A PCR method based on 18S rRNA gene for detection of malaria parasite in Balochistan.
Shahwani, Zubeda; Aleem, Abdul; Ahmed, Nazeer; Mushtaq, Muhammad; Afridi, Sarwat
2016-12-01
To establish a polymerase chain reaction method based on 18S ribosomal ribonucleic acid gene for the detection of plasmodium deoxyribonucleic acid in patients suffering from malaria symptoms. This cross-sectional study was conducted from September 2013 to October 2014 in district Quetta of Pakistan's Balochistan province. Blood samples were collected from patients suffering from general symptoms of malaria. A polymerase chain reaction-based technique was applied for the diagnosis of malaria and detection of responsible species in the patients who were suspected to carry the parasite. Performance of this polymerase chain reaction method was compared against the microscopy results. Parasite number was also calculated for microscopy positive samples.All samples after the genomic deoxyribonucleic acid isolation were subjected to polymerase chain reaction amplification and agarose gel electrophoresis. Of the 200 samples, 114(57%) were confirmed as positive and 86(43%) as negative for malaria by microscopy. Polymerase chain reaction identified 124(62%) samples as positive and 76(38%) as negative for malaria. The comparative analysis of both diagnostic methods confirmed 109(54.5%) samples as positive by both techniques. Besides, 5(6.58%) samples were identified as false positive and 15(12.1%) samples as false negative by polymerase chain reaction. Sensitivity, specificity and positive predictive values for polymerase chain reaction in comparison to microscopy were 87.98%, 93.42% and 96%, respectively. Polymerase chain reaction-based methods in malaria diagnosis and species identification were found to be more effective than other techniques.
Cruz-Perez, Patricia; Buttner, Mark P.
2004-05-11
A method for detecting the fungus Stachybotrys chartarum includes isolating DNA from a sample suspected of containing the fungus Stachybotrys chartarum. The method further includes subjecting the DNA to polymerase chain reaction amplification utilizing at least one of several primers, the several primers each including one of the base sequences 5'GTTGCTTCGGCGGGAAC3', 5'TTTGCGTTTGCCACTCAGAG3', 5'ACCTATCGTTGCTTCGGCG3', and 5'GCGTTTGCCACTCAGAGAATACT3'. The method additionally includes detecting the fungus Stachybotrys chartarum by visualizing the product of the polymerase chain reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Hikaru; Tanaka, Keiji, E-mail: tanaka-kj@igakuken.or.jp; Saeki, Yasushi, E-mail: saeki-ys@igakuken.or.jp
2013-06-28
Highlights: •The parallel reaction monitoring method was applied to ubiquitin quantification. •The ubiquitin PRM method is highly sensitive even in biological samples. •Using the method, we revealed that Ufd4 assembles the K29-linked ubiquitin chain. -- Abstract: Ubiquitylation is an essential posttranslational protein modification that is implicated in a diverse array of cellular functions. Although cells contain eight structurally distinct types of polyubiquitin chains, detailed function of several chain types including K29-linked chains has remained largely unclear. Current mass spectrometry (MS)-based quantification methods are highly inefficient for low abundant atypical chains, such as K29- and M1-linked chains, in complex mixtures thatmore » typically contain highly abundant proteins. In this study, we applied parallel reaction monitoring (PRM), a quantitative, high-resolution MS method, to quantify ubiquitin chains. The ubiquitin PRM method allows us to quantify 100 attomole amounts of all possible ubiquitin chains in cell extracts. Furthermore, we quantified ubiquitylation levels of ubiquitin-proline-β-galactosidase (Ub-P-βgal), a historically known model substrate of the ubiquitin fusion degradation (UFD) pathway. In wild-type cells, Ub-P-βgal is modified with ubiquitin chains consisting of 21% K29- and 78% K48-linked chains. In contrast, K29-linked chains are not detected in UFD4 knockout cells, suggesting that Ufd4 assembles the K29-linked ubiquitin chain(s) on Ub-P-βgal in vivo. Thus, the ubiquitin PRM is a novel, useful, quantitative method for analyzing the highly complicated ubiquitin system.« less
USDA-ARS?s Scientific Manuscript database
Polymerase chain reaction amplification of conserved genes and sequence analysis provides a very powerful tool for the identification of toxigenic as well as non-toxigenic Penicillium species. Sequences are obtained by amplification of the gene fragment, sequencing via capillary electrophoresis of d...
Kaur, Jasmine; Sharma, Anshul; Lee, Sulhee; Park, Young-Seo
2018-06-01
Lactobacillus brevis is a part of a large family of lactic acid bacteria that are present in cheese, sauerkraut, sourdough, silage, cow manure, feces, and the intestinal tract of humans and rats. It finds its use in food fermentation, and so is considered a "generally regarded as safe" organism. L. brevis strains are extensively used as probiotics and hence, there is a need for identifying and characterizing these strains. For identification and discrimination of the bacterial species at the subspecific level, repetitive element-polymerase chain reaction method is a reliable genomic fingerprinting tool. The objective of the present study was to characterize 13 strains of L. brevis isolated from various fermented foods using repetitive element-polymerase chain reaction. Repetitive element-polymerase chain reaction was performed using three primer sets, REP, Enterobacterial Repetitive Intergenic Consensus (ERIC), and (GTG) 5 , which produced different fingerprinting patterns that enable us to distinguish between the closely related strains. Fingerprinting patterns generated band range in between 150 and 5000 bp with REP, 200-7500 bp with ERIC, and 250-2000 bp with (GTG) 5 primers, respectively. The Jaccard's dissimilarity matrices were used to obtain dendrograms by the unweighted neighbor-joining method using genetic dissimilarities based on repetitive element-polymerase chain reaction fingerprinting data. Repetitive element-polymerase chain reaction proved to be a rapid and easy method that can produce reliable results in L. brevis species.
Nested methylation-specific polymerase chain reaction cancer detection method
Belinsky, Steven A [Albuquerque, NM; Palmisano, William A [Edgewood, NM
2007-05-08
A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection of lung and other cancers.
Blood grouping based on PCR methods and agarose gel electrophoresis.
Sell, Ana Maria; Visentainer, Jeane Eliete Laguila
2015-01-01
The study of erythrocyte antigens continues to be an intense field of research, particularly after the development of molecular testing methods. More than 300 specificities have been described by the International Society for Blood Transfusion as belonging to 33 blood group systems. The polymerase chain reaction (PCR) is a central tool for red blood cells (RBC) genotyping. PCR and agarose gel electrophoresis are low cost, easy, and versatile in vitro methods for amplifying defined target DNA (RBC polymorphic region). Multiplex-PCR, AS-PCR (Specific Allele Polymerase Chain Reaction), and RFLP-PCR (Restriction Fragment Length Polymorphism-Polymerase Chain Reaction) techniques are usually to identify RBC polymorphisms. Furthermore, it is an easy methodology to implement. This chapter describes the PCR methodology and agarose gel electrophoresis to identify the polymorphisms of the Kell, Duffy, Kidd, and MNS blood group systems.
Sexing chick mRNA: A protocol based on quantitative real-time polymerase chain reaction.
Wan, Z; Lu, Y; Rui, L; Yu, X; Li, Z
2017-03-01
The accurate identification of sex in birds is important for research on avian sex determination and differentiation. Polymerase chain reaction (PCR)-based methods have been widely applied for the molecular sexing of birds. However, these methods have used genomic DNA. Here, we present the first sexing protocol for chick mRNA based on real-time quantitative PCR. We demonstrate that this method can accurately determine sex using mRNA from chick gonads and other tissues, such as heart, liver, spleen, lung, and muscle. The strategy of this protocol also may be suitable for other species in which sex is determined by the inheritance of sex chromosomes (ZZ male and ZW female). © 2016 Poultry Science Association Inc.
Cho, Pyo Yun; Na, Byoung-Kuk; Mi Choi, Kyung; Kim, Jin Su; Cho, Shin-Hyeong; Lee, Won-Ja; Lim, Sung-Bin; Cha, Seok Ho; Park, Yun-Kyu; Pak, Jhang Ho; Lee, Hyeong-Woo; Hong, Sung-Jong; Kim, Tong-Soo
2013-01-01
Microscopic examination of eggs of parasitic helminths in stool samples has been the most widely used classical diagnostic method for infections, but tiny and low numbers of eggs in stool samples often hamper diagnosis of helminthic infections with classical microscopic examination. Moreover, it is also difficult to differentiate parasite eggs by the classical method, if they have similar morphological characteristics. In this study, we developed a rapid and sensitive polymerase chain reaction (PCR)-based molecular diagnostic method for detection of Clonorchis sinensis eggs in stool samples. Nine primers were designed based on the long-terminal repeat (LTR) of C. sinensis retrotransposon1 (CsRn1) gene, and seven PCR primer sets were paired. Polymerase chain reaction with each primer pair produced specific amplicons for C. sinensis, but not for other trematodes including Metagonimus yokogawai and Paragonimus westermani. Particularly, three primer sets were able to detect 10 C. sinensis eggs and were applicable to amplify specific amplicons from DNA samples purified from stool of C. sinensis-infected patients. This PCR method could be useful for diagnosis of C. sinensis infections in human stool samples with a high level of specificity and sensitivity. PMID:23916334
Reiman, Anne; Pandey, Sarojini; Lloyd, Kate L; Dyer, Nigel; Khan, Mike; Crockard, Martin; Latten, Mark J; Watson, Tracey L; Cree, Ian A; Grammatopoulos, Dimitris K
2016-11-01
Background Detection of disease-associated mutations in patients with familial hypercholesterolaemia is crucial for early interventions to reduce risk of cardiovascular disease. Screening for these mutations represents a methodological challenge since more than 1200 different causal mutations in the low-density lipoprotein receptor has been identified. A number of methodological approaches have been developed for screening by clinical diagnostic laboratories. Methods Using primers targeting, the low-density lipoprotein receptor, apolipoprotein B, and proprotein convertase subtilisin/kexin type 9, we developed a novel Ion Torrent-based targeted re-sequencing method. We validated this in a West Midlands-UK small cohort of 58 patients screened in parallel with other mutation-targeting methods, such as multiplex polymerase chain reaction (Elucigene FH20), oligonucleotide arrays (Randox familial hypercholesterolaemia array) or the Illumina next-generation sequencing platform. Results In this small cohort, the next-generation sequencing method achieved excellent analytical performance characteristics and showed 100% and 89% concordance with the Randox array and the Elucigene FH20 assay. Investigation of the discrepant results identified two cases of mutation misclassification of the Elucigene FH20 multiplex polymerase chain reaction assay. A number of novel mutations not previously reported were also identified by the next-generation sequencing method. Conclusions Ion Torrent-based next-generation sequencing can deliver a suitable alternative for the molecular investigation of familial hypercholesterolaemia patients, especially when comprehensive mutation screening for rare or unknown mutations is required.
Pavlovic, Melanie; Koehler, Nina; Anton, Martina; Dinkelmeier, Anna; Haase, Maren; Stellberger, Thorsten; Busch, Ulrich; Baiker, Armin E
2017-08-01
The purpose of the described method is the detection of and differentiation between RNA and DNA of human immunodeficiency virus (HIV)-derived lentiviral vectors (LV) in cell culture supernatants and swab samples. For the analytical surveillance of genetic engineering, operations methods for the detection of the HIV-1-based LV generations are required. Furthermore, for research issues, it is important to prove the absence of LV particles for downgrading experimental settings in terms of the biosafety level. Here, a quantitative polymerase chain reaction method targeting the long terminal repeat U5 subunit and the start sequence of the packaging signal ψ is described. Numerous controls are included in order to monitor the technical procedure.
Yu, Xu; Zhang, Zhi-Ling; Zheng, Si-Yang
2014-01-01
A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant colour change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10 pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays. PMID:25500528
Shojaei, Taha Roodbar; Mohd Salleh, Mohamad Amran; Tabatabaei, Meisam; Ekrami, Alireza; Motallebi, Roya; Rahmani-Cherati, Tavoos; Hajalilou, Abdollah; Jorfi, Raheleh
2014-01-01
Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.
Siqueira, J F; Rôças, I N; Oliveira, J C; Santos, K R
2001-03-01
A 16S rDNA-directed polymerase chain reaction method was used to assess the occurrence of four black-pigmented anaerobic rods, Treponema denticola, and Actinobacillus actinomycetemcomitans in acute periradicular abscesses. Pus was collected by aspiration from 10 cases diagnosed as acute abscesses of endodontic origin. DNA was extracted from the samples and analyzed using a polymerase chain reaction-based identification assay. The method allowed detecting black-pigmented anaerobes in 80% of the examined abscesses. Porphyromonas endodontalis was found in 70%, T. denticola in 50%, Porphyromonas gingivalis in 40%, and Prevotella intermedia in 10% of the cases. P. gingivalis was always found associated with P. endodontalis. Prevotella nigrescens and A. actinomycetemcomitans were not found in any pus sample. The high prevalence of P. endodontalis, T. denticola, and P. gingivalis suggests that they can play an important role in the etiology of acute periradicular abscesses.
Bej, A K; McCarty, S C; Atlas, R M
1991-01-01
Multiplex polymerase chain reaction (PCR) and gene probe detection of target lacZ and uidA genes were used to detect total coliform bacteria and Escherichia coli, respectively, for determining water quality. In tests of environmental water samples, the lacZ PCR method gave results statistically equivalent to those of the plate count and defined substrate methods accepted by the U.S. Environmental Protection Agency for water quality monitoring and the uidA PCR method was more sensitive than 4-methylumbelliferyl-beta-D-glucuronide-based defined substrate tests for specific detection of E. coli. Images PMID:1768116
Dual phase multiplex polymerase chain reaction
Pemov, Alexander [Charlottesville, VA; Bavykin, Sergei [Darien, IL
2008-10-07
Highly specific and sensitive methods were developed for multiplex amplification of nucleic acids on supports such as microarrays. Based on a specific primer design, methods include five types of amplification that proceed in a reaction chamber simultaneously. These relate to four types of multiplex amplification of a target DNA on a solid support, directed by forward and reverse complex primers immobilized to the support and a fifth type--pseudo-monoplex polymerase chain reaction (PCR) of multiple targets in solution, directed by a single pair of unbound universal primers. The addition of the universal primers in the reaction mixture increases the yield over the traditional "bridge" amplification on a solid support by approximately ten times. Methods that provide multitarget amplification and detection of as little as 0.45-4.5.times.10.sup.-12 g (equivalent to 10.sup.2-10.sup.3 genomes) of a bacterial genomic DNA are disclosed.
EPA Scientists Develop Research Methods for Studying Mold Fact Sheet
In 2002, U.S. Environmental Protection Agency researchers developed a DNA-based Mold Specific Quantitative Polymerase Chain Reaction method (MSQPCR) for identifying and quantifying over 100 common molds and fungi.
Detecting Service Chains and Feature Interactions in Sensor-Driven Home Network Services
Inada, Takuya; Igaki, Hiroshi; Ikegami, Kosuke; Matsumoto, Shinsuke; Nakamura, Masahide; Kusumoto, Shinji
2012-01-01
Sensor-driven services often cause chain reactions, since one service may generate an environmental impact that automatically triggers another service. We first propose a framework that can formalize and detect such service chains based on ECA (event, condition, action) rules. Although the service chain can be a major source of feature interactions, not all service chains lead to harmful interactions. Therefore, we then propose a method that identifies feature interactions within the service chains. Specifically, we characterize the degree of deviation of every service chain by evaluating the gap between expected and actual service states. An experimental evaluation demonstrates that the proposed method successfully detects 11 service chains and 6 feature interactions within 7 practical sensor-driven services. PMID:23012499
Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria
2003-12-15
Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.
Introduction to Polymer Chemistry.
ERIC Educational Resources Information Center
Harris, Frank W.
1981-01-01
Reviews the physical and chemical properties of polymers and the two major methods of polymer synthesis: addition (chain, chain-growth, or chain-reaction), and condensation (step-growth or step-reaction) polymerization. (JN)
Dacheux, Laurent; Larrous, Florence; Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve
2016-07-01
The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus surveillance.
Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve
2016-01-01
The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus surveillance. PMID:27380028
Soejima, Mikiko; Tsuchiya, Yuji; Egashira, Kouichi; Kawano, Hiroyuki; Sagawa, Kimitaka; Koda, Yoshiro
2010-06-01
Anhaptoglobinemic patients run the risk of severe anaphylactic transfusion reaction because they produce serum haptoglobin (Hp) antibodies. Being homozygous for the Hp gene deletion (HP(del)) is the only known cause of congenital anhaptoglobinemia, and clinical diagnosis of HP(del) before transfusion is important to prevent anaphylactic shock. We recently developed a 5'-nuclease (TaqMan) real-time polymerase chain reaction (PCR) method. A SYBR Green I-based duplex real-time PCR assay using two forward primers and a common reverse primer followed by melting curve analysis was developed to determine HP(del) zygosity in a single tube. In addition, to obviate initial DNA extraction, we examined serially diluted blood samples as PCR templates. Allelic discrimination of HP(del) yielded optimal results at blood sample dilutions of 1:64 to 1:1024. The results from 2231 blood samples were fully concordant with those obtained by the TaqMan-based real-time PCR method. The detection rate of the HP(del) allele by the SYBR Green I-based method is comparable with that using the TaqMan-based method. This method is readily applicable due to its low initial cost and analyzability using economical real-time PCR machines and is suitable for high-throughput analysis as an alternative method for allelic discrimination of HP(del).
Comparison of EPA Method 1615 RT-qPCR Assays in Standard and Kit Format
EPA Method 1615 contains protocols for measuring enterovirus and norovirus by reverse transcription quantitative polymerase chain reaction. A commercial kit based upon these protocols was designed and compared to the method's standard approach. Reagent grade, secondary effluent, ...
DFT-based prediction of reactivity of short-chain alcohol dehydrogenase
NASA Astrophysics Data System (ADS)
Stawoska, I.; Dudzik, A.; Wasylewski, M.; Jemioła-Rzemińska, M.; Skoczowski, A.; Strzałka, K.; Szaleniec, M.
2017-06-01
The reaction mechanism of ketone reduction by short chain dehydrogenase/reductase, ( S)-1-phenylethanol dehydrogenase from Aromatoleum aromaticum, was studied with DFT methods using cluster model approach. The characteristics of the hydride transfer process were investigated based on reaction of acetophenone and its eight structural analogues. The results confirmed previously suggested concomitant transfer of hydride from NADH to carbonyl C atom of the substrate with proton transfer from Tyr to carbonyl O atom. However, additional coupled motion of the next proton in the proton-relay system, between O2' ribose hydroxyl and Tyr154 was observed. The protonation of Lys158 seems not to affect the pKa of Tyr154, as the stable tyrosyl anion was observed only for a neutral Lys158 in the high pH model. The calculated reaction energies and reaction barriers were calibrated by calorimetric and kinetic methods. This allowed an excellent prediction of the reaction enthalpies (R2 = 0.93) and a good prediction of the reaction kinetics (R2 = 0.89). The observed relations were validated in prediction of log K eq obtained for real whole-cell reactor systems that modelled industrial synthesis of S-alcohols.
Review of Detection of Brucella sp. by Polymerase Chain Reaction
Yu, Wei Ling; Nielsen, Klaus
2010-01-01
Here we present a review of most of the currently used polymerase chain reaction (PCR)-based methods for identification of Brucella bacteria in biological samples. We focused in particular on methods using single-pair primers, multiplex primers, real-time PCRs, PCRs for marine Brucella, and PCRs for molecular biotyping. These methods are becoming very important tools for the identification of Brucella, at the species level and recently also at the biovar level. These techniques require minimum biological containment and can provide results in a very short time. In addition, genetic fingerprinting of isolates aid in epidemiological studies of the disease and its control. PCR-based methods are more useful and practical than conventional methods used to identify Brucella spp., and new methods for Brucella spp identification and typing are still being developed. However, the sensitivity, specificity, and issues of quality control and quality assurance using these methods must be fully validated on clinical samples before PCR can be used in routine laboratory testing for brucellosis. PMID:20718083
Shimizu, Eri; Kato, Hisashi; Nakagawa, Yuki; Kodama, Takashi; Futo, Satoshi; Minegishi, Yasutaka; Watanabe, Takahiro; Akiyama, Hiroshi; Teshima, Reiko; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi
2008-07-23
A novel type of quantitative competitive polymerase chain reaction (QC-PCR) system for the detection and quantification of the Roundup Ready soybean (RRS) was developed. This system was designed based on the advantage of a fully validated real-time PCR method used for the quantification of RRS in Japan. A plasmid was constructed as a competitor plasmid for the detection and quantification of genetically modified soy, RRS. The plasmid contained the construct-specific sequence of RRS and the taxon-specific sequence of lectin1 (Le1), and both had 21 bp oligonucleotide insertion in the sequences. The plasmid DNA was used as a reference molecule instead of ground seeds, which enabled us to precisely and stably adjust the copy number of targets. The present study demonstrated that the novel plasmid-based QC-PCR method could be a simple and feasible alternative to the real-time PCR method used for the quantification of genetically modified organism contents.
Iván, Kristóf; Maráz, Anna
2015-12-20
Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.
DIFFERENTIATING HUMAN FROM ANIMAL ISOLATES OF CRYPTOSPORIDIUM PARVUM
We analyzed 9s Cryptosporidium parvum isolates from humans and animals by a polymerase chain reaction/restriction fragment length polymorphism method based on the thrombospondin-related anonymous protein 2 gene sequence. Used as a molecular marker, this method can differentiate ...
The U.S. Environmental Protection Agency (EPA) held a workshop in January 2003 on the detection of viruses in water using polymerase chain reaction (PCR)-based methods. Speakers were asked to address a series of specific questions, including whether a single standard method coul...
An improved reaction path optimization method using a chain of conformations
NASA Astrophysics Data System (ADS)
Asada, Toshio; Sawada, Nozomi; Nishikawa, Takuya; Koseki, Shiro
2018-05-01
The efficient fast path optimization (FPO) method is proposed to optimize the reaction paths on energy surfaces by using chains of conformations. No artificial spring force is used in the FPO method to ensure the equal spacing of adjacent conformations. The FPO method is applied to optimize the reaction path on two model potential surfaces. The use of this method enabled the optimization of the reaction paths with a drastically reduced number of optimization cycles for both potentials. It was also successfully utilized to define the MEP of the isomerization of the glycine molecule in water by FPO method.
Zur, G; Hallerman, E M; Sharf, R; Kashi, Y
1999-10-01
Alternaria sp. are important fungal contaminants of vegetable, fruit, and grain products, including Alternaria alternata, a contaminant of tomato products. To date, the Howard method, based on microscopic observation of fungal filaments, has been the standard examination for inspection of tomato products. We report development of a polymerase chain reaction (PCR)-based method for detection of Alternaria DNA. PCR primers were designed to anneal to the internal transcribed regions ITS1 and ITS2 of the 5.8S rRNA gene of Alternaria but not to other microbial or tomato DNA. We demonstrate use of the PCR assay to detect Alternaria DNA in experimentally infested and commercially obtained tomato sauce and tomato powder. Use of the PCR method offers a rapid and sensitive assay for the presence of Alternaria DNA in tomato products. The apparent breakdown of DNA in tomato sauce may limit the utility of the assay to freshly prepared products. The assay for tomato powder is not affected by storage time.
Focke, Felix; Haase, Ilka; Fischer, Markus
2011-01-26
Usually spices are identified morphologically using simple methods like magnifying glasses or microscopic instruments. On the other hand, molecular biological methods like the polymerase chain reaction (PCR) enable an accurate and specific detection also in complex matrices. Generally, the origins of spices are plants with diverse genetic backgrounds and relationships. The processing methods used for the production of spices are complex and individual. Consequently, the development of a reliable DNA-based method for spice analysis is a challenging intention. However, once established, this method will be easily adapted to less difficult food matrices. In the current study, several alternative methods for the isolation of DNA from spices have been developed and evaluated in detail with regard to (i) its purity (photometric), (ii) yield (fluorimetric methods), and (iii) its amplifiability (PCR). Whole genome amplification methods were used to preamplify isolates to improve the ratio between amplifiable DNA and inhibiting substances. Specific primer sets were designed, and the PCR conditions were optimized to detect 18 spices selectively. Assays of self-made spice mixtures were performed to proof the applicability of the developed methods.
Enterococci are frequently monitored in water samples as indicators of fecal pollution. Attention is now shifting from culture based methods for enumerating these organisms to more rapid molecular methods such as QPCR. Accurate quantitative analyses by this method requires highly...
Apparatus and method for polymer synthesis using arrays
Brennan, Thomas M.
1995-01-01
A polymer synthesis apparatus (20) for building a polymer chain including a head assembly (21) having an array of nozzles (22) with each nozzle coupled to a reservoir (23) of liquid reagent (24) , and a base assembly (25) having an array of reaction wells (26). A transport mechanism (27) aligns the reaction wells (26) and selected nozzles (22) for deposition of the liquid reagent (24) into selected reaction wells (26). A sliding seal (30) is positioned between the head assembly (21) and the base assembly (25) to form a common chamber (31) enclosing both the reaction well (26) and the nozzles (22) therein. A gas inlet (70) into the common chamber (31), upstream from the nozzles (22), and a gas outlet (71) out of the common chamber (31) , downstream from the nozzles (22) , sweeps the common chamber ( 31 ) of toxic fumes emitted by the reagents. Each reaction well (26) includes an orifice (74) extending into the well (26) which is of a size and dimension to form a capillary liquid seal to retain the reagent solution (76) in the well (26) for polymer chain growth therein. A pressure regulating device (82) is provided for controlling a pressure differential, between a first gas pressure exerted on the reaction well (26) and a second gas pressure exerted on an exit (80) of the orifice, such that upon the pressure differential exceeding a predetermined amount, the reagent solution (76) is expelled from the well (26) through the orifice (74). A method of synthesis of a polymer chain in a synthesis apparatus (20) is also included.
Apparatus and method for polymer synthesis using arrays
Brennan, Thomas M.
1996-01-01
A polymer synthesis apparatus (20) for building a polymer chain including a head assembly (21) having an array of nozzles (22) with each nozzle coupled to a reservoir (23) of liquid reagent (24), and a base assembly (25) having an array of reaction wells (26). A transport mechanism (27) aligns the reaction wells (26) and selected nozzles (22) for deposition of the liquid reagent (24) into selected reaction wells (26). A sliding seal (30) is positioned between the head assembly (21) and the base assembly (25) to form a common chamber (31) enclosing both the reaction well (26) and the nozzles (22) therein. A gas inlet (70) into the common chamber (31), upstream from the nozzles (22), and a gas outlet (71) out of the common chamber (31), downstream from the nozzles (22), sweeps the common chamber (31) of toxic fumes emitted by the reagents. Each reaction well ( 26) includes an orifice (74) extending into the well (26) which is of a size and dimension to form a capillary liquid seal to retain the reagent solution (76) in the well (26) for polymer chain growth therein. A pressure regulating device (82 ) is provided for controlling a pressure differential, between a first gas pressure exerted on the reaction well (26) and a second gas pressure exerted on an exit (80) of the orifice, such that upon the pressure differential exceeding a predetermined amount, the reagent solution (76) is expelled from the well (26) through the orifice (74). A method of synthesis of a polymer chain in a synthesis apparatus (20) is also included.
Paula, Francisco Danilo Ferreira; Elói-Santos, Silvana Maria; Xavier, Sandra Guerra; Ganazza, Mônica Aparecida; Jotta, Patricia Yoshioka; Yunes, José Andrés; Viana, Marcos Borato; Assumpção, Juliana Godoy
2015-01-01
Minimal residual disease is an important independent prognostic factor that can identify poor responders among patients with acute lymphoblastic leukemia. The aim of this study was to analyze minimal residual disease using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements by conventional polymerase chain reaction followed by homo-heteroduplex analysis and to compare this with real-time polymerase chain reaction at the end of the induction period in children with acute lymphoblastic leukemia. Seventy-four patients diagnosed with acute lymphoblastic leukemia were enrolled. Minimal residual disease was evaluated by qualitative polymerase chain reaction in 57 and by both tests in 44. The Kaplan-Meier and multivariate Cox methods and the log-rank test were used for statistical analysis. Nine patients (15.8%) were positive for minimal residual disease by qualitative polymerase chain reaction and 11 (25%) by real-time polymerase chain reaction considering a cut-off point of 1×10(-3) for precursor B-cell acute lymphoblastic leukemia and 1×10(-2) for T-cell acute lymphoblastic leukemia. Using the qualitative method, the 3.5-year leukemia-free survival was significantly higher in children negative for minimal residual disease compared to those with positive results (84.1%±5.6% versus 41.7%±17.3%, respectively; p-value=0.004). There was no significant association between leukemia-free survival and minimal residual disease by real-time polymerase chain reaction. Minimal residual disease by qualitative polymerase chain reaction was the only variable significantly correlated to leukemia-free survival. Given the difficulties in the implementation of minimal residual disease monitoring by real-time polymerase chain reaction in most treatment centers in Brazil, the qualitative polymerase chain reaction strategy may be a cost-effective alternative. Copyright © 2015 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shmatov, M. L., E-mail: M.Shmatov@mail.ioffe.ru
2016-09-15
It is shown that a rapid deceleration of alpha particles in matter of electron temperature up to 100 keV leads a strong suppression of the chain nuclear fusion reaction on the basis of the p+{sup 11}B reaction with the reproduction of fast protons in the α+{sup 11}B and n+{sup 10}B reactions. The statement that the chain nuclear fusion reaction based on the p+{sup 11}B reaction with an acceleration of {sup 11}B nuclei because of elastic alpha-particle scattering manifests itself in experiments at the PALS (Prague Asterix Laser System) facility is analyzed.
RICIN-inhibitor design. Final report, 15 April 1993-14 April 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schramm, V.L.
1996-05-01
The purpose of this proposal was to provide information which will permit the design of transition state inhibitors for ricin A-chain. The original goals were to solve the transition state structure based on kinetic isotope effects. Substrates were synthesized and the conditions for assays optimized to provide catalytic rates at least 1000 fold greater than those published prior to this work. Reliable assay methods have been established to permit routine assays for ricin A-chain. Substrate analogues for N-ribohydrolase reactions have been designed to establish whether the reaction involves leaving-group activation or oxycarbonium ion formation. Based on these results, leaving groupmore » activation is a major contributor and oxycarbonium-ion formation is a secondary contribution in the mechanism of catalysis by ricin A-chain. Using this information, the first submicromolar inhibitor of ricin A-chain has been synthesized, tested and kinetically characterized. The development of powerful inhibitors will be a direct extrapolation of these results.« less
*A FASTER METHOD OF MEASURING RECREATIONAL WATER QUALITY FOR BETTER PROTECTION OF SWIMMER'S HEALTH
We previously reported that a faster method (< 2 hours) of measuring fecal indicator bacteria (FIB), based on Quantitative Polymerase Chain Reaction (QPCR), was predictive of swimming associated gastrointestinal illness. Using data from two additional beaches, we examined the re...
Molecular diagnostics of periodontitis.
Korona-Głowniak, Izabela; Siwiec, Radosław; Berger, Marcin; Malm, Anna; Szymańska, Jolanta
2017-01-28
The microorganisms that form dental plaque are the main cause of periodontitis. Their identification and the understanding of the complex relationships and interactions that involve these microorganisms, environmental factors and the host's health status enable improvement in diagnostics and targeted therapy in patients with periodontitis. To this end, molecular diagnostics techniques (both techniques based on the polymerase chain reaction and those involving nucleic acid analysis via hybridization) come increasingly into use. On the basis of a literature review, the following methods are presented: polymerase chain reaction (PCR), real-time polymerase chain reaction (real-time PCR), 16S rRNA-encoding gene sequencing, checkerboard and reverse-capture checkerboard hybridization, microarrays, denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), as well as terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). The advantages and drawbacks of each method in the examination of periopathogens are indicated. The techniques listed above allow fast detection of even small quantities of pathogen present in diagnostic material and prove particularly useful to detect microorganisms that are difficult or impossible to grow in a laboratory.
deWit, D; Wootton, M; Allan, B; Steyn, L
1993-01-01
A simple method for the production of internal control DNA for two well-established Mycobacterium tuberculosis polymerase chain reaction assays is described. The internal controls were produced from Mycobacterium kansasii DNA with the same primers but at a lower annealing temperature than that used in the standard assays. In both assays, therefore, the internal control DNA has the same primer-binding sequences at the target DNA. One-microgram quantities of internal control DNA which was not contaminated with target DNA could easily be produced by this method. The inclusion of the internal control in the reaction mixture did not affect the efficiency of amplification of the target DNA. The method is simple and rapid and should be adaptable to most M. tuberculosis polymerase chain reaction assays. Images PMID:8370752
Takabatake, Reona; Onishi, Mari; Koiwa, Tomohiro; Futo, Satoshi; Minegishi, Yasutaka; Akiyama, Hiroshi; Teshima, Reiko; Kurashima, Takeyo; Mano, Junichi; Furui, Satoshi; Kitta, Kazumi
2013-01-01
A novel real-time polymerase chain reaction (PCR)-based quantitative screening method was developed for three genetically modified soybeans: RRS, A2704-12, and MON89788. The 35S promoter (P35S) of cauliflower mosaic virus is introduced into RRS and A2704-12 but not MON89788. We then designed a screening method comprised of the combination of the quantification of P35S and the event-specific quantification of MON89788. The conversion factor (Cf) required to convert the amount of a genetically modified organism (GMO) from a copy number ratio to a weight ratio was determined experimentally. The trueness and precision were evaluated as the bias and reproducibility of relative standard deviation (RSDR), respectively. The determined RSDR values for the method were less than 25% for both targets. We consider that the developed method would be suitable for the simple detection and approximate quantification of GMO.
Binary sensitivity and specificity metrics are not adequate to describe the performance of quantitative microbial source tracking methods because the estimates depend on the amount of material tested and limit of detection. We introduce a new framework to compare the performance ...
DEVELOPMENT OF MOLECULAR METHODS TO DETECT EMERGING VIRUSES
A large number of human enteric viruses are known to cause gastrointestinal illness and waterborne outbreaks. Many of these are emerging viruses that do not grow or grow poorly in cell culture and so molecular detectoin methods based on the polymerase chain reaction (PCR) are be...
A method was developed to remove environmental inhibitors from sample concentrates prior to detection of human enteric viruses using the reverse transcription-polymerase chain reaction (RT-PCR).Environmental inhibitors, concentrated along with viruses during water sample processi...
The quantitative polymerase chain reaction (qPCR) method provides rapid estimates of fecal indicator bacteria densities that have been indicated to be useful in the assessment of water quality. Primarily because this method provides faster results than standard culture-based meth...
Control and reduction of peak temperature in self-curing resins.
Schiavetti, R; DE Vico, G; Casucci, A; Covello, F; Ottria, L; Sannino, G; Barlattani, A
2009-07-01
INTRODUCTION.: The aim of this experimental study was to reduce the exothermic reaction during curing of the resins to cold. The significant exotherm generated by the reaction of polymerization of the resin curing involves many clinical complications including the high risk of necrosis against tooth. MATERIAL AND METHODS.: They were used four different types of self curing resins all based on methyl methacrylate, Jet Kit, Major Dentin, Dura Lay, Temporary Cold. The reaction of polymerization of the resins was done in Teflon pans and was monitored by a thermocouple which recorded the highest level reached by each temperature resin with and without additive. The polymerization reaction took place for each resin in the presence of an essential oil, the terpinolene, which acted as a "chain transfer" and different temperatures were recorded. RESULTS.: Resins Dura Lay and Jet kit showed a reduction of very high temperature in the presence of terpinolene, with a statistically significant difference compared to the same reaction without terpinolene Major resin dentin in the presence of the additive has reduced by 8.4°C peak temperature. Resin Temporary Cold has showed benefits with respect to peak temperature, but the reaction was much more 'consistent presence of the additive. DISCUSSION.: The system through which the chain transfer acts to lower the temperature of the reaction is that of chain transfer. Namely that interfere with the reaction of the polymer chains, by transferring these acrylic radicals are no longer active, ie, no longer able to bind to other monomer units, thus avoiding the excessive growth of macromolecules which are those that determine the temperature rise. This leads to the formation of more polymer chains with lower molecular weight.
Wang, F; Zhang, Y Q; Ding, J; Yu, L X
2017-10-18
To evaluate the ability of multiplex competitive fluorescence polymerase chain reaction in detection of large deletion and duplication genotypes of X-linked Alport syndrome. Clinical diagnosis of X-linked Alport syndrome was based on either abnormal staining of type IV collagen α5 chain in the epidermal basement membrane alone or with abnormal staining of type IV collagen α5 chain in the glomerular basement membrane and Bowman's capsule/ultrastructural changes in the glomerular basement membrane typical of Alport syndrome. A total of 20 unrelated Chinese patients (13 males and 7 females) clinically diagnosed as X-linked Alport syndrome were included in the study. Their genotypes were unknown. Control subjects included a male patient with other renal disease and two patients who had large deletions in COL4A5 gene detected by multiplex ligation-dependent probe amplification. Genomic DNA was isolated from peripheral blood leukocytes in all the participants. Multiplex competitive fluorescence polymerase chain reaction was used to coamplify 53 exons of COL4A5 gene and four reference genes in a single reaction. When a deletion removed exon 1 of COL4A5 gene was identified, the same method was used to coamplify the first 4 exons of COL4A5 and COL4A6 genes, a promoter shared by COL4A5 and COL4A6 genes, and three reference genes in a single reaction. Any copy number loss suggested by this method was verified by electrophoresis of corresponding polymerase chain reaction amplified products or DNA sequencing to exclude possible DNA variations in the primer regions. Genotypes of two positive controls identified by multiplex competitive fluorescence polymerase chain reaction were consistent with those detected by multiplex ligation-dependent probe amplification. Deletions were identified in 6 of the 20 patients, including two large deletions removing the 5' part of both COL4A5 and COL4A6 genes with the breakpoint located in the second intron of COL4A6, two large deletions removing more than 30 exons of COL4A5 gene, one large deletion removing at least 1 exon of COL4A5 gene, and one small deletion involving 13 bps. No duplication was found. Our results show that multiplex competitive fluorescence polymerase chain reaction is a good alternative to classical techniques for large deletion genotyping in X-linked Alport syndrome.
Zappelini, Lincohn; Martone-Rocha, Solange; Dropa, Milena; Matté, Maria Helena; Tiba, Monique Ribeiro; Breternitz, Bruna Suellen; Razzolini, Maria Tereza Pepe
2017-02-01
Nontyphoidal Salmonella (NTS) is a relevant pathogen involved in gastroenteritis outbreaks worldwide. In this study, we determined the capacity to combine the most probable number (MPN) and multiplex polymerase chain reaction (PCR) methods to characterize the most important Salmonella serotypes in raw sewage. A total of 499 isolates were recovered from 27 raw sewage samples and screened using two previously described multiplex PCR methods. From those, 123 isolates were selected based on PCR banding pattern-identical or similar to Salmonella Enteritidis and Salmonella Typhimurium-and submitted to conventional serotyping. Results showed that both PCR assays correctly serotyped Salmonella Enteritidis, however, they presented ambiguous results for Salmonella Typhimurium identification. These data highlight that MPN and multiplex PCR can be useful methods to describe microbial quality in raw sewage and suggest two new PCR patterns for Salmonella Enteritidis identification.
Kaminiwa, Junko; Honda, Katsuya; Sugano, Yukiko; Yano, Shizue; Nishi, Takeki; Sekine, Yuko
2013-05-01
Polymerase chain reaction (PCR) has been rapidly established as one of the most widely used techniques in molecular biology. Because most DNA analysis is PCR-based, the analysis of unamplifiable DNA of poor quality or low quantity is nearly impossible. However, we observed that if an appropriate concentration of vanadium chloride is added to the standard reaction mixture, the enzymatic amplification of DNA could be enhanced. Using multiplex PCR with the addition of vanadium, DNA typing was possible from even trace amounts of DNA that we were unable to amplify using normal reaction conditions. This method might be an effective tool for not only criminal investigations and ancient DNA analysis, but also for nearly all fields using DNA technology. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
2006-01-01
isolated using a routine salting-out method (DNA E-Z Prepkit, Orchid Diagnostics Europe, St Katelijne Waver, Belgium). Sequence based typing In...electrophoresis using ethidiumbromide to show the single 2 KB band before sequencing. Next, sequencing reactions were performed separately for exons 2, 3...Multiplex reverse transcription-polymerase chain reaction for simultaneous screening of 29 translocations and chromosomal aberrations in acute
The use of real-time polymerase chain reaction for rapid diagnosis of skeletal tuberculosis.
Kobayashi, Naomi; Fraser, Thomas G; Bauer, Thomas W; Joyce, Michael J; Hall, Gerri S; Tuohy, Marion J; Procop, Gary W
2006-07-01
We identified Mycobacterium tuberculosis DNA using real-time polymerase chain reaction on a specimen from an osteolytic lesion of a femoral condyle, in which the frozen section demonstrated granulomas. The process was much more rapid than is possible with culture. The rapid detection of M tuberculosis and the concomitant exclusion of granulomatous disease caused by nontuberculous mycobacteria or systemic fungi are necessary to appropriately treat skeletal tuberculosis. The detection and identification of M tuberculosis by culture may require several weeks using traditional methods. The real-time polymerase chain reaction method used has been shown to be rapid and reliable, and is able to detect and differentiate both tuberculous and nontuberculous mycobacteria. Real-time polymerase chain reaction may become a diagnostic standard for the evaluation of clinical specimens for the presence of mycobacteria; this case demonstrates the potential utility of this assay for the rapid diagnosis of skeletal tuberculosis.
Unraveling reaction pathways and specifying reaction kinetics for complex systems.
Vinu, R; Broadbelt, Linda J
2012-01-01
Many natural and industrial processes involve a complex set of competing reactions that include several different species. Detailed kinetic modeling of such systems can shed light on the important pathways involved in various transformations and therefore can be used to optimize the process conditions for the desired product composition and properties. This review focuses on elucidating the various components involved in modeling the kinetics of pyrolysis and oxidation of polymers. The elementary free radical steps that constitute the chain reaction mechanism of gas-phase/nonpolar liquid-phase processes are outlined. Specification of the rate coefficients of the various reaction families, which is central to the theme of kinetics, is described. Construction of the reaction network on the basis of the types of end groups and reactive moieties in a polymer chain is discussed. Modeling frameworks based on the method of moments and kinetic Monte Carlo are evaluated using illustrations. Finally, the prospects and challenges in modeling biomass conversion are addressed.
Fang, Weijia; Xu, Nong; Jin, Dazhi; Chen, Yu; Chen, Xiaogang; Zheng, Yi; Shen, Hong; Yuan, Ying; Zheng, Shusen
2012-01-01
Dihydropyrimidine dehydrogenase is a key enzyme acting on the metabolic pathway of medications for gastric cancer. High-resolution melting curve technology, which was developed recently, can distinguish the wild-type dihydropyrimidine dehydrogenase gene from multiple polymorphisms by fluorescent quantitative polymerase chain reaction products in a direct and effective manner. T85C polymorphisms of dihydropyrimidine dehydrogenase in the peripheral blood of 112 Chinese gastric cancer patients were detected by real-time polymerase chain reaction combined with high-resolution melting curve technology. Primer design, along with the reaction system and conditions, was optimized based on the GenBank sequence. Seventy nine cases of wild-type (TT, [70.5%]), 29 cases of heterozygous (TC, [25.9%]), and 4 cases of homozygous mutant (CC, [3.6%]) were observed. The result was completely consistent with the results of the sequencing. Real-time polymerase chain reaction combined with high-resolution melting curve technology is a rapid, simple, reliable, direct-viewing, and convenient method for the detection and screening of polymorphisms.
The U.S. Environmental Protection Agency (EPA) has provided recommended beach advisory values in its 2012 recreational water quality criteria (RWQC) for states wishing to use quantitative polymerase chain reaction (qPCR) for the monitoring of Enterococcus fecal indicator bacteria...
Several studies have examined how fecal indicator bacteria (FIB) measurements compare between quantitative polymerase chain reaction (QPCR) and the culture methods it is intended to replace. Here we extend those studies by examining the stability of that relationship within a be...
Cheng, Yu-Huei
2014-12-01
Specific primers play an important role in polymerase chain reaction (PCR) experiments, and therefore it is essential to find specific primers of outstanding quality. Unfortunately, many PCR constraints must be simultaneously inspected which makes specific primer selection difficult and time-consuming. This paper introduces a novel computational intelligence-based method, Teaching-Learning-Based Optimisation, to select the specific and feasible primers. The specified PCR product lengths of 150-300 bp and 500-800 bp with three melting temperature formulae of Wallace's formula, Bolton and McCarthy's formula and SantaLucia's formula were performed. The authors calculate optimal frequency to estimate the quality of primer selection based on a total of 500 runs for 50 random nucleotide sequences of 'Homo species' retrieved from the National Center for Biotechnology Information. The method was then fairly compared with the genetic algorithm (GA) and memetic algorithm (MA) for primer selection in the literature. The results show that the method easily found suitable primers corresponding with the setting primer constraints and had preferable performance than the GA and the MA. Furthermore, the method was also compared with the common method Primer3 according to their method type, primers presentation, parameters setting, speed and memory usage. In conclusion, it is an interesting primer selection method and a valuable tool for automatic high-throughput analysis. In the future, the usage of the primers in the wet lab needs to be validated carefully to increase the reliability of the method.
Simple model of inhibition of chain-branching combustion processes
NASA Astrophysics Data System (ADS)
Babushok, Valeri I.; Gubernov, Vladimir V.; Minaev, Sergei S.; Miroshnichenko, Taisia P.
2017-11-01
A simple kinetic model has been suggested to describe the inhibition and extinction of flame propagation in reaction systems with chain-branching reactions typical for hydrocarbon systems. The model is based on the generalised model of the combustion process with chain-branching reaction combined with the one-stage reaction describing the thermal mode of flame propagation with the addition of inhibition reaction steps. Inhibitor addition suppresses the radical overshoot in flame and leads to the change of reaction mode from the chain-branching reaction to a thermal mode of flame propagation. With the increase of inhibitor the transition of chain-branching mode of reaction to the reaction with straight-chains (non-branching chain reaction) is observed. The inhibition part of the model includes a block of three reactions to describe the influence of the inhibitor. The heat losses are incorporated into the model via Newton cooling. The flame extinction is the result of the decreased heat release of inhibited reaction processes and the suppression of radical overshoot with the further decrease of the reaction rate due to the temperature decrease and mixture dilution. A comparison of the results of modelling laminar premixed methane/air flames inhibited by potassium bicarbonate (gas phase model, detailed kinetic model) with the results obtained using the suggested simple model is presented. The calculations with the detailed kinetic model demonstrate the following modes of combustion process: (1) flame propagation with chain-branching reaction (with radical overshoot, inhibitor addition decreases the radical overshoot down to the equilibrium level); (2) saturation of chemical influence of inhibitor, and (3) transition to thermal mode of flame propagation (non-branching chain mode of reaction). The suggested simple kinetic model qualitatively reproduces the modes of flame propagation with the addition of the inhibitor observed using detailed kinetic models.
Li, Chao; Xie, Hong-Bin; Chen, Jingwen; Yang, Xianhai; Zhang, Yifei; Qiao, Xianliang
2014-12-02
Short chain chlorinated paraffins (SCCPs) are under evaluation for inclusion in the Stockholm Convention on persistent organic pollutants. However, information on their reaction rate constants with gaseous ·OH (kOH) is unavailable, limiting the evaluation of their persistence in the atmosphere. Experimental determination of kOH is confined by the unavailability of authentic chemical standards for some SCCP congeners. In this study, we evaluated and selected density functional theory (DFT) methods to predict kOH of SCCPs, by comparing the experimental kOH values of six polychlorinated alkanes (PCAs) with those calculated by the different theoretical methods. We found that the M06-2X/6-311+G(3df,2pd)//B3LYP/6-311 +G(d,p) method is time-effective and can be used to predict kOH of PCAs. Moreover, based on the calculated kOH of nine SCCPs and available experimental kOH values of 22 PCAs with low carbon chain, a quantitative structure-activity relationship (QSAR) model was developed. The molecular structural characteristics determining the ·OH reaction rate were discussed. logkOH was found to negatively correlate with the percentage of chlorine substitutions (Cl%). The DFT calculation method and the QSAR model are important alternatives to the conventional experimental determination of kOH for SCCPs, and are prospective in predicting their persistence in the atmosphere.
USDA-ARS?s Scientific Manuscript database
This study compared the BAX Polymerase Chain Reaction method (BAX PCR) with the Standard Culture Method (SCM) for detection of L. monocytogenes in blue crab meat and crab processing plants. The aim of this study was to address this data gap. Raw crabs, finished products and environmental sponge samp...
Characterizing Chain Processes in Visible Light Photoredox Catalysis
Cismesia, Megan A.
2015-01-01
The recognition that Ru(bpy)32+ andsimilar visible light absorbing transition metal complexes can be photocatalysts for a variety of synthetically useful organic reactions has resulted in a recent resurgence of interest in photoredox catalysis. However, many of the critical mechanistic aspects of this class of reactions remain poorly understood. In particular, the degree to which visible light photoredox reactions involve radical chain processes has been a point of some disagreement that has not been subjected to systematic analysis. We have now performed quantum yield measurements to demonstrate that threerepresentative, mechanistically distinct photoredox processes involve product-forming chain reactions. Moreover, we show that the combination of quantum yield and luminescence quenching experiments provides a rapid method to estimate the length of these chains. Together, these measurements constitute a robust, operationally facile strategy for characterizing chain processes in a wide range of visible light photoredox reactions. PMID:26668708
Rapid polymerase chain reaction diagnosis of white-nose syndrome in bats
Lorch, J.M.; Gargas, A.; Meteyer, C.U.; Berlowski-Zier, B. M.; Green, D.E.; Shearn-Bochsler, V.; Thomas, N.J.; Blehert, D.S.
2010-01-01
A newly developed polymerase chain reaction (PCR)-based method to rapidly and specifically detect Geomyces destructans on the wings of infected bats from small quantities (1-2 mg) of tissue is described in the current study (methods for culturing and isolating G. destructans from bat skin are also described). The lower limits of detection for PCR were 5 fg of purified fungal DNA or 100 conidia per 2 mg of wing tissue. By using histology as the standard, the PCR had a diagnostic specificity of 100% and a diagnostic sensitivity of 96%, whereas the diagnostic sensitivity of culture techniques was only 54%. The accuracy and fast turnaround time of PCR provides field biologists with valuable information on infection status more rapidly than traditional methods, and the small amount of tissue required for the test would allow diagnosis of white-nose syndrome in live animals.
METHOD OF SUSTAINING A NEUTRONIC CHAIN REACTING SYSTEM
Fermi, E.; Leverett, M.C.
1957-11-12
This patent relates to neutronic reactors and a method of sustainlng a chain reaction. The reactor shown in the patent for carrying out the method is the gas-cooled type comprised of a solid moderator having a plurality of passages therethrough for receiving bodies of fissionable material. In carrying out the method, the reactor is loaded by inserting in the passages fuel elements and moderator material in a proportion to sustain a chain reaction As the reproduction ratio decreases below the desired fiiaire due to impurities formed during operation of the reactor, the moderator material is gradually replaced with additional fuel material to maintain the reproduction ratio above unity.
Evaluation of Polymerase Chain Reaction for Detecting Coliform Bacteria in Drinking Water Sources.
Isfahani, Bahram Nasr; Fazeli, Hossein; Babaie, Zeinab; Poursina, Farkhondeh; Moghim, Sharareh; Rouzbahani, Meisam
2017-01-01
Coliform bacteria are used as indicator organisms for detecting fecal pollution in water. Traditional methods including microbial culture tests in lactose-containing media and enzyme-based tests for the detection of β-galactosidase; however, these methods are time-consuming and less specific. The aim of this study was to evaluate polymerase chain reaction (PCR) for detecting coliform. Totally, 100 of water samples from Isfahan drinking water source were collected. Coliform bacteria and Escherichia coli were detected in drinking water using LacZ and LamB genes in PCR method performed in comparison with biochemical tests for all samples. Using phenotyping, 80 coliform isolates were found. The results of the biochemical tests illustrated 78.7% coliform bacteria and 21.2% E. coli . PCR results for LacZ and LamB genes were 67.5% and 17.5%, respectively. The PCR method was shown to be an effective, sensitive, and rapid method for detecting coliform and E. coli in drinking water from the Isfahan drinking water sources.
Historically, identification of filamentous fungal (mold) species has been based on morphological characteristics, both macroscopic and microscopic. These methods have proven to be time consuming and inaccurate, necessitating the development of identification protocols that are ...
Direct detection of Streptococcus mutans in human dental plaque by polymerase chain reaction.
Igarashi, T; Yamamoto, A; Goto, N
1996-10-01
Streptococcus mutans is an etiological agent in human dental caries. A method for the detection of S. mutans directly from human dental plaque by polymerase chain reaction has been developed. Oligonucleotide primers specific for a portion of the dextranase gene (dexA) of S. mutans Ingbritt (serotype c) were designed to amplify a 1272-bp DNA fragment by polymerase chain reaction. The present method specifically detected S. mutans (serotypes c, e and f), but none of the other mutans streptococci: S. cricetus (serotype a), S. rattus (serotype b), S. sobrinus (serotypes d and g), and S. downei (serotype h), other gram-positive bacteria (16 strains of 12 species of cocci and 18 strains of 12 species of bacilli) nor gram-negative bacteria (1 strain of 1 species of cocci and 20 strains of 18 species of bacilli). The method was capable of detecting 1 pg of the chromosomal DNA purified from S. mutans Ingbritt and as few as 12 colony-forming units of S. mutans cells. The S. mutans cells in human dental plaque were also directly detected. Seventy clinical isolates of S. mutans isolated from the dental plaque of 8 patients were all positive by the polymerase chain reaction. These results suggest that the dexA polymerase chain reaction is suitable for the specific detection and identification of S. mutans.
Chase, D.M.; Pascho, R.J.
1998-01-01
Nucleic acid-based assays have shown promise for diagnosing Renibacterium salmoninarum in tissues and body fluids of salmonids. DeVelopment of a nested polymerase chain reaction (PCR) method to detect a 320 bp DNA segment of the gene encoding the p57 protein of R. salmoninarum is described. Whereas a conventional PCR for a 383 bp segment of the p57 gene reliably detected 1000 R. salmoninarum cells per reaction in kidney tissue, the nested PCR detected as few as 10 R. salmoninarum per reaction in kidney tissue. Two DNA extraction methods for the nested PCR were compared and the correlation between replicate samples was generally higher in samples extracted by the QIAamp system compared with those extracted by the phenol/chloroform method. The specificity of the nested PCR was confirmed by testing DNA extracts of common bacterial fish pathogens and a panel of bacterial species reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA) and the fluorescent antibody test (FAT) for R. salmoninarum. Kidney samples from 74 naturally infected chinook Salmon were examined by the nested PCR, the ELISA, and the FAT, and the detected prevalences of R. salmoninarum were 61, 47, and 43%, respectively.
Migonney, V; Lacroix, M D; Ratner, B D; Jozefowicz, M
1995-01-01
Epoxy ring-opening functionalization of polymers at random sites along chains with various chemical groups has been demonstrated. The reaction is performed in an aqueous solution under mild conditions in order to minimize degradation of the macromolecular chains. Silicone lenses made of copolymers with epoxy side chains were functionalized with 4-hydroxybutyric acid, sodium salt. The carboxylated silicone derivatives were characterized by ESCA and radiotracers. A mean value of 30% reaction yield was concluded, based upon data from both methods; nevertheless, the latter can be improved up to 50% or more if the conditions of preparation of the epoxydized silicone lenses are optimized. Derivatized silicones were coated in the wells of culture plates to evaluate the cell compatibility of these new polymers with a fibroblast cell line (McCoy's). No cellular toxicity was observed.
Momentum-Based Dynamics for Spacecraft with Chained Revolute Appendages
NASA Technical Reports Server (NTRS)
Queen, Steven; London, Ken; Gonzalez, Marcelo
2005-01-01
An efficient formulation is presented for a sub-class of multi-body dynamics problems that involve a six degree-of-freedom base body and a chain of N rigid linkages connected in series by single degree-of-freedom revolute joints. This general method is particularly well suited for simulations of spacecraft dynamics and control that include the modeling of an orbiting platform with or without internal degrees of freedom such as reaction wheels, dampers, and/or booms. In the present work, particular emphasis is placed on dynamic simulation of multi-linkage robotic manipulators. The differential equations of motion are explicitly given in terms of linear and angular momentum states, which can be evaluated recursively along a serial chain of linkages for an efficient real-time solution on par with the best of the O(N3) methods.
Chemical Modification of Polysaccharides
Cumpstey, Ian
2013-01-01
This review covers methods for modifying the structures of polysaccharides. The introduction of hydrophobic, acidic, basic, or other functionality into polysaccharide structures can alter the properties of materials based on these substances. The development of chemical methods to achieve this aim is an ongoing area of research that is expected to become more important as the emphasis on using renewable starting materials and sustainable processes increases in the future. The methods covered in this review include ester and ether formation using saccharide oxygen nucleophiles, including enzymatic reactions and aspects of regioselectivity; the introduction of heteroatomic nucleophiles into polysaccharide chains; the oxidation of polysaccharides, including oxidative glycol cleavage, chemical oxidation of primary alcohols to carboxylic acids, and enzymatic oxidation of primary alcohols to aldehydes; reactions of uronic-acid-based polysaccharides; nucleophilic reactions of the amines of chitosan; and the formation of unsaturated polysaccharide derivatives. PMID:24151557
Silicon-based sleeve devices for chemical reactions
Northrup, M. Allen; Mariella, Jr., Raymond P.; Carrano, Anthony V.; Balch, Joseph W.
1996-01-01
A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.
Silicon-based sleeve devices for chemical reactions
Northrup, M.A.; Mariella, R.P. Jr.; Carrano, A.V.; Balch, J.W.
1996-12-31
A silicon-based sleeve type chemical reaction chamber is described that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis. 32 figs.
Caban, Karolina; Lewera, Adam; Zukowska, Grazyna Z; Kulesza, Pawel J; Stojek, Zbigniew; Jeffrey, Kenneth R
2006-08-04
Two methods have been used for examination of transport of charge in gels soaked with DMF and containing dissolved polyoxometallates. The first method is based on the analysis of both Cottrellian and steady-state currents and therefore is capable of giving the concentration of the electroactive redox centres and their transport (diffusion-type) coefficient. The second method provides the real diffusion coefficients, i.e. transport coefficients free of migrational influence, for both the substrate and the product of the electrode reaction. Several gels based on poly(methyl methacrylate), with charged (addition of 1-acrylamido-2-methyl-2-propanesulphonic acid to the polymerization mixture) and uncharged chains, have been used in the investigation. The ratio obtained for the diffusion coefficient (second method) and transport coefficient (first method) was smaller for the gels containing charged polymer chains than for the gels with uncharged chains. In part these changes could be explained by the contribution of migration to the transport of polyoxomatallates in the gels. However, the impact of the changes in the polymer-channel capacity at the electrode surface while the electrode process proceeds was also considered. These structural changes should affect differently the methods based on different time domains.
A quantitative polymerase chain reaction (qPCR) method for the detection of entercocci fecal indicator bacteria has been shown to be generally applicable for the analysis of temperate fresh (Great Lakes) and marine coastal waters and for providing risk-based determinations of wat...
Liu, Jia; Guo, Jinchao; Zhang, Haibo; Li, Ning; Yang, Litao; Zhang, Dabing
2009-11-25
Various polymerase chain reaction (PCR) methods were developed for the execution of genetically modified organism (GMO) labeling policies, of which an event-specific PCR detection method based on the flanking sequence of exogenous integration is the primary trend in GMO detection due to its high specificity. In this study, the 5' and 3' flanking sequences of the exogenous integration of MON89788 soybean were revealed by thermal asymmetric interlaced PCR. The event-specific PCR primers and TaqMan probe were designed based upon the revealed 5' flanking sequence, and the qualitative and quantitative PCR assays were established employing these designed primers and probes. In qualitative PCR, the limit of detection (LOD) was about 0.01 ng of genomic DNA corresponding to 10 copies of haploid soybean genomic DNA. In the quantitative PCR assay, the LOD was as low as two haploid genome copies, and the limit of quantification was five haploid genome copies. Furthermore, the developed PCR methods were in-house validated by five researchers, and the validated results indicated that the developed event-specific PCR methods can be used for identification and quantification of MON89788 soybean and its derivates.
Analysis of decay chains of superheavy nuclei produced in the 249Bk+48Ca and 243Am+48Ca reactions
NASA Astrophysics Data System (ADS)
Zlokazov, V. B.; Utyonkov, V. K.
2017-07-01
The analysis of decay chains starting at superheavy nuclei 293Ts and 289Mc is presented. The spectroscopic properties of nuclei identified during the experiments using the 249Bk+48Ca and 243Am+48Ca reactions studied at the gas-filled separators DGFRS, TASCA and BGS are considered. We present the analysis of decay data using widely adopted statistical methods and applying them to the short decay chains of parent odd-Z nuclei. We find out that the recently suggested method of analyzing decay chains by Forsberg et al may lead to questionable conclusions when applied for the analysis of radioactive decays. Our discussion demonstrates reasonable congruence of α-particle energies and decay times of nuclei assigned to isotopes 289Mc, 285Nh and 281Rg observed in both reactions.
