies and randomised controlled trials (RCTs) were identified searching electronic databases up to May, 2016. Mean differences were pooled and analysed using inverse variance models. Heterogeneity was assessed using I2 statistic. Fifteen case-control studies (n = 1193) were reviewed. Compared with typically developed, ASD populations had lower DHA (−2.14 [95% CI −3.22 to −1.07]; p < 0.0001; I2 = 97%), EPA (−0.72 [95% CI −1.25 to −0.18]; p = 0.008; I2 = 88%), and ARA (−0.83 [95% CI, −1.48 to −0.17]; p = 0.01; I2 = 96%) and higher total n-6 LCPUFA to n-3 LCPUFA ratio (0.42 [95% CI 0.06 to 0.78]; p = 0.02; I2 = 74%). Four RCTs were included in meta-analysis 2 (n = 107). Compared with placebo, n-3 LCPUFA improved social interaction (−1.96 [95% CI −3.5 to −0.34]; p = 0.02; I2 = 0) and repetitive and restricted interests and behaviours (−1.08 [95% CI −2.17 to −0.01]; p = 0.05; I2 = 0). Populations with ASD have lower n-3 LCPUFA status and n-3 LCPUFA supplementation can potentially improve some ASD symptoms. Further research with large sample size and adequate study duration is warranted to confirm the efficacy of n-3 LCPUFA. PMID:28218722

  17. Associations between long chain polyunsaturated fatty acids and cardiovascular lipid risk factors in youth with type 1 diabetes: SEARCH Nutrition Ancillary Study

    PubMed Central

    Couch, Sarah C.; Crandell, Jamie; King, Irena; Peairs, Abigail; Shah, Amy S; Dolan, Lawrence M; Tooze, Janet; Crume, Tessa; Mayer-Davis, Elizabeth

    2017-01-01

    Purpose In this longitudinal study we explored the relationships between plasma n-3 and n-6 polyunsaturated fatty acids (PUFAs) and Δ5 and Δ6 desaturase activities (D5D and D6D, respectively) and fasting lipids in youth with type 1 diabetes (T1D). Methods Incident cases of T1D in youth <20 years of age who were seen for a baseline study visit (N=914) and a 1-year follow-up visit (N=416) were included. Fasting blood samples were obtained at each visit and plasma phospholipid n-6 PUFAs were measured, which included linoleic acid (LA), dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA); n-3 PUFAs included α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Estimated D5D and D6D were calculated as FA product-to-precursor ratios, where D5D= AA/DGLA and D6D = DGLA/LA. To examine the longitudinal relationships between long chain PUFAs, desaturase activities and fasting plasma lipids in youth with T1D mixed effects models were used for each individual PUFAs, D5D and D6D, adjusted for demographics, clinic site, diabetes duration, insulin regimen, insulin dose/kg, HbA1c, insulin sensitivity score, and body mass index with random effects to account for the repeated measurements. Findings Favorable lipid associations were found between LA and low-density lipoprotein (LDL) cholesterol (β= −0.58, P<0.05); AA, plasma triglycerides (TG) (β= −0.04, P<0.05) and TG/ high-density lipoprotein (HDL)-C ratio (β= −0.04, P<0.05); and D5D, plasma TG (β= −0.2, P<0.05) and TG/HDL-cholesterol ratio (β= −0.23, P<0.05). Findings were mixed for the n-3 PUFAs and DGLA: ALA was positively associated with plasma TG (β= 0.33, P<0.05) and HDL cholesterol (β= 9.86, P<0.05); EPA was positively associated with total cholesterol (β= 8.17, P<0.05), LDL cholesterol (β=5.74, P<0.01) and HDL cholesterol (β= 2.27, P<0.01); and DGLA was positively associated with TG/HDL-cholesterol ratio (β= 0.05, P<0.05) Conclusion Findings suggest that the most

  18. Polyunsaturated fatty acid levels in blood during pregnancy, at birth and at 7 years: their associations with two common FADS2 polymorphisms.

    PubMed

    Steer, Colin D; Hibbeln, Joseph R; Golding, Jean; Davey Smith, George

    2012-04-01

    Minor alleles of polymorphisms in the fatty acid desaturase (FADS) gene cluster have been associated with reduced desaturation of the precursor polyunsaturated fatty acids (FAs) in small studies. The effects of these polymorphisms during progressive developmental stages have not previously been reported. Data from blood samples for 4342 pregnant women, 3343 umbilical cords reflecting the newborn's blood supply and 5240 children aged 7 years were analysed to investigate the associations of polyunsaturated FAs with rs1535 and rs174575-two polymorphisms in the FADS2 gene. Strong positive associations were observed between the minor G allele for these two markers, especially rs1535, and the substrates linoleic (18:2n-6) and α-linolenic (18:3n-3) acid. Negative associations were observed for the more highly unsaturated FAs such as arachidonic acid (20:4n-6), timnodonic acid (EPA, 20:5n-3) and cervonic acid (DHA, 22:6n-3). Bivariable genetic associations using the mother and child genotypes suggested that the newborn metabolism had a greater capacity to synthesize the more highly unsaturated omega-6 FAs than the more highly unsaturated omega-3 FAs. Nevertheless, despite the immaturity of the neonate, there was evidence that synthesis of DHA was occurring. However, by 7 years, no associations were observed with the maternal genotype. This suggested that the children's FA levels were related only to their own metabolism with no apparent lasting influences of the in utero environment.

  19. Roles of unsaturated fatty acids (especially omega-3 fatty acids) in the brain at various ages and during ageing.

    PubMed

    Bourre, J M

    2004-01-01

    Among various organs, in the brain, the fatty acids most extensively studied are omega-3 fatty acids. Alpha-linolenic acid (18:3omega3) deficiency alters the structure and function of membranes and induces minor cerebral dysfunctions, as demonstrated in animal models and subsequently in human infants. Even though the brain is materially an organ like any other, that is to say elaborated from substances present in the diet (sometimes exclusively), for long it was not accepted that food can have an influence on brain structure, and thus on its function. Lipids, and especially omega-3 fatty acids, provided the first coherent experimental demonstration of the effect of diet (nutrients) on the structure and function of the brain. In fact the brain, after adipose tissue, is the organ richest in lipids, whose only role is to participate in membrane structure. First it was shown that the differentiation and functioning of cultured brain cells requires not only alpha-linolenic acid (the major component of the omega-3, omega3 family), but also the very long omega-3 and omega-6 carbon chains (1). It was then demonstrated that alpha-linolenic acid deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (2). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioural upset (3). Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Recent

  20. 2-Decenoic acid ethyl ester, a derivative of unsaturated medium-chain fatty acids, facilitates functional recovery of locomotor activity after spinal cord injury.

    PubMed

    Hirakawa, A; Shimizu, K; Fukumitsu, H; Soumiya, H; Iinuma, M; Furukawa, S

    2010-12-29

    There is increasing evidence that omega-3 polyunsaturated fatty acids (PUFAs) have therapeutic potential in various animal models of neuronal injury. However, very few studies have examined the effect of medium-chain fatty acids (MCFAs) on neuronal injury. So in the present study we synthesized various MCFAs and their derivatives, and found that exposure to trans-2-decenoic acid ethyl ester (DAEE) markedly activated extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in cultured cortical neurons. Therefore, we examined the effect of DAEE treatment on a rat model of spinal cord injury. DAEE (150 μg/kg body weight) administered after hemisection of the spinal cord resulted in improved functional recovery, decreased the lesion size, increased the activation of ERK1/2, and enhanced the expression of bcl-2 and brain-derived neurotrophic factor (BDNF) mRNA in the injury site of the spinal cord. Furthermore, it also increased neuronal survival after spinal cord injury. These results indicate that the possibility that DAEE will become a promising tool for reducing the secondary damage observed following primary physical injury to the spinal cord. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Synthesis of medium-chain fatty acids and their incorporation into triacylglycerols by cell-free fractions from Cuphea embryos.

    PubMed

    Deerberg, S; von Twickel, J; Förster, H H; Cole, T; Fuhrmann, J; Heise, K P

    1990-02-01

    During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40-50 mg·d(-1)·(g fresh weight)(-1)) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-(14)C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2-3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60-80% in this lipid fraction.

  2. Dietary fat intake, circulating and membrane fatty acid composition of healthy Norwegian men and women.

    PubMed

    Min, Y; Blois, A; Geppert, J; Khalil, F; Ghebremeskel, K; Holmsen, H

    2014-02-01

    The present study aimed to assess the dietary fat intake and blood fatty acid status of healthy Norwegian men and women living in Bergen whose habitual diet is known to be high in long-chain omega-3 fat. Healthy men (n = 41) and women (n = 40) aged 20-50 years who were regular blood donors completed 7-day food diaries and their nutrient intake was analysed by Norwegian food database software, kbs, version 4.9 (kostberegningssystem; University of Oslo, Oslo, Norway). Blood samples were obtained before blood donation and assessed for the fatty acid composition of plasma triglycerides and cholesterol esters, phosphatidylcholine, and red cell phosphatidylcholine and phosphatidylethanolamine. There was no difference in dietary fat intake between men and women. Total and saturated fat intakes exceeded the upper limits of the recommendations of the National Nutrition Council of Norway. Although polyunsaturated fat intake was close to the lower limit of the recommended level, the intake varied greatly among individuals, partly as a result of the use of supplementary fish oil. Moreover, the proportional fatty acid composition of plasma and red cell lipids was similar between men and women. Enrichment of docosahexaenoic acid in red cell phosphatidylethanolamine was found in fish oil users. The results of the present study provide a snapshot of the current nutritional status of healthy Norwegian adults. Moreover, the detailed blood fatty acid composition of men and women whose habitual diet constitutes high long-chain polyunsaturated omega-3 fat as well as saturated fat could be used as reference value for population studies. © 2013 The Authors Journal of Human Nutrition and Dietetics © 2013 The British Dietetic Association Ltd.

  3. Polyunsaturated Fatty Acids and Recurrent Mood Disorders: Phenomenology, Mechanisms, and Clinical Application

    PubMed Central

    Messamore, Erik; Almeida, Daniel M.; Jandacek, Ronald J.; McNamara, Robert K.

    2017-01-01

    A body of evidence has implicated dietary deficiency in omega-3 polyunsaturated fatty acids (n-3 PUFA), including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in the pathophysiology and etiology of recurrent mood disorders including major depressive disorder (MDD) and bipolar disorder. Cross-national and cross-sectional evidence suggests that greater habitual intake of n-3 PUFA is associated with reduced risk for developing mood symptoms. Meta-analyses provide strong evidence that patients with mood disorders exhibit low blood n-3 PUFA levels which are associated with increased risk for the initial development of mood symptoms in response to inflammation. While the etiology of this n-3 PUFA deficit may be multifactorial, n-3 PUFA supplementation is sufficient to correct this deficit and may also have antidepressant effects. Rodent studies suggest that n-3 PUFA deficiency during perinatal development can recapitulate key neuropathological, neurochemical, and behavioral features associated with mood disorders. Clinical neuroimaging studies suggest that low n-3 PUFA biostatus is associated with abnormalities in cortical structure and function also observed in mood disorders. Collectively, these findings implicate dietary n-3 PUFA insufficiency, particularly during development, in the pathophysiology of mood dysregulation, and support implementation of routine screening for and treatment of n-3 PUFA deficiency in patients with mood disorders. PMID:28069365

  4. An Improvement of Cardiovascular Risk Factors by Omega-3 Polyunsaturated Fatty Acids.

    PubMed

    Yanai, Hidekatsu; Masui, Yoshinori; Katsuyama, Hisayuki; Adachi, Hiroki; Kawaguchi, Akiko; Hakoshima, Mariko; Waragai, Yoko; Harigae, Tadanao; Sako, Akahito

    2018-04-01

    An epidemiological survey in the Northwest Greenland reported that the Greenlanders have a lower frequency of acute myocardial infarction and diabetes mellitus. The very low incidence of ischemic heart disease in the Greenlanders was explained by consumption of a diet rich in omega-3 polyunsaturated fatty acids (PUFAs). Possible anti-atherothrombotic effects of omega-3 PUFA include an improvement of lipid metabolism such as a reduction of triglyceride and an increase of high-density lipoprotein-cholesterol (HDL-C), and glucose metabolism, anti-platelet activity, anti-inflammatory effects, an improvement of endothelial function and stabilization of atherosclerotic plaque. The present study reviews an improvement of cardiovascular risk factors such as dyslipidemia and diabetes due to consumption of omega-3 PUFA. A sufficient number of studies suggest that omega-3 PUFA supplementation reduces serum triglyceride and increases HDL-cholesterol. The mechanisms for omega-3 PUFA-mediated improvements of lipid metabolism have been partially elucidated. The studies using experimental animals, part of trials in humans, have shown the beneficial effects of omega-3 PUFA on glucose metabolism and insulin sensitivity. The meta-analysis showed that omega-3 PUFA might prevent development of diabetes in part of population. Further studies should be performed to elucidate the association of omega-3 PUFA supplementation with diabetes, in the future.

  5. Identification of a Δ5-like fatty acyl desaturase from the cephalopod Octopus vulgaris (Cuvier 1797) involved in the biosynthesis of essential fatty acids.

    PubMed

    Monroig, Oscar; Navarro, Juan C; Dick, James R; Alemany, Frederic; Tocher, Douglas R

    2012-08-01

    Long-chain polyunsaturated fatty acids (LC-PUFA) have been identified as essential compounds for common octopus (Octopus vulgaris), but precise dietary requirements have not been determined due, in part, to the inherent difficulties of performing feeding trials on paralarvae. Our objective is to establish the essential fatty acid (EFA) requirements for paralarval stages of the common octopus through characterisation of the enzymes of endogenous LC-PUFA biosynthetic pathways. In this study, we isolated a cDNA with high homology to fatty acyl desaturases (Fad). Functional characterisation in recombinant yeast showed that the octopus Fad exhibited Δ5-desaturation activity towards saturated and polyunsaturated fatty acyl substrates. Thus, it efficiently converted the yeast's endogenous 16:0 and 18:0 to 16:1n-11 and 18:1n-13, respectively, and desaturated exogenously added PUFA substrates 20:4n-3 and 20:3n-6 to 20:5n-3 (EPA) and 20:4n-6 (ARA), respectively. Although the Δ5 Fad enables common octopus to produce EPA and ARA, the low availability of its adequate substrates 20:4n-3 and 20:3n-6, either in the diet or by limited endogenous synthesis from C(18) PUFA, might indicate that EPA and ARA are indeed EFA for this species. Interestingly, the octopus Δ5 Fad can also participate in the biosynthesis of non-methylene-interrupted FA, PUFA that are generally uncommon in vertebrates but have been found previously in marine invertebrates, including molluscs, and now also confirmed to be present in specific tissues of common octopus.

  6. Long-chain ω-3 fatty acid intake and endometrial cancer risk in the Women’s Health Initiative12345

    PubMed Central

    Brasky, Theodore M; Rodabough, Rebecca J; Liu, Jingmin; Kurta, Michelle L; Wise, Lauren A; Orchard, Tonya S; Cohn, David E; Belury, Martha A; White, Emily; Manson, JoAnn E; Neuhouser, Marian L

    2015-01-01

    Background: Inflammation may be important in endometrial cancer development. Long-chain ω-3 (n–3) polyunsaturated fatty acids (LCω-3PUFAs) may reduce inflammation and, therefore, reduce cancer risk. Because body mass is associated with both inflammation and endometrial cancer risk, it may modify the association of fat intake on risk. Objective: We examined whether intakes of LCω-3PUFAs were associated with endometrial cancer risk overall and stratified by body size and histologic subtype. Design: Women were n = 87,360 participants of the Women’s Health Initiative Observational Study and Clinical Trials who were aged 50–79 y, had an intact uterus, and completed a baseline food-frequency questionnaire. After 13 y of follow-up, n = 1253 incident invasive endometrial cancers were identified. Cox regression models were used to estimate HRs and 95% CIs for the association of intakes of individual ω-3 fatty acids and fish with endometrial cancer risk. Results: Intakes of individual LCω-3PUFAs were associated with 15–23% linear reductions in endometrial cancer risk. In women with body mass index (BMI; in kg/m2) <25, those in the upper compared with lowest quintiles of total LCω-3PUFA intake (sum of eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) had significantly reduced endometrial cancer risk (HR: 0.59; 95% CI: 0.40, 0.82; P-trend = 0.001), whereas there was little evidence of an association in overweight or obese women. The reduction in risk observed in normal-weight women was further specific to type I cancers. Conclusions: Long-chain ω-3 intake was associated with reduced endometrial cancer risk only in normal-weight women. Additional studies that use biomarkers of ω-3 intake are needed to more accurately estimate their effects on endometrial cancer risk. This trial was registered at clinicaltrials.gov as NCT00000611. PMID:25739930

  7. Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron.

    PubMed

    Luo, Jingyang; Feng, Leiyu; Chen, Yinguang; Li, Xiang; Chen, Hong; Xiao, Naidong; Wang, Dongbo

    2014-10-10

    An efficient and green strategy, i.e. adding nano zero-valent iron into anaerobic fermentation systems to remarkably stimulate the accumulation of short-chain fatty acids from waste activated sludge via accelerating the solubilization and hydrolysis processes has been developed. In the presence of nano zero-valent iron, not only the short-chain fatty acids production was significantly improved, but also the fermentation time for maximal short-chain fatty acids was shortened compared with those in the absence of nano zero-valent iron. Mechanism investigations showed that the solubilization of sludge, hydrolysis of solubilized substances and acidification of hydrolyzed products were all enhanced by addition of nano zero-valent iron. Also, the general microbial activity of anaerobes and relative activities of key enzymes with hydrolysis and acidification of organic matters were improved than those in the control. 454 high-throughput pyrosequencing analysis suggested that the abundance of bacteria responsible for waste activated sludge hydrolysis and short-chain fatty acids production was greatly enhanced due to nano zero-valent iron addition. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Tachikawa project for prevention of posttraumatic stress disorder with polyunsaturated fatty acid (TPOP): study protocol for a randomized controlled trial.