Method for polymer synthesis in a reaction well
Brennan, Thomas M.
1998-01-01
A method of synthesis for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: A) depositing a liquid reagent in a reaction well (26) in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well (26) includes at least one orifice (74) extending into the well (26), and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well (26) to enable polymer chain growth on the solid support. The method further includes the step of B) expelling the reagent solution from the well (26), while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit (80) of the orifice (74) exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well (26) through the orifice exit (80).
Method for polymer synthesis in a reaction well
Brennan, T.M.
1998-09-29
A method of synthesis is described for building a polymer chain, oligonucleotides in particular, by sequentially adding monomer units to at least one solid support for growing and immobilizing a polymer chain thereon in a liquid reagent solution. The method includes the step of: (A) depositing a liquid reagent in a reaction well in contact with at least one solid support and at least one monomer unit of the polymer chain affixed to the solid support. The well includes at least one orifice extending into the well, and is of a size and dimension to form a capillary liquid seal to retain the reagent solution in the well to enable polymer chain growth on the solid support. The method further includes the step of (B) expelling the reagent solution from the well, while retaining the polymer chain therein. This is accomplished by applying a first gas pressure to the reaction well such that a pressure differential between the first gas pressure and a second gas pressure exerted on an exit of the orifice exceeds a predetermined amount sufficient to overcome the capillary liquid seal and expel the reagent solution from the well through the orifice exit. 9 figs.
Biotechnical use of polymerase chain reaction for microbiological analysis of biological samples.
Lantz, P G; Abu al-Soud, W; Knutsson, R; Hahn-Hägerdal, B; Rådström, P
2000-01-01
Since its introduction in the mid-80s, polymerase chain reaction (PCR) technology has been recognised as a rapid, sensitive and specific molecular diagnostic tool for the analysis of micro-organisms in clinical, environmental and food samples. Although this technique can be extremely effective with pure solutions of nucleic acids, it's sensitivity may be reduced dramatically when applied directly to biological samples. This review describes PCR technology as a microbial detection method, PCR inhibitors in biological samples and various sample preparation techniques that can be used to facilitate PCR detection, by either separating the micro-organisms from PCR inhibitors and/or by concentrating the micro-organisms to detectable concentrations. Parts of this review are updated and based on a doctoral thesis by Lantz [1] and on a review discussing methods to overcome PCR inhibition in foods [2].
Martín, Maria Cruz; del Rio, Beatriz; Martínez, Noelia; Magadán, Alfonso H; Alvarez, Miguel A
2008-12-01
One of the main microbiological problems of the dairy industry is the susceptibility of starter bacteria to virus infections. Lactobacillus delbrueckii, a component of thermophilic starter cultures used in the manufacture of several fermented dairy products, including yogurt, is also sensitive to bacteriophage attacks. To avoid the problems associated with these viruses, quick and sensitive detection methods are necessary. In the present study, a fast real-time quantitative polymerase chain reaction assay for the direct detection and quantification of L. delbrueckii phages in milk was developed. A set of primers and a TaqMan MGB probe was designed, based on the lysin gene sequence of different L. delbrueckii phages. The results show the proposed method to be a rapid (total processing time 30 min), specific and highly sensitive technique for detecting L. delbrueckii phages in milk.
Marzipan: polymerase chain reaction-driven methods for authenticity control.
Brüning, Philipp; Haase, Ilka; Matissek, Reinhard; Fischer, Markus
2011-11-23
According to German food guidelines, almonds are the only oilseed ingredient allowed for the production of marzipan. Persipan is a marzipan surrogate in which the almonds are replaced by apricot or peach kernels. Cross-contamination of marzipan products with persipan may occur if both products are produced using the same production line. Adulterations or dilutions, respectively, of marzipan with other plant-derived products, for example, lupine or pea, have also been found. Almond and apricot plants are closely related. Consequently, classical analytical methods for the identification/differentiation often fail or are not sensitive enough to quantify apricot concentrations below 1%. Polymerase chain reaction (PCR)-based methods have been shown to enable the differentiation of closely related plant species in the past. These methods are characterized by high specificity and low detection limits. Isolation methods were developed and evaluated especially with respect to the matrix marzipan in terms of yield, purity, integrity, and amplificability of the isolated DNA. For the reliable detection of apricot, peach, pea, bean, lupine, soy, cashew, pistachio, and chickpea, qualitative standard and duplex PCR methods were developed and established. The applicability of these methods was tested by cross-reaction studies and analysis of spiked raw pastes. Contaminations at the level of 0.1% could be detected.
Microfabricated electrochemiluminescence cell for chemical reaction detection
Northrup, M. Allen; Hsueh, Yun-Tai; Smith, Rosemary L.
2003-01-01
A detector cell for a silicon-based or non-silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The detector cell is an electrochemiluminescence cell constructed of layers of silicon with a cover layer of glass, with spaced electrodes located intermediate various layers forming the cell. The cell includes a cavity formed therein and fluid inlets for directing reaction fluid therein. The reaction chamber and detector cell may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The ECL cell may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.
Baumketner, Andrij
2009-01-01
The performance of reaction-field methods to treat electrostatic interactions is tested in simulations of ions solvated in water. The potential of mean force between sodium chloride pair of ions and between side chains of lysine and aspartate are computed using umbrella sampling and molecular dynamics simulations. It is found that in comparison with lattice sum calculations, the charge-group-based approaches to reaction-field treatments produce a large error in the association energy of the ions that exhibits strong systematic dependence on the size of the simulation box. The atom-based implementation of the reaction field is seen to (i) improve the overall quality of the potential of mean force and (ii) remove the dependence on the size of the simulation box. It is suggested that the atom-based truncation be used in reaction-field simulations of mixed media. PMID:19292522
Quantitative analysis of pork and chicken products by droplet digital PCR.
Cai, Yicun; Li, Xiang; Lv, Rong; Yang, Jielin; Li, Jian; He, Yuping; Pan, Liangwen
2014-01-01
In this project, a highly precise quantitative method based on the digital polymerase chain reaction (dPCR) technique was developed to determine the weight of pork and chicken in meat products. Real-time quantitative polymerase chain reaction (qPCR) is currently used for quantitative molecular analysis of the presence of species-specific DNAs in meat products. However, it is limited in amplification efficiency and relies on standard curves based Ct values, detecting and quantifying low copy number target DNA, as in some complex mixture meat products. By using the dPCR method, we find the relationships between the raw meat weight and DNA weight and between the DNA weight and DNA copy number were both close to linear. This enabled us to establish formulae to calculate the raw meat weight based on the DNA copy number. The accuracy and applicability of this method were tested and verified using samples of pork and chicken powder mixed in known proportions. Quantitative analysis indicated that dPCR is highly precise in quantifying pork and chicken in meat products and therefore has the potential to be used in routine analysis by government regulators and quality control departments of commercial food and feed enterprises.
Takahashi, Daisuke; Inomata, Tatsuji; Fukui, Tatsuya
2017-06-26
We previously reported an efficient peptide synthesis method, AJIPHASE®, that comprises repeated reactions and isolations by precipitation. This method utilizes an anchor molecule with long-chain alkyl groups as a protecting group for the C-terminus. To further improve this method, we developed a one-pot synthesis of a peptide sequence wherein the synthetic intermediates were isolated by solvent extraction instead of precipitation. A branched-chain anchor molecule was used in the new process, significantly enhancing the solubility of long peptides and the operational efficiency compared with the previous method, which employed precipitation for isolation and a straight-chain aliphatic group. Another prerequisite for this solvent-extraction-based strategy was the use of thiomalic acid and DBU for Fmoc deprotection, which facilitates the removal of byproducts, such as the fulvene adduct. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hui, Yuan; Wu, Zhiming; Qin, Zhiran; Zhu, Li; Liang, Junhe; Li, Xujuan; Fu, Hanmin; Feng, Shiyu; Yu, Jianhai; He, Xiaoen; Lu, Weizhi; Xiao, Weiwei; Wu, Qinghua; Zhang, Bao; Zhao, Wei
2018-06-01
The establishment of highly sensitive diagnostic methods is critical in the early diagnosis and control of Zika virus (ZIKV) and in preventing serious neurological complications of ZIKV infection. In this study, we established micro-droplet digital polymerase chain reaction (ddPCR) and real-time quantitative PCR (RT-qPCR) protocols for the detection of ZIKV based on the amplification of the NS5 gene. For the ZIKV standard plasmid, the RT-qPCR results showed that the cycle threshold (Ct) value was linear from 10 1 to 10 8 copy/μL, with a standard curve R 2 of 0.999 and amplification efficiency of 92.203%; however, a concentration as low as 1 copy/μL could not be detected. In comparison with RT-qPCR, the ddPCR method resulted in a linear range of 10 1 -10 4 copy/μL and was able to detect concentrations as low as 1 copy/μL. Thus, for detecting ZIKV from clinical samples, RT-qPCR is a better choice for high-concentration samples (above 10 1 copy/μL), while ddPCR has excellent accuracy and sensitivity for low-concentration samples. These results indicate that the ddPCR method should be of considerable use in the early diagnosis, laboratory study, and monitoring of ZIKV.
Detection of foodborne pathogens using microarray technology
USDA-ARS?s Scientific Manuscript database
Assays based on the polymerase chain reaction (PCR) are now accepted methods for rapidly confirming the presence or absence of specific pathogens in foods and other types of samples. Conventional PCR requires the use of agarose gel electrophoresis to detect the PCR product; whereas, real-time PCR c...
Suzuki, Tadashi; Shinoda, Mio; Osanai, Yohei; Isozaki, Tasuku
2013-08-22
Photoreaction of 2-(3-benzoylphenyl)propionic acid (ketoprofen, KP) with basic amino acids (histidine, lysine, and arginine) and dipeptides (carnosine and anserine) including a histidine moiety in phosphate buffer solution (pH 7.4) has been investigated with transient absorption spectroscopy. With UV irradiation KP(-) gave rise to a carbanion through a decarboxylation reaction, and the carbanion easily abstracted a proton from the surrounding molecule to yield a 3-ethylbenzophenone ketyl biradical (EBPH). The dipeptides as well as the basic amino acids were found to accelerate the proton transfer reaction whereas alanine and glycine had no effect on the reaction, revealing that these amino acids having a protonated side chain act as a proton donor. The formation quantum yield of EBPH was estimated to be fairly large by means of an actinometrical method with benzophenone, and the bimolecular reaction rate constant for the proton transfer between the carbanion and the protonated basic amino acids or the protonated dipeptides was successfully determined. It has become apparent that the bimolecular reaction rate constant for the proton transfer depended on the acid dissociation constant for the side chain of the amino acids for the first time. This reaction mechanism was interpreted by difference of the heat of reaction for each basic amino acid based on the thermodynamical consideration. These results strongly suggest that the side chain of the basic amino acid residue in protein should play an important role for photochemistry of KP in vivo.
Quantitative polymerase chain reaction (QPCR) can be used as a rapid method for detecting fecal indicator bacteria. Because false negative results can be caused by PCR inhibitors that co-extract with the DNA samples, an internal amplification control (IAC) should be run with eac...
Polymerase Chain Reaction/Rapid Methods Are Gaining a Foothold in Developing Countries.
Ragheb, Suzan Mohammed; Jimenez, Luis
Detection of microbial contamination in pharmaceutical raw materials and finished products is a critical factor to guarantee their safety, stability, and potency. Rapid microbiological methods-such as polymerase chain reaction-have been widely applied to clinical and food quality control analysis. However, polymerase chain reaction applications to pharmaceutical quality control have been rather slow and sporadic. Successful implementation of these methods in pharmaceutical companies in developing countries requires important considerations to provide sensitive and robust assays that will comply with good manufacturing practices. In recent years several publications have encouraged the application of molecular techniques in the microbiological assessment of pharmaceuticals. One of these techniques is polymerase chain reaction (PCR). The successful application of PCR in the pharmaceutical industry in developing countries is governed by considerable factors and requirements. These factors include the setting up of a PCR laboratory and the choice of appropriate equipment and reagents. In addition, the presence of well-trained analysts and establishment of quality control and quality assurance programs are important requirements. The pharmaceutical firms should take into account these factors to allow better chances for regulatory acceptance and wide application of this technique. © PDA, Inc. 2014.
Evaluation of Polymerase Chain Reaction for Detecting Coliform Bacteria in Drinking Water Sources
Isfahani, Bahram Nasr; Fazeli, Hossein; Babaie, Zeinab; Poursina, Farkhondeh; Moghim, Sharareh; Rouzbahani, Meisam
2017-01-01
Background: Coliform bacteria are used as indicator organisms for detecting fecal pollution in water. Traditional methods including microbial culture tests in lactose-containing media and enzyme-based tests for the detection of β-galactosidase; however, these methods are time-consuming and less specific. The aim of this study was to evaluate polymerase chain reaction (PCR) for detecting coliform. Materials and Methods: Totally, 100 of water samples from Isfahan drinking water source were collected. Coliform bacteria and Escherichia coli were detected in drinking water using LacZ and LamB genes in PCR method performed in comparison with biochemical tests for all samples. Results: Using phenotyping, 80 coliform isolates were found. The results of the biochemical tests illustrated 78.7% coliform bacteria and 21.2% E. coli. PCR results for LacZ and LamB genes were 67.5% and 17.5%, respectively. Conclusion: The PCR method was shown to be an effective, sensitive, and rapid method for detecting coliform and E. coli in drinking water from the Isfahan drinking water sources. PMID:29142893
Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng
2013-01-01
Background Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. Methods We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. Results We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. Conclusions We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins. PMID:23405059
2017-01-01
We report a novel molecular assay, based on helicase-dependent amplification (HDA), for the detection of enterococci as markers for fecal pollution in water. This isothermal assay targets the same Enterococcus 23S rRNA gene region as the existing quantitative polymerase chain reaction (qPCR) assays of U.S. Environmental Protection Agency Methods 1611 and 1609 but can be entirely performed on a simple heating block. The developed Enterococcus HDA assay successfully discriminated 15 enterococcal from 15 non-enterococcal reference strains and reliably detected 48 environmental isolates of enterococci. The limit of detection was 25 target copies per reaction, only 3 times higher than that of qPCR. The applicability of the assay was tested on 30 environmental water sample DNA extracts, simulating a gradient of fecal pollution. Despite the isothermal nature of the reaction, the HDA results were consistent with those of the qPCR reference. Given this performance, we conclude that the developed Enterococcus HDA assay has great potential as a qualitative molecular screening method for resource-limited settings when combined with compatible up- and downstream processes. This amplification strategy can pave the way for developing a new generation of rapid, low-cost, and field-deployable molecular diagnostic tools for water quality monitoring. PMID:28541661
9 CFR 145.33 - Terminology and classification; flocks and products.
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Such action shall not be taken until a thorough investigation has been made by the Service and the.... gallisepticum as provided in § 145.14(b), or by a polymerase chain reaction (PCR)-based procedure approved by...(b) or by a polymerase chain reaction (PCR)-based procedure approved by the Department. If fewer than...
NASBA: A detection and amplification system uniquely suited for RNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sooknanan, R.; Malek, L.T.
1995-06-01
The invention of PCR (polymerase chain reaction) has revolutionized our ability to amplify and manipulate a nucleic acid sequence in vitro. The commercial rewards of this revolution have driven the development of other nuclei acid amplification and detection methodologies. This has created an alphabet soup of technologies that use different amplification methods, including NASBA (nucleic acid sequence-based amplification), LCR (ligase chain reaction), SDA (strand displacement amplification), QBR (Q-beta replicase), CPR (cycling probe reaction), and bDNA (branched DNA). Despite the differences in their processes, these amplification systems can be separated into two broad categories based on how they achieve their goal:more » sequence-based amplification systems, such as PCR, NASBA, and SDA, amplify a target nucleic acid sequence. Signal-based amplification systems, such as LCR, QBR, CPR and bDNA, amplify or alter a signal from a detection reaction that is target-dependent. While the various methods have relative strengths and weaknesses, only NASBA offers the unique ability to homogeneously amplify an RNA analyte in the presence of homologous genomic DNA under isothermal conditions. Since the detection of RNA sequences almost invariably measures biological activity, it is an excellent prognostic indicator of activities as diverse as virus production, gene expression, and cell viability. The isothermal nature of the reaction makes NASBA especially suitable for large-scale manual screening. These features extend NASBA`s application range from research to commercial diagnostic applications. Field test kits are presently under development for human diagnostics as well as the burgeoning fields of food and environmental diagnostic testing. These developments suggest future integration of NASBA into robotic workstations for high-throughput screening as well. 17 refs., 1 tab.« less
Microfabricated sleeve devices for chemical reactions
Northrup, M. Allen
2003-01-01
A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.
Checking of individuality by DNA profiling.
Brdicka, R; Nürnberg, P
1993-08-25
A review of methods of DNA analysis used in forensic medicine for identification, paternity testing, etc. is provided. Among other techniques, DNA fingerprinting using different probes and polymerase chain reaction-based techniques such as amplified sequence polymorphisms and minisatellite variant repeat mapping are thoroughly described and both theoretical and practical aspects are discussed.
Dayan, Lior; Sprecher, Hannah; Hananni, Amos; Rosenbaum, Hana; Milloul, Victor; Oren, Ilana
2007-01-01
Vertebral osteomyelitis and disciitis caused by Aspergillus spp is a rare event. Early diagnosis and early antifungal therapy are critical in improving the prognosis for these patients. The diagnosis of invasive fungal infections is, in many cases, not straightforward and requires invasive procedures so that histological examination and culture can be performed. Furthermore, current traditional microbiological tests (ie, cultures and stains) lack the sensitivity for diagnosis of invasive aspergillosis. To present a case of vertebral osteomyelitis caused by Aspergillus spp diagnosed using a novel polymerase chain reaction (PCR) assay. Case report. Aspergillus DNA was detected in DNA extracted from the necrotic bone tissue by using a "panfungal" PCR novel method. Treatment with voriconazole was started based on the diagnosis. Using this novel technique enabled us to diagnose accurately an unusual bone pathogen that requires a unique treatment.
Kidd, I M; Clark, D A; Emery, V C
2000-06-01
Quantitative-competitive polymerase chain reaction (QCPCR) is a well-optimised and objective methodology for the determination of viral load in clinical specimens. A major advantage of QCPCR is the ability to control for the differential modulation of the PCR process in the presence of potentially inhibitory material. QCPCR protocols were developed previously for CMV, HHV-6, HHV-7 and HHV-8 and relied upon radioactively labelled primers, followed by autoradiography of the separated and digested PCR products to quantify viral load. Whilst this approach offers high accuracy and dynamic range, non-radioactive approaches would be attractive. Here, an alternative detection system is reported, based on simple ethidium bromide staining and computer analysis of the separated reaction products, which enables its adoption in the analysis of a large number of samples. In calibration experiments using cloned HHV-7 DNA, the ethidium bromide detection method showed an improved correlation with known copy number over that obtained with the isotopic method. In addition, 67 HHV-7 PCR positive blood samples, derived from immunocompromised patients, were quantified using both detection techniques. The results showed a highly significant correlation with no significant difference between the two methods. The applicability of the computerised densitometry method in the routine laboratory is discussed.
Adamski, Mateusz G; Gumann, Patryk; Baird, Alison E
2014-01-01
Over the past decade rapid advances have occurred in the understanding of RNA expression and its regulation. Quantitative polymerase chain reactions (qPCR) have become the gold standard for quantifying gene expression. Microfluidic next generation, high throughput qPCR now permits the detection of transcript copy number in thousands of reactions simultaneously, dramatically increasing the sensitivity over standard qPCR. Here we present a gene expression analysis method applicable to both standard polymerase chain reactions (qPCR) and high throughput qPCR. This technique is adjusted to the input sample quantity (e.g., the number of cells) and is independent of control gene expression. It is efficiency-corrected and with the use of a universal reference sample (commercial complementary DNA (cDNA)) permits the normalization of results between different batches and between different instruments--regardless of potential differences in transcript amplification efficiency. Modifications of the input quantity method include (1) the achievement of absolute quantification and (2) a non-efficiency corrected analysis. When compared to other commonly used algorithms the input quantity method proved to be valid. This method is of particular value for clinical studies of whole blood and circulating leukocytes where cell counts are readily available.
Kinetics of Chemical Reactions in Flames
NASA Technical Reports Server (NTRS)
Zeldovich, Y.; Semenov, N.
1946-01-01
In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.
Northrup, M. Allen
2003-08-05
A silicon-based sleeve type chemical reaction chamber that combines heaters, such as doped polysilicon for heating, and bulk silicon for convection cooling. The reaction chamber combines a critical ratio of silicon and non-silicon based materials to provide the thermal properties desired. For example, the chamber may combine a critical ratio of silicon and silicon nitride to the volume of material to be heated (e.g., a liquid) in order to provide uniform heating, yet low power requirements. The reaction chamber will also allow the introduction of a secondary tube (e.g., plastic) into the reaction sleeve that contains the reaction mixture thereby alleviating any potential materials incompatibility issues. The reaction chamber may be utilized in any chemical reaction system for synthesis or processing of organic, inorganic, or biochemical reactions, such as the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction, which are examples of a synthetic, thermal-cycling-based reaction. The reaction chamber may also be used in synthesis instruments, particularly those for DNA amplification and synthesis.
Carter, Catherine F; Lange, Heiko; Sakai, Daiki; Baxendale, Ian R; Ley, Steven V
2011-03-14
Diastereoselective chain-elongation reactions are important transformations for the assembly of complex molecular structures, such as those present in polyketide natural products. Here we report new methods for performing crotylation reactions and homopropargylation reactions by using newly developed low-temperature flow-chemistry technology. In-line purification protocols are described, as well as the application of the crotylation protocol in an automated multi-step sequence. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han
2015-01-01
Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are chances for the development of new techniques for the detection and identification of foodborne with improved features. PMID:26579116
Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han
2015-01-01
Listeria monocytogenes, a foodborne pathogen that can cause listeriosis through the consumption of food contaminated with this pathogen. The ability of L. monocytogenes to survive in extreme conditions and cause food contaminations have become a major concern. Hence, routine microbiological food testing is necessary to prevent food contamination and outbreaks of foodborne illness. This review provides insight into the methods for cultural detection, enumeration, and molecular identification of L. monocytogenes in various food samples. There are a number of enrichment and plating media that can be used for the isolation of L. monocytogenes from food samples. Enrichment media such as buffered Listeria enrichment broth, Fraser broth, and University of Vermont Medium (UVM) Listeria enrichment broth are recommended by regulatory agencies such as Food and Drug Administration-bacteriological and analytical method (FDA-BAM), US Department of Agriculture-Food and Safety (USDA-FSIS), and International Organization for Standardization (ISO). Many plating media are available for the isolation of L. monocytogenes, for instance, polymyxin acriflavin lithium-chloride ceftazidime aesculin mannitol, Oxford, and other chromogenic media. Besides, reference methods like FDA-BAM, ISO 11290 method, and USDA-FSIS method are usually applied for the cultural detection or enumeration of L. monocytogenes. most probable number technique is applied for the enumeration of L. monocytogenes in the case of low level contamination. Molecular methods including polymerase chain reaction, multiplex polymerase chain reaction, real-time/quantitative polymerase chain reaction, nucleic acid sequence-based amplification, loop-mediated isothermal amplification, DNA microarray, and next generation sequencing technology for the detection and identification of L. monocytogenes are discussed in this review. Overall, molecular methods are rapid, sensitive, specific, time- and labor-saving. In future, there are chances for the development of new techniques for the detection and identification of foodborne with improved features.
Oishi, Motoi
2015-05-01
An enzyme-free and isothermal microRNA (miRNA) detection method has been developed based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction (HCR) on magnetic beads (MBs). The click-chemical ligation between an azide-modified probe DNA and a dibenzocyclooctyne-modified probe DNA occurred through the hybridization of target miRNA (miR-141). HCR on MBs was performed by the addition of DNA hairpin monomers (H1 and H2). After magnetic separation and denaturation/rehybridization of HCR products ([H1/H2] n ), the resulting HCR products were analyzed by the fluorescence emitted from an intercalative dye, allowing amplification of the fluorescent signal. The proposed assay had a limit of detection of 0.55 fmol, which was 230-fold more sensitive than that of the HCR on the MBs coupled with a conventional sandwich hybridization assay (without click-chemical ligation) (limit of detection 127 fmol). Additionally, the proposed assay could discriminate between miR-141 and other miR-200 family members. In contrast to quantitative reverse transcription polymerase chain reaction techniques using enzymes and thermal cycling, this is an enzyme-free assay that can be conducted under isothermal conditions and can specifically detect miR-141 in fetal bovine serum.
Zhang, Shu-Xin; Chai, Xin-Sheng; Huang, Bo-Xi; Mai, Xiao-Xia
2015-08-07
Alkylphenol polyethoxylates (APEO), surfactants used in the production of textiles, have the potential to move from the fabric to the skin of the person wearing the clothes, posing an inherent risk of adverse health consequences. Therefore, the textile industry needs a fast, robust method for determining aqueous extractable APEO in fabrics. The currently-favored HPLC methods are limited by the presence of a mixture of analytes (due to the molecular weight distribution) and a lack of analytical standards for quantifying results. As a result, it has not been possible to reach consensus on a standard method for the determination of APEO in textiles. This paper addresses these limitations through the use of reaction-based head space-gas chromatography (HS-GC). Specifically, water is used to simulate body sweat and extract APEO. HI is then used to react the ethoxylate chains to depolymerize the chains into iodoethane that is quantified through HS-GC, providing an estimate of the average amount of APEO in the clothing. Data are presented to justify the optimal operating conditions; i.e., water extraction at 60°C for 1h and reaction with a specified amount of HI in the headspace vial at 135°C for 4h. The results show that the HS-GC method has good precision (RSD<10%) and good accuracy (recoveries from 95 to 106%) for the quantification of APEO content in textile and related materials. As such, the method should be a strong candidate to become a standard method for such determinations. Copyright © 2015 Elsevier B.V. All rights reserved.
Protein side chain rotational isomerization: A minimum perturbation mapping study
NASA Astrophysics Data System (ADS)
Haydock, Christopher
1993-05-01
A theory of the rotational isomerization of the indole side chain of tryptophan-47 of variant-3 scorpion neurotoxin is presented. The isomerization potential energy, entropic part of the isomerization free energy, isomer probabilities, transition state theory reaction rates, and indole order parameters are calculated from a minimum perturbation mapping over tryptophan-47 χ1×χ2 torsion space. A new method for calculating the fluorescence anisotropy from molecular dynamics simulations is proposed. The method is based on an expansion that separates transition dipole orientation from chromophore dynamics. The minimum perturbation potential energy map is inverted and applied as a bias potential for a 100 ns umbrella sampling simulation. The entropic part of the isomerization free energy as calculated by minimum perturbation mapping and umbrella sampling are in fairly close agreement. Throughout, the approximation is made that two glutamine and three tyrosine side chains neighboring tryptophan-47 are truncated at the Cβ atom. Comparison with the previous combination thermodynamic perturbation and umbrella sampling study suggests that this truncated neighbor side chain approximation leads to at least a qualitatively correct theory of tryptophan-47 rotational isomerization in the wild type variant-3 scorpion neurotoxin. Analysis of van der Waals interactions in a transition state region indicates that for the simulation of barrier crossing trajectories a linear combination of three specially defined dihedral angles will be superior to a simple side chain dihedral reaction coordinate.
Siqueira, José F; Rôças, Isabela N; Andrade, Arnaldo F B; de Uzeda, Milton
2003-02-01
A 16S rDNA-based polymerase chain reaction (PCR) method was used to detect Peptostreptococcus micros in primary root canal infections. Samples were collected from 50 teeth having carious lesions, necrotic pulps, and different forms of periradicular diseases. DNA extracted from the samples was amplified using the PCR assay, which yielded a specific fragment of P. micros 16S rDNA. P. micros was detected in 6 of 22 root canals associated with asymptomatic chronic periradicular lesions (27.3%), 2 of 8 teeth with acute apical periodontitis (25%), and 6 of 20 cases of acute periradicular abscess (30%). In general, P. micros was found in 14 of 50 cases (28%). There was no correlation between the presence of P. micros and the occurrence of symptoms. Findings suggested that P. micros can be involved in the pathogenesis of different forms of periradicular lesions.
Polymerase chain reaction-based detection of B-cell monoclonality in cytologic specimens.
Chen, Y T; Mercer, G O; Chen, Y
1993-11-01
Thirty-seven cytologic cell blocks were evaluated for B-cell monoclonality by polymerase chain reaction (PCR), 16 of them cytologically positive for lymphoma, and 21 suspicious for lymphoma but morphologically nondiagnostic. Of 37 specimens, 13 (35%) showed B-cell monoclonality, including six of 16 cytologically positive samples and seven of 21 cytologically suspicious ones. Of these 13 positive samples, seven were positive using crude lysates as substrates, and six additional positive samples were identified only when DNAs were purified and concentrated. Analysis of the DNAs further revealed poor polymerase chain reaction amplifiability and low DNA yield in many samples, indicating that cell block materials are suboptimal for this assay. We concluded that B-cell monoclonality can be detected in ethanol-fixed cytologic samples, and usage of unembedded material will likely improve the sensitivity. In specimens cytologically suspicious for lymphoma, polymerase chain reaction-based identification of monoclonal B-cell population supports the diagnosis of B-cell lymphoma and is a potentially useful test in solving this diagnostic dilemma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasil'ev, Vasilii I; Soskin, M S
2013-02-28
A natural singular dynamics of elliptically polarised speckle-fields induced by the 'optical damage' effect in a photorefractive crystal of lithium niobate by a passing beam of a helium - neon laser is studied by the developed methods of singular optics. For the polarisation singularities (C points), a new class of chain reactions, namely, singular chain reactions are discovered and studied. It is shown that they obey the topological charge and sum Poincare index conservation laws. In addition, they exist for all the time of crystal irradiation. They consist of a series of interlocking chains, where singularity pairs arising in amore » chain annihilate with singularities from neighbouring independently created chains. Less often singular 'loop' reactions are observed where arising pairs of singularities annihilate after reversible transformations in within the boundaries of a single speckle. The type of a singular reaction is determined by a topology and dynamics of the speckles, in which the reactions are developing. (laser optics 2012)« less
Peng, Cheng; Wang, Hua; Xu, Xiaoli; Wang, Xiaofu; Chen, Xiaoyun; Wei, Wei; Lai, Yongmin; Liu, Guoquan; Godwin, Ian Douglas; Li, Jieqin; Zhang, Ling; Xu, Junfeng
2018-05-15
Gene editing techniques are becoming powerful tools for modifying target genes in organisms. Although several methods have been developed to detect gene-edited organisms, these techniques are time and labour intensive. Meanwhile, few studies have investigated high-throughput detection and screening strategies for plants modified by gene editing. In this study, we developed a simple, sensitive and high-throughput quantitative real-time (qPCR)-based method. The qPCR-based method exploits two differently labelled probes that are placed within one amplicon at the gene editing target site to simultaneously detect the wild-type and a gene-edited mutant. We showed that the qPCR-based method can accurately distinguish CRISPR/Cas9-induced mutants from the wild-type in several different plant species, such as Oryza sativa, Arabidopsis thaliana, Sorghum bicolor, and Zea mays. Moreover, the method can subsequently determine the mutation type by direct sequencing of the qPCR products of mutations due to gene editing. The qPCR-based method is also sufficiently sensitive to distinguish between heterozygous and homozygous mutations in T 0 transgenic plants. In a 384-well plate format, the method enabled the simultaneous analysis of up to 128 samples in three replicates without handling the post-polymerase chain reaction (PCR) products. Thus, we propose that our method is an ideal choice for screening plants modified by gene editing from many candidates in T 0 transgenic plants, which will be widely used in the area of plant gene editing. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.
Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng
2013-01-01
Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation-reduction reactions. In these oxidation-reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.
Cabada, Miguel M.; Malaga, Jose L.; Castellanos-Gonzalez, Alejandro; Bagwell, Kelli A.; Naeger, Patrick A.; Rogers, Hayley K.; Maharsi, Safa; Mbaka, Maryann; White, A. Clinton
2017-01-01
Fasciola hepatica is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect Fasciola infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the Fasciola RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The Fasciola RPA lateral flow has the potential for deployment to endemic areas after further characterization. PMID:27821691
USDA-ARS?s Scientific Manuscript database
The objective of the study was to use band-based molecular methods including BOX-PCR (Polymerase Chain Reaction) and Pulsed-Field Gel Electrophoresis (PFGE) to determine if genetically related enterococci were found among different stores, food types, or years. Enterococci were also characterized f...
USE OF MOLECULAR PROBES TO ASSESS GEOGRAPHIC DISTRIBUTION OF PFIESTERIA SPECIES. (R827084)
We have developed multiple polymerase chain reaction (PCR)-based methods for the
detection of Pfiesteria sp. in cultures and environmental samples. More than 2,100 water and
sediment samples from estuarine sites of the U.S. Atlantic and gulf coasts were assayed for the
p...
Modern techniques for tracking fecal pollution in environmental waters require investing in DNA-based methods to determine the presence of specific fecal sources. To help water quality managers decide whether to employ routine polymerase chain reaction (PCR) or quantitative PC...
Latha, C.; Anu, C. J.; Ajaykumar, V. J.; Sunil, B.
2017-01-01
Aim: The objective of the study was to investigate the occurrence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using the multiplex polymerase chain reaction (PCR) method. Materials and Methods: The assay combined an enrichment step in tryptic soy broth with yeast extract formulated for the simultaneous growth of target pathogens, DNA isolation and multiplex PCR. A total of 1134 samples including beef (n=349), chicken (n=325), pork (n=310), chevon (n=50), and meat products (n=100) were collected from different parts of Kerala, India. All the samples were subjected to multiplex PCR analysis and culture-based detection for the four pathogens in parallel. Results: Overall occurrence of L. monocytogenes was 0.08 % by cultural method. However, no L. monocytogenes was obtained by multiplex PCR method. Yersinia enterocolitica was obtained from beef and pork samples. A high prevalence of S. aureus (46.7%) was found in all types of meat samples tested. None of the samples was positive for S. Typhimurium. Conclusion: Multiplex PCR assay used in this study can detect more than one pathogen simultaneously by amplifying more than one target gene in a single reaction, which can save time and labor cost. PMID:28919685
Detection of Listeria monocytogenes by using the polymerase chain reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessesen, M.T.; Luo, Q.; Blaser, M.J.
1990-09-01
A method was developed for detection of Listeria monocytogens by polymerase chain reaction amplification followed by agarose gel electrophoresis or dot blot analysis with {sup 32}P-labeled internal probe. The technique identified 95 of 95 L. monocytogenes strains, 0 of 12 Listeria strains of other species, and 0 of 12 non-Listeria strains.
Bio-barcode gel assay for microRNA
NASA Astrophysics Data System (ADS)
Lee, Hyojin; Park, Jeong-Eun; Nam, Jwa-Min
2014-02-01
MicroRNA has been identified as a potential biomarker because expression level of microRNA is correlated with various cancers. Its detection at low concentrations would be highly beneficial for cancer diagnosis. Here, we develop a new type of a DNA-modified gold nanoparticle-based bio-barcode assay that uses a conventional gel electrophoresis platform and potassium cyanide chemistry and show this assay can detect microRNA at aM levels without enzymatic amplification. It is also shown that single-base-mismatched microRNA can be differentiated from perfectly matched microRNA and the multiplexed detection of various combinations of microRNA sequences is possible with this approach. Finally, differently expressed microRNA levels are selectively detected from cancer cells using the bio-barcode gel assay, and the results are compared with conventional polymerase chain reaction-based results. The method and results shown herein pave the way for practical use of a conventional gel electrophoresis for detecting biomolecules of interest even at aM level without polymerase chain reaction amplification.
Pérez, Lester J.; de Arce, Heidy Díaz
2009-01-01
Aujeszky’s disease, also known as pseudorabies causes severe economic losses in swine industry and affects the pig husbandry all over the world. The conventional diagnostic procedure is time-consuming and false-negative results may occur in submissions from latently infected animals. The development, optimization and evaluation of a polymerase chain reaction (PCR) assay are presented for the diagnosis of pseudorabies infection. This assay was based on the amplification of a highly conserved viral gD gene fragment. PCR products of the expected size were obtained from PRV strains. Non-specific reactions were not observed when a related herpesvirus, other porcine DNA genome viruses and uninfected cells were used to assess PCR. The analytical sensitivity of the test was estimated to be 1.34 TCID50/ 50 uL. The analysis of tissue homogenate samples from naturally infected animals proved the potential usefulness of the method for a rapid disease diagnosis from field cases. A rapid, sensitive and specific PCR-based diagnostic assay to detect pseudorabies virus in clinical samples is provided. PMID:24031383
Nuchprayoon, Surang; Saksirisampant, Wilai; Jaijakul, Siraya; Nuchprayoon, Issarang
2007-01-01
We evaluated the diagnostic value of Flinders Technology Associates (FTA) filter paper together with polymerase chain reaction (PCR) for detection of Pneumocystis jirovecii (carinii) from induced sputum (IS) and bronchoalveolar lavage fluid (BALF) samples. The study involved 162 patients with clinical diagnosis of pneumocystis pneumonia (PcP) of human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) patients and other immunocompromised patients. P. jirovecii cysts or trophozoites were detected in IS and BALF by cytological method. The mitochondrial 5S ribosomal ribonucleic acid (rRNA) gene of P. jirovecii was amplified from these samples by using FTA filters together with a one-step PCR method (FTA-PCR). With the FTA-PCR method, the sensitivity and specificity of the test compared to microscopic examination were 67% and 90% for IS, while they were 67% and 91% for BALF, respectively. The sensitivity and specificity of the FTA-PCR test was also comparable to PCR with the conventional deoxyribonucleic acid (DNA) extraction method. We concluded that FTA-PCR is useful to detect P. jirovecii in noninvasive IS.
Liu, Dayu; Ou, Ziyou; Xu, Mingfei; Wang, Lihui
2008-12-19
We present a sensitive, simple and robust on-chip transient isotachophoresis/capillary gel electrophoresis (tITP/CGE) method for the analysis of polymerase chain reaction (PCR) samples. Using chloride ions in the PCR buffer and N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) in the background electrolyte, respectively, as the leading and terminating electrolytes, the tITP preconcentration was coupled with CGE separation with double-T shaped channel network. The tITP/CGE separation was carried out with a single running buffer. The separation process involved only two steps that were performed continuously with the sequential switching of four voltage outputs. The tITP/CGE method showed an analysis time and a separation efficiency comparable to those of standard CGE, while the signal intensity was enhanced by factors of over 20. The limit of detection of the chip-based tITP/CGE method was estimated to be 1.1 ng/mL of DNA in 1x PCR buffer using confocal fluorescence detection following 473 nm laser excitation.
DL-ADR: a novel deep learning model for classifying genomic variants into adverse drug reactions.
Liang, Zhaohui; Huang, Jimmy Xiangji; Zeng, Xing; Zhang, Gang
2016-08-10
Genomic variations are associated with the metabolism and the occurrence of adverse reactions of many therapeutic agents. The polymorphisms on over 2000 locations of cytochrome P450 enzymes (CYP) due to many factors such as ethnicity, mutations, and inheritance attribute to the diversity of response and side effects of various drugs. The associations of the single nucleotide polymorphisms (SNPs), the internal pharmacokinetic patterns and the vulnerability of specific adverse reactions become one of the research interests of pharmacogenomics. The conventional genomewide association studies (GWAS) mainly focuses on the relation of single or multiple SNPs to a specific risk factors which are a one-to-many relation. However, there are no robust methods to establish a many-to-many network which can combine the direct and indirect associations between multiple SNPs and a serial of events (e.g. adverse reactions, metabolic patterns, prognostic factors etc.). In this paper, we present a novel deep learning model based on generative stochastic networks and hidden Markov chain to classify the observed samples with SNPs on five loci of two genes (CYP2D6 and CYP1A2) respectively to the vulnerable population of 14 types of adverse reactions. A supervised deep learning model is proposed in this study. The revised generative stochastic networks (GSN) model with transited by the hidden Markov chain is used. The data of the training set are collected from clinical observation. The training set is composed of 83 observations of blood samples with the genotypes respectively on CYP2D6*2, *10, *14 and CYP1A2*1C, *1 F. The samples are genotyped by the polymerase chain reaction (PCR) method. A hidden Markov chain is used as the transition operator to simulate the probabilistic distribution. The model can perform learning at lower cost compared to the conventional maximal likelihood method because the transition distribution is conditional on the previous state of the hidden Markov chain. A least square loss (LASSO) algorithm and a k-Nearest Neighbors (kNN) algorithm are used as the baselines for comparison and to evaluate the performance of our proposed deep learning model. There are 53 adverse reactions reported during the observation. They are assigned to 14 categories. In the comparison of classification accuracy, the deep learning model shows superiority over the LASSO and kNN model with a rate over 80 %. In the comparison of reliability, the deep learning model shows the best stability among the three models. Machine learning provides a new method to explore the complex associations among genomic variations and multiple events in pharmacogenomics studies. The new deep learning algorithm is capable of classifying various SNPs to the corresponding adverse reactions. We expect that as more genomic variations are added as features and more observations are made, the deep learning model can improve its performance and can act as a black-box but reliable verifier for other GWAS studies.
Zhu, Jing; Gan, Haiying; Wu, Jie; Ju, Huangxian
2018-04-17
A bipedal molecular machine powered surface programmatic chain reaction was designed for electrochemical signal amplification and highly sensitive electrochemical detection of protein. The bipedal molecular machine was built through aptamer-target specific recognition for the binding of one target protein with two DNA probes, which hybridized with surface-tethered hairpin DNA 1 (H1) via proximity effect to expose the prelocked toehold domain of H1 for the hybridization of ferrocene-labeled hairpin DNA 2 (H2-Fc). The toehold-mediated strand displacement reaction brought the electrochemical signal molecule Fc close to the electrode and meanwhile released the bipedal molecular machine to traverse the sensing surface by the surface programmatic chain reaction. Eventually, a large number of duplex structures of H1-H2 with ferrocene groups facing to the electrode were formed on the sensor surface to generate an amplified electrochemical signal. Using thrombin as a model target, this method showed a linear detection range from 2 pM to 20 nM with a detection limit of 0.76 pM. The proposed detection strategy was enzyme-free and allowed highly sensitive and selective detection of a variety of protein targets by using corresponding DNA-based affinity probes, showing potential application in bioanalysis.
A fluorometric determination of urinary 17-hydroxycorticosteroids using benzamidine.
Yamaguchi, Y; Seki, T
1984-10-01
A fluorometric determination of urinary 17-hydroxycorticosteroids using a reaction of benzamidine with compounds carrying the dihydroxyacetone side chain is described. The fluorescent compounds have excitation and emission maxima at 370 and 480 nm, respectively. The method includes enzymatic hydrolysis with beta-glucuronidase (EC 3.2.1.31, from Escherichia coli) and extraction with methylene chloride and generation of fluorescence in alkaline solution (pH 13.4). The specificity of the reaction was examined and the results were compared with those of an accepted method based on the Porter-Silber reaction (C. C. Porter and R. H. Silber, 1950, J. Biol. Chem. 185, 201-207). The coefficient of correlation was 0.945 with regression line of y = 0.91x + 0.7 mg/day (y, present method; x, Porter-Silber reaction method). Sensitivity of the reaction was 0.5 microgram/ml of standard or sample, mean recovery of cortisol added to five urine samples (5-micrograms addition) was 95%, and the coefficient of variation of the method (five repeated assays of sample with a value of 5.2 mg/liter) was 6.2%.
A noninvasive, direct real-time PCR method for sex determination in multiple avian species
Brubaker, Jessica L.; Karouna-Renier, Natalie K.; Chen, Yu; Jenko, Kathryn; Sprague, Daniel T.; Henry, Paula F.P.
2011-01-01
Polymerase chain reaction (PCR)-based methods to determine the sex of birds are well established and have seen few modifications since they were first introduced in the 1990s. Although these methods allowed for sex determination in species that were previously difficult to analyse, they were not conducive to high-throughput analysis because of the laboriousness of DNA extraction and gel electrophoresis. We developed a high-throughput real-time PCR-based method for analysis of sex in birds, which uses noninvasive sample collection and avoids DNA extraction and gel electrophoresis.
Gillespie, S H; McHugh, T D; Hughes, J E; Dickens, A; Kyi, M S; Kelsey, M
1997-01-01
AIMS: To characterise the genotypes of penicillin resistant Streptococcus pneumoniae infecting patients in a care of the elderly ward and to study its transmission in a hospital environment. METHODS: Isolates of S pneumoniae were cultured from specimens obtained from patients who had been admitted to a care of the elderly ward where an outbreak had occurred. Penicillin resistant S pneumoniae were also obtained from a series of surveillance throat swabs taken from patients in the same ward. In addition, all penicillin resistant S pneumoniae isolated from specimens submitted for culture at the time of the outbreak were included. Four sensitive strains isolated from a routine microbiology laboratory were included as controls. A simple polymerase chain reaction (PCR) based genotyping method for the penicillin binding protein (PBP) genes 1a, 2x, and 2b was used to characterise the genotypes. RESULTS: Nine patients were infected with serotype 9 S pneumoniae. Four of these patients died; two deaths were directly attributable to the infection. Tested against a battery of haemolytic streptococci and other organisms found in the respiratory tract, only two false positive reactions for PBP 2x were found among S mitis. The method demonstrated that the outbreak strain had altered PBP 1a, 2b, and 2x genes, a pattern clearly distinguishable from other penicillin resistant strains isolated at the same time. CONCLUSIONS: This method is simple to perform and would enable many laboratories to characterise the genotype of penicillin resistant S pneumoniae and investigate transmission in their hospitals. Images PMID:9462268
Annexin II-Dependent Mechanism of Breast Cancer Progression
2008-06-01
and migratory capacities of the annexin II-suppressed cells. Methods: We used antisense RNA technology to silence the annexin II gene in MDA...gene in mDA-MB231 cells using polymerase chain reaction-based short hairpin RNA (1–7 months) b) Characterize the proliferative, invasive, and...MB231 cells according to methods described by Li et al. (24). Briefly, three different diothionated antisense nucleotides (ODN) were synthesized
The purpose of this project was to answer questions related to storage of samples to be analyzed by the quantitative polymerase chain reaction (qPCR)-based assays for fecal indicator bacteria. The project was divided into two parts. The first part was to determine if filters th...
Experimental Studies of Light-Ion Nuclear Reactions Using Low-Energy RI Beams
NASA Astrophysics Data System (ADS)
Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Sakaguchi, Y.; Abe, K.; Shimuzu, H.; Wakabayashi, Y.; Hashimoto, T.; Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; La Cognata, M.; Lamia, L.; Romano, S.; Kubono, S.; Iwasa, N.; Teranishi, T.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.; Khiem, L. H.; Duy, N. N.; Kato, S.; Komatsubara, T.; Coc, A.; de Sereville, N.; Hammache, F.; Kiss, G.; Bishop, S.
CRIB (CNS Radio-Isotope Beam separator) is a low-energy RI beam separator of Center for Nuclear Study (CNS), the University of Tokyo. Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the RI beams at CRIB, forming international collaborations. A striking method to study astrophyiscal reactions involving radioactive nuclei is the thick-target method in inverse kinematics. Several astrophysical alpha-induced reactions have been be studied with that method at CRIB. A recent example is on the α resonant scattering with a radioactive 7Be beam. This study is related to the astrophysical 7Be(α , γ ) reactions, important at hot p-p chain and ν p-process in supernovae. There have been measurements based on several indirect methods, such as the asymptotic normalization coefficient (ANC) and Trojan horse method (THM). The first THM measurement using an RI beam has been performed at CRIB, to study the 18F(p, α )15O reaction at astrophysical energies via the three body reaction 2H(18F, α 15O)n. The 18F(p, α )15O reaction rate is crucial to understand the 511-keV γ -ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.
Altuntepe, Emrah; Emel'yanenko, Vladimir N; Forster-Rotgers, Maximilian; Sadowski, Gabriele; Verevkin, Sergey P; Held, Christoph
2017-10-01
Levulinic acid was esterified with methanol, ethanol, and 1-butanol with the final goal to predict the maximum yield of these equilibrium-limited reactions as function of medium composition. In a first step, standard reaction data (standard Gibbs energy of reaction Δ R g 0 ) were determined from experimental formation properties. Unexpectedly, these Δ R g 0 values strongly deviated from data obtained with classical group contribution methods that are typically used if experimental standard data is not available. In a second step, reaction equilibrium concentrations obtained from esterification catalyzed by Novozym 435 at 323.15 K were measured, and the corresponding activity coefficients of the reacting agents were predicted with perturbed-chain statistical associating fluid theory (PC-SAFT). The so-obtained thermodynamic activities were used to determine Δ R g 0 at 323.15 K. These results could be used to cross-validate Δ R g 0 from experimental formation data. In a third step, reaction-equilibrium experiments showed that equilibrium position of the reactions under consideration depends strongly on the concentration of water and on the ratio of levulinic acid: alcohol in the initial reaction mixtures. The maximum yield of the esters was calculated using Δ R g 0 data from this work and activity coefficients of the reacting agents predicted with PC-SAFT for varying feed composition of the reaction mixtures. The use of the new Δ R g 0 data combined with PC-SAFT allowed good agreement to the measured yields, while predictions based on Δ R g 0 values obtained with group contribution methods showed high deviations to experimental yields.
Saksono, Budi; Dewi, Beti Ernawati; Nainggolan, Leonardo; Suda, Yasuo
2015-01-01
We propose a novel method of detecting trace amounts of dengue virus (DENVs) from serum. Our method is based on the interaction between a sulfated sugar chain and a DENV surface glycoprotein. After capturing DENV with the sulfated sugar chain-immobilized gold nanoparticles (SGNPs), the resulting complex is precipitated and viral RNA content is measured using the reverse-transcription quantitative polymerase chain reaction SYBR Green I (RT-qPCR-Syb) method. Sugar chains that bind to DENVs were identified using the array-type sugar chain immobilized chip (Sugar Chip) and surface plasmon resonance (SPR) imaging. Heparin and low-molecular-weight dextran sulfate were identified as binding partners, and immobilized on gold nanoparticles to prepare 3 types of SGNPs. The capacity of these SGNPs to capture and concentrate trace amounts of DENVs was evaluated in vitro. The SGNP with greatest sensitivity was tested using clinical samples in Indonesia in 2013-2014. As a result, the novel method was able to detect low concentrations of DENVs using only 6 μL of serum, with similar sensitivity to that of a Qiagen RNA extraction kit using 140 μL of serum. In addition, this method allows for multiplex-like identification of serotypes of DENVs. This feature is important for good healthcare management of DENV infection in order to safely diagnose the dangerous, highly contagious disease quickly, with high sensitivity.
Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping
2017-08-01
An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Technical Approach to Marking Explosives, Propellants, and Precursor Chemicals
1998-08-01
polymerase chain reaction (PCR) methods whereby small strands are cut and analyzed under specified temperature mediated enzymatic /molecular reactions (4...such as these are often overlooked. Several other companies have been investigating other methods including immunoassay techniques, microencapsulated
A Model of Risk Analysis in Analytical Methodology for Biopharmaceutical Quality Control.
Andrade, Cleyton Lage; Herrera, Miguel Angel De La O; Lemes, Elezer Monte Blanco
2018-01-01
One key quality control parameter for biopharmaceutical products is the analysis of residual cellular DNA. To determine small amounts of DNA (around 100 pg) that may be in a biologically derived drug substance, an analytical method should be sensitive, robust, reliable, and accurate. In principle, three techniques have the ability to measure residual cellular DNA: radioactive dot-blot, a type of hybridization; threshold analysis; and quantitative polymerase chain reaction. Quality risk management is a systematic process for evaluating, controlling, and reporting of risks that may affects method capabilities and supports a scientific and practical approach to decision making. This paper evaluates, by quality risk management, an alternative approach to assessing the performance risks associated with quality control methods used with biopharmaceuticals, using the tool hazard analysis and critical control points. This tool provides the possibility to find the steps in an analytical procedure with higher impact on method performance. By applying these principles to DNA analysis methods, we conclude that the radioactive dot-blot assay has the largest number of critical control points, followed by quantitative polymerase chain reaction, and threshold analysis. From the analysis of hazards (i.e., points of method failure) and the associated method procedure critical control points, we conclude that the analytical methodology with the lowest risk for performance failure for residual cellular DNA testing is quantitative polymerase chain reaction. LAY ABSTRACT: In order to mitigate the risk of adverse events by residual cellular DNA that is not completely cleared from downstream production processes, regulatory agencies have required the industry to guarantee a very low level of DNA in biologically derived pharmaceutical products. The technique historically used was radioactive blot hybridization. However, the technique is a challenging method to implement in a quality control laboratory: It is laborious, time consuming, semi-quantitative, and requires a radioisotope. Along with dot-blot hybridization, two alternatives techniques were evaluated: threshold analysis and quantitative polymerase chain reaction. Quality risk management tools were applied to compare the techniques, taking into account the uncertainties, the possibility of circumstances or future events, and their effects upon method performance. By illustrating the application of these tools with DNA methods, we provide an example of how they can be used to support a scientific and practical approach to decision making and can assess and manage method performance risk using such tools. This paper discusses, considering the principles of quality risk management, an additional approach to the development and selection of analytical quality control methods using the risk analysis tool hazard analysis and critical control points. This tool provides the possibility to find the method procedural steps with higher impact on method reliability (called critical control points). Our model concluded that the radioactive dot-blot assay has the larger number of critical control points, followed by quantitative polymerase chain reaction and threshold analysis. Quantitative polymerase chain reaction is shown to be the better alternative analytical methodology in residual cellular DNA analysis. © PDA, Inc. 2018.
Aspergillus DNA contamination in blood collection tubes.
Harrison, Elizabeth; Stalhberger, Thomas; Whelan, Ruth; Sugrue, Michele; Wingard, John R; Alexander, Barbara D; Follett, Sarah A; Bowyer, Paul; Denning, David W
2010-08-01
Fungal polymerase chain reaction (PCR)-based diagnostic methods are at risk for contamination. Sample collection containers were investigated for fungal DNA contamination using real-time PCR assays. Up to 18% of blood collection tubes were contaminated with fungal DNA, probably Aspergillus fumigatus. Lower proportions of contamination in other vessels were observed. Copyright 2010 Elsevier Inc. All rights reserved.
Cell densities of the fecal pollution indicator genus, Enterococcus, were determined by a rapid (2-3 hr) quantitative PCR (QPCR) analysis based method in 100 ml water samples collected from recreational beaches on Lake Michigan and Lake Erie during the summer of 2003. Enumeration...
Replicon typing of plasmids encoding resistance to newer beta-lactams.
Carattoli, Alessandra; Miriagou, Vivi; Bertini, Alessia; Loli, Alexandra; Colinon, Celine; Villa, Laura; Whichard, Jean M; Rossolini, Gian Maria
2006-07-01
Polymerase chain reaction-based replicon typing represents a novel method to describe the dissemination and follow the evolution of resistance plasmids. We used this approach to study 26 epidemiologically unrelated Enterobacteriaceae and demonstrate the dominance of incompatibility (Inc) A/C or Inc N-related plasmids carrying some emerging resistance determinants to extended-spectrum cephalosporins and carbapenems.
In collaboration with U.S States and Tribes, the United States Environmental Protection Agency (EPA) conducts periodic and rotating, statistically based surveys of U.S. rivers and streams (National Rivers and Streams Assessment, NRSA), estuarine and Great Lakes nearshore coastal ...
ERIC Educational Resources Information Center
Bradford, William D.; Cahoon, Laty; Freel, Sara R.; Hoopes, Laura L. Mays; Eckdahl, Todd T.
2005-01-01
In order to engage their students in a core methodology of the new genomics era, an everincreasing number of faculty at primarily undergraduate institutions are gaining access to microarray technology. Their students are conducting successful microarray experiments designed to address a variety of interesting questions. A next step in these…
2011-01-01
Abstract The addition of relatively short flap sequence at the 5′-end of one of the polymerase chain reaction (PCR) primers considerably improves performance of real-time assays based on 5′-nuclease activity. This new technology, called Snake, was shown to supersede the conventional methods like TaqMan, Molecular Beacons, and Scorpions in the signal productivity and discrimination of target polymorphic variations as small as single nucleotides. The present article describes a number of reaction conditions and methods that allow further improvement of the assay performance. One of the identified approaches is the use of duplex-destabilizing modifications such as deoxyinosine and deoxyuridine in the design of the Snake primers. This approach was shown to solve the most serious problem associated with the antisense amplicon folding and cleavage. As a result, the method permits the use of relatively long—in this study—14-mer flap sequences. Investigation also revealed that only the 5′-segment of the flap requires the deoxyinosine/deoxyuridine destabilization, whereas the 3′-segment is preferably left unmodified or even stabilized using 2-amino deoxyadenosine d(2-amA) and 5-propynyl deoxyuridine d(5-PrU) modifications. The base-modification technique is especially effective when applied in combination with asymmetric three-step PCR. The most valuable discovery of the present study is the effective application of modified deoxynucleoside 5′-triphosphates d(2-amA)TP and d(5-PrU)TP in Snake PCR. This method made possible the use of very short 6-8-mer 5′-flap sequences in Snake primers. PMID:21050073
Yang, Litao; Xu, Songci; Pan, Aihu; Yin, Changsong; Zhang, Kewei; Wang, Zhenying; Zhou, Zhigang; Zhang, Dabing
2005-11-30
Because of the genetically modified organisms (GMOs) labeling policies issued in many countries and areas, polymerase chain reaction (PCR) methods were developed for the execution of GMO labeling policies, such as screening, gene specific, construct specific, and event specific PCR detection methods, which have become a mainstay of GMOs detection. The event specific PCR detection method is the primary trend in GMOs detection because of its high specificity based on the flanking sequence of the exogenous integrant. This genetically modified maize, MON863, contains a Cry3Bb1 coding sequence that produces a protein with enhanced insecticidal activity against the coleopteran pest, corn rootworm. In this study, the 5'-integration junction sequence between the host plant DNA and the integrated gene construct of the genetically modified maize MON863 was revealed by means of thermal asymmetric interlaced-PCR, and the specific PCR primers and TaqMan probe were designed based upon the revealed 5'-integration junction sequence; the conventional qualitative PCR and quantitative TaqMan real-time PCR detection methods employing these primers and probes were successfully developed. In conventional qualitative PCR assay, the limit of detection (LOD) was 0.1% for MON863 in 100 ng of maize genomic DNA for one reaction. In the quantitative TaqMan real-time PCR assay, the LOD and the limit of quantification were eight and 80 haploid genome copies, respectively. In addition, three mixed maize samples with known MON863 contents were detected using the established real-time PCR systems, and the ideal results indicated that the established event specific real-time PCR detection systems were reliable, sensitive, and accurate.
Highly sensitive electrochemical detection of human telomerase activity based on bio-barcode method.
Li, Ying; Liu, Bangwei; Li, Xia; Wei, Qingli
2010-07-15
In the present study, an electrochemical method for highly sensitive detection of human telomerase activity was developed based on bio-barcode amplification assay. Telomerase was extracted from HeLa cells, then the extract was mixed with telomerase substrate (TS) primer to perform extension reaction. The extension product was hybridized with the capture DNA immobilized on the Au electrode and then reacted with the signal DNA on Au nanoparticles to form a sandwich hybridization mode. Electrochemical signals were generated by chronocoulometric interrogation of [Ru(NH(3))(6)](3+) that quantitatively binds to the DNA on Au nanoparticles via electrostatic interaction. This method can detect the telomerase activity from as little as 10 cultured cancer cells without the polymerase chain reaction (PCR) amplification of telomerase extension product. Copyright (c) 2010 Elsevier B.V. All rights reserved.
METHOD OF OPERATING NUCLEAR REACTORS
Untermyer, S.
1958-10-14
A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.
Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.
Dröse, Stefan; Brandt, Ulrich; Wittig, Ilka
2014-08-01
The respiratory chain of the inner mitochondrial membrane is a unique assembly of protein complexes that transfers the electrons of reducing equivalents extracted from foodstuff to molecular oxygen to generate a proton-motive force as the primary energy source for cellular ATP-synthesis. Recent evidence indicates that redox reactions are also involved in regulating mitochondrial function via redox-modification of specific cysteine-thiol groups in subunits of respiratory chain complexes. Vice versa the generation of reactive oxygen species (ROS) by respiratory chain complexes may have an impact on the mitochondrial redox balance through reversible and irreversible thiol-modification of specific target proteins involved in redox signaling, but also pathophysiological processes. Recent evidence indicates that thiol-based redox regulation of the respiratory chain activity and especially S-nitrosylation of complex I could be a strategy to prevent elevated ROS production, oxidative damage and tissue necrosis during ischemia-reperfusion injury. This review focuses on the thiol-based redox processes involving the respiratory chain as a source as well as a target, including a general overview on mitochondria as highly compartmentalized redox organelles and on methods to investigate the redox state of mitochondrial proteins. This article is part of a Special Issue entitled: Thiol-Based Redox Processes. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, N.A.; Wood, H.G.
1986-05-01
Polyphosphate (poly(P)) kinase, isolated from Propionibacterium shermanii, catalyzes the following reaction: poly(P/sub n/) + ATPin equilibriumpoly(P/sub n+1/) + ADP. The authors have purified this enzyme to 90% homogeneity and have shown it to be composed of 2-3 identical subunits of M/sub r/ 80,000. Investigation of the reaction mechanism by product analysis has revealed that the elongation phase is processive whereby successive elongation occurs without release of intermediate sizes until very long chains are formed. The initiation phase of synthesis has been investigated using (/sup 32/P) poly(P) primer of chain length 11-60. It is incorporated into long chain poly(P) and themore » /sup 32/P has been shown, by use of poly(P) glucokinase, to be localized at the end of the molecule. Calculation of average chain length based upon the incorporation of /sup 32/P, however, yields a value approx.3 fold higher than the value calculated by another method using poly(P) glucokinase. This result indicates that initiation of poly(P) synthesis occurs by at least one other route which does not involve short chain poly(P) primers. The effect of temperature and concentration of poly(P) primer upon the average chain length of poly(P) synthesized was also investigated. A general trend was observed in which the chain length of the synthesized poly(P) decreased as either temperature or concentration or primer was increased.« less
Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR
Tang, Zhou-Rui; Li, Kai; Zhou, Yu-Xun; Xiao, Zhen-Xian; Xiao, Jun-Hua; Huang, Rui; Gu, Guo-Hao
2012-01-01
AIM: To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components. METHODS: Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium, Lactobacillus) and three conditionally pathogenic bacteria (Enterococcus, Enterobacterium and Eubacterium) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio of the fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested. RESULTS: cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex. CONCLUSION: The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well. PMID:22294830
Hu, Ping Ping; Liu, Hui; Zhen, Shu Jun; Li, Chun Mei; Huang, Cheng Zhi
2015-11-15
In this manuscript, a nanosilver enhanced SERS strategy was successfully constructed for the determination of DNA methyltransferase activity in soulution combined with hybridization chain reaction (HCR). The proposed method was mainly on the basis of excellent separation ability of magnetic microparticles (MMPs), HCR as signal amplification unit and assembled AgNPs as enhancement substrate. In the presence of M. SssI MTase, the duplex sequence (5'-CCGG-3') tethered to MMPs was methylated, which cannot be cleaved by HpaII endonuclease. The resulted DNA skeleton captured on MMPs then triggered the HCR reaction, generated a polymerized and extended symmetrical sequence, in which more biotin terminal was available for the conjugation of AgNPs-SA, leading to significantly amplified SERS response. When it was used to analyze M. SssI activity, a linear equation ∆ISERS=1215.32+446.80 cM.SssI was obtained with the M. SssI activity ranged from 0.1 to 10.0 U with the correlation coefficient (r(2)) of 0.97. The most important advantage of this method is the combination of SERS and HCR in solution for the first time and its good selectivity, which enabled the detection of even one-base mismatched sequence. The new assay method holds great promising application to be a versatile platform for sensitive, high-throughput detection, and the screening of new anticancer drugs on DNA MTase. Copyright © 2015 Elsevier B.V. All rights reserved.
Organic reactions mediated by electrochemically generated ArS+.
Matsumoto, Kouichi; Suga, Seiji; Yoshida, Jun-ichi
2011-04-21
Low-temperature electrochemical oxidation of ArSSAr was carried out to generate a pool of "ArS(+)". Spectroscopic studies ((1)H NMR and CSI-MS) of the resulting solution revealed the accumulation of ArS(ArSSAr)(+). The resulting "ArS(+)" pool reacted with alkenes and alkynes to give diarylthio-substituted products. The "ArS(+)" pool rapidly reacted with thioacetals to give the corresponding alkoxycarbenium ion pools, which reacted with various carbon nucleophiles (indirect cation pool method). The reaction of the alkoxycarbenium ion pools with stilbene derivatives in the presence of ArSSAr gave thiochroman derivatives. In addition to such stoichiometric reactions, a catalytic amount of "ArS(+)" serves as an initiator and a chain carrier of some cationic chain reactions involving intramolecular carbon-carbon bond formation. In situ generation of "ArS(+)" by electrochemical oxidation of ArSSAr with a catalytic amount of electricity in the presence of a substrate is also effective for such cationic chain reactions.
Loop-mediated isothermal PCR (LAMP) for the diagnosis of falciparum malaria.
Paris, Daniel H; Imwong, Mallika; Faiz, Abul M; Hasan, Mahtabuddin; Yunus, Emran Bin; Silamut, Kamolrat; Lee, Sue J; Day, Nicholas P J; Dondorp, Arjen M
2007-11-01
A recently described loop-mediated isothermal polymerase chain reaction (LAMP) for molecular detection of Plasmodium falciparum was compared with microscopy, PfHRP2-based rapid diagnostic test (RDT), and nested polymerase chain reaction (PCR) as the "gold standard" in 115 Bangladeshi in-patients with fever. DNA extraction for LAMP was conducted by conventional methods or simple heating of the sample; test results were either assessed visually or by gel electrophoresis. Conventional DNA extraction followed by gel electrophoresis had the highest agreement with the reference method (81.7%, kappa = 0.64), with a sensitivity (95% CI) of 76.1% (68.3-83.9%), comparable to RDT and microscopy, but a specificity of 89.6% (84.0-95.2%) compared with 100% for RDT and microscopy. DNA extraction by heat treatment deteriorated specificity to unacceptable levels. LAMP enables molecular diagnosis of falciparum malaria in settings with limited technical resources but will need further optimization. The results are in contrast with a higher accuracy reported in an earlier study comparing LAMP with a non-validated PCR method.
DNA methods for identification of Chinese medicinal materials
Yip, Pui Ying; Chau, Chi Fai; Mak, Chun Yin; Kwan, Hoi Shan
2007-01-01
As adulterated and substituted Chinese medicinal materials are common in the market, therapeutic effectiveness of such materials cannot be guaranteed. Identification at species-, strain- and locality-levels, therefore, is required for quality assurance/control of Chinese medicine. This review provides an informative introduction to DNA methods for authentication of Chinese medicinal materials. Technical features and examples of the methods based on sequencing, hybridization and polymerase chain reaction (PCR) are described and their suitability for different identification objectives is discussed. PMID:17803808
Dynamics Sampling in Transition Pathway Space.
Zhou, Hongyu; Tao, Peng
2018-01-09
The minimum energy pathway contains important information describing the transition between two states on a potential energy surface (PES). Chain-of-states methods were developed to efficiently calculate minimum energy pathways connecting two stable states. In the chain-of-states framework, a series of structures are generated and optimized to represent the minimum energy pathway connecting two states. However, multiple pathways may exist connecting two existing states and should be identified to obtain a full view of the transitions. Therefore, we developed an enhanced sampling method, named as the direct pathway dynamics sampling (DPDS) method, to facilitate exploration of a PES for multiple pathways connecting two stable states as well as addition minima and their associated transition pathways. In the DPDS method, molecular dynamics simulations are carried out on the targeting PES within a chain-of-states framework to directly sample the transition pathway space. The simulations of DPDS could be regulated by two parameters controlling distance among states along the pathway and smoothness of the pathway. One advantage of the chain-of-states framework is that no specific reaction coordinates are necessary to generate the reaction pathway, because such information is implicitly represented by the structures along the pathway. The chain-of-states setup in a DPDS method greatly enhances the sufficient sampling in high-energy space between two end states, such as transition states. By removing the constraint on the end states of the pathway, DPDS will also sample pathways connecting minima on a PES in addition to the end points of the starting pathway. This feature makes DPDS an ideal method to directly explore transition pathway space. Three examples demonstrate the efficiency of DPDS methods in sampling the high-energy area important for reactions on the PES.
Polymer-based microfluidic chips for isothermal amplification of nucleic acids
NASA Astrophysics Data System (ADS)
Posmitnaya, Y. S.; Rudnitskaya, G. E.; Tupik, A. N.; Lukashenko, T. A.; Bukatin, A. C.; Evstrapov, A. A.
2017-11-01
Creation of low-cost compact devices based on microfluidic platforms for biological and medical research depends on the degree of development and enhancement of prototyping technologies. Two designs of polymer and hybrid microfluidic devices fabricated by soft lithography and intended for isothermal amplification and polymerase chain reaction are presented in this paper. The digital helicase-dependent isothermal amplification was tested in the device containing a droplet generator. Polymerase chain reaction was carried out in the hybrid microfluidic device having ten reaction chambers. A synthesized cDNA fragment of GAPDH housekeeping gene was used as a target.
NASA Astrophysics Data System (ADS)
Wang, Qing; Yang, Xiaohan; Yang, Xiaohai; Liu, Pei; Wang, Kemin; Huang, Jin; Liu, Jianbo; Song, Chunxia; Wang, Jingjing
2015-02-01
A novel unmodified gold nanoparticles (AuNPs)-based colorimetric strategy for label-free, specific and sensitive mercury ion (Hg2+) detection was demonstrated by using thymine-Hg2+-thymine (T-Hg2+-T) recognition mechanism and hybridization chain reaction (HCR) amplification strategy. In this protocol, a structure-switching probe (H0) was designed to recognize Hg2+ and then propagated a chain reaction of hybridization events between two other hairpin probes (H1 and H2). In the absence of Hg2+, all hairpin probes could stably coexist in solution, the exposed sticky ends of hairpin probes were capable of stabilizing AuNPs. As a result, salt-induced AuNPs aggregation could be effectively prevented. In the presence of Hg2+, thymine bases of H0 could specifically interact with Hg2+ to form stable T-Hg2+-T complex. Consequently, the hairpin structure of H0 probe was changed. As H1/H2 probes were added, the HCR process could be triggered and nicked double-helixes were formed. Since it was difficult for the formed nicked double-helixes to inhibit salt-induced AuNPs aggregation, a red-to-blue color change was observed in the colloid solution as the salt concentration increased. With the elegant amplification effect of HCR, a detection limit of around 30 nM was achieved (S/N = 3), which was about 1-2 orders of magnitudes lower than that of previous unmodified AuNPs-based colorimetric methods. By using the T-Hg2+-T recognition mechanism, high selectivity was also obtained. As an unmodified AuNPs-based colorimetric strategy, the system was simple in design, convenient in operation, and eliminated the requirements of separation processes, chemical modifications, and sophisticated instrumentations.
Wang, Cui; Zhou, Hui; Zhu, Wenping; Li, Hongbo; Jiang, Jianhui; Shen, Guoli; Yu, Ruqin
2013-09-15
We developed a novel electrochemical strategy for ultrasensitive DNA detection using a dual amplification strategy based on the circular strand-displacement polymerase reaction (CSDPR) and the hybridization chain reaction (HCR). In this assay, hybridization of hairpin-shaped capture DNA to target DNA resulted in a conformational change of the capture DNA with a concomitant exposure of its stem. The primer was then hybridized with the exposed stem and triggered a polymerization reaction, allowing a cyclic reaction comprising release of target DNA, hybridization of target with remaining capture DNA, polymerization initiated by the primer. Furthermore, the free part of the primer propagated a chain reaction of hybridization events between two DNA hairpin probes with biotin labels, enabling an electrochemical reading using the streptavidin-alkaline phosphatase. The proposed biosensor showed to have very high sensitivity and selectivity with a dynamic response range through 10fM to 1nM, and the detect limit was as low as 8fM. The proposed strategy could have the potential for molecular diagnostics in complex biological systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Shearer, A E; Strapp, C M; Joerger, R D
2001-06-01
A polymerase chain reaction (PCR)-based detection system, BAX, was evaluated for its sensitivity in detecting Salmonella Enteritidis, Escherichia coli O157:H7, Listeria sp., and Listeria monocytogenes on fresh produce. Fifteen different types of produce (alfalfa sprouts, green peppers, parsley, white cabbage, radishes, onions, carrots, mushrooms, leaf lettuce, tomatoes, strawberries, cantaloupe, mango, apples, and oranges) were inoculated, in separate studies, with Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes down to the predicted level of 1 CFU per 25-g sample. Detection by BAX was compared to recovery of the inoculated bacteria by culture methods according to the Food and Drug Administration's (FDA) Bacteriological Analytical Manual (BAM). BAX was essentially as sensitive as the culture-based method in detecting Salmonella Enteritidis and L. monocytogenes and more sensitive than the culture-based method for the detection of E. coli O157:H7 on green pepper, carrot, radish, and sprout samples. Detection of the pathogenic bacteria in samples spiked with a predicted number of less than 10 CFU was possible for most produce samples, but both methods failed to detect L. monocytogenes on carrot samples and one of two mushroom and onion samples spiked with less than 100 CFU. Both BAX and the culture method were also unable to consistently recover low numbers of E. coli O157:H7 from alfalfa sprouts. The PCR method allowed detection of Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes at least 2 days earlier than the conventional culture methods.
Rojas, María; González, Isabel; Pavón, Miguel Angel; Pegels, Nicolette; Lago, Adriana; Hernández, Pablo E; García, Teresa; Martín, Rosario
2010-06-01
Species-specific real-time polymerase chain reaction (PCR) assays using TaqMan probes have been developed for verifying the labeling of meat and commercial meat products from game birds, including quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock and song thrush. The method combines the use of species-specific primers and TaqMan probes that amplify small fragments (amplicons <150 base pairs) of the mitochondrial 12S rRNA gene, and an endogenous control primer pair that amplifies a 141-bp fragment of the nuclear 18S rRNA gene from eukaryotic DNA. Analysis of experimental raw and heat-treated binary mixtures as well as of commercial meat products from the target species demonstrated the suitability of the assay for the detection of the target DNAs.
Preparation of 13C/15N-labeled oligomers using the polymerase chain reaction
Chen, Xian; Gupta, Goutam; Bradbury, E. Morton
2001-01-01
Preparation of .sup.13 C/.sup.15 N-labeled DNA oligomers using the polymerase chain reaction (PCR). A PCR based method for uniform (.sup.13 C/.sup.15 N)-labeling of DNA duplexes is described. Multiple copies of a blunt-ended duplex are cloned into a plasmid, each copy containing the sequence of interest and restriction Hinc II sequences at both the 5' and 3' ends. PCR using bi-directional primers and uniformly .sup.13 C/.sup.15 N-labeled dNTP precursors generates labeled DNA duplexes containing multiple copies of the sequence of interest. Twenty-four cycles of PCR, followed by restriction and purification, gave the uniformly .sup.13 C/.sup.15 N-labeled duplex sequence with a 30% yield. Such labeled duplexes find significant applications in multinuclear magnetic resonance spectroscopy.
Wiland, Homer O; Procop, Gary W; Goldblum, John R; Tuohy, Marion; Rybicki, Lisa; Patil, Deepa T
2013-06-01
Polymerase chain reaction (PCR)-based assays using stool samples are currently the most effective method of detecting Clostridium difficile. This study examines the feasibility of this assay using mucosal biopsy samples and evaluates the interobserver reproducibility in diagnosing and distinguishing ischemic colitis from C difficile colitis. Thirty-eight biopsy specimens were reviewed and classified by 3 observers into C difficile and ischemic colitis. The findings were correlated with clinical data. PCR was performed on 34 cases using BD GeneOhm C difficile assay. The histologic interobserver agreement was excellent (κ= 0.86) and the agreement between histologic and clinical diagnosis was good (κ = 0.84). All 19 ischemic colitis cases tested negative (100% specificity) and 3 of 15 cases of C difficile colitis tested positive (20% sensitivity). C difficile colitis can be reliably distinguished from ischemic colitis using histologic criteria. The C difficile PCR test on endoscopic biopsy specimens has excellent specificity but limited sensitivity.
Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M
2008-09-01
Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy.
NASA Astrophysics Data System (ADS)
Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua
2017-05-01
We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.
Wang, H; Wang, J; Li, G
2016-06-27
Panax ginseng is one of the most important medicinal plants in the Orient. Owing to its increasing demand in the world market, cultivated ginseng has become the main source of medicinal material. Among the Chinese ginseng cultivars, Damaya commands higher prices and is grown in significant proportions among the local ginseng population. Due to the lack of rapid and accurate authentication methods, Damaya is distributed among different cultivars in the local ginseng population in China. Here, we identified a unique, Damaya-specific single nucleotide polymorphism (SNP) site present in the second intron of mitochondrial cytochrome c oxidase subunit 2 (cox2). Based on this SNP, a Damaya cultivar-specific primer was designed and an allele-specific polymerase chain reaction (PCR) was optimized for the effective molecular authentication of Damaya. We designed a method by combining a simple DNA isolation method with real-time allele-specific PCR using SYBR Green I fluorescent dye, and proved its efficacy in clearly discriminated Damaya cultivar from other Chinese ginseng cultivars according to the allelic discrimination analysis. Hence, this study provides a simple and rapid assay for the differentiation and conservation of Damaya from the local Chinese ginseng population.
Polymerase chain reaction-based discrimination of viable from non-viable Mycoplasma gallisepticum.
Tan, Ching Giap; Ideris, Aini; Omar, Abdul R; Yii, Chen Pei; Kleven, Stanley H
2014-09-02
The present study was based on the reverse transcription polymerase chain reaction (RT-PCR) of the 16S ribosomal nucleic acid (rRNA) of Mycoplasma for detection of viable Mycoplasma gallisepticum. To determine the stability of M. gallisepticum 16S rRNA in vitro, three inactivation methods were used and the suspensions were stored at different temperatures. The 16S rRNA of M. gallisepticum was detected up to approximately 20-25 h at 37 °C, 22-25 h at 16 °C, and 23-27 h at 4 °C. The test, therefore, could detect viable or recently dead M. gallisepticum (< 20 h). The RT-PCR method was applied during an in vivo study of drug efficacy under experimental conditions, where commercial broiler-breeder eggs were inoculated with M. gallisepticum into the yolk. Hatched chicks that had been inoculated in ovo were treated with Macrolide 1. The method was then applied in a flock of day 0 chicks with naturally acquired vertical transmission of M. gallisepticum, treated with Macrolide 2. Swabs of the respiratory tract were obtained for PCR and RT-PCR evaluations to determine the viability of M. gallisepticum. This study proved that the combination of both PCR and RT-PCR enables detection and differentiation of viable from non-viable M. gallisepticum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belinsky, Steven A; Palmisano, William A
A molecular marker-based method for monitoring and detecting cancer in humans. Aberrant methylation of gene promoters is a marker for cancer risk in humans. A two-stage, or "nested" polymerase chain reaction method is disclosed for detecting methylated DNA sequences at sufficiently high levels of sensitivity to permit cancer screening in biological fluid samples, such as sputum, obtained non-invasively. The method is for detecting the aberrant methylation of the p16 gene, O 6-methylguanine-DNA methyltransferase gene, Death-associated protein kinase gene, RAS-associated family 1 gene, or other gene promoters. The method offers a potentially powerful approach to population-based screening for the detection ofmore » lung and other cancers.« less
Boehme, Philip; Stellberger, Thorsten; Solanki, Manish; Zhang, Wenli; Schulz, Eric; Bergmann, Thorsten; Liu, Jing; Doerner, Johannes; Baiker, Armin E.
2015-01-01
Abstract High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy. PMID:25640117
Mellert, Hestia S.; Alexander, Kristin E.; Jackson, Leisa P.; Pestano, Gary A.
2018-01-01
We have developed novel methods for the isolation and characterization of tumor-derived circulating ribonucleic acid (cRNA) for blood-based liquid biopsy. Robust detection of cRNA recovered from blood represents a solution to a critical unmet need in clinical diagnostics. The test begins with the collection of whole blood into blood collection tubes containing preservatives that stabilize cRNA. Cell-free, exosomal, and platelet-associated RNA is isolated from plasma in this test system. The cRNA is reverse transcribed to complementary DNA (cDNA) and amplified using digital polymerase chain reaction (dPCR). Samples are evaluated for both the target biomarker as well as a control gene. Test validation included limit of detection, accuracy, and robustness studies with analytic samples. The method developed as a result of these studies reproducibly detect multiple fusion variants for ROS1 (C-Ros proto-oncogene 1; 8 variants) and RET (rearranged during transfection proto-oncogene; 8 variants). The sample processing workflow has been optimized so that test results can consistently be generated within 72 hours of sample receipt. PMID:29683453
Contribution to an effective design method for stationary reaction-diffusion patterns.
Szalai, István; Horváth, Judit; De Kepper, Patrick
2015-06-01
The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.
Xu, Chen; Zhang, Nan; Huo, Qianyu; Chen, Minghui; Wang, Rengfeng; Liu, Zhili; Li, Xue; Liu, Yunde; Bao, Huijing
2016-04-15
In this article, we discuss the polymerase chain reaction (PCR)-hybridization assay that we developed for high-throughput simultaneous detection and differentiation of Ureaplasma urealyticum and Ureaplasma parvum using one set of primers and two specific DNA probes based on urease gene nucleotide sequence differences. First, U. urealyticum and U. parvum DNA samples were specifically amplified using one set of biotin-labeled primers. Furthermore, amine-modified DNA probes, which can specifically react with U. urealyticum or U. parvum DNA, were covalently immobilized to a DNA-BIND plate surface. The plate was then incubated with the PCR products to facilitate sequence-specific DNA binding. Horseradish peroxidase-streptavidin conjugation and a colorimetric assay were used. Based on the results, the PCR-hybridization assay we developed can specifically differentiate U. urealyticum and U. parvum with high sensitivity (95%) compared with cultivation (72.5%). Hence, this study demonstrates a new method for high-throughput simultaneous differentiation and detection of U. urealyticum and U. parvum with high sensitivity. Based on these observations, the PCR-hybridization assay developed in this study is ideal for detecting and discriminating U. urealyticum and U. parvum in clinical applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Fogt-Wyrwas, R; Jarosz, W; Mizgajska-Wiktor, H
2007-03-01
A polymerase chain reaction (PCR) technique has been used for the differentiation of T. canis and T. cati eggs isolated from soil and previously identified from microscopical observations. The method, using specific primers for the identification of the two Toxocara species, was assessed in both the field and laboratory. Successful results were obtained when only a single or large numbers of eggs were recovered from 40 g soil samples. The method is sensitive, allows analysis of material independent of the stage of egg development and can be adapted for the recovery of other species of parasites from soil.
Pinches, Mark D G; Helps, Christopher R; Gruffydd-Jones, Tim J; Egan, Kathy; Jarrett, Oswald; Tasker, Séverine
2007-02-01
In this paper the design and use of a semi-quantitative real-time polymerase chain reaction assay (RT-PCR) for feline leukaemia virus (FeLV) provirus is described. Its performance is evaluated against established methods of FeLV diagnosis, including virus isolation and enzyme-linked immunoassay (ELISA) in a population of naturally infected cats. The RT-PCR assay is found to have both a high sensitivity (0.92) and specificity (0.99) when examined by expectation maximisation methods and is also able to detect a large number of cats with low FeLV proviral loads that were negative by other conventional test methods.
Alasaad, Samer; Soriguer, Ramón C; Abu-Madi, Marawan; El Behairy, Ahmed; Baños, Pablo Díez; Píriz, Ana; Fickel, Joerns; Zhu, Xing-Quan
2011-06-01
The present study aimed to establish a fluorescence-based polymerase chain reaction-linked single-strand conformation polymorphism (F-PCR-SSCP) assay for the identification of Fasciola spp. Based on the sequences of the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA, we designed a set of genus-specific primers for the amplification of Fasciola ITS-2, with an estimated size of 140 bp. These primers were labelled by fluorescence dyes, and the PCR products were analyzed by capillary electrophoresis under non-denaturing conditions (F-PCR-SSCP). Capillary electrophoresis analysis of the fluorescence-labelled DNA fragments displayed three different peak profiles that allowed the accurate identification of Fasciola species: one single peak specific for either Fasciola hepatica or Fasciola gigantica and a doublet peak corresponding to the "intermediate" Fasciola. Validation of our novel method was performed using Fasciola specimens from different host animals from China, Spain, Nigeria, and Egypt. This F-PCR-SSCP assay provides a rapid, simple, and robust tool for the identification and differentiation between Fasciola spp.
Zhou, Yu; Pearson, John E; Auerbach, Anthony
2005-12-01
We derive the analytical form of a rate-equilibrium free-energy relationship (with slope Phi) for a bounded, linear chain of coupled reactions having arbitrary connecting rate constants. The results confirm previous simulation studies showing that Phi-values reflect the position of the perturbed reaction within the chain, with reactions occurring earlier in the sequence producing higher Phi-values than those occurring later in the sequence. The derivation includes an expression for the transmission coefficients of the overall reaction based on the rate constants of an arbitrary, discrete, finite Markov chain. The results indicate that experimental Phi-values can be used to calculate the relative heights of the energy barriers between intermediate states of the chain but provide no information about the energies of the wells along the reaction path. Application of the equations to the case of diliganded acetylcholine receptor channel gating suggests that the transition-state ensemble for this reaction is nearly flat. Although this mechanism accounts for many of the basic features of diliganded and unliganded acetylcholine receptor channel gating, the experimental rate-equilibrium free-energy relationships appear to be more linear than those predicted by the theory.
Process for crosslinking and extending conjugated diene-containing polymers
NASA Technical Reports Server (NTRS)
Bell, Vernon L. (Inventor); Havens, Stephen J. (Inventor)
1977-01-01
A process using a Diels-Alder reaction which increases the molecular weight and/or crosslinks polymers by reacting the polymers with bisunsaturated dienophiles is developed. The polymer comprises at least 75% by weight based on the reaction product, has a molecular weight of at least 5000 and a plurality of conjugated 1,3-diene systems incorporated into the molecular structure. A dienophile reaction with the conjugated 1,3-diene of the polymer is at least 1% by weight based on the reaction product. Examples of the polymer include polyesters, polyamides, polyethers, polysulfones and copolymers. The bisunsaturated dienophiles may include bis-maleimides, bis maleic and bis tumaric esters and amides. This method for expanding the molecular weight chains of the polymers, preferable thermoplastics, is advantageous for processing or fabricating thermoplastics. A low molecular weight thermoplastic is converted to a high molecular weight plastic having improved strength and toughness for use in the completed end use article.
Zur, Gideon; Shimoni, Eyal; Hallerman, Eric; Kashi, Yechezkel
2002-09-01
Alternaria sp. are important fungal contaminants of grain products; they secrete four structural classes of compounds that are toxic or carcinogenic to plants and animals and cause considerable economic losses to growers and the food-processing industry. Alternaria toxins have been detected by high-performance liquid chromatography (HPLC), enzyme-linked immunosorbent assay, and other techniques. Here, we report the development of a polymerase chain reaction (PCR)-based method for the detection of Alternaria DNA. PCR primers were designed to anneal to the ITS1 and ITS2 regions of the 5.8S rDNA gene of Alternaria alternata or Alternaria solani but not to other microbial or plant DNA. We compared the sensitivity of PCR in detecting Alternaria DNA, that of the HPLC method in detecting Alternaria alternariol and alternariol methyl ether toxins, and that of the morphological examination of mycelia and conidia in experimentally infested corn samples. The sensitivity of toxin detection for HPLC was above the level of contamination in a set of commercially obtained grain samples, resulting in negative scores for all samples, while the PCR-based method and mold growth plating followed by morphological identification of Alternaria gave parallel, positive results for 8 of 10 samples. The PCR assay required just 8 h, enabling the rapid and simultaneous testing of many samples at a low cost. PCR-based evidence for the presence of Alternaria DNA followed by positive assay results for Alternaria toxins would support the rejection of a shipment of grain.
Sharifdini, Meysam; Mirhendi, Hossein; Ashrafi, Keyhan; Hosseini, Mostafa; Mohebali, Mehdi; Khodadadi, Hossein; Kia, Eshrat Beigom
2015-01-01
This study was performed to evaluate nested polymerase chain reaction (PCR) and real-time PCR methods for detection of Strongyloides stercoralis in fecal samples compared with parasitological methods. A total of 466 stool samples were examined by conventional parasitological methods (formalin ether concentration [FEC] and agar plate culture [APC]). DNA was extracted using an in-house method, and mitochondrial cytochrome c oxidase subunit 1 and 18S ribosomal genes were amplified by nested PCR and real-time PCR, respectively. Among 466 samples, 12.7% and 18.2% were found infected with S. stercoralis by FEC and APC, respectively. DNA of S. stercoralis was detected in 18.9% and 25.1% of samples by real-time PCR and nested PCR, respectively. Considering parasitological methods as the diagnostic gold standard, the sensitivity and specificity of nested PCR were 100% and 91.6%, respectively, and that of real-time PCR were 84.7% and 95.8%, respectively. However, considering sequence analyzes of the selected nested PCR products, the specificity of nested PCR is increased. In general, molecular methods were superior to parasitological methods. They were more sensitive and more reliable in detection of S. stercoralis in comparison with parasitological methods. Between the two molecular methods, the sensitivity of nested PCR was higher than real-time PCR. PMID:26350449
Bai, Yalong; Song, Minghui; Cui, Yan; Shi, Chunlei; Wang, Dapeng; Paoli, George C; Shi, Xianming
2013-07-17
A method based on amino-modified silica-coated magnetic nanoparticles (ASMNPs) and polymerase chain reaction (PCR) was developed to rapidly and sensitively detect foodborne pathogens in raw milk. After optimizing parameters such as pH, temperature, and time, a trace amount of genomic DNA of pathogens could be extracted directly from complex matrices such as raw milk using ASMNPs. The magnetically separated complexes of genomic DNA and ASMNPs were directly subjected to single PCR (S-PCR) or multiplex PCR (M-PCR) to detect single or multiple pathogens from raw milk samples. Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive) were used as model organisms to artificially contaminate raw milk samples. After magnetic separation and S-PCR, the detection sensitivities were 8 CFU mL(-1) and 13 CFU mL(-1) respectively for these two types of pathogens. Furthermore, this method was successfully used to detect multiple pathogens (S. Enteritidis and L. monocytogenes) from artificially contaminated raw milk using M-PCR at sensitivities of 15 CFU mL(-1) and 25 CFU mL(-1), respectively. This method has great potential to rapidly and sensitively detect pathogens in raw milk or other complex food matrices. Copyright © 2013 Elsevier B.V. All rights reserved.
Indirect studies on astrophysical reactions at the low-energy RI beam separator CRIB
NASA Astrophysics Data System (ADS)
Yamaguchi, H.; Kahl, D.; Hayakawa, S.; Yang, L.; Shimizu, H.; Sakaguchi, Y.; Abe, K.; Wakabayashi, Y.; Hashimoto, T.; Nakao, T.; Kubono, S.; Suhara, T.; Iwasa, N.; Kim, A.; Kim, D. H.; Cha, S. M.; Kwag, M. S.; Lee, J. H.; Lee, E. J.; Chae, K. Y.; Imai, N.; Kitamura, N.; Lee, P.; Moon, J. Y.; Lee, K. B.; Akers, C.; Jung, H. S.; Duy, N. N.; Khiem, L. H.; Lee, C. S.; Cherubini, S.; Gulino, M.; Spitaleri, C.; Rapisarda, G. G.; Cognata, M. La; Lamia, L.; Romano, S.; Coc, A.; de Sereville, N.; Hammache, F.; Kiss, G.; Bishop, S.; Teranishi, T.; Kawabata, T.; Kwon, Y. K.; Binh, D. N.
2018-04-01
Studies on nuclear astrophysics, nuclear structure, and other interests have been performed using the radioactive-isotope (RI) beams at the low-energy RI beam separator CRIB, operated by Center for Nuclear Study (CNS), the University of Tokyo. A type of measurement to study astophysical reactions at CRIB is by the elastic resonant scattering with the thick-target method in inverse kinematics. An example is the α resonant scattering with 7Be beam, related to the astrophysical 7Be(α,γ) reactions, which is relevant in the hot p-p chain and νp-process in supernovae. Other α resonant scattering measurements with 30S, 10Be, 15O, and 18Ne beams have been performed at CRIB, using the thick-target method. There have also been measurements based on other experimental methods. The first Trojan horse method (THM) measurement using an RI beam has been performed at CRIB, to study the 18F(p, α)15O reaction at astrophysical energies via the three body reaction 2H(18F, α15O)n. The 18F(p, α)15O reaction rate is crucial to understand the 511-keV γ-ray production in nova explosion phenomena, and we successfully evaluated the reaction cross section at novae temperature and below experimentally for the first time.
Estes, Jacob M; Kirby, Tyler O; Huh, Warner K
2007-01-01
To determine whether autoclave sterilization eradicates human papillomavirus (HPV) DNA on specula and instruments used to treat women with cervical neoplasia. Specula and instruments used in two referral colposcopy clinics were evaluated to determine the PGMY9/11 primer system's ability to amplify residual HPV DNA. Each speculum and instrument was sampled with a Dacron swab and stored in PreservCyt solution (Cytyc Corporation, Marlborough, MA) at 4 degrees C. DNA amplification was performed under standard conditions with appropriate controls followed by HPV typing using the reverse line blot test (Roche Molecular Systems, Alameda, CA). Once validated, the same polymerase chain reaction method was used on autoclave-sterilized specula and biopsy instruments and heated glass bead- and Cidex bath (Johnson & Johnson, New Brunswick, NJ)-sterilized instruments. All results, with appropriate positive and negative controls, were confirmed in triplicate. A total of 140 instruments (70 used and 70 autoclaved) were sampled for residual HPV DNA. Five samples in the contaminated specula arm were excluded from analysis secondary to insufficient sampling. Of the remaining samples, 52.3% (34/65) of contaminated instruments-both specula and biopsy instruments-had detectable HPV DNA. Fifty-five percent of contaminated biopsy instruments (11/20) were positive and 51.1% of contaminated specula (23/45) were positive. All 70 autoclaved samples (50 specula and 20 biopsy instruments) were negative for residual HPV DNA or beta-globin. One instrument in the glass bead and Cidex group that was presumed sterile was positive for HPV 16 DNA. The PGMY9/11 primer system is an effective method to detect residual HPV DNA. Autoclave sterilization appears to eradicate HPV DNA to levels undetectable with this sensitive assay, whereas heated glass beads followed by Cidex bath appears to be inadequate methods. These results suggest that autoclave sterilization is effective when using nondisposable instruments and should be the method of choice in studies using polymerase chain reaction-based amplification of HPV DNA.
Ziegler, Matthew; Landsburg, Daniel; Pegues, David; Alby, Kevin; Gilmar, Cheryl; Bink, Kristen; Gorman, Theresa; Moore, Amy; Bonhomme, Brittaney; Omorogbe, Jacqueline; Tango, Dana; Tolomeo, Pam; Han, Jennifer H
2018-04-25
In a cohort of inpatients with hematologic malignancy and positive enzyme immunoassay (EIA) or polymerase chain reaction (PCR) Clostridium difficile tests, we found that clinical characteristics and outcomes were similar between these groups. The method of testing is unlikely to predict infection in this population, and PCR-positive results should be treated with concern.Infect Control Hosp Epidemiol 2018;1-4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasarabadi, Shanavaz
2011-01-11
A polymerase chain reaction system for analyzing a sample containing nucleic acid includes providing magnetic beads; providing a flow channel having a polymerase chain reaction chamber, a pre polymerase chain reaction magnet position adjacent the polymerase chain reaction chamber, and a post pre polymerase magnet position adjacent the polymerase chain reaction chamber. The nucleic acid is bound to the magnetic beads. The magnetic beads with the nucleic acid flow to the pre polymerase chain reaction magnet position in the flow channel. The magnetic beads and the nucleic acid are washed with ethanol. The nucleic acid in the polymerase chain reactionmore » chamber is amplified. The magnetic beads and the nucleic acid are separated into a waste stream containing the magnetic beads and a post polymerase chain reaction mix containing the nucleic acid. The reaction mix containing the nucleic acid flows to an analysis unit in the channel for analysis.« less
Studying the effect of graphene-ZnO nanocomposites on polymerase chain reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vinay, E-mail: winn201@gmail.com; Rajaura, Rajveer; Sharma, Preetam Kumar
An emerging area of research is improving the efficiency of the polymerase chain reaction (PCR) by using nanoparticles. With graphene nano-flakes showing promising results, in this paper we report the effect of Graphene-ZnO nanocomposites on Polymerase Chain reaction (PCR) efficiency. G-ZnO nanocomposites were efficiently synthesized via in situ chemical method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) image confirms the formation of nanocomposites. ZnO nanoparticles of size range ~20-30 nm are uniformly attached on the graphene sheets. No amplification during PCR indicates inhibitory activity of G-ZnO nanocomposites which points the fingers at ZnO moiety of the G-ZnO compositemore » for no amplification during our PCR reaction. Further work should concentrate on finding out the main inhibitory mechanism involved in inhibition of PCR using G-ZnO composites.« less
Analysis of raw meats and fats of pigs using polymerase chain reaction for Halal authentication.
Aida, A A; Che Man, Y B; Wong, C M V L; Raha, A R; Son, R
2005-01-01
A method for species identification from pork and lard samples using polymerase chain reaction (PCR) analysis of a conserved region in the mitochondrial (mt) cytochrome b (cyt b) gene has been developed. Genomic DNA of pork and lard were extracted using Qiagen DNeasy(®) Tissue Kits and subjected to PCR amplification targeting the mt cyt b gene. The genomic DNA from lard was found to be of good quality and produced clear PCR products on the amplification of the mt cyt b gene of approximately 360 base pairs. To distinguish between species, the amplified PCR products were cut with restriction enzyme BsaJI resulting in porcine-specific restriction fragment length polymorphisms (RFLP). The cyt b PCR-RFLP species identification assay yielded excellent results for identification of pig species. It is a potentially reliable technique for detection of pig meat and fat from other animals for Halal authentication.
Integrating DNA strand displacement circuitry to the nonlinear hybridization chain reaction.
Zhang, Zhuo; Fan, Tsz Wing; Hsing, I-Ming
2017-02-23
Programmable and modular attributes of DNA molecules allow one to develop versatile sensing platforms that can be operated isothermally and enzyme-free. In this work, we present an approach to integrate upstream DNA strand displacement circuits that can be turned on by a sequence-specific microRNA analyte with a downstream nonlinear hybridization chain reaction for a cascading hyperbranched nucleic acid assembly. This system provides a two-step amplification strategy for highly sensitive detection of the miRNA analyte, conducive for multiplexed detection. Multiple miRNA analytes were tested with our integrated circuitry using the same downstream signal amplification setting, showing the decoupling of nonlinear self-assembly with the analyte sequence. Compared with the reported methods, our signal amplification approach provides an additional control module for higher-order DNA self-assembly and could be developed into a promising platform for the detection of critical nucleic-acid based biomarkers.
James, Ameh; Macdonald, Joanne
2015-01-01
Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.
Development of an ELA-DRA gene typing method based on pyrosequencing technology.
Díaz, S; Echeverría, M G; It, V; Posik, D M; Rogberg-Muñoz, A; Pena, N L; Peral-García, P; Vega-Pla, J L; Giovambattista, G
2008-11-01
The polymorphism of equine lymphocyte antigen (ELA) class II DRA gene had been detected by polymerase chain reaction-single-strand conformational polymorphism (PCR-SSCP) and reference strand-mediated conformation analysis. These methodologies allowed to identify 11 ELA-DRA exon 2 sequences, three of which are widely distributed among domestic horse breeds. Herein, we describe the development of a pyrosequencing-based method applicable to ELA-DRA typing, by screening samples from eight different horse breeds previously typed by PCR-SSCP. This sequence-based method would be useful in high-throughput genotyping of major histocompatibility complex genes in horses and other animal species, making this system interesting as a rapid screening method for animal genotyping of immune-related genes.
Lou, Binghai; Song, Yaqin; RoyChowdhury, Moytri; Deng, Chongling; Niu, Ying; Fan, Qijun; Tang, Yan; Zhou, Changyong
2018-02-01
Huanglongbing (HLB) is one of the most destructive diseases in citrus production worldwide. Early detection of HLB pathogens can facilitate timely removal of infected citrus trees in the field. However, low titer and uneven distribution of HLB pathogens in host plants make reliable detection challenging. Therefore, the development of effective detection methods with high sensitivity is imperative. This study reports the development of a novel method, tandem repeat-based polymerase chain displacement reaction (TR-PCDR), for the detection of 'Candidatus Liberibacter asiaticus', a widely distributed HLB-associated bacterium. A uniquely designed primer set (TR2-PCDR-F/TR2-PCDR-1R) and a thermostable Taq DNA polymerase mutant with strand displacement activity were used for TR-PCDR amplification. Performed in a regular thermal cycler, TR-PCDR could produce more than two amplicons after each amplification cycle. Sensitivity of the developed TR-PCDR was 10 copies of target DNA fragment. The sensitive level was proven to be 100× higher than conventional PCR and similar to real-time PCR. Data from the detection of 'Ca. L. asiaticus' with filed samples using the above three methods also showed similar results. No false-positive TR-PCDR amplification was observed from healthy citrus samples and water controls. These results thereby illustrated that the developed TR-PCDR method can be applied to the reliable, highly sensitive, and cost-effective detection of 'Ca. L. asiaticus'.
Pitre, Spencer P.; McTiernan, Christopher D.; Vine, Wyatt; DiPucchio, Rebecca; Grenier, Michel; Scaiano, Juan C.
2015-01-01
Photoredox catalysis provides many green opportunities for radical-mediated synthetic transformations. However, the determination of the underlying mechanisms has been challenging due to lack of quantitative methods that can be easily implemented in synthetic labs, where this research tends to be centered. We report here on the development, characterization and calibration of a novel actinometer based on the photocatalyst tris(2,2′-bipyridyl)ruthenium(II) chloride (Ru(bpy)3Cl2). By using the same molecule as the photocatalyst and the actinometer, we eliminate problems associated with matching sample spectral distribution, lamp-sample spectral overlap and other problems intrinsic to doing quantitative photochemistry in a laboratory that has little expertise in this area. In order to validate our actinometer system in determining the quantum yield of a Ru(bpy)3Cl2 photosensitized reaction, we test the Ru(bpy)3Cl2 catalyzed oxidation of benzhydrol to benzophenone as a model chain reaction. We also revive the rotating sector method by updating the technique for modern LED technologies and demonstrate how intermittent illumination on the timescale of milliseconds to seconds can help probe a chain reaction, using the benzhydrol to benzophenone oxidation to validate the technique. We envision these methods to have great implications in the field of photoredox catalysis, providing researchers with valuable research tools. PMID:26578341
Cullen, Cheryl L; Haines, Deborah M; Jackson, Marion L; Grahn, Bruce H
2002-07-01
Diffuse iris melanoma was confirmed by light-microscopic examination in 10 formalin-fixed, paraffin-embedded globes from 10 cats. To determine if feline leukemia virus or a replication defective feline leukemia virus, feline sarcoma virus, was present in these anterior uveal melanomas, immunohistochemistry and polymerase chain reaction for feline leukemia virus were utilized. Immunohistochemical staining for feline leukemia virus glycoprotein 70 was performed on all 10 tumors using an avidin-biotin complex technique. The DNA was extracted from each specimen and a 166-base pair region of the feline leukemia virus long terminal repeat was targeted by polymerase chain reaction. Immunohistochemical staining for feline leukemia virus glycoprotein 70 and polymerase chain reaction amplification of a feline leukemia virus long terminal repeat region were negative in all cases. Feline leukemia virus/feline sarcoma virus was not detected in any neoplasms and therefore was unlikely to play a role in the tumorigenesis of these feline diffuse iris melanomas.
Garg, Pankaj
2017-07-01
Histopathology is commonly used to diagnose tuberculosis in fistula-in-ano. The aim was to compare the sensitivity of polymerase chain reaction and histopathology in detecting tuberculosis in fistula-in-ano. The histopathology and polymerase chain-reaction of tissue (fistula tract) was done in all the consecutive operated cases. When pus sample was also available, polymerase chain reaction-pus was also done RESULTS: Three hundred forty seven samples (179 patients) were tested over 2 years (median 6.5 months). The mean age was 38.8 ± 10.7 years, and male/female was 170/9. Histopathology and polymerase chain reaction of tissue (fistula tract) was done in 152 and 165 patients, respectively. Polymerase chain reaction (pus) could be done in 30 patients. Overall, tuberculosis was detected in 20/179 (11.2%) patients. Of these, tuberculosis was detected by histopathology (tissue) in 1/152 (0.7%) and by polymerase chain reaction (tissue) in 14/165 (8.5%) patients. In pus, polymerase chain reaction detected tuberculosis in 6/30 (20%) patients. Both polymerase chain reaction of tissue and pus were positive in one patient. Polymerase chain reaction (tissue) and polymerase chain reaction (pus) were significantly more sensitive than histopathology (tissue) for detecting tuberculosis [histopathology 1/152 vs. polymerase chain reaction (tissue) 14/165, p = 0.0009] [histopathology 1/152 vs. polymerase chain reaction (pus) 6/30, p < 0.0001]. In 20 patients detected to have tuberculosis, four drug anti-tubercular therapy was recommended for 6 months. The therapy was completed in 13 patients and 12/13 (92.3%) were cured. The therapy is continuing in 3/20 patients. Four patients did not take the therapy. None of them was cured. Polymerase chain reaction was significantly more sensitive than histopathology in detecting tuberculosis in fistula-in-ano. Histopathology might be missing out tuberculosis in many patients leading to recurrence of the fistula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koh, Chung-Yan; Light, Yooli Kim; Piccini, Matthew Ernest
Embodiments of the present invention are directed toward devices, systems, and methods for purifying nucleic acids to conduct polymerase chain reaction (PCR) assays. In one example, a method includes generating complexes of silica beads and nucleic acids in a lysis buffer, transporting the complexes through an immiscible fluid to remove interfering compounds from the complexes, further transporting the complexes into a density medium containing components required for PCR where the nucleic acids disassociate from the silica beads, and thermocycling the contents of the density medium to achieve PCR. Signal may be detected from labeling agents in the components required formore » PCR.« less
Pancrazzi, Alessandro; Guglielmelli, Paola; Ponziani, Vanessa; Bergamaschi, Gaetano; Bosi, Alberto; Barosi, Giovanni; Vannucchi, Alessandro M.
2008-01-01
Acquired mutations in the juxtamembrane region of MPL (W515K or W515L), the receptor for thrombopoietin, have been described in patients with primary myelofibrosis or essential thrombocythemia, which are chronic myeloproliferative disorders. We have developed a real-time polymerase chain reaction assay for the detection and quantification of MPL mutations that is based on locked nucleic acid fluorescent probes. Mutational analysis was performed using DNA from granulocytes. Reference curves were obtained using cloned fragments of MPL containing either the wild-type or mutated sequence; the predicted sensitivity level was at least 0.1% mutant allele in a wild-type background. None of the 60 control subjects presented with a MPLW515L/K mutation. Of 217 patients with myelofibrosis, 19 (8.7%) harbored the MPLW515 mutation, 10 (52.6%) with the W515L allele. In one case, both the W515L and W515K alleles were detected by real-time polymerase chain reaction. By comparing results obtained with conventional sequencing, no erroneous genotype attribution using real-time polymerase chain reaction was found, whereas one patient considered wild type according to sequence analysis actually harbored a low W515L allele burden. This is a simple, sensitive, and cost-effective procedure for large-scale screening of the MPLW515L/K mutation in patients suspected to have a myeloproliferative disorder. It can also provide a quantitative estimate of mutant allele burden that might be useful for both patient prognosis and monitoring response to therapy. PMID:18669880
D'Souza, Yasmin; Fombonne, Eric; Ward, Brian J
2006-10-01
Despite epidemiologic evidence to the contrary, claims of an association between measles-mumps-rubella vaccination and the development of autism have persisted. Such claims are based primarily on the identification of measles virus nucleic acids in tissues and body fluids by polymerase chain reaction. We sought to determine whether measles virus nucleic acids persist in children with autism spectrum disorder compared with control children. Peripheral blood mononuclear cells were isolated from 54 children with autism spectrum disorder and 34 developmentally normal children, and up to 4 real-time polymerase chain reaction assays and 2 nested polymerase chain reaction assays were performed. These assays targeted the nucleoprotein, fusion, and hemagglutinin genes of measles virus using previously published primer pairs with detection by SYBR green I. Our own real-time assay targeted the fusion gene using novel primers and an internal fluorescent probe. Positive reactions were evaluated rigorously, and amplicons were sequenced. Finally, anti-measles antibody titers were measured by enzyme immunoassay. The real-time assays based on previously published primers gave rise to a large number of positive reactions in both autism spectrum disorder and control samples. Almost all of the positive reactions in these assays were eliminated by evaluation of melting curves and amplicon band size. The amplicons for the remaining positive reactions were cloned and sequenced. No sample from either autism spectrum disorder or control groups was found to contain nucleic acids from any measles virus gene. In the nested polymerase chain reaction and in-house assays, none of the samples yielded positive results. Furthermore, there was no difference in anti-measles antibody titers between the autism and control groups. There is no evidence of measles virus persistence in the peripheral blood mononuclear cells of children with autism spectrum disorder.
Meyer, K; Rosa, C; Hischenhuber, C; Meyer, R
2001-01-01
A polymerase chain reaction (PCR) was developed to differentiate the thickening agents locust bean gum (LBG) and the cheaper guar gum in finished food products. Universal primers for amplification of the intergenic spacer region between trnL 3' (UAA) exon and trnF (GAA) gene in the chloroplast (cp) genome and subsequent restriction analysis were applied to differentiate guar gum and LBG. The presence of <5% (w/w) guar gum powder added to LBG powder was detectable. Based on data obtained from sequencing this intergenic spacer region, a second PCR method for the specific detection of guar gum DNA was also developed. This assay detected guar gum powder in LBG in amounts as low as 1% (w/w). Both methods successfully detected guar gum and/or LBG in ice cream stabilizers and in foodstuffs, such as dairy products, ice cream, dry seasoning mixes, a finished roasting sauce, and a fruit jelly product, but not in products with highly degraded DNA, such as tomato ketchup and sterilized chocolate cream. Both methods detected guar gum and LBG in ice cream and fresh cheese at levels <0.1%.
Abdeldaim, Guma M K; Strålin, Kristoffer; Kirsebom, Leif A; Olcén, Per; Blomberg, Jonas; Herrmann, Björn
2009-08-01
A quantitative real-time polymerase chain reaction (PCR) based on the omp P6 gene was developed to detect Haemophilus influenzae. Its specificity was determined by analysis of 29 strains of 11 different Haemophilus spp. and was compared with PCR assays having other target genes: rnpB, 16S rRNA, and bexA. The method was evaluated on nasopharyngeal aspirates from 166 adult patients with community-acquired pneumonia. When 10(4) DNA copies/mL was used as cutoff limit for the method, P6 PCR had a sensitivity of 97.5% and a specificity of 96.0% compared with the culture. Of 20 culture-negative but P6 PCR-positive cases, 18 were confirmed by fucK PCR as H. influenzae. Five (5.9%) of 84 nasopharyngeal aspirates from adult controls tested PCR positive. We conclude that the P6 real-time PCR is both sensitive and specific for identification of H. influenzae in respiratory secretions. Quantification facilitates discrimination between disease-causing H. influenzae strains and commensal colonization.
Molecular detection of black-pigmented bacteria in infections of endodontic origin.
Siqueira, J F; Rôças, I N; Oliveira, J C; Santos, K R
2001-09-01
A 16S rDNA-directed polymerase chain reaction method was used to assess the occurrence of four black-pigmented anaerobic rods in root canal infections. Samples were obtained from 54 infected teeth. Ten cases were diagnosed as acute periradicular abscesses. DNA was extracted from the samples and analyzed using a polymerase chain reaction-based identification assay. The method allowed detection of black-pigmented bacteria anaerobes in 59.3% of the examined teeth. Twelve cases yielded more than one black-pigmented species. In general Porphyromonas endodontalis was found in 42.6%, Porphyromonas gingivalis in 27.8%, Prevotella nigrescens in 7.4%, and Prevotella intermedia in 5.6% of the cases. P. endodontalis was found in 70% of the pus samples, P. gingivalis in 40%, and P. intermedia in 10%. P. gingivalis was always found associated with P. endodontalis in abscessed teeth. P. nigrescens was not found in any pus sample. The high prevalence of P. endodontalis and P. gingivalis suggests that they can play an important role in the pathogenesis of periradicular diseases.
Comparative quantification of human intestinal bacteria based on cPCR and LDR/LCR.
Tang, Zhou-Rui; Li, Kai; Zhou, Yu-Xun; Xiao, Zhen-Xian; Xiao, Jun-Hua; Huang, Rui; Gu, Guo-Hao
2012-01-21
To establish a multiple detection method based on comparative polymerase chain reaction (cPCR) and ligase detection reaction (LDR)/ligase chain reaction (LCR) to quantify the intestinal bacterial components. Comparative quantification of 16S rDNAs from different intestinal bacterial components was used to quantify multiple intestinal bacteria. The 16S rDNAs of different bacteria were amplified simultaneously by cPCR. The LDR/LCR was examined to actualize the genotyping and quantification. Two beneficial (Bifidobacterium, Lactobacillus) and three conditionally pathogenic bacteria (Enterococcus, Enterobacterium and Eubacterium) were used in this detection. With cloned standard bacterial 16S rDNAs, standard curves were prepared to validate the quantitative relations between the ratio of original concentrations of two templates and the ratio of the fluorescence signals of their final ligation products. The internal controls were added to monitor the whole detection flow. The quantity ratio between two bacteria was tested. cPCR and LDR revealed obvious linear correlations with standard DNAs, but cPCR and LCR did not. In the sample test, the distributions of the quantity ratio between each two bacterial species were obtained. There were significant differences among these distributions in the total samples. But these distributions of quantity ratio of each two bacteria remained stable among groups divided by age or sex. The detection method in this study can be used to conduct multiple intestinal bacteria genotyping and quantification, and to monitor the human intestinal health status as well.
Brzezinski, Jennifer L
2006-01-01
The detection of potentially allergenic foods, such as tree nuts, in food products is a major concern for the food processing industry. A real-time polymerase chain reaction (PCR) method was designed to determine the presence of cashew DNA in food products. The PCR amplifies a 67 bp fragment of the cashew 2S albumin gene, which is detected with a cashew-specific, dual-labeled TaqMan probe. This reaction will not amplify DNA derived from other tree nut species, such as almond, Brazil nut, hazelnut, and walnut, as well as 4 varieties of peanut. This assay was sensitive enough to detect 5 pg purified cashew DNA as well as cashew DNA in a spiked chocolate cookie sample containing 0.01% (100 mg/kg) cashew.
Time-Resolved O3 Chemical Chain Reaction Kinetics Via High-Resolution IR Laser Absorption Methods
NASA Technical Reports Server (NTRS)
Kulcke, Axel; Blackmon, Brad; Chapman, William B.; Kim, In Koo; Nesbitt, David J.
1998-01-01
Excimer laser photolysis in combination with time-resolved IR laser absorption detection of OH radicals has been used to study O3/OH(v = 0)/HO2 chain reaction kinetics at 298 K, (i.e.,(k(sub 1) is OH + 03 yields H02 + 02 and (k(sub 2) is H02 + 03 yields OH + 202). From time-resolved detection of OH radicals with high-resolution near IR laser absorption methods, the chain induction kinetics have been measured at up to an order of magnitude higher ozone concentrations ([03] less than or equal to 10(exp 17) molecules/cu cm) than accessible in previous studies. This greater dynamic range permits the full evolution of the chain induction, propagation, and termination process to be temporally isolated and measured in real time. An exact solution for time-dependent OH evolution under pseudo- first-order chain reaction conditions is presented, which correctly predicts new kinetic signatures not included in previous OH + 03 kinetic analyses. Specifically, the solutions predict an initial exponential loss (chain "induction") of the OH radical to a steady-state level ([OH](sub ss)), with this fast initial decay determined by the sum of both chain rate constants, k(sub ind) = k(sub 1) + k(sub 2). By monitoring the chain induction feature, this sum of the rate constants is determined to be k(sub ind) = 8.4(8) x 10(exp -14) cu cm/molecule/s for room temperature reagents. This is significantly higher than the values currently recommended for use in atmospheric models, but in excellent agreement with previous results from Ravishankara et al.
Rapid Assembly of DNA via Ligase Cycling Reaction (LCR).
Chandran, Sunil
2017-01-01
The assembly of multiple DNA parts into a larger DNA construct is a requirement in most synthetic biology laboratories. Here we describe a method for the efficient, high-throughput, assembly of DNA utilizing the ligase chain reaction (LCR). The LCR method utilizes non-overlapping DNA parts that are ligated together with the guidance of bridging oligos. Using this method, we have successfully assembled up to 20 DNA parts in a single reaction or DNA constructs up to 26 kb in size.
Jia, Ruan; Chengjun, Sun; Heng, Chen; Chen, Zhou; Yuanqian, Li; Yongxin, Li
2015-07-01
Enterovirus 71 and Coxsackievirus A16 are the main pathogens causing hand-foot-mouth disease. In this paper, microchip capillary electrophoresis with laser-induced fluorescence combined with one-step duplex reverse transcript-polymerase chain reaction has been developed for the detection of Enterovirus 71 and Coxsackievirus A16 in throat swab specimens. The specific reverse transcription-polymerase chain reaction amplicons labeled with SYBR Orange were separated by microchip capillary electrophoresis and detected by laser induced fluorescence detector within 7 min. The intraday and interday relative standard deviation of migration time for DNA Marker was in the range of 1.36-2.94 and 2.78-3.96%, respectively. The detection limits were as low as 2.06 × 10(3) copies/mL for Enterovirus 71 and 5 × 10(3) copies/mL for Coxsackievirus A16. No cross-reactivity was observed with rotavirus, astrovirus, norovirus, and adenovirus, which showed good specificity of the method. This assay was validated using 100 throat swab specimens that were detected by real-time reverse-transcript polymerase chain reaction in parallel and the two methods produced the same results. This study provided a rapid, sensitive and specific method for the detection of Enterovirus 71 and Coxsackievirus A16, which make a contribution to significant time and cost saving for the identification and treatment of patients. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evans, Christopher M; Love, Alyssa M; Weiss, Emily A
2012-10-17
This article reports control of the competition between step-growth and living chain-growth polymerization mechanisms in the formation of cadmium chalcogenide colloidal quantum dots (QDs) from CdSe(S) clusters by varying the concentration of anionic surfactant in the synthetic reaction mixture. The growth of the particles proceeds by step-addition from initially nucleated clusters in the absence of excess phosphinic or carboxylic acids, which adsorb as their anionic conjugate bases, and proceeds indirectly by dissolution of clusters, and subsequent chain-addition of monomers to stable clusters (Ostwald ripening) in the presence of excess phosphinic or carboxylic acid. Fusion of clusters by step-growth polymerization is an explanation for the consistent observation of so-called "magic-sized" clusters in QD growth reactions. Living chain-addition (chain addition with no explicit termination step) produces QDs over a larger range of sizes with better size dispersity than step-addition. Tuning the molar ratio of surfactant to Se(2-)(S(2-)), the limiting ionic reagent, within the living chain-addition polymerization allows for stoichiometric control of QD radius without relying on reaction time.
Danišová, Olga; Halánová, Monika; Valenčáková, Alexandra; Luptáková, Lenka
The study was conducted to compare the specificity of immunological diagnostic methods used for the diagnosis of Cryptosporidium species capable of causing life-threatening infection in both immunosuppressed and immunocompetent patients. For the detection of Cryptosporidium species in 79 animals with diarrhoea, we used three Copro-antigen tests: RIDASCREEN ® Cryptosporidium test, Cryptosporidium 2nd Generation (ELISA) and RIDA ® QUICK Cryptosporidium. For immunoassays we used positive and negative samples detected by means of polymerase chain reaction and validated by sequencing and nested polymerase chain reaction to confirm the presence six different species of Cryptosporidium species. Prevalence of cryptosporidiosis in the entire group determined by enzyme immunoassay, enzyme linked immunosorbent assay, immuno-chromatographic test and polymerase chain reaction was 34.17%, 27.84%, 6.33% and 27.84%, respectively. Sensitivity of animal samples with enzyme immunoassay, enzyme linked immunosorbent assay, and immuno-chromatographic test was 63.6%, 40.9% and 22.7%, resp., when questionable samples were considered positive, whereas specificity of enzyme immunoassay, enzyme linked immunosorbent assay and immuno-chromatographic test was 75.9%, 78.9% and 100%, respectively. Positive predictive values and negative predictive values were different for all the tests. These differences results are controversial and therefore reliability and reproducibility of immunoassays as the only diagnostic method is questionable. The use of various Cryptosporidium species in diagnosis based on immunological testing and different results obtained by individual tests indicate potential differences in Copro-antigens produced by individual Cryptosporidium species. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
DNA extraction from coral reef sediment bacteria for the polymerase chain reaction.
Guthrie, J N; Moriarty, D J; Blackall, L L
2000-12-15
A rapid and effective method for the direct extraction of high molecular weight amplifiable DNA from two coral reef sediments was developed. DNA was amplified by the polymerase chain reaction (PCR) using 16S rDNA specific primers. The amplicons were digested with HaeIII, HinP1I and MspI and separated using polyacrylamide gel electrophoresis and silver staining. The resulting amplified ribosomal DNA restriction analysis (ARDRA) patterns were used as a fingerprint to discern differences between the coral reef sediment samples. Results indicated that ARDRA is an effective method for determining differences within the bacterial community amongst different environmental samples.