    PubMed

    Matsuoka, Yutaka; Nishi, Daisuke; Yonemoto, Naohiro; Hamazaki, Kei; Matsumura, Kenta; Noguchi, Hiroko; Hashimoto, Kenji; Hamazaki, Tomohito

    2013-01-05

    Preclinical and clinical studies suggest that supplementation with omega-3 fatty acids after trauma might reduce subsequent posttraumatic stress disorder (PTSD). To date, we have shown in an open trial that PTSD symptoms in critically injured patients can be reduced by taking omega-3 fatty acids, hypothesized to stimulate hippocampal neurogenesis. The primary aim of the present randomized controlled trial is to examine the efficacy of omega-3 fatty acid supplementation in the secondary prevention of PTSD following accidental injury, as compared with placebo. This paper describes the rationale and protocol of this trial. The Tachikawa Project for Prevention of Posttraumatic Stress Disorder with Polyunsaturated Fatty Acid (TPOP) is a double-blinded, parallel group, randomized controlled trial to assess whether omega-3 fatty acid supplementation can prevent PTSD symptoms among accident-injured patients consecutively admitted to an intensive care unit. We plan to recruit accident-injured patients and follow them prospectively for 12 weeks. Enrolled patients will be randomized to either the omega-3 fatty acid supplement group (1,470 mg docosahexaenoic acid and 147 mg eicosapentaenoic acid daily) or placebo group. Primary outcome is score on the Clinician-Administered PTSD Scale (CAPS). We will need to randomize 140 injured patients to have 90% power to detect a 10-point difference in mean CAPS scores with omega-3 fatty acid supplementation compared with placebo. Secondary measures are diagnosis of PTSD and major depressive disorder, depressive symptoms, physiologic response in the experiment using script-driven imagery and acoustic stimulation, serum brain-derived neurotrophic factor, health-related quality of life, resilience, and aggression. Analyses will be by intent to treat. The trial was initiated on December 13 2008, with 104 subjects randomized by November 30 2012. This study promises to be the first trial to provide a novel prevention strategy for PTSD among

  9. Polyunsaturated fatty acids ameliorate aging via redox-telomere-antioncogene axis.

    PubMed

    Chen, Jingnan; Wei, Yan; Chen, Xinyu; Jiao, Jingjing; Zhang, Yu

    2017-01-31

    Polyunsaturated fatty acids (PUFA), a group of nourishing and health-promoting nutrients, ameliorate age-related chronic diseases. However, how PUFA especially n-3 PUFA exert anti-aging functions remains poorly understood. Here we link fish oil, docosahexaenoic acid (DHA) and arachidonic acid (AA) to the aging etiology via a redox-telomere-antioncogene axis based on D-galactose-induced aging mice. Both fish oil and PUFA enhanced hepatic superoxide dismutase (SOD) and catalase activities and cardiac SOD activities within the range of 18%-46%, 26%-65% and 19%-58%, respectively, whereas reduced cerebral monoamine oxidase activity, plasma F2-isoprostane level and cerebral lipid peroxidation level by 56%-90%, 20%-79% and 16%-54%, respectively. Thus, PUFA improve the in vivo redox and oxidative stress induced aging process, which however does not exhibit a dose-dependent manner. Notably, both PUFA and fish oil effectively inactivated testicular telomerase and inhibited c-Myc-mediated telomerase reverse transcriptase expression, whereas n-3 PUFA rather than n-6 PUFA protected liver and testes against telomere shortening within the range of 13%-25% and 25%-27%, respectively. Therefore, n-3 PUFA may be better at inhibiting the DNA damage induced aging process. Surprisingly, only DHA significantly suppressed cellular senescence pathway evidenced by testicular antioncogene p16 and p53 expression. This work provides evident support for the crosstalk between PUFA especially n-3 PUFA and the aging process via maintaining the in vivo redox homeostasis, rescuing age-related telomere attrition and down-regulating the antioncogene expression.

  10. N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit

    PubMed Central

    Huang, Feiruo

    2015-01-01

    Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits. PMID:26339623

  11. N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit.

    PubMed

    Wang, Yue; Huang, Feiruo

    2015-01-01

    Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits.

  12. Influence of polyunsaturated fatty acid supplementation and membrane fluidity on ozone and nitrogen dioxide sensitivity of rat alveolar macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rietjens, I.M.; van Tilburg, C.A.; Coenen, T.M.

    1987-01-01

    The phospholipid polyunsaturated fatty acid (PUFA) content and the membrane fluidity of rat alveolar macrophages were modified dose-dependently and in different ways. This was done to study the importance of both membrane characteristics for the cellular sensitivity toward ozone and nitrogen dioxide. Cells preincubated with arachidonic acid (20:4) complexed to bovine serum albumin (BSA) demonstrated an increased in vitro sensitivity versus ozone and nitrogen dioxide. The phenomenon was only observed at the highest 20:4 concentrations tested, whereas the membrane fluidity of the 20:4-treated cells already showed a maximum increase at lower preincubation concentrations. Hence it could be concluded that themore » increased ozone and nitrogen dioxide sensitivity of PUFA-enriched cells is not caused by their increased membrane fluidity, resulting in an increased accessibility of sensitive cellular fatty acid moieties or amino acid residues. This conclusion receives further support from other observations. These results strongly support the involvement of lipid oxidation in the mechanism(s) of toxic action of both ozone and nitrogen dioxide in an intact cell system.« less

  13. Role of Inflammatory Signaling in the Differential Effects of Saturated and Poly-unsaturated Fatty Acids on Peripheral Circadian Clocks.

    PubMed

    Kim, Sam-Moon; Neuendorff, Nichole; Chapkin, Robert S; Earnest, David J

    2016-05-01

    Inflammatory signaling may play a role in high-fat diet (HFD)-related circadian clock disturbances that contribute to systemic metabolic dysregulation. Therefore, palmitate, the prevalent proinflammatory saturated fatty acid (SFA) in HFD and the anti-inflammatory, poly-unsaturated fatty acid (PUFA), docosahexaenoic acid (DHA), were analyzed for effects on circadian timekeeping and inflammatory responses in peripheral clocks. Prolonged palmitate, but not DHA, exposure increased the period of fibroblast Bmal1-dLuc rhythms. Acute palmitate treatment produced phase shifts of the Bmal1-dLuc rhythm that were larger in amplitude as compared to DHA. These phase-shifting effects were time-dependent and contemporaneous with rhythmic changes in palmitate-induced inflammatory responses. Fibroblast and differentiated adipocyte clocks exhibited cell-specific differences in the time-dependent nature of palmitate-induced shifts and inflammation. DHA and other inhibitors of inflammatory signaling (AICAR, cardamonin) repressed palmitate-induced proinflammatory responses and phase shifts of the fibroblast clock, suggesting that SFA-mediated inflammatory signaling may feed back to modulate circadian timekeeping in peripheral clocks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Condensing enzymes from Cuphea wrightii associated with medium chain fatty acid biosynthesis.

    PubMed

    Slabaugh, M B; Leonard, J M; Knapp, S J

    1998-03-01

    Seed oils of most Cuphea species contain > 90% medium chain (C8-C14) fatty acids. Thioesterases with specificity for these substrates are important determinants of the medium chain phenotype. The role of condensing enzymes, however, has not been investigated. cDNA clones encoding beta-ketoacyl-acyl carrier protein (ACP) synthase (KAS) were isolated from C. wrightii, a C10/C12-producing species. Deduced amino acid sequences of four unique clones were approximately 60% identical to plant KAS I sequences and approximately 75% identical to a distinct class of KAS sequences recently identified in castor and barley. A 46 kDa protein that was observed only in developing and mature seed was detected using antiserum directed against recombinant Cuphea KAS protein. The 46 kDa protein was abundant in developing seeds of six medium chain-producing Cuphea species but barely detected in one long chain-producing species. A 48 kDa protein identified immunologically as KAS I was expressed in both medium and long chain-producing Cuphea species and was detected in all tissues tested. In in vitro assays, extracts from C. wrightii and C. viscosissima developing embryos were unable to extend fatty acid chains beyond C10 following treatment with 10 microns cerulenin, a potent inhibitor of KAS I. However, a C. viscosissima mutant, cpr-1, whose seed oils are deficient in caprate relative to wild type, was impaired in extension of C8 to C10 in this assay and Western analysis revealed a specific deficiency in 46 kDa KAS in cpr-1 embryos. These results implicate cerulenin-resistant condensing activity in production of medium chain fatty acids in Cuphea.

  15. Cadmium Alters the Concentration of Fatty Acids in THP-1 Macrophages.

    PubMed

    Olszowski, Tomasz; Gutowska, Izabela; Baranowska-Bosiacka, Irena; Łukomska, Agnieszka; Drozd, Arleta; Chlubek, Dariusz

    2018-03-01

    Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl 2 ) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl 2 . Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5-200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.

  16. Cloning, tissue distribution, functional characterization and nutritional regulation of a fatty acyl Elovl5 elongase in chu's croaker Nibea coibor.

    PubMed

    Lin, Zhideng; Huang, Yisheng; Zou, Weiguang; Rong, Hua; Hao, Meiling; Wen, Xiaobo

    2018-06-15

    Enzymes that lengthen the carbon chain of polyunsaturated fatty acids (PUFA) are key to the biosynthesis of the long-chain polyunsaturated fatty acids (LC-PUFA). Here we report on the molecular cloning, tissue distribution, functional characterization and nutritional regulation of a elovl5 gene from Nibea coibor. The full-length cDNA was 1315 bp, including a 5-untranslated region (UTR) of 134 bp, a 3-UTR of 296 bp and an open reading frame of 885 bp, which specified a peptide of 294 amino acids. Bioinformatics analysis showed that the deduced peptide sequence possessed all the characteristic features of microsomal fatty acyl elongases, including the so-called histidine box (HXXHH), the canonical C-terminal endoplasmic reticulum retention signal, several predicted transmembrane regions and other highly conserved motifs. Expression of elovl5 was strongly observed in stomach, and more weakly in kidney, spleen, intestine, brain, eye, liver, gill, muscle and heart. Functional characterization revealed that the chu's croaker Elovl5 was able to elongate both C18 and C20 PUFA substrates. Nutritional study indicated that the hepatic expression of elovl5 could be up-regulated by low dietary n-3 LC-PUFA. These results may contribute to better understanding the LC-PUFA biosynthetic pathway and regulation mechanism in chu's croaker. Copyright © 2018. Published by Elsevier B.V.

  17. Circulating odd-chain saturated fatty acids were associated with arteriosclerosis among patients with diabetes, dyslipidemia, or hypertension in Sri Lanka but not Japan.

    PubMed

    Kurotani, Kayo; Karunapema, Palitha; Jayaratne, Kapila; Sato, Masao; Hayashi, Takuya; Kajio, Hiroshi; Fukuda, Shoji; Hara, Hisao; Okazaki, Osamu; Jayatilleke, Achala Upendra; Nonaka, Daisuke; Noda, Mitsuhiko; Mizoue, Tetsuya

    2018-02-01

    The differences in the morbidity and mortality of cardiovascular diseases between Sri Lankan and Japanese populations might be explained by the differences in their diet, especially fat. To test the hypothesis that the fatty acid (FA) compositions differ between Sri Lankan and Japanese populations and that high concentrations of n-3 polyunsaturated FAs and linoleic acid are associated with a low level of arteriosclerosis, the authors compared the circulating FA compositions between Sri Lankan and Japanese populations and examined the association of the circulating FA composition with arterial stiffness in each population. The study participants were patients with diabetes, dyslipidemia, or hypertension in Sri Lanka (n = 100) or Japan (n = 236). Serum FA compositions were measured by gas chromatography. Arterial stiffness was measured using the cardio-ankle vascular index (CAVI). Analysis of covariance was used to compare the FA compositions between the populations. Multiple regression was used to assess the association between each FA and CAVI levels. The concentrations of myristic, γ-linolenic, dihomo-γ-linolenic, and arachidonic acids were higher in the Sri Lankan patients than in the Japanese patients. In contrast, the concentrations of linoleic, α-linolenic, and eicosapentaenoic acids were higher in the Japanese patients than in the Sri Lankan patients. Although no associations of n-3 polyunsaturated FAs and linoleic acid with CAVI were observed in both patient populations, odd-chain saturated FAs (pentadecanoic and heptadecanoic acids) were significantly inversely associated with CAVI levels in the Sri Lankan (P for trend = .03) but not the Japanese patients. The odd-chain saturated FAs might be inversely associated with atherosclerosis in this Sri Lankan population. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Fatty acid utilization by young Wistar rats fed a cafeteria diet.

    PubMed

    Esteve, M; Rafecas, I; Fernández-López, J A; Remesar, X; Alemany, M

    1992-12-02

    The content and accretion of fatty acids in 30, 45 and 60-day old Wistar rats fed either reference chow or a cafeteria diet has been studied, together with their actual fatty acid intake during that period. Diet had a small overall effect on the pattern of deposition of fatty acids, but the deposition of fat was much higher in cafeteria rats. The fat-rich cafeteria diet allowed the direct incorporation of most fatty acids into lipid storage, whilst chow-feeding activated lipogenesis and the deposition of a shorter chain and more saturated type of fatty acids. During the second month of the rat's life, the elongation pathway as well as delta 9-desaturase became functional, thus helping to shape the pattern of fatty acids actually accrued. The 60-day rats showed a relative impairment in the operation of delta 5-desaturase, since their lipids had a higher C20:4/C20:3 ratio than those of the diet ingested. Cafeteria-diet feeding minimized this effect since the large supply of dietary polyunsaturated fatty acids made the operation of the elongation-desaturase pathways practically unnecessary.

  19. Effects of omega-3 polyunsaturated fatty acids on human brain morphology and function: What is the evidence?

    PubMed

    Bos, Dienke J; van Montfort, Simone J T; Oranje, Bob; Durston, Sarah; Smeets, Paul A M

    2016-03-01

    Public opinion and media coverage suggest that there are benefits of long-chain ω-3 polyunsaturated fatty acid (LC-PUFA) intake on brain functioning. However, it is an open question whether this is indeed the case. Therefore, we reviewed the evidence for effects of ω-3 LC-PUFA on human brain morphology and function. We included studies on (1) naturalistic long-term ω-3 LC-PUFA intake during life (2) the effects of short-term ω-3 LC-PUFA supplementation in healthy subjects and (3) the effects of ω-3 LC-PUFA supplementation as alternative or add-on treatment for psychiatric or neurological disorders. To date, 24 studies have been published on the effect of ω-3 LC-PUFA on brain function and structure. Findings from naturalistic studies and clinical trials in healthy individuals indicate that ω-3 LC-PUFA intake may be associated with increased functional activation of the prefrontal cortex in children, and greater gray matter volume and white matter integrity during aging. However, most naturalistic studies were cross-sectional or did not find any effect on cognition. As such, it is hard to estimate the magnitude of any beneficial effects. Furthermore, there is only limited evidence to support that ω-3 LC-PUFA supplementation is beneficial in brain disorders, such as Alzheimer's Disease, Attention Deficit/Hyperactivity Disorder, Major Depressive Disorder and schizophrenia. Overall, the literature suggests that sensitivity to supplementation may vary over development, and as a consequence of brain disorders. The biological mechanisms underlying any (beneficial) effects ω-3 LC-PUFAs on the brain are currently unknown and need to be investigated. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  20. Dietary long-chain omega-3 fatty acids of marine origin: a comparison of their protective effects on coronary heart disease and breast cancers.

    PubMed

    Judé, Sébastien; Roger, Sébastien; Martel, Eric; Besson, Pierre; Richard, Serge; Bougnoux, Philippe; Champeroux, Pascal; Le Guennec, Jean-Yves

    2006-01-01

    The relationship between high fish consumption and low mortality following coronary heart disease (CHD) and low incidence of breast cancer was first mentioned 3 decades ago. The fishes of interest are rich in omega-3 long-chain polyunsaturated fatty acids (omega-3 LC-PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which could be the active nutrients. The current consensus about cardioprotection is that omega-3 LC-PUFAs would mainly exert antiarrhythmic effects. One of the proposed mechanisms is that circulating non-esterified LC-PUFAs partition into cardiac cells membrane phospholipids and exert a direct effect on ionic channels and/or modify intracellular calcium homeostasis. In another hypothesis, changes in the metabolism of phosphoinositides would be involved and lead to the differential activation of PKC isoforms. As compared to the mechanisms proposed for the cardioprotective effects of omega-3 LC-PUFAs, less is known about the molecular mechanisms involved in breast cancers prevention. Some proposed mechanisms such as the modulation of phosphoinositides metabolism and/or modulation of intracellular calcium homeostasis, are common to both pathologies. Other hypotheses involve the alteration of the cellular redox status induced by highly peroxidizable polyunsaturated fatty acids (FA), or the modulation of gene expression, both phenomena being tightly linked to apoptosis. In this review, we report and compare some proposed mechanisms for the involvement of omega-3 LC-PUFAs in both cardiac and breast cancer protection. Deliberately, we chose to discuss only the mechanisms, which are less described in other reviews such as ionic channels in cancer, calcium homeostasis, PKC activation or matrix metalloproteinases in both cancer and cardiac models. The leitmotiv along this review is that cardio- and cancero-protective effects use common pathways. Comparison of the cellular effects might therefore help to highlight the "protective

  1. Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses.

    PubMed

    Shinde, Suhas; Devaiah, Shivakumar; Kilaru, Aruna

    2017-01-01

    In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.

  2. ω-3 Polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice.

    PubMed

    Wang, Weicang; Yang, Jun; Nimiya, Yoshiki; Lee, Kin Sing Stephen; Sanidad, Katherine; Qi, Weipeng; Sukamtoh, Elvira; Park, Yeonhwa; Liu, Zhenhua; Zhang, Guodong

    2017-10-01

    Many studies have shown that dietary intake of ω-3 polyunsaturated fatty acids (PUFAs) reduces the risks of colorectal cancer; however, the underlying mechanisms are not well understood. Here we used a LC-MS/MS-based lipidomics to explore the role of eicosanoid signaling in the anti-colorectal cancer effects of ω-3 PUFAs. Our results showed that dietary feeding of ω-3 PUFAs-rich diets suppressed growth of MC38 colorectal tumor, and modulated profiles of fatty acids and eicosanoid metabolites in C57BL/6 mice. Notably, we found that dietary feeding of ω-3 PUFAs significantly increased levels of epoxydocosapentaenoic acids (EDPs, metabolites of ω-3 PUFA produced by cytochrome P450 enzymes) in plasma and tumor tissue of the treated mice. We further showed that systematic treatment with EDPs (dose=0.5 mg/kg per day) suppressed MC38 tumor growth in mice, with reduced expressions of pro-oncogenic genes such as C-myc, Axin2, and C-jun in tumor tissues. Together, these results support that formation of EDPs might contribute to the anti-colorectal cancer effects of ω-3 PUFAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. LIPID CLASS DISTRIBUTION OF HIGHLY UNSATURATED LONG-CHAIN FATTY ACIDS IN MARINE DINOFLAGELLATES

    EPA Science Inventory

    Very-long-chain highly unsaturated C28 fatty acids (HUFAs), found in a number of dinoflagellates, are released as methyl esters from phospholipids obtained by fractionation of lipid extracts. By contrast, the highly unsaturated C18 fatty acid octadecapentaenoic acid (18:5n-3), co...

  4. Long chain polyunsaturated fatty acids (LCPUFAs) and nordihydroguaiaretic acid (NDGA) modulate metabolic and inflammatory markers in a spontaneous type 2 diabetes mellitus model (Stillman Salgado rats).