Friis, Thor Einar; Stephenson, Sally; Xiao, Yin; Whitehead, Jon
2014-01-01
The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes. PMID:24447069
Bojunga, Jörg; Kusterer, Klaus; Schumm-Draeger, Petra-Maria; Usadel, Klaus-Henning
2002-12-01
Thyroid cancers are the most common endocrine malignancies and are being diagnosed with increasing frequency. In addition to other measures, diagnosis is based on fine-needle aspiration cytology examination. Recently, new assays using reverse transcription-polymerase chain reaction (PCR) are being tested to improve sensitivity and specificity of primary diagnosis and detection of recurrent thyroid cancer. In the preoperative diagnosis of thyroid cancer, several tissue- and/or tumor-specific mRNA have been described and in several cases, a higher sensitivity and specificity could be achieved using molecular techniques compared to conventional methods. In the postoperative follow-up of patients with thyroid cancer, conflicting data have been published and the use of PCR techniques revealed several problems of the molecular approach, which are based on some technical as well as biologic limitations. Despite these problems, which are discussed in detail in this review, molecular techniques may nevertheless improve the sensitivity and accuracy of fine-needle aspiration of thyroid nodules, fine-needle aspiration of metastases, and detection of recurrent disease in peripheral blood samples.
Systematic development of reduced reaction mechanisms for dynamic modeling
NASA Technical Reports Server (NTRS)
Frenklach, M.; Kailasanath, K.; Oran, E. S.
1986-01-01
A method for systematically developing a reduced chemical reaction mechanism for dynamic modeling of chemically reactive flows is presented. The method is based on the postulate that if a reduced reaction mechanism faithfully describes the time evolution of both thermal and chain reaction processes characteristic of a more complete mechanism, then the reduced mechanism will describe the chemical processes in a chemically reacting flow with approximately the same degree of accuracy. Here this postulate is tested by producing a series of mechanisms of reduced accuracy, which are derived from a full detailed mechanism for methane-oxygen combustion. These mechanisms were then tested in a series of reactive flow calculations in which a large-amplitude sinusoidal perturbation is applied to a system that is initially quiescent and whose temperature is high enough to start ignition processes. Comparison of the results for systems with and without convective flow show that this approach produces reduced mechanisms that are useful for calculations of explosions and detonations. Extensions and applicability to flames are discussed.
Huang, Rong-Yuan; Chang, Hao-Teng; Lan, Chung-Yu; Pai, Tun-Wen; Wu, Chao-Nan; Ling, Chung-Mei; Chang, Margaret Dah-Tsyr
2008-08-01
A high-throughput polymerase chain reaction (PCR)-based enzyme-linked oligonucleotide-sorbent assay (ELOSA) was developed for use in the diagnostic testing of serum from patients who may be infected with different hepatitis C virus (HCV) genotypes. Twelve genotype-specific 5'-aminated DNA-coated probes were designed based on the variable 5'-untranslated region sequences of the HCV genotypes 1-6. Using 100 clinical serum samples, the performance of the PCR-ELOSA method was compared with Roche's COBAS Amplicor HCV Monitor V2.0 assay and the VERSANT HCV genotype assay (LiPA), and the overall agreement was 99% at the level of HCV genotypes with a detection range of 2.0 x 10(2) to 1.0 x 10(7)IU/ml for PCR-ELOSA. The PCR-ELOSA was more comprehensive as demonstrated by the fact that approximately 20% of the samples with different subtypes could be discriminated by this method but not by LiPA. In addition, the PCR-ELOSA system showed high accuracy (CV
Chen, Jia; Lin, Yuexin; Wang, Yu; Jia, Li
2015-06-01
Pathogenic bacteria cause significant morbidity and mortality to humans. There is a pressing need to establish a simple and reliable method to detect them. Herein, we show that magnetic particles (MPs) can be functionalized by poly(diallyl dimethylammonium chloride) (PDDA), and the particles (PDDA-MPs) can be utilized as adsorbents for capture of pathogenic bacteria from aqueous solution based on electrostatic interaction. The as-prepared PDDA-MPs were characterized by Fourier-transform infrared spectroscopy, zeta potential, vibrating sample magnetometry, X-ray diffraction spectrometry, scanning electron microscopy, and transmission electron microscopy. The adsorption equilibrium time can be achieved in 3min. According to the Langmuir adsorption isotherm, the maximum adsorption capacities for E. coli O157:H7 (Gram-negative bacteria) and L. monocytogenes (Gram-positive bacteria) were calculated to be 1.8×10(9) and 3.1×10(9)cfumg(-1), respectively. The bacteria in spiked mineral water (1000mL) can be completely captured when applying 50mg of PDDA-MPs and an adsorption time of 5min. In addition, PDDA-MPs-based magnetic separation method in combination with polymerase chain reaction and capillary electrophoresis allows for rapid detection of 10(1)cfumL(-1) bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.
Detection of Trypanosoma cruzi by Polymerase Chain Reaction.
Márquez, María Elizabeth; Concepción, Juan Luis; González-Marcano, Eglys; Mondolfi, Alberto Paniz
2016-01-01
American Trypanosomiasis (Chagas disease) is an infectious disease caused by the hemoflagellate parasite Trypanosoma cruzi which is transmitted by reduviid bugs. T. cruzi infection occurs in a broad spectrum of reservoir animals throughout North, Central, and South America and usually evolves into an asymptomatic chronic clinical stage of the disease in which diagnosis is often challenging. This chapter describes the application of polymerase chain reaction (PCR) for the detection of Trypanosoma cruzi DNA including protocols for sample preparation, DNA extraction, and target amplification methods.
Tattiyapong, P; Sirikanchana, K; Surachetpong, W
2018-02-01
Tilapia lake virus (TiLV) is an emerging pathogen associated with high mortalities of wild and farm-raised tilapia in different countries. In this study, a SYBR green-based reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay targeting segment three of the virus was developed to detect and quantify TiLV in clinical samples and experimentally challenged fish. All 30 field samples with clinical signs and history consistent with TiLV infection were positive for TiLV as detected by the developed RT-qPCR method. The RT-qPCR technique provided 100 and 10,000 times more sensitive for virus detection than those offered by the RT-PCR and virus isolation in cell culture methods, respectively. The detection limit of the RT-qPCR method was as low as two viral copies/μl. Moreover, the RT-qPCR technique could be applied for TiLV detection in various fish tissues including gills, liver, brain, heart, anterior kidney and spleen. Significantly, this study delivered an accurate and reliable method for rapid detection of TiLV viruses that facilitates active surveillance programme and disease containment. © 2017 John Wiley & Sons Ltd.
Nolasco, G; de Blas, C; Torres, V; Ponz, F
1993-12-15
A method for the detection of RNA viral and subviral plant pathogens was developed that combines pathogen partial purification by solid-phase adsorbed antibodies, reverse transcriptional-polymerase chain reaction (RT-PCR) and quantitation of the amplified products by fluorescence. The reverse transcription of the RNA is performed directly on the retained material without any previous thermal or chemical disruption of the virus particles. The whole procedure can be carried out in a microtiter plate. Its validity has been successfully confirmed for the detection of bean yellow mosaic virus, cherry leafroll virus, cucumber mosaic virus, citrus tristeza virus, grapevine fanleaf virus, potato leafroll virus, pepper mild mottle virus, and tomato spotted wilt virus, as well as the satellite RNA of cucumber mosaic virus and potato spindle tuber viroid. In this procedure virus-specific antibodies can be replaced by monoclonal antibodies against double-stranded RNA, thus offering the possibility of detection when no specific virus antibodies are available, or immunological methods are difficult to use (i.e., subviral pathogens like satellite-RNAs or viroids). The method described has the typical sensitivity of assays based on the polymerase chain reaction, it is not more laborious than ELISA, and an equivalent degree of automation is possible.
Valeriani, Federica; Agodi, Antonella; Casini, Beatrice; Cristina, Maria Luisa; D'Errico, Marcello Mario; Gianfranceschi, Gianluca; Liguori, Giorgio; Liguori, Renato; Mucci, Nicolina; Mura, Ida; Pasquarella, Cesira; Piana, Andrea; Sotgiu, Giovanni; Privitera, Gaetano; Protano, Carmela; Quattrocchi, Annalisa; Ripabelli, Giancarlo; Rossini, Angelo; Spagnolo, Anna Maria; Tamburro, Manuela; Tardivo, Stefano; Veronesi, Licia; Vitali, Matteo; Romano Spica, Vincenzo
2018-02-01
Reprocessing of endoscopes is key to preventing cross-infection after colonoscopy. Culture-based methods are recommended for monitoring, but alternative and rapid approaches are needed to improve surveillance and reduce turnover times. A molecular strategy based on detection of residual traces from gut microbiota was developed and tested using a multicenter survey. A simplified sampling and DNA extraction protocol using nylon-tipped flocked swabs was optimized. A multiplex real-time polymerase chain reaction (PCR) test was developed that targeted 6 bacteria genes that were amplified in 3 mixes. The method was validated by interlaboratory tests involving 5 reference laboratories. Colonoscopy devices (n = 111) were sampled in 10 Italian hospitals. Culture-based microbiology and metagenomic tests were performed to verify PCR data. The sampling method was easily applied in all 10 endoscopy units and the optimized DNA extraction and amplification protocol was successfully performed by all of the involved laboratories. This PCR-based method allowed identification of both contaminated (n = 59) and fully reprocessed endoscopes (n = 52) with high sensibility (98%) and specificity (98%), within 3-4 hours, in contrast to the 24-72 hours needed for a classic microbiology test. Results were confirmed by next-generation sequencing and classic microbiology. A novel approach for monitoring reprocessing of colonoscopy devices was developed and successfully applied in a multicenter survey. The general principle of tracing biological fluids through microflora DNA amplification was successfully applied and may represent a promising approach for hospital hygiene. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Codner, Gemma F; Lindner, Loic; Caulder, Adam; Wattenhofer-Donzé, Marie; Radage, Adam; Mertz, Annelyse; Eisenmann, Benjamin; Mianné, Joffrey; Evans, Edward P; Beechey, Colin V; Fray, Martin D; Birling, Marie-Christine; Hérault, Yann; Pavlovic, Guillaume; Teboul, Lydia
2016-08-05
Karyotypic integrity is essential for the successful germline transmission of alleles mutated in embryonic stem (ES) cells. Classical methods for the identification of aneuploidy involve cytological analyses that are both time consuming and require rare expertise to identify mouse chromosomes. As part of the International Mouse Phenotyping Consortium, we gathered data from over 1,500 ES cell clones and found that the germline transmission (GLT) efficiency of clones is compromised when over 50 % of cells harbour chromosome number abnormalities. In JM8 cells, chromosomes 1, 8, 11 or Y displayed copy number variation most frequently, whilst the remainder generally remain unchanged. We developed protocols employing droplet digital polymerase chain reaction (ddPCR) to accurately quantify the copy number of these four chromosomes, allowing efficient triage of ES clones prior to microinjection. We verified that assessments of aneuploidy, and thus decisions regarding the suitability of clones for microinjection, were concordant between classical cytological and ddPCR-based methods. Finally, we improved the method to include assay multiplexing so that two unstable chromosomes are counted simultaneously (and independently) in one reaction, to enhance throughput and further reduce the cost. We validated a PCR-based method as an alternative to classical karyotype analysis. This technique enables laboratories that are non-specialist, or work with large numbers of clones, to precisely screen ES cells for the most common aneuploidies prior to microinjection to ensure the highest level of germline transmission potential. The application of this method allows early exclusion of aneuploid ES cell clones in the ES cell to mouse conversion process, thus improving the chances of obtaining germline transmission and reducing the number of animals used in failed microinjection attempts. This method can be applied to any other experiments that require accurate analysis of the genome for copy number variation (CNV).
Fang, Xin-Yu; Li, Wen-Bo; Zhang, Chao-Fan; Huang, Zi-da; Zeng, Hui-Yi; Dong, Zheng; Zhang, Wen-Ming
2018-02-01
To explore the diagnostic efficiency of DNA-based and RNA-based quantitative polymerase chain reaction (qPCR) analyses for periprosthetic joint infection (PJI). To determine the detection limit of DNA-based and RNA-based qPCR in vitro, Staphylococcus aureus and Escherichia coli strains were added to sterile synovial fluid obtained from a patient with knee osteoarthritis. Serial dilutions of samples were analyzed by DNA-based and RNA-based qPCR. Clinically, patients who were suspected of having PJI and eventually underwent revision arthroplasty in our hospital from July 2014 to December 2016 were screened. Preoperative puncture or intraoperative collection was performed on patients who met the inclusion and exclusion criteria to obtain synovial fluid. DNA-based and RNA-based PCR analyses and culture were performed on each synovial fluid sample. The patients' demographic characteristics, medical history, and laboratory test results were recorded. The diagnostic efficiency of both PCR assays was compared with culture methods. The in vitro analysis demonstrated that DNA-based qPCR assay was highly sensitive, with the detection limit being 1200 colony forming units (CFU)/mL of S. aureus and 3200 CFU/mL of E. coli. Meanwhile, The RNA-based qPCR assay could detect 2300 CFU/mL of S. aureus and 11 000 CFU/mL of E. coli. Clinically, the sensitivity, specificity, and accuracy were 65.7%, 100%, and 81.6%, respectively, for the culture method; 81.5%, 84.8%, and 83.1%, respectively, for DNA-based qPCR; and 73.6%, 100%, and 85.9%, respectively, for RNA-based qPCR. DNA-based qPCR could detect suspected PJI with high sensitivity after antibiotic therapy. RNA-based qPCR could reduce the false positive rates of DNA-based assays. qPCR-based methods could improve the efficiency of PJI diagnosis. © 2018 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.
Bondarenko, N P; Lakatosh, V P; Lakatosh, P V; Malanchuk, O B; Poladich, I V
2015-01-01
The combined method of diagnosis parvovirus infection during pregnancy by maternal serum enzyme immunoassay and deoxyribonucleic acid isolation parvovirus B19 polymerase chain reaction in amnniotic fluid and fetal cord blood newborns, can diagnose vertical transmission and anticipate a negative effect on the fetus parvovirus. Lack of maternal IgM antibodies in serum due to parvovirus seroconversion during pregnancy does not exclude the persistence of the virus in the fetus. To analyze the diagnostic value of the method for determining the LHP parvovirus B19 DNA in the amniotic fluid, umbilical cord blood of newborns to determine vertical transmission of parvovirus infection when infected mothers B19 during pregnancy.
Stem cell isolation by a morphology-based selection method in postnatal mouse ovary
Parvari, Soraya; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz
2015-01-01
Introduction An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. Material and methods A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Results Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. Conclusions The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies. PMID:26170863
A review on detection methods used for foodborne pathogens
Priyanka, B.; Patil, Rajashekhar K.; Dwarakanath, Sulatha
2016-01-01
Foodborne pathogens have been a cause of a large number of diseases worldwide and more so in developing countries. This has a major economic impact. It is important to contain them, and to do so, early detection is very crucial. Detection and diagnostics relied on culture-based methods to begin with and have developed in the recent past parallel to the developments towards immunological methods such as enzyme-linked immunosorbent assays (ELISA) and molecular biology-based methods such as polymerase chain reaction (PCR). The aim has always been to find a rapid, sensitive, specific and cost-effective method. Ranging from culturing of microbes to the futuristic biosensor technology, the methods have had this common goal. This review summarizes the recent trends and brings together methods that have been developed over the years. PMID:28139531
Lagrangian simulation of mixing and reactions in complex geochemical systems
NASA Astrophysics Data System (ADS)
Engdahl, Nicholas B.; Benson, David A.; Bolster, Diogo
2017-04-01
Simulations of detailed geochemical systems have traditionally been restricted to Eulerian reactive transport algorithms. This note introduces a Lagrangian method for modeling multicomponent reaction systems. The approach uses standard random walk-based methods for the particle motion steps but allows the particles to interact with each other by exchanging mass of their various chemical species. The colocation density of each particle pair is used to calculate the mass transfer rate, which creates a local disequilibrium that is then relaxed back toward equilibrium using the reaction engine PhreeqcRM. The mass exchange is the only step where the particles interact and the remaining transport and reaction steps are entirely independent for each particle. Several validation examples are presented, which reproduce well-known analytical solutions. These are followed by two demonstration examples of a competitive decay chain and an acid-mine drainage system. The source code, entitled Complex Reaction on Particles (CRP), and files needed to run these examples are hosted openly on GitHub (https://github.com/nbengdahl/CRP), so as to enable interested readers to readily apply this approach with minimal modifications.
Chua, Ang Lim; Aziah, Ismail; Balaram, Prabha; Bhuvanendran, Saatheeyavaane; Anthony, Amy Amilda; Mohmad, Siti Norazura; Nasir, Norhafiza M; Hassan, Haslizai; Naim, Rochman; Meran, Lila P; Hussin, Hani M; Ismail, Asma
2015-03-01
Chronic carriers of Salmonella Typhi act as reservoirs for the organism and become the agents of typhoid outbreaks in a community. In this study, chronic carriers in Kelantan, Malaysia were first identified using the culture and polymerase chain reaction method. Then, a novel serological tool, designated Typhidot-C, was evaluated in retrospect using the detected individuals as control positives. Chronic carriage positive by the culture and polymerase chain reaction method was recorded at 3.6% (4 out of 110) among individuals who previously had acute typhoid fever and a 9.4% (10 out of 106) carriage rate was observed among food handlers screened during outbreaks. The Typhidot-C assay was able to detect all these positive carriers showing its potential as a viable carrier screening tool and can be used for efficient detection of typhoid carriers in an endemic area. These findings were used to establish the first carrier registry for S Typhi carriers in Malaysia. © 2012 APJPH.
Adewale, B; Mafe, M A; Oyerinde, J P O
2005-01-01
Annual mass treatment with ivermectin for 12-15 years in endemic communities is the control strategy adopted by the African Programme for Onchocerciasis Control (APOC) for the control of onchocerciasis in Nigeria. This long-term treatment necessitates the use of Polymerase Chain Reaction (PCR) for the proper identification of the Onchocerca species and strains in endemic areas and also for monitoring recrudescence of infection in areas where infection has been controlled. This study, which forms part of a larger study on transmission of onchocerciasis identifies the Onchocerca volvulus strain in Ondo state using the Polymerase Chain Reaction (PCR) technique. Deoxyribonucleic acid (DNA) was extracted from the adult worm of Onchocerca parasite using the glass bead method of extraction. The repeated sequence family present in the genome of the parasite designated as 0-150bp was amplified by the polymerase chain reaction (PCR). The amplified parasites produced significant products visible as bands in a 2% agarose gel stained with ethidium bromide. Hybridization of the PCR products with specific DNA probe identified the products as forest strain of Onchocerca volvulus. The epidemiological implication of this is that there would be more of the skin lesions and low blindness rate in the area.
Modeling qRT-PCR dynamics with application to cancer biomarker quantification.
Chervoneva, Inna; Freydin, Boris; Hyslop, Terry; Waldman, Scott A
2017-01-01
Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is widely used for molecular diagnostics and evaluating prognosis in cancer. The utility of mRNA expression biomarkers relies heavily on the accuracy and precision of quantification, which is still challenging for low abundance transcripts. The critical step for quantification is accurate estimation of efficiency needed for computing a relative qRT-PCR expression. We propose a new approach to estimating qRT-PCR efficiency based on modeling dynamics of polymerase chain reaction amplification. In contrast, only models for fluorescence intensity as a function of polymerase chain reaction cycle have been used so far for quantification. The dynamics of qRT-PCR efficiency is modeled using an ordinary differential equation model, and the fitted ordinary differential equation model is used to obtain effective polymerase chain reaction efficiency estimates needed for efficiency-adjusted quantification. The proposed new qRT-PCR efficiency estimates were used to quantify GUCY2C (Guanylate Cyclase 2C) mRNA expression in the blood of colorectal cancer patients. Time to recurrence and GUCY2C expression ratios were analyzed in a joint model for survival and longitudinal outcomes. The joint model with GUCY2C quantified using the proposed polymerase chain reaction efficiency estimates provided clinically meaningful results for association between time to recurrence and longitudinal trends in GUCY2C expression.
Jacchia, Sara; Nardini, Elena; Bassani, Niccolò; Savini, Christian; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco
2015-05-27
This article describes the international validation of the quantitative real-time polymerase chain reaction (PCR) detection method for Golden Rice 2. The method consists of a taxon-specific assay amplifying a fragment of rice Phospholipase D α2 gene, and an event-specific assay designed on the 3' junction between transgenic insert and plant DNA. We validated the two assays independently, with absolute quantification, and in combination, with relative quantification, on DNA samples prepared in haploid genome equivalents. We assessed trueness, precision, efficiency, and linearity of the two assays, and the results demonstrate that both the assays independently assessed and the entire method fulfill European and international requirements for methods for genetically modified organism (GMO) testing, within the dynamic range tested. The homogeneity of the results of the collaborative trial between Europe and Asia is a good indicator of the robustness of the method.
Polymerase chain reaction with phase change as intrinsic thermal control
NASA Astrophysics Data System (ADS)
Hsieh, Yi-Fan; Yonezawa, Eri; Kuo, Long-Sheng; Yeh, Shiou-Hwei; Chen, Pei-Jer; Chen, Ping-Hei
2013-04-01
This research demonstrated that without any external temperature controller, the capillary convective polymerase chain reaction (ccPCR) powered by a candle can operate with the help of phase change. The candle ccPCR system productively amplified hepatitis B virus 122 base-pairs DNA fragment. The detection sensitivity can achieve at an initial DNA concentration to 5 copies per reaction. The results also show that the candle ccPCR system can operate functionally even the ambient temperature varies from 7 °C to 45 °C. These features imply that the candle ccPCR system can provide robust medical detection services.
Safari Foroshani, Nargess; Karami, Ali; Pourali, Fatemeh
2013-01-01
Background Salmonella typhi, Bacillus anthracis, and Yersinia pestis are some serious human pathogens, which their early diagnosis is of great importance. Salmonella typhi, Bacillus anthracis, and Yersinia pestis cause typhoid fever, anthrax, and plague respectively. These bacteria can be used to make biologic weapons. Objectives In this study, we designed a new and rapid diagnostic method based on Uniplex and Multiplex PCR method. Materials and Methods Uniplex and multiplex Polymerase Chain Reaction (PCR) were conducted on virulent genes of hp and invA of Salmonella typhimurium, Pa and chr of Bacillus anthracis, and pla of Yersinia pestis. A genome from other bacteria was used to study the specificity of the primer and the PCR test. Results Standard strains used in this study showed that primers were specific. As for sensitivity, it was shown that this method can diagnose 1-10 copies of the genome, or 1-10 Colony Forming Units (CFU) for each of the bacteria. All pieces except anthrax were sequenced in PCR to validate the product. DNA fragment resulted from Bacillus anthracis was confirmed by restriction enzyme digestions. Conclusion The designed methods are accurate, rapid, and inexpensive to find and differentiate these bacteria from similar bacteria. They can be applied for rapid diagnosis of these agents in different specimens, and bioterrorism cases. PMID:24719692
Atomic-Oxygen Effects on POSS Polyimides in Low Earth Orbit
2012-01-11
one. Figure 2. Reaction scheme for the synthesis of the N-[(hepta-isobutylPOSS) propyl ]-3,5- diaminobenzamide monomer used to prepare side-chain (SC...atomic oxygen. Earlier results from laboratory- and space-based studies are given, as well as new information on the synthesis and in-space...methods.39,40 Polyimide synthesis and processing was pioneered by workers at Dupont in the 1950’s, with Kapton being the first commercially
Low-cost synthesis and physical characterization of thieno[3,4-c]pyrrole-4,6-dione-based polymers.
Berrouard, Philippe; Dufresne, Stéphane; Pron, Agnieszka; Veilleux, Justine; Leclerc, Mario
2012-09-21
The improved synthesis of thieno[3,4-c]pyrrole-4,6-dione (TPD) monomers, including Gewald thiophene ring formation, a Sandmeyer-type reaction, and neat condensation with an amine, is presented. This protocol enables faster, cheaper, and more efficient preparation of TPD units in comparison to traditional methods. Furthermore, a series of TPD homo- and pseudohomopolymers bearing various alkyl chains was synthesized via a direct heteroarylation polymerization (DHAP) procedure. UV-visible absorption and powder X-ray diffraction measurements revealed the relationship between the ratio of branched to linear alkyl chains and the optoelectronic properties of the polymers as well as their packing in the solid state.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the polymerase chain reaction (PCR) test for Mycoplasma gallisepticum and M. synoviae. 147.30 Section... Examination Procedures § 147.30 Laboratory procedure recommended for the polymerase chain reaction (PCR) test... should consist of the following sequences: ER12JA07.005 (c) Polymerase chain reaction. (1) Treat each...
Code of Federal Regulations, 2011 CFR
2011-01-01
... the polymerase chain reaction (PCR) test for Mycoplasma gallisepticum and M. synoviae. 147.30 Section... Examination Procedures § 147.30 Laboratory procedure recommended for the polymerase chain reaction (PCR) test... should consist of the following sequences: ER12JA07.005 (c) Polymerase chain reaction. (1) Treat each...
Chain-reaction crash in traffic flow controlled by taillights
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-02-01
We study the chain-reaction crash (multiple-vehicle collision) in low-visibility condition on a road. In the traffic situation, drivers brake according to taillights of the forward vehicle. The first crash may induce more collisions. We investigate whether or not the first collision induces the chain-reaction crash, numerically and analytically. The dynamic transitions occur from no collisions through a single collision, double collisions and triple collisions, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We derive, analytically, the transition points and the region maps for the chain-reaction crash in traffic flow controlled by taillights.
Zhang, Linqun; Liu, Yuanjian; Li, Ying; Zhao, Yuewu; Wei, Wei; Liu, Songqin
2016-08-24
A mimic-hybridization chain reaction (mimic-HCR) amplified strategy was proposed for sensitive electrochemically detection of DNA methylation and methyltransferase (MTase) activity In the presence of methylated DNA, DNA-gold nanoparticles (DNA-AuNPs) were captured on the electrode by sandwich-type assembly. It then triggered mimic-HCR of two hairpin probes to produce many long double-helix chains for numerous hexaammineruthenium (III) chloride ([Ru(NH3)6](3+), RuHex) inserting. As a result, the signal for electrochemically detection of DNA MTase activity could be amplified. If DNA was non-methylated, however, the sandwich-type assembly would not form because the short double-stranded DNAs (dsDNA) on the Au electrode could be cleaved and digested by restriction endonuclease HpaII (HapII) and exonuclease III (Exo III), resulting in the signal decrement. Based on this, an electrochemical approach for detection of M.SssI MTase activity with high sensitivity was developed. The linear range for M.SssI MTase activity was from 0.05 U mL(-1) to 10 U mL(-1), with a detection limit down to 0.03 U mL(-1). Moreover, this detecting strategy held great promise as an easy-to-use and highly sensitive method for other MTase activity and inhibition detection by exchanging the corresponding DNA sequence. Copyright © 2016 Elsevier B.V. All rights reserved.
Xu, Qing; Zhu, Yazhen; Bai, Yali; Wei, Xiumin; Zheng, Xirun; Mao, Mao; Zheng, Guangjuan
2015-01-01
Background Two types of epidermal growth factor receptor (EGFR) mutations in exon 19 and exon 21 (ex19del and L858R) are prevalent in lung cancer patients and sensitive to targeted EGFR inhibition. A resistance mutation in exon 20 (T790M) has been found to accompany drug treatment when patients relapse. These three mutations are valuable companion diagnostic biomarkers for guiding personalized treatment. Quantitative polymerase chain reaction (qPCR)-based methods have been widely used in the clinic by physicians to guide treatment decisions. The aim of this study was to evaluate the technical and clinical sensitivity and specificity of the droplet digital polymerase chain reaction (ddPCR) method in detecting the three EGFR mutations in patients with lung cancer. Methods Genomic DNA from H1975 and PC-9 cells, as well as 92 normal human blood specimens, was used to determine the technical sensitivity and specificity of the ddPCR assays. Genomic DNA of formalin-fixed, paraffin-embedded specimens from 78 Chinese patients with lung adenocarcinoma were assayed using both qPCR and ddPCR. Results The three ddPCR assays had a limit of detection of 0.02% and a wide dynamic range from 1 to 20,000 copies measurement. The L858R and ex19del assays had a 0% background level in the technical and clinical settings. The T790M assay appeared to have a 0.03% technical background. The ddPCR assays were robust for correct determination of EGFR mutation status in patients, and the dynamic range appeared to be better than qPCR methods. The ddPCR assay for T790M could detect patient samples that the qPCR method failed to detect. About 49% of this patient cohort had EGFR mutations (L858R, 15.4%; ex19del, 29.5%; T790M, 6.4%). Two patients with the ex19del mutation also had a naïve T790M mutation. Conclusion These data suggest that the ddPCR method could be useful in the personalized treatment of patients with lung cancer. PMID:26124670
NASA Astrophysics Data System (ADS)
Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen S.; Skov, Julia; Sun, Yi; Duong Bang, Dang; Pedersen, Michael E.; Hansen, Mikkel F.; Wolff, Anders
2013-07-01
We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.
Thermally multiplexed polymerase chain reaction.
Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R
2015-07-01
Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.
Hydrolysis of the amorphous cellulose in cotton-based paper.
Stephens, Catherine H; Whitmore, Paul M; Morris, Hannah R; Bier, Mark E
2008-04-01
Hydrolysis of cellulose in Whatman no. 42 cotton-based paper was studied using gel permeation chromatography (GPC), electrospray ionization-mass spectrometry (ESI-MS), and uniaxial tensile testing to understand the course and kinetics of the reaction. GPC results suggested that scission reactions passed through three stages. Additionally, the evolution of soluble oligomers in the ESI-MS data and the steady course of strength loss showed that the hydrolysis reaction occurred at a constant rate. These findings are explained with a more detailed description of the cellulose hydrolysis, which includes multiple chain scissions on amorphous segments. The breaks occur with increasing frequency near the ends of amorphous segments, where chains protrude from crystalline domains. Oligomers unattached to crystalline domains are eventually created. Late-stage reactions near the ends of amorphous segments produce a kinetic behavior that falsely suggests that hydrolysis had ceased. Monte Carlo simulations of cellulose degradation corroborated the experimental findings.
Minakata, Daisuke; Crittenden, John
2011-04-15
The hydroxyl radical (HO(•)) is a strong oxidant that reacts with electron-rich sites on organic compounds and initiates complex radical chain reactions in aqueous phase advanced oxidation processes (AOPs). Computer based kinetic modeling requires a reaction pathway generator and predictions of associated reaction rate constants. Previously, we reported a reaction pathway generator that can enumerate the most important elementary reactions for aliphatic compounds. For the reaction rate constant predictor, we develop linear free energy relationships (LFERs) between aqueous phase literature-reported HO(•) reaction rate constants and theoretically calculated free energies of activation for H-atom abstraction from a C-H bond and HO(•) addition to alkenes. The theoretical method uses ab initio quantum mechanical calculations, Gaussian 1-3, for gas phase reactions and a solvation method, COSMO-RS theory, to estimate the impact of water. Theoretically calculated free energies of activation are found to be within approximately ±3 kcal/mol of experimental values. Considering errors that arise from quantum mechanical calculations and experiments, this should be within the acceptable errors. The established LFERs are used to predict the HO(•) reaction rate constants within a factor of 5 from the experimental values. This approach may be applied to other reaction mechanisms to establish a library of rate constant predictions for kinetic modeling of AOPs.
Sleeve reaction chamber system
Northrup, M Allen [Berkeley, CA; Beeman, Barton V [San Mateo, CA; Benett, William J [Livermore, CA; Hadley, Dean R [Manteca, CA; Landre, Phoebe [Livermore, CA; Lehew, Stacy L [Livermore, CA; Krulevitch, Peter A [Pleasanton, CA
2009-08-25
A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.
Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L
2009-10-01
Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.
Sanogo, Yibayiri O; Kim, Chang-Hyun; Lampman, Richard; Novak, Robert J
2007-07-01
In North America, West Nile and St. Louis encephalitis viruses have been detected in a wide range of vector species, but the majority of isolations continue to be from pools of mixed mosquitoes in the Culex subgenus Culex. Unfortunately, the morphologic identification of these important disease vectors is often difficult, particularly in regions of sympatry. We developed a sensitive real-time TaqMan polymerase chain reaction assay that allows reliable identification of Culex mosquitoes including Culex pipiens pipiens, Cx. p. quinquefasciatus, Cx. restuans, Cx. salinarius, Cx. nigripalpus, and Cx. tarsalis. Primers and fluorogenic probes specific to each species were designed based on sequences of the acetylcholinesterase gene (Ace2). Both immature and adult mosquitoes were successfully identified as individuals and as mixed species pools. This identification technique provides the basis for a rapid, sensitive, and high-throughput method for expounding the species-specific contribution of vectors to various phases of arbovirus transmission.
Yang, Jin-Long; Cheng, An-Chun; Wang, Ming-Shu; Pan, Kang-Cheng; Li, Min; Guo, Yu-Fei; Li, Chuan-Feng; Zhu, De-Kang; Chen, Xiao-Yue
2009-01-01
Background Goose parvovirus (GPV) is a Dependovirus associated with latent infection and mortality in geese. Currently, it severely affects geese production worldwide. The objective of this study was to develop a fluorescent quantitative real-time polymerase chain reaction (PCR) (FQ-PCR) assay for fast and accurate quantification of GPV DNA in infected goslings, which can aid in the understanding of the regular distribution pattern and the nosogenesis of GPV in vivo. Results The detection limit of the assay was 2.8 × 101 standard DNA copies, with a sensitivity of 3 logs higher than that of the conventional gel-based PCR assay targeting the same gene. The real-time PCR was reproducible, as shown by satisfactory low intraassay and interassay coefficients of variation. Conclusion The high sensitivity, specificity, simplicity, and reproducibility of the GPV fluorogenic PCR assay, combined with a high throughput, make this method suitable for a broad spectrum of GPV etiology-related applications. PMID:19754946
Hammond, R W; Crosslin, J M; Pasini, R; Howell, W E; Mink, G I
1999-07-01
Prunus necrotic ringspot ilarvirus (PNRSV) exists as a number of biologically distinct variants which differ in host specificity, serology, and pathology. Previous nucleotide sequence alignment and phylogenetic analysis of cloned reverse transcription-polymerase chain reaction (RT-PCR) products of several biologically distinct sweet cherry isolates revealed correlations between symptom type and the nucleotide and amino acid sequences of the 3a (putative movement protein) and 3b (coat protein) open reading frames. Based upon this analysis, RT-PCR assays have been developed that can identify isolates displaying different symptoms and serotypes. The incorporation of primers in a multiplex PCR protocol permits rapid detection and discrimination among the strains. The results of PCR amplification using type-specific primers that amplify a portion of the coat protein gene demonstrate that the primer-selection procedure developed for PNRSV constitutes a reliable method of viral strain discrimination in cherry for disease control and will also be useful for examining biological diversity within the PNRSV virus group.
Sequeira, Patrícia Carvalho de; Fonseca, Leila de Souza; Silva, Marlei Gomes da; Saad, Maria Helena Féres
2005-11-01
Simple double repetitive element polymerase chain reaction (MaDRE-PCR) and Pvu II-IS1245 restriction fragment length polymorphism (RFLP) typing methods were used to type 41 Mycobacterium avium isolates obtained from 14 AIDS inpatients and 10 environment and animals specimens identified among 53 mycobacteria isolated from 237 food, chicken, and pig. All environmental and animals strains showed orphan patterns by both methods. By MaDRE-PCR four patients, with multiple isolates, showed different patterns, suggesting polyclonal infection that was confirmed by RFLP in two of them. This first evaluation of MaDRE-PCR on Brazilian M. avium strains demonstrated that the method seems to be useful as simple and less expensive typing method for screening genetic diversity in M. avium strains on selected epidemiological studies, although with limitation on analysis identical patterns except for one band.
Chemical Action of Halogenated Agents in Fire Extinguishing
NASA Technical Reports Server (NTRS)
Belles, Frank E.
1955-01-01
The action of halogenated agents in preventing flame propagation in fuel-air mixtures in laboratory tests is discussed in terms of a possible chemical mechanism. The mechanism chosen is that of chain-breaking reactions between agent and active particles (hydrogen and oxygen atoms and hydroxyl radicsls). Data from the literature on the flammability peaks of n-heptane agent-air mixtures are treated. Ratings of agent effectiveness in terms of the fuel equivalent of the agent, based on both fuel and agent concentrations at the peak, are proposed as preferable to ratings in terms of agent concentration alone. These fuel-equivalent ratings are roughly correlated by reactivities assigned to halogen and hydrogen atoms in the agent molecules. It is concluded that the presence of hydrogen in agent need not reduce its fire-fighting ability, provided there is enough halogen to make the agent nonflammable. A method is presented for estimating from quenching-distance data a rate constant for the reaction of agent with active particles. A quantitative result is obtained for methyl bromide. This rate constant predicts the observed peak concentration of methyl bromide quite well. However, more data are needed to prove the validity of the method. The assumption that hal.ogenatedagents act mainly by chain-bresking reactions with active particles is consistent with the experimental facts and should help guide the selection of agents for further tests.
Stem cell isolation by a morphology-based selection method in postnatal mouse ovary.
Parvari, Soraya; Abbasi, Mehdi; Abbasi, Niloufar; Malek, Valliollah Gerayeli; Amidi, Fardin; Aval, Fereydoon Sargolzaei; Roudkenar, Mehryar Habibi; Izadyar, Fariburz
2015-06-19
An increasing body of evidence has emerged regarding the existence and function of spermatogonial stem cells (SSCs); however, their female counterparts are the subject of extensive debate. Theoretically, ovarian germ stem cells (GSCs) have to reside in the murine ovary to support and replenish the follicle pool during the reproductive life span. Recently, various methods have been recruited to isolate and describe aspects of ovarian GSCs, but newer and more convenient strategies in isolation are still growing. Herein, a morphology-based method was used to isolate GSCs. A cell suspension of mouse neonatal ovaries was cultured. Colonies of GSCs were harvested mechanically and cultivated on mouse embryonic fibroblasts (MEF). Alkaline phosphatase activity was assessed to verify stemness features of cells in colonies. Expression of germ and stem cell specific genes (Oct-4, Nanog, Fragilis, C-kit, Dazl, and Mvh) was analyzed by reverse transcription-polymerase chain reaction (RT-PCR). Immunofluorescence of Oct4, Dazl, Mvh, and SSEA-1 was also performed. Small colonies without a clear border appeared during the first 4 days of culture, and the size of colonies increased rapidly. Cells in colonies were positive for alkaline phosphatase activity. Reverse transcription-polymerase chain reaction showed that Oct-4, Fragilis, C-kit, Nanog, Mvh, and Dazl were expressed in colony-forming cells. Immunofluorescence revealed a positive signal for Oct4, Dazl, Mvh, and SSEA-1 in colonies as well. The applicability of morphological selection for isolation of GSCs was verified. This method is easier and more economical than other techniques. The availability of ovarian stem cells can motivate further studies in development of oocyte and cell-based therapies.
[Import and local transmission of Haemophilus ducreyi].
Knudsen, Troels Bygum; Sand, Carsten; Jensen, Jørgen Skov
2010-07-26
Chancroid is a sexually transmitted disease characterized by painful ulcers with a soft margin, necrotic base and purulent exudate. Previously, only sporadic, imported cases have been reported in Denmark. The bacterium is difficult to culture and novel polymerase chain reaction (PCR)-based methods for direct demonstration of bacterial DNA have facilitated rapid verification of the clinical diagnosis. We report two cases which demonstrate import and subsequent local transmission in Denmark. In both cases, the clinical diagnosis was rapidly verified by a combined PCR testing for multiple causes of venereal ulcers.
ONR Far East Scientific Information Bulletin
1990-09-01
In bone, grafting onto a polymer chain, inter- continuous processes, such as reactive extru- chain reactions, formation of interpenetrat- sion and...reaction kinetics, rheology, and side- and end-chain grafting , homopolymer transport phenomena occurring during REX. chain coupling, polymer...the Grafting reactions yield block or graft coupling species becomes a part of the chain, copolymers. Polyethylene, polypropylene, or by
Molecular characterization of Toxocara spp. from soil of public areas in Ahvaz southwestern Iran.
Khademvatan, Shahram; Abdizadeh, Rahman; Tavalla, Mahdi
2014-07-01
In the present study, the microscopy and polymerase chain reaction methods were used for detection and identification of soil contamination by Toxocara eggs in squares, streets, public parks, and rubbish dumps in Ahvaz, southwestern Iran. A total of 210 soil samples were collected from different parts of the city and examined by microscopy and polymerase chain reaction (PCR) methods, following sodium nitrate flotation. Nucleotide sequencing was performed to confirm the results of the PCR method. Toxocara eggs were found in 64 and 71 soil samples using the microscopy and PCR methods, respectively. The highest contamination rate was observed in the central part of Ahvaz (39.5% and 46.5% by the microscopy and PCR methods, respectively). Based on internal transcribed spacer 2 (ITS2) PCR identification, 28% of the samples were diagnosed as Toxocara cati and 5.7% as Toxocara canis; no mixed contamination was observed. DNA sequencing of the ITS2 gene confirmed our findings. Compared to the conventional microscopic detection following by flotation, used as the gold standard, the PCR method appears to be rapid and sensitive as well as allows analysis of Toxocara spp. isolated from soil independent of the stage of egg development. Therefore, the PCR method appears to be a valuable tool for the diagnosis and differentiation of Toxocara spp. from soil samples in epidemiological studies, and will help the local health systems in effective prevention and control of disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Yan, Guiping; Smiley, Richard W
2010-03-01
The cereal cyst nematodes Heterodera filipjevi and H. avenae impede wheat production in the Pacific Northwest (PNW). Accurate identification of cyst nematode species and awareness of high population density in affected fields are essential for designing effective control measures. Morphological methods for differentiating these species are laborious. These species were differentiated using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) of internal transcribed spacer (ITS)-ribosomal (r)DNA with up to six restriction endonucleases (TaqI, HinfI, PstI, HaeIII, RsaI, and AluI). The method was validated by inspecting underbridge structures of cyst vulval cones. Grid soil sampling of an Oregon field infested by both species revealed that H. filipjevi was present at most of the infested grid sites but mixtures of H. avenae and H. filipjevi also occurred. These procedures also detected and differentiated H. filipjevi and H. avenae in soil samples from nearby fields in Oregon and H. avenae in samples from Idaho and Washington. Intraspecific polymorphism was not observed within H. filipjevi or PNW H. avenae populations based on the ITS-rDNA. However, intraspecific variation was observed between H. avenae populations occurring in the PNW and France. Methods described here will improve detection and identification efficiencies for cereal cyst nematodes in wheat fields.
Moury, B; Cardin, L; Onesto, J P; Candresse, T; Poupet, A
2000-05-01
We developed and evaluated two different methods to improve the detection of the most prevalent virus of rose in Europe, Prunus necrotic ring-spot virus (PNRSV). Immunocapture-reverse transcription-polymerase chain reaction was estimated to be about 100 times more sensitive than double-antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) and showed an equivalent specificity. Based on the observation that PNRSV multiplies actively in young growing tissues (axillary shoots and cuttings), an in vitro culture method allowing rapid (about 15 days) and homogeneous development of dormant axillary buds with high virus titers was standardized. ELISA tests of these young shoots showed, in some cases, a 10(4) to 10(5) increase in sensitivity in comparison to adjacent leaf tissues from the rose mother plants. Between 21 and 98% (depending on the season) more samples were identified as positive by using ELISA on samples from shoot tips grown in vitro rather than on leaves collected directly from the PNRSV-infected mother plants. This simple method of growing shoot tips in vitro improved the confidence in the detection of PNRSV and eliminated problems in sampling appropriate tissues.
Effect of perception irregularity on chain-reaction crash in low visibility
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-06-01
We present the dynamic model of the chain-reaction crash to take into account the irregularity of the perception-reaction time. When a driver brakes according to taillights of the forward vehicle, the perception-reaction time varies from driver to driver. We study the effect of the perception irregularity on the chain-reaction crash (multiple-vehicle collision) in low-visibility condition. The first crash may induce more collisions. We investigate how the first collision induces the chain-reaction crash numerically. We derive, analytically, the transition points and the region maps for the chain-reaction crash in traffic flow of vehicles with irregular perception times. We clarify the effect of the perception irregularity on the multiple-vehicle collision.
Akiyama, Hiroshi; Nakamura, Fumi; Yamada, Chihiro; Nakamura, Kosuke; Nakajima, Osamu; Kawakami, Hiroshi; Harikai, Naoki; Furui, Satoshi; Kitta, Kazumi; Teshima, Reiko
2009-11-01
To screen for unauthorized genetically modified organisms (GMO) in the various crops, we developed a multiplex real-time polymerase chain reaction high-resolution melting-curve analysis method for the simultaneous qualitative detection of 35S promoter sequence of cauliflower mosaic virus (35SP) and the nopaline synthase terminator (NOST) in several crops. We selected suitable primer sets for the simultaneous detection of 35SP and NOST and designed the primer set for the detection of spiked ColE1 plasmid to evaluate the validity of the polymerase chain reaction (PCR) analyses. In addition, we optimized the multiplex PCR conditions using the designed primer sets and EvaGreen as an intercalating dye. The contamination of unauthorized GMO with single copy similar to NK603 maize can be detected as low as 0.1% in a maize sample. Furthermore, we showed that the present method would be applicable in identifying GMO in various crops and foods like authorized GM soybean, authorized GM potato, the biscuit which is contaminated with GM soybeans and the rice which is contaminated with unauthorized GM rice. We consider this method to be a simple and reliable assay for screening for unauthorized GMO in crops and the processing food products.
Son, Na Ry; Seo, Dong Joo; Lee, Min Hwa; Seo, Sheungwoo; Wang, Xiaoyu; Lee, Bog-Hieu; Lee, Jeong-Su; Joo, In-Sun; Hwang, In-Gyun; Choi, Changsun
2014-09-01
The aim of this study was to develop an optimal technique for detecting hepatitis E virus (HEV) in swine livers. Here, three elution buffers and two concentration methods were compared with respect to enhancing recovery of HEV from swine liver samples. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and nested RT-PCR were performed to detect HEV RNA. When phosphate-buffered saline (PBS, pH 7.4) was used to concentrate HEV in swine liver samples using ultrafiltration, real-time RT-PCR detected HEV in 6 of the 26 samples. When threonine buffer was used to concentrate HEV using polyethylene glycol (PEG) precipitation and ultrafiltration, real-time RT-PCR detected HEV in 1 and 3 of the 26 samples, respectively. When glycine buffer was used to concentrate HEV using ultrafiltration and PEG precipitation, real-time RT-PCR detected HEV in 1 and 3 samples of the 26 samples, respectively. When nested RT-PCR was used to detect HEV, all samples tested negative regardless of the type of elution buffer or concentration method used. Therefore, the combination of real-time RT-PCR and ultrafiltration with PBS buffer was the most sensitive and reliable method for detecting HEV in swine livers. Copyright © 2014 Elsevier B.V. All rights reserved.
Martinez-Serra, Jordi; Robles, Juan; Nicolàs, Antoni; Gutierrez, Antonio; Ros, Teresa; Amat, Juan Carlos; Alemany, Regina; Vögler, Oliver; Abelló, Aina; Noguera, Aina; Besalduch, Joan
2014-01-01
Blood samples are extensively used for the molecular diagnosis of many hematological diseases. The daily practice in a clinical laboratory of molecular diagnosis in hematology involves using a variety of techniques, based on the amplification of nucleic acids. Current methods for polymerase chain reaction (PCR) use purified genomic DNA, mostly isolated from total peripheral blood cells or white blood cells (WBC). In this paper we describe a real-time fluorescence resonance energy transfer-based method for genotyping directly from blood cells. Our strategy is based on an initial isolation of the WBCs, allowing the removal of PCR inhibitors, such as the heme group, present in the erythrocytes. Once the erythrocytes have been lysed, in the LightCycler(®) 2.0 Instrument, we perform a real-time PCR followed by a melting curve analysis for different genes (Factors 2, 5, 12, MTHFR, and HFE). After testing 34 samples comparing the real-time crossing point (CP) values between WBC (5×10(6) WBC/mL) and purified DNA (20 ng/μL), the results for F5 Leiden were as follows: CP mean value for WBC was 29.26±0.566 versus purified DNA 24.79±0.56. Thus, when PCR was performed from WBC (5×10(6) WBC/mL) instead of DNA (20 ng/μL), we observed a delay of about 4 cycles. These small differences in CP values were similar for all genes tested and did not significantly affect the subsequent analysis by melting curves. In both cases the fluorescence values were high enough, allowing a robust genotyping of all these genes without a previous DNA purification/extraction.
Ha, S-K; Choi, C; Chae, C
2004-10-01
An optimized protocol was developed for the detection of classical swine fever virus (CSFV) in formalin-fixed, paraffin-embedded tissues obtained from experimentally and naturally infected pigs by seminested reverse transcription-polymerase chain reaction (RT-PCR). The results for seminested RT-PCR were compared with those determined by in situ hybridization. The results obtained show that the use of deparaffinization with xylene, digestion with proteinase K, extraction with Trizol LS, followed by seminested RT-PCR is a reliable detection method. An increase in sensitivity was observed as amplicon size decreased. The highest sensitivity for RT-PCR on formalin-fixed, paraffin-embedded tissues RNA was obtained with amplicon sizes less than approximately 200 base pairs. An hybridization signal for CSFV was detected in lymph nodes from 12 experimentally and 12 naturally infected pigs. The sensitivity of seminested RT-PCR compared with in situ hybridization was 100% for CSFV. When only formalin-fixed tissues are available, seminested RT-PCR and in situ hybridization would be useful diagnostic methods for the detection of CSFV nucleic acid.
Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong
2015-01-01
The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.
Di Francesco, Cristina E; Di Francesco, Daniela; Di Martino, Barbara; Speranza, Roberto; Santori, Domenico; Boari, Andrea; Marsilio, Fulvio
2012-01-01
A new highly sensitive and specific hemi-nested reverse transcription polymerase chain reaction (RT-PCR) assay was applied to detect nucleoprotein (NP) gene of Canine distemper virus (CDV) in samples collected from dogs showing respiratory, gastrointestinal, and neurological signs. Thirty-eight out of 86 samples were positive suggesting that despite the vaccination, canine distemper may still represent a high risk to the canine population. The 968 base pair (bp) fragments from the hemagglutinin (H) gene of 10 viral strains detected in positive samples were amplified and analyzed by restriction fragment length polymorphism (RFLP) using AluI and PsiI enzymes in order to differentiate among vaccine and wild-type CDV strains and to characterize the field viral strains. The products of the both enzymatic digestions allowed identification all viruses as wild strains of CDV. In addition, the RFLP analysis with AluI provided additional information about the identity level among the strains analyzed on the basis of the positions of the cleavage site in the nucleotide sequences of the H gene. The method could be a more useful and simpler method for molecular studies of CDV strains.
Saluto, Alessandro; Brussino, Alessandro; Tassone, Flora; Arduino, Carlo; Cagnoli, Claudia; Pappi, Patrizia; Hagerman, Paul; Migone, Nicola; Brusco, Alfredo
2005-01-01
Several diagnostic strategies have been applied to the detection of FMR1 gene repeat expansions in fragile X syndrome. Here, we report a novel polymerase chain reaction-based strategy using the Expand Long Template PCR System (Roche Diagnostics, Mannheim, Germany) and the osmolyte betaine. Repeat expansions up to ∼330 CGGs in males and up to at least ∼160 CGGs in carrier women could be easily visualized on ethidium bromide agarose gels. We also demonstrated that fluorescence analysis of polymerase chain reaction products was a reliable tool to verify the presence of premutation and full mutation alleles both in males and in females. This technique, primarily designed to detect premutation alleles, can be used as a routine first screen for expanded FMR1 alleles. PMID:16258159
Bièche, I; Olivi, M; Champème, M H; Vidaud, D; Lidereau, R; Vidaud, M
1998-11-23
Gene amplification is a common event in the progression of human cancers, and amplified oncogenes have been shown to have diagnostic, prognostic and therapeutic relevance. A kinetic quantitative polymerase-chain-reaction (PCR) method, based on fluorescent TaqMan methodology and a new instrument (ABI Prism 7700 Sequence Detection System) capable of measuring fluorescence in real-time, was used to quantify gene amplification in tumor DNA. Reactions are characterized by the point during cycling when PCR amplification is still in the exponential phase, rather than the amount of PCR product accumulated after a fixed number of cycles. None of the reaction components is limited during the exponential phase, meaning that values are highly reproducible in reactions starting with the same copy number. This greatly improves the precision of DNA quantification. Moreover, real-time PCR does not require post-PCR sample handling, thereby preventing potential PCR-product carry-over contamination; it possesses a wide dynamic range of quantification and results in much faster and higher sample throughput. The real-time PCR method, was used to develop and validate a simple and rapid assay for the detection and quantification of the 3 most frequently amplified genes (myc, ccndl and erbB2) in breast tumors. Extra copies of myc, ccndl and erbB2 were observed in 10, 23 and 15%, respectively, of 108 breast-tumor DNA; the largest observed numbers of gene copies were 4.6, 18.6 and 15.1, respectively. These results correlated well with those of Southern blotting. The use of this new semi-automated technique will make molecular analysis of human cancers simpler and more reliable, and should find broad applications in clinical and research settings.
NASA Astrophysics Data System (ADS)
Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Wen, Guobin; Zhang, Minhua
2017-08-01
Calculations based on the first-principle density functional theory were carried out to study the most controversial reactions in ethanol formation from syngas on Cu-Co surfaces: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions) on four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) to investigate the synergy of the Cu and Co components since the complete reaction network of ethanol formation from syngas is a huge computational burden to calculate on four Cu-Co surface models. We investigated adsorption of important species involved in these reactions, activation barrier and reaction energy of H-assisted dissociation mechanism, directly dissociation of CO, and HCO insertion reactions (CHx + HCO → CHxCHO (x = 1-3)) on four Cu-Co surface models. It was found that reactions on Cu-rich (111) and (211) surfaces all have lower activation barrier in H-assisted dissociation and HCO insertion reactions, especially CH + HCO → CHCHO reaction. The PDOS of 4d orbitals of surface Cu and Co atoms of all surfaces were studied. Analysis of d-band center of Cu and Co atoms and the activation barrier data suggested the correlation between electronic property and catalytic performance. Cu-Co bimetallic with Cu-rich surface allows Co to have higher catalytic activity through the interaction of Cu and Co atom. Then it will improve the adsorption of CO and catalytic activity of Co. Thus it is more favorable to the carbon chain growth in ethanol formation. Our study revealed the factors influencing the carbon chain growth in ethanol production and explained the internal mechanism from electronic property aspect.
Sahilah, A M; Laila, R A S; Sallehuddin, H Mohd; Osman, H; Aminah, A; Ahmad Azuhairi, A
2014-02-01
Genomic DNA of Vibrio parahaemolyticus were characterized by antibiotic resistance, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) analysis. These isolates originated from 3 distantly locations of Selangor, Negeri Sembilan and Melaka (East coastal areas), Malaysia. A total of 44 (n = 44) of tentatively V. parahaemolyticus were also examined for the presence of toxR, tdh and trh gene. Of 44 isolates, 37 were positive towards toxR gene; while, none were positive to tdh and trh gene. Antibiotic resistance analysis showed the V. parahaemolyticus isolates were highly resistant to bacitracin (92%, 34/37) and penicillin (89%, 33/37) followed by resistance towards ampicillin (68%, 25/37), cefuroxime (38%, 14/37), amikacin (6%, 2/37) and ceftazidime (14%, 5/37). None of the V. parahaemolyticus isolates were resistant towards chloramphenicol, ciprofloxacin, ceftriaxone, enrofloxacin, norfloxacin, streptomycin and vancomycin. Antibiogram patterns exhibited, 9 patterns and phenotypically less heterogenous when compared to PCR-based techniques using ERIC- and RAPD-PCR. The results of the ERIC- and RAPD-PCR were analyzed using GelCompare software. ERIC-PCR with primers ERIC1R and ERIC2 discriminated the V. parahaemolyticus isolates into 6 clusters and 21 single isolates at a similarity level of 80%. While, RAPD-PCR with primer Gen8 discriminated the V. parahaemolyticus isolates into 11 clusters and 10 single isolates and Gen9 into 8 clusters and 16 single isolates at the same similarity level examined. Results in the presence study demonstrated combination of phenotypically and genotypically methods show a wide heterogeneity among cockle isolates of V. parahaemolyticus.
Gyawali, P; Sidhu, J P S; Ahmed, W; Jagals, P; Toze, S
2017-06-01
Accurate quantitative measurement of viable hookworm ova from environmental samples is the key to controlling hookworm re-infections in the endemic regions. In this study, the accuracy of three quantitative detection methods [culture-based, vital stain and propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR)] was evaluated by enumerating 1,000 ± 50 Ancylostoma caninum ova in the laboratory. The culture-based method was able to quantify an average of 397 ± 59 viable hookworm ova. Similarly, vital stain and PMA-qPCR methods quantified 644 ± 87 and 587 ± 91 viable ova, respectively. The numbers of viable ova estimated by the culture-based method were significantly (P < 0.05) lower than vital stain and PMA-qPCR methods. Therefore, both PMA-qPCR and vital stain methods appear to be suitable for the quantitative detection of viable hookworm ova. However, PMA-qPCR would be preferable over the vital stain method in scenarios where ova speciation is needed.
Segat, Ludovica; Padovan, Lara; Doc, Darja; Petix, Vincenzo; Morgutti, Marcello; Crovella, Sergio; Ricci, Giuseppe
2012-12-01
We describe a real-time polymerase chain reaction (PCR) protocol based on the fluorescent molecule SYBR Green chemistry, for a low- to medium-throughput analysis of Y-chromosome microdeletions, optimized according to the European guidelines and aimed at making the protocol faster, avoiding post-PCR processing, and simplifying the results interpretation. We screened 156 men from the Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Institute for Maternal and Child Health IRCCS Burlo Garofolo (Trieste, Italy), 150 not presenting Y-chromosome microdeletion, and 6 with microdeletions in different azoospermic factor (AZF) regions. For each sample, the Zinc finger Y-chromosomal protein (ZFY), sex-determining region Y (SRY), sY84, sY86, sY127, sY134, sY254, and sY255 loci were analyzed by performing one reaction for each locus. AZF microdeletions were successfully detected in six individuals, confirming the results obtained with commercial kits. Our real-time PCR protocol proved to be a rapid, safe, and relatively cheap method that was suitable for a low- to medium-throughput diagnosis of Y-chromosome microdeletion, which allows an analysis of approximately 10 samples (with the addition of positive and negative controls) in a 96-well plate format, or approximately 46 samples in a 384-well plate for all markers simultaneously, in less than 2 h without the need of post-PCR manipulation.
Yang, Yang; Wong, Gary; Ye, Baoguo; Li, Shihua; Li, Shanqin; Zheng, Haixia; Wang, Qiang; Liang, Mifang; Gao, George F; Liu, Lei; Liu, Yingxia; Bi, Yuhai
2017-06-01
The Zika virus (ZIKV) is an arbovirus that has spread rapidly worldwide within recent times. There is accumulating evidence that associates ZIKV infections with Guillain-Barré Syndrome (GBS) and microcephaly in humans. The ZIKV is genetically diverse and can be separated into Asian and African lineages. A rapid, sensitive, and specific assay is needed for the detection of ZIKV across various pandemic regions. So far, the available primers and probes do not cover the genetic diversity and geographic distribution of all ZIKV strains. To this end, we have developed a one-step quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay based on conserved sequences in the ZIKV envelope (E) gene. The detection limit of the assay was determined to be five RNA transcript copies and 2.94 × 10 -3 50% tissue culture infectious doses (TCID 50 ) of live ZIKV per reaction. The assay was highly specific and able to detect five different ZIKV strains covering the Asian and African lineages without nonspecific amplification, when tested against other flaviviruses. The assay was also successful in testing for ZIKV in clinical samples. Our assay represents an improvement over the current methods available for the detection ZIKV and would be valuable as a diagnostic tool in various pandemic regions.
Díaz-Cano, S J; Brady, S P
1997-12-01
Several DNA extraction methods have been used for formalin-fixed, paraffin-embedded tissues, with variable results being reported regarding the suitability of DNA obtained from such sources to serve as template in polymerase chain reaction (PCR)-based genetic analyses. We present a method routinely used for archival material in our laboratory that reliably yields DNA of sufficient quality for PCR studies. This method is based on extended proteinase K digestion (250 micrograms/ml in an EDTA-free calcium-containing buffer supplemented with mussel glycogen) followed by phenol-chloroform extraction. Agarose gel electrophoresis of both digestion buffer aliquots and PCR amplification of the beta-globin gene tested the suitability of the retrieved DNA for PCR amplification.
Gusella, Milena; Bertolaso, Laura; Bolzonella, Caterina; Pasini, Felice; Padrini, Roberto
2011-10-01
Uridine monophosphate synthase (UMPS) is a fundamental enzyme in pyrimidine synthesis. A single-nucleotide polymorphism, a G-C transversion at the 638th nucleotide, was demonstrated to increase UMPS activity and suggested to have clinical effects. The aims of this study were to set up simple genotyping methods and investigate the UMPS 638G>C polymorphism in the Caucasian population. Two hundred forty-one patients with gastrointestinal cancers and 189 healthy subjects were enrolled. Genomic DNA was extracted from peripheral blood. A polymerase chain reaction-restriction fragment length polymorphism (RFLP) method was implemented using a forward primer incorporating a mismatched base to produce an artificial restriction site and BsrI restriction enzyme digestion; a denaturing high performance liquid chromatography (DHPLC) method was developed to further speed up UMPS genotyping. A 153 bp UMPS gene fragment was successfully amplified and analyzed in all samples. RFLP and DHPLC results showed a 100% match and where confirmed by direct sequencing. UMPS genotype distribution was similar in patients with cancer and control subjects. Although no association was detected between UMPS variants and gastrointestinal cancer risk in Caucasians, polymerase chain reaction-RFLP with BsrI digestion and DHPLC set up at 59°C are reliable and cost-effective methods to genotype UMPS.
Chain-reaction crash on a highway in high visibility
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2016-05-01
We study the chain-reaction crash (multiple-vehicle collision) in high-visibility condition on a highway. In the traffic situation, drivers control their vehicles by both gear-changing and braking. Drivers change the gears according to the headway and brake according to taillights of the forward vehicle. We investigate whether or not the first collision induces the chain-reaction crash numerically. It is shown that dynamic transitions occur from no collisions, through a single collision, to multiple collisions with decreasing the headway. Also, we find that the dynamic transition occurs from the finite chain reaction to the infinite chain reaction when the headway is less than the critical value. We compare the multiple-vehicle collisions in high-visibility with that in low-visibility. We derive the transition points and the region maps for the chain-reaction crash in high visibility.
Cankar, Katarina; Chauvensy-Ancel, Valérie; Fortabat, Marie-Noelle; Gruden, Kristina; Kobilinsky, André; Zel, Jana; Bertheau, Yves
2008-05-15
Detection of nonauthorized genetically modified organisms (GMOs) has always presented an analytical challenge because the complete sequence data needed to detect them are generally unavailable although sequence similarity to known GMOs can be expected. A new approach, differential quantitative polymerase chain reaction (PCR), for detection of nonauthorized GMOs is presented here. This method is based on the presence of several common elements (e.g., promoter, genes of interest) in different GMOs. A statistical model was developed to study the difference between the number of molecules of such a common sequence and the number of molecules identifying the approved GMO (as determined by border-fragment-based PCR) and the donor organism of the common sequence. When this difference differs statistically from zero, the presence of a nonauthorized GMO can be inferred. The interest and scope of such an approach were tested on a case study of different proportions of genetically modified maize events, with the P35S promoter as the Cauliflower Mosaic Virus common sequence. The presence of a nonauthorized GMO was successfully detected in the mixtures analyzed and in the presence of (donor organism of P35S promoter). This method could be easily transposed to other common GMO sequences and other species and is applicable to other detection areas such as microbiology.
Del Prete, Raffaele; Di Taranto, Anna Maria; Lipsi, Maria Rosaria; Natalicchio, Maria Iole; Antonetti, Raffaele; Miragliotta, Giuseppe
2009-04-01
The lack of rapidity and the low sensitivity and specificity of traditional laboratory methods limits their usefulness in the laboratory diagnosis of viral central nervous system (CNS) infections. This study describes the use of a commercially available multiplex polymerase chain reaction (mPCR)-based reverse hybridization assay (RHA) for the simultaneous detection of the genomes of 8 viruses and Toxoplasma gondii in cerebrospinal fluids (CSF) from 181 patients suspected of having viral meningitis. Twenty-two/181 (12.15%) CSF samples resulted positive by mPCR. Eighteen/22 were positive for 1 viral pathogen, whereas a dual infection was detected in 4/22 samples. Epstein-Barr virus (EBV) was the most commonly detected virus (6/22), followed by herpes simplex virus type-1 (HSV-1) (5/22) and -2 (HSV-2) (4/22). Cytomegalovirus (CMV), human herpesvirus-6 (HHV-6), and Epstein-Barr virus (EBV) were detected in 1 specimen each. Two CSF samples were co-infected by HSV-1/HSV-2, 1 sample by HHV-6/T. gondii, and 1 sample by EBV/EV, respectively. Our data support the usefulness of mPCR as a rapid molecular method for the simultaneous detection of major viral pathogens and T. gondii in aseptic meningitis also to allow the earlier application of specific antiviral therapy.
Effect of vehicular size on chain-reaction crash
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2015-11-01
We present the dynamic model of the chain-reaction crash to take account of the vehicular size. Drivers brake according to taillights of the forward vehicle. We investigate the effect of the vehicular size on the chain-reaction crash (multiple-vehicle collision) in the traffic flow controlled by taillights. In the multiple-vehicle collision, the first crash induces more collisions. We investigate how the first collision induces the chain-reaction crash numerically. We derive, analytically, the transition points and the region maps for the chain-reaction crash in the traffic flow of vehicles with finite sizes. We clarify the effect of the vehicular size on the multiple-vehicle collision.
Vita, Serena; Ajassa, Camilla; Caraffa, Emanuela; Lichtner, Miriam; Mascia, Claudia; Mengoni, Fabio; Paglia, Maria Grazia; Mancarella, Cristina; Colistra, Davide; Di Biasi, Claudio; Ciardi, Rosa Maria; Mastroianni, Claudio Maria; Vullo, Vincenzo
2017-03-13
Pediatric tuberculous meningitis is a highly morbid, often fatal disease. Its prompt diagnosis and treatment saves lives, in fact delays in the initiation of therapy have been associated with high mortality rates. This is a case of an Italian child who was diagnosed with tuberculous meningitis after a history of a month of headache, fatigue and weight loss. Cerebrospinal fluid analysis revealed a lymphocytic pleocytosis with predominance and decreased glucose concentration. Microscopy and conventional diagnostic tests to identify Mycobacterium tuberculosis were negative, while a non classical method based on intracellular cytokine flow cytometry response of CD4 cells in cerebral spinal fluid helped us to address the diagnosis, that was subsequently confirmed by a nested polymerase chain reaction amplifying a 123 base pair fragment of the M. tuberculosis DNA. We diagnosed tuberculous meningitis at an early stage through an innovative immunological approach, supported by a nested polymerase chain reaction for detection of M. tuberculosis DNA. An early diagnosis is required in order to promptly initiate a therapy and to increase the patient's survival.
Polymerase chain reaction for detection of invasive Shigella flexneri in food.
Lampel, K A; Jagow, J A; Trucksess, M; Hill, W E
1990-06-01
The polymerase chain reaction (PCR) was used to amplify a 760-base-pair (bp) fragment with the 220-kbp invasive plasmids of enteroinvasive Escherichia coli, Shigella flexneri, Shigella dysenteriae, Shigella boydii, and Shigella sonnei as templates. This PCR product was easily detected by agarose gel electrophoresis. A 210-bp AccI-PstI fragment lying within the amplified region was used as a probe in Southern hybridization blots and showed that the PCR-generated product was derived from the invasive plasmid. The application of PCR as a rapid method to detect enteroinvasive bacteria in foods was tested by inoculating lettuce with 10(4) S. flexneri cells per g in shigella broth base. Plasmid DNA was isolated from cultures of inoculated and uninoculated lettuce in broth after 0, 4, and 24 h of incubation. With the PCR, the 760-bp fragment was generated only from lettuce inoculated with S. flexneri, as shown by gel electrophoresis and confirmed both by Southern blotting and by nucleotide sequencing of the amplified region. Because the isolation of plasmid DNA, the performance of PCR, and gel electrophoresis all can be completed in 6 to 7 h, invasive enteric bacteria can be detected in less than 1 day.
Kinetic aspects of chain growth in Fischer-Tropsch synthesis.
Filot, Ivo A W; Zijlstra, Bart; Broos, Robin J P; Chen, Wei; Pestman, Robert; Hensen, Emiel J M
2017-04-28
Microkinetics simulations are used to investigate the elementary reaction steps that control chain growth in the Fischer-Tropsch reaction. Chain growth in the FT reaction on stepped Ru surfaces proceeds via coupling of CH and CR surface intermediates. Essential to the growth mechanism are C-H dehydrogenation and C hydrogenation steps, whose kinetic consequences have been examined by formulating two novel kinetic concepts, the degree of chain-growth probability control and the thermodynamic degree of chain-growth probability control. For Ru the CO conversion rate is controlled by the removal of O atoms from the catalytic surface. The temperature of maximum CO conversion rate is higher than the temperature to obtain maximum chain-growth probability. Both maxima are determined by Sabatier behavior, but the steps that control chain-growth probability are different from those that control the overall rate. Below the optimum for obtaining long hydrocarbon chains, the reaction is limited by the high total surface coverage: in the absence of sufficient vacancies the CHCHR → CCHR + H reaction is slowed down. Beyond the optimum in chain-growth probability, CHCR + H → CHCHR and OH + H → H 2 O limit the chain-growth process. The thermodynamic degree of chain-growth probability control emphasizes the critical role of the H and free-site coverage and shows that at high temperature, chain depolymerization contributes to the decreased chain-growth probability. That is to say, during the FT reaction chain growth is much faster than chain depolymerization, which ensures high chain-growth probability. The chain-growth rate is also fast compared to chain-growth termination and the steps that control the overall CO conversion rate, which are O removal steps for Ru.
Kim, Tae-Hoon; Hwang, Hyun Jin; Kim, Jeong Hee
2017-10-01
Salmonella enterica serovars Enteritidis and Typhimurium are the most common causative agents of human nontyphoidal salmonellosis. The rapid detection and timely treatment of salmonellosis are important to increase the curative ratio and prevent spreading of the disease. In this study, we developed a rapid multiplex convection polymerase chain reaction (PCR) method to detect Salmonella spp. and differentiate Salmonella Enteritidis and Salmonella Typhimurium. We used the invA gene for Salmonella spp. detection. Salmonella Enteritidis-specific primers and Salmonella Typhimurium-specific primers were designed using the insertion element (IE) and spy genes, respectively. The primer set for Salmonella spp. detection clearly detected both Salmonella Enteritidis and Salmonella Typhimurium after a 21-min amplification reaction. Serovar-specific primer sets for Salmonella Enteritidis and Salmonella Typhimurium specifically detected each target species in a 21-min amplification reaction. We were able to detect Salmonella spp. at a single copy level in the singleplex mode. The limits of detection for Salmonella Enteritidis and Salmonella Typhimurium were 30 copies in both the singleplex and multiplex modes. The PCR run time could be reduced to 10.5 min/15 cycles. The multiplex convection PCR method developed in this study could detect the Salmonella spp. Salmonella Enteritidis and Salmonella Typhimurium in artificially contaminated milk with as few as 10 0 colony-forming unit/mL after 4-h enrichment. The PCR assay developed in this study provides a rapid, specific, and sensitive method for the detection of Salmonella spp. and the differentiation of Salmonella Enteritidis and Salmonella Typhimurium.
Yamaguti, M.; Muller, E.E.; Piffer, A.I.; Kich, J.D.; Klein, C.S.; Kuchiishi, S.S.
2008-01-01
Since Mycoplasma hyopneumoniae isolation in appropriate media is a difficult task and impractical for daily routine diagnostics, Nested-PCR (N-PCR) techniques are currently used to improve the direct diagnostic sensitivity of Swine Enzootic Pneumonia. In a first experiment, this paper describes a N-PCR technique optimization based on three variables: different sampling sites, sample transport media, and DNA extraction methods, using eight pigs. Based on the optimization results, a second experiment was conducted for testing validity using 40 animals. In conclusion, the obtained results of the N-PCR optimization and validation allow us to recommend this test as a routine monitoring diagnostic method for Mycoplasma hyopneumoniae infection in swine herds. PMID:24031248
Miranda, Ronald-Alexander; Finocchio, Elisabetta; Llorca, Jordi; Medina, Francisco; Ramis, Gianguido; Sueiras, Jesús E; Segarra, Anna M
2013-10-07
PLLs were synthesized by the ring-opening polycondensation (ROP) method using α-L-leucine N-carboxyanhydride (NCA) and initialized by triethylamine (Et3N), water or rehydrated hydrotalcite (HTrus). The role of temperature, different initiators and water in ROP was further investigated. In general, the initiators used in the polymerization reaction lead to PLL alpha-helical chains containing 5-40 monomers with NCA endgroups via a monomer-activated mechanism. However, the water has a twofold effect on ROP, as both a nucleophile and a base, which involves competition between two different types of initiating mechanisms (nucleophilic attack or deprotonation of the NCA monomer) in the polymerization reaction. This competition provides as a main product NCA endgroups with an alpha-helical structure and leads to the formation of the PLL cyclic-chains and beta-sheet structures which reduce the polymer Mw and the PD of the polypeptide. Furthermore, the water can hydrolyze the NCA endgroups resulting in PLL alpha-helical chains that contain living groups as the main product. On the other hand, the HTrus presents a double role: as both an initiator and a support. The polymers synthesized in the presence of HTrus presented a HT-carboxylate endgroup. The PLLs immobilized in HTrus through an anion-exchange method performed for just 30 minutes presented the PLL immobilized in the interlayer space of the HTrus. The PLL chains of the immobilized counterpart are stabilized by H-bonding with the M-OH of the HT structure. All the polypeptides and biohybrid materials synthesized have been characterized using different techniques (EA, ICP, XRD, Raman, MALDI-TOF, ESI-TOF, FT-IR at increasing temperatures, TG/DT analyses and TEM).
Cocolin, L; Manzano, M; Aggio, D; Cantoni, C; Comi, G
2001-05-01
A new molecular method consisting of polymerase chain reaction (PCR) amplification and denaturing gradient gel electrophoresis (DGGE) of a small fragment from the 16S rRNA gene identified the Micrococcaceae strains isolated from natural fermented Italian sausages. Lactic acid bacteria, total aerobic mesophilic flora, Enterobacteriaceae and faecal enterococci were also monitored. Micrococcaceaea control strains from international collections were used to optimise the method and 90 strains, isolated from fermented sausages, were identified by biochemical tests and PCR-DGGE. No differences were observed between the methods used. The results reported in this paper prove that Staphylococcus xylosus is the main bacterium involved in fermented sausage production, representing, from the tenth day of ripening, the only Micrococcaceaea species isolated.
Brodmann, Peter D; Ilg, Evelyn C; Berthoud, Hélène; Herrmann, Andre
2002-01-01
Quantitative detection methods are needed for enforcement of the recently introduced labeling threshold for genetically modified organisms (GMOs) in food ingredients. This labeling threshold, which is set to 1% in the European Union and Switzerland, must be applied to all approved GMOs. Four different varieties of maize are approved in the European Union: the insect-resistant Bt176 maize (Maximizer), Btl 1 maize, Mon810 (YieldGard) maize, and the herbicide-tolerant T25 (Liberty Link) maize. Because the labeling must be considered individually for each ingredient, a quantitation system for the endogenous maize content is needed in addition to the GMO-specific detection systems. Quantitative real-time polymerase chain reaction detection methods were developed for the 4 approved genetically modified maize varieties and for an endogenous maize (invertase) gene system.
The Next-Generation PCR-Based Quantification Method for Ambient Waters: Digital PCR.
Cao, Yiping; Griffith, John F; Weisberg, Stephen B
2016-01-01
Real-time quantitative PCR (qPCR) is increasingly being used for ambient water monitoring, but development of digital polymerase chain reaction (digital PCR) has the potential to further advance the use of molecular techniques in such applications. Digital PCR refines qPCR by partitioning the sample into thousands to millions of miniature reactions that are examined individually for binary endpoint results, with DNA density calculated from the fraction of positives using Poisson statistics. This direct quantification removes the need for standard curves, eliminating the labor and materials associated with creating and running standards with each batch, and removing biases associated with standard variability and mismatching amplification efficiency between standards and samples. Confining reactions and binary endpoint measurements to small partitions also leads to other performance advantages, including reduced susceptibility to inhibition, increased repeatability and reproducibility, and increased capacity to measure multiple targets in one analysis. As such, digital PCR is well suited for ambient water monitoring applications and is particularly advantageous as molecular methods move toward autonomous field application.
A GC-MS method for the detection of toluene and ethylbenzene in volatile substance abuse.
El-Haj, B M; Al-Amri, A M; Hassan, M H; Bin-Khadem, R K; Al-Hadi, A A
2000-09-01
The interference of some substances with the gas chromatography-flame ionization detection and gas chromatography-Fourier transform infrared detection of toluene and ethylbenzene in volatile substance abuse poses problems. A gas chromatography-mass spectrometry (GC-MS) method that will overcome such interference has been developed for the detection of toluene and/or ethylbenzene in the headspace of preparations and products containing these substances and in the headspace of blood samples in the cases of volatile substance abuse. The method is based on converting toluene to benzoic acid via the formation of benzotrichloride. The latter compound was obtained upon the reaction of toluene with chlorine gas under direct sunlight conditions. In the presence of water, benzotrichloride was converted to benzoic acid. Ethylbenzene was converted to benzoic acid and two phenylethanols via the formation of side chain chloro-substituted phenylethanes followed by reaction with water. The chloro-substituted phenylethanes were obtained by the reaction of ethylbenzene with chlorine under direct sunlight conditions. The benzoic acid resulting from toluene and/or ethylbenzene and the two phenylethanols resulting from ethylbenzene were detected by GC-MS as their trimethylsilyl (TMS) derivatives. For the method to be viable for the detection of volatile substance abuse, the chlorination reactions were effected in the gaseous state.
Wu, Wenming; Trinh, Kieu The Loan; Lee, Nae Yoon
2015-03-07
We introduce a new strategy for fabricating a seamless three-dimensional (3D) helical microreactor utilizing a silicone tube and a paraffin mold. With this method, various shapes and sizes of 3D helical microreactors were fabricated, and a complicated and laborious photolithographic process, or 3D printing, was eliminated. With dramatically enhanced portability at a significantly reduced fabrication cost, such a device can be considered to be the simplest microreactor, developed to date, for performing the flow-through polymerase chain reaction (PCR).
Catalytic and reactive polypeptides and methods for their preparation and use
Schultz, Peter
1994-01-01
Catalytic and reactive polypeptides include a binding site specific for a reactant or reactive intermediate involved in a chemical reaction of interest. The polypeptides further include at least one active functionality proximate the binding site, where the active functionality is capable of catalyzing or chemically participating in the chemical reaction in such a way that the reaction rate is enhanced. Methods for preparing the catalytic peptides include chemical synthesis, site-directed mutagenesis of antibody and enzyme genes, covalent attachment of the functionalities through particular amino acid side chains, and the like.
Nagai, Haruka; Tomioka, Kanji; Okumura, Shiro
2018-06-26
We have been developing quick and simple system for detecting food-poisoning bacteria using a combination of an asymmetric PCR and a portable surface plasmon resonance (SPR) sensor. The system would be suitable for point-of-care detection of food-poisoning bacteria in the field of food industry. In this study, we established a novel method for quantifying the amplified forward (F) and reverse (R) chains of Staphylococcus aureus separately by high-performance liquid chromatography (HPLC). The concentration of single-stranded DNA amplicon excessively amplified, which is crucial for the system, could be calculated as the difference between those of the F- and R-chains. For the R-chain, a correction based on the F-chain concentration in the sample was used to obtain a more accurate value, because the determination of the R-chain concentration was affected by that of the coexisting F-chain. The concentration values were also determined by fluorescence imaging for electrophoresis gels of amplicons with FITC- or Cy5-conjugated primers, and they were in good agreement with the values by the HPLC. The measured concentration of the single-strand F-chain correlated well with the value of the SPR response against the probe that was a complementary sequence of the F-chain, immobilized on the sensor chip of the SPR sensor.
Kulkarni, Raghavendra D.; Mishra, Mukti Nath; Mohanraj, Jeevanandam; Chandrasekhar, Arun; Ajantha, G. S.; Kulkani, Sheetal; Bhat, Shama
2018-01-01
BACKGROUND: Nosocomial infections are often caused by multidrug-resistant bacteria and the incidence is increasing. Acinetobacter, a Gram-negative bacillus, is commonly associated with the use of intravascular catheterization and airway intubation. Polymerase chain reaction (PCR) for identification of Acinetobacter baumannii from samples has been standardized that use conventional wet-reagent mix. We have designed and optimized a dry-reagent mix for identification of Acinetobacter species by PCR. The dry-reagent mix can be stored at room temperature, has less chances of contamination, and thus can be used at point-of-care diagnosis. AIM AND OBJECTIVE: The present work was focused on comparing the sensitivity and specificity of dry-reagent PCR mix over conventional wet-reagent PCR mix for identification of Acinetobacter species. MATERIALS AND METHODS: Conventional wet-reagent mix based and dry-reagent mix based PCR were carried out for the DNA isolated from Acinetobacter species. The latter was also applied directly on bacterial growth without prior DNA extraction process. Equal numbers of bacterial isolates other than Acinetobacter species were also subjected to identification by the same protocols for determining the sensitivity and specificity of the test. RESULTS: The Acinetobacter species showed amplification of the target rpoB gene and the band was observed at 397 bp. The dry-reagent PCR mix results matched completely with the conventional wet-reagent PCR mix assay. All the non-Acinetobacter isolates were negative for the PCR. This indicates that the test is highly specific. The dry-reagent mix also contained an enzyme resistant to PCR inhibitors and capable of amplifying DNA directly from cells. CONCLUSION: Performance of dry-reagent PCR mix without the need for DNA extraction and preparation of a PCR mix proved to be more sensitive and reduce the handling error, minimizes the time, manual work, and skilled labor. PMID:29403209
ISOTOPE CONVERSION DEVICE AND METHOD
Wigner, E.P.; Ohlinger, L.A.
1958-11-11
Homogeneous nuclear reactors are discussed, and an apparatus and method of operation are descrlbed. The apparatus consists essentially of a reaction tank, a heat exchanger connected to the reaction tank and two separate surge tanks connected to the heat exchanger. An oscillating differential pressure is applied to the surge tanks so that a portion of the homogeneous flssionable solution is circulated through the heat exchanger and reaction tank while maintaining sufficient solution in the reaction tank to sustain a controlled fission chain reaction. The reaction tank is disposed within another tank containing a neutron absorbing material through which coolant fluid is circulated, the outer tank being provided with means to permit and cause rotation thereof due to the circulation of the coolant therethrough.
Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.
Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J
2016-03-14
Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.
Li, Jing-Jian; Xiong, Chao; Liu, Yue; Liang, Jun-Song; Zhou, Xing-Wen
2016-01-01
Correct identification of medicinal plant ingredients is essential for their safe use and for the regulation of herbal drug supply chain. Loop-mediated isothermal amplification (LAMP) is a recently developed approach to identify herbal medicine species. This novel molecular biology technique enables timely and accurate testing, especially in settings where infrastructures to support polymerase chain reaction facilities are lacking. Studies that used this method have altered our view on the extent and complexity of herbal medicine identification. In this review, we give an introduction into LAMP analysis, covers the basic principles and important aspects in the development of LAMP analysis method. Then we presented a critical review of the application of LAMP-based methods in detecting and identifying raw medicinal plant materials and their processed products. We also provide a practical standard operating procedure (SOP) for the utilization of the LAMP protocol in herbal authentication, and consider the prospects of LAMP technology in the future developments of herbal medicine identification and the challenges associated with its application.
Huet, Anne-Catherine; Charlier, Caroline; Deckers, Elise; Marbaix, Hélène; Raes, Martine; Mauro, Sergio; Delahaut, Philippe; Gillard, Nathalie
2016-11-30
The European Commission (EC) wants to reintroduce nonruminant processed animal proteins (PAPs) safely into the feed chain. This would involve replacing the current ban in feed with a species-to-species ban which, in the case of nonruminants, would only prohibit feeding them with proteins from the same species. To enforce such a provision, there is an urgent need for species-specific methods for detecting PAPs from several species in animal feed and in PAPs from other species. Currently, optical microscopy and the polymerase chain reaction are the officially accepted methods, but they have limitations, and alternative methods are needed. We have developed immunoassays using antibodies raised against targets which are not influenced by high temperature and pressure. These targets were identified in a previous study based on an experimental approach. One optimized competitive ELISA detects bovine PAPs at 2% in plant-derived feed. The detection capability demonstrated on blind samples shows a good correlation with mass spectrometry results.
Li, Jing-jian; Xiong, Chao; Liu, Yue; Liang, Jun-song; Zhou, Xing-wen
2016-01-01
Correct identification of medicinal plant ingredients is essential for their safe use and for the regulation of herbal drug supply chain. Loop-mediated isothermal amplification (LAMP) is a recently developed approach to identify herbal medicine species. This novel molecular biology technique enables timely and accurate testing, especially in settings where infrastructures to support polymerase chain reaction facilities are lacking. Studies that used this method have altered our view on the extent and complexity of herbal medicine identification. In this review, we give an introduction into LAMP analysis, covers the basic principles and important aspects in the development of LAMP analysis method. Then we presented a critical review of the application of LAMP-based methods in detecting and identifying raw medicinal plant materials and their processed products. We also provide a practical standard operating procedure (SOP) for the utilization of the LAMP protocol in herbal authentication, and consider the prospects of LAMP technology in the future developments of herbal medicine identification and the challenges associated with its application. PMID:28082999
A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus.
Wang, Jianchang; Wang, Jinfeng; Geng, Yunyun; Yuan, Wanzhe
2017-10-01
A recombinase polymerase amplification (RPA)-based method was developed for rapid and specific detection of African swine fever virus (ASFV), the etiologic agent of African swine fever, a devastating disease of swine. Primers and the exo probe targeting the conserved region of the P72 gene of ASFV were designed and the reaction was run on the Genie III scanner device. Using recombinant plasmid DNA containing the P72 gene as template, we showed that the amplified product could be detected in less than 10 min and that the detection limit was 10 2 copies DNA/reaction [same detection limit as real-time polymerase chain reaction (PCR)]. The RPA assay did not cross-detect CSFV, PCV-2, PRV, PRRSV, or FMDV, common viruses seen in pigs. Tests of recombinant plasmid-spiked serum samples revealed that RPA and real-time PCR had the same diagnostic rate. The RPA assay, which is simple, cost-effective, and fast, is a promising alternative to real-time PCR for ASFV detection.
A recombinase polymerase amplification-based assay for rapid detection of African swine fever virus
Wang, Jianchang; Wang, Jinfeng; Geng, Yunyun; Yuan, Wanzhe
2017-01-01
A recombinase polymerase amplification (RPA)-based method was developed for rapid and specific detection of African swine fever virus (ASFV), the etiologic agent of African swine fever, a devastating disease of swine. Primers and the exo probe targeting the conserved region of the P72 gene of ASFV were designed and the reaction was run on the Genie III scanner device. Using recombinant plasmid DNA containing the P72 gene as template, we showed that the amplified product could be detected in less than 10 min and that the detection limit was 102 copies DNA/reaction [same detection limit as real-time polymerase chain reaction (PCR)]. The RPA assay did not cross-detect CSFV, PCV-2, PRV, PRRSV, or FMDV, common viruses seen in pigs. Tests of recombinant plasmid-spiked serum samples revealed that RPA and real-time PCR had the same diagnostic rate. The RPA assay, which is simple, cost-effective, and fast, is a promising alternative to real-time PCR for ASFV detection. PMID:29081590
Brealey, David; Libert, Nicolas; Abidi, Nour Elhouda; O’Dwyer, Michael; Zacharowski, Kai; Mikaszewska-Sokolewicz, Malgorzata; Schrenzel, Jacques; Simon, François; Wilks, Mark; Picard-Maureau, Marcus; Chalfin, Donald B.; Ecker, David J.; Sampath, Rangarajan; Singer, Mervyn
2015-01-01
Objective: Early identification of causative microorganism(s) in patients with severe infection is crucial to optimize antimicrobial use and patient survival. However, current culture-based pathogen identification is slow and unreliable such that broad-spectrum antibiotics are often used to insure coverage of all potential organisms, carrying risks of overtreatment, toxicity, and selection of multidrug-resistant bacteria. We compared the results obtained using a novel, culture-independent polymerase chain reaction/electrospray ionization-mass spectrometry technology with those obtained by standard microbiological testing and evaluated the potential clinical implications of this technique. Design: Observational study. Setting: Nine ICUs in six European countries. Patients: Patients admitted between October 2013 and June 2014 with suspected or proven bloodstream infection, pneumonia, or sterile fluid and tissue infection were considered for inclusion. Interventions: None. Measurements and Main Results: We tested 616 bloodstream infection, 185 pneumonia, and 110 sterile fluid and tissue specimens from 529 patients. From the 616 bloodstream infection samples, polymerase chain reaction/electrospray ionization-mass spectrometry identified a pathogen in 228 cases (37%) and culture in just 68 (11%). Culture was positive and polymerase chain reaction/electrospray ionization-mass spectrometry negative in 13 cases, and both were negative in 384 cases, giving polymerase chain reaction/electrospray ionization-mass spectrometry a sensitivity of 81%, specificity of 69%, and negative predictive value of 97% at 6 hours from sample acquisition. The distribution of organisms was similar with both techniques. Similar observations were made for pneumonia and sterile fluid and tissue specimens. Independent clinical analysis of results suggested that polymerase chain reaction/electrospray ionization-mass spectrometry technology could potentially have resulted in altered treatment in up to 57% of patients. Conclusions: Polymerase chain reaction/electrospray ionization-mass spectrometry provides rapid pathogen identification in critically ill patients. The ability to rule out infection within 6 hours has potential clinical and economic benefits. PMID:26327198
Copolymer Synthesis and Characterization by Post-Polymerization Modification
NASA Astrophysics Data System (ADS)
Galvin, Casey James
This PhD thesis examines the physical behavior of surface-grafted polymer assemblies (SGPAs) derived from post-polymerization modification (PPM) reactions in aqueous and vapor enriched environments, and offers an alternative method of creating SGPAs using a PPM approach. SGPAs comprise typically polymer chains grafted covalently to solid substrates. These assemblies show promise in a number of applications and technologies due to the stability imparted by the covalent graft and ability to modify interfacial properties and stability. SGPAs also offer a set of rich physics to explore in fundamental investigations as a result of confining macromolecules to a solid substrate. PPM reactions (also called polymer analogous reactions) apply small molecule organic chemistry reactions to the repeat units of polymer chains in order to generate new chemistries. By applying a PPM strategy to SGPAs, a wide variety of functional groups can be introduced into a small number of well-studied and well-behaved model polymer systems. This approach offers the advantage of holding constant other properties of the SGPA (e.g., molecular weight, MW, and grafting density, sigma) to isolate the effect of chemistry on physical behavior. Using a combination of PPM and fabrication methods that facilitate the formation of SPGAs with position-dependent gradual variation of sigma on flat impenetrable substrate, the influence of polymer chemistry and sigma is examined on the stability of weak polyelectrolyte brushes in aqueous environments at different pH levels. Degrafting of polymer chains in SGPAs exhibits a complex dependence on side chain chemistry, sigma, pH and the charge fraction (alpha) within the brush. Results of these experiments support a proposed mechanism of degrafting, wherein extension of the grafted chains away from the substrate generates tension along the polymer backbone, which activates the grafting chemistry for hydrolysis. The implications of these findings are important in developing technologies that use SGPAs in aqueous environments, and point to a need for potential alternative grafting chemistries. The behavior of SGPAs in vapor environments remains an underexplored phenomenon. By changing systematically the chemistry of SGPAs derived from a parent sample, the influence of side chain functional groups on the swelling of weak and strong polyelectrolyte brushes in the presence of water, methanol and ethanol vapors is explored. The extent of swelling and solvent uptake depends strongly on the chemistry in the polymer side chain and of the solvent. Despite bearing a permanent electrostatic charge in the side chain, the strong polyelectrolyte brushes exhibit no behavior typical of polyelectrolytes in water due to no dissociation of the counterion. Of particular interest is the behavior in humid environments of an SGPA bearing a zwitterionic group in its side chain, which results in exposure of electrostatic charges without counterions. Using substrates bearing the aforementioned sigma gradient of polymeric grafts, evidence of inter- and intramolecular complex formation is presented. Finally, a method of developing SGPAs by polymerizing bulk polymer chains through surface-grafted monomers (SGMs) is described. The SGMs are incorporated onto a solid substrate using the same PPM reaction employed in the degrafting and vapor swelling experiments, highlighting the versatility of PPM. The thickness of these SGPAs is correlated to the bulk polymer chains MW, suggesting this technique can be used in existing industrial bulk polymerization processes.
Enhanced DNA Sensing via Catalytic Aggregation of Gold Nanoparticles
Huttanus, Herbert M.; Graugnard, Elton; Yurke, Bernard; Knowlton, William B.; Kuang, Wan; Hughes, William L.; Lee, Jeunghoon
2014-01-01
A catalytic colorimetric detection scheme that incorporates a DNA-based hybridization chain reaction into gold nanoparticles was designed and tested. While direct aggregation forms an inter-particle linkage from only ones target DNA strand, the catalytic aggregation forms multiple linkages from a single target DNA strand. Gold nanoparticles were functionalized with thiol-modified DNA strands capable of undergoing hybridization chain reactions. The changes in their absorption spectra were measured at different times and target concentrations and compared against direct aggregation. Catalytic aggregation showed a multifold increase in sensitivity at low target concentrations when compared to direct aggregation. Gel electrophoresis was performed to compare DNA hybridization reactions in catalytic and direct aggregation schemes, and the product formation was confirmed in the catalytic aggregation scheme at low levels of target concentrations. The catalytic aggregation scheme also showed high target specificity. This application of a DNA reaction network to gold nanoparticle-based colorimetric detection enables highly-sensitive, field-deployable, colorimetric readout systems capable of detecting a variety of biomolecules. PMID:23891867
NASA Astrophysics Data System (ADS)
Mori, Takahiro; Zhang, Lihan; Awakawa, Takayoshi; Hoshino, Shotaro; Okada, Masahiro; Morita, Hiroyuki; Abe, Ikuro
2016-03-01
Prenylation reactions play crucial roles in controlling the activities of biomolecules. Bacterial prenyltransferases, TleC from Streptomyces blastmyceticus and MpnD from Marinactinospora thermotolerans, catalyse the `reverse' prenylation of (-)-indolactam V at the C-7 position of the indole ring with geranyl pyrophosphate or dimethylallyl pyrophosphate, to produce lyngbyatoxin or pendolmycin, respectively. Using in vitro analyses, here we show that both TleC and MpnD exhibit relaxed substrate specificities and accept various chain lengths (C5-C25) of the prenyl donors. Comparisons of the crystal structures and their ternary complexes with (-)-indolactam V and dimethylallyl S-thiophosphate revealed the intimate structural details of the enzyme-catalysed `reverse' prenylation reactions and identified the active-site residues governing the selection of the substrates. Furthermore, structure-based enzyme engineering successfully altered the preference for the prenyl chain length of the substrates, as well as the regio- and stereo-selectivities of the prenylation reactions, to produce a series of unnatural novel indolactams.
Detection and quantification limits of the EPA Enterococcus qPCR method
The U.S. EPA will be recommending a quantitative polymerase chain reaction (qPCR) method targeting Enterococcus spp. as an option for monitoring recreational beach water quality in 2013 and has published preliminary proposed water quality criteria guidelines for the method. An im...
Chang, Brenda; Knowles, Sandra R; Weber, Elizabeth
2010-04-01
To report 3 cases of immediate hypersensitivity reactions to moxifloxacin in patients who tolerated ciprofloxacin. A 71-year-old man, a 44-year-old woman, and a 70-year-old woman with a history of a moxifloxacin reaction developed an immediate hypersensitivity reaction upon oral challenge with moxifloxacin in our Drug Safety Clinic. The reaction was mainly characterized by pruritus and urticaria, although dyspnea and hypotension were noted in the first and second patient, respectively. Two of the patients had negative oral challenge tests with ciprofloxacin and all 3 patients tolerated full treatment courses of oral ciprofloxacin. In all 3 cases, use of the Naranjo probability scale indicated a highly probable adverse drug reaction. Moxifloxacin, similar to other fluoroquinolones, can cause immediate hypersensitivity reactions. Previous publications have reported both cross-reactivity and a lack of cross-reactivity among various fluoroquinolones. The 3 patients discussed demonstrated a lack of cross-reactivity between moxifloxacin and ciprofloxacin since they tolerated oral challenge tests and full treatment courses of ciprofloxacin. Moxifloxacin has unique side chains at positions 7 and 8 on its bicyclic ring structure. Antigenic specificity to particular side chains at positions 7 and 8 on the bicyclic ring structure of moxifloxacin may explain this lack of cross-reactivity. Higher reporting rates of anaphylaxis to moxifloxacin compared to other fluoroquinolones may also be related to side chain specificity, although definitive evidence for this is lacking. Based on our experience, patients who develop immediate hypersensitivity reactions to moxifloxacin may receive ciprofloxacin therapy in an appropriately monitored setting if they have previously tolerated full treatment courses of ciprofloxacin. Research into whether there is a specific side chain reaction unique to moxifloxacin is warranted.
Chemical reactions directed Peptide self-assembly.
Rasale, Dnyaneshwar B; Das, Apurba K
2015-05-13
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.
Chemical Reactions Directed Peptide Self-Assembly
Rasale, Dnyaneshwar B.; Das, Apurba K.
2015-01-01
Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603
Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus
Emery, Shannon L.; Bowen, Michael D.; Newton, Bruce R.; Winchell, Jonas M.; Meyer, Richard F.; Tong, Suxiang; Cook, Byron T.; Holloway, Brian P.; McCaustland, Karen A.; Rota, Paul A.; Bankamp, Bettina; Lowe, Luis E.; Ksiazek, Tom G.; Bellini, William J.; Anderson, Larry J.
2004-01-01
A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection. PMID:15030703
Chang, Chia-Hao; Shao, Kwang-Tsao; Lin, Yeong-Shin; Liao, Yun-Chih
2013-12-01
The complete mitochondrial genome of the three-spot seahorse was sequenced using a polymerase chain reaction-based method. The total length of mitochondrial DNA is 16,535 bp and includes 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. The mitochondrial gene order of the three-spot seahorse also conforms to the distinctive vertebrate mitochondrial gene order. The base composition of the genome is A (32.7%), T (29.3%), C (23.4%), and G (14.6%) with an A + T-rich hallmark as that of other vertebrate mitochondrial genomes.
Chang, Chia-Hao; Lin, Han-Yang; Jang-Liaw, Nian-Hong; Shao, Kwang-Tsao; Lin, Yeong-Shin; Ho, Hsuan-Ching
2013-06-01
The complete mitochondrial genome of the tiger tail seahorse was sequenced using a polymerase chain reaction-based method. The total length of mitochondrial DNA is 16,525 bp and includes 13 protein-coding genes, 2 ribosomal RNA, 22 transfer RNA genes, and a control region. The mitochondrial gene arrangement of the tiger tail seahorse is also matching the one observed in the most vertebrate creatures. Base composition of the genome is A (32.8%), T (29.8%), C (23.0%), and G (14.4%) with an A+T-rich hallmark as that of other vertebrate mitochondrial genomes.
NASA Astrophysics Data System (ADS)
Rahi, Amid; Sattarahmady, Naghmeh; Heli, Hossein
2015-12-01
Gold nanoribbons covered by gold nanoblooms were sonoelectrodeposited on a polycrystalline gold surface at -1800 mV (vs. AgCl) with the assistance of ultrasound and co-occurrence of the hydrogen evolution reaction. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and fabrication of a genosensor, and the process of immobilization and hybridization was detected by electrochemical methods, using methylene blue as a redox marker. The proposed method for detection of the complementary sequence, sequences with base-mismatched (one-, two- and three-base mismatches), and the sequence of non-complementary sequence was assayed. The fabricated genosensor was evaluated for the assay of the bacteria in the cultured and human samples without polymerase chain reactions (PCR). The genosensor could detect the complementary sequence with a calibration sensitivity of 0.40 μA dm3 mol-1, a linear concentration range of 10 zmol dm-3 to 10 pmol dm-3, and a detection limit of 1.71 zmol dm-3.
NASA Astrophysics Data System (ADS)
Ireland, D. G.
2018-07-01
A method is presented, which ensures that different polarization observables describing one reaction channel are consistent with each other. Using the connection of the observables to the same underlying reaction amplitudes, a constrained estimate of the observables is carried out using a Markov Chain Monte Carlo method. Initial results indicate that the new estimates are guaranteed to be physical, and will remove the need for artificial fudge factors when these processed data are used in subsequent fits.
On fundamental quality of fission chain reaction to oppose rapid runaways of nuclear reactors
NASA Astrophysics Data System (ADS)
Kulikov, G. G.; Shmelev, A. N.; Apse, V. A.; Kulikov, E. G.
2017-01-01
It has been shown that the in-hour equation characterizes the barriers and resistibility of fission chain reaction (FCR) against rapid runaways in nuclear reactors. Traditionally, nuclear reactors are characterized by the presence of barriers based on delayed and prompt neutrons. A new barrier based on the reflector neutrons that can occur when the fast reactor core is surrounded by a weakly absorbing neutron reflector with heavy atomic weight was proposed. It has been shown that the safety of this fast reactor is substantially improved, and considerable elongation of prompt neutron lifetime "devalues" the role of delayed neutron fraction as the maximum permissible reactivity for the reactor safety.
Exploiting Fission Chain Reaction Dynamics to Image Fissile Materials
NASA Astrophysics Data System (ADS)
Chapman, Peter Henry
Radiation imaging is one potential method to verify nuclear weapons dismantlement. The neutron coded aperture imager (NCAI), jointly developed by Oak Ridge National Laboratory (ORNL) and Sandia National Laboratories (SNL), is capable of imaging sources of fast (e.g., fission spectrum) neutrons using an array of organic scintillators. This work presents a method developed to discriminate between non-multiplying (i.e., non-fissile) neutron sources and multiplying (i.e., fissile) neutron sources using the NCAI. This method exploits the dynamics of fission chain-reactions; it applies time-correlated pulse-height (TCPH) analysis to identify neutrons in fission chain reactions. TCPH analyzes the neutron energy deposited in the organic scintillator vs. the apparent neutron time-of-flight. Energy deposition is estimated from light output, and time-of-flight is estimated from the time between the neutron interaction and the immediately preceding gamma interaction. Neutrons that deposit more energy than can be accounted for by their apparent time-of-flight are identified as fission chain-reaction neutrons, and the image is reconstructed using only these neutron detection events. This analysis was applied to measurements of weapons-grade plutonium (WGPu) metal and 252Cf performed at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF) in July 2015. The results demonstrate it is possible to eliminate the non-fissile 252Cf source from the image while preserving the fissileWGPu source. TCPH analysis was also applied to additional scenes in which theWGPu and 252Cf sources were measured individually. The results of these separate measurements further demonstrate the ability to remove the non-fissile 252Cf source and retain the fissileWGPu source. Simulations performed using MCNPX-PoliMi indicate that in a one hour measurement, solid spheres ofWGPu are retained at a 1sigma level for neutron multiplications M -˜ 3.0 and above, while hollowWGPu spheres are retained for M -˜ 2.7 and above.
A chain reaction approach to modelling gene pathways.
Cheng, Gary C; Chen, Dung-Tsa; Chen, James J; Soong, Seng-Jaw; Lamartiniere, Coral; Barnes, Stephen
2012-08-01
BACKGROUND: Of great interest in cancer prevention is how nutrient components affect gene pathways associated with the physiological events of puberty. Nutrient-gene interactions may cause changes in breast or prostate cells and, therefore, may result in cancer risk later in life. Analysis of gene pathways can lead to insights about nutrient-gene interactions and the development of more effective prevention approaches to reduce cancer risk. To date, researchers have relied heavily upon experimental assays (such as microarray analysis, etc.) to identify genes and their associated pathways that are affected by nutrient and diets. However, the vast number of genes and combinations of gene pathways, coupled with the expense of the experimental analyses, has delayed the progress of gene-pathway research. The development of an analytical approach based on available test data could greatly benefit the evaluation of gene pathways, and thus advance the study of nutrient-gene interactions in cancer prevention. In the present study, we have proposed a chain reaction model to simulate gene pathways, in which the gene expression changes through the pathway are represented by the species undergoing a set of chemical reactions. We have also developed a numerical tool to solve for the species changes due to the chain reactions over time. Through this approach we can examine the impact of nutrient-containing diets on the gene pathway; moreover, transformation of genes over time with a nutrient treatment can be observed numerically, which is very difficult to achieve experimentally. We apply this approach to microarray analysis data from an experiment which involved the effects of three polyphenols (nutrient treatments), epigallo-catechin-3-O-gallate (EGCG), genistein, and resveratrol, in a study of nutrient-gene interaction in the estrogen synthesis pathway during puberty. RESULTS: In this preliminary study, the estrogen synthesis pathway was simulated by a chain reaction model. By applying it to microarray data, the chain reaction model computed a set of reaction rates to examine the effects of three polyphenols (EGCG, genistein, and resveratrol) on gene expression in this pathway during puberty. We first performed statistical analysis to test the time factor on the estrogen synthesis pathway. Global tests were used to evaluate an overall gene expression change during puberty for each experimental group. Then, a chain reaction model was employed to simulate the estrogen synthesis pathway. Specifically, the model computed the reaction rates in a set of ordinary differential equations to describe interactions between genes in the pathway (A reaction rate K of A to B represents gene A will induce gene B per unit at a rate of K; we give details in the "method" section). Since disparate changes of gene expression may cause numerical error problems in solving these differential equations, we used an implicit scheme to address this issue. We first applied the chain reaction model to obtain the reaction rates for the control group. A sensitivity study was conducted to evaluate how well the model fits to the control group data at Day 50. Results showed a small bias and mean square error. These observations indicated the model is robust to low random noises and has a good fit for the control group. Then the chain reaction model derived from the control group data was used to predict gene expression at Day 50 for the three polyphenol groups. If these nutrients affect the estrogen synthesis pathways during puberty, we expect discrepancy between observed and expected expressions. Results indicated some genes had large differences in the EGCG (e.g., Hsd3b and Sts) and the resveratrol (e.g., Hsd3b and Hrmt12) groups. CONCLUSIONS: In the present study, we have presented (I) experimental studies of the effect of nutrient diets on the gene expression changes in a selected estrogen synthesis pathway. This experiment is valuable because it allows us to examine how the nutrient-containing diets regulate gene expression in the estrogen synthesis pathway during puberty; (II) global tests to assess an overall association of this particular pathway with time factor by utilizing generalized linear models to analyze microarray data; and (III) a chain reaction model to simulate the pathway. This is a novel application because we are able to translate the gene pathway into the chemical reactions in which each reaction channel describes gene-gene relationship in the pathway. In the chain reaction model, the implicit scheme is employed to efficiently solve the differential equations. Data analysis results show the proposed model is capable of predicting gene expression changes and demonstrating the effect of nutrient-containing diets on gene expression changes in the pathway. One of the objectives of this study is to explore and develop a numerical approach for simulating the gene expression change so that it can be applied and calibrated when the data of more time slices are available, and thus can be used to interpolate the expression change at a desired time point without conducting expensive experiments for a large amount of time points. Hence, we are not claiming this is either essential or the most efficient way for simulating this problem, rather a mathematical/numerical approach that can model the expression change of a large set of genes of a complex pathway. In addition, we understand the limitation of this experiment and realize that it is still far from being a complete model of predicting nutrient-gene interactions. The reason is that in the present model, the reaction rates were estimated based on available data at two time points; hence, the gene expression change is dependent upon the reaction rates and a linear function of the gene expressions. More data sets containing gene expression at various time slices are needed in order to improve the present model so that a non-linear variation of gene expression changes at different time can be predicted.
Ying, Na; Ju, Chuanjing; Sun, Xiuwei; Li, Letian; Chang, Hongbiao; Song, Guangping; Li, Zhongyi; Wan, Jiayu; Dai, Enyong
2017-01-01
MicroRNAs (miRNAs) constitute novel biomarkers for various diseases. Accurate and quantitative analysis of miRNA expression is critical for biomedical research and clinical theranostics. In this study, a method was developed for sensitive and specific detection of miRNAs via dual signal amplification based on duplex specific nuclease (DSN) and hybridization chain reaction (HCR). A reporter probe (RP), comprising recognition sequence (3' end modified with biotin) for a target miRNA of miR-21 and capture sequence (5' end modified with Fam) for HCR product, was designed and synthesized. HCR was initiated by partial sequence of initiator probe (IP), the other part of which can hybridize with capture sequence of RP, and was assembled by hairpin probes modified with biotin (H1-bio and H2-bio). A miR-21 triggered cyclical DSN cleavage of RP, which was immobilized to a streptavidin (SA) coated magnetic bead (MB). The released Fam labeled capture sequence then hybridized with the HCR product to generate a detectable dsDNA. This polymer was then dropped on lateral flow strip and positive result was observed. The proposed method allowed quantitative sequence-specific detection of miR-21 (with a detection limit of 2.1 fM, S/N = 3) in a dynamic range from 100 fM to 100 pM, with an excellent ability to discriminate differences in miRNAs. The method showed acceptable testing recoveries for the determination of miRNAs in serum.
Dobnik, David; Spilsberg, Bjørn; Bogožalec Košir, Alexandra; Holst-Jensen, Arne; Žel, Jana
2015-08-18
Presence of genetically modified organisms (GMO) in food and feed products is regulated in many countries. The European Union (EU) has implemented a threshold for labeling of products containing more than 0.9% of authorized GMOs per ingredient. As the number of GMOs has increased over time, standard-curve based simplex quantitative polymerase chain reaction (qPCR) analyses are no longer sufficiently cost-effective, despite widespread use of initial PCR based screenings. Newly developed GMO detection methods, also multiplex methods, are mostly focused on screening and detection but not quantification. On the basis of droplet digital PCR (ddPCR) technology, multiplex assays for quantification of all 12 EU authorized GM maize lines (per April first 2015) were developed. Because of high sequence similarity of some of the 12 GM targets, two separate multiplex assays were needed. In both assays (4-plex and 10-plex), the transgenes were labeled with one fluorescence reporter and the endogene with another (GMO concentration = transgene/endogene ratio). It was shown that both multiplex assays produce specific results and that performance parameters such as limit of quantification, repeatability, and trueness comply with international recommendations for GMO quantification methods. Moreover, for samples containing GMOs, the throughput and cost-effectiveness is significantly improved compared to qPCR. Thus, it was concluded that the multiplex ddPCR assays could be applied for routine quantification of 12 EU authorized GM maize lines. In case of new authorizations, the events can easily be added to the existing multiplex assays. The presented principle of quantitative multiplexing can be applied to any other domain.
Akhavan-Niaki, Haleh; Banihashemi, Ali; Mostafazadeh, Amrollah; Kholghi Oskooei, Vahid; Azizi, Mandana; Youssefi Kamangar, Reza; Elmi, Maryam Mitra
2012-01-01
Hb Constant Spring (Hb CS, codon 142, TAA>CAA, α2) (HBA2:c.427T>C) and α2 IVS-I donor site (GAGGTGAGG>GAGG - - - - -) (HBA2:c.95+2_95+6delTGAGG) are nondeletional α-thalassemia (α-thal) mutations found all over the world. Identification of α-thal genotypes in at-risk couples for severe anemia or in highly heterogeneous populations requires rapid, accurate and cost-effective genotyping methods. In this study, a pair of primers were used to specifically amplify an 883 bp fragment from the α2-globin gene in order to simultaneously identify these two mutations by a PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) method. We determined the genotypic frequencies of Hb CS and the α2 IVS-I donor site mutations after amplification and enzymatic digestion with Tru9I in 238 northern Iranian samples referred for α-thal testing. Hb CS and the α2 IVS-I donor site mutations accounted for 21 (8.8%) and 29 (12.2%) of the nondeletional cases. This genotyping assay has proven to be a rapid, reliable and useful diagnostic tool for simultaneous detection of these two anomalies for genetic counseling or further prenatal diagnosis.
Dapic, Irena; Kobetic, Renata; Brkljacic, Lidija; Kezic, Sanja; Jakasa, Ivone
2018-02-01
The free fatty acids (FFAs) are one of the major components of the lipids in the stratum corneum (SC), the uppermost layer of the skin. Relative composition of FFAs has been proposed as a biomarker of the skin barrier status in patients with atopic dermatitis (AD). Here, we developed an LC-ESI-MS/MS method for simultaneous quantification of a range of FFAs with long and very long chain length in the SC collected by adhesive tape (D-Squame). The method, based on derivatization with 2-bromo-1-methylpyridinium iodide and 3-carbinol-1-methylpyridinium iodide, allowed highly sensitive detection and quantification of FFAs using multiple reaction monitoring. For the quantification, we applied a surrogate analyte approach and internal standardization using isotope labeled derivatives of FFAs. Adhesive tapes showed the presence of several FFAs, which are also present in the SC, a problem encountered in previous studies. Therefore, the levels of FFAs in the SC were corrected using C12:0, which was present on the adhesive tape, but not detected in the SC. The method was applied to SC samples from patients with atopic dermatitis and healthy subjects. Quantification using multiple reaction monitoring allowed sufficient sensitivity to analyze FFAs of chain lengths C16-C28 in the SC collected on only one tape strip. Copyright © 2017 John Wiley & Sons, Ltd.
Zijenah, Lynn S; Tobaiwa, Ocean; Rusakaniko, Simbarashe; Nathoo, Kusum J; Nhembe, Margaret; Matibe, Petronella; Katzenstein, David A
2005-08-01
The gold standard for diagnosis of HIV-1 infection in infants under the age of 2 years is DNA or reverse transcriptase polymerase chain reaction. However, these tests are expensive and therefore not available in resource-limited countries. With the increasing availability of antiretroviral drugs for prevention of mother-to-child transmission of HIV and treatment of AIDS in resource-poor countries, there is an urgent need to develop cheaper, alternative, and cost-effective laboratory methods for early diagnosis of infant HIV-1 infection that will be useful in identifying infected infants who may benefit from early cotrimoxazole prophylaxis or commencement of antiretroviral therapy. We evaluated an alternative method, the enzyme-linked immunosorbent assay-based qualitative ultrasensitive p24 antigen assay for diagnosis of subtype C HIV-1 infection in infants under the age of 2 years using DNA polymerase chain reaction as the reference method. The assay showed a sensitivity of 96.7% (95% CI: 93.0-100) for detection of HIV-1 infection among infants 0-18 months of age with a specificity of 96.1% (95% CI: 91.7-100). These evaluated parameters were not statistically different between infants aged 0-6 and 7-18 months. The ultrasensitive p24 antigen assay is a useful diagnostic test for detection of HIV-1 infection among infants aged 0-18 months.
Zou, Xian-Guo; Hu, Jiang-Ning; Zhao, Man-Li; Zhu, Xue-Mei; Li, Hong-Yan; Liu, Xiao-Ru; Liu, Rong; Deng, Ze-Yuan
2014-10-29
In the present study, a human milk fat substitute (HMFS) enriched in medium-chain fatty acids (MCFAs) was synthesized through acidolysis reaction from Cinnamomum camphora seed oil (CCSO) with oleic acid in a solvent-free system. A commercial immobilized lipase, Lipozyme RM IM, from Rhizomucor miehei, was facilitated as a biocatalyst. Effects of different reaction conditions, including substrate molar ratio, enzyme concentration, reaction temperature, and reaction time were investigated using response surface methodology (RSM) to obtain the optimal oleic acid incorporation. After optimization, results showed that the maximal incorporation of oleic acid into HMFS was 59.68%. Compared with CCSO, medium-chain fatty acids at the sn-2 position of HMFS accounted for >70%, whereas oleic acid was occupied predominantly at the sn-1,3 position (78.69%). Meanwhile, triacylglycerol (TAG) components of OCO (23.93%), CCO (14.94%), LaCO (13.58%), OLaO (12.66%), and OOO (11.13%) were determined as the major TAG species in HMFS. The final optimal reaction conditions were carried out as follows: substrate molar ratio (oleic acid/CCSO), 5:1; enzyme concentration, 12.5% (w/w total reactants); reaction temperature, 60 °C; and reaction time, 28 h. The reusability of Lipozyme RM IM in the acidolysis reaction was also evaluated, and it was found that it could be reused up to 9 times without significant loss of activities. Urea inclusion method was used to separate and purify the synthetic product. As the ratio of HMFS/urea increased to 1:2, the acid value lowered to the minimum. In a scale-up experiment, the contents of TAG and total tocopherols in HMFS (modified CCSO) were 77.28% and 12.27 mg/100 g, respectively. All of the physicochemical indices of purified product were within food standards. Therefore, such a MCFA-enriched HMFS produced by using the acidolysis method might have potential application in the infant formula industry.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the real-time polymerase chain reaction test for Mycoplasma gallisepticum (MGLP ReTi). 147.31 Section... Examination Procedures § 147.31 Laboratory procedures recommended for the real-time polymerase chain reaction... lp gene. (c) MGLP ReTi. Primers and probe should be utilized in a 25 µl reaction containing 12.5 µl...
Code of Federal Regulations, 2011 CFR
2011-01-01
... the real-time polymerase chain reaction test for Mycoplasma gallisepticum (MGLP ReTi). 147.31 Section... Examination Procedures § 147.31 Laboratory procedures recommended for the real-time polymerase chain reaction... lp gene. (c) MGLP ReTi. Primers and probe should be utilized in a 25 µl reaction containing 12.5 µl...
Dong, X. Y.; Li, W. H.; Zhu, J. L.; Liu, W. J.; Zhao, M. Q.; Luo, Y. W.; Chen, J. D.
2015-01-01
Canine distemper virus (CDV) is the cause of canine distemper (CD) which is a severe and highly contagious disease in dogs. In the present study, a duplex reverse transcription polymerase chain reaction (RT-PCR) method was developed for the detection and differentiation of wild-type and vaccine strains of CDV. Four primers were designed to detect and discriminate the two viruses by generating 638- and 781-bp cDNA products, respectively. Furthermore, the duplex RT-PCR method was used to detect 67 field samples suspected of CD from Guangdong province in China. Results showed that, 33 samples were to be wild-type-like. The duplex RT-PCR method exhibited high specificity and sensitivity which could be used to effectively detect and differentiate wild-type and vaccine CDV, indicating its use for clinical detection and epidemiological surveillance. PMID:27175171
Tajeddin, E; Sherafat, S J; Majidi, M R S; Alebouyeh, M; Alizadeh, A H M; Zali, M R
2016-08-01
Bacterial infection is considered a predisposing factor for disorders of the biliary tract. This study aimed to determine the diversity of bacterial communities in bile samples and their involvement in the occurrence of biliary tract diseases. A total of 102 bile samples were collected during endoscopic retrograde cholangiopancreatography (ERCP). Characterization of bacteria was done using culture and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methods. Antimicrobial susceptibility of the isolates was determined based on the Clinical and Laboratory Standards Institute (CLSI) guidelines and identity of the nucleotide sequences of differentiated bands from the DGGE gels was determined based on GenBank data. In total, 41.2 % (42/102) of the patients showed bacterial infection in their bile samples. This infection was detected in 21 % (4/19), 45.4 % (5/11), 53.5 % (15/28), and 54.5 % (24/44) of patients with common bile duct stone, microlithiasis, malignancy, and gallbladder stone, respectively. Escherichia coli showed a significant association with gallstones. Polymicrobial infection was detected in 48 % of the patients. While results of the culture method established coexistence of biofilm-forming bacteria (Pseudomonas aeruginosa, E. coli, Klebsiella pneumoniae, Enterococcus spp., and Acinetobacter spp.) in different combinations, the presence of Capnocytophaga spp., Lactococcus spp., Bacillus spp., Staphylococcus haemolyticus, Enterobacter or Citrobacter spp., Morganella spp., Salmonella spp., and Helicobacter pylori was also characterized in these samples by the PCR-DGGE method. Multidrug resistance phenotypes (87.5 %) and resistance to third- and fourth-generation cephalosporins and quinolones were common in these strains, which could evolve through their selection by bile components. Ability for biofilm formation seems to be a need for polymicrobial infection in this organ.
Press Releases | Argonne National Laboratory
Electrochemical Energy Science --Center for Transportation Research --Chain Reaction Innovations --Computation renewable energy such as wind and solar power. April 25, 2018 John Carlisle, director of Chain Reaction across nation to grow startups Argonne announces second cohort of Chain Reaction Innovations. April 18
Stevens, Joanna S; Walczak, Monika; Jaye, Cherno; Fischer, Daniel A
2016-10-24
The dramatic colour and phase alteration with the solid-state, temperature-dependent reaction between squaric acid and 4,4'-bipyridine has been probed in situ with X-ray absorption spectroscopy. The electronic and chemical sensitivity to the local atomic environment through chemical shifts in the near-edge X-ray absorption fine structure (NEXAFS) revealed proton transfer from the acid to the bipyridine base through the change in nitrogen protonation state in the high-temperature form. Direct detection of proton transfer coupled with structural analysis elucidates the nature of the solid-state process, with intermolecular proton transfer occurring along an acid-base chain followed by a domino effect to the subsequent acid-base chains, leading to the rapid migration along the length of the crystal. NEXAFS thereby conveys the ability to monitor the nature of solid-state chemical reactions in situ, without the need for a priori information or long-range order. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
MATERIALS SUPPORTING THE NEW RECREATIONAL WATER QUALITY CRITERIA FOR PATHOGENS
EPA is developing new, rapid methods for monitoring water quality at beaches to determine adequacy of water quality for swimming. The methods being developed rely upon quantitive polymerase chain reaction technology. They will permit real time decisions regarding beach closures...