    PubMed

    Dain, Alejandro; Repossi, Gaston; Diaz-Gerevini, Gustavo T; Vanamala, Jairam; Das, Undurti N; Eynard, Aldo R

    2016-11-25

    Diabetes mellitus (DM) is a complex disease with alterations in metabolic and inflammatory markers. Stillman Salgado rats (eSS) spontaneously develop type 2 DM by middle age showing progressive impairment of glucose tolerance with hyperglycemia, hypertriglyceridemia and hyperinsulinemia. We analyzed the effects of supplementation of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) with or without nordihydroguaiaretic acid (NDGA) added, an antioxidant and lipoxygenase inhibitor, on metabolic and inflammatory parameters in eSS rats to evaluate whether they can delay development and/or prevent progression of DM. After weaning, eSS rats received, intraperitoneally, once a month ω-3 (EPA 35% and DHA 40%-6.25 mg/Kg) or ω-6 (90% arachidonic acid- 6. 25 mg/Kg) for twelve months. Two additional groups of rats received 1.9 mg/kg NDGA added to ω-3 and ω-6 fatty acids. Blood samples were collected at day 40, and at the end of the 6th month and 12th month of age to determine plasma triglycerides (TGs), total plasma fatty acids (FA), A1C hemoglobin (HbA1C), C-reactive protein (CRP), gamma glutamyl transpeptidase (GGT), lipo and hydro peroxides, nitrites and IL-6 (in plasma and liver, kidney, and pancreas) and underwent oral glucose tolerance test (OGTT) as well. Wistar and eSS rats that received saline solution were used as controls. Plasma lipids profile, TG, fasting and post-prandial blood glucose levels, and glycosylated HbA1C showed significant improvements in ω-3 and ω-3 + NDGA treated animals compared to eSS control group. ω-3 and ω-3 + NDGA groups showed an inverse correlation with fasting blood glucose and showed lower plasma levels of GGT, TG, and CRP. eSS rats treated with ω-3 LCPUFAs showed reduced level of inflammatory and oxidative indices in plasma and liver, kidney and pancreas tissues in comparison with eSS control (non-treated) and ω-6 treated groups. eSS rats are a useful model to study type 2 DM pathophysiology and related inflammatory

  5. Inadequate daily intakes of n-3 polyunsaturated fatty acids (PUFA) in the general French population of children (3-10 years) and adolescents (11-17 years): the INCA2 survey.

    PubMed

    Guesnet, Philippe; Tressou, Jessica; Buaud, Benjamin; Simon, Noëmie; Pasteau, Stéphane

    2018-04-23

    This paper deals with the dietary daily intakes of main polyunsaturated fatty acids (PUFA) in French children and adolescents. Dietary intakes of main PUFA were determined from a general French population of 1500 children (3-10 years) and adolescents (11-17 years) by using the most recent set of national robust data on food (National Survey INCA 2 performed in 2006 and 2007). Main results showed that mean daily intakes of total fat and n-6 PUFA linoleic acid (LA, 18:2n-6) were close to current recommended values for children and adolescent populations. However, 80% (children) to 90% (adolescents) of our French populations not only ingested low quantities of n-3 long-chain PUFA (docosahexaenoic (22:6n-3) and eicosapentaenoic (20:5n-3) acids) but also very low quantities of alpha-linolenic acid (ALA, 18:3n-3) at the origin of a non-balanced n-6/n-3 ratio. Inadequate consumption of EPA + DHA was also observed in subgroups of infants and adolescent who consumed more than two servings/week of fish. Such disequilibrium in PUFA dietary intakes in favor of n-6 PUFA could have adverse impact on cell membrane incorporation of long-chain n-3 PUFA and deleterious impacts on the health of children and adolescents. Promoting the consumption of both vegetable oils and margarines rich in ALA, and oily fish rich in long-chain n-3 PUFA might improve such PUFA disequilibrium.

  6. Engineering oilseeds for sustainable production of industrial and nutritional feedstocks: solving bottlenecks in fatty acid flux.

    PubMed

    Cahoon, Edgar B; Shockey, Jay M; Dietrich, Charles R; Gidda, Satinder K; Mullen, Robert T; Dyer, John M

    2007-06-01

    Oilseeds provide a unique platform for the production of high-value fatty acids that can replace non-sustainable petroleum and oceanic sources of specialty chemicals and aquaculture feed. However, recent efforts to engineer the seeds of crop and model plant species to produce new types of fatty acids, including hydroxy and conjugated fatty acids for industrial uses and long-chain omega-3 polyunsaturated fatty acids for farmed fish feed, have met with only modest success. The collective results from these studies point to metabolic 'bottlenecks' in the engineered plant seeds that substantially limit the efficient or selective flux of unusual fatty acids between different substrate pools and ultimately into storage triacylglycerol. Evidence is emerging that diacylglycerol acyltransferase 2, which catalyzes the final step in triacylglycerol assembly, is an important contributor to the synthesis of unusual fatty acid-containing oils, and is likely to be a key target for future oilseed metabolic engineering efforts.

  7. Comparison between omega-3 and omega-6 polyunsaturated fatty acid intakes as assessed by a food frequency questionnaire and erythrocyte membrane fatty acid composition in young children

    PubMed Central

    Orton, Heather D.; Szabo, Nancy J.; Clare-Salzler, Michael; Norris, Jill M.

    2010-01-01

    Objective We conducted a dietary validation study in youth aged 1 to 11 years by comparing dietary intake of omega-3 and omega-6 polyunsaturated fatty acids (PUFA) as assessed by a parent-completed semi-quantitative food frequency questionnaire (FFQ) over time to erythrocyte membrane composition of the same fatty acids. Design The study population included youth aged 1 to 11 years who were participants in the Diabetes Autoimmunity Study in the Young (DAISY), a longitudinal study in Denver, Colorado that is following a cohort of youth at risk for developing Type I diabetes. Four hundred four children who had erythrocyte membrane fatty acid data matched to an FFQ corresponding to the same time frame for a total of 917 visits (matches) were included. PUFA intake was expressed as both g/day (adjusted for total energy) and as percent of total fat intake. We used mixed models to test the association and calculate the correlation between the erythrocyte membrane estimates and PUFA intake using all records of data for each youth. Results Intakes of total omega-3 fatty acids (β=0.52, p<0.0001, ρ=0.23) and marine PUFAs (β=1.62, p<0.0001, ρ=0.42), as a percent of total fat in the diet, were associated with percent of omega-3 and marine PUFAs in the erythrocyte membrane. Intakes of omega-6 PUFAs (β=0.04, p=0.418, ρ=0.05) and arachidonic acid (β=0.31, p=0.774, ρ=0.01) were not associated. Conclusions In these young children, a FFQ using parental report provided estimates of average long-term intakes of marine PUFAs that correlated well with their erythrocyte cell membrane fatty acid status. PMID:17440518

  8. Maternal adipose tissue becomes a source of fatty acids for the fetus in fasted pregnant rats given diets with different fatty acid compositions.

    PubMed

    López-Soldado, Iliana; Ortega-Senovilla, Henar; Herrera, Emilio

    2017-11-10

    The utilization of long-chain polyunsaturated fatty acids (LCPUFA) by the fetus may exceed its capacity to synthesize them from essential fatty acids, so they have to come from the mother. Since adipose tissue lipolytic activity is greatly accelerated under fasting conditions during late pregnancy, the aim was to determine how 24 h fasting in late pregnant rats given diets with different fatty acid compositions affects maternal and fetal tissue fatty acid profiles. Pregnant Sprague-Dawley rats were given isoenergetic diets containing 10% palm-, sunflower-, olive- or fish-oil. Half the rats were fasted from day 19 of pregnancy and all were studied on day 20. Triacylglycerols (TAG), glycerol and non-esterified fatty acids (NEFA) were analyzed by enzymatic methods and fatty acid profiles were analyzed by gas chromatography. Fasting caused increments in maternal plasma NEFA, glycerol and TAG, indicating increased adipose tissue lipolytic activity. Maternal adipose fatty acid profiles paralleled the respective diets and, with the exception of animals on the olive oil diet, maternal fasting increased the plasma concentration of most fatty acids. This maintains the availability of LCPUFA to the fetus during brain development. The results show the major role played by maternal adipose tissue in the storage of dietary fatty acids during pregnancy, thus ensuring adequate availability of LCPUFA to the fetus during late pregnancy, even when food supply is restricted.

  9. Effect of short-chain fatty acids on the formation of amylose microparticles by amylosucrase.

    PubMed

    Lim, Min-Cheol; Park, Kyu-Hwan; Choi, Jong-Hyun; Lee, Da-Hee; Letona, Carlos Andres Morales; Baik, Moo-Yeol; Park, Cheon-Seok; Kim, Young-Rok

    2016-10-20

    Amylose microparticles can be produced by self-assembly of amylose molecules through an amylosucrase-mediated synthesis. Here we investigated the role of short-chain fatty acids in the formation of amylose microparticles and the fate of these fatty acids at the end of the reaction. The rate of self-assembly and production yields of amylose microparticles were significantly enhanced in the presence of fatty acids. The effect was dependent on the length of the fatty acid carbon tail; butanoic acid (C4) was the most effective, followed by hexanoic acid (C6) and octanoic acid (C8). The amylose microparticles were investigated by carrying out SEM, XRD, Raman, NMR, FT-IR and DSC analysis. The size, morphology and crystal structure of the resulting amylose microparticles were comparable with those of amylose microparticles produced without fatty acids. The results indicated the carboxyl group of the fatty acid to be responsible for promoting the self-assembly of amylose chains to form microparticles. The fatty acids were eventually removed from the microstructure through the tight association of amylose double helices to form the amylose microparticles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Serum phospholipid omega-3 polyunsaturated fatty acids and insulin resistance in type 2 diabetes mellitus and non-alcoholic fatty liver disease.

    PubMed

    Lou, Da-Jun; Zhu, Qi-Qian; Si, Xu-Wei; Guan, Li-Li; You, Qiao-Ying; Yu, Zhong-Ming; Zhang, Ai-Zhen

    2014-01-01

    To investigate the relationship between serum phospholipid omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and insulin resistance (IR) in patients with type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD). 51 patients with T2DM and NAFLD (T2DM+NAFLD group), 50 with T2DM alone (T2DM group), 45 with NAFLD alone (NAFLD group), and 42 healthy control subjects (NC group) were studied. Serum ω-3 PUFA profiles were analyzed by gas chromatography, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), and serum lipid concentrations were measured. Insulin resistance was assessed by the homeostasis model assessment method (HOMA-IR). HOMA-IR levels were higher in the T2DM+NAFLD group than in the T2DM, NAFLD and NC groups (p<0.05), as were ALT, AST, GGT, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) concentrations (p<0.05). Conversely, serum ω-3 PUFA levels were significantly lower in the T2DM+NAFLD group than in the other groups (p<0.05). The ω-3 PUFA level was negatively correlated with HOMA-IR, TC, LDL-C and TG. Serum phospholipid ω-3 PUFA levels were significantly decreased in patients with T2DM and NAFLD, and were negatively related with insulin resistance. Thus, reduced ω-3 PUFAs may play an important role in the development of T2DM and NAFLD. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids12

    PubMed Central

    Pfeuffer, Maria; Jaudszus, Anke

    2016-01-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid. PMID:27422507

  12. Different sources of omega-3 polyunsaturated fatty acids affects apparent digestibility, tissue deposition, and tissue oxidative stability in growing female rats

    PubMed Central

    2011-01-01

    Background Numerous health benefits associated with increased omega-3 polyunsaturated fatty acid (n-3 PUFA) consumption has lead to an increasing variety of available n-3 PUFA sources. However, sources differ in the type, amount, and structural form of the n-3 PUFAs. Therefore, the objective of this study was to determine the effect of different sources of ω-3 PUFAs on digestibility, tissue deposition, eicosanoid metabolism, and oxidative stability. Methods Female Sprague-Dawley rats (age 28 d) were randomly assigned (n = 10/group) to be fed a high fat 12% (wt) diet consisting of either corn oil (CO) or n-3 PUFA rich flaxseed (FO), krill (KO), menhaden (MO), salmon (SO) or tuna (TO) oil for 8 weeks. Rats were individually housed in metabolic cages to determine fatty acid digestibility. Diet and tissue fatty acid composition was analyzed by gas chromatography and lipid classes using thin layer chromatography. Eicosanoid metabolism was determined by measuring urinary metabolites of 2-series prostaglandins (PGs) and thromoboxanes (TXBs) using enzyme immunoassays. Oxidative stability was assessed by measuring thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) using colorimetric assays. Gene expression of antioxidant defense enzymes was determined by real time quantitative polymerase chain reaction (RT-qPCR). Results Rats fed KO had significantly lower DHA digestibility and brain DHA incorporation than SO and TO-fed rats. Of the n-3 PUFA sources, rats fed SO and TO had the highest n-3 PUFAs digestibility and in turn, tissue accretion. Higher tissue n-3 LC-PUFAs had no significant effect on 2-series PG and TXB metabolites. Despite higher tissue n-3 LC-PUFA deposition, there was no increase in oxidation susceptibility indicated by no significant increase in TBARS or decrease in TAC and gene expression of antioxidant defense enzymes, in SO or TO-fed rats. Conclusions On the basis that the optimal n-3 PUFA sources should provide high

  13. Identification and quantification of ethyl carbamate occurring in urea complexation processes commonly utilized for polyunsaturated fatty acid concentration.

    PubMed

    Vázquez, Luis; Prados, Isabel M; Reglero, Guillermo; Torres, Carlos F

    2017-08-15

    The concentration of polyunsaturated fatty acids by formation of urea adducts from three different sources was studied to elucidate the formation of ethyl carbamates in the course of these procedures. Two different methodologies were performed: with ethanol at high temperature and with hexane/ethanol mixtures at room temperature. It was proved that the amount of urethanes generated at high temperature was higher than at room temperature. Besides, subsequent washing steps of the PUFA fraction with water were efficient to remove the urethanes from the final products. The methodology at room temperature with 0.4mL ethanol and 3g urea provided good relationship between concentration and yield of the main bioactive PUFA, with the lowest formation of ethyl carbamates in the process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Beyond the classic eicosanoids: Peripherally-acting oxygenated metabolites of polyunsaturated fatty acids mediate pain associated with tissue injury and inflammation.

    PubMed

    Shapiro, Haim; Singer, Pierre; Ariel, Amiram

    2016-08-01

    Pain is a complex sensation that may be protective or cause undue suffering and loss of function, depending on the circumstances. Peripheral nociceptor neurons (PNs) innervate most tissues, and express ion channels, nocisensors, which depolarize the cell in response to intense stimuli and numerous substances. Inflamed tissues manifest inflammatory hyperalgesia in which the threshold for pain and the response to painful stimuli are decreased and increased, respectively. Constituents of the inflammatory milieu sensitize PNs, thereby contributing to hyperalgesia. Polyunsaturated fatty acids undergo enzymatic and free radical-mediated oxygenation into an array of bioactive metabolites, oxygenated polyunsaturated fatty acids (oxy-PUFAs), including the classic eicosanoids. Oxy-PUFA production is enhanced during inflammation. Pioneering studies by Vane and colleagues from the early 1970s first implicated classic eicosanoids in the pain associated with inflammation. Here, we review the production and action of oxy-PUFAs that are not classic eicosanoids, but nevertheless are produced in injured/ inflamed tissues and activate or sensitize PNs. In general, oxy-PUFAs that sensitize PNs may do so directly, by activation of nocisensors, ion channels or GPCRs expressed on the surface of PNs, or indirectly, by increasing the production of inflammatory mediators that activate or sensitize PNs. We focus on oxy-PUFAs that act directly on PNs. Specifically, we discuss the role of arachidonic acid-derived 12S-HpETE, HNE, ONE, PGA2, iso-PGA2 and 15d-PGJ2, 5,6-and 8,9-EET, PGE2-G and 8R,15S-diHETE, as well as the linoleic acid-derived 9-and 13-HODE in inducing acute nocifensive behavior and/or inflammatory hyperalgesia in rodents. The nocisensors TRPV1, TRPV4 and TRPA1, and putative Gαs-type GPCRs are the PN targets of these oxy-PUFAs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Health economic potential of early nutrition programming: a model calculation of long-term reduction in blood pressure and related morbidity costs by use of long-chain polyunsaturated fatty acid-supplemented formula.

    PubMed

    Straub, Niels; Grunert, Philipp; von Kries, Rüdiger; Koletzko, Berthold

    2011-12-01

    The reported effect sizes of early nutrition programming on long-term health outcomes are often small, and it has been questioned whether early interventions would be worthwhile in enhancing public health. We explored the possible health economic consequences of early nutrition programming by performing a model calculation, based on the only published study currently available for analysis, to evaluate the effects of supplementing infant formula with long-chain polyunsaturated fatty acids (LC-PUFAs) on lowering blood pressure and lowering the risk of hypertension-related diseases in later life. The costs and health effects of LC-PUFA-enriched and standard infant formulas were compared by using a Markov model, including all relevant direct and indirect costs based on German statistics. We assessed the effect size of blood pressure reduction from LC-PUFA-supplemented formula, the long-term persistence of the effect, and the effect of lowered blood pressure on hypertension-related morbidity. The cost-effectiveness analysis showed an increased life expectancy of 1.2 quality-adjusted life-years and an incremental cost-effectiveness ratio of -630 Euros (discounted to present value) for the LC-PUFA formula in comparison with standard formula. LC-PUFA nutrition was the superior strategy even when the blood pressure-lowering effect was reduced to the lower 95% CI. Breastfeeding is the recommended feeding practice, but infants who are not breastfed should receive an appropriate infant formula. Following this model calculation, LC-PUFA supplementation of infant formula represents an economically worthwhile prevention strategy, based on the costs derived from hypertension-linked diseases in later life. However, because our analysis was based on a single randomized controlled trial, further studies are required to verify the validity of this thesis.

  16. Essential fatty acid supplementation in chronic hepatitis B.

    PubMed

    Jenkins, A P; Green, A T; Thompson, R P

    1996-08-01

    Dietary supplementation with essential fatty acids and polyunsaturated lecithin may improve biochemical and histological parameters in liver disease. Ten patients with serological and histological evidence of chronic hepatitis B received capsules of the polyunsaturated fatty acid-rich evening primrose oil in a dose of 4 g daily for 12 months, while a matched group received liquid paraffin capsules as a placebo. Compared to the placebo group, the patients receiving evening primrose oil showed no improvement in either biochemical or histological indices of liver damage, or in the rate of loss of circulating e antigen. Dietary, supplementation with this dose of essential fatty acids is unlikely to be of benefit in chronic hepatitis B.