Furutani, Shunsuke; Hagihara, Yoshihisa; Nagai, Hidenori
2017-09-01
Correct labeling of foods is critical for consumers who wish to avoid a specific meat species for religious or cultural reasons. Therefore, gene-based point-of-care food analysis by real-time Polymerase Chain Reaction (PCR) is expected to contribute to the quality control in the food industry. In this study, we perform rapid identification of meat species by our portable rapid real-time PCR system, following a very simple DNA extraction method. Applying these techniques, we correctly identified beef, pork, chicken, rabbit, horse, and mutton in processed foods in 20min. Our system was sensitive enough to detect the interfusion of about 0.1% chicken egg-derived DNA in a processed food sample. Our rapid real-time PCR system is expected to contribute to the quality control in food industries because it can be applied for the identification of meat species, and future applications can expand its functionality to the detection of genetically modified organisms or mutations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xu, Huifeng; Kou, Fangxia; Ye, Hongzhi; Wang, Zongwen; Huang, Suixin; Liu, Xianxiang; Zhu, Xi; Lin, Zhenyu; Chen, Guonan
2017-12-01
Vascular endothelial growth factor (VEGF) is a crucial signaling protein for the tumor growth and metastasis, which is also acted as the biomarkers for various diseases. In this research, we fabricate an aptamer-antibody sensor for point-of-care test of VEGF. Firstly, target VEGF is captured by antibody immobilized on the microplate, and then binds with aptamer to form the sandwich structure. Next, with the assist of glucose oxidase (GOx)-functionalized ssDNAs, hybridization chain reaction occurs using the aptamer as the primer. Thus, GOx are greatly gathered on the microplate, which catalyzes the oxidization of glucose, leading to the pH change. As a result, the detect limit at a signal-to-noise was estimated to be 0.5pg/mL of target by pH meter, and 1.6pg/mL of VEGF was able to be distinguished by naked eyes. Meanwhile, this method has been used assay VEGF in the serum with the satisfactory results. Copyright © 2017. Published by Elsevier B.V.
Golbang, N; Burnie, J P; Matthews, R C
1999-01-01
AIM: To develop a polymerase chain reaction enzyme immunoassay (PCR-EIA) to measure levels of circulating aspergillus DNA in invasive aspergillosis caused by Aspergillus fumigatus. METHODS: The PCR reaction was based on primers from the 18s rRNA gene. Binding of the product to a streptavidin coated microtitration plate was mediated by a biotinylated capture probe. The product was digoxigenylated during PCR and this was the tag to which antibody was bound in the subsequent EIA. RESULTS: The optical density (OD) endpoint was < 0.1 in 10 sera from neutropenic patients with no evidence of invasive aspergillosis, and in 10 sera from nonneutropenic patients with bacterial pneumonia (group 1). The OD from five of 12 patients with allergic bronchopulmonary aspergillosis (ABPA) (group 2), three with an aspergilloma (group 3), and five with possible invasive aspergillosis (group 4) was > or = 0.1. In 63 sera from 33 cases of proven invasive aspergillosis (group 5) an OD > or = 0.1 was achieved in 48 sera from 30 patients. The maximum OD was 0.510. The level fell in survivors and gradually rose in fatal cases. CONCLUSIONS: This assay validated the concept of diagnosing invasive aspergillosis by measuring levels of circulating fungal DNA in serum. PMID:10562808
Kutyavin, Igor V.
2013-01-01
Described in the article is a new approach for the sequence-specific detection of nucleic acids in real-time polymerase chain reaction (PCR) using fluorescently labeled oligonucleotide probes. The method is based on the production of PCR amplicons, which fold into dumbbell-like secondary structures carrying a specially designed ‘probe-luring’ sequence at their 5′ ends. Hybridization of this sequence to a complementary ‘anchoring’ tail introduced at the 3′ end of a fluorescent probe enables the probe to bind to its target during PCR, and the subsequent probe cleavage results in the florescence signal. As it has been shown in the study, this amplicon-endorsed and guided formation of the probe-target duplex allows the use of extremely short oligonucleotide probes, up to tetranucleotides in length. In particular, the short length of the fluorescent probes makes possible the development of a ‘universal’ probe inventory that is relatively small in size but represents all possible sequence variations. The unparalleled cost-effectiveness of the inventory approach is discussed. Despite the short length of the probes, this new method, named Angler real-time PCR, remains highly sequence specific, and the results of the study indicate that it can be effectively used for quantitative PCR and the detection of polymorphic variations. PMID:24013564
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David
Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.
Giovannitti, Alexander; Maria, Iuliana P; Hanifi, David; Donahue, Mary J; Bryant, Daniel; Barth, Katrina J; Makdah, Beatrice E; Savva, Achilleas; Moia, Davide; Zetek, Matyáš; Barnes, Piers R F; Reid, Obadiah G; Inal, Sahika; Rumbles, Garry; Malliaras, George G; Nelson, Jenny; Rivnay, Jonathan; McCulloch, Iain
2018-05-08
We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.
The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes
Giovannitti, Alexander; Maria, Iuliana P.; Hanifi, David; ...
2018-04-24
Here, we report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performancemore » in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains.« less
Measurement of peroxy radicals in the urban atmosphere by PERCA-LIF technique
NASA Astrophysics Data System (ADS)
Sadanaga, Y.; Matsumoto, J.; Sakurai, K.; Kato, S.; Nomaguchi, T.; Bandow, H.; Kajii, Y.
2002-12-01
A new instrument has been developed for measuring peroxy radicals (RO2) using the Chemical Amplifier-Laser Induced Fluorescence (PERCA-LIF) technique. RO2 was converted to NO2 via a chain reaction by the addition of NO and CO in a 1/4" Teflon tube. NO2 was detected by LIF using Nd:YAG laser (532 nm, 5W at 10kHz). More selective detection of NO2 is enabled by the LIF than by luminol chemiluminescence because of free from the interference by other oxidants when using luminol. LIF technique can be more sensitive detection of NO2 than the luminol detector. Optimum conditions were investigated by varying reaction time (i.e. the length of reaction tube) and the concentrations of NO and CO. Maximum chain length of approximately 300 was obtained in dry conditions using a H2O/O2 simultaneous photolysis method. Experiments were performed to characterize the dependence of the chain length on humidity for this instrument. In August 2002, RO2 measurements were performed in Osaka using this method. Maximum concentrations of RO2 in the daytime were approximately 100 pptv. Nighttime observations were also conducted and significant concentrations of RO2 were detected just after the sunset. Existence of formation processes in the dark condition was investigated.
Cybulski, Zefiryn; Schmidt, Katarzyna; Grabiec, Alicja; Talaga, Zofia; Bociąg, Piotr; Wojciechowicz, Jacek; Roszak, Andrzej; Kycler, Witold
2013-01-01
Background The objective of this study was: i) to compare the results of urine culture with polymerase chain reaction (PCR) -based detection of microorganisms using two commercially available kits, ii) to assess antimicrobial susceptibility of urine isolates from cancer patients to chosen antimicrobial drugs and, if necessary, to update the recommendation of empirical therapy. Materials and methods. A one-year hospital-based prospective study has been conducted in Greater Poland Cancer Centre and Genetic Medicine Laboratory CBDNA Research Centre in 2011. Urine cultures and urine PCR assay from 72 patients were examined Results Urine cultures and urine PCR assay from 72 patients were examined. Urine samples were positive for 128 strains from which 95 (74%) were identical in both tests. The most frequently isolated bacteria in both culture and PCR assay were coliform organisms and Enterococcus spp. The Gram negative bacilli were most resistant to cotrimoxazol. 77.2% of these bacilli and 100% of E. faecalis and S. agalactiae were sensitive to amoxicillin-clavulanic acid. 4.7% of Gram positive cocci were resistant to nitrofurantoin. Conclusions The PCR method quickly finds the causative agent of urinary tract infection (UTI) and, therefore, it can help with making the choice of the proper antimicrobial therapy at an early stage. It appears to be a viable alternative to the recommendations made in general treatment guidelines, in cases where diversified sensitivity patterns of microorganisms have been found. PMID:24133395
Wang, Hye-Young; Ahn, Sungwoo; Park, Sunyoung; Kim, SeungIl; Lee, Hyeyoung
2017-01-01
Currently, the two main methods used to analyze human epidermal growth factor receptor 2 (HER2) amplification or overexpression have a limited accuracy and high costs. These limitations can be overcome by the development of complementary quantitative methods. In this study, we analyzed HER2 mRNA expression in clinical formalin-fixed and paraffin-embedded (FFPE) samples using a one-tube nested reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay. We measured expression relative to 3 reference genes and compared the results to those obtained by conventional immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays with 226 FFPE breast cancer tissue samples. The one-tube nested RT-qPCR assay proved to be highly sensitive and specific based on comparisons with IHC (96.9 and 97.7%, respectively) and FISH (92.4 and 92.9%, respectively) obtained with the validation set. Comparisons with clinicopathological data revealed significant associations between HER2 overexpression and TNM stage (p < 0.01), histological type (p < 0.01), ER status (p < 0.001), PR status (p < 0.05), HER2 status (p < 0.001), and molecular subtypes (p < 0.001). Based on these findings, our one-tube nested RT-qPCR assay is a potentially useful and complementary screening tool for the detection of HER2 mRNA overexpression. © 2016 S. Karger AG, Basel.
Evolution of microbiological analytical methods for dairy industry needs
Sohier, Danièle; Pavan, Sonia; Riou, Armelle; Combrisson, Jérôme; Postollec, Florence
2014-01-01
Traditionally, culture-based methods have been used to enumerate microbial populations in dairy products. Recent developments in molecular methods now enable faster and more sensitive analyses than classical microbiology procedures. These molecular tools allow a detailed characterization of cell physiological states and bacterial fitness and thus, offer new perspectives to integration of microbial physiology monitoring to improve industrial processes. This review summarizes the methods described to enumerate and characterize physiological states of technological microbiota in dairy products, and discusses the current deficiencies in relation to the industry’s needs. Recent studies show that Polymerase chain reaction-based methods can successfully be applied to quantify fermenting microbes and probiotics in dairy products. Flow cytometry and omics technologies also show interesting analytical potentialities. However, they still suffer from a lack of validation and standardization for quality control analyses, as reflected by the absence of performance studies and official international standards. PMID:24570675
Evolution of microbiological analytical methods for dairy industry needs.
Sohier, Danièle; Pavan, Sonia; Riou, Armelle; Combrisson, Jérôme; Postollec, Florence
2014-01-01
Traditionally, culture-based methods have been used to enumerate microbial populations in dairy products. Recent developments in molecular methods now enable faster and more sensitive analyses than classical microbiology procedures. These molecular tools allow a detailed characterization of cell physiological states and bacterial fitness and thus, offer new perspectives to integration of microbial physiology monitoring to improve industrial processes. This review summarizes the methods described to enumerate and characterize physiological states of technological microbiota in dairy products, and discusses the current deficiencies in relation to the industry's needs. Recent studies show that Polymerase chain reaction-based methods can successfully be applied to quantify fermenting microbes and probiotics in dairy products. Flow cytometry and omics technologies also show interesting analytical potentialities. However, they still suffer from a lack of validation and standardization for quality control analyses, as reflected by the absence of performance studies and official international standards.
Mohammadi, Samira; Esfahani, Bahram Nasr; Moghim, Sharareh; Mirhendi, Hossein; Zaniani, Fatemeh Riyahi; Safaei, Hajieh Ghasemian; Fazeli, Hossein; Salehi, Mahshid
2017-01-01
Nontuberculous mycobacteria (NTM) are a group of opportunistic pathogens and these are widely dispersed in water and soil resources. Identification of mycobacteria isolates by conventional methods including biochemical tests, growth rates, colony pigmentation, and presence of acid-fast bacilli is widely used, but these methods are time-consuming, labor-intensive, and may sometimes remain inconclusive. The DNA was extracted from NTM cultures using CTAB, Chelex, Chelex + Nonidet P-40, FTA ® Elute card, and boiling The quantity and quality of the DNA extracted via these methods were determined using UV-photometer at 260 and 280 nm, and polymerase chain reaction (PCR) amplification of the heat-shock protein 65 gene with serially diluted DNA samples. The CTAB method showed more positive results at 1:10-1:100,000 at which the DNA amount was substantial. With the Chelex method of DNA extraction, PCR amplification was detected at 1:10 and 1:1000 dilutions. According to the electrophoresis results, the CTAB and Chelex DNA extraction methods were more successful in comparison with the others as regard producing suitable concentrations of DNA with the minimum use of PCR inhibitor.
van Rijn, Piet A; Heutink, René G; Boonstra, Jan; Kramps, Hans A; van Gennip, René G P
2012-05-01
A real-time reverse transcription polymerase chain reaction assay (PCR test) based on genome segment 10 of Bluetongue virus (BTV) was developed. The PCR test consists of robotized viral RNA isolation from blood samples and an all-in-one method including initial denaturation of genomic double-stranded RNA, reverse transcription polymerase chain reaction (RT-PCR), and real-time detection and analysis. Reference strains of the 24 recognized BTV serotypes, isolates from different years, and geographic origins were detected. Other orbiviruses such as African horse sickness virus, Epizootic hemorrhagic disease virus, and Equine encephalosis virus were not detected. Experimentally infected animals were PCR positive from 2 days postinoculation, which was earlier than fever, other clinical signs, or seroconversion. The diagnostic sensitivity and specificity were very close to or even 100%. The PCR test played a key role in the detection of BTV serotype 8 in August 2006 in The Netherlands. The outbreak in a completely naive ruminant population allowed for further evaluation of the PCR test with field samples. In 2006, the correlation between enzyme-linked immunosorbent assay and PCR results was estimated to be 95%. In the following years, the PCR test was used for diagnosis of diseased animals, for testing of healthy animals for trade purposes, and for detection of BTV RNA in different species of the insect vector, Culicoides. In the autumn of 2008, BTV serotype 6 unexpectedly emerged in northwest Europe and was also detected with the PCR test developed in the current study. The performance in routine use over 5 years has been recorded and evaluated.
Solving traveling salesman problems with DNA molecules encoding numerical values.
Lee, Ji Youn; Shin, Soo-Yong; Park, Tai Hyun; Zhang, Byoung-Tak
2004-12-01
We introduce a DNA encoding method to represent numerical values and a biased molecular algorithm based on the thermodynamic properties of DNA. DNA strands are designed to encode real values by variation of their melting temperatures. The thermodynamic properties of DNA are used for effective local search of optimal solutions using biochemical techniques, such as denaturation temperature gradient polymerase chain reaction and temperature gradient gel electrophoresis. The proposed method was successfully applied to the traveling salesman problem, an instance of optimization problems on weighted graphs. This work extends the capability of DNA computing to solving numerical optimization problems, which is contrasted with other DNA computing methods focusing on logical problem solving.
Le, Nguyen-Quoc-Khanh; Ou, Yu-Yen
2016-07-30
Cellular respiration is a catabolic pathway for producing adenosine triphosphate (ATP) and is the most efficient process through which cells harvest energy from consumed food. When cells undergo cellular respiration, they require a pathway to keep and transfer electrons (i.e., the electron transport chain). Due to oxidation-reduction reactions, the electron transport chain produces a transmembrane proton electrochemical gradient. In case protons flow back through this membrane, this mechanical energy is converted into chemical energy by ATP synthase. The convert process is involved in producing ATP which provides energy in a lot of cellular processes. In the electron transport chain process, flavin adenine dinucleotide (FAD) is one of the most vital molecules for carrying and transferring electrons. Therefore, predicting FAD binding sites in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. We used an independent data set to evaluate the performance of the proposed method, which had an accuracy of 69.84 %. We compared the performance of the proposed method in analyzing two newly discovered electron transport protein sequences with that of the general FAD binding predictor presented by Mishra and Raghava and determined that the accuracy of the proposed method improved by 9-45 % and its Matthew's correlation coefficient was 0.14-0.5. Furthermore, the proposed method enabled reducing the number of false positives significantly and can provide useful information for biologists. We developed a method that is based on PSSM profiles and SAAPs for identifying FAD binding sites in newly discovered electron transport protein sequences. This approach achieved a significant improvement after we added SAAPs to PSSM features to analyze FAD binding proteins in the electron transport chain. The proposed method can serve as an effective tool for predicting FAD binding sites in electron transport proteins and can help biologists understand the functions of the electron transport chain, particularly those of FAD binding sites. We also developed a web server which identifies FAD binding sites in electron transporters available for academics.
NASA Astrophysics Data System (ADS)
Flores, Joel Diez
2011-12-01
The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/"living" free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by controlled polymerization techniques and the facile incorporation of functionalities along the chain via click-type reactions have yielded complex architectures, allowing the investigation of physical phenomena which otherwise could not be studied with systems prepared via conventional methods. The overarching theme of the research work described in this dissertation is the fusion of the excellent attributes of reversible addition-fragmentation chain transfer (RAFT) polymerization method, which is one of the CRP techniques, and click-type chemical reactions in the precision of synthesis of advanced functional materials. Chapter IV is divided into three sections. In Section I, the direct RAFT homopolymerization of 2-(acryloyloxy)ethyl isocyanate (AOI) and subsequent post-polymerization modifications are described. The polymerization conditions were optimized in terms of the choice of RAFT chain transfer agent (CTA), polymerization temperature and the reaction medium. Direct RAFT polymerization of AOI requires a neutral CTA, and relatively low reaction temperature to yield AOI homopolymers with low polydispersities. Efficient side-chain functionalization of PAOI homopolymers was achieved via reaction with model amine, thiol and alcohol compounds yielding urea, thiourethane and urethane derivatives, respectively. Reactions with amines and thiols (in the presence of base) were rapid, quantitative and efficient. However, the reaction with alcohols catalyzed by dibutyltin dilaurate (DBTDL) was relatively slow but proceeded to completion. Selective reaction pathways for the addition of difunctional ethanolamine and mercaptoethanol were also investigated. A related strategy is described in Section II wherein a hydroxyl-containing diblock copolymer precursor was transformed into a library of functional copolymers via two sequential post-polymerization modification reactions. A diblock copolymer scaffold, poly[(N,N-dimethylacrylamide)-b-( N-(2-hydroxyethyl)acrylamide] (PDMA-b-PHEA) was first prepared. The hydroxyl groups of the HEA block were then reacted with 2-(acryloyloxy)ethylisocyanate (AOI) and allylisocyanate (AI) resulting in acrylate- and allyl-functionalized copolymer precursors, respectively. The efficiencies of Michael-type and free radical thiol addition reactions were investigated using selected thiols having alkyl, aryl, hydroxyl, carboxylic acid, amine and amino acid functionalities. The steps of RAFT polymerization, isocyanate-hydroxyl coupling and thiol-ene addition are accomplished under mild conditions, thus offering facile and modular routes to synthesize functional copolymers. The synthesis and solution studies of pH- and salt-responsive triblock copolymer are described in Section III. This system is capable of forming self-locked micellar structures which may be controlled by changing solution pH as well as ionic strength. A triblock copolymer containing a permanently hydrophilic poly(N,N-dimethylacrylamide) (PDMA) outer block, a salt-sensitive zwitterionic poly(3[2-(N-methylacrylamido)ethyl dimethylammonio]propanesulfonate) (PMAEDAPS) middle block and a pH-responsive 3-acrylamido-3-methylbutanoic acid (PAMBA) core block was synthesized using aqueous RAFT polymerization. A facile formation of "self-locking" shell cross-linked micelles is achieved by changing solution pH and salt concentration. The reversible "self-locking" is attained from the interactions of zwitterionic groups in the middle block that constitutes the shell of the micelles. The structure slowly dissociates into unimers in 2-3 days at pH above the pKa of the PAMBA block.
Eboigbodin, Kevin; Filén, Sanna; Ojalehto, Tuomas; Brummer, Mirko; Elf, Sonja; Pousi, Kirsi; Hoser, Mark
2016-06-01
Rapid and accurate diagnosis of influenza viruses plays an important role in infection control, as well as in preventing the misuse of antibiotics. Isothermal nucleic acid amplification methods offer significant advantages over the polymerase chain reaction (PCR), since they are more rapid and do not require the sophisticated instruments needed for thermal cycling. We previously described a novel isothermal nucleic acid amplification method, 'Strand Invasion Based Amplification' (SIBA®), with high analytical sensitivity and specificity, for the detection of DNA. In this study, we describe the development of a variant of the SIBA method, namely, reverse transcription SIBA (RT-SIBA), for the rapid detection of viral RNA targets. The RT-SIBA method includes a reverse transcriptase enzyme that allows one-step reverse transcription of RNA to complementary DNA (cDNA) and simultaneous amplification and detection of the cDNA by SIBA under isothermal reaction conditions. The RT-SIBA method was found to be more sensitive than PCR for the detection of influenza A and B and could detect 100 copies of influenza RNA within 15 min. The development of RT-SIBA will enable rapid and accurate diagnosis of viral RNA targets within point-of-care or central laboratory settings.
Xu, Yao; Zheng, Zhi
2016-05-15
We have developed a convenient, robust and low-cost RNA detection system suitable for high-throughput applications. This system uses a highly specific sandwich hybridization to capture target RNA directly onto solid support, followed by on-site signal amplification via 2-dimensional, branched hybridizing chain polymerization through toehold-mediated strand displacement reaction. The assay uses SYBR Green to detect targets at concentrations as low as 1 pM, without involving nucleic acid purification or any enzymatic reaction, using ordinary oligonucleotides without modification or labeling. The system was demonstrated in the detection of malaria RNA in blood and GAPDH gene expression in cell lysate. Copyright © 2015 Elsevier B.V. All rights reserved.
Computational study on UV curing characteristics in nanoimprint lithography: Stochastic simulation
NASA Astrophysics Data System (ADS)
Koyama, Masanori; Shirai, Masamitsu; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki
2017-06-01
A computational simulation model of UV curing in nanoimprint lithography based on a simplified stochastic approach is proposed. The activated unit reacts with a randomly selected monomer within a critical reaction radius. Cluster units are chained to each other. Then, another monomer is activated and the next chain reaction occurs. This process is repeated until a virgin monomer disappears within the reaction radius or until the activated monomers react with each other. The simulation model well describes the basic UV curing characteristics, such as the molecular weight distributions of the reacted monomers and the effect of the initiator concentration on the conversion ratio. The effects of film thickness on UV curing characteristics are also studied by the simulation.
NASA Astrophysics Data System (ADS)
Drukker, Karen; Hammes-Schiffer, Sharon
1997-07-01
This paper presents an analytical derivation of a multiconfigurational self-consistent-field (MC-SCF) solution of the time-independent Schrödinger equation for nuclear motion (i.e. vibrational modes). This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum mechanically while the remaining degrees of freedom are treated classically. This paper presents a proof that the Hellmann-Feynman forces on the classical degrees of freedom are identical to the exact forces (i.e. the Pulay corrections vanish) when this MC-SCF method is used with an appropriate choice of basis functions. This new MC-SCF method is applied to multiple proton transfer in a protonated chain of three hydrogen-bonded water molecules. The ground state and the first three excited state energies and the ground state forces agree well with full configuration interaction calculations. Sample trajectories are obtained using adiabatic molecular dynamics methods, and nonadiabatic effects are found to be insignificant for these sample trajectories. The accuracy of the excited states will enable this MC-SCF method to be used in conjunction with nonadiabatic molecular dynamics methods. This application differs from previous work in that it is a real-time quantum dynamical nonequilibrium simulation of multiple proton transfer in a chain of water molecules.
Pavlov, K A; Shkoporov, A N; Khokhlova, E V; Korchagina, A A; Sidorenkov, A V; Grigor'ev, M É; Pushkar', D Iu; Chekhonin, V P
2013-01-01
The wide introduction of prostatic specific antigen (PSA) determination into clinical practice has resulted in a larger number of prostate biopsies, while the lower age threshold for PSA has led to a larger number of unnecessary prostate biopsies. Hence, there is a need for new biomarkers that can detect prostate cancer. PCA3 is a noncoding messenger ribonucleic acid (mRNA) that is expressed exclusively in prostate cells. The aim of the study has been to develop a diagnostic test system for early non-invasive detection of prostate cancer based on PCA3 mRNA levels in urine sediment using quantitative reverse transcription polymerase chain reaction (qRT-PCR). As part of the study, a laboratory diagnostic test system prototype has been designed, an application methodology has been developed and specificity and sensitivity data of the method has been assessed. The diagnostic system has demonstrated its ability to detect significantly elevated levels of PCA 3/KLK 3 in samples from prostate cancer (PCa) patients compared with those from healthy men. The findings have shown relatively high diagnostic sensitivity, specificity and negative-predictive values for an early non-invasive screening of prostate cancer
Bi, Sai; Zhang, Zhipeng; Dong, Ying; Wang, Zonghua
2015-03-15
A novel ligation chain reaction (LCR) methodology for single-nucleotide polymorphism (SNP) detection was developed based on luminol-H2O2-horseradish peroxidase (HRP)-mimicking DNAzyme-fluorescein chemiluminescence resonance energy transfer (CRET) imaging on magnetic particles. For LCR, four unique target-complement probes (X and X(⁎), YG and Y(⁎)) for the amplification of K-ras (G12C) were designed by modifying G-quadruplex sequence at 3'-end of YG and fluorescein at 5'-end of Y(⁎). After the LCR, the resulting products of XYG/X(⁎)Y(⁎) with biotin-labeled X(⁎) were captured onto streptavidin-coated magnetic particles (SA-MPs) via specific biotin-SA interaction, which stimulated the CRET reaction from hemin/G-quadruplex-catalyzed luminol-H2O2 CL system to fluorescein. By collecting signals by a cooled low-light CCD, a CRET imaging method was proposed for visual detection and quantitative analysis of SNP. As low as 0.86fM mutant DNA was detected by this assay, and positive mutation detection was achieved with a wild-type to mutant ratio of 10,000:1. This high sensitivity and specificity could be attributed to not only the exponential amplification and excellent discrimination of LCR but also the employment of SA-MPs. SA-MPs ensured the feasibility of the proposed strategy, which also simplified the operations through magnetic separation and separated the reaction and detection procedures to improve sensitivity. The proposed LCR-CRET imaging strategy extends the application of signal amplification techniques to SNP detection, providing a promising platform for effective and high-throughput genetic diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.
Khruschev, S S; Abaturova, A M; Diakonova, A N; Fedorov, V A; Ustinin, D M; Kovalenko, I B; Riznichenko, G Yu; Rubin, A B
2015-01-01
The application of Brownian dynamics for simulation of transient protein-protein interactions is reviewed. The review focuses on theoretical basics of Brownian dynamics method, its particular implementations, advantages and drawbacks of the method. The outlook for future development of Brownian dynamics-based simulation techniques is discussed. Special attention is given to analysis of Brownian dynamics trajectories. The second part of the review is dedicated to the role of Brownian dynamics simulations in studying photosynthetic electron transport. Interactions of mobile electron carriers (plastocyanin, cytochrome c6, and ferredoxin) with their reaction partners (cytochrome b6f complex, photosystem I, ferredoxin:NADP-reductase, and hydrogenase) are considered.
Recombination of polynucleotide sequences using random or defined primers
Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin H; Giver, Lorraine J.
2000-01-01
A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.
Arnold, Frances H.; Shao, Zhixin; Zhao, Huimin; Giver, Lorraine J.
2002-01-01
A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.
Recombination of polynucleotide sequences using random or defined primers
Arnold, Frances H.; Shao, Zhixin; Affholter, Joseph A.; Zhao, Huimin; Giver, Lorraine J.
2001-01-01
A method for in vitro mutagenesis and recombination of polynucleotide sequences based on polymerase-catalyzed extension of primer oligonucleotides is disclosed. The method involves priming template polynucleotide(s) with random-sequences or defined-sequence primers to generate a pool of short DNA fragments with a low level of point mutations. The DNA fragments are subjected to denaturization followed by annealing and further enzyme-catalyzed DNA polymerization. This procedure is repeated a sufficient number of times to produce full-length genes which comprise mutants of the original template polynucleotides. These genes can be further amplified by the polymerase chain reaction and cloned into a vector for expression of the encoded proteins.
Polymerization as a Model Chain Reaction
ERIC Educational Resources Information Center
Morton, Maurice
1973-01-01
Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)
Molecular implementation of molecular shift register memories
NASA Technical Reports Server (NTRS)
Beratan, David N. (Inventor); Onuchic, Jose N. (Inventor)
1991-01-01
An electronic shift register memory (20) at the molecular level is described. The memory elements are based on a chain of electron transfer molecules (22) and the information is shifted by photoinduced (26) electron transfer reactions. Thus, multi-step sequences of charge transfer reactions are used to move charge with high efficiency down a molecular chain. The device integrates compositions of the invention onto a VLSI substrate (36), providing an example of a molecular electronic device which may be fabricated. Three energy level schemes, molecular implementation of these schemes, optical excitation strategies, charge amplification strategies, and error correction strategies are described.
COLD-PCR Technologies in the Area of Personalized Medicine: Methodology and Applications.
Mauger, Florence; How-Kit, Alexandre; Tost, Jörg
2017-06-01
Somatic mutations bear great promise for use as biomarkers for personalized medicine, but are often present only in low abundance in biological material and are therefore difficult to detect. Many assays for mutation analysis in cancer-related genes (hotspots) have been developed to improve diagnosis, prognosis, prediction of drug resistance, and monitoring of the response to treatment. Two major approaches have been developed: mutation-specific amplification methods and methods that enrich and detect mutations without prior knowledge on the exact location and identity of the mutation. CO-amplification at Lower Denaturation temperature Polymerase Chain Reaction (COLD-PCR) methods such as full-, fast-, ice- (improved and complete enrichment), enhanced-ice, and temperature-tolerant COLD-PCR make use of a critical temperature in the polymerase chain reaction to selectively denature wild-type-mutant heteroduplexes, allowing the enrichment of rare mutations. Mutations can subsequently be identified using a variety of laboratory technologies such as high-resolution melting, digital polymerase chain reaction, pyrosequencing, Sanger sequencing, or next-generation sequencing. COLD-PCR methods are sensitive, specific, and accurate if appropriately optimized and have a short time to results. A large variety of clinical samples (tumor DNA, circulating cell-free DNA, circulating cell-free fetal DNA, and circulating tumor cells) have been studied using COLD-PCR in many different applications including the detection of genetic changes in cancer and infectious diseases, non-invasive prenatal diagnosis, detection of microorganisms, or DNA methylation analysis. In this review, we describe in detail the different COLD-PCR approaches, highlighting their specificities, advantages, and inconveniences and demonstrating their use in different fields of biological and biomedical research.
DOE R&D Accomplishments Database
Weinberg, Alvin M.; Noderer, L. C.
1951-05-15
The large scale release of nuclear energy in a uranium fission chain reaction involves two essentially distinct physical phenomena. On the one hand there are the individual nuclear processes such as fission, neutron capture, and neutron scattering. These are essentially quantum mechanical in character, and their theory is non-classical. On the other hand, there is the process of diffusion -- in particular, diffusion of neutrons, which is of fundamental importance in a nuclear chain reaction. This process is classical; insofar as the theory of the nuclear chain reaction depends on the theory of neutron diffusion, the mathematical study of chain reactions is an application of classical, not quantum mechanical, techniques.
Biggar, Kyle K; Wu, Cheng-Wei; Storey, Kenneth B
2014-10-01
This study makes a significant advancement on a microRNA amplification technique previously used for expression analysis and sequencing in animal models without annotated mature microRNA sequences. As research progresses into the post-genomic era of microRNA prediction and analysis, the need for a rapid and cost-effective method for microRNA amplification is critical to facilitate wide-scale analysis of microRNA expression. To facilitate this requirement, we have reoptimized the design of amplification primers and introduced a polyadenylation step to allow amplification of all mature microRNAs from a single RNA sample. Importantly, this method retains the ability to sequence reverse transcription polymerase chain reaction (RT-PCR) products, validating microRNA-specific amplification. Copyright © 2014 Elsevier Inc. All rights reserved.
Hoef, A M; Kok, E J; Bouw, E; Kuiper, H A; Keijer, J
1998-10-01
A method has been developed to distinguish between traditional soy beans and transgenic Roundup Ready soy beans, i.e. the glyphosate ('Roundup') resistant soy bean variety developed by Monsanto Company. Glyphosate resistance results from the incorporation of an Agrobacterium-derived 5-enol-pyruvyl-shikimate-3-phosphatesynthase (EPSPS) gene. The detection method developed is based on a nested Polymerase Chain Reaction (PCR) procedure. Ten femtograms of soy bean DNA can be detected, while, starting from whole soy beans, Roundup Ready DNA can be detected at a level of 1 Roundup Ready soy bean in 5000 non-GM soy beans (0.02% Roundup Ready soy bean). The method has been applied to samples of soy bean, soy-meal pellets and soy bean flour, as well as a number of processed complex products such as infant formula based on soy, tofu, tempeh, soy-based desserts, bakery products and complex meat and meat-replacing products. The results obtained are discussed with respect to practical application of the detection method developed.
Law, Jodi Woan-Fei; Ab Mutalib, Nurul-Syakima; Chan, Kok-Gan; Lee, Learn-Han
2015-01-01
The incidence of foodborne diseases has increased over the years and resulted in major public health problem globally. Foodborne pathogens can be found in various foods and it is important to detect foodborne pathogens to provide safe food supply and to prevent foodborne diseases. The conventional methods used to detect foodborne pathogen are time consuming and laborious. Hence, a variety of methods have been developed for rapid detection of foodborne pathogens as it is required in many food analyses. Rapid detection methods can be categorized into nucleic acid-based, biosensor-based and immunological-based methods. This review emphasizes on the principles and application of recent rapid methods for the detection of foodborne bacterial pathogens. Detection methods included are simple polymerase chain reaction (PCR), multiplex PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), loop-mediated isothermal amplification (LAMP) and oligonucleotide DNA microarray which classified as nucleic acid-based methods; optical, electrochemical and mass-based biosensors which classified as biosensor-based methods; enzyme-linked immunosorbent assay (ELISA) and lateral flow immunoassay which classified as immunological-based methods. In general, rapid detection methods are generally time-efficient, sensitive, specific and labor-saving. The developments of rapid detection methods are vital in prevention and treatment of foodborne diseases. PMID:25628612
Design and analysis of linear cascade DNA hybridization chain reactions using DNA hairpins
NASA Astrophysics Data System (ADS)
Bui, Hieu; Garg, Sudhanshu; Miao, Vincent; Song, Tianqi; Mokhtar, Reem; Reif, John
2017-01-01
DNA self-assembly has been employed non-conventionally to construct nanoscale structures and dynamic nanoscale machines. The technique of hybridization chain reactions by triggered self-assembly has been shown to form various interesting nanoscale structures ranging from simple linear DNA oligomers to dendritic DNA structures. Inspired by earlier triggered self-assembly works, we present a system for controlled self-assembly of linear cascade DNA hybridization chain reactions using nine distinct DNA hairpins. NUPACK is employed to assist in designing DNA sequences and Matlab has been used to simulate DNA hairpin interactions. Gel electrophoresis and ensemble fluorescence reaction kinetics data indicate strong evidence of linear cascade DNA hybridization chain reactions. The half-time completion of the proposed linear cascade reactions indicates a linear dependency on the number of hairpins.
NASA Astrophysics Data System (ADS)
Koteswararao, B.; Hazra, Binoy K.; Rout, Dibyata; Srinivasarao, P. V.; Srinath, S.; Panda, S. K.
2017-07-01
We have studied the structural and magnetic properties and electronic structure of the compound InCuPO5 synthesized by a solid state reaction method. The structure of InCuPO5 comprises S = ½ uniform spin chains formed by corner-shared CuO4 units. Magnetic susceptibility (χ(T)) data show a broad maximum at about 65 K, a characteristic feature of one-dimensional (1D) magnetism. The χ(T) data are fitted to the coupled S = ½ Heisenberg antiferromagnetic (HAFM) uniform chain model that gives the intra-chain coupling (J/k B) between nearest-neighbor Cu2+ ions as -100 K and the ratio of inter-chain to intra-chain coupling (J‧/J) as about 0.07. The exchange couplings estimated from the magnetic data analysis are in good agreement with the values computed from the electronic structure calculations based on the density functional theory + Hubbard U (DFT + U) approach. The combination of theoretical and experimental analysis confirms that InCuPO5 is a candidate material for weakly coupled S = ½ uniform chains. A detailed theoretical analysis of the electronic structure further reveals that the system is insulating with a gap of 2.4 eV and a local moment of 0.70 µ B/Cu.
A RAPID DNA EXTRACTION METHOD FOR PCR IDENTIFICATION OF FUNGAL INDOOR AIR CONTAMINANTS
Following air sampling, fungal DNA needs to be extracted and purified to a state suitable for laboratory use. Our laboratory has developed a simple method of extraction and purification of fungal DNA appropriate for enzymatic manipulation and polymerase chain reaction (PCR) appli...
DEVELOPMENT OF A MOLECULAR METHOD TO IDENTIFY HEPATITIS E VIRUS IN WATER
Hepatitis E virus (HEV) causes an infectious form of hepatitis associated with contaminated water. By analyzing the sequence of several HEV isolates, a reverse transciption-polymerase chain reaction method was developed and optimized that should be able to identify all of the kn...
SuFEx-Based Polysulfonate Formation from Ethenesulfonyl Fluoride-Amine Adducts
Wang, Hua; Zhou, Feng; Ren, Gerui; ...
2017-05-18
In this article, the SuFEx-based polycondensation between bisalkylsulfonyl fluorides (AA monomers) and bisphenol bis(t-butyldimethylsilyl) ethers (BB monomers) using [Ph 3P=N-PPh 3] +[HF 2] - as the catalyst is described. The AA monomers were prepared via the highly reliable Michael addition of ethenesulfonyl fluoride and amines/anilines while the BB monomers were obtained from silylation of bisphenols by t-butyldimethylsilyl chloride. With these reactions, a remarkable diversity of monomeric building blocks was achieved by exploiting readily available amines, anilines, and bisphenols as starting materials. The SuFEx-based polysulfonate formation reaction exhibited excellent efficiency and functional group tolerance, producing polysulfonates with a variety of sidemore » chain functionalities in >99 % conversion within 10 min to 1 h. When bearing an orthogonal group on the side chain, the polysulfonates can be further functionalized via click-chemistry-based post-polymerization modification.« less
Low-power microwave-mediated heating for microchip-based PCR.
Marchiarullo, Daniel J; Sklavounos, Angelique H; Oh, Kyudam; Poe, Brian L; Barker, N Scott; Landers, James P
2013-09-07
Microwave energy has been used to rapidly heat food and drinks for decades, in addition to assisting other chemical reactions. However, only recently has microwave energy been applied in microfluidic systems to heat solution in reaction chambers, in particular, the polymerase chain reaction (PCR). One of the difficulties in developing microwave-mediated heating on a microchip is the construction of the appropriate architecture for delivery of the energy to specific micro-areas on the microchip. This work employs commercially-available microwave components commonly used in the wireless communications industry to generate a microwave signal, and a microstrip transmission line to deliver the energy to a 1 μL reaction chamber fabricated in plastic microdevices. A model was developed to create transmission lines that would optimally transmit energy to the reaction chamber at a given frequency, minimizing energy usage while focusing microwave delivery to the target chamber. Two different temperature control methods were demonstrated, varying microwave power or frequency. This system was used to amplify a fragment of the lambda-phage genome, thereby demonstrating its potential for integration into a portable PCR system.
Keil, Harry; Wasserman, David; Dawson, Charles R.
1944-01-01
1. Additional evidence is presented in support of the view which postulates a close chemical and biologic relation between the active ingredients in poison ivy and Japan lac. 2. Biologic evidence, based on the use of the patch test in man, is presented in support of the view that the active ingredient in poison ivy is a catechol derivative with a long, unsaturated side-chain in the 3-position. 3. Of the catechol compounds and derivatives studied, group reactions in patients sensitive to poison ivy leaves or extract were exhibited by the following compounds: 3-pentadecyl catechol (100 per cent of 21 cases), 4-pentadecyl catechol (38 per cent of 21 cases), "urushiol" dimethyl ether (33 per cent of 33 cases), 3-pentadecenyl-1'-veratrole (21 per cent of 14 cases), 3-methyl catechol (14 per cent of 21 cases), and hydrourushiol dimethyl ether (10 per cent of 20 cases). It has been found that 3-geranyl catechol shows a practically constant group reactivity in persons sensitive to poison ivy. 4. The uniformly positive group reaction to 3-pentadecyl catechol is notable since this substance possesses a saturated side-chain, whereas the active ingredient in poison ivy is known to have an unsaturated side-chain. 5. The group reactivity was not restricted to the 3-position, for in some instances 4-pentadecyl catechol also gave group reactions which, however, were less intense and less frequent than those shown by 3-pentadecyl catechol. This indicates that in some cases a long side-chain in the 4 position may be effective in producing group specific reactions. 6. Only an occasional person showed sensitiveness to 3-methyl catechol (short side-chain), and in one instance the group reactivity appeared to be specific for the 3-position. 7. The position of the side-chain in the catechol configuration has some bearing on the degree and incidence of group reactions in persons hypersensitive to poison ivy. 8. Evidence is presented to indicate that the introduction of double bonds in the alkyl side-chain increases the incidence and intensity of group reactions. 9. Methylating the hydroxyl groups in the catechol configuration diminishes strongly the incidence of group reactivity but does not eliminate it entirely in persons hypersensitive to poison ivy. Thus, "urushiol" dimethyl ether (3-pentadecadienyl veratrole) gave group reactions in 33 per cent of 33 persons. 10. Methylating the hydroxyl groups as well as saturating the double bonds in the alkyl side-chain still further diminishes the group reactions but an occasional person hypersensitive to poison ivy may still show positive reaction to such a substance as 3-pentadecyl veratrole (hydrourushiol dimethyl ether). In this respect our results are not in full agreement with those recorded by Toyama who stated that hydrourushiol dimethyl ether is entirely harmless. 11. The significance of the group reactivity displayed by certain veratrole compounds is discussed, and several possible explanations of their behavior are advanced. 12. The group reactions discussed in this paper relate only to various catechol and veratrole compounds. Preliminary studies by us indicate that this sensitiveness extends to other phenolic derivatives. 13. Among the veratrole compounds showing positive reactions, the order of frequency and intensity was: (1) "urushiol" dimethyl ether (average of two double bonds); (2) S-pentadecenyl-1'-veratrole (one double bond); (3) hydrourushiol dimethyl ether (saturated side-chain). It may be noted that 4-pentadecyl veratrole was inactive. PMID:19871415
Keil, H; Wasserman, D; Dawson, C R
1944-10-01
1. Additional evidence is presented in support of the view which postulates a close chemical and biologic relation between the active ingredients in poison ivy and Japan lac. 2. Biologic evidence, based on the use of the patch test in man, is presented in support of the view that the active ingredient in poison ivy is a catechol derivative with a long, unsaturated side-chain in the 3-position. 3. Of the catechol compounds and derivatives studied, group reactions in patients sensitive to poison ivy leaves or extract were exhibited by the following compounds: 3-pentadecyl catechol (100 per cent of 21 cases), 4-pentadecyl catechol (38 per cent of 21 cases), "urushiol" dimethyl ether (33 per cent of 33 cases), 3-pentadecenyl-1'-veratrole (21 per cent of 14 cases), 3-methyl catechol (14 per cent of 21 cases), and hydrourushiol dimethyl ether (10 per cent of 20 cases). It has been found that 3-geranyl catechol shows a practically constant group reactivity in persons sensitive to poison ivy. 4. The uniformly positive group reaction to 3-pentadecyl catechol is notable since this substance possesses a saturated side-chain, whereas the active ingredient in poison ivy is known to have an unsaturated side-chain. 5. The group reactivity was not restricted to the 3-position, for in some instances 4-pentadecyl catechol also gave group reactions which, however, were less intense and less frequent than those shown by 3-pentadecyl catechol. This indicates that in some cases a long side-chain in the 4 position may be effective in producing group specific reactions. 6. Only an occasional person showed sensitiveness to 3-methyl catechol (short side-chain), and in one instance the group reactivity appeared to be specific for the 3-position. 7. The position of the side-chain in the catechol configuration has some bearing on the degree and incidence of group reactions in persons hypersensitive to poison ivy. 8. Evidence is presented to indicate that the introduction of double bonds in the alkyl side-chain increases the incidence and intensity of group reactions. 9. Methylating the hydroxyl groups in the catechol configuration diminishes strongly the incidence of group reactivity but does not eliminate it entirely in persons hypersensitive to poison ivy. Thus, "urushiol" dimethyl ether (3-pentadecadienyl veratrole) gave group reactions in 33 per cent of 33 persons. 10. Methylating the hydroxyl groups as well as saturating the double bonds in the alkyl side-chain still further diminishes the group reactions but an occasional person hypersensitive to poison ivy may still show positive reaction to such a substance as 3-pentadecyl veratrole (hydrourushiol dimethyl ether). In this respect our results are not in full agreement with those recorded by Toyama who stated that hydrourushiol dimethyl ether is entirely harmless. 11. The significance of the group reactivity displayed by certain veratrole compounds is discussed, and several possible explanations of their behavior are advanced. 12. The group reactions discussed in this paper relate only to various catechol and veratrole compounds. Preliminary studies by us indicate that this sensitiveness extends to other phenolic derivatives. 13. Among the veratrole compounds showing positive reactions, the order of frequency and intensity was: (1) "urushiol" dimethyl ether (average of two double bonds); (2) S-pentadecenyl-1'-veratrole (one double bond); (3) hydrourushiol dimethyl ether (saturated side-chain). It may be noted that 4-pentadecyl veratrole was inactive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hua; Zhou, Feng; Ren, Gerui
In this article, the SuFEx-based polycondensation between bisalkylsulfonyl fluorides (AA monomers) and bisphenol bis(t-butyldimethylsilyl) ethers (BB monomers) using [Ph 3P=N-PPh 3] +[HF 2] - as the catalyst is described. The AA monomers were prepared via the highly reliable Michael addition of ethenesulfonyl fluoride and amines/anilines while the BB monomers were obtained from silylation of bisphenols by t-butyldimethylsilyl chloride. With these reactions, a remarkable diversity of monomeric building blocks was achieved by exploiting readily available amines, anilines, and bisphenols as starting materials. The SuFEx-based polysulfonate formation reaction exhibited excellent efficiency and functional group tolerance, producing polysulfonates with a variety of sidemore » chain functionalities in >99 % conversion within 10 min to 1 h. When bearing an orthogonal group on the side chain, the polysulfonates can be further functionalized via click-chemistry-based post-polymerization modification.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... the real-time polymerase chain reaction test for Mycoplasma gallisepticum (MGLP ReTi). 147.31 Section... Examination Procedures § 147.31 Laboratory procedures recommended for the real-time polymerase chain reaction.... Following incubation, 100 µl of 100 percent ethanol is added to lysate. Wash and centrifuge following...
Code of Federal Regulations, 2013 CFR
2013-01-01
... the real-time polymerase chain reaction test for Mycoplasma gallisepticum (MGLP ReTi). 147.31 Section... Examination Procedures § 147.31 Laboratory procedures recommended for the real-time polymerase chain reaction.... Following incubation, 100 µl of 100 percent ethanol is added to lysate. Wash and centrifuge following...
Code of Federal Regulations, 2012 CFR
2012-01-01
... the real-time polymerase chain reaction test for Mycoplasma gallisepticum (MGLP ReTi). 147.31 Section... Examination Procedures § 147.31 Laboratory procedures recommended for the real-time polymerase chain reaction.... Following incubation, 100 µl of 100 percent ethanol is added to lysate. Wash and centrifuge following...
Emilio Segrè and Spontaneous Fission
fissioned instead. The discovery of fission led in turn to the discovery of the chain reaction that, if material apart before it had a chance to undergo an efficient chain reaction. The possibility of chain reaction. If a similar rate was found in plutonium, it might rule out the use of that element as
Inference of reaction rate parameters based on summary statistics from experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin
Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.« less
Inference of reaction rate parameters based on summary statistics from experiments
Khalil, Mohammad; Chowdhary, Kamaljit Singh; Safta, Cosmin; ...
2016-10-15
Here, we present the results of an application of Bayesian inference and maximum entropy methods for the estimation of the joint probability density for the Arrhenius rate para meters of the rate coefficient of the H 2/O 2-mechanism chain branching reaction H + O 2 → OH + O. Available published data is in the form of summary statistics in terms of nominal values and error bars of the rate coefficient of this reaction at a number of temperature values obtained from shock-tube experiments. Our approach relies on generating data, in this case OH concentration profiles, consistent with the givenmore » summary statistics, using Approximate Bayesian Computation methods and a Markov Chain Monte Carlo procedure. The approach permits the forward propagation of parametric uncertainty through the computational model in a manner that is consistent with the published statistics. A consensus joint posterior on the parameters is obtained by pooling the posterior parameter densities given each consistent data set. To expedite this process, we construct efficient surrogates for the OH concentration using a combination of Pad'e and polynomial approximants. These surrogate models adequately represent forward model observables and their dependence on input parameters and are computationally efficient to allow their use in the Bayesian inference procedure. We also utilize Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation resulting in orders of magnitude speedup in data likelihood evaluation. Despite the strong non-linearity in the model, the consistent data sets all res ult in nearly Gaussian conditional parameter probability density functions. The technique also accounts for nuisance parameters in the form of Arrhenius parameters of other rate coefficients with prescribed uncertainty. The resulting pooled parameter probability density function is propagated through stoichiometric hydrogen-air auto-ignition computations to illustrate the need to account for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions.« less
A multiple multicomponent approach to chimeric peptide-peptoid podands.
Rivera, Daniel G; León, Fredy; Concepción, Odette; Morales, Fidel E; Wessjohann, Ludger A
2013-05-10
The success of multi-armed, peptide-based receptors in supramolecular chemistry traditionally is not only based on the sequence but equally on an appropriate positioning of various peptidic chains to create a multivalent array of binding elements. As a faster, more versatile and alternative access toward (pseudo)peptidic receptors, a new approach based on multiple Ugi four-component reactions (Ugi-4CR) is proposed as a means of simultaneously incorporating several binding and catalytic elements into organizing scaffolds. By employing α-amino acids either as the amino or acid components of the Ugi-4CRs, this multiple multicomponent process allows for the one-pot assembly of podands bearing chimeric peptide-peptoid chains as appended arms. Tripodal, bowl-shaped, and concave polyfunctional skeletons are employed as topologically varied platforms for positioning the multiple peptidic chains formed by Ugi-4CRs. In a similar approach, steroidal building blocks with several axially-oriented isocyano groups are synthesized and utilized to align the chimeric chains with conformational constrains, thus providing an alternative to the classical peptido-steroidal receptors. The branched and hybrid peptide-peptoid appendages allow new possibilities for both rational design and combinatorial production of synthetic receptors. The concept is also expandable to other multicomponent reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Current and Prospective Methods for Plant Disease Detection
Fang, Yi; Ramasamy, Ramaraja P.
2015-01-01
Food losses due to crop infections from pathogens such as bacteria, viruses and fungi are persistent issues in agriculture for centuries across the globe. In order to minimize the disease induced damage in crops during growth, harvest and postharvest processing, as well as to maximize productivity and ensure agricultural sustainability, advanced disease detection and prevention in crops are imperative. This paper reviews the direct and indirect disease identification methods currently used in agriculture. Laboratory-based techniques such as polymerase chain reaction (PCR), immunofluorescence (IF), fluorescence in-situ hybridization (FISH), enzyme-linked immunosorbent assay (ELISA), flow cytometry (FCM) and gas chromatography-mass spectrometry (GC-MS) are some of the direct detection methods. Indirect methods include thermography, fluorescence imaging and hyperspectral techniques. Finally, the review also provides a comprehensive overview of biosensors based on highly selective bio-recognition elements such as enzyme, antibody, DNA/RNA and bacteriophage as a new tool for the early identification of crop diseases. PMID:26287253
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reindl, W.; Deng, K.; Gladden, J.M.
2011-05-01
The enzymatic hydrolysis of long-chain polysaccharides is a crucial step in the conversion of biomass to lignocellulosic biofuels. The identification and characterization of optimal glycoside hydrolases is dependent on enzyme activity assays, however existing methods are limited in terms of compatibility with a broad range of reaction conditions, sample complexity, and especially multiplexity. The method we present is a multiplexed approach based on Nanostructure-Initiator Mass Spectrometry (NIMS) that allowed studying several glycolytic activities in parallel under diverse assay conditions. Although the substrate analogs carried a highly hydrophobic perfluorinated tag, assays could be performed in aqueous solutions due colloid formation ofmore » the substrate molecules. We first validated our method by analyzing known {beta}-glucosidase and {beta}-xylosidase activities in single and parallel assay setups, followed by the identification and characterization of yet unknown glycoside hydrolase activities in microbial communities.« less
Ma, Yi-Ming; Wei, Dai-Xu; Yao, Hui; Wu, Lin-Ping; Chen, Guo-Qiang
2016-08-08
A thermoresponsive graft copolymer polyhydroxyalkanoate-g-poly(N-isopropylacrylamide) or short as PHA-g-PNIPAm, was successfully synthesized via a three-step reaction. First, PNIPAm oligomer with a trithiocarbonate-based chain transfer agent (CTA), short as PNIPAm-CTA, with designed polymerization degree was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Subsequently, the PNIPAm-CTA was treated with n-butylamine for aminolysis in order to obtain a pendant thiol group at the end of the chain (PNIPAm-SH). Finally, the PNIPAm-SH was grafted onto unsaturated P(3HDD-co-3H10U), a random copolymer of 3-hydroxydodecanoate (3HDD) and 3-hydroxy-10-undecylenate (3H10U), via a thiol-ene click reaction. Enhanced hydrophilicity and thermoresponsive property of the resulted PHA-g-PNIPAm were confirmed by water contact angle studies. The biocompatibility of PHA-g-PNIPAm was comparable to poly-3-hydroxybutyrate (PHB). The graft copolymer PHA-g-PNIPAm based on biopolyester PHA could be a promising material for biomedical applications.
Aziah, Ismail; Ravichandran, Manickam; Ismail, Asma
2007-12-01
Conventional polymerase chain reaction (PCR) testing requires many pipetting steps and has to be transported and stored in cold chain. To overcome these limitations, we designed a ready-to-use PCR test for Salmonella typhi using PCR reagents, primers against the ST50 gene of S. typhi, a built-in internal amplification control (IAC), and gel loading dye mixed and freeze-dried in a single tube. The 2-step dry-reagent-based assay was used to amplify a 1238-bp target gene and an 810-bp IAC gene from 73 BACTEC blood culture broths (33 true positives for S. typhi and 40 true negatives for non-S. typhi). The sensitivity, specificity, positive predictive value, and negative predictive value of the PCR assay were 87.9%, 100%, 100%, and 90.9%, respectively. We suggest that this rapid 2-step PCR test could be used for the rapid diagnosis of typhoid fever.
Chase, D.M.; Elliott, D.G.; Pascho, R.J.
2006-01-01
Renibacterium salmoninarum is an important salmonid pathogen that is difficult to culture. We developed and assessed a real-time, quantitative, polymerase chain reaction (qPCR) assay for the detection and enumeration of R. salmoninarum. The qPCR is based on TaqMan technology and amplifies a 69-base pair (bp) region of the gene encoding the major soluble antigen (MSA) of R. salmoninarum. The qPCR assay consistently detected as few as 5 R. salmoninarum cells per reaction in kidney tissue. The specificity of the qPCR was confirmed by testing the DNA extracts from a panel of microorganisms that were either common fish pathogens or reported to cause false-positive reactions in the enzyme-linked immunosorbent assay (ELISA). Kidney samples from 38 juvenile Chinook salmon (Oncorhynchus tshawytscha) in a naturally infected population were examined by real-time qPCR, a nested PCR, and ELISA, and prevalences of R. salmoninarum detected were 71, 66, and 71%, respectively. The qPCR should be a valuable tool for evaluating the R. salmoninarum infection status of salmonids.
Dalmasso, Marion; Bolocan, Andrei Sorin; Hernandez, Marta; Kapetanakou, Anastasia E; Kuchta, Tomáš; Manios, Stavros G; Melero, Beatriz; Minarovičová, Jana; Muhterem, Meryem; Nicolau, Anca Ioana; Rovira, Jordi; Skandamis, Panagiotis N; Stessl, Beatrix; Wagner, Martin; Jordan, Kieran; Rodríguez-Lázaro, David
2014-03-01
Analysis for Listeria monocytogenes by ISO11290-1 is time-consuming, entailing two enrichment steps and subsequent plating on agar plates, taking five days without isolate confirmation. The aim of this study was to determine if a polymerase chain reaction (PCR) assay could be used for analysis of the first and second enrichment broths, saving four or two days, respectively. In a comprehensive approach involving six European laboratories, PCR and traditional plating of both enrichment broths from the ISO11290-1 method were compared for the detection of L. monocytogenes in 872 food, raw material and processing environment samples from 13 different dairy and meat food chains. After the first and second enrichments, total DNA was extracted from the enriched cultures and analysed for the presence of L. monocytogenes DNA by PCR. DNA extraction by chaotropic solid-phase extraction (spin column-based silica) combined with real-time PCR (RTi-PCR) was required as it was shown that crude DNA extraction applying sonication lysis and boiling followed by traditional gel-based PCR resulted in fewer positive results than plating. The RTi-PCR results were compared to plating, as defined by the ISO11290-1 method. For first and second enrichments, 90% of the samples gave the same results by RTi-PCR and plating, whatever the RTi-PCR method used. For the samples that gave different results, plating was significantly more accurate for detection of positive samples than RTi-PCR from the first enrichment, but RTi-PCR detected a greater number of positive samples than plating from the second enrichment, regardless of the RTi-PCR method used. RTi-PCR was more accurate for non-food contact surface and food contact surface samples than for food and raw material samples especially from the first enrichment, probably because of sample matrix interference. Even though RTi-PCR analysis of the first enrichment showed less positive results than plating, in outbreak scenarios where a rapid result is required, RTi-PCR could be an efficient way to get a preliminary result to be then confirmed by plating. Using DNA extraction from the second enrichment broth followed by RTi-PCR was reliable and a confirmed result could be obtained in three days, as against seven days by ISO11290-1. Copyright © 2014 Elsevier B.V. All rights reserved.
Yamashita, S; Nakagawa, H; Sakaguchi, T; Arima, T-H; Kikoku, Y
2018-01-01
Heat-resistant fungi occur sporadically and are a continuing problem for the food and beverage industry. The genus Talaromyces, as a typical fungus, is capable of producing the heat-resistant ascospores responsible for the spoilage of processed food products. Isocitrate lyase, a signature enzyme of the glyoxylate cycle, is required for the metabolism of non-fermentable carbon compounds, like acetate and ethanol. Here, species-specific primer sets for detection and identification of DNA derived from Talaromyces macrosporus and Talaromyces trachyspermus were designed based on the nucleotide sequences of their isocitrate lyase genes. Polymerase chain reaction (PCR) using a species-specific primer set amplified products specific to T. macrosporus and T. trachyspermus. Other fungal species, such as Byssochlamys fulva and Hamigera striata, which cause food spoilage, were not detected using the Talaromyces-specific primer sets. The detection limit for each species-specific primer set was determined as being 50 pg of template DNA, without using a nested PCR method. The specificity of each species-specific primer set was maintained in the presence of 1,000-fold amounts of genomic DNA from other fungi. The method also detected fungal DNA extracted from blueberry inoculated with T. macrosporus. This PCR method provides a quick, simple, powerful and reliable way to detect T. macrosporus and T. trachyspermus. Polymerase chain reaction (PCR)-based detection is rapid, convenient and sensitive compared with traditional methods of detecting heat-resistant fungi. In this study, a PCR-based method was developed for the detection and identification of amplification products from Talaromyces macrosporus and Talaromyces trachyspermus using primer sets that target the isocitrate lyase gene. This method could be used for the on-site detection of T. macrosporus and T. trachyspermus in the near future, and will be helpful in the safety control of raw materials and in food and beverage production. © 2017 The Authors. Letters in Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.
Rosner, A; Maslenin, L; Spiegel, S
1998-09-01
A method based on differences in electrophoretic mobility of RNA transcripts made from polymerase chain reaction (PCR) products was used for differentiation among virus isolates. A T7 RNA polymerase promoter was attached to amplified prunus necrotic ringspot virus (PNRSV) sequences by PCR. The PCR products then served as a template for transcription. Single-stranded transcripts originated from different PNRSV isolates varied in electrophoretic mobility in polyacrylamide gels, presumably because of transcript conformation polymorphism (TCP). This procedure was applied for the differentiation of PNRSV isolates.