  17. Polyunsaturated fatty acid supplementation for drug-resistant epilepsy.

    PubMed

    Sarmento Vasconcelos, Vivian; Macedo, Cristiane R; de Souza Pedrosa, Alexsandra; Pereira Gomes Morais, Edna; Porfírio, Gustavo J M; Torloni, Maria R

    2016-08-17

    An estimated 1% to 3% of all individuals will receive a diagnosis of epilepsy during their lives, which corresponds to approximately 50 million affected people worldwide. The real prevalence is possibly higher because epilepsy is underreported in developing countries. Although most will achieve adequate control of their disease though the use of medication, approximately 25% to 30% of all those with epilepsy are refractory to pharmacological treatment and will continue to have seizures despite the use of two or more agents in adequate dosages. Over the last decade, researchers have tested the use of polyunsaturated fatty acid (PUFA) supplements for the treatment of refractory epilepsy, with inconsistent results. There have also been some concerns about the use of omega-3 PUFA compounds because they reduce platelet aggregation and could, in theory, cause bleeding. To assess the effectiveness and tolerability of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid-EPA and docosahexanoic acid-DHA) in the control of seizures in people with refractory epilepsy. We searched the Cochrane Epilepsy Group Specialised Register (from inception up to November 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, issue 11), MEDLINE (1948 to November 2015), EMBASE (1980 to November 2015), SCOPUS (1823 to November 2015); LILACS (Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde) (1982 to November 2015); ClinicalTrials.gov; World Health Organization (WHO) International Clinical Trials Registry Platform (November 2015). No language restrictions were imposed. We contacted study authors for additional and unpublished information and screened the reference lists of retrieved citations for potentially eligible studies not identified through the electronic search. All randomised and quasi-randomised studies using PUFAs for the treatment of drug-resistant epilepsy. Two review authors were involved in study selection, data extraction

  18. The effect of low-fat beef patties formulated with a low-energy fat analogue enriched in long-chain polyunsaturated fatty acids on lipid oxidation and sensory attributes.

    PubMed

    Alejandre, Marta; Passarini, Denis; Astiasarán, Iciar; Ansorena, Diana

    2017-12-01

    A new low-energy gelled emulsion containing algae oil was developed as animal fat replacer. Its stability was evaluated under different storage conditions: 4V (4°C/vacuum), 4NV (4°C/no vacuum), 25V (25°C/vacuum) and 25NV (25°C/no vacuum). According to moisture, hardness, color and lipid oxidation data, 4°C under vacuum (4V) was selected as the best condition. Once the gelled emulsion was characterized, its effectiveness as fat analogue was demonstrated in beef patties. Reformulated patties were produced with 100% of animal fat replacement and compared to conventional patties (9%fat). A 70%fat reduction was achieved in the new patties, mainly due to a reduction in the saturated fatty acids. Also, decreased n-6 (76%lower content) and increased eicosapentaenoic and docosahexaenoic acids (55%higher content) were noticed in the new formulation. The incorporation of the gelled emulsion containing reduced amount of n-6 fatty acids and increased amounts of long chain n-3 fatty acids (EPA+DHA) reduced the oxidation status of the patties and their sensory evaluation resulted in acceptable scores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Precision Nutrition and Omega-3 Polyunsaturated Fatty Acids: A Case for Personalized Supplementation Approaches for the Prevention and Management of Human Diseases

    PubMed Central

    Chilton, Floyd H.; Dutta, Rahul; Reynolds, Lindsay M.; Sergeant, Susan; Mathias, Rasika A.; Seeds, Michael C.

    2017-01-01

    Background: Dietary essential omega-6 (n-6) and omega-3 (n-3) 18 carbon (18C-) polyunsaturated fatty acids (PUFA), linoleic acid (LA) and α-linolenic acid (ALA), can be converted (utilizing desaturase and elongase enzymes encoded by FADS and ELOVL genes) to biologically-active long chain (LC; >20)-PUFAs by numerous cells and tissues. These n-6 and n-3 LC-PUFAs and their metabolites (ex, eicosanoids and endocannabinoids) play critical signaling and structural roles in almost all physiologic and pathophysiologic processes. Methods: This review summarizes: (1) the biosynthesis, metabolism and roles of LC-PUFAs; (2) the potential impact of rapidly altering the intake of dietary LA and ALA; (3) the genetics and evolution of LC-PUFA biosynthesis; (4) Gene–diet interactions that may lead to excess levels of n-6 LC-PUFAs and deficiencies of n-3 LC-PUFAs; and (5) opportunities for precision nutrition approaches to personalize n-3 LC-PUFA supplementation for individuals and populations. Conclusions: The rapid nature of transitions in 18C-PUFA exposure together with the genetic variation in the LC-PUFA biosynthetic pathway found in different populations make mal-adaptations a likely outcome of our current nutritional environment. Understanding this genetic variation in the context of 18C-PUFA dietary exposure should enable the development of individualized n-3 LC-PUFA supplementation regimens to prevent and manage human disease. PMID:29068398

  20. Omega-3 polyunsaturated fatty acids provided during embryonic development improve the growth performance and welfare of Muscovy ducks (Cairina moschata).

    PubMed

    Baéza, E; Chartrin, P; Bordeau, T; Lessire, M; Thoby, J M; Gigaud, V; Blanchet, M; Alinier, A; Leterrier, C

    2017-09-01

    The welfare of ducks can be affected by unwanted behaviors such as excessive reactivity and feather pecking. Providing long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) during gestation and early life has been shown to improve the brain development and function of human and rodent offspring. The aim of this study was to test whether the pecking behavior of Muscovy ducks during rearing could be reduced by providing LC n-3 PUFA during embryonic and/or post-hatching development of ducklings. Enrichment of eggs, and consequently embryos, with LC n-3 PUFA was achieved by feeding female ducks (n-3F) a diet containing docosahexaenoic (DHA) and linolenic acids (microalgae and linseed oil). A control group of female ducks (CF) was fed a diet containing linoleic acid (soybean oil). Offspring from both groups were fed starter and grower diets enriched with DHA and linolenic acid or only linoleic acid, resulting in four treatment groups with 48 ducklings in each. Several behavioral tests were performed between 1 and 3 weeks of age to analyze the adaptation ability of ducklings. The growth performance, time budget, social interactions, feather growth, and pecking behavior of ducklings were recorded regularly during the rearing period. No significant interaction between maternal and duckling feeding was found. Ducklings from n-3F ducks had a higher body weight at day 0, 28, and 56, a lower feed conversion ratio during the growth period, and lower reactivity to stress than ducklings from CF ducks. Ducklings from n-3F ducks also exhibited a significantly reduced feather pecking frequency at 49 and 56 days of age and for the whole rearing period. Moreover, consumption of diets enriched with n-3 PUFA during the starter and grower post-hatching periods significantly improved the tibia mineralization of ducklings and the fatty acid composition of thigh muscles at 84 days of age by increasing the n-3 FA content. © 2017 Poultry Science Association Inc.

  1. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids.

    PubMed

    Leber, Christopher; Da Silva, Nancy A

    2014-02-01

    Carbon feedstocks from fossilized sources are being rapidly depleted due to rising demand for industrial and commercial applications. Many petroleum-derived chemicals can be directly or functionally substituted with chemicals derived from renewable feedstocks. Several short chain organic acids may fulfill this role using their functional groups as a target for chemical catalysis. Saccharomyces cerevisiae was engineered to produce short chain carboxylic acids (C6 to C10 ) from glucose using the heterologous Homo sapiens type I fatty acid synthase (hFAS). This synthase was activated by phosphopantetheine transfereases AcpS and Sfp from Escherichia coli and Bacillus subtilis, respectively, both in vitro and in vivo. hFAS was produced in the holo-form and produced carboxylic acids in vitro, confirmed by NADPH and ADIFAB assays. Overexpression of hFAS in a yeast FAS2 knockout strain, deficient in de novo fatty acid synthesis, demonstrated the full functional replacement of the native fungal FAS by hFAS. Two active heterologous short chain thioesterases (TEs) from Cuphea palustris (CpFatB1) and Rattus norvegicus (TEII) were evaluated for short chain fatty acid (SCFA) synthesis in vitro and in vivo. Three hFAS mutants were constructed: a mutant deficient in the native TE domain, a mutant with a linked CpFatB1 TE and a mutant with a linked TEII TE. Using the native yeast fatty acid synthase for growth, the overexpression of the hFAS mutants and the short-chain TEs (linked or plasmid-based) increased in vivo caprylic acid and total SCFA production up to 64-fold (63 mg/L) and 52-fold (68 mg/L), respectively, over the native yeast levels. Combined over-expression of the phosphopantetheine transferase with the hFAS mutant resulted in C8 titers of up to 82 mg/L and total SCFA titers of up to 111 mg/L. © 2013 Wiley Periodicals, Inc.

  2. ω-6 Polyunsaturated fatty acids extend life span through the activation of autophagy

    PubMed Central

    O'Rourke, Eyleen J.; Kuballa, Petric; Xavier, Ramnik; Ruvkun, Gary

    2013-01-01

    Adaptation to nutrient scarcity depends on the activation of metabolic programs to efficiently use internal reserves of energy. Activation of these programs in abundant food regimens can extend life span. However, the common molecular and metabolic changes that promote adaptation to nutritional stress and extend life span are mostly unknown. Here we present a response to fasting, enrichment of ω-6 polyunsaturated fatty acids (PUFAs), which promotes starvation resistance and extends Caenorhabditis elegans life span. Upon fasting, C. elegans induces the expression of a lipase, which in turn leads to an enrichment of ω-6 PUFAs. Supplementing C. elegans culture media with these ω-6 PUFAs increases their resistance to starvation and extends their life span in conditions of food abundance. Supplementation of C. elegans or human epithelial cells with these ω-6 PUFAs activates autophagy, a cell recycling mechanism that promotes starvation survival and slows aging. Inactivation of C. elegans autophagy components reverses the increase in life span conferred by supplementing the C. elegans diet with these fasting-enriched ω-6 PUFAs. We propose that the salubrious effects of dietary supplementation with ω-3/6 PUFAs (fish oils) that have emerged from epidemiological studies in humans may be due to a similar activation of autophagic programs. PMID:23392608

  3. Associations of Polyunsaturated Fatty Acid Intake with Bone Mineral Density in Postmenopausal Women

    PubMed Central

    Harris, Margaret; Farrell, Vanessa; Houtkooper, Linda; Going, Scott; Lohman, Timothy

    2015-01-01

    A secondary analysis of cross-sectional data was analyzed from 6 cohorts (Fall 1995–Fall 1997) of postmenopausal women (n = 266; 56.6 ± 4.7 years) participating in the Bone Estrogen Strength Training (BEST) study (a 12-month, block-randomized, clinical trial). Bone mineral density (BMD) was measured at femur neck and trochanter, lumbar spine (L2–L4), and total body BMD using dual-energy X-ray absorptiometry (DXA). Mean dietary polyunsaturated fatty acids (PUFAs) intakes were assessed using 8 days of diet records. Multiple linear regression was used to examine associations between dietary PUFAs and BMD. Covariates included in the models were total energy intake, body weight at year 1, years after menopause, exercise, use of hormone therapy (HT), total calcium, and total iron intakes. In the total sample, lumbar spine and total body BMD had significant negative associations with dietary PUFA intake at P < 0.05. In the non-HT group, no significant associations between dietary PUFA intake and BMD were seen. In the HT group, significant inverse associations with dietary PUFA intake were seen in the spine, total body, and Ward's triangle BMD, suggesting that HT may influence PUFA associations with BMD. This study is registered with clinicaltrials.gov, identifier: NCT00000399. PMID:25785226

  4. Metabolic Analysis Reveals Altered Long-Chain Fatty Acid Metabolism in the Host by Huanglongbing Disease.

    PubMed

    Suh, Joon Hyuk; Niu, Yue S; Wang, Zhibin; Gmitter, Frederick G; Wang, Yu

    2018-02-07

    Candidatus Liberibacter asiaticus (CLas) is the presumed causal agent of Huanglongbing, one of the most destructive diseases in citrus. However, the lipid metabolism component of host response to this pathogen has not been investigated well. Here, metabolic profiling of a variety of long-chain fatty acids and their oxidation products was first performed to elucidate altered host metabolic responses of disease. Fatty acid signals were found to decrease obviously in response to disease regardless of cultivar. Several lipid oxidation products strongly correlated with those fatty acids were also consistently reduced in the diseased group. Using a series of statistical methods and metabolic pathway mapping, we found significant markers contributing to the pathological symptoms and identified their internal relationships and metabolic network. Our findings suggest that the infection of CLas may cause the altered metabolism of long-chain fatty acids, possibly leading to manipulation of the host's defense derived from fatty acids.

  5. The Psychoneuroimmunological Role of Omega-3 Polyunsaturated Fatty Acids in Major Depressive Disorder and Bipolar Disorder.

    PubMed

    Rutkofsky, Ian Hunter; Khan, Anser Saeed; Sahito, Sindhu; Kumar, Vikram

    2017-01-01

    Context • Psychoneuroimmunology is the interdisciplinary study that links behavioral health with the neuroendocrinal system and investigates that link's bidirectional impact on the human immune system. Mechanistic studies have shown how omega-3 polyunsaturated fatty acids (PUFAs), like those found in fish oil, can modulate key pathways involved in inflammation, sympathetic activity, oxidative stress, transcription factors, and inflammatory cytokine production. Objective • The research team intended to investigate the effects that PUFAs have on the brain and the immune system, including the effects of proinflammatory cytokines and oxidative stress, and their therapeutic benefits in major depressive disorder (MDD) and bipolar disorder, either as an alternative monotherapy or a complementary adjunct treatment. Design • A literature search was conducted through PubMed and Google Scholar, with no restrictions on the publication dates or geographically. Setting • The research occurred at research facilities in Washington, DC, and Davis, California. Results • Well-described links between inflammation and MDD and bipolar disorder have been established. Similarly, a highly inflammatory state is a contributing factor to many significant health complications, and omega-3 PUFAs can help treat those issues. Conclusions • The research team concluded that omega-3 fatty acids have therapeutic benefits in the treatment of both MDD and bipolar disorder and are effective as a monotherapy and, particularly, as an adjunct therapy. The efficacy of omega-3 supplementation is clearly useful in promoting better health overall and supplementation should be encouraged in the primary care setting. A meta-analysis exploring an adjunct treatment of supplemental eicosapentaenoic acid or docosahexaenoic acid is likely to yield the greatest benefits to psychiatric conditions and provide an answer to proper dosing regimens. The team also created a chart of the supplements' salient

  6. Enriched Endogenous Omega-3 Polyunsaturated Fatty Acids Protect Cortical Neurons from Experimental Ischemic Injury.

    PubMed

    Shi, Zhe; Ren, Huixia; Luo, Chuanming; Yao, Xiaoli; Li, Peng; He, Chengwei; Kang, Jing-X; Wan, Jian-Bo; Yuan, Ti-Fei; Su, Huanxing

    2016-11-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential in a variety of neurological disorders, including ischemic stroke. However, the underlying mechanisms still lack investigation. Here, we report that cultured cortical neurons isolated from fat-1 mice with high endogenous n-3 PUFAs were tolerant to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Fat-1 neurons exhibited significantly attenuated reactive oxygen species (ROS) activation induced by OGD/R injury, upregulated antiapoptotic proteins Bcl-2 and Bcl-xL, and reduced cleaved caspase-3. Exogenous administration of docosahexaenoic acid (DHA), a major component of the n-3 PUFA family, resulted in similar protective effects on cultured cortex neurons. We further verified the protective effects of n-3 PUFAs in vivo, using a mini ischemic model with a reproducible cortical infarct and manifest function deficits by occlusion of the distal branch of the middle cerebral artery with focused femtosecond laser pulses. The Fat-1 animals showed decreased ROS expression and higher level of glutathione in the injured brain, associated with improved functional recovery. We therefore provide evidence that n-3 PUFAs exert their protective effects against ischemic injury both in vitro and in vivo, partly through inhibiting ROS activation.

  7. Vitamin E and essential polyunsaturated fatty acids supplementation in schizophrenia patients treated with haloperidol.

    PubMed

    Bošković, Marija; Vovk, Tomaž; Koprivšek, Jure; Plesničar, Blanka Kores; Grabnar, Iztok

    2016-05-01

    Previously, oxidative damage has been associated with severity of clinical symptoms and supplementation with antioxidants and essential polyunsaturated fatty acids (EPUFAs) was proposed to have beneficial effects in schizophrenia. We evaluated the effects of supplementation with EPUFAs and vitamin E in patients treated with haloperidol depot injection. This was a double-blind randomized placebo-controlled study with four arms (Placebo, vitamin E, EPUFAs, and vitamin E + EPUFAs). Biomarkers of oxidative stress, neurochemistry, psychopathology, and extrapyramidal symptoms were assessed at baseline and after 4 months. In EPUFAs group of patients, reduced glutathione concentration was increased compared to placebo. Concentration of oxidized glutathione was decreased in patients receiving vitamin E. In addition, compared to placebo a non-significant trend of increased activity of catalase and superoxide dismutase was observed in all three treatment groups. Patients receiving vitamin E experienced less motor retardation. No difference in extrapyramidal symptoms was found. Our study indicates that supplementation with vitamin E and EPUFAs may improve the antioxidative defense, especially glutathione system, while there is no major effect on symptoms severity. Supplemental treatment with EPUFAs and vitamin E in schizophrenia patients treated with haloperidol is potentially beneficial and a larger independent study appears warranted.

  8. Erythrocyte polyunsaturated fatty acid status, memory, cognition and mood in older adults with mild cognitive impairment and healthy controls.

    PubMed

    Milte, Catherine M; Sinn, Natalie; Street, Steven J; Buckley, Jonathan D; Coates, Alison M; Howe, Peter R C

    2011-01-01

    Polyunsaturated fatty acid (PUFA) levels are altered in adults with cognitive decline and also depression. Depression facilitates progression from mild cognitive impairment (MCI) to dementia. We investigated associations between omega-3 (n-3) and omega-6 (n-6) PUFAs and cognition, memory and depression in 50 adults ≥65 years with MCI and 29 controls. Memory, depressive symptoms and erythrocyte PUFAs (% total fatty acids) were assessed. Eicosapentaenoic acid (EPA) was lower in MCI vs controls (.94% vs 1.26%, p<.01); n-6 PUFAs were higher: dihomo-gamma-linolenic acid (1.51% vs 1.32%, p<.01), arachidonic acid (11.54% vs 10.70%, p<.01), n-6 docosapentaenoic acid (DPA:.46% vs.34%, p<.01), and total n-6 PUFA (24.14% vs 23.37%, p<.05). Higher n-6 DPA predicted poorer mental health. Lower n-3 DPA was associated with higher self-reported bodily pain. Adults with MCI had higher depression scores (3.05±.39 vs 1.33±.24, p<.01). Depressive symptoms associated with elevated n-6 PUFA may contribute to cognitive decline in this population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Degree of fatty acyl chain unsaturation in biliary lecithin dictates cholesterol nucleation and crystal growth.

    PubMed

    Tazuma, S; Ochi, H; Teramen, K; Yamashita, Y; Horikawa, K; Miura, H; Hirano, N; Sasaki, M; Aihara, N; Hatsushika, S

    1994-11-17

    To clarify factors involved in the formation of cholesterol gallstones, we studied the relationship between the degree of fatty acyl chain unsaturation of biliary lecithin and bile metastability. We used supersaturated model bile solutions (molar taurocholate/lecithin/cholesterol ratio (73:19.5:7.5), total lipid concentration 9 g/dl) that contained equimolar egg yolk or soybean lecithins or a sn-1 palmitoyl, sn-2 linoleoyl phosphatidylcholine. Gel permeation chromatographic studies showed that the vesicular cholesterol distribution and dimension were inversely related to the degree of unsaturation of the lecithin species, estimated by reverse phase, high-performance liquid chromatography. Differential interference contrast microscopy and assay of cholesterol crystal growth showed that a higher degree of fatty acyl chain unsaturation of the lecithin species was associated with a faster nucleation time and rate of crystal growth. Our results suggest that vesicular lecithins containing more unsaturated fatty acyl chains bind less tightly to cholesterol than lecithins containing predominantly saturated fatty acids, and that the biliary lecithin species dictates, in part, the nucleation and growth of cholesterol crystals in bile.

  10. Brain white matter development is associated with a human-specific haplotype increasing the synthesis of long chain fatty acids.

    PubMed

    Peters, Bart D; Voineskos, Aristotle N; Szeszko, Philip R; Lett, Tristram A; DeRosse, Pamela; Guha, Saurav; Karlsgodt, Katherine H; Ikuta, Toshikazu; Felsky, Daniel; John, Majnu; Rotenberg, David J; Kennedy, James L; Lencz, Todd; Malhotra, Anil K

    2014-04-30

    The genetic and molecular pathways driving human brain white matter (WM) development are only beginning to be discovered. Long chain polyunsaturated fatty acids (LC-PUFAs) have been implicated in myelination in animal models and humans. The biosynthesis of LC-PUFAs is regulated by the fatty acid desaturase (FADS) genes, of which a human-specific haplotype is strongly associated with ω-3 and ω-6 LC-PUFA concentrations in blood. To investigate the relationship between LC-PUFA synthesis and human brain WM development, we examined whether this FADS haplotype is associated with age-related WM differences across the life span in healthy individuals 9-86 years of age (n = 207). Diffusion tensor imaging was performed to measure fractional anisotropy (FA), a putative measure of myelination, of the cerebral WM tracts. FADS haplotype status was determined with a single nucleotide polymorphism (rs174583) that tags this haplotype. Overall, normal age-related WM differences were observed, including higher FA values in early adulthood compared with childhood, followed by lower FA values across older age ranges. However, individuals homozygous for the minor allele (associated with lower LC-PUFA concentrations) did not display these normal age-related WM differences (significant age × genotype interactions, p(corrected) < 0.05). These findings suggest that LC-PUFAs are involved in human brain WM development from childhood into adulthood. This haplotype and LC-PUFAs may play a role in myelin-related disorders of neurodevelopmental origin.

  11. [Relationship between dietary pattern and maternal state of fatty acids during pregnancy in three regions of China].

    PubMed

    Gao, Yixiong; Li, Yuqian; Wang, Chunrong; Li, Lixiang; Man, Qingqing; Zhang, Jian; Meng, Zhuoran

    2016-05-01

    To investigate the dietary pattern during pregnancy and the compositions of fatty acids of phosphatidylcholine (PC) during pregnancy in different regions of China. 35 Health women of each region were recruited from three different geographical regions in China: Jurong (an inland region close to freshwater), Rizhao (a coastal region) and Xushui (an inland region with limited access to freshwater). All women were long-term residents of their respective region. Their dietary status (including consumption frequency of food and consumption of culinary oil) during second trimester pregnancy was recorded and the fatty acid composition of PC in plasma during late pregnancy (34 weeks gestation) was quantified by GC. The consumption frequency of marine fish in Rizhao was significant higher than in other two regions. The main n-3 polyunsaturated fatty acids of PC in plasma was docosahexaenoic acid (DHA) in all regions. The composition of DHA in three regions were (3.31 +/- 0.77) %, (3.74 +/- 1.21) % and (2.44 +/- 0.63) %, respectively. The composition of DHA in Xushui was significant lower than in other two regions (P < 0.017). There was positive relationship between consumption frequency of marine fish and composition of DHA of PC in plasma (r = 0.337, P < 0.05). There was relationship between pregnant women's fatty acids composition of PC in plasma and their dietary. The consumption of food with high content of n-3 long chain polyunsaturated fatty acids during pregnancy would be more practical for DHA store of pregnant women.

  12. Effects of medium-chain triglycerides, long-chain triglycerides, or 2-monododecanoin on fatty acid composition in the portal vein, intestinal lymph, and systemic circulation in rats.

    PubMed

    You, Yi-Qian Nancy; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R

    2008-01-01

    Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine.

  13. Effects of Medium-Chain Triglycerides, Long-Chain Triglycerides, or 2-Monododecanoin on Fatty Acid Composition in the Portal Vein, Intestinal Lymph, and Systemic Circulation in Rats

    PubMed Central

    Nancy You, Yi-Qian; Ling, Pei-Ra; Qu, Jason Zhensheng; Bistrian, Bruce R.

    2011-01-01

    Background Fatty acid absorption patterns can have a major impact on the fatty acid composition in the portal, intestinal lymph, and systemic circulation. This study sought to determine the effects of long-chain triglycerides (LCT), medium-chain triglycerides (MCT), and 2-monododecanoin (2mono) on intestinal fatty acid composition during continuous feeding over a brief period. Methods The lipid sources were 100% LCT, 100% MCT, a 50:50 mixture of LCT and MCT (LCT/MCT), and a 50:50 mixture of LCT and 2mono (LCT/2mono). A total of 27 rats were randomly given 1 of the 4 diets at 200 kcal/kg/d, with 30% of total calories from lipids over 3 hours. Results MCT significantly increased each of the medium-chain fatty acids (C6:0, C8:0, and C10:0) as free fatty acids in the portal vein and about 10%/mol of C10:0 as triglycerides in the lymph compared with the other groups. There was significantly less C10:0 in lymphatic triglycerides with LCT/MCT than with MCT, but more than in the LCT and LCT/2mono diets. MCT also significantly increased the contents of C16:0, C18:0, C18:1, and C20:4 in the lymphatic triglycerides compared with all other groups including LCT/MCT. The amount of linoleic acid (C18:2) in lymphatic triglycerides followed the relative amounts of this fatty acid in the diet, with the greatest in LCT followed by LCT/MCT and LCT/2mono and least in MCT. A so-called structured lipid composed of the medium-chain fatty acid dodecanoic acid on the 2 position and long-chain fatty acids on the 1 and 3 positions appeared to be endogenously synthesized in response to the LCT/2mono diet. Conclusions The original differences in MCT and LCT content in the diets were preserved in the fatty acid composition in the intestinal free fatty acids and triglycerides during feeding. In addition, the duration of lipid administration can play a role in altering fatty acid composition in the intestine. PMID:18407910

  14. Relationship of the Reported Intakes of Fat and Fatty Acids to Body Weight in US Adults.

    PubMed

    Raatz, Susan K; Conrad, Zach; Johnson, LuAnn K; Picklo, Matthew J; Jahns, Lisa

    2017-04-28

    Dietary fat composition may modulate energy expenditure and body weight. Little is known about the relationship between fatty acid intake and body weight at a population level. The purposes of this study were to compare intakes of energy, macronutrients, and individual fatty acids across BMI categories (1) for the US adult population and, (2) by sociodemographic groups. Reported dietary intake data from the National Health and Nutrition Examination Survey (NHANES) and What We Eat in America (WWEIA) surveys in the years 2005-2012 were analyzed. Overall, we found that the reported intake of carbohydrate, protein, total fat, total saturated fat (as well as long-chain saturated fatty acids 14:0-18:0), and monounsaturated fatty acids (MUFAs) were positively associated with BMI; while lauric acid (a medium-chain saturated fatty acid, 12:0) and total polyunsaturated fatty acids (PUFAs) (as well as all individual PUFAs) were not associated with BMI. Non-Hispanic black individuals demonstrated a negative association between BMI and energy intake and a positive association between total PUFAs, linoleic acid (LA), α-linolenic acid (ALA) and BMI. Individuals with less than a high school education showed a negative association between BMI and DHA. Mexican-Americans reported intakes with no association between BMI and energy, any macronutrient, or individual fatty acids. These findings support those of experimental studies demonstrating fatty acid-dependent associations between dietary fatty acid composition and body weight. Notably, we observed divergent results for some sociodemographic groups which warrant further investigation.

  15. Novel signature fatty acid profile of the giant manta ray suggests reliance on an uncharacterised mesopelagic food source low in polyunsaturated fatty acids

    PubMed Central

    Guerrero, Michel; Marshall, Andrea D.; Richardson, Anthony J.; Bennett, Mike B.; Couturier, Lydie I. E.

    2018-01-01

    Traditionally, large planktivorous elasmobranchs have been thought to predominantly feed on surface zooplankton during daytime hours. However, the recent application of molecular methods to examine long-term assimilated diets, has revealed that these species likely gain the majority from deeper or demersal sources. Signature fatty acid analysis (FA) of muscle tissue was used to examine the assimilated diet of the giant manta ray Mobula birostris, and then compared with surface zooplankton that was collected during feeding and non-feeding events at two aggregation sites off mainland Ecuador. The FA profiles of M. birostris and surface zooplankton were markedly different apart from similar proportions of arachidonic acid, which suggests daytime surface zooplankton may comprise a small amount of dietary intake for M. birostris. The FA profile of M. birostris muscle was found to be depleted in polyunsaturated fatty acids, and instead comprised high proportions of 18:1ω9 isomers. While 18:1ω9 isomers are not explicitly considered dietary FAs, they are commonly found in high proportions in deep-sea organisms, including elasmobranch species. Overall, the FA profile of M. birostris suggests a diet that is mesopelagic in origin, but many mesopelagic zooplankton species also vertically migrate, staying deep during the day and moving to shallower waters at night. Here, signature FA analysis is unable to resolve the depth at which these putative dietary items were consumed and how availability of this prey may drive distribution and movements of this large filter-feeder. PMID:29329295

  16. Novel signature fatty acid profile of the giant manta ray suggests reliance on an uncharacterised mesopelagic food source low in polyunsaturated fatty acids.

    PubMed

    Burgess, Katherine B; Guerrero, Michel; Marshall, Andrea D; Richardson, Anthony J; Bennett, Mike B; Couturier, Lydie I E

    2018-01-01

    Traditionally, large planktivorous elasmobranchs have been thought to predominantly feed on surface zooplankton during daytime hours. However, the recent application of molecular methods to examine long-term assimilated diets, has revealed that these species likely gain the majority from deeper or demersal sources. Signature fatty acid analysis (FA) of muscle tissue was used to examine the assimilated diet of the giant manta ray Mobula birostris, and then compared with surface zooplankton that was collected during feeding and non-feeding events at two aggregation sites off mainland Ecuador. The FA profiles of M. birostris and surface zooplankton were markedly different apart from similar proportions of arachidonic acid, which suggests daytime surface zooplankton may comprise a small amount of dietary intake for M. birostris. The FA profile of M. birostris muscle was found to be depleted in polyunsaturated fatty acids, and instead comprised high proportions of 18:1ω9 isomers. While 18:1ω9 isomers are not explicitly considered dietary FAs, they are commonly found in high proportions in deep-sea organisms, including elasmobranch species. Overall, the FA profile of M. birostris suggests a diet that is mesopelagic in origin, but many mesopelagic zooplankton species also vertically migrate, staying deep during the day and moving to shallower waters at night. Here, signature FA analysis is unable to resolve the depth at which these putative dietary items were consumed and how availability of this prey may drive distribution and movements of this large filter-feeder.

  17. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease.

    PubMed

    Sullivan, E Madison; Pennington, Edward Ross; Green, William D; Beck, Melinda A; Brown, David A; Shaikh, Saame Raza

    2018-05-01

    Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.

  18. Short-chain fatty acid sensing in rat duodenum

    PubMed Central

    Akiba, Yasutada; Inoue, Takuya; Kaji, Izumi; Higashiyama, Masaaki; Narimatsu, Kazuyuki; Iwamoto, Ken-ichi; Watanabe, Masahiko; Guth, Paul H; Engel, Eli; Kuwahara, Atsukazu; Kaunitz, Jonathan D

    2015-01-01

    Intraduodenal fatty acids (FA) and bacterial overgrowth, which generate short-chain FAs (SCFAs), have been implicated in the generation of functional dyspepsia symptoms. We studied the mechanisms by which luminal SCFA perfusion affects duodenal HCO3− secretion (DBS), a measure of mucosal neurohumoral activation. Free fatty acid receptor (FFAR) 1 (FFA1), which binds long-chain FA (LCFA), and SCFA receptors FFA2 and FFA3 were immunolocalised to duodenal enteroendocrine cells. FFA3 colocalised with glucagon-like peptide (GLP)-1, whereas FFA2 colocalised with 5-HT. Luminal perfusion of the SCFA acetate or propionate increased DBS, enhanced by dipeptidyl peptidase-IV (DPPIV) inhibition, at the same time as increasing GLP-2 portal blood concentrations. Acetate-induced DBS was partially inhibited by monocarboxylate/HCO3− exchanger inhibition without affecting GLP-2 release, implicating acetate absorption in the partial mediation of DBS. A selective FFA2 agonist dose-dependently increased DBS, unaffected by DPPIV inhibition or by cholecystokinin or 5-HT3 receptor antagonists, but was inhibited by atropine and a 5-HT4 antagonist. By contrast, a selective FFA1 agonist increased DBS accompanied by GLP-2 release, enhanced by DPPIV inhibition and inhibited by a GLP-2 receptor antagonist. Activation of FFA1 by LCFA and presumably FFA3 by SCFA increased DBS via GLP-2 release, whereas FFA2 activation stimulated DBS via muscarinic and 5-HT4 receptor activation. SCFA/HCO3− exchange also appears to be present in the duodenum. The presence of duodenal fatty acid sensing receptors that signal hormone release and possibly signal neural activation may be implicated in the pathogenesis of functional dyspepsia. PMID:25433076

  19. Dietary ω-3 polyunsaturated fatty acids improves learning performance of diabetic rats by regulating the neuron excitability.

    PubMed

    Yang, R-H; Wang, F; Hou, X-H; Cao, Z-P; Wang, B; Xu, X-N; Hu, S-J

    2012-06-14

    Previous research has demonstrated that diabetes induced learning and memory deficits. However, the mechanism of memory impairment induced by diabetes is poorly understood. Dietary fatty acids, especially polyunsaturated fatty acids (PUFA), have been shown to enhance learning and memory and prevent memory deficits in various experimental conditions. Sprague-Dawley rats were used in the present study to investigate the effect of fish oil supplementation on spatial learning and memory of streptozotocin (STZ)-induced diabetic rats with the Morris Water Maze. The excitability of CA1 pyramidal neurons and the related ionic currents was also examined. Diabetes impaired spatial learning and memory of rats. Diabetes decreased the sodium currents and increased the potassium currents, and further led to the reduction of excitability of CA1 pyramidal neurons, effects which may contribute to the behavioral deficits. Fish oil dietary supplementation decreased the transient currents and Kv4.2 expression in the hippocampus and partially improved learning performance of diabetic rats. The results of the present study suggested that sodium and potassium currents contributed to the inhibitory effect of diabetes on neuron excitability, further influencing learning and memory processing. Dietary fish oil may modulate the membrane excitability and is a possible strategy for preventing the impairments of diabetes on hippocampal function. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Primary Metabolism and Medium-Chain Fatty Acid Alterations Precede Long-Chain Fatty Acid Changes Impacting Neutral Lipid Metabolism in Response to an Anticancer Lysophosphatidylcholine Analogue in Yeast.

    PubMed

    Tambellini, Nicolas P; Zaremberg, Vanina; Krishnaiah, Saikumari; Turner, Raymond J; Weljie, Aalim M

    2017-10-06

    The nonmetabolizable lysophosphatidylcholine (LysoPC) analogue edelfosine is the prototype of a class of compounds being investigated for their potential as selective chemotherapeutic agents. Edelfosine targets membranes, disturbing cellular homeostasis. Is not clear at this point how membrane alterations are communicated between intracellular compartments leading to growth inhibition and eventual cell death. In the present study, a combined metabolomics/lipidomics approach for the unbiased identification of metabolic pathways altered in yeast treated with sublethal concentrations of the LysoPC analogue was employed. Mass spectrometry of polar metabolites, fatty acids, and lipidomic profiling was used to study the effects of edelfosine on yeast metabolism. Amino acid and sugar metabolism, the Krebs cycle, and fatty acid profiles were most disrupted, with polar metabolites and short-medium chain fatty acid changes preceding long and very long-chain fatty acid variations. Initial increases in metabolites such as trehalose, proline, and γ-amino butyric acid with a concomitant decrease in metabolites of the Krebs cycle, citrate and fumarate, are interpreted as a cellular attempt to offset oxidative stress in response to mitochondrial dysfunction induced by the treatment. Notably, alanine, inositol, and myristoleic acid showed a steady increase during the period analyzed (2, 4, and 6 h after treatment). Of importance was the finding that edelfosine induced significant alterations in neutral glycerolipid metabolism resulting in a significant increase in the signaling lipid diacylglycerol.