The impact of chimerism in DNA-based forensic sex determination analysis.
George, Renjith; Donald, Preethy Mary; Nagraj, Sumanth Kumbargere; Idiculla, Jose Joy; Hj Ismail, Rashid
2013-01-01
Sex determination is the most important step in personal identification in forensic investigations. DNA-based sex determination analysis is comparatively more reliable than the other conventional methods of sex determination analysis. Advanced technology like real-time polymerase chain reaction (PCR) offers accurate and reproducible results and is at the level of legal acceptance. But still there are situations like chimerism where an individual possess both male and female specific factors together in their body. Sex determination analysis in such cases can give erroneous results. This paper discusses the phenomenon of chimerism and its impact on sex determination analysis in forensic investigations.
Adaptable liquid crystal elastomers with transesterification-based bond exchange reactions.
Hanzon, Drew W; Traugutt, Nicholas A; McBride, Matthew K; Bowman, Christopher N; Yakacki, Christopher M; Yu, Kai
2018-02-14
Adaptable liquid crystal elastomers (LCEs) have recently emerged to provide a new and robust method to program monodomain LCE samples. When a constant stress is applied with active bond exchange reactions (BERs), polymer chains and mesogens gradually align in the strain direction. Mesogen alignment is maintained after removing the BER stimulus (e.g. by lowering the temperature) and the programmed LCE samples exhibit free-standing two-way shape switching behavior. Here, a new adaptable main-chain LCE system was developed with thermally induced transesterification BERs. The network combines the conventional properties of LCEs, such as an isotropic phase transition and soft elasticity, with the dynamic features of adaptable network polymers, which are malleable to stress relaxation due to the BERs. Polarized Fourier transform infrared measurements confirmed the alignment of polymer chains and mesogens after strain-induced programming. The influence of the creep stress, temperature, and time on the strain amplitude of two-way shape switching was examined. The LCE network demonstrates an innovative feature of reprogrammability, where the reversible shape-switching memory of programmed LCEs is readily deleted by free-standing heating as random BERs disrupt the mesogen alignment, so LCEs are reprogrammed after returning to the polydomain state. Due to the dynamic nature of the LCE network, it also exhibits a surface welding effect and can be fully dissolved in the organic solvent, which might be utilized for green and sustainable recycling of LCEs.
Stelzer, Erin A.; Loftin, Keith A.; Struffolino, Pamela
2013-01-01
Water samples were collected from Maumee Bay State Park Lakeside Beach, Oregon, Ohio, during the 2012 recreational season and analyzed for selected cyanobacteria gene sequences by DNA-based quantitative polymerase chain reaction (qPCR) and RNA-based quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Results from the four DNA assays (for quantifying total cyanobacteria, total Microcystis, and Microcystis and Planktothrix strains that possess the microcystin synthetase E (mcyE) gene) and two RNA assays (for quantifying Microcystis and Planktothrix genera that are expressing the microcystin synthetase E (mcyE) gene) were compared to microcystin concentration results determined by an enzyme-linked immunosorbent assay (ELISA). Concentrations of the target in replicate analyses were log10 transformed. The average value of differences in log10 concentrations for the replicates that had at least one detection were found to range from 0.05 to >0.37 copy per 100 milliliters (copy/100 mL) for DNA-based methods and from >0.04 to >0.17 copy/100 mL for RNA-based methods. RNA has a shorter half-life than DNA; consequently, a 24-hour holding-time study was done to determine the effects of holding time on RNA concentrations. Holding-time comparisons for the RNA-based Microcystis toxin mcyE assay showed reductions in the number of copies per 100 milliliters over 24 hours. The log difference between time 2 hours and time 24 hours was >0.37 copy/100 mL, which was higher than the analytical variability (log difference of >0.17 copy/100 mL). Spearman’s correlation analysis indicated that microcystin toxin concentrations were moderately to highly related to DNA-based assay results for total cyanobacteria (rho=0.69), total Microcystis (rho=0.74), and Microcystis strains that possess the mcyE gene (rho=0.81). Microcystin toxin concentrations were strongly related with RNA-based assay results for Microcystis mcyE gene expression (rho=0.95). Correlation analysis could not be done for Planktothrix mcyE gene expression because of too few detections.
Additional chain-branching pathways in the low-temperature oxidation of branched alkanes
Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; ...
2015-12-31
Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS).more » Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C 8H 14O 4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C 8H 16O 5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C 8H 16O 5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O 2 addition, intramolecular isomerization, and OH release; C 8H 14O 4 species are proposed to result from subsequent reactions of C 8H 16O 5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances.« less
Chain Reaction Polymerization.
ERIC Educational Resources Information Center
McGrath, James E.
1981-01-01
The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)
Bioinspired synthesis of pentalene-based chromophores from an oligoketone chain.
Saito, Yuki; Higuchi, Masayuki; Yoshioka, Shota; Senboku, Hisanori; Inokuma, Yasuhide
2018-04-24
We report a bioinspired synthesis of 2,5-dihydropentalene-based chromophores from an aliphatic oligoketone bearing 1,3- and 1,4-diketone subunits. Unlike the natural polyketone sequence, fused five-membered rings were formed via an intramolecular aldol condensation. A subsequent Knoevenagel condensation reaction with malononitrile furnished a multiply cross-conjugated π-system with low-lying LUMO levels. Furthermore, pentalenes obtained from a non-conjugated aliphatic chain exhibited visible absorption and solid-state fluorescence.
Rapid polymerase chain reaction-based screening assay for bacterial biothreat agents.
Yang, Samuel; Rothman, Richard E; Hardick, Justin; Kuroki, Marcos; Hardick, Andrew; Doshi, Vishal; Ramachandran, Padmini; Gaydos, Charlotte A
2008-04-01
To design and evaluate a rapid polymerase chain reaction (PCR)-based assay for detecting Eubacteria and performing early screening for selected Class A biothreat bacterial pathogens. The authors designed a two-step PCR-based algorithm consisting of an initial broad-based universal detection step, followed by specific pathogen identification targeted for identification of the Class A bacterial biothreat agents. A region in the bacterial 16S rRNA gene containing a highly variable sequence flanked by clusters of conserved sequences was chosen as the target for the PCR assay design. A previously described highly conserved region located within the 16S rRNA amplicon was selected as the universal probe (UniProbe, Integrated DNA Technology, Coralville, IA). Pathogen-specific TaqMan probes were designed for Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Performance of the assay was assessed using genomic DNA extracted from the aforementioned biothreat-related organisms (inactivated or surrogate) and other common bacteria. The UniProbe detected the presence of all tested Eubacteria (31/31) with high analytical sensitivity. The biothreat-specific probes accurately identified organisms down to the closely related species and genus level, but were unable to discriminate between very close surrogates, such as Yersinia philomiragia and Bacillus cereus. A simple, two-step PCR-based assay proved capable of both universal bacterial detection and identification of select Class A bacterial biothreat and biothreat-related pathogens. Although this assay requires confirmatory testing for definitive species identification, the method has great potential for use in ED-based settings for rapid diagnosis in cases of suspected Category A bacterial biothreat agents.
Kobayashi, Takeshi; Kobayashi, Yo; Tabuchi, Masato; Shono, Kumi; Ohno, Yasutaka; Mita, Yuichi; Miyashiro, Hajime
2013-12-11
The all solid-state lithium battery with polyether-based solid polymer electrolyte (SPE) is regarded as one of next-generation lithium batteries, and has potential for sufficient safety because of the flammable-electrolyte-free system. It has been believed that polyether-based SPE is oxidized at the polymer/electrode interface with 4 V class cathodes. Therefore, it has been used for electric devices such as organic transistor, and lithium battery under 3 V. We estimated decomposition reaction of polyether used as SPE of all solid-state lithium battery. We first identified the decomposed parts of polyether-based SPE and the conservation of most main chain framework, considering the results of SPE analysis after long cycle operations. The oxidation reaction was found to occur slightly at the ether bond in the main chain with the branched side chain. Moreover, we resolved the issue by introducing a self-sacrificing buffer layer at the interface. The introduction of sodium carboxymethyl cellulose (CMC) to the 4 V class cathode surface led to the suppression of SPE decomposition at the interface as a result of the preformation of a buffer layer from CMC, which was confirmed by the irreversible exothermic reaction during the first charge, using electrochemical calorimetry. The attained 1500 cycle operation is 1 order of magnitude longer than those of previously reported polymer systems, and compatible with those of reported commercial liquid systems. The above results indicate to proceed to an intensive research toward the realization of 4 V class "safe" lithium polymer batteries without flammable liquid electrolyte.
Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview.
Deshmukh, Rehan A; Joshi, Kopal; Bhand, Sunil; Roy, Utpal
2016-12-01
Waterborne diseases have emerged as global health problems and their rapid and sensitive detection in environmental water samples is of great importance. Bacterial identification and enumeration in water samples is significant as it helps to maintain safe drinking water for public consumption. Culture-based methods are laborious, time-consuming, and yield false-positive results, whereas viable but nonculturable (VBNCs) microorganisms cannot be recovered. Hence, numerous methods have been developed for rapid detection and quantification of waterborne pathogenic bacteria in water. These rapid methods can be classified into nucleic acid-based, immunology-based, and biosensor-based detection methods. This review summarizes the principle and current state of rapid methods for the monitoring and detection of waterborne bacterial pathogens. Rapid methods outlined are polymerase chain reaction (PCR), digital droplet PCR, real-time PCR, multiplex PCR, DNA microarray, Next-generation sequencing (pyrosequencing, Illumina technology and genomics), and fluorescence in situ hybridization that are categorized as nucleic acid-based methods. Enzyme-linked immunosorbent assay (ELISA) and immunofluorescence are classified into immunology-based methods. Optical, electrochemical, and mass-based biosensors are grouped into biosensor-based methods. Overall, these methods are sensitive, specific, time-effective, and important in prevention and diagnosis of waterborne bacterial diseases. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas
2012-04-10
The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.
Das, P; Pandey, P; Harishankar, A; Chandy, M; Bhattacharya, S; Chakrabarti, A
2017-01-01
Standardization of Aspergillus polymerase chain reaction (PCR) poses two technical challenges (a) standardization of DNA extraction, (b) optimization of PCR against various medically important Aspergillus species. Many cases of aspergillosis go undiagnosed because of relative insensitivity of conventional diagnostic methods such as microscopy, culture or antigen detection. The present study is an attempt to standardize real-time PCR assay for rapid sensitive and specific detection of Aspergillus DNA in EDTA whole blood. Three nucleic acid extraction protocols were compared and a two-step real-time PCR assay was developed and validated following the recommendations of the European Aspergillus PCR Initiative in our setup. In the first PCR step (pan-Aspergillus PCR), the target was 28S rDNA gene, whereas in the second step, species specific PCR the targets were beta-tubulin (for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus), gene and calmodulin gene (for Aspergillus niger). Species specific identification of four medically important Aspergillus species, namely, A. fumigatus, A. flavus, A. niger and A. terreus were achieved by this PCR. Specificity of the PCR was tested against 34 different DNA source including bacteria, virus, yeast, other Aspergillus sp., other fungal species and for human DNA and had no false-positive reactions. The analytical sensitivity of the PCR was found to be 102 CFU/ml. The present protocol of two-step real-time PCR assays for genus- and species-specific identification for commonly isolated species in whole blood for diagnosis of invasive Aspergillus infections offers a rapid, sensitive and specific assay option and requires clinical validation at multiple centers.
High-throughput microfluidic single-cell digital polymerase chain reaction.
White, A K; Heyries, K A; Doolin, C; Vaninsberghe, M; Hansen, C L
2013-08-06
Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118,900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204,000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.
Sequences of heavy and light chain variable regions from four bovine immunoglobulins.
Armour, K L; Tempest, P R; Fawcett, P H; Fernie, M L; King, S I; White, P; Taylor, G; Harris, W J
1994-12-01
Oligodeoxyribonucleotide primers based on the 5' ends of bovine IgG1/2 and lambda constant (C) region genes, together with primers encoding conserved amino acids at the N-terminus of mature variable (V) regions from other species, have been used in cDNA and polymerase chain reactions (PCRs) to amplify heavy and light chain V region cDNA from bovine heterohybridomas. The amino acid sequences of VH and V lambda from four bovine immunoglobulins of different specificities are presented.
REAL TIME PCR ANALYSIS OF INDOOR MOLDS: PRINCIPLES, PROCEDURES AND APPLICATIONS
This presentation will endeavor to present an overview of the real time polymerase chain reaction method developed for indoor mold detection and quantification by the EPA. It will begin with a brief discussion of the PCR technology that provides the basis for this method and how ...
Purcell, Maureen K.; Getchell, Rodman G.; McClure, Carol A.; Weber, S.E.; Garver, Kyle A.
2011-01-01
Real-time, or quantitative, polymerase chain reaction (qPCR) is quickly supplanting other molecular methods for detecting the nucleic acids of human and other animal pathogens owing to the speed and robustness of the technology. As the aquatic animal health community moves toward implementing national diagnostic testing schemes, it will need to evaluate how qPCR technology should be employed. This review outlines the basic principles of qPCR technology, considerations for assay development, standards and controls, assay performance, diagnostic validation, implementation in the diagnostic laboratory, and quality assurance and control measures. These factors are fundamental for ensuring the validity of qPCR assay results obtained in the diagnostic laboratory setting.
Hase, Ryota; Hirooka, Takuya; Itabashi, Takashi; Endo, Yasunobu; Otsuka, Yoshihito
2018-05-15
A 65-year-old man presented with gradually exacerbating low back pain. Magnetic resonance imaging revealed vertebral osteomyelitis in the Th11-L2 vertebral bodies and discs. The patient showed negative findings on conventional cultures. Direct broad-range polymerase chain reaction (PCR) with sequencing of the biopsied specimen had the highest similarity to the 16S rRNA gene of Helicobacter cinaedi. This case suggests that direct broad-range PCR with sequencing should be considered when conventional cultures cannot identify the causative organism of vertebral osteomyelitis, and that this method may be particularly useful when the pathogen is a fastidious organism, such as H. cinaedi.
Transformation of soybean Gy3 gene into Artemisaarenaria mediated by corona discharge
NASA Astrophysics Data System (ADS)
Chao, Lu-meng; Na, Ri; Xue, Dan; Xu, Yongze; Liu, Teng
2013-03-01
In order to improve the protein content of desert plant, a method of genetic transformation mediated by corona discharge was established. Artemisia seeds were processed in corona electric field for 120 min at 12 kV, and then soaked in 0.1 SSC media that contained Soybean Gy3 gene DNA to incubate for 12 h at 26 °C. Finally the seeds were inoculated on the differentiation medium. Polymerase Chain Reaction (PCR) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) detection showed that the Soybean Gy3 gene had been successfully introduced into genomic DNA of the regenerated plants of Artemisaarenaria. The study provided a new way for corona discharge in plant genetic modification.
NASA Astrophysics Data System (ADS)
Naine, Tarun Bharath; Gundawar, Manoj Kumar
2017-09-01
We demonstrate a very powerful correlation between the discrete probability of distances of neighboring cells and thermal wave propagation rate, for a system of cells spread on a one-dimensional chain. A gamma distribution is employed to model the distances of neighboring cells. In the absence of an analytical solution and the differences in ignition times of adjacent reaction cells following non-Markovian statistics, invariably the solution for thermal wave propagation rate for a one-dimensional system with randomly distributed cells is obtained by numerical simulations. However, such simulations which are based on Monte-Carlo methods require several iterations of calculations for different realizations of distribution of adjacent cells. For several one-dimensional systems, differing in the value of shaping parameter of the gamma distribution, we show that the average reaction front propagation rates obtained by a discrete probability between two limits, shows excellent agreement with those obtained numerically. With the upper limit at 1.3, the lower limit depends on the non-dimensional ignition temperature. Additionally, this approach also facilitates the prediction of burning limits of heterogeneous thermal mixtures. The proposed method completely eliminates the need for laborious, time intensive numerical calculations where the thermal wave propagation rates can now be calculated based only on macroscopic entity of discrete probability.
Development of a PCR-based assay for rapid and reliable identification of pathogenic Fusaria.
Mishra, Prashant K; Fox, Roland T V; Culham, Alastair
2003-01-28
Identification of Fusarium species has always been difficult due to confusing phenotypic classification systems. We have developed a fluorescent-based polymerase chain reaction assay that allows for rapid and reliable identification of five toxigenic and pathogenic Fusarium species. The species includes Fusarium avenaceum, F. culmorum, F. equiseti, F. oxysporum and F. sambucinum. The method is based on the PCR amplification of species-specific DNA fragments using fluorescent oligonucleotide primers, which were designed based on sequence divergence within the internal transcribed spacer region of nuclear ribosomal DNA. Besides providing an accurate, reliable, and quick diagnosis of these Fusaria, another advantage with this method is that it reduces the potential for exposure to carcinogenic chemicals as it substitutes the use of fluorescent dyes in place of ethidium bromide. Apart from its multidisciplinary importance and usefulness, it also obviates the need for gel electrophoresis.
USDA-ARS?s Scientific Manuscript database
A new group of phenolic branched-chain fatty acids (n-PBC-FA), hybrid molecules of natural monophenols (i.e., thymol, carvacrol and creosote) and mixed fatty acid (i.e., derived from soybean and safflower oils), were efficiently produced through a process known as arylation. The reaction involves a...
Mohammadi, Samira; Esfahani, Bahram Nasr; Moghim, Sharareh; Mirhendi, Hossein; Zaniani, Fatemeh Riyahi; Safaei, Hajieh Ghasemian; Fazeli, Hossein; Salehi, Mahshid
2017-01-01
Background: Nontuberculous mycobacteria (NTM) are a group of opportunistic pathogens and these are widely dispersed in water and soil resources. Identification of mycobacteria isolates by conventional methods including biochemical tests, growth rates, colony pigmentation, and presence of acid-fast bacilli is widely used, but these methods are time-consuming, labor-intensive, and may sometimes remain inconclusive. Materials and Methods: The DNA was extracted from NTM cultures using CTAB, Chelex, Chelex + Nonidet P-40, FTA® Elute card, and boiling The quantity and quality of the DNA extracted via these methods were determined using UV-photometer at 260 and 280 nm, and polymerase chain reaction (PCR) amplification of the heat-shock protein 65 gene with serially diluted DNA samples. Results: The CTAB method showed more positive results at 1:10–1:100,000 at which the DNA amount was substantial. With the Chelex method of DNA extraction, PCR amplification was detected at 1:10 and 1:1000 dilutions. Conclusions: According to the electrophoresis results, the CTAB and Chelex DNA extraction methods were more successful in comparison with the others as regard producing suitable concentrations of DNA with the minimum use of PCR inhibitor. PMID:29279831
Chen, Fangfang; Wang, Jiayu; Lu, Ruicong; Chen, Huiru; Xie, Xiaoyu
2018-08-10
A novel microwave-accelerated reversible addition fragmentation chain transfer (RAFT) polymerization strategy has been introduced to shorten reaction time and improved polymerization efficiency of the conventional molecularly imprinting technology based on RAFT. Magnetic molecular imprinted polymers (MMIPs) were successfully synthesized much more efficiently using 17β-estradiol (E2) as a template for the determination of estrogen residues. The resultant MMIPs had well-defined thin imprinted film, favoring the fast mass transfer. Moreover, the reaction time, which was just 1/24 of the time taken by conventional heating, was significantly decreased, improving the reaction efficiency and reducing the probability of side reactions. Meanwhile, the obtained polymers have good capacity of 6.67 mg g -1 and satisfactory selectivity to template molecule with the imprinting factor of 5.11. As a result, a method combination of the resultant MMIPs as solid phase extraction sorbents and high-performance liquid chromatography was successfully set up to determinate three estrogen residues in milk samples. For E2, estrone, and estriol, the limit of detections were calculated to be 0.03, 0.08, and 0.06 ng mL -1 , respectively, and the limit of quantifications were 0.11, 0.27, and 0.21 ng mL -1 , respectively. At the spiked level of 1, 5, and 10 ng mL -1 , the recoveries of the three estrogens were ranged from 69.1% to 91.9% and the intra-day relative standard deviation (RSD) was less than 5.7%. In addition, the resultant MMIPs exhibited good reproducibility and reusability with the inter-batch RSD of 5.3% and the intra-batch RSD of 6.2%, respectively. Overall, the realization of this strategy facilitates the preparation of MMIPs with good architecture and high reaction efficiencies for the analysis of complicated real samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Xue, Yong; Wilkes, Jon G.; Moskal, Ted J.; Williams, Anna J.; Cooper, Willie M.; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A.
2016-01-01
Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts. PMID:26913737
Xue, Yong; Wilkes, Jon G; Moskal, Ted J; Williams, Anna J; Cooper, Willie M; Nayak, Rajesh; Rafii, Fatemeh; Buzatu, Dan A
2016-01-01
Standard methods to detect Escherichia coli contamination in food use the polymerase chain reaction (PCR) and agar culture plates. These methods require multiple incubation steps and take a long time to results. An improved rapid flow-cytometry based detection method was developed, using a fluorescence-labeled oligonucleotide probe specifically binding a16S rRNA sequence. The method positively detected 51 E. coli isolates as well as 4 Shigella species. All 27 non-E. coli strains tested gave negative results. Comparison of the new genetic assay with a total plate count (TPC) assay and agar plate counting indicated similar sensitivity, agreement between cytometry cell and colony counts. This method can detect a small number of E.coli cells in the presence of large numbers of other bacteria. This method can be used for rapid, economical, and stable detection of E. coli and Shigella contamination in the food industry and other contexts.
Study of the bacterial diversity of foods: PCR-DGGE versus LH-PCR.
Garofalo, Cristiana; Bancalari, Elena; Milanović, Vesna; Cardinali, Federica; Osimani, Andrea; Sardaro, Maria Luisa Savo; Bottari, Benedetta; Bernini, Valentina; Aquilanti, Lucia; Clementi, Francesca; Neviani, Erasmo; Gatti, Monica
2017-02-02
The present study compared two culture-independent methods, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and length-heterogeneity polymerase chain reaction (LH-PCR), for their ability to reveal food bacterial microbiota. Total microbial DNA and RNA were extracted directly from fourteen fermented and unfermented foods, and domain A of the variable regions V1 and V2 of the 16S rRNA gene was analyzed through LH-PCR and PCR-DGGE. Finally, the outline of these analyses was compared with bacterial viable counts obtained after bacterial growth on suitable selective media. For the majority of the samples, RNA-based PCR-DGGE revealed species that the DNA-based PCR-DGGE was not able to highlight. When analyzing either DNA or RNA, LH-PCR identified several lactic acid bacteria (LAB) and coagulase negative cocci (CCN) species that were not identified by PCR-DGGE. This phenomenon was particularly evident in food samples with viable loads<5.0 Logcfug -1 . Furthermore, LH-PCR was able to detect a higher number of peaks in the analyzed food matrices relative to species identified by PCR-DGGE. In light of these findings, it may be suggested that LH-PCR shows greater sensitivity than PCR-DGGE. However, PCR-DGGE detected some other species (LAB included) that were not detected by LH-PCR. Therefore, certain LH-PCR peaks not attributed to known species within the LH-PCR database could be solved by comparing them with species identified by PCR-DGGE. Overall, this study also showed that LH-PCR is a promising method for use in the food microbiology field, indicating the necessity to expand the LH-PCR database, which is based, up to now, mainly on LAB isolates from dairy products. Copyright © 2016 Elsevier B.V. All rights reserved.
Hadifar, Shima; Moghim, Sharareh; Fazeli, Hossein; GhasemianSafaei, Hajieh; Havaei, Seyed Asghar; Farid, Fariba; Esfahani, Bahram Nasr
2015-01-01
Background: Diagnosis and typing of Mycobacterium genus provides basic tools for investigating the epidemiology and pathogenesis of this group of bacteria. Polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis (PRA) is an accurate method providing diagnosis and typing of species of mycobacteria. The present study is conducted by the purpose of determining restriction fragment profiles of common types of mycobacteria by PRA method of rpoB gene in this geographical region. Materials and Methods: Totally 60 clinical and environmental isolates from February to October, 2013 were collected and subcultured and identified by phenotypic methods. A 360 bp fragment of the rpoB gene amplified by PCR and products were digested by MspI and HaeIII enzymes. Results: In the present study, of all mycobacteria isolates identified by PRA method, 13 isolates (21.66%) were Mycobacterium tuberculosis, 34 isolates (56.66%) were rapidly growing Nontuberculosis Mycobacteria (NTM) that including 26 clinical isolates (43.33%) and 8 environmental isolates (13.33%), 11 isolates (18.33%) were clinical slowly growing NTM. among the clinical NTM isolates, Mycobacterium fortuitum Type I with the frequency of 57.77% was the most prevalent type isolates. Furthermore, an unrecorded of the PRA pattern of Mycobacterium conceptionense (HeaIII: 120/90/80, MspI: 120/105/80) was found. This study demonstrated that the PRA method was high discriminatory power for identification and typing of mycobacteria species and was able to identify 96.6% of all isolates. Conclusion: Based on the result of this study, rpoB gene could be a potentially useful tool for identification and investigation of molecular epidemiology of mycobacterial species. PMID:26380237
Fahrimal, Y; Goff, W L; Jasmer, D P
1992-01-01
Carrier cattle infected with Babesia bovis are difficult to detect because of the low numbers of parasites that occur in peripheral blood. However, diagnosis of low-level infections with the parasite is important for evaluating the efficacies of vaccines and in transmission and epidemiological studies. We used the polymerase chain reaction (PCR) to amplify a portion of the apocytochrome b gene from the parasite and tested the ability of this method to detect carrier cattle. The target sequence is associated with a 7.4-kb DNA element in undigested B. bovis genomic DNA (as shown previously), and the amplified product was detected by Southern and dot blot hybridization. The assay was specific for B. bovis, since no amplification was detected with Babesia bigemina, Trypanosoma brucei, Anaplasma marginale, or leukocyte DNA. The target sequence was amplified in DNA from B. bovis Mexico, Texas, and Australia S and L strains, demonstrating the applicability of the method to strains from different geographic regions. The sensitivity of the method ranged from 1 to 10 infected erythrocytes extracted from 0.5 ml of blood. This sensitivity was about 1,000 times greater than that from the use of unamplified parasite DNA. By the PCR method, six B. bovis carrier cattle were detected 86% of the time (range, 66 to 100%) when they were tested 11 times, while with microscopic examination of thick blood smears, the same carrier cattle were detected only 36% of the time (range, 17 to 66%). The method provides a useful diagnostic tool for detecting B. bovis carrier cattle, and the sensitivity is significantly improved over that of current methods. The results also suggest that characteristics of the apocytchrome b gene may make this a valuable target DNA for PCR-based detection of other hemoparasites. Images PMID:1624551
Bond Graph Modeling of Chemiosmotic Biomolecular Energy Transduction.
Gawthrop, Peter J
2017-04-01
Engineering systems modeling and analysis based on the bond graph approach has been applied to biomolecular systems. In this context, the notion of a Faraday-equivalent chemical potential is introduced which allows chemical potential to be expressed in an analogous manner to electrical volts thus allowing engineering intuition to be applied to biomolecular systems. Redox reactions, and their representation by half-reactions, are key components of biological systems which involve both electrical and chemical domains. A bond graph interpretation of redox reactions is given which combines bond graphs with the Faraday-equivalent chemical potential. This approach is particularly relevant when the biomolecular system implements chemoelectrical transduction - for example chemiosmosis within the key metabolic pathway of mitochondria: oxidative phosphorylation. An alternative way of implementing computational modularity using bond graphs is introduced and used to give a physically based model of the mitochondrial electron transport chain To illustrate the overall approach, this model is analyzed using the Faraday-equivalent chemical potential approach and engineering intuition is used to guide affinity equalisation: a energy based analysis of the mitochondrial electron transport chain.
Reaction pathways of propene pyrolysis.
Qu, Yena; Su, Kehe; Wang, Xin; Liu, Yan; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong
2010-05-01
The gas-phase reaction pathways in preparing pyrolytic carbon with propene pyrolysis have been investigated in detail with a total number of 110 transition states and 50 intermediates. The structure of the species was determined with density functional theory at B3PW91/6-311G(d,p) level. The transition states and their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses. The elementary reactions were explored in the pathways of both direct and the radical attacking decompositions. The energy barriers and the reaction energies were determined with accurate model chemistry method at G3(MP2) level after an examination of the nondynamic electronic correlations. The heat capacities and entropies were obtained with statistical thermodynamics. The Gibbs free energies at 298.15 K for all the reaction steps were reported. Those at any temperature can be developed with classical thermodynamics by using the fitted (as a function of temperature) heat capacities. It was found that the most favorable paths are mainly in the radical attacking chain reactions. The chain was proposed with 26 reaction steps including two steps of the initialization of the chain to produce H and CH(3) radicals. For a typical temperature (1200 K) adopted in the experiments, the highest energy barriers were found in the production of C(3) to be 203.4 and 193.7 kJ/mol. The highest energy barriers for the production of C(2) and C were found 174.1 and 181.4 kJ/mol, respectively. These results are comparable with the most recent experimental observation of the apparent activation energy 201.9 +/- 0.6 or 137 +/- 25 kJ/mol. Copyright 2010 Wiley Periodicals, Inc.
Chromá, Magdaléna; Hricová, Kristýna; Kolář, Milan; Sauer, Pavel; Koukalová, Dagmar
2011-11-01
A total of 78 bacterial strains with known β-lactamases were used to optimize a rapid detection system consisting of multiplex polymerase chain reaction and melting curve analysis to amplify and identify blaTEM, blaSHV, and blaCTX-M genes in a single reaction. Additionally, to evaluate the applicability of this method, 32 clinical isolates of Escherichia coli displaying an extended-spectrum β-lactamase phenotype from patients hospitalized at intensive care units were tested. Results were analyzed by the Rotor-Gene operating software and Rotor-Gene ScreenClust HRM Software. The individual melting curves differed by a temperature shift or curve shape, according to the presence of β-lactamase genes. With the use of this method and direct sequencing, blaCTX-M-15-like was identified as the most prevalent β-lactamase gene. In conclusion, this novel detection system seems to be a suitable tool for rapid detection of present β-lactamase genes and their characterization. Copyright © 2011 Elsevier Inc. All rights reserved.
Alarcón, Gonzalo; Barraza, Gabriela; Vera, Andrea; Wozniak, Aniela; García, Patricia
2016-02-01
Trichomonas vaginalis, Mycoplasma hominis and Ureaplasma spp. are microorganisms responsible for genitourinary and pregnancy pathologies. Nucleic acid amplification methods have shown several advantages, but have not been widely studied for the detection of these microorganisms. To implement a conventional polymerase chain reaction (PCR) for the detection of the microorganisms and to compare its results versus the methods currently used at our laboratory. 91 available samples were processed by PCR, culture (M. hominis y Ureaplasma spp.) and wet mount (T vaginalis). Results were compared and statistically analyzed by kappa agreement test. 85, 80 and 87 samples resulted in agreement for the detection of M. hominis, Ureaplasma spp. y T. vaginalis, respectively. For M. hominis and Ureaplasma spp., agreement was substantial, whereas for T. vaginalis it was moderate, however, for the latter, PCR detected more cases than wet mount. We recommend the implementation of PCR for detection of T. vaginalis whereas culture kit is still a useful method for the other microorganisms.
[Use of nested PCR in detection of the plague pathogen].
Glukhov, A I; Gordeev, S A; Al'tshuler, M L; Zykova, I E; Severin, S E
2003-07-01
Causative agents of plague, i.e. bacterium Yersina pestis (in the subcutaneous tissues of rodents) and their cutaneous parasites need to be isolated to enable plague prevention. A comparatively new method of polymerase chain reaction (PCR) opens up new possibilities of determining Y. pestis just within several hours and without any cultivation. The article contains a description of the PCR-method, which makes it possible to distinguish the culture of Y. pestis from cultures of other microorganism, including speci of Yersina. The method is of the cluster-type, i.e. it is made up of subsequent PC reactions with the substrate for the second reaction being the product of the first one. The cluster nature of the method preconditions a higher sensitivity and specificity versus the ordinary PCR.
Han, Min; Kang, Xing; Liu, Zhengbin; Zhang, Tingting; Li, Yanwei; Chen, Chao; Wang, Huijuan
2017-07-01
HLA-B*57:01 is strongly associated with severe adverse drug reaction induced by the anti-HIV drug abacavir (ABC) and antibiotic flucloxacillin. This study was dedicated to establishing a new method for HLA-B*57:01 genotyping and investigating the HLA-B*57:01 distribution pattern in four Chinese populations. A single-tube duplex real-time polymerase chain reaction (PCR) system was established by combining the amplification refractory mutation system and TaqMan probe. The reliability of this assay was validated by comparing the genotyping results with those by sequence-based typing. With this assay, the distribution of HLA-B*57:01 in 354 blood samples from four ethnic groups, namely, Han, Tibetan, Uighur, and Buyei, was determined. A 100% concordance was observed between the results of real-time PCR and sequence-based typing in 50 Uighur samples. As low as 0.016 ng DNA that carried HLA-B*57:01 could be detected with this assay. HLA-B*57:01 carriers identified in 100 Northern Han Chinese, 104 Buyeis, 100 Tibetans, and 50 Uighurs were 0, 1 (0.96%), 3 (3%), and 6 (12%), respectively. The carrier rate of HLA-B*57:01 in Uighur was significantly higher than those in Northern Han (p = .001) and Buyei (p = .005). The newly established real-time PCR assay provides a rapid and reliable tool for HLA-B*57:01 allele screening before the prescription of ABC and flucloxacillin in clinical practice.
Determination of sex origin of meat and meat products on the DNA basis: a review.
Gokulakrishnan, Palanisamy; Kumar, Rajiv Ranjan; Sharma, Brahm Deo; Mendiratta, Sanjod Kumar; Malav, Omprakash; Sharma, Deepak
2015-01-01
Sex determination of domestic animal's meat is of potential value in meat authentication and quality control studies. Methods aiming at determining the sex origin of meat may be based either on the analysis of hormone or on the analysis of nucleic acids. At the present time, sex determination of meat and meat products based on hormone analysis employ gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS), and enzyme-linked immunosorbent assay (ELISA). Most of the hormone-based methods proved to be highly specific and sensitive but were not performed on a regular basis for meat sexing due to the technical limitations or the expensive equipments required. On the other hand, the most common methodology to determine the sex of meat is unquestionably traditional polymerase chain reaction (PCR) that involves gel electrophoresis of DNA amplicons. This review is intended to provide an overview of the DNA-based methods for sex determination of meat and meat products.
Narihiro, Takashi; Sekiguchi, Yuji
2011-01-01
Summary For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers. PMID:21375721
Principles and applications of polymerase chain reaction in medical diagnostic fields: a review
Valones, Marcela Agne Alves; Guimarães, Rafael Lima; Brandão, Lucas André Cavalcanti; de Souza, Paulo Roberto Eleutério; de Albuquerque Tavares Carvalho, Alessandra; Crovela, Sergio
2009-01-01
Recent developments in molecular methods have revolutionized the detection and characterization of microorganisms in a broad range of medical diagnostic fields, including virology, mycology, parasitology, microbiology and dentistry. Among these methods, Polymerase Chain Reaction (PCR) has generated great benefits and allowed scientific advancements. PCR is an excellent technique for the rapid detection of pathogens, including those difficult to culture. Along with conventional PCR techniques, Real-Time PCR has emerged as a technological innovation and is playing an ever-increasing role in clinical diagnostics and research laboratories. Due to its capacity to generate both qualitative and quantitative results, Real-Time PCR is considered a fast and accurate platform. The aim of the present literature review is to explore the clinical usefulness and potential of both conventional PCR and Real-Time PCR assays in diverse medical fields, addressing its main uses and advances. PMID:24031310
Sidor, Inga F; Dunn, J Lawrence; Tsongalis, Gregory J; Carlson, Jolene; Frasca, Salvatore
2013-01-01
Brucellosis has emerged as a disease of concern in marine mammals in the last 2 decades. Molecular detection techniques have the potential to address limitations of other methods for detecting infection with Brucella in these species. Presented herein is a real-time polymerase chain reaction (PCR) method targeting the Brucella genus-specific bcsp31 gene. The method also includes a target to a conserved region of the eukaryotic mitochondrial 16S ribosomal RNA gene to assess suitability of extracted DNA and a plasmid-based internal control to detect failure of PCR due to inhibition. This method was optimized and validated to detect Brucella spp. in multiple sample matrices, including fresh or frozen tissue, blood, and feces. The analytical limit of detection was low, with 95% amplification at 24 fg, or an estimated 7 bacterial genomic copies. When Brucella spp. were experimentally added to tissue or fecal homogenates, the assay detected an estimated 1-5 bacteria/µl. An experiment simulating tissue autolysis showed relative persistence of bacterial DNA compared to host mitochondrial DNA. When used to screen 1,658 field-collected marine mammal tissues in comparison to microbial culture, diagnostic sensitivity and specificity were 70.4% and 98.3%, respectively. In addition to amplification in fresh and frozen tissues, Brucella spp. were detected in feces and formalin-fixed, paraffin-embedded tissues from culture-positive animals. Results indicate the utility of this real-time PCR for the detection of Brucella spp. in marine species, which may have applications in surveillance or epidemiologic investigations.
NASA Astrophysics Data System (ADS)
Elvistia Firdaus, Flora
2016-04-01
The polyurethanes (PUs) foam were made from vegetable oil; a soybean based polyol. The foams were categorized into flexible and semi rigid. This research is manufacturally designed polyurethane foams by a process requiring the reaction of mixture of 2, 4- and 2, 6-Toluene di Isocyanate isomers, soy polyol in the presence of other ingredients. The objective of this work was to functionalized soy-polyol using phosporic acid catalyst and chain extender, study their collaborative reaction in producing ultimate property of PU foam. Correlates the foam morphology images in accordance to mechanical properties of foams.
A novel gammaherpesvirus in a large flying fox (Pteropus vampyrus) with blepharitis.
Paige Brock, A; Cortés-Hinojosa, Galaxia; Plummer, Caryn E; Conway, Julia A; Roff, Shannon R; Childress, April L; Wellehan, James F X
2013-05-01
A novel gammaherpesvirus was identified in a large flying fox (Pteropus vampyrus) with conjunctivitis, blepharitis, and meibomianitis by nested polymerase chain reaction and sequencing. Polymerase chain reaction amplification and sequencing of 472 base pairs of the DNA-dependent DNA polymerase gene were used to identify a novel herpesvirus. Bayesian and maximum likelihood phylogenetic analyses indicated that the virus is a member of the genus Percavirus in the subfamily Gammaherpesvirinae. Additional research is needed regarding the association of this virus with conjunctivitis and other ocular pathology. This virus may be useful as a biomarker of stress and may be a useful model of virus recrudescence in Pteropus spp.
Sumi, Ryosuke; Miyake, Ariko; Endo, Taiji; Ohsato, Yoshiharu; Ngo, Minh Ha; Nishigaki, Kazuo
2018-04-01
Feline lymphomas are associated with the transduction and activation of cellular proto-oncogenes, such as c-myc, by feline leukemia virus (FeLV). We describe a polymerase chain reaction assay for detection of myc transduction usable in clinical diagnosis. The assay targets c-myc exons 2 and 3, which together result in a FeLV-specific fusion gene following c-myc transduction. When this assay was conducted on FeLV-infected feline tissues submitted for clinical diagnosis of tumors, myc transduction was detected in 14% of T-cell lymphoma/leukemias. This newly established system could become a useful diagnostic tool in veterinary medicine.
Use of polymerase chain reaction (PCR) in the diagnosis of congenital toxoplasmosis.
Loveridge-Easther, Cam; Yardley, Anne-Marie; Breidenstein, Brenda
2018-06-01
Congenital toxoplasmosis (CT) is a parasitic disease that causes serious fetal and neonatal harm or death. In countries that do not have antenatal screening programs, the initiation of CT treatment relies on a postnatal diagnosis. Until recently, diagnosis was based on clinical signs and immunoglobulin seropositivity, which is fraught with difficulty. In these cases, diagnosis was often delayed or treatment, which carries risk, started empirically. We highlight the use of polymerase chain reaction to diagnose a case of congenital toxoplasmosis, allowing early treatment and justifying the treatment burden. Copyright © 2018 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.
Xu, X G; He, J; He, Y M; Tao, S D; Ying, Y L; Zhu, F M; Lv, H J; Yan, L X
2011-04-01
The Diego blood group system plays an important role in transfusion medicine. Genotyping of DI1 and DI2 alleles is helpful for the investigation into haemolytic disease of the newborn (HDN) and for the development of rare blood group databases. Here, we set up a polymerase chain reaction sequence-based typing (PCR-SBT) method for genotyping of Diego blood group alleles. Specific primers for exon 19 of the solute carrier family 4, anion exchanger, member1 (SLC4A1) gene were designed, and our PCR-SBT method was established and optimized for Diego genotyping. A total of 1053 samples from the Chinese Han population and the family members of a rare proband with DI1/DI1 genotype were investigated by the PCR-SBT method. An allele-specific primer PCR (PCR-ASP) was used to verify the reliability of the PCR-SBT method. The frequencies of DI1 and DI2 alleles in the Chinese Han population were 0.0247 and 0.9753, respectively. Six new single nucleotide polymorphisms (SNPs) were found in the sequenced regions of the SLC4A1 gene, and four novel SNPs located in the exon 19, in which one SNP could cause an amino acid alteration of Ala858Ser on erythrocyte anion exchanger protein 1. The genotypes for Diego blood group were identical among 41 selected samples with PCR-ASP and PCR-SBT. The PCR-SBT method can be used in Diego genotyping as a substitute of serological technique when the antisera is lacking and was suitable for screening large numbers of donors in rare blood group databases. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.
Méndez, María C; Domingo, Cristina; Tenorio, Antonio; Pardo, Lissethe C; Rey, Gloria J; Méndez, Jairo A
2013-09-01
Yellow fever is considered a re-emerging disease and is endemic in tropical regions of Africa and South America. At present, there are no standardized or commercialized kits available for yellow fever virus detection. Therefore, diagnosis must be made by time-consuming routine techniques, and sometimes, the virus or its proteins are not detected. Furthermore, co-circulation with other flaviviruses, including dengue virus, increases the difficulty of diagnosis. To develop a specific reverse transcriptase-polymerase chain reaction (RT-PCR) and nested PCR-based assay to improve the detection and diagnosis of yellow fever virus using both serum and fresh tissue samples. RT-PCR primers were designed to amplify a short fragment of all yellow fever virus genotypes reported. A second set of primers was used in a nested PCR to increase sensitivity. Thirty-three clinical samples were tested with the standardized reaction. The expected amplicon was obtained in 25 out of 33 samples analyzed using this approach, and 2 more samples tested positive after a subsequent nested PCR approach. This improved technique not only ensures the specific detection of a wide range of yellow fever virus genotypes but also may increase the sensitivity of detection by introducing a second round of amplification, allowing a rapid differential diagnosis between dengue and yellow fever infection, which is required for effective surveillance and opportune epidemiologic measures.
Portable gliadin-immunochip for contamination control on the food production chain.
Chiriacò, Maria Serena; de Feo, Francesco; Primiceri, Elisabetta; Monteduro, Anna Grazia; de Benedetto, Giuseppe Egidio; Pennetta, Antonio; Rinaldi, Ross; Maruccio, Giuseppe
2015-09-01
Celiac disease (CD) is one of the most common digestive disorders caused by an abnormal immune reaction to gluten. So far there are no available therapies, the only solution is a strict gluten-free diet, which however could be very challenging as gluten can be hidden in many food products. Furthermore an additional problem is related to cross-contamination of nominal gluten-free foods with gluten-based ones during manufacturing. Here we propose a lab on chip platform as a powerful tool to help food manufacturers to evaluate the real amount of gluten in their products by an accurate in-situ control of the production chain and maybe to specify the real gluten content in packages labeling. Our portable gliadin-immunochips, based on an electrochemical impedance spectroscopy transduction method, were first calibrated and then validated for both liquid and solid food matrixes by analyzing different beers and flours. The high specificity of our assay was also demonstrated by performing control experiments on rice and potatoes flours containing prolamin-like proteins. We achieved limit of quantification of 0.5 ppm for gliadin that is 20 times lower than the worldwide limit established for gluten-free food while the method of analysis is faster and cheaper than currently employed ELISA-based methods. Moreover our results on food samples were validated through a mass spectrometry standard analysis. Copyright © 2015 Elsevier B.V. All rights reserved.
Chacon-Cruz, Enrique; Martinez-Longoria, Cesar Adrian; Llausas-Magana, Eduardo; Luevanos-Velazquez, Antonio; Vazquez-Narvaez, Jorge Alejandro; Beltran, Sandra; Limon-Rojas, Ana Elena; Urtiz-Jeronimo, Fernando; Castaneda-Narvaez, Jose Luis; Otero-Mendoza, Francisco; Aguilar-Del Real, Fernando; Rodriguez-Chagoyan, Jesus; Rivas-Landeros, Rosa Maria; Volker-Soberanes, Maria Luisa; Hinojosa-Robles, Rosa Maria; Arzate-Barbosa, Patricia; Aviles-Benitez, Laura Karina; Elenes-Zamora, Fernando Ivan; Becka, Chandra M.; Ruttimann, Ricardo
2016-01-01
Objectives: Meningococcal meningitis is reported as a rare condition in Mexico. There are no internationally published studies on bacterial causes of meningitis in the country based on active surveillance. This study focuses on finding the etiology of bacterial meningitis in children from nine Mexican Hospitals. Methods: From January 2010 to February 2013, we conducted a three years of active surveillance for meningitis in nine hospitals throughout Mexico. Active surveillance started at the emergency department for every suspected case, and microbiological studies confirmed/ruled out all potentially bacterial pathogens. We diagnosed based on routine cultures from blood and cerebrospinal fluid (not polymerase chain reaction or other molecular diagnostic tests), and both pneumococcal serotyping and meningococcal serogrouping by using standard methods. Results: Neisseria meningitidis was the leading cause, although 75% of cases occurred in the northwest of the country in Tijuana on the US border. Serogroup C was predominant. Streptococcus pneumoniae followed Neisseria meningitides, but was uniformly distributed throughout the country. Serotype 19A was the most incident but before universal implementation of the 13-valent pneumococcal conjugate vaccine. Other bacteria were much less common, including Enterobacteriaceae and Streptococcus agalactiae (these two affecting mostly young infants). Conclusions: Meningococcal meningitis is endemic in Tijuana, Mexico, and vaccination should be seriously considered in that region. Continuous universal vaccination with the 13-valent pneumococcal conjugate vaccine should be nationally performed, and polymerase chain reaction should be included for bacterial detection in all cultures – negative but presumably bacterial meningitis cases. PMID:27551428
Sarkar, F H; Kupsky, W J; Li, Y W; Sreepathi, P
1994-03-01
Mutations in the p53 gene have been recognized in brain tumors, and clonal expansion of p53 mutant cells has been shown to be associated with glioma progression. However, studies on the p53 gene have been limited by the need for frozen tissues. We have developed a method utilizing polymerase chain reaction (PCR) for the direct analysis of p53 mutation by single-strand conformation polymorphism (SSCP) and by direct DNA sequencing of the p53 gene using a single 10-microns paraffin-embedded tissue section. We applied this method to screen for p53 gene mutations in exons 5-8 in human gliomas utilizing paraffin-embedded tissues. Twenty paraffin blocks containing tumor were selected from surgical specimens from 17 different adult patients. Tumors included six anaplastic astrocytomas (AAs), nine glioblastomas (GBs), and two mixed malignant gliomas (MMGs). The tissue section on the stained glass slide was used to guide microdissection of an unstained adjacent tissue section to ensure > 90% of the tumor cell population for p53 mutational analysis. Simultaneously, microdissection of the tissue was also carried out to obtain normal tissue from adjacent areas as a control. Mutations in the p53 gene were identified in 3 of 17 (18%) patients by PCR-SSCP analysis and subsequently confirmed by PCR-based DNA sequencing. Mutations in exon 5 resulting in amino acid substitution were found in one thalamic AA (codon 158, CGC > CTT: Arg > Leu) and one cerebral hemispheric GB (codon 151, CCG > CTG: Pro > Leu).(ABSTRACT TRUNCATED AT 250 WORDS)
Panya, Sappasith; Fliefel, Riham; Probst, Florian; Tröltzsch, Matthias; Ehrenfeld, Michael; Schubert, Sören; Otto, Sven
2017-03-01
We hypothesized that local infection plays a critical role in the pathogenesis of medication-related osteonecrosis of the jaw (MRONJ). Recent developments in molecular methods have revolutionized new approaches for the rapid detection of microorganisms including those difficult to culture. The aim of our study is to identify the bacterial profiles in MRONJ by microbiological culture and polymerase chain reactions (PCR). A retrospective analysis was performed on MRONJ patients from 2008 to 2014. The bacterial profile from MRONJ bone samples was determined using microbiological culture and PCR. Ninety five patients fulfilled the inclusion criteria with mean age of 69.85 ± 8.71 years. A female predilection was detected. The mandible was more commonly affected than maxilla. Tooth extraction was the frequent triggering factor. Breast cancer was the primary cause for administration and intravenous bisphosphonates were the most commonly administrated antiresorptive drugs. The majority of patients were classified as stage 2. Posterior teeth were most commonly affected. Based on bone culture results, the most common microorganism were both actinomyces and mixed flora. PCR confirmed the presence of actinomyces in 55 patients. Our data suggest that PCR might be an innovative method for detection of microorganisms difficult to culture using traditional microbiological techniques. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Pascho, Ronald J.; Chase, Dorothy M.; McKibben, Constance L.
1998-01-01
Ovarian fluid samples from naturally infected chinook salmon (Oncorhynchus tshawytscha) were examined for the presence of Renibacterium salmoninarum by the membrane-filtration fluorescent antibody test (MF-FAT), an antigen capture enzyme-linked immunosorbent assay (ELISA), and a nested polymerase chain reaction (PCR). On the basis of the MF-FAT, 64% (66/103) samples contained detectable levels of R. salmoninarum cells. Among the positive fish, the R. salmoninarum concentrations ranged from 25 cells/ml to 4.3 × 109cells/ml. A soluble antigenic fraction of R. salmoninarum was detected in 39% of the fish (40/103) by the ELISA. The ELISA is considered one of the most sensitive detection methods for bacterial kidney disease in tissues, yet it did not detect R. salmoninarum antigen consistently at bacterial cell concentrations below about 1.3 × 104cells/ml according to the MF-FAT counts. When total DNA was extracted and tested in a nested PCR designed to amplify a 320-base-pair region of the gene encoding a soluble 57-kD protein of R. salmoninarum, 100% of the 100 samples tested were positive. The results provided strong evidence that R. salmoninarum may be present in ovarian fluids thought to be free of the bacterium on the basis of standard diagnostic methods.
Li, Yan; Wu, Tao; Qi, Xian; Ge, Yiyue; Guo, Xiling; Wu, Bin; Yu, Huiyan; Zhu, Yefei; Shi, Zhiyang; Wang, Hua; Cui, Lunbiao; Zhou, Minghao
2013-12-01
A novel reassortant influenza A (H7N9) virus emerged recently in China. In this study, a duplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assay was developed for the simultaneous detection of hemagglutinin (HA) and neuraminidase (NA) genes of H7N9 influenza viruses. The sensitivity of the assay was determined to be 10 RNA copies per reaction for both HA and NA genes. No cross-reactivity was observed with other influenza virus subtypes or respiratory tract viruses. One hundred and forty-six clinical and environmental specimens were tested and compared with reference methods and were found to be consistent. The assay is suitable for large-scale screening due to short turnaround times and high specificity, sensitivity, and reproducibility. Copyright © 2013 Elsevier B.V. All rights reserved.
An, S F; Fleming, K A
1991-11-01
A problem associated with use of the polymerase chain reaction to amplify specific DNA fragments from formalin fixed, paraffin wax embedded tissues is the not infrequent failure of amplification. One possible reason for this could be the presence of inhibitor(s), which interfere with the activity of the reaction. It has been shown that such inhibitor(s) exist when amplifying the human beta globin gene (which exists in human genomic DNA as a single copy gene) from routine clinical samples. A variety of methods to remove such inhibitor(s) were investigated. The results indicate that inhibitor(s) are removed by proteinase K digestion, followed by purification with phenol/chloroform, and centrifugation through a Centricon-30 membrane (30,000 molecular weight cut off). Other factors, including the length and concentration of the DNA sequence to be amplified, can also affect amplification.
Polymerase chain displacement reaction.
Harris, Claire L; Sanchez-Vargas, Irma J; Olson, Ken E; Alphey, Luke; Fu, Guoliang
2013-02-01
Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics.
Oddoux, O; Debourgogne, A; Kantele, A; Kocken, C H; Jokiranta, T S; Vedy, S; Puyhardy, J M; Machouart, M
2011-04-01
Recently, Plasmodium knowlesi has been recognised as the fifth Plasmodium species causing malaria in humans. Hundreds of human cases infected with this originally simian Plasmodium species have been described in Asian countries and increasing numbers are reported in Europe from travellers. The growing impact of tourism and economic development in South and Southeast Asia are expected to subsequently lead to a further increase in cases both among locals and among travellers. P. knowlesi is easily misidentified in microscopy as P. malariae or P. falciparum. We developed new primers for the rapid and specific detection of this species by low-cost real-time polymerase chain reaction (PCR) and added this method to an already existing panel of primers used for the molecular identification of the other four species in one reaction. Reference laboratories should now be able to identify undisputably and rapidly P. knowlesi, as it is a potentially fatal pathogen.
Lee, Hyun-A; Hong, Sunhwa; Chung, Yungho; Kim, Okjin
2011-09-01
Eimeria tenella and Eimeria maxima are important pathogens causing intracellular protozoa infections in laboratory avian animals and are known to affect experimental results obtained from contaminated animals. This study aimed to find a fast, sensitive, and efficient protocol for the molecular identification of E. tenella and E. maxima in experimental samples using chickens as laboratory avian animals. DNA was extracted from fecal samples collected from chickens and polymerase chain reaction (PCR) analysis was employed to detect E. tenella and E. maxima from the extracted DNA. The target nucleic acid fragments were specifically amplified by PCR. Feces secreting E. tenella and E. maxima were detected by a positive PCR reaction. In this study, we were able to successfully detect E. tenella and E. maxima using the molecular diagnostic method of PCR. As such, we recommended PCR for monitoring E. tenella and E. maxima in laboratory avian facilities.
Li, Zhenbao; Han, Xiaopeng; Zhai, Yinglei; Lian, He; Zhang, Dong; Zhang, Wenjuan; Wang, Yongjun; He, Zhonggui; Liu, Zheng; Sun, Jin
2015-06-01
Pegylation method is widely used to prolong the blood circulation time of proteins and nanoparticles after intravenous administration, but the effect of surface poly (ethylene glycol) (PEG) chain length on oral absorption of the pegylated nanoparticles is poorly reported. The aim of our study was to investigate the influence of PEG corona chain length on membrane permeability and oral bioavailability of the amphiphilic pegylated prodrug-based nanomicelles, taking all trans-retinoic acid (ATRA) as a model drug. The amphiphilic ATRA-PEG conjugates were synthesized by esterification reaction between all trans-retinoic acid and mPEGs (mPEG500, mPEG1000, mPEG2000, and mPEG5000). The conjugates could self-assemble in aqueous medium to form nanomicelles by emulsion-solvent evaporation method. The resultant nanomicelles were in spherical shape with an average diameter of 13-20 nm. The drug loading efficiency of ATRA-PEG500, ATRA-PEG1000, ATRA-PEG2000, and ATRA-PEG5000 was about 38.4, 26.6, 13.1, and 5.68 wt%, respectively. With PEG chain length ranging from 500 to 5000, ATRA-PEG nanomicelles exhibited a bell shape of chemical stability in different pH buffers, intestinal homogenate and plasma. More importantly, they were all rapidly hydrolyzed into the parent drug in hepatic homogenate, with the half-time values being 0.3-0.4h. In comparison to ATRA solution and ATRA prodrug-based nanomicelles, ATRA-PEG1000 showed the highest intestinal permeability. After oral administration, ATRA-PEG2000 and ATRA-PEG5000 nanomicelles were not nearly absorbed, while the oral bioavailability of ATRA-PEG500 and ATRA-PEG1000 demonstrated about 1.2- and 2.0-fold higher than ATRA solution. Our results indicated that PEG1000 chain length of ATRA-PEG prodrug nanomicelles has the optimal oral bioavailability probably due to improved stability and balanced mucus penetration capability and cell binding, and that the PEG chain length on a surface of nanoparticles cannot exceed a key threshold with the purpose of enhancement in oral bioavailability. Copyright © 2015. Published by Elsevier B.V.
Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F
2011-09-01
The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human scFv (single chain antibody fragment) libraries using a short linker (GGSSRSS) or a long linker (GGSSRSSSSGGGGSGGGG). In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final scFv products that are used for cloning.
Abdulmawjood, A; Roth, S; Bülte, M
2002-10-01
For the detection of food born bacteria by polymerase chain reaction (PCR) in food products, an internal amplification control (IAC) is required in order to prevent false negative results that might be caused by PCR inhibitors. In the present study, two IACs were constructed using two different methods. These IACs were designed in a way that the same primer pair can be used to amplify the target DNA and coamplify the IAC. The first IAC with a size of approximately 200 bp was constructed by deleting a part of the amplicon of the original target DNA (500 bp) between the two primer sites to produce an IAC smaller than the target DNA. The second IAC with a size of approximately 600 bp was synthesized in a one step PCR reaction. The primers used in this reaction possessed 5' over-hanging ends, which were identical to the primers used in the diagnostic reaction, whereas their 3' ends were complementary to the (pUC19) predetermined DNA sequence of defined length and sequence. The concentration of IACs appeared to be critical. Too much IAC DNA template would out-compete the target DNA template, thus giving a false negative result. However the use of an optimal IAC concentration increased the reliability of the PCR assays and appeared to be useful for food diagnostics.
NASA Astrophysics Data System (ADS)
Lily; Siregar, Y.; Ilyas, S.
2018-03-01
This study purposed to describe the product Polymerase Chain Reaction (PCR) and sequencing of DNA Mycobacterium (M.) tuberculosis from sputum of tuberculosis (TB) patients in Medan. Sputum was collected from patients that diagnosed with pulmonary TB by a physician. Specimen processed by PCR method of Li et al. and sequencing at Macrogen Laboratory. All of 12 product PCR were showed brightness bands at 126 base pair (bp). These results indicated similarity to the study of Li et al. Sequencing analysis showed the presence of a mutation and non-mutation groups of M. tuberculosis. The reference and outcome berange of the mutation and non-mutation of M. tuberculosis were 56-107, 59-85, 60-120 and 63-94, respectively. The percentage bp difference between the outcome and references for mutation and non-mutation were 3.448-6.569and 3.278-7.428%, respectively. In conclusion, the successful amplification of PCR products in a 1.5% agarose gel electrophoresis where all 12 sputa contained rpoB-positive M. tuberculosis and 0.644% difference was found between the outcome with reference bp of the mutation and non-mutation M. tuberculosis groups.
Andris-Widhopf, Jennifer; Steinberger, Peter; Fuller, Roberta; Rader, Christoph; Barbas, Carlos F
2011-09-01
The development of therapeutic antibodies for use in the treatment of human diseases has long been a goal for many researchers in the antibody field. One way to obtain these antibodies is through phage-display libraries constructed from human lymphocytes. This protocol describes the construction of human Fab (fragment antigen binding) antibody libraries. In this method, the individual rearranged heavy- and light-chain variable regions are amplified separately and are linked through a series of overlap polymerase chain reaction (PCR) steps to give the final Fab products that are used for cloning.
Yan, Yi; Zhang, Jiuyang; Qiao, Yali; Tang, Chuanbing
2014-01-01
A facile method to prepare cationic cobaltocenium-containing polyelectrolyte is reported. Cobaltocenium monomer with methacrylate is synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between 2-azidoethyl methacrylate and ethynylcobaltocenium hexafluorophosphate. Further controlled polymerization is achieved by reversible addition-fragmentation chain transfer polymerization (RAFT) by using cumyl dithiobenzoate (CDB) as a chain transfer agent. Kinetic study demonstrates the controlled/living process of polymerization. The obtained side-chain cobaltocenium-containing polymer is a metal-containing polyelectrolyte that shows characteristic redox behavior of cobaltocenium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Network Polymers Formed Under Nonideal Conditions.
1986-12-01
the system or the limited ability of the statistical model to account for stochastic correlations. The viscosity of the reacting system was measured as...based on competing reactions (ring, chain) and employs equilibrium chain statistics . The work thus far has been limited to single cycle growth on an...polymerizations, because a large number of differential equations must be solved. The Makovian approach (sometimes referred to as the statistical or
Aims: To determine the performance of a rapid, real time polymerase chain reaction (PCR) method for the detection and quantitative analysis Helicobacter pylori at low concentrations in drinking water.
Methods and Results: A rapid DNA extraction and quantitative PCR (QPCR)...