  1. Engineering E. coli strain for conversion of short chain fatty acids to bioalcohols

    PubMed Central

    2013-01-01

    Background Recent progress in production of various biofuel precursors and molecules, such as fatty acids, alcohols and alka(e)nes, is a significant step forward for replacing the fossil fuels with renewable fuels. A two-step process, where fatty acids from sugars are produced in the first step and then converted to corresponding biofuel molecules in the second step, seems more viable and attractive at this stage. We have engineered an Escherichia coli strain to take care of the second step for converting short chain fatty acids into corresponding alcohols by using butyrate kinase (Buk), phosphotransbutyrylase (Ptb) and aldehyde/alcohol dehydrogenase (AdhE2) from Clostridium acetobutylicum. Results The engineered E. coli was able to convert butyric acid and other short chain fatty acids of chain length C3 to C7 into corresponding alcohols and the efficiency of conversion varied with different E. coli strain type. Glycerol proved to be a better donor of ATP and electron as compared to glucose for converting butyric acid to butanol. The engineered E. coli was able to tolerate up to 100 mM butyric acid and produced butanol with the conversion rate close to 100% under anaerobic condition. Deletion of native genes, such as fumarate reductase (frdA) and alcohol dehydrogenase (adhE), responsible for side products succinate and ethanol, which act as electron sink and could compete with butyric acid uptake, did not improve the butanol production efficiency. Indigenous acyl-CoA synthetase (fadD) was found to play no role in the conversion of butyric acid to butanol. Engineered E. coli was cultivated in a bioreactor under controlled condition where 60 mM butanol was produced within 24 h of cultivation. A continuous bioreactor with the provision of cell recycling allowed the continuous production of butanol at the average productivity of 7.6 mmol/l/h until 240 h. Conclusions E. coli engineered with the pathway from C. acetobutylicum could efficiently convert butyric acid

  2. Fiber type- and fatty acid composition-dependent effects of high-fat diets on rat muscle triacylglyceride and fatty acid transporter protein-1 content.

    PubMed

    Marotta, Mario; Ferrer-Martnez, Andreu; Parnau, Josep; Turini, Marco; Macé, Katherine; Gómez Foix, Anna M

    2004-08-01

    Intramuscular triacylglyceride (TAG) is considered an independent marker of insulin resistance in humans. Here, we examined the effect of high-fat diets, based on distinct fatty acid compositions (saturated, monounsaturated or n-6 polyunsaturated), on TAG levels and fatty acid transporter protein (FATP-1) expression in 2 rat muscles that differ in their fiber type, soleus, and gastrocnemius; the relationship to whole body glucose intolerance was also studied. Compared with carbohydrate-fed rats, the groups subjected to any one of the high-fat diets consistently exhibited enhanced body weight gain and adiposity, elevated plasma free fatty acids and TAG in the fed condition, hyperinsulinemia, and glucose intolerance. TAG content was consistently higher in soleus than in gastrocnemius, but was only significantly elevated by the n-6 polyunsaturated-based diet. FATP-1 levels in soleus were double those in gastrocnemius muscle in carbohydrate-fed animals. High-fat diets caused an elevation in FATP-1 protein content in soleus, but a reduction in gastrocnemius. In conclusion, the hyperinsulinemic hyperlipidemic condition upregulates FATP-1 expression in soleus and downregulates that of gastrocnemius. Hypercaloric saturated, monounsaturated, or n-6 polyunsaturated lipid diets cause equivalent whole body insulin resistance in rats, but only an n-6 polyunsaturated acid-based diet triggers intramuscular TAG accumulation. Copyright 2004 Elsevier Inc.

  3. Food frequency questionnaire as an indicator of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids in early pregnancy, according to body mass index.

    PubMed

    Lepsch, J; Vaz, J S; Moreira, J D; Pinto, T J P; Soares-Mota, M; Kac, G

    2015-02-01

    We investigated whether food frequency questionnaire (FFQ) may be indicative of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids (PUFAs) in early pregnancy and if correlations are affected by body mass index (BMI). The present study comprised a prospective cohort conducted in Rio de Janeiro, Brazil. The sample was composed of 248 women, aged 20-40 years, between 6 and the 13 weeks of gestation. Dietary intake was assessed using a validated FFQ. Fatty acid serum compositions were determined in fasting serum samples, employing a high-throughput robotic direct methylation coupled with fast gas-liquid chromatography. Spearman's correlation (r(s)) was used to assess the relationship between fatty acid intake and corresponding serum composition. Women were classified according to BMI (kg m(-2) ) as underweight/normal weight (BMI < 25 kg m(-2) ; n = 139) or excessive weight (BMI ≥ 25 kg m(-2) ; n = 109). In the total sample, dietary report was significantly correlated with the serum composition of total polyunsaturated fatty acid (PUFA; r(s) = 0.232, P < 0.001), linoleic acid (LA; 18:2n-6; r(s) = 0.271, P < 0.001), eicosapentaenoic acid (EPA; 20:5n-3; r(s) = 0.263, P < 0.001) and docosahexaenoic acid (DHA; 22:6n-3; r(s) = 0.209, P = 0.001). When analyses were stratified by BMI, significant correlations between FFQ and serum composition among underweight/normal weight women were observed for total PUFA (r(s) = 0.323, P < 0.001), LA (r(s) = 0.322, P < 0.001), EPA (r(s) = 0.352, P < 0.001) and DHA (r(s) = 0.176, P = 0.039). Among women of excessive weight, significant correlations were observed only for alpha linolenic acid (ALA; 18:3n-3; r(s) = 0.199, P = 0.040) and DHA (r(s) = 0.236, P = 0.014). FFQ in early pregnancy may be used as a possible indicator of serum concentrations of fatty acids. Higher correlations were observed among underweight/normal weight women. © 2014 The British Dietetic Association Ltd.

  4. Fatty acid profile of maternal and fetal erythrocytes and placental expression of fatty acid transport proteins in normal and intrauterine growth restriction pregnancies.

    PubMed

    Assumpção, Renata P; Mucci, Daniela B; Fonseca, Fernanda C P; Marcondes, Henrique; Sardinha, Fátima L C; Citelli, Marta; Tavares do Carmo, Maria G

    2017-10-01

    Long-chain polyunsaturated fatty acids (LC-PUFA), mainly docosahexaenoic (DHA) and arachidonic acids (AA), are critical for adequate fetal growth and development. We investigated mRNA expression of proteins involved in hydrolysis, uptake and/or transport of fatty acids in placenta of fifteen full term normal pregnancies and eleven pregnancies complicated by intrauterine growth restriction (IUGR) with normal umbilical blood flows. The mRNA expression of LPL, FATPs (-1, -2 and -4) and FABPs (-1 and -3) was increased in IUGR placentas, however, tissue profile of LC-PUFA was not different between groups. Erythrocytes from both mothers and fetuses of the IUGR group showed lower concentrations of AA and DHA and inferior DHA/ALA ratio compared to normal pregnancies (P < 0.05). We hypothesize that reduced circulating levels of AA and DHA could up-regulate mRNA expression of placental fatty acids transporters, as a compensatory mechanism, however this failed to sustain normal LC-PUFA supply to the fetus in IUGR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acid levels in human plasma after a single dose of long-chain omega-3 PUFA.

    PubMed

    Schuchardt, Jan Philipp; Schneider, Inga; Willenberg, Ina; Yang, Jun; Hammock, Bruce D; Hahn, Andreas; Schebb, Nils Helge

    2014-06-01

    Several supplementation studies with long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) describe an increase of EPA-derived hydroxy, epoxy and dihydroxy fatty acids in blood, while changes in levels of other LC n-3 and n-6 PUFA-derived oxylipins were minor. In order to investigate the kinetics of changes in oxylipin levels in response to LC n-3 PUFA ingestion, we conducted a single dose treatment study with healthy subjects. In the present kinetic study, we compared patterns of hydroxy, epoxy and dihydroxy fatty acids in plasma of 6 healthy men before and after 6, 8, 24, and 48h of fish oil (1008mg EPA and 672mg DHA) ingestion. Levels of EPA- as well as other LC PUFA-derived hydroxy, epoxy and dihydroxy fatty acids were analyzed in plasma by LC-MS. Additionally, levels of these oxylipins were compared with their parent PUFA levels in plasma phospholipids. All EPA-derived oxylipin levels were significantly increased 6h after LC n-3 PUFA ingestion and gradually drop thereafter reaching the baseline levels about 48h after treatment. The relative increase in EPA plasma phospholipid levels highly correlated with the increase of plasma EPA-derived oxylipin levels at different time points. In contrast, plasma levels of arachidonic acid- and DHA-derived oxylipins as well as parent PUFA levels in plasma phospholipids were hardly changed. Our findings demonstrate that a single dose of LC n-3 PUFAs can rapidly induce a shift in the EPA oxylipin profile of healthy subjects within a few hours. Taking the high biological activity of the EPA-derived epoxy fatty acids into account, even short-term treatment with LC n-3 PUFAs may cause systemic effects, which warrant further investigation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Production of Medium Chain Fatty Acids by Yarrowia lipolytica: Combining Molecular Design and TALEN to Engineer the Fatty Acid Synthase.

    PubMed

    Rigouin, Coraline; Gueroult, Marc; Croux, Christian; Dubois, Gwendoline; Borsenberger, Vinciane; Barbe, Sophie; Marty, Alain; Daboussi, Fayza; André, Isabelle; Bordes, Florence

    2017-10-20

    Yarrowia lipolytica is a promising organism for the production of lipids of biotechnological interest and particularly for biofuel. In this study, we engineered the key enzyme involved in lipid biosynthesis, the giant multifunctional fatty acid synthase (FAS), to shorten chain length of the synthesized fatty acids. Taking as starting point that the ketoacyl synthase (KS) domain of Yarrowia lipolytica FAS is directly involved in chain length specificity, we used molecular modeling to investigate molecular recognition of palmitic acid (C16 fatty acid) by the KS. This enabled to point out the key role of an isoleucine residue, I1220, from the fatty acid binding site, which could be targeted by mutagenesis. To address this challenge, TALEN (transcription activator-like effector nucleases)-based genome editing technology was applied for the first time to Yarrowia lipolytica and proved to be very efficient for inducing targeted genome modifications. Among the generated FAS mutants, those having a bulky aromatic amino acid residue in place of the native isoleucine at position 1220 led to a significant increase of myristic acid (C14) production compared to parental wild-type KS. Particularly, the best performing mutant, I1220W, accumulates C14 at a level of 11.6% total fatty acids. Overall, this work illustrates how a combination of molecular modeling and genome-editing technology can offer novel opportunities to rationally engineer complex systems for synthetic biology.

  7. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation

    USDA-ARS?s Scientific Manuscript database

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been repor...

  8. Influence of pomegranate seed oil and bitter melon aqueous extract on polyunsaturated fatty acids and their lipoxygenase metabolites concentration in serum of rats.

    PubMed

    Białek, Agnieszka; Jelińska, Małgorzata; Tokarz, Andrzej; Pergół, Aleksandra; Pinkiewicz, Katarzyna

    2016-11-01

    Competition with polyunsaturated fatty acids (PUFA) and an impact on eicosanoid biosynthesis may be one of mechanisms of conjugated linolenic acids (CLnA) action. The aim of this study was to investigate the influence of diet supplementation with pomegranate seed oil, containing punicic acid (PA)-one of CLnA isomers, and an aqueous extract of dried bitter melon fruits, administered separately or together, on PUFA and their lipoxygenase metabolites' concentration in serum of rats. Percentage share of fatty acids was diversified in relation to applied supplementation. PA was only detected in serum of pomegranate seed oil supplemented group, where it was about 1%. Cis-9, trans-11 conjugated linoleic acid (rumenic acid, RA) level tended to increase in group supplemented simultaneously with both dietary supplements whereas its highest share in total fatty acids pool was detected in group receiving solely bitter melon dried fruits aqueous extract. This indicates that consumption of bitter melon tea significantly increased RA content in fatty acids pool in serum. However, pomegranate seed oil elevated procarcinogenic 12-hydroxyeicosatetraenoic acid concentration. Taking into account that pomegranate seed oil and bitter melon dried fruits are dietary supplements accessible worldwide and willingly consumed, the biological significance of this phenomenon should be further investigated. We presume, that there may be a need for some precautions concerning the simultaneous use of these products. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Improved synthesis and characterization of saturated branched-chain fatty acid isomers

    USDA-ARS?s Scientific Manuscript database

    The development of viable technologies for producing green products from renewable fats and oils is highly desirable since such materials can serve as replacements for non-renewable and poorly biodegradable petroleum-based products. Mixtures of saturated branched-chain fatty acid isomers (sbc-FAs),...

  10. Functional and Structural Benefits Induced by Omega-3 Polyunsaturated Fatty Acids During Aging

    PubMed Central

    Cutuli, Debora

    2017-01-01

    Background Omega-3 polyunsaturated fatty acids (n-3 PUFA) are structural components of the brain and are indispensable for neuronal membrane synthesis. Along with decline in cognition, decreased synaptic density and neuronal loss, normal aging is accompanied by a reduction in n-3 PUFA concentration in the brain in both humans and rodents. Recently, many clinical and experimental studies have demonstrated the importance of n-3 PUFA in counteracting neurodegeneration and age-related dysfunctions. Methods Methods: This review will focus on the neuroprotective effects of n-3 PUFA on cognitive impairment, neuroinflammation and neurodegeneration during normal aging. Multiple pathways of n-3 PUFA preventive action will be examined. Results Namely, n-3 PUFA have been shown to increase the levels of several signaling factors involved in synaptic plasticity, thus leading to the increase of dendritic spines and synapses as well as the enhancement of hippocampal neurogenesis even at old age. In elderly subjects n-3 PUFA exert anti-inflammatory effects associated with improved cognitive functions. Interestingly, growing evidence highlights n-3 PUFA efficacy in preventing the loss of both gray and white matter volume and integrity. Conclusion This review shows that n-3 PUFA are essential for a successful aging and appear as ideal cognitive enhancers to be implemented in nutritional interventions for the promotion of healthy aging. PMID:27306037

  11. Functional and Structural Benefits Induced by Omega-3 Polyunsaturated Fatty Acids During Aging.

    PubMed

    Cutuli, Debora

    2017-01-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) are structural components of the brain and are indispensable for neuronal membrane synthesis. Along with decline in cognition, decreased synaptic density and neuronal loss, normal aging is accompanied by a reduction in n-3 PUFA concentration in the brain in both humans and rodents. Recently, many clinical and experimental studies have demonstrated the importance of n-3 PUFA in counteracting neurodegeneration and agerelated dysfunctions. This review will focus on the neuroprotective effects of n-3 PUFA on cognitive impairment, neuroinflammation and neurodegeneration during normal aging. Multiple pathways of n-3 PUFA preventive action will be examined. Namely, n-3 PUFA have been shown to increase the levels of several signaling factors involved in synaptic plasticity, thus leading to the increase of dendritic spines and synapses as well as the enhancement of hippocampal neurogenesis even at old age. In elderly subjects n-3 PUFA exert anti-inflammatory effects associated with improved cognitive functions. Interestingly, growing evidence highlights n-3 PUFA efficacy in preventing the loss of both gray and white matter volume and integrity. This review shows that n-3 PUFA are essential for a successful aging and appear as ideal cognitive enhancers to be implemented in nutritional interventions for the promotion of healthy aging. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. The role of omega-3 polyunsaturated fatty acids supplementation in childhood: a review.

    PubMed

    Ciccone, Marco M; Scicchitano, Pietro; Gesualdo, Michele; Zito, Annapaola; Carbonara, Santa; Ricci, Gabriella; Cortese, Francesca; Giordano, Paola

    2013-04-01

    Dietary omega-3 polyunsaturated fatty acids (ω-3 PUFAs) benefits are not clearly defined in childhood although already well-defined in adults. Recent studies have demonstrated their positive effects on bronchial asthma, neuropsychiatric disorders and cognitive brain function in childhood. Furthermore, it has been demonstrated as a relationship between the increased incidence of childhood obesity and the role of ω-3 PUFAs in reducing the metabolic and vascular alterations induced by the fat accumulation since young age. Such relationship could be more important in prevention of future cardiovascular events. In fact, ω-3 PUFAs could improve endothelial function and structure since childhood. By considering endothelial dysfunction as a well-known early marker of atherosclerosis, its amelioration in the beginning years of individuals' life will certainly reduce the cardiovascular risk profile in adulthood. Nevertheless, their use is limited by several factors, such as the lack of studies in children and the awful taste of the products enriched with ω-3 PUFAs, although several patents have managed to overcome such defects and developed the use of these molecules. This paper is a literature study and patents analysis aiming to explore key issues regarding ω-3 PUFAs administration in childhood in order to take into account its routine intake daily. However, it is well-established that further studies are needed to endorse the promising results outlined by literature analysis.

  13. Fatty acid profile of the fat in selected smoked marine fish.

    PubMed

    Regulska-Ilow, Bozena; Ilow, Rafał; Konikowska, Klaudia; Kawicka, Anna; Rózańska, Dorota; Bochińska, Agnieszka

    2013-01-01

    Fish and marine animals fat is a source of unique long chain polyunsaturated fatty acids (LC-PUFA): eicosapentaenoic (EPA), docosahexaenoic (DHA) and dipicolinic (DPA). These compounds have a beneficial influence on blood lipid profile and they reduce the risk of cardiovascular diseases, atherosclerosis and disorders of central nervous system. The proper ratio of n-6/n-3 fatty acids in diet is necessary to maintain a balance between the effects of eicosanoids synthesized from these acids in the body. The aim of this study was the evaluation of total fat and cholesterol content and percentage of fatty acids in selected commercial smoked marine fish. The studied samples were smoked marine fish such as: halibut, mackerel, bloater and sprat. The percentage total fat content in edible muscles was evaluated via the Folch modified method. The fat was extracted via the Bligh-Dyer modified method. The enzymatic hydrolysis was used to assesses cholesterol content in samples. The content of fatty acids, expressed as methyl esters, was evaluated with gas chromatography. The average content of total fat in 100 g of fillet of halibut, mackerel, bloater and sprat amounted respectively to: 14.5 g, 25.7 g, 13.9 g and 13.9 g. The average content of cholesterol in 100 g of halibut, mackerel, bloater and sprat was respectively: 54.5 mg, 51.5 mg, 57.5 mg and 130.9 mg. The amount of saturated fatty acids (SFA) was about 1/4 of total fatty acids in the analyzed samples. The oleic acid (C18:1 n-9) was the major compound among monounsaturated fatty acids (MUFA) and amounted to 44% of these fatty acids. The percentage of polyunsaturated fatty acids (PUFA) in halibut, mackerel, bloater and sprat was respectively: 31.9%, 45.4%, 40.8% and 37.0%. The percentage of n-3 PUFA in mackerel and bloater was 30.1% and 30.2%, while in halibut and sprat was lower and amounted to 22.5% and 25.6%, respectively. In terms of nutritional magnitude the meat of mackerel and herring, compared to the meat of

  14. Balancing the benefits of n-3 polyunsaturated fatty acids and the risks of methylmercury exposure from fish consumption

    PubMed Central

    Mahaffey, Kathryn R; Sunderland, Elsie M; Chan, Hing Man; Choi, Anna L; Grandjean, Philippe; Mariën, Koenraad; Oken, Emily; Sakamoto, Mineshi; Schoeny, Rita; Weihe, Pál; Yan, Chong-Huai; Yasutake, Akira

    2011-01-01

    Fish and shellfish are widely available foods that provide important nutrients, particularly n-3 polyunsaturated fatty acids (n-3 PUFAs), to many populations globally. These nutrients, especially docosahexaenoic acid, confer benefits to brain and visual system development in infants and reduce risks of certain forms of heart disease in adults. However, fish and shellfish can also be a major source of methylmercury (MeHg), a known neurotoxicant that is particularly harmful to fetal brain development. This review documents the latest knowledge on the risks and benefits of seafood consumption for perinatal development of infants. It is possible to choose fish species that are both high in n-3 PUFAs and low in MeHg. A framework for providing dietary advice for women of childbearing age on how to maximize the dietary intake of n-3 PUFAs while minimizing MeHg exposures is suggested. PMID:21884130

  15. Age-related changes of n-3 and n-6 polyunsaturated fatty acids in the anterior cingulate cortex of individuals with major depressive disorder.

    PubMed

    Conklin, Sarah M; Runyan, Caroline A; Leonard, Sherry; Reddy, Ravinder D; Muldoon, Matthew F; Yao, Jeffrey K

    2010-01-01

    Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Delta5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships. Published by Elsevier Ltd.

  16. Omega-3 polyunsaturated fatty acids selectively inhibit growth in neoplastic oral keratinocytes by differentially activating ERK1/2

    PubMed Central

    Parkinson, Eric Kenneth

    2013-01-01

    The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)—eicosapentaenoic acid (EPA) and its metabolite docosahexaenoic acid (DHA)—inhibit cancer formation in vivo, but their mechanism of action is unclear. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more than the growth of normal counterparts by a combination of cell cycle arrest and apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt. Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and activated more c-jun N-terminal kinase than EPA, potentially explaining its increased toxicity to normal keratinocytes. Our results show that, in part, EPA specifically inhibits SCC growth and development by creating a sustained signalling imbalance to amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level, supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may have potential as a biomarker of n-3 PUFA function in vivo. PMID:23892603

  17. Relationship of the Reported Intakes of Fat and Fatty Acids to Body Weight in US Adults

    PubMed Central

    Raatz, Susan K; Conrad, Zach; Johnson, LuAnn K; Picklo, Matthew J; Jahns, Lisa

    2017-01-01

    Dietary fat composition may modulate energy expenditure and body weight. Little is known about the relationship between fatty acid intake and body weight at a population level. The purposes of this study were to compare intakes of energy, macronutrients, and individual fatty acids across BMI categories (1) for the US adult population and, (2) by sociodemographic groups. Reported dietary intake data from the National Health and Nutrition Examination Survey (NHANES) and What We Eat in America (WWEIA) surveys in the years 2005–2012 were analyzed. Overall, we found that the reported intake of carbohydrate, protein, total fat, total saturated fat (as well as long-chain saturated fatty acids 14:0–18:0), and monounsaturated fatty acids (MUFAs) were positively associated with BMI; while lauric acid (a medium-chain saturated fatty acid, 12:0) and total polyunsaturated fatty acids (PUFAs) (as well as all individual PUFAs) were not associated with BMI. Non-Hispanic black individuals demonstrated a negative association between BMI and energy intake and a positive association between total PUFAs, linoleic acid (LA), α-linolenic acid (ALA) and BMI. Individuals with less than a high school education showed a negative association between BMI and DHA. Mexican-Americans reported intakes with no association between BMI and energy, any macronutrient, or individual fatty acids. These findings support those of experimental studies demonstrating fatty acid-dependent associations between dietary fatty acid composition and body weight. Notably, we observed divergent results for some sociodemographic groups which warrant further investigation. PMID:28452961

  18. The association between polyunsaturated fatty acids and depression among Iranian postgraduate students in Malaysia.

    PubMed

    Yary, Teymoor; Aazami, Sanaz

    2011-08-24

    The incidence of depression is expected to increase over the next 20 years, and many people will have to deal with it. It has been reported that up to 40% of university students experience levels of depression. Several negative consequences are associated with depression symptoms, such as memory impairment, suicide, and substance abuse. Recently, researchers have been studying possible associations between depression and polyunsaturated fatty acids (PUFAs), which may modify depression symptoms. The aim of the present study was to find an association between PUFA levels and depression among Iranian postgraduate students in Malaysia. This cross-sectional study was conducted in 2011 with 402 Iranian postgraduate students who were studying in Malaysia. The participants included 173 (43%) women and 229 (57%) men, and the mean age of the participants was 32.54 ± 6.22 years. After adjustment for several potential confounders including sex, age, BMI, PUFAs, MUFAs, and SFAs, monthly expenses, close friends, living in campus, smoking, education, and marital status in a logistic regression model, an inverse relationship was found between depression symptoms and the dietary intake of PUFAs. We found an inverse association between PUFA intake and depression symptoms in Iranian postgraduate students in Malaysia. We, therefore, concluded that long-term intake of PUFAs may modify or prevent depression symptoms.

  19. Short chain fatty acid production and glucose responses by methane producers

    USDA-ARS?s Scientific Manuscript database

    Fermentation by gut microbiota has been linked to physiologic responses in the host. Methanogenic gut bacteria may remove more carbon from indigestible food matrices especially poorly digested carbohydrates. We sought to assess the effects of methane production on short chain fatty acid (SCFA) con...

  20. The effects of antioxidants on the content of polyunsaturated fatty acids in the hen's egg.

    PubMed

    Kassab, A; Abrams, J T; Sainsbury, D W

    1979-01-01

    In experiments to see whether, in the possible interests of human health, the polyunsaturated fatty acid (PUFA) content of the chicken's egg can be increased by nutritional means, three strains of hen, light, medium, and heavy, each at the peak of lay, were first fed a basal, commercial, low-fat diet. The hens were then transferred to one of the following diets: basal + safflower oil (SO); basal + SO + butylated hydroxytoluene; or basal + SO + dl-a-toco-pheryl acetate. The diets were designated "Blank", "BHT", and "Vitamin E", respectively, the second and third containing the added antioxidants. The eggs produced were weighed, and their yolks weighed and analysed for lipid components. Additional of SO (7.5%) to the basal diet led to the PUFA content of the yolk lipids rising by 15.4% (linoleic acid, 14.1%), the magnitude of the increases being unaffected by the antioxidants. Diet "BHT" produced larger eggs and yolks than the other diets, but the proportion of yolk was the same on the three types of feed. The total cholesterol content of egg yolks was significantly affected neither by diet, nor by strain or age of hen. The implications of these results are discussed.

  1. Intake levels of dietary polyunsaturated fatty acids modify the association between the genetic variation in PCSK5 and HDL cholesterol.

    PubMed

    Jang, Han Byul; Hwang, Joo-Yeon; Park, Ji Eun; Oh, Ji Hee; Ahn, YounJhin; Kang, Jae-Heon; Park, Kyung-Hee; Han, Bok-Ghee; Kim, Bong Jo; Park, Sang Ick; Lee, Hye-Ja

    2014-12-01

    A low serum level of high-density lipoprotein cholesterol (HDL-C) is a risk factor for cardiovascular disease. Proprotein convertase subtilisin/kexin type 5 (PCSK5) modulates HDL-C metabolism through the inactivation of endothelial lipase activity. Therefore, we analysed the effects of PCSK5 on HDL-C and investigated the association between genetic variation in PCSK5 and dietary polyunsaturated fatty acids (PUFAs) intakes in Korean adults and children. This population-based study which was conducted in South Korea included 4205 adults (43% male) aged 40-69 years and 1548 children (48.6% boys) aged 8-13 years. Dietary intake was assessed using a semiquantitative food frequency questionnaire in adults and modified 3-day food records in children. After adjustments for age and body mass index, we identified a significant association between SNP rs1029035 of the PCSK5 gene and HDL-C concentrations specifically for men in both populations (adults, p=0.004; children, p=0.003; meta, p=7×10(-4)). Additionally, the interaction between the PCSK5 rs1029035 genotype and dietary polyunsaturated fatty acids intake influenced serum HDL-C concentrations in men (adults, p=0.001; children, p=0.008). The deleterious effect of the C allele on serum HDL-C was present only when dietary PUFA intake was less than the dichotomised median level (adults, p=0.011; children, p=0.001). Serum HDL-C concentrations were decreased in men with the C allele genotype and low consumption of dietary PUFA including n-3 and n-6. According to these results, men carrying of the C allele were associated with low HDL-C concentrations and might exert beneficial effects on HDL-C concentrations following consumption of a high-PUFA diet. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Medium-chain fatty acids as ligands for orphan G protein-coupled receptor GPR84.

    PubMed

    Wang, Jinghong; Wu, Xiaosu; Simonavicius, Nicole; Tian, Hui; Ling, Lei

    2006-11-10

    Free fatty acids (FFAs) play important physiological roles in many tissues as an energy source and as signaling molecules in various cellular processes. Elevated levels of circulating FFAs are associated with obesity, dyslipidemia, and diabetes. Here we show that GPR84, a previously orphan G protein-coupled receptor, functions as a receptor for medium-chain FFAs with carbon chain lengths of 9-14. Medium-chain FFAs elicit calcium mobilization, inhibit 3',5'-cyclic AMP production, and stimulate [35S]guanosine 5'-O-(3-thiotriphosphate) binding in a GPR84-dependent manner. The activation of GPR84 by medium-chain FFAs couples primarily to a pertussis toxin-sensitive G(i/o) pathway. In addition, we show that GPR84 is selectively expressed in leukocytes and markedly induced in monocytes/macrophages upon activation by lipopolysaccharide. Furthermore, we demonstrate that medium-chain FFAs amplify lipopolysaccharide-stimulated production of the proinflammatory cytokine interleukin-12 p40 through GPR84. Our results indicate a role for GPR84 in directly linking fatty acid metabolism to immunological regulation.

  3. In vivo effects of polyunsaturated, monounsaturated, and saturated fatty acids on hepatic and peripheral insulin sensitivity.

    PubMed

    Pereira, Sandra; Breen, Danna M; Naassan, Anthony E; Wang, Penny Y T; Uchino, Hiroshi; Fantus, I George; Carpentier, André C; Gutierrez-Juarez, Roger; Brindley, David N; Lam, Tony K T; Giacca, Adria

    2015-02-01

    Free fatty acids (FFAs) cause insulin resistance and are often elevated in obesity. Chronic ingestion of diets rich in saturated fat induces more insulin resistance than diets rich in unsaturated fat, however, it remains unclear whether different FFAs cause distinct levels of insulin resistance in the short-term, which is relevant to the feeding and fasting cycle. Protein kinase C (PKC)-δ is implicated in hepatic insulin resistance. Therefore, we investigated the effects of short-term elevation of fatty acids with different degrees of unsaturation on hepatic insulin action and liver PKC-δ membrane translocation, a marker of activation. Triglyceride emulsions of Soybean Oil+Heparin (polyunsaturated (POLY)), Olive Oil+Heparin (monounsaturated (MONO)), Lard Oil+Heparin (saturated (SATU)), or saline (SAL) were infused intravenously for 7h to elevate plasma FFA concentrations ~3-4 fold in rats. During the last 2h of infusion, a hyperinsulinemic-euglycemic clamp with tritiated glucose methodology was performed to examine hepatic and peripheral insulin sensitivity. Surprisingly, SATU, MONO, and POLY impaired peripheral insulin sensitivity (glucose utilization divided by insulin) to a similar extent. Furthermore, all lipids induced a similar degree of hepatic insulin resistance compared to SAL. Although there were changes in hepatic content of lipid metabolites, there were no significant differences in liver PKC-δ membrane translocation across fat groups. In summary, in the short-term, FFAs with different degrees of unsaturation impair peripheral insulin sensitivity and induce hepatic insulin resistance as well as hepatic PKC-δ translocation to the same extent. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A novel regulatory system in plants involving medium-chain fatty acids.

    PubMed

    Hunzicker, Gretel Mara

    2009-12-01

    Polyethylene glycol sorbitan monoacylates (Tween) are detergents of widespread use in plant sciences. However, little is known about the plant response to these compounds. Interestingly, the structure of Tweens' detergents (especially from Tween 20) resembles the lipid A structure from gram-negative bacteria polysaccharides (a backbone with short saturated fatty acids). Thus, different assays (microarray, GC-MS, RT-PCR, Northern blots, alkalinization and mutant analyses) were conducted in order to elucidate physiological changes in the plant response to Tween 20 detergent. Tween 20 causes a rapid and complex change in transcript abundance which bears all characteristics of a pathogenesis-associated molecular pattern (PAMP)/elicitor-induced defense response, and they do so at concentrations which cause no detectable deleterious effects on plant cellular integrity. In the present work, it is shown that the PAMP/elicitor-induced defense responses are caused by medium-chain fatty acids which are efficiently released from the Tween backbone by the plant, notably lauric acid (12:0) and methyl lauric acid. These compounds induce the production of ethylene, medium alkalinization and gene activation in a jasmonate-independent manner. Medium-chain fatty acids are thus novel elicitors/regulators of plant pathogen defense as they have being proved in animals.

  5. Effects of fatty acid oxidation products (green odor) on rumen bacterial populations and lipid metabolism in vitro.

    PubMed

    Lee, M R F; Huws, S A; Scollan, N D; Dewhurst, R J

    2007-08-01

    This study investigated the effects of green odor fatty acid oxidation products (FAOP) from cut grass on lipid metabolism and microbial ecology using in vitro incubations of rumen microorganisms. These compounds have antimicrobial roles in plant defense, and we hypothesized that they may influence rumen lipid metabolism. Further, they may partially explain the higher levels of conjugated linoleic acid cis-9, trans-11 in milk from cows grazing pasture. The first of 2 batch culture experiments screened 6 FAOP (1 hydroperoxide, 3 aldehydes, 1 ketone, and 1 alcohol) for effects on lipid profile, and in particular C(18) polyunsaturated fatty acid biohydrogenation. Experiment 2 used the most potent FAOP to determine effects of varying concentrations and identify relationships with effects on microbial ecology. Batch cultures contained anaerobic buffer, rumen liquor, and FAOP to a final concentration of 100 microM for experiment 1. Triplicates for each compound and controls (water addition) were incubated at 39 degrees C for 6 h. The hydroperoxide (1,2-dimethylethyl hydroperoxide, 1,2-DMEH) and the long chain aldehyde (trans-2 decenal) had the largest effects on lipid metabolism with significant increases in C(18:0) and C(18:1) trans and reductions in C(12:0), C(14:0), C(16:0), C(18:1) cis, C(18:2n-6), C(18:3n-3), C(20:0) and total branch and odd chain fatty acids compared with the control. This was associated with significantly higher biohydrogenation of C(18) polyunsaturated fatty acid. In experiment 2, 1,2-DMEH was incubated at 50, 100, and 200 microM for 2, 6, and 24 h. Increasing 1,2-DMEH concentration resulted in a significant linear increase in C(18:1) trans-10, trans-11, conjugated linoleic acid, and C(18:0) and a linear decrease in C(18:2n-6) and C(18:3n-3), although the scale of this response declined with time. Microbial profiling techniques showed that 1,2-DMEH at concentrations of 100 and 200 microM changed the microbial community from as early as 2 h after

  6. [Fatty acids composition of the marine snails Phyllonotus pomum and Chicoreus brevifrons (Muricidae)].

    PubMed

    D'Armas, Haydelba; Yáñez, Dayanis; Reyes, Dilia; Salazar, Gabriel

    2010-06-01

    Muricid species of P. pomum and C. brevifrons are of economic importance in the Caribbean. This study includes a comparative evaluation of fatty acid content in the total lipid composition of Phyllonotus pomum and Chicoreus brevifrons. Snail samples were collected during the rainy, dry and transition seasons, in Punta Arena, Sucre (Venezuela). Total lipids were extracted and the specific fatty acid contents were analyzed by gas chromatography. Lipid concentrations varied between 0.87 and 1.85%, with minimum and maximum values corresponding to C. brevifrons collected during rainy and dry seasons, respectively. In the case of total lipids, a high concentration of unsaturated fatty acids (57.21-70.05%) was observed followed by saturated fatty acids (20.33-31.94%), during all seasons. The polyunsaturated occurred in higher proportion among the unsaturated fatty acids, except for P. pomum which showed higher proportion of monounsaturated fatty acids (38.95%) during the transition season. The prevailing fatty acids were: C14:0, C16:0, C18:0, C20:1, C22:1 omega-11, C22:1 omega-9, C18:3 omega-3, C20:5 omega-3 and C22:6 omega-3, among which docosahexaenoic acid was the predominant polyunsaturated fatty acid, showing values between 4.62 and 33.11%. The presence of high concentrations of polyunsaturated fatty acids found in P. Pomum and C. brevifrons allow their recommendation for human consumption with appropriate resource utilization.

  7. Maternal prenatal and/or postnatal n-3 long chain polyunsaturated fatty acids (LCPUFA) supplementation for preventing allergies in early childhood.

    PubMed

    Gunaratne, Anoja W; Makrides, Maria; Collins, Carmel T

    2015-07-22

    Allergies have become more prevalent globally over the last 20 years. Dietary consumption of n-3 (or omega 3) long chain polyunsaturated fatty acids (LCPUFA) has declined over the same period of time. This, together with the known role of n-3 LCPUFA in inhibiting inflammation, has resulted in speculation that n-3 LCPUFA may prevent allergy development. Dietary n-3 fatty acids supplements may change the developing immune system of the newborn before allergic responses are established, particularly for those with a genetic predisposition to the production of the immunoglobulin E (IgE) antibody. Individuals with IgE-mediated allergies have both the signs and symptoms of the allergic disease and a positive skin prick test (SPT) to the allergen. To assess the effect of n-3 LCPUFA supplementation in pregnant and/or breastfeeding women on allergy outcomes (food allergy, atopic dermatitis (eczema), allergic rhinitis (hay fever) and asthma/wheeze) in their children. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (6 August 2014), PubMed (1966 to 01 August 2014), CINAHL via EBSCOhost (1984 to 01 August 2014), Scopus (1995 to 01 August 2014), Web of Knowledge (1864 to 01 August 2014) and ClinicalTrials.gov (01 August 2014) and reference lists of retrieved studies. We included randomised controlled trials (RCTs) evaluating the effect of n-3 LCPUFA supplementation of pregnant and/or lactating women (compared with placebo or no treatment) on allergy outcomes of the infants or children. Trials using a cross-over design and trials examining biochemical outcomes only were not eligible for inclusion. Two review authors independently assessed eligibility and trial quality and performed data extraction. Where the review authors were also investigators on trials selected, an independent reviewer assessed trial quality and performed data extraction. Eight trials involving 3366 women and their 3175 children were included in the review. In these trials, women

  8. Medium-chain triglycerides and monounsaturated fatty acids potentiate the beneficial effects of fish oil on selected cardiovascular risk factors in rats.