Wang, Chun-Chi; Shih, Chi-Jen; Jong, Yuh-Jyh; Wu, Shou-Mei
2014-06-23
This is the first ligase chain reaction used for diagnosis of spinal muscular atrophy (SMA). Universal fluorescent tri-probe ligation (UFTPL), a novel strategy used for distinguishing the multi-nucleotide alternations at single base, is developed to quantitatively analyze the SMN1/SMN2 genes in diagnosis of SMA. Ligase chain reaction was performed by adding three probes including universal fluorescent probe, connecting probe and recognizing probe to differentiate single nucleotide polymorphisms in UFTPL. Our approach was based on the two UFTPL products of survival motor neuron 1 (SMN1) and SMN2 genes (the difference of 9 mer) and analyzed by capillary electrophoresis (CE). We successfully determined various gene dosages of SMN1 and SMN2 genes in homologous or heterologous subjects. By using the UFTPL-CE method, the SMN1 and SMN2 genes were fully resolved with the resolution of 2.16±0.37 (n=3). The r values of SMN1 and SMN2 regression curves over a range of 1-4 copies were above 0.9944. Of the 48 DNA samples, the data of gene dosages were corresponding to that analyzed by conformation sensitive CE and denatured high-performance liquid chromatography (DHPLC). This technique was found to be a good methodology for quantification or determination of the relative genes having multi-nucleotide variants at single base. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Cong; Assary, Rajeev S.; Curtiss, Larry A.
2014-06-26
Upgrading of furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan, can be coupled with various C1 to C4 lower molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase tomore » produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (~25 kcal/mol) are lower than the cellulose activation or decomposition reactions (~50 kcal/mol). Cycloaddition of C5-C8 cyclo-ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ~20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons.« less
MATERIALS SUPPORTING THE NEW RECREATIONAL ...
EPA is developing new, rapid methods for monitoring water quality at beaches to determine adequacy of water quality for swimming. The methods being developed rely upon quantitive polymerase chain reaction technology. They will permit real time decisions regarding beach closures. The methods are supported by a series of epidemiology studies evaluating the rate of GI illness resulting from swimming events. Implementation of BEACH Act amendments
Generation of non-genomic oligonucleotide tag sequences for RNA template-specific PCR
Pinto, Fernando Lopes; Svensson, Håkan; Lindblad, Peter
2006-01-01
Background In order to overcome genomic DNA contamination in transcriptional studies, reverse template-specific polymerase chain reaction, a modification of reverse transcriptase polymerase chain reaction, is used. The possibility of using tags whose sequences are not found in the genome further improves reverse specific polymerase chain reaction experiments. Given the absence of software available to produce genome suitable tags, a simple tool to fulfill such need was developed. Results The program was developed in Perl, with separate use of the basic local alignment search tool, making the tool platform independent (known to run on Windows XP and Linux). In order to test the performance of the generated tags, several molecular experiments were performed. The results show that Tagenerator is capable of generating tags with good priming properties, which will deliberately not result in PCR amplification of genomic DNA. Conclusion The program Tagenerator is capable of generating tag sequences that combine genome absence with good priming properties for RT-PCR based experiments, circumventing the effects of genomic DNA contamination in an RNA sample. PMID:16820068
Nanobarcoding: detecting nanoparticles in biological samples using in situ polymerase chain reaction
Eustaquio, Trisha; Leary, James F
2012-01-01
Background Determination of the fate of nanoparticles (NPs) in a biological system, or NP biodistribution, is critical in evaluating an NP formulation for nanomedicine. Current methods to determine NP biodistribution are greatly inadequate, due to their limited detection thresholds. Herein, proof of concept of a novel method for improved NP detection based on in situ polymerase chain reaction (ISPCR), coined “nanobarcoding,” is demonstrated. Methods Nanobarcoded superparamagnetic iron oxide nanoparticles (NB-SPIONs) were characterized by dynamic light scattering, zeta potential, and hyperspectral imaging measurements. Cellular uptake of Cy5-labeled NB-SPIONs (Cy5-NB-SPIONs) was imaged by confocal microscopy. The feasibility of the nanobarcoding method was first validated by solution-phase PCR and “pseudo”-ISPCR before implementation in the model in vitro system of HeLa human cervical adenocarcinoma cells, a cell line commonly used for ISPCR-mediated detection of human papilloma virus (HPV). Results Dynamic light-scattering measurements showed that NB conjugation stabilized SPION size in different dispersion media compared to that of its precursor, carboxylated SPIONs (COOH-SPIONs), while the zeta potential became more positive after NB conjugation. Hyperspectral imaging confirmed NB conjugation and showed that the NB completely covered the SPION surface. Solution-phase PCR and pseudo-ISPCR showed that the expected amplicons were exclusively generated from the NB-SPIONs in a dose-dependent manner. Although confocal microscopy revealed minimal cellular uptake of Cy5-NB-SPIONs at 50 nM over 24 hours in individual cells, ISPCR detected definitive NB-SPION signals inside HeLa cells over large sample areas. Conclusion Proof of concept of the nanobarcoding method has been demonstrated in in vitro systems, but the technique needs further development before its widespread use as a standardized assay. PMID:23144562
Development of a Portable Binary Chlorine Dioxide Generator for Decontamination
2010-03-01
chlorine dioxide forms slowly from chlorite solutions through either acid release or a radical chain reaction that we observed at neutral pH. Task 7... Chlorine dioxide and water in methanol - no agent control F. 5.25% Bleach G. Methanol only 3.0 PROCEDURES 3.1 METHOD VALIDATION The reaction...error range in gas chromatography measurements. For the chlorine dioxide containing samples, mass spectra were analyzed to determine potential
Enhanced analysis of real-time PCR data by using a variable efficiency model: FPK-PCR
Lievens, Antoon; Van Aelst, S.; Van den Bulcke, M.; Goetghebeur, E.
2012-01-01
Current methodology in real-time Polymerase chain reaction (PCR) analysis performs well provided PCR efficiency remains constant over reactions. Yet, small changes in efficiency can lead to large quantification errors. Particularly in biological samples, the possible presence of inhibitors forms a challenge. We present a new approach to single reaction efficiency calculation, called Full Process Kinetics-PCR (FPK-PCR). It combines a kinetically more realistic model with flexible adaptation to the full range of data. By reconstructing the entire chain of cycle efficiencies, rather than restricting the focus on a ‘window of application’, one extracts additional information and loses a level of arbitrariness. The maximal efficiency estimates returned by the model are comparable in accuracy and precision to both the golden standard of serial dilution and other single reaction efficiency methods. The cycle-to-cycle changes in efficiency, as described by the FPK-PCR procedure, stay considerably closer to the data than those from other S-shaped models. The assessment of individual cycle efficiencies returns more information than other single efficiency methods. It allows in-depth interpretation of real-time PCR data and reconstruction of the fluorescence data, providing quality control. Finally, by implementing a global efficiency model, reproducibility is improved as the selection of a window of application is avoided. PMID:22102586
Gel Point Suppression in RAFT Polymerization of Pure Acrylic Cross-Linker Derived from Soybean Oil.
Yan, Mengguo; Huang, Yuerui; Lu, Mingjia; Lin, Fang-Yi; Hernández, Nacú B; Cochran, Eric W
2016-08-08
Here we report the reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylated epoxidized soybean oil (AESO), a cross-linker molecule, to high conversion (>50%) and molecular weight (>100 kDa) without macrogelation. Surprisingly, gelation is suppressed in this system far beyond the expectations predicated both on Flory-Stockmeyer theory and multiple other studies of RAFT polymerization featuring cross-linking moieties. By varying AESO and initiator concentrations, we show how intra- versus intermolecular cross-linking compete, yielding a trade-off between the degree of intramolecular linkages and conversion at gel point. We measured polymer chain characteristics, including molecular weight, chain dimensions, polydispersity, and intrinsic viscosity, using multidetector gel permeation chromatography and NMR to track polymerization kinetics. We show that not only the time and conversion at macrogelation, but also the chain architecture, is largely affected by these reaction conditions. At maximal AESO concentration, the gel point approaches that predicted by the Flory-Stockmeyer theory, and increases in an exponential fashion as the AESO concentration decreases. In the most dilute solutions, macrogelation cannot be detected throughout the entire reaction. Instead, cyclization/intramolecular cross-linking reactions dominate, leading to microgelation. This work is important, especially in that it demonstrates that thermoplastic rubbers could be produced based on multifunctional renewable feedstocks.
Peroxy radical detection by chemical amplification (PERCA)
NASA Technical Reports Server (NTRS)
Stedman, D. H.
1986-01-01
Important reactions of atmospheric free radicals are the chain oxidation of NO and CO. Thus: H2O + NO yields OH + NO2; OH + CO yields H + CO2; H + O2 + M yields HO2 + M. In most models, the need to know the free radical concentration could also be described as the need to know the rate of the above oxidation chain in the atmosphere. It is the total rate of this chain (also carried by RO2 and RO) which was measured using the PERCA. The PERCA is thus essentially a RO sub X meter. The PERCA works by adding excess CO (10%) and NO (5ppm) to a stream of air and measuring the NO2 produced after 3s of reaction time. Since other processes produce NO2, the chain reaction is modulated by switching the CO for N2. The chain length is limited by the reaction OH + NO yields HONO and is modeled to be somewhat over 1000. Measured chain lengths agree with the modeled numbers.
Fredholm, Daniel V; Coleman, James K; Childress, April L; Wellehan, James F X
2015-03-01
Agamid adenovirus 1 (AgAdv-1) is a significant cause of disease in bearded dragons (Pogona sp.). Clinical manifestations of AgAdv-1 infection are variable and often nonspecific; the manifestations range from lethargy, weight loss, and inappetence, to severe enteritis, hepatitis, and sudden death. Currently, diagnosis of AgAdv-1 infection is achieved through a single published method: standard nested polymerase chain reaction (nPCR) and sequencing. Standard nPCR with sequencing provides reliable sensitivity, specificity, and validation of PCR products. However, this process is comparatively expensive, laborious, and slow. Probe hybridization, as used in a TaqMan assay, represents the best option for validating PCR products aside from the time-consuming process of sequencing. This study developed a real-time PCR (qPCR) assay using a TaqMan probe-based assay, targeting a highly conserved region of the AgAdv-1 genome. Standard curves were generated, detection results were compared with the gold standard conventional PCR and sequencing assay, and limits of detection were determined. Additionally, the qPCR assay was run on samples known to be positive for AgAdv-1 and samples known to be positive for other adenoviruses. Based on the results of these evaluations, this assay allows for a less expensive, rapid, quantitative detection of AgAdv-1 in bearded dragons. © 2015 The Author(s).
Wihokhoen, Benchawan; Dondorp, Arjen M; Turner, Paul; Woodrow, Charles J; Imwong, Mallika
2016-02-01
Molecular approaches offer a means of testing archived samples stored as dried blood spots in settings where standard blood cultures are not possible. Peripheral blood films are one suggested source of material, although the sensitivity of this approach has not been well defined. Thin blood smears and dried blood spots from a severe pediatric malaria study were assessed using specific polymerase chain reaction (PCR) primers to detect non-typhoidal Salmonella (NTS; MisL gene), Streptococcus pneumoniae (lytA), and Plasmodium falciparum (18S rRNA). Of 16 cases of NTS and S. pneumoniae confirmed on blood culture, none were positive by PCR using DNA extracts from blood films or dried blood spots. In contrast, four of 36 dried blood spots and two of 178 plasma samples were PCR positive for S. pneumoniae, despite negative bacterial blood cultures, suggesting false positives. Quantitative assessment revealed that the effective concentration of P. falciparum DNA in blood films was three log orders of magnitude lower than for dried blood spots. The P. falciparum kelch13 gene could not be amplified from blood films. These findings question the value of blood PCR-based approaches for detection of NTS and S. pneumoniae, and show that stored blood films are an inefficient method of studying P. falciparum. © The American Society of Tropical Medicine and Hygiene.
One-Step Reverse Transcription-Polymerase Chain Reaction for Ebola and Marburg Viruses.
Park, Sun-Whan; Lee, Ye-Ji; Lee, Won-Ja; Jee, Youngmee; Choi, WooYoung
2016-06-01
Ebola and Marburg viruses (EBOVs and MARVs, respectively) are causative agents of severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. In 2014, there was a major Ebola outbreak in various countries in West Africa, including Guinea, Liberia, Republic of Sierra Leone, and Nigeria. EBOV and MARV are clinically difficult to diagnose and distinguish from other African epidemic diseases. Therefore, in this study, we aimed to develop a method for rapid identification of the virus to prevent the spread of infection. We established a conventional one-step reverse transcription-polymerase chain reaction (RT-PCR) assay for these pathogens based on the Superscript Reverse Transcriptase-Platinum Taq polymerase enzyme mixture. All assays were thoroughly optimized using in vitro-transcribed RNA. We designed seven primer sets of nucleocapsid protein (NP) genes based on sequences from seven filoviruses, including five EBOVs and two MARVs. To evaluate the sensitivity of the RT-PCR assay for each filovirus, 10-fold serial dilutions of synthetic viral RNA transcripts of EBOV or MARV NP genes were used to assess detection limits of viral RNA copies. The potential for these primers to cross react with other filoviruses was also examined. The results showed that the primers were specific for individual genotype detection in the examined filoviruses. The assay established in this study may facilitate rapid, reliable laboratory diagnosis in suspected cases of Ebola and Marburg hemorrhagic fevers.
Hui, Yiang; Manna, Pradip; Ou, Joyce J; Kerley, Spencer; Zhang, Cunxian; Sung, C James; Lawrence, W Dwayne; Quddus, M Ruhul
2015-09-01
High-risk human papillomavirus infection usually is seen at one anatomic site in an individual. Rarely, infection at multiple anatomic sites of the female lower genital tract in the same individual is encountered either simultaneously and/or at a later date. The current study identifies the various subtypes of high-risk human papillomavirus infection in these scenarios and analyzes the potential significance of these findings. High-risk human papillomavirus infection involving 22 anatomic sites from 7 individuals was identified after institutional review board approval. Residual paraffin-embedded tissue samples were retrieved, and all 15 high-risk human papillomavirus were identified and viral load quantified using multiplex real-time polymerase chain reaction-based method. Multiple high-risk human papillomavirus subtypes were identified in 32% of the samples and as many as 5 different subtypes of high-risk human papillomavirus infection in a single anatomic site. In general, each anatomic site has unique combination of viral subtypes, although one individual showed overlapping subtypes in the vagina, cervix, and vulvar samples. Higher viral load and rare subtypes are more frequent in younger patients and in dysplasia compared with carcinoma. Follow-up ranging from 3 to 84 months revealed persistent high-risk human papillomavirus infection in 60% of cases. Copyright © 2015 Elsevier Inc. All rights reserved.
Gold Nanoparticles-Based Barcode Analysis for Detection of Norepinephrine.
An, Jeung Hee; Lee, Kwon-Jai; Choi, Jeong-Woo
2016-02-01
Nanotechnology-based bio-barcode amplification analysis offers an innovative approach for detecting neurotransmitters. We evaluated the efficacy of this method for detecting norepinephrine in normal and oxidative-stress damaged dopaminergic cells. Our approach use a combination of DNA barcodes and bead-based immunoassays for detecting neurotransmitters with surface-enhanced Raman spectroscopy (SERS), and provides polymerase chain reaction (PCR)-like sensitivity. This method relies on magnetic Dynabeads containing antibodies and nanoparticles that are loaded both with DNA barcords and with antibodies that can sandwich the target protein captured by the Dynabead-bound antibodies. The aggregate sandwich structures are magnetically separated from the solution and treated to remove the conjugated barcode DNA. The DNA barcodes are then identified by SERS and PCR analysis. The concentration of norepinephrine in dopaminergic cells can be readily detected using the bio-barcode assay, which is a rapid, high-throughput screening tool for detecting neurotransmitters.
Erben, Philipp; Gosenca, Darko; Müller, Martin C.; Reinhard, Jelena; Score, Joannah; del Valle, Francesco; Walz, Christoph; Mix, Jürgen; Metzgeroth, Georgia; Ernst, Thomas; Haferlach, Claudia; Cross, Nicholas C.P.; Hochhaus, Andreas; Reiter, Andreas
2010-01-01
Background Rapid identification of diverse fusion genes with involvement of PDGFRA or PDGFRB in eosinophilia-associated myeloproliferative neoplasms is essential for adequate clinical management but is complicated by the multitude and heterogeneity of partner genes and breakpoints. Design and Methods We established a generic quantitative reverse transcriptase polymerase chain reaction to detect overexpression of the 3′-regions of PDGFRA or PDGFRB as a possible indicator of an underlying fusion. Results At diagnosis, all patients with known fusion genes involving PDGFRA (n=5; 51 patients) or PDGFRB (n=5; 7 patients) showed significantly increased normalized expression levels compared to 191 patients with fusion gene-negative eosinophilia or healthy individuals (PDGFRA/ABL: 0.73 versus 0.0066 versus 0.0064, P<0.0001; PDGFRB/ABL: 196 versus 3.8 versus 5.85, P<0.0001). The sensitivity and specificity of the activation screening test were, respectively, 100% and 88.4% for PDGFRA and 100% and 94% for PDGFRB. Furthermore, significant overexpression of PDGFRB was found in a patient with an eosinophilia-associated myeloproliferative neoplasm with uninformative cytogenetics and an excellent response to imatinib. Subsequently, a new SART3-PDGFRB fusion gene was identified by 5′-rapid amplification of cDNA ends polymerase chain reaction (5′-RACE-PCR). Conclusions Quantitative reverse transcriptase polymerase chain reaction analysis is a simple and useful adjunct to standard diagnostic assays to detect clinically significant overexpression of PDGFRA and PDGFRB in eosinophilia-associated myeloproliferative neoplasms or related disorders. PMID:20107158
NASA Astrophysics Data System (ADS)
Jordan, C. E.; Griffin, R. J.; Lim, Y. B.; Ziemann, P. J.; Atkinson, R.; Arey, J.
2005-12-01
Recent laboratory studies show that δ-hydroxycarbonyls formed in the atmosphere via OH-initiated reactions with alkanes can cyclize then dehydrate to form substituted dihydrofurans. These dihydrofurans are highly reactive, with lifetimes in the atmosphere of 1.3 h (OH), 24 s (NO3), and 7 min (O3). The ability of the δ-hydroxycarbonyls to cyclize and dehydrate has been shown to increase with increasing carbon number. Recent laboratory results show that the secondary organic aerosol (SOA) yields from alkanes also increase with carbon number reaching ~53% for C15. The reaction mechanism proposed based on the chamber results is the basis of the modeling study presented here. We have incorporated this proposed mechanism into the Caltech Atmospheric Chemistry Mechanism (CACM). For computational reasons, similar compounds are lumped together and represented by a single suitable compound. In the present case, alkanes are lumped into 3 groups: short chains (≤C6), medium chains (C7 - C12), and long chains (≥C13). SOA yields obtained in chamber studies increase dramatically from 0.5% for C8 to 25% for C12. The most dramatic increase is observed from C11 (8%) to C13 (~50%). This is attributed to the low volatility of first generation products contributing to the SOA from longer chain alkanes. Here we have studied OH reactions with the substituted dihydrofurans for medium (represented by C10) and long (represented by C16) chain alkanes using CACM along with the aerosol partitioning module MPMPO (Model to Predict the Multi-phase Partitioning of Organics). We will present the results of this modeling study, characterizing the influence of substituted dihydrofurans on the SOA forming potential of alkanes.
Qi, Yan; Qiu, Liying; Fan, Wenjiao; Liu, Chenghui; Li, Zhengping
2017-08-07
A versatile flow cytometric bead assay (FCBA) coupled with a completely enzyme-free signal amplification mechanism is developed for the sensitive detection of microRNAs (miRNAs). This new strategy integrates click chemistry-mediated ligation chain reaction (CLCR) with hybridization chain reaction (HCR) for enzyme-free signal amplification on magnetic beads (MBs), and a flow cytometer for the robust fluorescence readout of the MBs. Firstly, target miRNA can initiate CLCR on the surface of MBs based on the click chemical ligation between dibenzocyclooctyne (DBCO)- and azide-modified single-stranded DNA (ssDNA) probes, and the amount of ligated ssDNA sequences on the MBs will be proportional to the dosage of target miRNA. Afterward, each of the ligated ssDNA products can trigger a cascade chain reaction of hybridization events between two alternating fluorophore-tagged hairpin probes, resulting in another signal amplification pathway with an amplified accumulation of fluorophores on the MBs. Finally, the fluorophore-anchored MBs are directly and rapidly analyzed by using a flow cytometer without any separation or elution processes. Herein, the click nucleic acid ligation only occurs on the surface of MBs, so the nonspecific ligations are greatly inhibited compared with that of ligation reaction performed in homogeneous solution. Furthermore, the signal amplification by CLCR-HCR is highly efficient but totally enzyme-free, which may overcome the potential drawbacks of conventional enzyme-catalyzed signal amplification protocols and lead to a high sensitivity. The CLCR-HCR-based FCBA has pushed the detection limit of let-7a miRNA down to the femtomolar (fM) level, showing great potential in miRNA-related biological studies and disease diagnosis.
Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.
Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei
2016-02-02
Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis.
Linear alkane polymerization on a gold surface.
Zhong, Dingyong; Franke, Jörn-Holger; Podiyanachari, Santhosh Kumar; Blömker, Tobias; Zhang, Haiming; Kehr, Gerald; Erker, Gerhard; Fuchs, Harald; Chi, Lifeng
2011-10-14
In contrast to the many methods of selectively coupling olefins, few protocols catenate saturated hydrocarbons in a predictable manner. We report here the highly selective carbon-hydrogen (C-H) activation and subsequent dehydrogenative C-C coupling reaction of long-chain (>C(20)) linear alkanes on an anisotropic gold(110) surface, which undergoes an appropriate reconstruction by adsorption of the molecules and subsequent mild annealing, resulting in nanometer-sized channels (1.22 nanometers in width). Owing to the orientational constraint of the reactant molecules in these one-dimensional channels, the reaction takes place exclusively at specific sites (terminal CH(3) or penultimate CH(2) groups) in the chains at intermediate temperatures (420 to 470 kelvin) and selects for aliphatic over aromatic C-H activation.
A case of Pitt-Hopkins syndrome with absence of hyperventilation.
Inati, Adlette; Abbas, Hussein A; Korjian, Serge; Daaboul, Yazan; Harajeily, Mohamad; Saab, Raya
2013-12-01
Pitt-Hopkins syndrome is characterized by mental retardation, hyperventilation, and dysmorphic features due to TCF4 mutations. We report a case of Pitt-Hopkins syndrome in a 2½-year-old boy presenting with psychomotor retardation, recurrent respiratory tract infections, and dysmorphic features with absence of hyperventilation or other breathing abnormalities. Comparative genomic hybridization and quantitative real-time polymerase chain reaction were used to confirm TCF4 haploinsufficiency. Pitt-Hopkins syndrome is a rare debilitating disease that should be in the differential diagnosis of other neurodevelopmental disorders characterized by mental retardation and hypotonicity despite the absence of hyperapnea and seizures. Quantitative real-time polymerase chain reaction is another method to identify TCF4 and to confirm Pitt-Hopkins syndrome diagnosis.
Masada, Sayaka
2016-07-01
Various herbal medicines have been developed and used in various parts of the world for thousands of years. Although locally grown indigenous plants were originally used for traditional herbal preparations, Western herbal products are now becoming popular in Japan with the increasing interest in health. At the same time, there are growing concerns about the substitution of ingredients and adulteration of herbal products, highlighting the need for the authentication of the origin of plants used in herbal products. This review describes studies on Cimicifuga and Vitex products developed in Europe and Japan, focusing on establishing analytical methods to evaluate the origins of material plants and finished products. These methods include a polymerase chain reaction-restriction fragment length polymorphism method and a multiplex amplification refractory mutation system method. A genome-based authentication method and liquid chromatography-mass spectrometry-based authentication for black cohosh products, and the identification of two characteristic diterpenes of agnus castus fruit and a shrub chaste tree fruit-specific triterpene derivative are also described.
Sotelo, Pablo H.; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; Molina, María Carmen
2012-01-01
Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles. PMID:22692130
Møller, Jens Kjølseth
2012-01-01
Rapid clinical and laboratory diagnoses are the foundation for a successful management of serious infections with Neisseria meningitidis. A species-specific multiplex polymerase chain reaction (PCR) coupled with fluidic microarrays using microbeads (the Luminex xMAP™ Technology) can detect pathogens most frequently found in the cerebrospinal fluid of patients. The Luminex suspension array system uniquely combines flow cytometry, microspheres, laser technology, digital signal processing, and traditional chemistry. In this method, the reaction is carried out in one vessel, in which distinctly color-coded bead sets, each conjugated with a different specific nucleic acid reactant, are hybridized with the PCR products, and a reporter molecule is used to quantify the interaction. The flow-based Luminex array reader identifies each reaction (bead set) after excitation by a red classification laser. Reporter signals from each reaction are simultaneously quantified by fluorescence generated by a green reporter laser. This nonculture, multiplex assay may prove to be an important tool for optimal laboratory diagnosis, not only of meningococcal meningitis, but also of meningitis caused by other bacterial or viral pathogens.
Sugita, Sunao; Ogawa, Manabu; Inoue, Shizu; Shimizu, Norio; Mochizuki, Manabu
2011-09-01
To establish a two-step polymerase chain reaction (PCR) diagnostic system for ocular toxoplasmosis. A total of 13 ocular fluid samples (11 aqueous humor and 2 vitreous fluid) were collected from 13 patients with clinically suspected ocular toxoplasmosis. Ten ocular samples from other uveitis patients and 20 samples from subjects without ocular inflammation were used as controls. Two polymerase chain reaction (PCR) methods, i.e., qualitative multiplex PCR and quantitative real-time PCR, were used to measure the toxoplasma genome (T. gondii B1 gene). Qualitative multiplex PCR detected T. gondii B1 gene in the ocular fluids of 11 out of 13 patients with clinically suspected ocular toxoplasmosis. In real-time PCR, we detected high copy numbers of T. gondii DNA (5.1 × 10(2)-2.1 × 10(6) copies/mL) in a total of 10 patients (10/13, 77%). Only ocular toxoplasmosis scar lesions were observed in the three real-time PCR-negative patients. PCR assay results for the samples from the two control groups were all negative. The two-step PCR examination to detect toxoplasma DNA is a useful tool for diagnosing ocular toxoplasmosis.
Tangled nonlinear driven chain reactions of all optical singularities
NASA Astrophysics Data System (ADS)
Vasil'ev, V. I.; Soskin, M. S.
2012-03-01
Dynamics of polarization optical singularities chain reactions in generic elliptically polarized speckle fields created in photorefractive crystal LiNbO3 was investigated in details Induced speckle field develops in the tens of minutes scale due to photorefractive 'optical damage effect' induced by incident beam of He-Ne laser. It was shown that polarization singularities develop through topological chain reactions of developing speckle fields driven by photorefractive nonlinearities induced by incident laser beam. All optical singularities (C points, optical vortices, optical diabolos,) are defined by instantaneous topological structure of the output wavefront and are tangled by singular optics lows. Therefore, they have develop in tangled way by six topological chain reactions driven by nonlinear processes in used nonlinear medium (photorefractive LiNbO3:Fe in our case): C-points and optical diabolos for right (left) polarized components domains with orthogonally left (right) polarized optical vortices underlying them. All elements of chain reactions consist from loop and chain links when nucleated singularities annihilated directly or with alien singularities in 1:9 ratio. The topological reason of statistics was established by low probability of far enough separation of born singularities pair from existing neighbor singularities during loop trajectories. Topology of developing speckle field was measured and analyzed by dynamic stokes polarimetry with few seconds' resolution. The hierarchy of singularities govern scenario of tangled chain reactions was defined. The useful space-time data about peculiarities of optical damage evolution were obtained from existence and parameters of 'islands of stability' in developing speckle fields.
Król, Jaroslaw; Bania, Jacek; Florek, Magdalena; Pliszczak-Król, Aleksandra; Staroniewicz, Zdzislaw
2011-05-01
A set of polymerase chain reaction (PCR) assays for identification of the most important Pasteurellaceae species encountered in cats and dogs were developed. Primers for Pasteurella multocida were designed to detect a fragment of the kmt, a gene encoding the outer-membrane protein. Primers specific to Pasteurella canis, Pasteurella dagmatis, and Pasteurella stomatis were based on the manganese-dependent superoxide dismutase gene (sodA) and those specific to [Haemophilus] haemoglobinophilus on species-specific sequences of the 16S ribosomal RNA gene. All the primers were tested on respective reference and control strains and applied to the identification of 47 canine and feline field isolates of Pasteurellaceae. The PCR assays were shown to be species specific, providing a valuable supplement to phenotypic identification of species within this group of bacteria. © 2011 The Author(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rongle Zhang; Jie Chang; Yuanyuan Xu
A new kinetic model of the Fischer-Tropsch synthesis (FTS) is proposed to describe the non-Anderson-Schulz-Flory (ASF) product distribution. The model is based on the double-polymerization monomers hypothesis, in which the surface C{sub 2}{asterisk} species acts as a chain-growth monomer in the light-product range, while C{sub 1}{asterisk} species acts as a chain-growth monomer in the heavy-product range. The detailed kinetic model in the Langmuir-Hinshelwood-Hougen-Watson type based on the elementary reactions is derived for FTS and the water-gas-shift reaction. Kinetic model candidates are evaluated by minimization of multiresponse objective functions with a genetic algorithm approach. The model of hydrocarbon product distribution ismore » consistent with experimental data (
Li, Y; Saxena, D; Barnes, V M; Trivedi, H M; Ge, Y; Xu, T
2006-10-01
Clinical evaluation of oral microbial reduction after a standard prophylactic treatment has traditionally been based on bacterial cultivation methods. However, not all microbes in saliva or dental plaque can be cultivated. Polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) is a cultivation-independent molecular fingerprinting technique that allows the assessment of the predominant bacterial species present in the oral cavity. This study sought to evaluate the oral microbial changes that occurred after a standard prophylactic treatment with a conventional oral care product using PCR-DGGE. Twelve healthy adults participated in the study. Pooled plaque samples were collected at baseline, 24 h after prophylaxis (T1), and 4 days after toothbrushing with fluoride toothpaste (T4). The total microbial genomic DNA of the plaque was isolated. PCR was performed with a set of universal bacterial 16S rDNA primers. The PCR-amplified 16S rDNA fragments were separated by DGGE. The effects of the treatment and of dental brushing were assessed by comparing the PCR-DGGE fingerprinting profiles. The mean numbers of detected PCR amplicons were 22.3 +/- 6.1 for the baseline group, 13.0 +/- 3.1 for the T1 group, and 13.5 +/- 4.3 for the T4 group; the differences among the three groups were statistically significant (P < 0.01). The study also found a significant difference in the mean similarities of microbial profiles between the baseline and the treatment groups (P < 0.001). PCR-based DGGE has been shown to be an excellent means of rapidly and accurately assessing oral microbial changes in this clinical study.
ERIC Educational Resources Information Center
Eaton, Bruce G., Ed.
1980-01-01
This collection of notes describes (1) an optoelectronic apparatus for classroom demonstrations of mechanical laws, (2) a more efficient method for demonstrated nuclear chain reactions using electrically energized "traps" and ping-pong balls, and (3) an inexpensive demonstration for qualitative analysis of temperature-dependent resistance. (CS)
Cryptosporidium spp. and Toxoplasma gondii are important coccidian parasites that have caused waterborne and foodborne disease outbreaks worldwide. Techniques like subtractive hybridization, microarrays, and quantitative reverse transcriptase real-time polymerase chain reaction (...
Chang, Limin; Li, Ying; Chu, Jia; Qi, Jingyao; Li, Xin
2010-11-08
In this paper, we demonstrated an efficient and robust route to the preparation of well-defined molecularly imprinted polymer based on reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The alkyne terminated RAFT chain transfer agent was first synthesized, and then click reaction was used to graft RAFT agent onto the surface of silica particles which was modified by azide. Finally, imprinted thin film was prepared in the presence of 2,4-dichlorophenol as the template. The imprinted beads were demonstrated with a homogeneous polymer films (thickness of about 2.27 nm), and exhibited thermal stability under 255°C. The as-synthesized product showed obvious molecular imprinting effects towards the template, fast template rebinding kinetics and an appreciable selectivity over structurally related compounds. Copyright © 2010 Elsevier B.V. All rights reserved.
[REAL TIME POLYMERASE CHAIN REACTION IN TULAREMIA LABORATORY DIAGNOSTICS].
Kormilitsyna, M I; Mescheryakova, I S; Mikhailova, T V; Dobrovolsky, A A
2015-01-01
Enhancement of tularemia laboratory diagnostics by F. tularensis DNA determination in blood sera of patients using real time polymerase chain reaction (RT-PCR). 39 blood sera of patients obtained during transmissive epidemic outbreak of tularemia in Khanty-Mansiysk in 2013 were studied in agglutination reaction, passive hemagglutination, RT-PCR. Specific primers and fluorescent probes were used: ISFTu2F/R+ISFTu2P, Tu14GF/R+tul4-PR2. Advantages of using RT-PCR for early diagnostics of tularemia, when specific antibodies are not detected using traditional immunologic methods, were established. Use of a combination of primers and ISFTu2F/R+ISFTu2P probe allowed to detect F. tularensis DNA in 100% of sera, whereas Tul4G F/R+tul4-PR2 combination--92% of sera. The data were obtained when DNA was isolated from sera using "Proba Rapid" express method. Clinical-epidemiologic diagnosis oftularemia was confirmed by both immune-serologic and RT-PCR methods when sera were studied 3-4 weeks after the onset of the disease. RT-PCR with ISFTu2F/R primers and fluorescent probe ISFTu2P, having high sensitivity and specificity, allows to determine F. tularensis DNA in blood sera of patients at both the early stage and 3-4 weeks after the onset of the disease.
NASA Astrophysics Data System (ADS)
Lee, Austin W. H.; Kim, Dongho; Gates, Byron D.
2018-04-01
The thickness of alcohol based monolayers on silicon oxide surfaces were investigated using angle-resolved X-ray photoelectron spectroscopy (ARXPS). Advantages of using alcohols as building blocks for the formation of monolayers include their widespread availability, ease of handling, and stability against side reactions. Recent progress in microwave assisted reactions demonstrated the ease of forming uniform monolayers with alcohol based reagents. The studies shown herein provide a detailed investigation of the thickness of monolayers prepared from a series of aliphatic alcohols of different chain lengths. Monolayers of 1-butanol, 1-hexanol, 1-octanol, 1-decanol, and 1-dodecanol were each successfully formed through microwave assisted reactions and characterized by ARXPS techniques. The thickness of these monolayers consistently increased by ∼1.0 Å for every additional methylene (CH2) within the hydrocarbon chain of the reagents. Tilt angles of the molecules covalently attached to silicon oxide surfaces were estimated to be ∼35° for each type of reagent. These results were consistent with the observations reported for thiol based or silane based monolayers on either gold or silicon oxide surfaces, respectively. The results of this study also suggest that the alcohol based monolayers are uniform at a molecular level.
Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides.
Nyilasi, I; Acs, K; Papp, T; Nagy, E; Vágvölgyi, C
2005-01-01
The Agrobacterium tumefaciens-mediated transformation of the zygomycetous fungus Mucor circinelloides is described. A method was also developed for the hygromycin B-based selection of Mucor transformants. Transformation with the hygromycin B phosphotransferase gene of Escherichia coli controlled by the heterologous Aspergillus nidulans trpC promoter resulted in hygromycin B-resistant clones. The presence of the hygromycin resistance gene in the genome of the transformants was verified by polymerase chain reaction and Southern hybridization: the latter analyses revealed integrations in the host genome at different sites in different transformants. The stability of transformants remained questionable during the latter analyses.
Suzuki, Y
2001-11-01
A methodology for selecting the measurement conditions in the dye-binding method for determining serum protein has been studied by a theoretical calculation. This calculation was based on the fact that a protein error occurs because of a reaction between the side chains of a positively charged amino acid residue in a protein molecule and a dissociated dye anion. The calculated characteristics of this method are summarized as follows: (1) Although the reaction between the dye and the protein occurs up to about pH 12, a change in the color shade, called protein error, is observed only in a pH region restricted within narrow limits. (2) Although the apparent absorbance (the absorbance of the test solution measured against a reagent blank) is lower than the true absorbance indicated by the formed dye-protein complex, the apparent absorbance correlates with the true absorbance with a correlation coefficient of 1.0. (3) At a higher dye concentration, the calibration curve is more linear at a higher pH than at a lower pH. Most of these characteristics were similarly observed experimentally in the reactions of BPB, BCG and BCP with human and bovine albumins. It is concluded that in order to ensure the linearity of the calibration curve, the measurement should be performed at a higher dye concentration and sufficiently high pH where the detection sensitivity is satisfied.
Xue, Qingwang; Liu, Chunxue; Li, Xia; Dai, Li; Wang, Huaisheng
2018-04-18
Various fluorescent sensing systems for miRNA detection have been developed, but they mostly contain enzymatic amplification reactions and label procedures. The strict reaction conditions of tool enzymes and the high cost of labeling limit their potential applications, especially in complex biological matrices. Here, we have addressed the difficult problems and report a strategy for label-free fluorescent DNA dendrimers based on enzyme-free nonlinear hybridization chain reaction (HCR)-mediated multiple G-quadruplex for simple, sensitive, and selective detection of miRNAs with low-background signal. In the strategy, a split G-quadruplex (3:1) sequence is ingeniously designed at both ends of two double-stranded DNAs, which is exploited as building blocks for nonlinear HCR assembly, thereby acquiring a low background signal. A hairpin switch probe (HSP) was employed as recognition and transduction element. Upon sensing the target miRNA, the nonlinear HCR assembly of two blocks (blocks-A and blocks-B) was initiated with the help of two single-stranded DNA assistants, resulting in chain-branching growth of DNA dendrimers with multiple G-quadruplex incorporation. With the zinc(II)-protoporphyrin IX (ZnPPIX) selectively intercalated into the multiple G-quadruplexes, fluorescent DNA dendrimers were obtained, leading to an exponential fluorescence intensity increase. Benefiting from excellent performances of nonlinear HCR and low background signal, this strategy possesses the characteristics of a simplified reaction operation process, as well as high sensitivity. Moreover, the proposed fluorescent sensing strategy also shows preferable selectivity, and can be implemented without modified DNA blocks. Importantly, the strategy has also been tested for miRNA quantification with high confidence in breast cancer cells. Thus, this proposed strategy for label-free fluorescent DNA dendrimers based on a nonlinear HCR-mediated multiple G-quadruplex will be turned into an alternative approach for simple, sensitive, and selective miRNA quantification.
Measuring Fission Chain Dynamics Through Inter-event Timing of Correlated Particles
NASA Astrophysics Data System (ADS)
Monterial, Mateusz
Neutrons born from fission may go on to induce subsequent fissions in self-propagating series of reactions resulting in a fission chain. Fissile materials comprise all isotopes capable of sustaining nuclear fission chain reactions, and are therefore a necessary prerequisite for the construction of a nuclear weapon. As a result the accountancy and characterization of fissile material is of great importance for national security and the international community. The rate at which neutrons "multiply" in a fissile material is a function of the composition, total mass, density, and shape of the object. These are key characteristics sought out in areas of nuclear non-proliferation, safeguards, treaty verification and emergency response. This thesis demonstrates a novel technique of measuring the underlying fission chain dynamics in fissile material through temporal correlation of neutrons and gamma rays emitted from fission. Fissile material exhibits key detectable signatures through the emission of correlated neutrons and gamma rays from fission. The Non-Destructive Assay (NDA) community has developed mature techniques of assaying fissile material that detect these signatures, such as neutron counting by thermal capture based detectors, and gamma-ray spectroscopy. An alternative use of fast organic scintillators provides three additional capabilities: (1) discrimination between neutrons and gamma-ray pulses (2) sub-nanosecond scale timing between correlated events (3) measurement of deposited neutron energy in the detector. This thesis leverages these capabilities into to measure a new signature, which is demonstrated to be sensitive to both fissile neutron multiplication and presence of neutronically coupled reflectors. In addition, a new 3D imaging method of sources of correlated gamma rays and neutrons is presented, which can improve estimation of total source volume and localization.
High resolution melting (HRM) analysis of DNA--its role and potential in food analysis.
Druml, Barbara; Cichna-Markl, Margit
2014-09-01
DNA based methods play an increasing role in food safety control and food adulteration detection. Recent papers show that high resolution melting (HRM) analysis is an interesting approach. It involves amplification of the target of interest in the presence of a saturation dye by the polymerase chain reaction (PCR) and subsequent melting of the amplicons by gradually increasing the temperature. Since the melting profile depends on the GC content, length, sequence and strand complementarity of the product, HRM analysis is highly suitable for the detection of single-base variants and small insertions or deletions. The review gives an introduction into HRM analysis, covers important aspects in the development of an HRM analysis method and describes how HRM data are analysed and interpreted. Then we discuss the potential of HRM analysis based methods in food analysis, i.e. for the identification of closely related species and cultivars and the identification of pathogenic microorganisms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dreier, Jens; Störmer, Melanie; Kleesiek, Knut
2007-07-01
Bacterial contamination of blood components, particularly of platelet concentrates (PCs), represents the greatest infectious risk in blood transfusion. Although the incidence of platelet bacterial contamination is approximately 1 per 2,000 U, the urgent need for a method for the routine screening of PCs to improve safety for patients had not been considered for a long time. Besides the culturing systems, which will remain the criterion standard, rapid methods for sterility screening will play a more important role in transfusion medicine in the future. In particular, nucleic acid amplification techniques (NATs) are powerful potential tools for bacterial screening assays. The combination of excellent sensitivity and specificity, reduced contamination risk, ease of performance, and speed has made real-time polymerase chain reaction (PCR) technology an appealing alternative to conventional culture-based testing methods. When using real-time PCR for the detection of bacterial contamination, several points have to be considered. The main focus is the choice of the target gene; the assay format; the nucleic acid extraction method, depending on the sample type; and the evaluation of an ideal sampling strategy. However, several factors such as the availability of bacterial-derived nucleic acid amplification reagents, the impracticability, and the cost have limited the use of NATs until now. Attempts to reduce the presence of contaminating nucleic acids from reagents in real-time PCR have been described, but none of these approaches have proven to be very effective or to lower the sensitivity of the assay. Recently, a number of broad-range NAT assays targeting the 16S ribosomal DNA or 23S ribosomal RNA for the detection of bacteria based on real-time technology have been reported. This review will give a short survey of current approaches to and the limitations of the application of real-time PCR for bacterial detection in blood components, with emphasis on the bacterial contamination of PCs.
Piedra, Jose; Ontiveros, Maria; Miravet, Susana; Penalva, Cristina; Monfar, Mercè; Chillon, Miguel
2015-02-01
Recombinant adeno-associated viruses (rAAVs) are promising vectors in preclinical and clinical assays for the treatment of diseases with gene therapy strategies. Recent technological advances in amplification and purification have allowed the production of highly purified rAAV vector preparations. Although quantitative polymerase chain reaction (qPCR) is the current method of choice for titrating rAAV genomes, it shows high variability. In this work, we report a rapid and robust rAAV titration method based on the quantitation of encapsidated DNA with the fluorescent dye PicoGreen®. This method allows detection from 3×10(10) viral genome/ml up to 2.4×10(13) viral genome/ml in a linear range. Contrasted with dot blot or qPCR, the PicoGreen-based assay has less intra- and interassay variability. Moreover, quantitation is rapid, does not require specific primers or probes, and is independent of the rAAV pseudotype analyzed. In summary, development of this universal rAAV-titering method may have substantive implications in rAAV technology.
Modification of aniline containing proteins using an oxidative coupling strategy.
Hooker, Jacob M; Esser-Kahn, Aaron P; Francis, Matthew B
2006-12-13
A new bioconjugation reaction has been developed based on the chemoselective modification of anilines through an oxidative coupling pathway. Aryl amines were installed on the surface of protein substrates through lysine acylation reactions or through the use of native chemical ligation techniques. Upon exposure to NaIO4 in aqueous buffer, the anilines coupled rapidly to the aromatic rings of N,N-dialkyl-N'-acyl-p-phenylenediamines. The identities of the reaction products were confirmed using ESI-MS and through comparison to small molecule analogs. Control experiments indicated that none of the native amino acids participated in the reaction. The resulting bioconjugates were found to be stable toward hydrolysis from pH 4 to pH 11 and in the presence of many commonly used oxidants, reductants, and nucleophiles. A fluorescent phenylenediamine reagent was synthesized for the selective detection of aniline labeled proteins in mixtures, and the reaction was used to append the C-terminus of the green fluorescent protein with a single PEG chain. When combined with techniques for the incorporation of unnatural amino acids into proteins, this bioorthogonal coupling method should prove useful for a number of applications requiring a high degree of labeling specificity.
Toluene nitration in irradiated nitric acid and nitrite solutions
NASA Astrophysics Data System (ADS)
Elias, Gracy; Mincher, Bruce J.; Mezyk, Stephen P.; Muller, Jim; Martin, Leigh R.
2011-04-01
The kinetics, mechanisms, and stable products produced for the nitration of aryl alkyl mild ortho-para director toluene in irradiated nitric acid and neutral nitrite solutions were investigated using γ and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection, GC-MS and LC-MS, were used to assess the stable reaction products. Free-radical based nitration reaction products were found in irradiated acidic and neutral media. In 6.0 M HNO3, ring substitution, side chain substitution, and oxidation, produced different nitrated toluene products. For ring substitution, nitrogen oxide radicals were added mainly to cyclohexadienyl radicals, whereas for side chain substitution, these radicals were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite solutions, radiolytically-induced ring nitration products approached a statistically random distribution, suggesting a direct free-radical reaction involving addition of the rad NO2 radical.
Hu, Zhongqiao; Jiang, Jianwen; Rajagopalan, Raj
2007-09-01
A molecular thermodynamic model is developed to investigate the effects of macromolecular crowding on biochemical reactions. Three types of reactions, representing protein folding/conformational isomerization, coagulation/coalescence, and polymerization/association, are considered. The reactants, products, and crowders are modeled as coarse-grained spherical particles or as polymer chains, interacting through hard-sphere interactions with or without nonbonded square-well interactions, and the effects of crowder size and chain length as well as product size are examined. The results predicted by this model are consistent with experimentally observed crowding effects based on preferential binding or preferential exclusion of the crowders. Although simple hard-core excluded-volume arguments do in general predict the qualitative aspects of the crowding effects, the results show that other intermolecular interactions can substantially alter the extent of enhancement or reduction of the equilibrium and can even change the direction of the shift. An advantage of the approach presented here is that competing reactions can be incorporated within the model.
NASA Astrophysics Data System (ADS)
Lau, Han Yih; Wu, Haoqi; Wee, Eugene J. H.; Trau, Matt; Wang, Yuling; Botella, Jose R.
2017-01-01
Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.
Lau, Han Yih; Wu, Haoqi; Wee, Eugene J H; Trau, Matt; Wang, Yuling; Botella, Jose R
2017-01-17
Developing quick and sensitive molecular diagnostics for plant pathogen detection is challenging. Herein, a nanoparticle based electrochemical biosensor was developed for rapid and sensitive detection of plant pathogen DNA on disposable screen-printed carbon electrodes. This 60 min assay relied on the rapid isothermal amplification of target pathogen DNA sequences by recombinase polymerase amplification (RPA) followed by gold nanoparticle-based electrochemical assessment with differential pulse voltammetry (DPV). Our method was 10,000 times more sensitive than conventional polymerase chain reaction (PCR)/gel electrophoresis and could readily identify P. syringae infected plant samples even before the disease symptoms were visible. On the basis of the speed, sensitivity, simplicity and portability of the approach, we believe the method has potential as a rapid disease management solution for applications in agriculture diagnostics.
Hosono, Nobuhiko; Gochomori, Mika; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu
2016-05-25
We herein report the divergent and convergent synthesis of coordination star polymers (CSP) by using metal-organic polyhedrons (MOPs) as a multifunctional core. For the divergent route, copper-based great rhombicuboctahedral MOPs decorated with dithiobenzoate or trithioester chain transfer groups at the periphery were designed. Subsequent reversible addition-fragmentation chain transfer (RAFT) polymerization of monomers mediated by the MOPs gave star polymers, in which 24 polymeric arms were grafted from the MOP core. On the other hand, the convergent route provided identical CSP architectures by simple mixing of a macroligand and copper ions. Isophthalic acid-terminated polymers (so-called macroligands) immediately formed the corresponding CSPs through a coordination reaction with copper(II) ions. This convergent route enabled us to obtain miktoarm CSPs with tunable chain compositions through ligand mixing alone. This powerful method allows instant access to a wide variety of multicomponent star polymers that conventionally have required highly skilled and multistep syntheses. MOP-core CSPs are a new class of star polymer that can offer a design strategy for highly processable porous soft materials by using coordination nanocages as a building component.
Synthesis of lipase-catalysed silicone-polyesters and silicone-polyamides at elevated temperatures.
Frampton, Mark B; Zelisko, Paul M
2013-10-18
More and more enzymes are being explored as alternatives to conventional catalysts in chemical reactions. To utilize these biocatalysts to their fullest, it is incumbent on researchers to gain a complete understanding of the reaction conditions that particular enzymes will tolerate. To this end siloxane-containing polyesters and polyamides have been produced via N435-mediated catalysis at temperatures well above the normal denaturation temperature for free CalB. Low molecular weight disiloxane-based acceptors release the enzyme from its acylated state with equal proficiency while longer chain siloxanes favours polyester synthesis. The thermal tolerance of the enzyme catalyst is increased using longer chain diesters and generally more hydrophobic substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krotov, V.V.; Staroverov, S.M.; Nesterenko, P.N.
A series of heterogeneous catalysts for asymmetric Michael additions was synthesized based on ephedrine chemically bound to the surface of silica. The length of the hydrocarbon chain binding the active center to the support surface affects the sign of rotation of the reaction product from the asymmetric addition of thiophenol to benzylideneacetophenone. Grafting ephedrine to the silica surface via a short hydrocarbon chain results in a change in the configuration of the reaction product. Silanol groups on the silica surface are involved in the transition state, as evidenced by data obtained using silica which has been exhaustively treated with trimethylchlorosilane.more » The absolute specific rotation of 1,3-diphenyl-3-thiophenylpropan-1-one has been established.« less
Mannich Bases: An Important Pharmacophore in Present Scenario
Sharma, Neha; Kajal, Anu; Saini, Vipin
2014-01-01
Mannich bases are the end products of Mannich reaction and are known as beta-amino ketone carrying compounds. Mannich reaction is a carbon-carbon bond forming nucleophilic addition reaction and is a key step in synthesis of a wide variety of natural products, pharmaceuticals, and so forth. Mannich reaction is important for the construction of nitrogen containing compounds. There is a number of aminoalkyl chain bearing Mannich bases like fluoxetine, atropine, ethacrynic acid, trihexyphenidyl, and so forth with high curative value. The literature studies enlighten the fact that Mannich bases are very reactive and recognized to possess potent diverse activities like anti-inflammatory, anticancer, antifilarial, antibacterial, antifungal, anticonvulsant, anthelmintic, antitubercular, analgesic, anti-HIV, antimalarial, antipsychotic, antiviral activities and so forth. The biological activity of Mannich bases is mainly attributed to α, β-unsaturated ketone which can be generated by deamination of hydrogen atom of the amine group. PMID:25478226
USDA-ARS?s Scientific Manuscript database
Reverse Transcription quantitative Polymerase Chain Reaction (qRT-PCR) is a popular method for measuring transcript abundance. The most commonly used method of interpretation is relative quantification and thus necessitates the use of normalization controls (i.e. reference genes) to standardize tran...
USDA-ARS?s Scientific Manuscript database
Quantitative PCR (qPCR) can be used to detect and monitor pathogen colonization, but early attempts to apply the technology to Botrytis cinerea infection of grape berries have identified limitations to current techniques. In this study, four DNA extraction methods, two grinding methods, two grape or...
Enantioselective Synthesis of SNAP-7941
Goss, Jennifer M.; Schaus, Scott E.
2009-01-01
An enantioselective synthesis of SNAP-7941, a potent melanin concentrating hormone receptor antagonist, was achieved using two organocatalytic methods. The first method utilized to synthesize the enantioenriched dihydropyrimidone core was the Cinchona alkaloid-catalyzed Mannich reaction of β-keto esters to acyl imines and the second was chiral phosphoric acid-catalyzed Biginelli reaction. Completion of the synthesis was accomplished via selective urea formation at the N3 position of the dihydropyrimidone with the 3-(4-phenylpiperidin-1-yl)propyl amine side chain fragment. The synthesis of SNAP-7921 highlights the utility of asymmetric organocatalytic methods in the construction of an important class of chiral heterocycles. PMID:18767801
On-Site Molecular Detection of Soil-Borne Phytopathogens Using a Portable Real-Time PCR System
DeShields, Joseph B.; Bomberger, Rachel A.; Woodhall, James W.; Wheeler, David L.; Moroz, Natalia; Johnson, Dennis A.; Tanaka, Kiwamu
2018-01-01
On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis. PMID:29553557
Advances in sex determination in bats and its utility in wind-wildlife studies.
Korstian, J M; Hale, A M; Bennett, V J; Williams, D A
2013-09-01
We developed a simple and reliable genetic method to determine sex in bats from the Vespertilionidae and Molossidae families. Polymerase chain reaction was used to amplify a portion of the introns within the zinc-finger-X (Zfx) and zinc-finger-Y (Zfy) genes. We designed primers to produce size variation between the Zfx and Zfy products that could be visualized using gel electrophoresis. Using an example from our wind-wildlife research, we show how sex data generated using this method are superior to sex data based on external morphology. Our method allows for the generation of sex data across a wide range of bats that can be used to address key questions in wildlife forensics, behavioural ecology, conservation and evolutionary biology. © 2013 John Wiley & Sons Ltd.
Enumeration of Ring–Chain Tautomers Based on SMIRKS Rules
2015-01-01
A compound exhibits (prototropic) tautomerism if it can be represented by two or more structures that are related by a formal intramolecular movement of a hydrogen atom from one heavy atom position to another. When the movement of the proton is accompanied by the opening or closing of a ring it is called ring–chain tautomerism. This type of tautomerism is well observed in carbohydrates, but it also occurs in other molecules such as warfarin. In this work, we present an approach that allows for the generation of all ring–chain tautomers of a given chemical structure. Based on Baldwin’s Rules estimating the likelihood of ring closure reactions to occur, we have defined a set of transform rules covering the majority of ring–chain tautomerism cases. The rules automatically detect substructures in a given compound that can undergo a ring–chain tautomeric transformation. Each transformation is encoded in SMIRKS line notation. All work was implemented in the chemoinformatics toolkit CACTVS. We report on the application of our ring–chain tautomerism rules to a large database of commercially available screening samples in order to identify ring–chain tautomers. PMID:25158156
NASA Technical Reports Server (NTRS)
Ramirez, Gustavo A; Vaishampayan, Parag A.
2011-01-01
Alpha-diversity studies are of crucial importance to environmental microbiologists. The polymerase chain reaction (PCR) method has been paramount for studies interrogating microbial environmental samples for taxon richness. Phylogenetic studies using this technique are based on the amplification and comparison of the 16S rRNA coding regions. PCR, due disproportionate distribution of microbial species in the environment, increasingly favors the amplification of the most predominant phylotypes with every subsequent reaction cycle. The genetic and chemical complexity of environmental samples are intrinsic factors that exacerbate an inherit bias in PCR-based quantitative and qualitative studies of microbial communities. We report that treatment of a genetically complex total genomic environmental DNA extract with Propidium Monoazide (PMA), a DNA intercalating molecule capable of forming a covalent cross-linkage to organic moieties upon light exposure, disproportionally inactivates predominant phylotypes and results in the exponential amplification of previously shadowed microbial ?-diversity quantified as a 19.5% increase in OUTs reported via phylogenetic screening using PhyloChip.
Lorenz, Dominic; Knöpfle, Anna; Akil, Youssef; Saake, Bodo
2017-11-01
The chemical structures obtained by the modification of arabinoxylans with the cyclic carbonates propylene carbonate (PC) and 4-vinyl-1,3-dioxolan-2-one (VEC) with varying degrees of substitution were investigated. Therefore, a new analytical method was developed that is based on a microwave-assisted hydrolysis of the polysaccharides with trifluoroacetic acid and the reductive amination with 2-aminobenzoic acid. The peak assignment was achieved by HPLC-MS and the carbohydrate derivatives were quantified by HPLC-fluorescence. The obtained maximum molar substitution of PC-derivatized xylan (X HP ) was 1.8; the molar substitution of VEC-derivatized xylan (X HVE ) was 2.3. Investigations of xylose and arabinose based mono- and disubstituted derivatives revealed a preferred reaction of the cyclic carbonates with arabinose. Conversion rates were up to 2.4 times higher for monosubstitution and up to 3.0 times for disubstitution compared to xylose. Furthermore, the reaction with VEC was preferred due to higher reactivity of the newly introduced side chains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detection of Genetically Modified Food: Has Your Food Been Genetically Modified?
ERIC Educational Resources Information Center
Brandner, Diana L.
2002-01-01
Explains the benefits and risks of genetically-modified foods and describes methods for genetically modifying food. Presents a laboratory experiment using a polymerase chain reaction (PCR) test to detect foreign DNA in genetically-modified food. (Contains 18 references.) (YDS)
Chen, Yen-Ling; Shih, Chi-Jen; Ferrance, Jerome; Chang, Ya-Sian; Chang, Jan-Gowth; Wu, Shou-Mei
2009-02-13
A gold nanoparticle-filled capillary electrophoresis method combined with three multiplex polymerase chain reactions (PCRs) was established for simultaneous diagnosis of five common alpha-thalassemia deletions, including the -alpha(3.7) deletion, -alpha(4.2) deletion, Southeast Asian (--(SEA)), Filipino (--(FIL)) and Thai (--(THAI)) deletions. Gold nanoparticles (GNPs) were used as a pseudostationary phase to improve the resolution between DNA fragments in a low-viscosity polymer. To achieve the best CE separation, several parameters were evaluated for optimizing the separation conditions, including the capillary coating, the concentrations of polymer sieving matrix, the sizes and concentrations of GNPs, the buffer concentrations, and the pH. The final CE method for separating a 200-base pair (bp) DNA ladder and alpha-thalassemia deletions used a DB-17 capillary, 0.6% poly(ethylene oxide) (PEO) prepared in a mixture of GNP(32nm) solution and glycine buffer (25mM, pH 9.0) (80:20, v/v) as the sieving matrix with 1microM YO-PRO-1 for fluorescence detection; the applied voltage was -10kV (detector at anode side) and the separation temperature was 25 degrees C. Under these optimal conditions, 15 DNA fragments with sizes ranging from 0.2kb to 3.0kb were resolved within 11.5min. The RSDs of migration times were less than 2.81%. A total of 21 patients with alpha-thalassemia deletions were analyzed using this method, and all results showed good agreement with those obtained by gel electrophoresis.
Effective PCR detection of animal species in highly processed animal byproducts and compound feeds.
Fumière, Olivier; Dubois, Marc; Baeten, Vincent; von Holst, Christoph; Berben, Gilbert
2006-07-01
In this paper we present a polymerase chain reaction (PCR)-based method for detecting meat and bone meal (MBM) in compound feedingstuffs. By choosing adequate DNA targets from an appropriate localisation in the genome, the real-time PCR method developed here proved to be robust to severe heat treatment of the MBM, showing high sensitivity in the detection of MBM. The method developed here permits the specific detection of processed pig and cattle materials treated at 134 degrees C in various feed matrices down to a limit of detection of about 0.1%. This technique has also been successfully applied to well-characterised MBM samples heated to as high as 141 degrees C, as well as to various blind feed samples with very low MBM contents. Finally, the method also passed several official European ring trials.
Single nucleotide polymorphism discrimination with and without an ethidium bromide intercalator.
Fenati, Renzo A; Connolly, Ashley R; Ellis, Amanda V
2017-02-15
Single nucleotide polymorphism (SNP) genotyping is an important aspect in understanding genetic variations. Here, we discriminate SNPs using toe-hold mediated displacement reactions. The biological target is an 80 nucleotide long double-stranded-DNA from the mtDNA HV1 region, associated with maternal ancestry. This target has been specially designed with a pendant toehold and a cationic fluorophore, ATTO 647N, as a reporter, produced in a polymerase chain reaction. Rates of reaction for the toehold-polymerase chain reaction products (TPPs) with their corresponding complementary displacing sequences, labelled with a Black Hole Quencher 1, followed the order TPP-Cytosine > TPP-Thymine > TPP-Adenine ≥ TPP-Guanine. Non-complementary rates were the slowest with mismatches involving cytosine. These reactions, operating in a static/or contact mode, gave averaged readouts between SNPs within 15 min (with 80-90% quenching), compared to 25-30 min in previous studies involving fluorescence resonance energy transfer. Addition of an intercalating agent, ethidium bromide, retarded the rate of reaction in which cytosine was involved, presumably through stabilization of the base pairing, which resulted in markedly improved discrimination of cytosine containing SNPs. Copyright © 2016 Elsevier B.V. All rights reserved.