    PubMed

    Kondreddy, Vijay Kumar Reddy; Anikisetty, Maheswaraiah; Naidu, Kamatham Akhilender

    2016-02-01

    Fish oil (FO) rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is known to reduce the risk of cardiovascular diseases (CVDs). Little information is known regarding the influence of lipid composition in the background diet on the modulatory effect of FO supplementation on CVDs. The present study was designed to investigate the influence of various background dietary lipids and FO on selected cardiovascular risk factors in rats. Adult Wistar rats were fed semisynthetic diet with FO at 1.0% or 2.0% along with other lipids, namely, medium-chain triacylglycerols (MCTs), monounsaturated fatty acids (MUFAs), n-6 polyunsaturated fatty acids (PUFAs) and n-3 PUFAs, for 5 weeks. Some of the potent CVD risk factors were estimated in the rats. FO at 1.0% and 2.0% has significantly reduced serum lipid peroxides, total cholesterol, triglycerides (TAGs), tumor necrosis factor-α, interleukin-6 and C-reactive protein; liver and adipose TAG and cholesterol levels in MCT, MUFA and n-6 PUFA diet groups. Notably, these alterations were comparatively higher in 1.0% FO-substituted MCT and MUFA diet groups. Interestingly, feeding of FO along with n-3 PUFAs did not show additive effect in attenuation of these factors. Serum liver EPA and DHA levels were remarkably elevated in rats fed FO-enriched MCT or MUFA diets. Our results suggest that MCTs or MUFAs in the background diet might promote the beneficial effects of FO on CVDs. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Effects of different cooking methods on fatty acid profiles in four freshwater fishes from the Laurentian Great Lakes region.

    PubMed

    Neff, Margaret R; Bhavsar, Satyendra P; Braekevelt, Eric; Arts, Michael T

    2014-12-01

    Fish is often promoted as a healthy part of the human diet due its high content of long chain n-3 polyunsaturated fatty acids (LC-PUFA). Previous studies have shown that cooked fish can have different fatty acid profiles than raw fillets, depending on the cooking method and fish species. In this study, the fatty acid content of broiled, baked or fried skinless, boneless fillets of four fish species from the tributaries of the Great Lakes, or connecting rivers, was compared to fatty acid profiles in raw sections from the same fillet. Cooking treatments had little effect on n-3 fatty acid content; however, fried treatments generally had higher n-6 and MUFA content, which is likely a result of the cooking oil used (canola). Broiling or baking is generally the most healthy option presented in this study, as these methods result in lower levels of less-favourable fatty acids; however, the choice of cooking oil may also influence the overall fatty acid content in cooked fish. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  10. Metabolic Engineering for Enhanced Medium Chain Omega Hydroxy Fatty Acid Production in Escherichia coli

    PubMed Central

    Xiao, Kang; Yue, Xiu-Hong; Chen, Wen-Chao; Zhou, Xue-Rong; Wang, Lian; Xu, Lin; Huang, Feng-Hong; Wan, Xia

    2018-01-01

    Medium chain hydroxy fatty acids (HFAs) at ω-1, 2, or 3 positions (ω-1/2/3) are rare in nature but are attractive due to their potential applications in industry. They can be metabolically engineered in Escherichia coli, however, the current yield is low. In this study, metabolic engineering with P450BM3 monooxygenase was applied to regulate both the chain length and sub-terminal position of HFA products in E. coli, leading to increased yield. Five acyl-acyl carrier protein thioesterases from plants and bacteria were first evaluated for regulating the chain length of fatty acids. Co-expression of the selected thioesterase gene CcFatB1 with a fatty acid metabolism regulator fadR and monooxygenase P450BM3 boosted the production of HFAs especially ω-3-OH-C14:1, in both the wild type and fadD deficient strain. Supplementing renewable glycerol to reduce the usage of glucose as a carbon source further increased the HFAs production to 144 mg/L, representing the highest titer of such HFAs obtained in E. coli under the comparable conditions. This study illustrated an improved metabolic strategy for medium chain ω-1/2/3 HFAs production in E. coli. In addition, the produced HFAs were mostly secreted into culture media, which eased its recovery. PMID:29467747

  11. Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry.

    PubMed

    Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Kramer, John K G; Jahreis, Gerhard; Kuhnt, Katrin; Santercole, Viviana; Rader, Jeanne I

    2013-12-01

    The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag(+)-HPLC fractionation and GC-TOF/MS analysis in CI(+) mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.

  12. Cross-ecosystem fluxes: Export of polyunsaturated fatty acids from aquatic to terrestrial ecosystems via emerging insects.

    PubMed

    Martin-Creuzburg, Dominik; Kowarik, Carmen; Straile, Dietmar

    2017-01-15

    Cross-ecosystem fluxes can crucially influence the productivity of adjacent habitats. Emerging aquatic insects represent one important pathway through which freshwater-derived organic matter can enter terrestrial food webs. Aquatic insects may be of superior food quality for terrestrial consumers because they contain high concentrations of essential polyunsaturated fatty acids (PUFA). We quantified the export of PUFA via emerging insects from a midsize, mesotrophic lake. Insects were collected using emergence traps installed above different water depths and subjected to fatty acid analyses. Insect emergence from different depth zones and seasonal mean fatty acid concentrations in different insect groups were used to estimate PUFA fluxes. In total, 80.5mg PUFA m -2 yr -1 were exported, of which 32.8mgm -2 yr -1 were eicosapentaenoic acid (EPA), 7.8mgm -2 yr -1 were arachidonic acid (ARA), and 2.6mgm -2 yr -1 were docosahexaenoic acid (DHA). While Chironomidae contributed most to insect biomass and total PUFA export, Chaoborus flavicans contributed most to the export of EPA, ARA, and especially DHA. The export of total insect biomass from one square meter declined with depth and the timing at which 50% of total insect biomass emerged was correlated with the water depths over which the traps were installed, suggesting that insect-mediated PUFA fluxes are strongly affected by lake morphometry. Applying a conceptual model developed to assess insect deposition rates on land to our insect-mediated PUFA export data revealed an average total PUFA deposition rate of 150mgm -2 yr -1 within 100m inland from the shore. We propose that PUFA export can be reliably estimated using taxon-specific information on emergent insect biomass and seasonal mean body PUFA concentrations of adult insects provided here. Our data indicate that insect-mediated PUFA fluxes from lakes are substantial, implying that freshwater-derived PUFA can crucially influence food web processes in adjacent

  13. [Effect of pregnancy and lactation on the nutritional status of essential fatty acids in rat].

    PubMed

    Araya, J; Barriga, C

    1996-08-01

    Pregnancy and lactation could be high risk situations for the development of essential fatty acid deficiencies. To study the effect of pregnancy and lactation on red blood cell phospholipids percentual fatty acid composition of virgin, pregnant and lactating rats. Twenty four pregnant rats of 50 +/- 1 days of age were supplement with soy and 24 with fish oil during 21 days. Twelve rats of each group were sacrificed after 18 days of lactation, twenty four non pregnant rats received soy oil and acted as controls of pregnant and lactating rats. Red blood cell phospholipid fatty acid composition was analyzed by gas chromatography. The percentage of total omega-6 fatty acids of red blood cell phospholipid was 37.8 +/- 5.9, 32.6 +/- 0.6 and 38.3 +/- 3.5% in non pregnant, pregnant and lactating rats respectively (p < 0.001). The figures for total omega-3 fatty acids were 6.33 +/- 1.52, 4.31 +/- 0.39 and 2.7 +/- 0.46 respectively (p < 0.001). There was no change in eicosatrienoic fatty acid percentage. Supplementation with fish oil reverted the decrease in omega-6 and omega-3 fatty acid percentage of pregnant and lactating rats. Pregnancy and lactation decrease the capacity to transform precursors of essential fatty acids in long chain polyunsaturated fatty acids.

  14. Association between dietary intake of n-3 polyunsaturated fatty acids and severity of skin photoaging in a middle-aged Caucasian population.

    PubMed

    Latreille, Julie; Kesse-Guyot, Emmanuelle; Malvy, Denis; Andreeva, Valentina; Galan, Pilar; Tschachler, Erwin; Hercberg, Serge; Guinot, Christiane; Ezzedine, Khaled

    2013-12-01

    Intake of long-chain n-3 polyunsaturated fatty acid (PUFAs) supplementation has been reported to be associated with reduced UVB-erythemal sensitivity, but their relationship to photoaging has not been studied to date. To investigate associations between daily n-3 PUFA intake and the severity of skin photoaging. A cross-sectional study was conducted on 2919 subjects aged 45-60 years from the SU.VI.MAX cohort. At baseline, trained investigators graded the severity of facial skin photoaging using a validated 6-grade scale during a clinical examination. Intake of α-linolenic (ALA), eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosahexaenoic acids (DHA) were evaluated by dietary source using ten 24-h dietary record questionnaires during the first 2.5 years of the follow-up period. After adjustment for possible confounders, severe photoaging was found to be inversely associated with higher intake of ALA in men and with higher intake of EPA in women. When considering the different food sources of ALA for men, an inverse association appeared between severe photoaging and ALA from vegetable oils, as well as with ALA from fruit and vegetables, whereas no association was observed for ALA from dairy products. In women, ALA from vegetable oils also tended to be inversely linked to photoaging. These findings suggest a possible benefit effect of n-3 PUFAs on skin aging. Nonetheless, further epidemiological studies are necessary to confirm our results and to gain additional insights into underlying mechanisms. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Cuphea: a new plant source of medium-chain fatty acids.

    PubMed

    Graham, S A

    1989-01-01

    The plant genus Cuphea (family Lythraceae) promises to provide a new source of industrially and nutritionally important medium-chain fatty acids, especially of lauric acid now supplied exclusively by coconut and palm kernel oils from foreign sources. The seed lipids of Cuphea were first discovered in the 1960s to contain high percentages of several medium-chain fatty acids, including caprylic, capric, lauric, and myristic acid. Research is still in the early stages, but it is intensifying toward the goal of developing the genus into a new temperate climate crop for production of specialty oils. Given the diversity of Cuphea seed lipid composition and the wide ecological and distributional range of the genus, it may be possible to tailor crops to produce selected fatty acids on demand under a variety of growing conditions. Cuphea comprises about 260 species, most native to the New World tropics. Its morphology, classification, chromosome numbers, distribution, ecology, and folk uses are presented. Seed structure is described and seed lipid composition for 73 species is summarized. Problems in domestication and agronomic progress are reviewed. Knowledge of the biosynthetic mechanism controlling the lipids produced by Cuphea remains very limited. Future research in this area, and particularly successful employment of gene transfer techniques, may allow genes controlling the mechanism to be transferred to an already established seed oil producer such as rapeseed. Presently, both traditional plant breeding techniques and newer biotechnological methods are directed toward Cuphea oilseed development.

  16. Effects of Long-Chain and Medium-Chain Fatty Acids on Apoptosis and Oxidative Stress in Human Liver Cells with Steatosis.

    PubMed

    Wang, Baogui; Li, Lumin; Fu, Jing; Yu, Ping; Gong, Deming; Zeng, Cheng; Zeng, Zheling

    2016-03-01

    Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity-related metabolic complications, which caused by excess energy intake and physical inactivity apart from genetic defects. The mechanisms that promote disease progression from NAFLD to further liver injury are still unclear. We hypothesize that the progression involved "2nd hit" is strongly influenced by the type of fatty acids in diets. Flow cytometric analysis showed that medium-chain fatty acid (MCFA) markedly decreased the percentage of late apoptotic and necrotic cells compared with long-chain fatty acid (LCFA), and MCFA inhibited the activities of caspase-3 and -9 in human liver cells with steatosis. Western blot analysis found that the levels of inflammatory markers (interleukin [IL]-6, IL-1-β, and tumor necrosis factor-α) were substantially reduced by MCFA compared with LCFA. Proteomic analysis further showed that LCFA inhibited the expression of antioxidant enzymes, and increased the expression of proteins associated with oxidative stress. It was found that LCFA (palmitate), not MCFA induced apoptosis, oxidative stress and chronic inflammatory responses in the hepatic cells with steatosis. In conclusion, reasonable selection of dietary fats has potential to translate therapeutically by ameliorating disease progression in patients with NAFLD. © 2016 Institute of Food Technologists®

  17. Intake of dietary saturated fatty acids and risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort: associations by types, sources of fatty acids and substitution by macronutrients.

    PubMed

    Liu, Shengxin; van der Schouw, Yvonne T; Soedamah-Muthu, Sabita S; Spijkerman, Annemieke M W; Sluijs, Ivonne

    2018-03-09

    The association between dietary saturated fatty acids (SFA) intake and type 2 diabetes (T2D) remains unclear. This study aimed at investigating the association between SFA intake and T2D risk based on (1) individual SFA (differing in carbon chain length), (2) food sources of SFA and (3) the substituting macronutrients. 37,421 participants from the European Prospective Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) cohort were included in this study. Baseline dietary intake was assessed by a validated food frequency questionnaire. T2D risks were estimated by Cox regression models adjusted for non-dietary and dietary covariates. 893 incident T2D cases were documented during 10.1-year follow-up. We observed no association between total SFA and T2D risk. Marginally inverse associations were found for lauric acid (HR per 1 SD of energy%, 95% CI 0.92, 0.85-0.99), myristic acid (0.89, 0.79-0.99), margaric acid (0.84, 0.73-0.97), odd-chain SFA (pentadecylic plus margaric acids; 0.88, 0.79-0.99), and cheese derived SFA (0.90, 0.83-0.98). Soft and liquid fats derived SFA was found related to higher T2D risk (1.08, 1.01-1.17). When substituting SFA by proteins, carbohydrates and polyunsaturated fatty acids, significantly higher risks of T2D were observed (HRs per 1 energy% ranging from 1.05 to 1.15). In this Dutch population, total SFA does not relate to T2D risk. Rather, the association may depend on the types and food sources of SFA. Cheese-derived SFA and individual SFA that are commonly found in cheese, were significantly related to lower T2D risks. We cannot exclude the higher T2D risks found for soft and liquid fats derived SFA and for substituting SFA with other macronutrients are influenced by residual confounding by trans fatty acids or limited intake variation in polyunsaturated fatty acids and vegetable protein.

  18. Disrupted fat distribution and composition due to medium-chain triglycerides in mice with a β-oxidation defect.

    PubMed

    Tucci, Sara; Flögel, Ulrich; Sturm, Marga; Borsch, Elena; Spiekerkoetter, Ute

    2011-08-01

    Because of the enhanced recognition of inherited long-chain fatty acid oxidation disorders by worldwide newborn screening programs, an increasing number of asymptomatic patients receive medium-chain triglyceride (MCT) supplements to prevent the development of cardiomyopathy and myopathy. MCT supplementation has been recognized as a safe dietary intervention, but long-term observations into later adulthood are still not available. We investigated the consequences of a prolonged MCT diet on abdominal fat distribution and composition and on liver fat. Mice with very-long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD(-/-)) were supplemented for 1 y with a diet in which MCTs replaced long-chain triglycerides without increasing the total fat content. The dietary effects on abdominal fat accumulation and composition were analyzed by in vivo (1)H- and (13)C-magnetic resonance spectroscopy (9.4 Tesla). After 1 y of MCT supplementation, VLCAD(-/-) mice accumulated massive visceral fat and had a dramatic increase in the concentration of serum free fatty acids. Furthermore, we observed a profound shift in body triglyceride composition, ie, concentrations of physiologically important polyunsaturated fatty acids dramatically decreased. (1)H-Magnetic resonance spectroscopy analysis and histologic evaluation of the liver also showed pronounced fat accumulation and marked oxidative stress. Although the MCT-supplemented diet has been reported to prevent the development of cardiomyopathy and skeletal myopathy in fatty acid oxidation disorders, our data show that long-term MCT supplementation results in a severe clinical phenotype similar to that of nonalcoholic steatohepatitis and the metabolic syndrome.

  19. Impact of Branched-Chain Amino Acid Catabolism on Fatty Acid and Alkene Biosynthesis in Micrococcus luteus.

    PubMed

    Surger, Maximilian J; Angelov, Angel; Stier, Philipp; Übelacker, Maria; Liebl, Wolfgang

    2018-01-01

    Micrococcus luteus naturally produces alkenes, unsaturated aliphatic hydrocarbons, and represents a promising host to produce hydrocarbons as constituents of biofuels and lubricants. In this work, we identify the genes for key enzymes of the branched-chain amino acid catabolism in M. luteus , whose first metabolic steps lead also to the formation of primer molecules for branched-chain fatty acid and olefin biosynthesis, and demonstrate how these genes can be used to manipulate the production of specific olefins in this organism. We constructed mutants of several gene candidates involved in the branched-chain amino acid metabolism or its regulation and investigated the resulting changes in the cellular fatty acid and olefin profiles by GC/MS. The gene cluster encoding the components of the branched-chain α-keto acid dehydrogenase (BCKD) complex was identified by deletion and promoter exchange mutagenesis. Overexpression of the BCKD gene cluster resulted in about threefold increased olefin production whereas deletion of the cluster led to a drastic reduction in branched-chain fatty acid content and a complete loss of olefin production. The specificities of the acyl-CoA dehydrogenases of the branched amino acid degradation pathways were deduced from the fatty acid and olefin profiles of the respective deletion mutant strains. In addition, growth experiments with branched amino acids as the only nitrogen source were carried out with the mutants in order to confirm our annotations. Both the deletion mutant of the BCKD complex, responsible for the further degradation of all three branched-chain amino acids, as well as the deletion mutant of the proposed isovaleryl-CoA dehydrogenase (specific for leucine degradation) were not able to grow on leucine in contrast to the parental strain. In conclusion, our experiments allow the unambigous assignment of specific functions to the genes for key enzymes of the branched-chain amino acid metabolism of M. luteus . We also show how

  20. Dietary n-3 polyunsaturated fatty acid and status of immunocompetent cells involved in innate immunity in female rats.

    PubMed

    Sasaki, T; Kanke, Y; Kudoh, K; Nagahashi, M; Toyokawa, M; Matsuda, M; Shimizu, J; Takita, T

    2000-01-01

    The aim of this study was to estimate the contributions of dietary n-3 polyunsaturated fatty acid (PUFA), a representative dietary immunosuppressant, to the activity of both alveolar macrophages (AM) and natural killer (NK) cells, and compare them to those of n-6 PUFA. Twelve 5-week-old female Sprague-Dawley rats were divided into two dietary groups, one fed a 10% fat diet for 9 weeks enriched with n-3 PUFA (n-3 diet) and the other an n-6 PUFA (n-6 diet). AM reduced the release of nitric oxide, monocyte chemoattractant protein 1 and tumor necrosis factor alpha in the rats fed the n-3 diet, compared with rats fed the n-6 diet. NK cell activity was reduced by consumption of the n-3 diet. This study suggests that consumption of n-3 PUFA can ameliorate pulmonary inflammatory disorders which are affected by the reduction of not only proinflammatory cytokines but also chemokine released from AM. Copyright 2000 S. Karger AG, Basel